1
|
Prisle NL. Surfaces of Atmospheric Droplet Models Probed with Synchrotron XPS on a Liquid Microjet. Acc Chem Res 2024; 57:177-187. [PMID: 38156821 PMCID: PMC10795169 DOI: 10.1021/acs.accounts.3c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Indexed: 01/03/2024]
Abstract
ConspectusThe atmosphere is a key part of the earth system comprising myriad chemical species in all basic forms of matter. Ubiquitous nano- and microscopic aerosol particles and cloud droplets suspended in the air play crucial roles in earth's climate and the formation of air pollution. Surfaces are a prominent part of aerosols and droplets, due to the high surface area to bulk volume ratios, but very little is known about their specific properties. Many atmospheric compounds are surface-active, leading to enhanced surface concentrations in aqueous solutions. Their distribution between the surface and bulk may determine heterogeneous chemistry and many other properties of aerosol and cloud droplets, but has not been directly observed.We used X-ray photoelectron spectroscopy (XPS) to obtain direct molecular-level information on the surface composition and structure of aqueous solutions of surface-active organics as model systems for atmospheric aerosol and cloud droplets. XPS is a vacuum-based technique enabled for volatile aqueous organic samples by the application of a high-speed liquid microjet. In combination with brilliant synchrotron X-rays, the chemical specificity of XPS allows distinction between elements in different chemical states and positions within molecular structures. We used core-level C 1s and N 1s signals to identify the alkyl and hydrophilic groups of atmospheric carboxylic acids, alkyl-amines, and their conjugate acids and bases. From this, we infer changes in the orientation of surface-adsorbed species and quantify their relative abundances in the surface. XPS-derived surface enrichments of the organics follow trends expected from their surface activities and we observed a preferential orientation at the surface with the hydrophobic alkyl chains pointing increasingly outward from the solution at higher concentrations. This provides a first direct experimental observation of well-established concepts of surface adsorption and confirms the soundness of the method.We mapped relative abundances of conjugate acid-base pairs in the aqueous solution surfaces from the respective intensities of distinctive XPS signals. For each pair, the protonation equilibrium was significantly shifted toward the neutral form in the surface, compared to the bulk solution, across the full pH range. This represents an apparent shift of the pKa in the surface, which may be toward either higher or lower pH, depending on whether the acid or base form of the pair is the neutral species. The surface shifts are broadly consistent with the relative differences in surface enrichment of the individual acid and base conjugates in binary aqueous solutions, with additional contributions from nonideal interactions in the surface. In aqueous mixtures of surface-active carboxylate anions with ammonium salts at near-neutral pH, we found that the conjugate carboxylic acids were further strongly enhanced. This occurs as the coadsorption of weakly basic carboxylate anions and weakly acidic ammonium cations forms ion-pair surface layers with strongly enhanced local abundances, increasing the probability of net proton transfer according to Le Chatelier's principle. The effect is stronger when the evaporation of ammonia from the surface further contributes to irreversibly perturb the protonation equilibrium, leaving a surplus of carboxylic acid. These surface-specific effects may profoundly influence atmospheric chemistry mediated by aqueous aerosols and cloud droplets but are currently not taken into account in atmospheric models.
Collapse
Affiliation(s)
- Nønne L. Prisle
- Center for Atmospheric Research, University of Oulu, P.O. Box 4500, Oulu 90014, Finland
| |
Collapse
|
2
|
Mukherjee J, Lodh BK, Sharma R, Mahata N, Shah MP, Mandal S, Ghanta S, Bhunia B. Advanced oxidation process for the treatment of industrial wastewater: A review on strategies, mechanisms, bottlenecks and prospects. CHEMOSPHERE 2023; 345:140473. [PMID: 37866496 DOI: 10.1016/j.chemosphere.2023.140473] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Due to its complex and, often, highly contaminated nature, treating industrial wastewater poses a significant environmental problem. Many of the persistent pollutants found in industrial effluents cannot be effectively removed by conventional treatment procedures. Advanced Oxidation Processes (AOPs) have emerged as a promising solution, offering versatile and effective means of pollutant removal and mineralization. This comprehensive review explores the application of various AOP strategies in industrial wastewater treatment, focusing on their mechanisms and effectiveness. Ozonation (O3): Ozonation, leveraging ozone (O3), represents a well-established AOP for industrial waste water treatment. Ozone's formidable oxidative potential enables the breakdown of a broad spectrum of organic and inorganic contaminants. This paper provides an in-depth examination of ozone reactions, practical applications, and considerations involved in implementing ozonation. UV/Hydrogen Peroxide (UV/H2O2): The combination of ultraviolet (UV) light and hydrogen peroxide (H2O2) has gained prominence as an AOP due to its ability to generate hydroxyl radicals (ȮH), highly efficient in pollutant degradation. The review explores factors influencing the efficiency of UV/H2O2 processes, including H2O2 dosage and UV radiation intensity. Fenton and Photo-Fenton Processes: Fenton's reagent and Photo-Fenton processes employ iron ions and hydrogen peroxide to generate hydroxyl radicals for pollutant oxidation. The paper delves into the mechanisms, catalyst selection, and the role of photoactivation in enhancing degradation rates within the context of industrial wastewater treatment. Electrochemical Advanced Oxidation Processes (EAOPs): EAOPs encompass a range of techniques, such as electro-Fenton and anodic oxidation, which employ electrode reactions to produce ȮH radicals. This review explores the electrochemical principles, electrode materials, and operational parameters critical for optimizing EAOPs in industrial wastewater treatment. TiO2 Photocatalysis (UV/TiO2): Titanium dioxide (TiO2) photocatalysis, driven by UV light, is examined for its potential in industrial wastewater treatment. The review investigates TiO2 catalyst properties, reaction mechanisms, and the influence of parameters like catalyst loading and UV intensity on pollutant removal. Sonolysis (Ultrasonic Irradiation): High-frequency ultrasound-induced sonolysis represents a unique AOP, generating ȮH radicals during the formation and collapse of cavitation bubbles. This paper delves into the physics of cavitation, sonolytic reactions, and optimization strategies for industrial wastewater treatment. This review offers a critical assessment of the applicability, advantages, and limitations of these AOP strategies in addressing the diverse challenges posed by industrial wastewater. It emphasizes the importance of selecting AOPs tailored to the specific characteristics of industrial effluents and outlines potential directions for future research and practical implementation. The integrated use of these AOPs, when appropriately adapted, holds the potential to achieve sustainable and efficient treatment of industrial wastewater, contributing significantly to environmental preservation and regulatory compliance.
Collapse
Affiliation(s)
- Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy, Affiliated to Jawaharlal Nehru Technological University Hyderabad, Hyderabad, Telangana, 501401, India.
| | - Bibhab Kumar Lodh
- Department of Chemical Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Ramesh Sharma
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India.
| | - Maulin P Shah
- Industrial Wastewater Research Lab, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar, Gujarat, India.
| | - Subhasis Mandal
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, 673 601, India.
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Agartala, 799046, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| |
Collapse
|
3
|
Al-Abadleh HA, Kubicki JD, Meskhidze N. A perspective on iron (Fe) in the atmosphere: air quality, climate, and the ocean. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:151-164. [PMID: 36004543 DOI: 10.1039/d2em00176d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As scientists engage in research motivated by climate change and the impacts of pollution on air, water, and human health, we increasingly recognize the need for the scientific community to improve communication and knowledge exchange across disciplines to address pressing and outstanding research questions holistically. Our professional paths have crossed because our research activities focus on the chemical reactivity of Fe-containing minerals in air and water, and at the air-sea interface. (Photo)chemical reactions driven by Fe can take place at the surface of the particles/droplets or within the condensed phase. The extent and rates of these reactions are influenced by water content and biogeochemical activity ubiquitous in these systems. One of these reactions is the production of reactive oxygen species (ROS) that cause damage to respiratory organs. Another is that the reactivity of Fe and organics in aerosol particles alter surficial physicochemical properties that impact aerosol-radiation and aerosol-cloud interactions. Also, upon deposition, aerosol particles influence ocean biogeochemical processes because micronutrients such as Fe or toxic elements such as copper become bioavailable. We provide a perspective on these topics and future research directions on the reactivity of Fe in atmospheric aerosol systems, from sources to short- and long-term impacts at the sinks with emphasis on needs to enhance the predictive power of atmospheric and ocean models.
Collapse
Affiliation(s)
- Hind A Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo N2L 3C5, Ontario, Canada.
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso 79968, Texas, USA.
| | - Nicholas Meskhidze
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh 27695, North Carolina, USA.
| |
Collapse
|
4
|
Epelle EI, Macfarlane A, Cusack M, Burns A, Okolie JA, Mackay W, Rateb M, Yaseen M. Ozone application in different industries: A review of recent developments. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 454:140188. [PMID: 36373160 PMCID: PMC9637394 DOI: 10.1016/j.cej.2022.140188] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 06/01/2023]
Abstract
Ozone - a powerful antimicrobial agent, has been extensively applied for decontamination purposes in several industries (including food, water treatment, pharmaceuticals, textiles, healthcare, and the medical sectors). The advent of the COVID-19 pandemic has led to recent developments in the deployment of different ozone-based technologies for the decontamination of surfaces, materials and indoor environments. The pandemic has also highlighted the therapeutic potential of ozone for the treatment of COVID-19 patients, with astonishing results observed. The key objective of this review is to summarize recent advances in the utilisation of ozone for decontamination applications in the above-listed industries while emphasising the impact of key parameters affecting microbial reduction efficiency and ozone stability for prolonged action. We realise that aqueous ozonation has received higher research attention, compared to the gaseous application of ozone. This can be attributed to the fact that water treatment represents one of its earliest applications. Furthermore, the application of gaseous ozone for personal protective equipment (PPE) and medical device disinfection has not received a significant number of contributions compared to other applications. This presents a challenge for which the correct application of ozonation can mitigate. In this review, a critical discussion of these challenges is presented, as well as key knowledge gaps and open research problems/opportunities.
Collapse
Affiliation(s)
- Emmanuel I Epelle
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
- ACS Clothing, 6 Dovecote Road Central Point Logistics Park ML1 4GP, United Kingdom
| | - Andrew Macfarlane
- ACS Clothing, 6 Dovecote Road Central Point Logistics Park ML1 4GP, United Kingdom
| | - Michael Cusack
- ACS Clothing, 6 Dovecote Road Central Point Logistics Park ML1 4GP, United Kingdom
| | - Anthony Burns
- ACS Clothing, 6 Dovecote Road Central Point Logistics Park ML1 4GP, United Kingdom
| | - Jude A Okolie
- Gallogly College of Engineering, University of Oklahoma, USA
| | - William Mackay
- School of Health & Life Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| | - Mostafa Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| |
Collapse
|
5
|
Shen C, Zhang W, Choczynski J, Davies JF, Zhang H. Phase State and Relative Humidity Regulate the Heterogeneous Oxidation Kinetics and Pathways of Organic-Inorganic Mixed Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15398-15407. [PMID: 36306431 DOI: 10.1021/acs.est.2c04670] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inorganic species always coexist with organic materials in atmospheric particles and may influence the heterogeneous oxidation of organic aerosols. However, very limited studies have explored the role of the inorganics in the chemical evolution of organic species in mixed aerosols. This study examines the heterogeneous oxidation of glutaric acid-ammonium sulfate and 1,2,6-hexanetriol-ammonium sulfate aerosols by hydroxyl radicals (OH) under varied organic mass fractions (forg) and relative humidity in a flow tube reactor. Coupling the oxidation kinetics and product measurements with kinetic model simulations, we found that under both low relative humidity (RH, 30-35%) and high RH conditions (85%), the decreased forg from 0.7 to 0.2 accelerates the oxidation of the organic materials by a factor of up to 11. We suggest that the faster oxidation kinetics under low-RH conditions is due to full or partial phase separation, with the organics greatly enriched at the particle outer region, while enhanced "salting-out" of the organics and OH adsorption caused by higher inorganics could explain the observations under high-RH conditions. Analysis of the oxidation products reveals that the dilution of organics by the inorganic salts and corresponding water uptake under high-RH conditions will favor alkoxy radical fragmentation by a factor of 3-4 and inhibit its secondary chain propagation chemistry. Our results suggest that atmospheric organic aerosol oxidation lifetime and composition are strongly impacted by the coexistent inorganic salts.
Collapse
Affiliation(s)
- Chuanyang Shen
- Department of Chemistry, University of California, Riverside, California92507, United States
| | - Wen Zhang
- Department of Chemistry, University of California, Riverside, California92507, United States
| | - Jack Choczynski
- Department of Chemistry, University of California, Riverside, California92507, United States
| | - James F Davies
- Department of Chemistry, University of California, Riverside, California92507, United States
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California92507, United States
| |
Collapse
|
6
|
Sedlacek AJ, Lewis ER, Onasch TB, Zuidema P, Redemann J, Jaffe D, Kleinman LI. Using the Black Carbon Particle Mixing State to Characterize the Lifecycle of Biomass Burning Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14315-14325. [PMID: 36200733 DOI: 10.1021/acs.est.2c03851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The lifecycle of black carbon (BC)-containing particles from biomass burns is examined using aircraft and surface observations of the BC mixing state for plume ages from ∼15 min to 10 days. Because BC is nonvolatile and chemically inert, changes in the mixing state of BC-containing particles are driven solely by changes in particle coating, which is mainly secondary organic aerosol (SOA). The coating mass initially increases rapidly (kgrowth = 0.84 h-1), then remains relatively constant for 1-2 days as plume dilution no longer supports further growth, and then decreases slowly until only ∼30% of the maximum coating mass remains after 10 days (kloss = 0.011 h-1). The mass ratio of coating-to-core for a BC-containing particle with a 100 nm mass-equivalent diameter BC core reaches a maximum of ∼20 after a few hours and drops to ∼5 after 10 days of aging. The initial increase in coating mass can be used to determine SOA formation rates. The slow loss of coating material, not captured in global models, comprises the dominant fraction of the lifecycle of these particles. Coating-to-core mass ratios of BC particles in the stratosphere are much greater than those in the free troposphere indicating a different lifecycle.
Collapse
Affiliation(s)
- Arthur J Sedlacek
- Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ernie R Lewis
- Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Timothy B Onasch
- Aerodyne Research, Inc., Billerica, Massachusetts 01821, United States
| | | | - Jens Redemann
- University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Daniel Jaffe
- University of Washington/Bothell, Bothell, Washington 98011, United States
| | | |
Collapse
|
7
|
Zou D, Sun Q, Liu J, Xu C, Song S. Seasonal source analysis of nitrogen and carbon aerosols of PM 2.5 in typical cities of Zhejiang, China. CHEMOSPHERE 2022; 303:135026. [PMID: 35644241 DOI: 10.1016/j.chemosphere.2022.135026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) significantly impacts global air quality and human health due to its smaller particle size and larger specific surface area. Nitrogen and carbon aerosols, as the main components of PM2.5, play key roles in air pollution. This study identified the sources and seasonal variation of nitrogen and carbon aerosols in PM2.5 in typical cities of Zhejiang. The annual average PM2.5 concentrations of Hangzhou (HZ), Ningbo (NB), and Huzhou (HUZ) were 39.8 ± 19.1 μg m-3, 40.0 ± 21.5 μg m-3, and 50.1 ± 22.6 μg m-3, respectively, which exceeded the Chinese air quality limit of 35.0 μg m-3. The results showed that the concentrations of nitrogen aerosols (NO3- and NH4+) in water-soluble inorganic ions were higher at 9.6 ± 4.6 μg m-3, 9.0 ± 4.5 μg m-3 and 11.5 ± 5.4 μg m-3 in HZ, NB and HUZ, respectively, especially in winter, accounting for over 60% of the total. The annual average δ15N values of PM2.5 were 6.2 ± 1.9‰, 6.4 ± 2.2‰ and 6.7 ± 1.9‰ in HZ, NB and HZ, respectively; the δ15N values in winter were relatively low. A Bayesian isotopic mixing model was employed to analyse the sources of nitrogen aerosols in winter; the results showed that nitrogen concentration was mainly affected by NH3 and NOX emitted by motor vehicle exhaust, coal combustion, biomass combustion, biogenic soil emissions, animal wastes and ocean evaporation (NB). In addition, the carbon component analysis of PM2.5 showed that the annual average mass concentration of TC accounted for 18.7%, 16.4% and 20.1% of PM2.5 in HZ, HUZ and NB, respectively. The same isotope model was used to analyse the sources of carbon aerosols; the results showed that carbon aerosols were mainly affected by the sources of motor vehicle exhaust, coal combustion, biomass combustion and dust. In the PM2.5 in Zhejiang, the most contributory sources of nitrogenous aerosols and carbon aerosols were motor vehicle exhaust sources.
Collapse
Affiliation(s)
- Deliang Zou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Qinqin Sun
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China
| | - Jinsong Liu
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China; Zhejiang Key Laboratory of Ecological Environment Monitoring, Early Warning and Quality Control, Hangzhou, 310032, China.
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
8
|
Paradzinsky M, Ponukumati A, Tanko J. Mechanism and Kinetics of the Reaction of Nitrate Radical with Carboxylic Acids. Chempluschem 2022; 87:e202200213. [DOI: 10.1002/cplu.202200213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Mark Paradzinsky
- Virginia Tech: Virginia Polytechnic Institute and State University Chemistry UNITED STATES
| | - Aditya Ponukumati
- Virginia Tech: Virginia Polytechnic Institute and State University Chemistry UNITED STATES
| | - James Tanko
- Virginia Polytechnic Institute and State University Chemistry 1040 Drillfield Drive 24060 Blacksburg UNITED STATES
| |
Collapse
|
9
|
Qian Y, Brown JB, Huang-Fu ZC, Zhang T, Wang H, Wang S, Dadap JI, Rao Y. In situ analysis of the bulk and surface chemical compositions of organic aerosol particles. Commun Chem 2022; 5:58. [PMID: 36698010 PMCID: PMC9814772 DOI: 10.1038/s42004-022-00674-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/12/2022] [Indexed: 01/28/2023] Open
Abstract
Understanding the chemical and physical properties of particles is an important scientific, engineering, and medical issue that is crucial to air quality, human health, and environmental chemistry. Of special interest are aerosol particles floating in the air for both indoor virus transmission and outdoor atmospheric chemistry. The growth of bio- and organic-aerosol particles in the air is intimately correlated with chemical structures and their reactions in the gas phase at aerosol particle surfaces and in-particle phases. However, direct measurements of chemical structures at aerosol particle surfaces in the air are lacking. Here we demonstrate in situ surface-specific vibrational sum frequency scattering (VSFS) to directly identify chemical structures of molecules at aerosol particle surfaces. Furthermore, our setup allows us to simultaneously probe hyper-Raman scattering (HRS) spectra in the particle phase. We examined polarized VSFS spectra of propionic acid at aerosol particle surfaces and in particle bulk. More importantly, the surface adsorption free energy of propionic acid onto aerosol particles was found to be less negative than that at the air/water interface. These results challenge the long-standing hypothesis that molecular behaviors at the air/water interface are the same as those at aerosol particle surfaces. Our approach opens a new avenue in revealing surface compositions and chemical aging in the formation of secondary organic aerosols in the atmosphere as well as chemical analysis of indoor and outdoor viral aerosol particles.
Collapse
Affiliation(s)
- Yuqin Qian
- grid.53857.3c0000 0001 2185 8768Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322 USA
| | - Jesse B. Brown
- grid.53857.3c0000 0001 2185 8768Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322 USA
| | - Zhi-Chao Huang-Fu
- grid.53857.3c0000 0001 2185 8768Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322 USA
| | - Tong Zhang
- grid.53857.3c0000 0001 2185 8768Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322 USA
| | - Hui Wang
- grid.53857.3c0000 0001 2185 8768Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322 USA ,grid.8547.e0000 0001 0125 2443Department of Chemistry, Fudan University, Shanghai, 200433 China
| | - ShanYi Wang
- grid.53857.3c0000 0001 2185 8768Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322 USA ,grid.470930.90000 0001 2182 2351Department of Physics and Astronomy, Barnard College, New York, NY 10027 USA
| | - Jerry I. Dadap
- grid.17091.3e0000 0001 2288 9830Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Yi Rao
- grid.53857.3c0000 0001 2185 8768Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322 USA
| |
Collapse
|
10
|
Marjollet A, Inhester L, Welsch R. Initial state-selected scattering for the reactions H + CH4/CHD3 and F + CHD3 employing ring polymer molecular dynamics. J Chem Phys 2022; 156:044101. [DOI: 10.1063/5.0076216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. Marjollet
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607 Hamburg, Germany
| | - L. Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - R. Welsch
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
11
|
Sharkey AM, Williams BJ, Parker KM. Herbicide Drift from Genetically Engineered Herbicide-Tolerant Crops. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15559-15568. [PMID: 34813302 DOI: 10.1021/acs.est.1c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, off-target herbicide drift has been increasingly reported to lead to damage to nontarget vegetation in the U.S. These reports have coincided with the widespread adoption of genetically modified crops with new herbicide-tolerance traits. Planting crops with these traits may indirectly lead to increased drift both by increasing the use of the corresponding herbicides and by facilitating their use as postemergence herbicides later in the season. While extensive efforts have aimed to reduce herbicide drift, critical uncertainties remain regarding the physiochemical phenomena that drive the entry of herbicides into the atmosphere as well as the atmospheric processes that may influence short- and long-range transport. Resolving these uncertainties will support the development of effective approaches to reduce herbicide drift.
Collapse
Affiliation(s)
- Andromeda M Sharkey
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brent J Williams
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
12
|
Shen H, Sun Z, Chen Y, Russell AG, Hu Y, Odman MT, Qian Y, Archibald AT, Tao S. Novel Method for Ozone Isopleth Construction and Diagnosis for the Ozone Control Strategy of Chinese Cities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15625-15636. [PMID: 34787397 DOI: 10.1021/acs.est.1c01567] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ozone (O3) isopleths describe the nonlinear responses of O3 concentrations to changes in nitrogen oxides (NOX) and volatile organic compounds (VOCs) and thus are pivotal to the determination of O3 control requirements. In this study, we innovatively use the Community Multiscale Air Quality model with the high-order decoupled direct method (CMAQ-HDDM) to simulate O3 pollution of China in 2017 and derive O3 isopleths for individual cities. Our simulation covering the entire China Mainland suggests severe O3 pollution as 97% of the residents experienced at least 1 day, in 2017, in excess of Chinese Level-II Ambient Air Quality Standards for O3 as 160 μg·m-3 (81.5 ppbV equally). The O3 responses to emissions of precursors vary widely across individual cities. Densely populated metropolitan areas such as Jing-Jin-Ji, Yangtze River Delta, and Pearl River Delta are following NOX-saturated regimes, where a small amount of NOX reduction increases O3. Ambient O3 pollution in the eastern region generally is limited by VOCs, while in the west by NOX. The city-specific O3 isopleths generated in this study are instrumental in forming hybrid and differentiated strategies for O3 abatement in China.
Collapse
Affiliation(s)
- Huizhong Shen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhe Sun
- Centre for Atmospheric Science, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Yilin Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongtao Hu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mehmet Talât Odman
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yu Qian
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexander T Archibald
- Centre for Atmospheric Science, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Shu Tao
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Kohli RK, Davies JF. Measuring the Chemical Evolution of Levitated Particles: A Study on the Evaporation of Multicomponent Organic Aerosol. Anal Chem 2021; 93:12472-12479. [PMID: 34455787 DOI: 10.1021/acs.analchem.1c02890] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-particle levitation methods provide an effective platform for probing the physical properties of atmospheric aerosol via micrometer-sized particles. Until recently, chemical composition measurements on levitated particles were limited to spectroscopy, yielding only basic chemical information. Here, we describe, benchmark, and discuss the applications of an approach for probing the physical properties and chemical composition of single levitated particles using high-resolution mass spectrometry (MS). Using a linear quadrupole electrodynamic balance (LQ-EDB) coupled to paper spray mass spectrometry, we report accurate measurements of the evolving size within 5 nm (using broadband light scattering) and relative composition (using MS) of evaporating multicomponent levitated particles in real time. Measurements of the evaporation dynamics of semivolatile organic particles containing a range of n-ethylene glycols (n = 3, 4, and 6) in various binary and ternary mixtures were made under dry conditions and compared with predictions from a gas-phase diffusion evaporation model. Under assumptions of ideal mixing, excellent agreement for both size and composition evolution between measurements and models were obtained for these mixtures. At increased relative humidity, the presence of water in particles causes the assumption of ideality to break down, and the evaporative mass flux becomes a function of the mole fraction and activity coefficient. Through compositionally resolved evaporation measurements and thermodynamic models, we characterize the activity of organic components in multicomponent particles. Our results demonstrate that the LQ-EDB-MS platform can identify time-dependent size and compositional changes with high precision and reproducibility, yielding an effective methodology for future studies on chemical aging and gas-particle partitioning in suspended particles.
Collapse
Affiliation(s)
- Ravleen Kaur Kohli
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - James F Davies
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
14
|
Wang M, Zheng N, Zhao D, Shang J, Zhu T. Using Micro-Raman Spectroscopy to Investigate Chemical Composition, Mixing States, and Heterogeneous Reactions of Individual Atmospheric Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10243-10254. [PMID: 34286964 DOI: 10.1021/acs.est.1c01242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Measuring the chemical composition of individual atmospheric aerosol particles can provide direct evidence of their heterogeneous reactions and mixing states in the atmosphere. In this study, micro-Raman spectroscopy was used to measure the chemical composition of 1200 individual atmospheric particles in 11 samples collected in Beijing air. (NH4)2SO4, NH4NO3, various minerals, carbonaceous species (soot and organics), and NaNO3 were identified in the measured particles according to their characteristic Raman peaks. These species represented the main components of aerosol particles. In individual particles, NH4NO3 and (NH4)2SO4 either existed separately or were internally mixed. Possible reaction pathways of CaCO3 particles in the atmosphere were proposed based on the results of this study and laboratory simulations on heterogeneous reactions in the literature. CaCO3 reacted with N- and S-containing (nitrogen- and sulfur-containing) acidic gases to produce Ca(NO3)2 and CaSO4. Ca(NO3)2 further reacted with S-containing acidic gases and oxidants to produce CaSO4. Of the soot-containing particles, 23% were internal mixtures of soot and inorganic material. Of the organics-containing particles, 57% were internal mixtures of organic and inorganic materials. Micro-Raman spectroscopy directly identified functional groups and molecules in individual atmospheric particles under normal ambient conditions, rendering it a powerful tool for measuring the chemical composition of individual atmospheric particles with a diameter of ≥1.0 μm.
Collapse
Affiliation(s)
- Mingjin Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Nan Zheng
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Defeng Zhao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jing Shang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Paradzinsky M, Troya D, Tanko JM. Insight into Hydrogen Abstractions by Nitrate Radical: Structural, Solvent Effects, and Evidence for a Polar Transition State. J Phys Chem A 2021; 125:5471-5480. [PMID: 34157229 DOI: 10.1021/acs.jpca.1c01726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of a polarized transition state and solvent effects on nitrate radical reactions was examined with a previously under-reported class of substrates, ethers, for their atmospheric implications. Absolute rate constants for hydrogen abstraction from a series of alcohols, ethers, and alkanes by nitrate radical have been measured in acetonitrile, water, and mixtures of these two solvents. Across all of these classes of compounds, using a modified form of the Evans-Polanyi relationship, it is demonstrated that the observed structure/reactivity trends can be reconciled by considering the number of abstractable hydrogens, strength of the C-H bond, and ionization potential (IP) of the substrate. Hydrogen abstractions by nitrate radical occur with low selectivity and are characterized by an early transition state (α ≈ 0.3). The dependence of the rate constant on IP suggests a polar transition state with some degree (<10%) of charge transfer. These conclusions stand for reactions conducted in solution (CH3CN and H2O) as well as gas-phase values. Because of this polar transition state, the rate constants increase going from the gas phase to a polar solvent, and the magnitude of the increase is consistent with Kirkwood theory.
Collapse
Affiliation(s)
- Mark Paradzinsky
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Diego Troya
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - James M Tanko
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
16
|
Tang C, Ding K, Liu Y, Yu S, Chen J, Feng X, Zhang C, Chen J. Quantitative relationship between the structures and properties of VOCs and SOA formation on the surfaces of acidic aerosol particles. Phys Chem Chem Phys 2021; 23:12360-12370. [PMID: 34027522 DOI: 10.1039/d1cp01428e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this research, all the efforts, based on a series of molecular dynamics simulations on the interfacial process between VOC-contaminated air and acidic sulfate, were made to find how the structures and properties of VOCs are related to the formation of SOAs. The experimental fractional aerosol coefficients (FACs) were used to quantify the SOA formation and 14 VOC species were chosen based on the atmosphere inventory and the FAC magnitude. Finally, the quantitative relationship (QR) was found through the FAC as a function of the two variables the total valid interactions (Tg) and the diffusion coefficient (D), with R square 0.94. Meanwhile, the effect of water was explored and the QR was proved to be rational and reliable. The QR not only explained the SOA formation capacity of VOCs, but could also predict the SOA formation of new molecules.
Collapse
Affiliation(s)
- Chunxue Tang
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Keyi Ding
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Yaoze Liu
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Shengping Yu
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Junhui Chen
- Sichuan Academy of Environmental Sciences, Chengdu, Sichuan 610064, China
| | - Xiaoqiong Feng
- Sichuan Academy of Environmental Sciences, Chengdu, Sichuan 610064, China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Junxian Chen
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| |
Collapse
|
17
|
Rahbar A, Zahedi E, Aghaie H, Giahi M, Zare K. DFT Insight into the Kinetics and Mechanism of the OH
.
‐Initiated Atmospheric Oxidation of Catechol: OH
.
Addition and Hydrogen Abstraction Pathways. ChemistrySelect 2021. [DOI: 10.1002/slct.202100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ali Rahbar
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | - Ehsan Zahedi
- Department of Chemistry, Herbal Medicines Raw Materials Research Center, Shahrood Branch Islamic Azad University, Shahrood Iran
| | - Hossein Aghaie
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | - Masoud Giahi
- Department of Chemistry, South-Tehran Branch Islamic Azad University Tehran Iran
| | - Karim Zare
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
18
|
King MD, Jones SH, Lucas COM, Thompson KC, Rennie AR, Ward AD, Marks AA, Fisher FN, Pfrang C, Hughes AV, Campbell RA. The reaction of oleic acid monolayers with gas-phase ozone at the air water interface: the effect of sub-phase viscosity, and inert secondary components. Phys Chem Chem Phys 2020; 22:28032-28044. [PMID: 33367378 DOI: 10.1039/d0cp03934a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic films that form on atmospheric particulate matter change the optical and cloud condensation nucleation properties of the particulate matter and consequently have implications for modern climate and climate models. The organic films are subject to attack from gas-phase oxidants present in ambient air. Here we revisit in greater detail the oxidation of a monolayer of oleic acid by gas-phase ozone at the air-water interface as this provides a model system for the oxidation reactions that occur at the air-water interface of aqueous atmospheric aerosol. Experiments were performed on monolayers of oleic acid at the air-liquid interface at atmospherically relevant ozone concentrations to investigate if the viscosity of the sub-phase influences the rate of the reaction and to determine the effect of the presence of a second component within the monolayer, stearic acid, which is generally considered to be non-reactive towards ozone, on the reaction kinetics as determined by neutron reflectometry measurements. Atmospheric aerosol can be extremely viscous. The kinetics of the reaction were found to be independent of the viscosity of the sub-phase below the monolayer over a range of moderate viscosities, , demonstrating no involvement of aqueous sub-phase oxidants in the rate determining step. The kinetics of oxidation of monolayers of pure oleic acid were found to depend on the surface coverage with different behaviour observed above and below a surface coverage of oleic acid of ∼1 × 1018 molecule m-2. Atmospheric aerosol are typically complex mixtures, and the presence of an additional compound in the monolayer that is inert to direct ozone oxidation, stearic acid, did not significantly change the reaction kinetics. It is demonstrated that oleic acid monolayers at the air-water interface do not leave any detectable material at the air-water interface, contradicting the previous work published in this journal which the authors now believe to be erroneous. The combined results presented here indicate that the kinetics, and thus the atmospheric chemical lifetime for unsaturated surface active materials at the air-water interface to loss by reaction with gas-phase ozone, can be considered to be independent of other materials present at either the air-water interface or in the aqueous sub-phase.
Collapse
Affiliation(s)
- Martin D King
- Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Qian Y, Deng GH, Rao Y. In Situ Spectroscopic Probing of Polarity and Molecular Configuration at Aerosol Particle Surfaces. J Phys Chem Lett 2020; 11:6763-6771. [PMID: 32787224 DOI: 10.1021/acs.jpclett.0c02013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The growth of aerosol particles in the atmosphere is related to chemical reactions in the gas and particle phases and at aerosol particle surfaces. While research regarding the gas and particle phases of aerosols is well-documented, physical properties and chemical reactivities at aerosol particle surfaces have not been studied extensively but have long been recognized. In particular, in situ measurements of aerosol particle surfaces are just emerging. The main reason is a lack of suitable surface-specific analytical techniques for direct measurements of aerosol particles under ambient conditions. Here we develop in situ surface-specific electronic sum frequency scattering (ESFS) to directly identify spectroscopic behaviors of molecules at aerosol particle surfaces. As an example, we applied an ESFS probe, malachite green (MG). We examined electronic spectra of MG at aerosol particle surfaces and found that the polarity of the surfaces is less polar than that in bulk. Our quantitative orientational analysis shows that MG is orientated with a polar angle of 25°-35° at the spherical particle surfaces of aerosols. The adsorption free energy of MG at the aerosol surfaces was found to be -20.75 ± 0.32 kJ/mol, which is much lower than that at the air/water interface. These results provide new insights into aerosol particle surfaces for further understanding the formation of secondary organic aerosols in the atmosphere.
Collapse
Affiliation(s)
- Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Gang-Hua Deng
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
20
|
Kaur Kohli R, Davies JF. Paper spray mass spectrometry for the analysis of picoliter droplets. Analyst 2020; 145:2639-2648. [PMID: 32064475 DOI: 10.1039/c9an02534k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent experimental efforts have shown that single particle levitation methods may be effectively coupled with mass spectrometry (MS) using paper spray (PS) ionization for compositional analysis of picoliter droplets. In this work, we characterize the response of PS-MS to analytes delivered in the form of picoliter droplets and explore its potential for identification and quantification of these samples. Using a microdroplet dispenser to generate droplets, we demonstrate sensitivity to a range of oxygenated organic molecules typical of compounds found in atmospheric secondary organic aerosol. We assess experimental factors that influence the reproducibility and sensitivity of the method and explore the linearity of the system response to increasing analyte mass in droplets containing single or multicomponent analytes. We show that the ratio of analyte signal from multicomponent samples may be used to characterize the relative composition of the system. These measurements demonstrate that the droplet PS-MS method is an effective tool for qualitative and quantitative analysis of single picoliter droplets containing picogram levels of analyte. The potential applications of this technique for characterizing the composition of levitated particles will be discussed.
Collapse
Affiliation(s)
- Ravleen Kaur Kohli
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
21
|
Clifton OE, Fiore AM, Massman WJ, Baublitz CB, Coyle M, Emberson L, Fares S, Farmer DK, Gentine P, Gerosa G, Guenther AB, Helmig D, Lombardozzi DL, Munger JW, Patton EG, Pusede SE, Schwede DB, Silva SJ, Sörgel M, Steiner AL, Tai APK. Dry Deposition of Ozone over Land: Processes, Measurement, and Modeling. REVIEWS OF GEOPHYSICS (WASHINGTON, D.C. : 1985) 2020; 58:10.1029/2019RG000670. [PMID: 33748825 PMCID: PMC7970530 DOI: 10.1029/2019rg000670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/24/2020] [Indexed: 05/21/2023]
Abstract
Dry deposition of ozone is an important sink of ozone in near surface air. When dry deposition occurs through plant stomata, ozone can injure the plant, altering water and carbon cycling and reducing crop yields. Quantifying both stomatal and nonstomatal uptake accurately is relevant for understanding ozone's impact on human health as an air pollutant and on climate as a potent short-lived greenhouse gas and primary control on the removal of several reactive greenhouse gases and air pollutants. Robust ozone dry deposition estimates require knowledge of the relative importance of individual deposition pathways, but spatiotemporal variability in nonstomatal deposition is poorly understood. Here we integrate understanding of ozone deposition processes by synthesizing research from fields such as atmospheric chemistry, ecology, and meteorology. We critically review methods for measurements and modeling, highlighting the empiricism that underpins modeling and thus the interpretation of observations. Our unprecedented synthesis of knowledge on deposition pathways, particularly soil and leaf cuticles, reveals process understanding not yet included in widely-used models. If coordinated with short-term field intensives, laboratory studies, and mechanistic modeling, measurements from a few long-term sites would bridge the molecular to ecosystem scales necessary to establish the relative importance of individual deposition pathways and the extent to which they vary in space and time. Our recommended approaches seek to close knowledge gaps that currently limit quantifying the impact of ozone dry deposition on air quality, ecosystems, and climate.
Collapse
Affiliation(s)
| | - Arlene M Fiore
- Department of Earth and Environmental Sciences, Columbia University, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - William J Massman
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA
| | - Colleen B Baublitz
- Department of Earth and Environmental Sciences, Columbia University, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Mhairi Coyle
- Centre for Ecology and Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian, UK and The James Hutton Institute, Craigibuckler, Aberdeen, UK
| | - Lisa Emberson
- Stockholm Environment Institute, Environment Department, University of York, York, UK
| | - Silvano Fares
- Council of Agricultural Research and Economics, Research Centre for Forestry and Wood, and National Research Council, Institute of Bioeconomy, Rome, Italy
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Giacomo Gerosa
- Dipartimento di Matematica e Fisica, Università Cattolica del S. C., Brescia, Italy
| | - Alex B Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Detlev Helmig
- Institute of Alpine and Arctic Research, University of Colorado at Boulder, Boulder, CO, USA
| | | | - J William Munger
- School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | | | - Sally E Pusede
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Donna B Schwede
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, USA
| | - Sam J Silva
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthias Sörgel
- Max Plank Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Allison L Steiner
- Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Amos P K Tai
- Earth System Science Programme, Faculty of Science, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
22
|
Yardeni G, Meyerstein D, Kats L, Cohen H, Zilbermann I, Maimon E. On the reactions of methyl radicals with nitrilotris(methylenephosphonic-acid) complexes in aqueous solutions. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1698736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Guy Yardeni
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Dan Meyerstein
- Chemical Sciences Department, The Radical Research Centre and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Ariel University, Ariel, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lioubov Kats
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Haim Cohen
- Chemical Sciences Department, The Radical Research Centre and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Ariel University, Ariel, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Israel Zilbermann
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eric Maimon
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
23
|
Przygocki P, Ratajczak P, Béguin F. Quantification of the Charge Consuming Phenomena under High‐Voltage Hold of Carbon/Carbon Supercapacitors by Coupling Operando and Post‐Mortem Analyses. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Patryk Przygocki
- Institute of Chemistry and Technical ElectrochemistryPoznan University of Technology Berdychowo 4 60-965 Poznan Poland
| | - Paula Ratajczak
- Institute of Chemistry and Technical ElectrochemistryPoznan University of Technology Berdychowo 4 60-965 Poznan Poland
| | - François Béguin
- Institute of Chemistry and Technical ElectrochemistryPoznan University of Technology Berdychowo 4 60-965 Poznan Poland
| |
Collapse
|
24
|
Przygocki P, Ratajczak P, Béguin F. Quantification of the Charge Consuming Phenomena under High‐Voltage Hold of Carbon/Carbon Supercapacitors by Coupling Operando and Post‐Mortem Analyses. Angew Chem Int Ed Engl 2019; 58:17969-17977. [DOI: 10.1002/anie.201907914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Patryk Przygocki
- Institute of Chemistry and Technical ElectrochemistryPoznan University of Technology Berdychowo 4 60-965 Poznan Poland
| | - Paula Ratajczak
- Institute of Chemistry and Technical ElectrochemistryPoznan University of Technology Berdychowo 4 60-965 Poznan Poland
| | - François Béguin
- Institute of Chemistry and Technical ElectrochemistryPoznan University of Technology Berdychowo 4 60-965 Poznan Poland
| |
Collapse
|
25
|
Fukuzumi S, Lee YM, Nam W. Photocatalytic Oxygenation Reactions Using Water and Dioxygen. CHEMSUSCHEM 2019; 12:3931-3940. [PMID: 31250964 DOI: 10.1002/cssc.201901276] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Water (H2 O) is the most environmentally benign reductant and is oxidized to evolve dioxygen (O2 )-the greenest oxidant-in photosystem II. This Minireview focuses on photocatalytic oxygenation of substrates with H2 O as an oxygen source and O2 as an oxidant. Metal complexes can be oxidized by two molecules of one-electron oxidants with H2 O to produce high-valent metal-oxo complexes, which act as active oxidants for oxygenating organic substrates. When an appropriate oxidant is employed for the substrate oxidation, the reduced oxidant can be oxidized by dioxygen to regenerate the oxidant when water and dioxygen are used as an oxygen source and an oxidant, respectively. Photoinduced electron transfer from a substrate (S) to the excited state of complex [(L)MIII ]+ produces a substrate radical cation (S.+ ), accompanied by the regeneration of [(L)MII ]. S.+ then reacts with H2 O to produce an OH adduct radical that is oxidized by [(L)MIII ]+ to yield an oxygenated product (SO), in which the oxygen atom originates from H2 O, accompanied by regeneration of [(L)MII ]. Photocatalytic oxidation of H2 O by O2 to produce H2 O2 is combined with the catalytic oxygenation of substrates with H2 O2 to produce the oxygenated products, in which the oxygen atom originates from O2 at the beginning but later from water. This Minireview provides a promising strategy for oxygenation of substrates by using H2 O as an oxygen source and O2 as the greenest oxidant.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
- Graduate School of Science and Engineering, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
26
|
Bianchini RH, Roman MJ, Costen ML, McKendrick KG. Real-space laser-induced fluorescence imaging applied to gas-liquid interfacial scattering. J Chem Phys 2019. [DOI: 10.1063/1.5110517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Robert H. Bianchini
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Maksymilian J. Roman
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Matthew L. Costen
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Kenneth G. McKendrick
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
27
|
Zhang S, Xing J, Sarwar G, Ge Y, He H, Duan F, Zhao Y, He K, Zhu L, Chu B. Parameterization of heterogeneous reaction of SO 2 to sulfate on dust with coexistence of NH 3 and NO 2 under different humidity conditions. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2019; 208:133-140. [PMID: 31186616 PMCID: PMC6559380 DOI: 10.1016/j.atmosenv.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sulfate plays an important role in atmospheric haze in China, which has received considerable attention in recent years. Various types of parameterization methods and heterogeneous oxidation rates of SO2 have been used in previous studies. However, properly representing heterogeneous sulfate formation in air quality models remains a big challenge. In this study, we quantified the heterogeneous oxidation reaction using experimental results that approximate the haze conditions in China. Firstly, a series of experiments were conducted to investigate the heterogeneous uptake of SO2 with different relative humidity (RH) levels and the presence of NH3 and NO2 on natural dust surfaces. Then the uptake coefficients for heterogeneous oxidation of SO2 to sulfate at different RH under NH3 and NO2coexistence were parameterized based on the experimental results and implemented in the Community Multiscale Air Quality modeling system (CMAQ). Simulation results suggested that this new parameterization improved model performance by 6.6% in the simulation of wintertime sulfate concentrations for Beijing. The simulated maximum growth rate of SO4 2- during a heavy pollution period increased from 0.97 μg m-3 h-1 to 10.11 μg m-3 h-1. The heterogeneous oxidation of SO2 in the presence of NH3 contributed up to 23% of the sulfate concentration during heavy pollution periods.
Collapse
Affiliation(s)
- Shuping Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Golam Sarwar
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Yanli Ge
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yan Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lidan Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
28
|
Qiu J, Ishizuka S, Tonokura K, Enami S. Interfacial vs Bulk Ozonolysis of Nerolidol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5750-5757. [PMID: 31017766 DOI: 10.1021/acs.est.9b00364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ozone readily reacts with olefins with the formation of more reactive Criegee intermediates (CIs). The transient CIs impact HO x cycles, and they play a role in new particle formation in the troposphere. Oxidation by O3 occurs both in the gas-phase, in the liquid phase, and at air-water and air-aerosol interfaces. In light of the importance of O3 in environmental and engineered chemical transformations, we have investigated the ozonolysis mechanisms of a triolefin C15-alcohol, nerolidol (Nero, a biogenic sesquiterpene), at the air-water interface in the presence of acetonitrile. Surface-sensitive pneumatic ionization mass spectrometric detection of α-hydroxy-hydroperoxides and functionalized carboxylates, generated by the hydration and isomerization of CIs, respectively, enables us to evaluate the relative reactivity of each C=C toward O3. In addition, we compare bulk-phase ozonolysis chemistry to similar reactions taking place at the air-water interface. Our experimental results show that O3 reacts primarily with the (CH3)2C=CH- and -(CH3)C=CH- moieties (>∼98%), while the O3 attack on the terminal -HC=CH2 site (<∼2%) is a minor pathway during both interfacial and bulk ozonolysis. The presence of functionalized-carboxylates on interfaces but not in bulk-phase reactions with O3 indicates that the isomerization of the CIs is not hindered at the air-water interface due to the lower availability of water .
Collapse
Affiliation(s)
- Junting Qiu
- Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa 277-8563 , Japan
| | - Shinnosuke Ishizuka
- National Institute for Environmental Studies , 16-2 Onogawa , Tsukuba 305-8506 , Japan
| | - Kenichi Tonokura
- Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa 277-8563 , Japan
| | - Shinichi Enami
- National Institute for Environmental Studies , 16-2 Onogawa , Tsukuba 305-8506 , Japan
| |
Collapse
|
29
|
Faust JA, Abbatt JPD. Organic Surfactants Protect Dissolved Aerosol Components against Heterogeneous Oxidation. J Phys Chem A 2019; 123:2114-2124. [DOI: 10.1021/acs.jpca.9b00167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jennifer A. Faust
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | |
Collapse
|
30
|
Titaley IA, Walden DM, Dorn SE, Ogba OM, Massey Simonich SL, Cheong PHY. Evaluating Computational and Structural Approaches to Predict Transformation Products of Polycyclic Aromatic Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1595-1607. [PMID: 30571095 PMCID: PMC7112720 DOI: 10.1021/acs.est.8b05198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) undergo transformation reactions with atmospheric photochemical oxidants, such as hydroxyl radicals (OH•), nitrogen oxides (NOx), and ozone (O3). The most common PAH-transformation products (PAH-TPs) are nitrated, oxygenated, and hydroxylated PAHs (NPAHs, OPAHs, and OHPAHs, respectively), some of which are known to pose potential human health concerns. We sampled four theoretical approaches for predicting the location of reactive sites on PAHs (i.e., the carbon where atmospheric oxidants attack), and hence the chemoselectivity of the PAHs. All computed results are based on density functional theory (B3LYP/6-31G(d) optimized structures and energies). The four approaches are (1) Clar's prediction of aromatic resonance structures, (2) thermodynamic stability of all OHPAH adduct intermediates, (3) computed atomic charges (Natural Bond order, ChelpG, and Mulliken) at each carbon on the PAH, and (4) average local ionization energy (ALIE) at atom or bond sites. To evaluate the accuracy of these approaches, the predicted PAH-TPs were compared to published laboratory observations of major NPAH, OPAH, and OHPAH products in both gas and particle phases. We found that the Clar's resonance structures were able to predict the least stable rings on the PAHs but did not offer insights in terms of which individual carbon is most reactive. The OHPAH adduct thermodynamics and the ALIE approaches were the most accurate when compared to laboratory data, showing great potential for predicting the formation of previously unstudied PAH-TPs that are likely to form in the atmosphere.
Collapse
Affiliation(s)
- Ivan A. Titaley
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Daniel M. Walden
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Shelby E. Dorn
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - O. Maduka Ogba
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Staci L. Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331 USA
| | | |
Collapse
|
31
|
Night-Time Oxidation of a Monolayer Model for the Air–Water Interface of Marine Aerosols—A Study by Simultaneous Neutron Reflectometry and in Situ Infra-Red Reflection Absorption Spectroscopy (IRRAS). ATMOSPHERE 2018. [DOI: 10.3390/atmos9120471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper describes experiments on the ageing of a monolayer model for the air–water interface of marine aerosols composed of a typical glycolipid, galactocerebroside (GCB). Lipopolysaccharides have been observed in marine aerosols, and GCB is used as a proxy for these more complex lipopolysaccharides. GCB monolayers are investigated as pure films, as mixed films with palmitic acid, which is abundant in marine aerosols and forms a stable attractively mixed film with GCB, particularly with divalent salts present in the subphase, and as mixed films with palmitoleic acid, an unsaturated analogue of palmitic acid. Such mixed films are more realistic models of atmospheric aerosols than simpler single-component systems. Neutron reflectometry (NR) has been combined in situ with Fourier transform infra-red reflection absorption spectroscopy (IRRAS) in a pioneering analysis and reaction setup designed by us specifically to study mixed organic monolayers at the air–water interface. The two techniques in combination allow for more sophisticated observation of multi-component monolayers than has previously been possible. The structure at the air–water interface was also investigated by complementary Brewster angle microscopy (BAM). This study looks specifically at the oxidation of the organic films by nitrate radicals (NO3•), the key atmospheric oxidant present at night. We conclude that NO3• oxidation cannot fully remove a cerebroside monolayer from the surface on atmospherically relevant timescales, leaving its saturated tail at the interface. This is true for pure and salt water subphases, as well as for single- and two-component films. The behaviour of the unsaturated tail section of the molecule is more variable and is affected by interactions with co-deposited species. Most surprisingly, we found that the presence of CaCl2 in the subphase extends the lifetime of the unsaturated tail substantially—a new explanation for longer residence times of materials in the atmosphere compared to lifetimes based on laboratory studies of simplified model systems. It is thus likely that aerosols produced from the sea-surface microlayer at night will remain covered in surfactant molecules on atmospherically relevant timescales with impact on the droplet’s surface tension and on the transport of chemical species across the air–water interface.
Collapse
|
32
|
Chu H, Wu W, Shao Y, Tang Y, Zhang Y, Cheng Y, Chen F, Liu J, Sun J. A quantum theory investigation on atmospheric oxidation mechanisms of acrylic acid by OH radical and its implication for atmospheric chemistry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24939-24950. [PMID: 29931646 DOI: 10.1007/s11356-018-2561-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
The hydroxyl radical, as the most important oxidant, controls the removal of some volatile organic compounds (VOCs) in the atmosphere. In this work, the atmospheric oxidation processes of acrylic acid by OH radical have been investigated by density functional theory (DFT). The energetic routes of the reaction of CH2CHCOOH with OH radical have been calculated accurately at the CCSD(T)/cc-pVTZ//M06-2X/6-311++G(d,p) level. It is implicated that the oxidation has five elementary reaction pathways mostly hinging on how hydroxyl radical approaches to the carbon skeleton of acrylic acid. The atmospheric degradation mechanisms of the CH2CHCOOH by OH radical are the formation of reactive intermediates IM1 and IM2. Meanwhile, the further oxidation mechanisms of IM1 and IM2 by O3 and NO are also investigated. The rate coefficients have been computed using tight transition state theory of the variflex code. The calculated rate coefficient is 2.3 × 10-11 cm3 molecule-1 s-1 at standard pressure and 298 K, which is very close to the laboratory data (1.75 ± 0.47 × 10-11 cm3 molecule-1 s-1). Moreover, the atmospheric lifetime of acrylic acid is about 6 h at 298 K and 1 atm, implying that the fast sinks of acrylic acid by hydroxyl radical.
Collapse
Affiliation(s)
- Han Chu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, People's Republic of China
| | - Wenzhong Wu
- College of Foreign Languages, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, People's Republic of China
| | - Youxiang Shao
- School of Materials Science and Engineering, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yizhen Tang
- School of Environmental and municipal Engineering, Qingdao Technological University, Fushun Road 11, Qingdao, Shandong, 266033, People's Republic of China
| | - Yunju Zhang
- Key Laboratory of Photoinduced Functional Materials, Mianyang Normal University, Mianyang, 621000, People's Republic of China
| | - Yinfang Cheng
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, People's Republic of China
| | - Fang Chen
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, People's Republic of China
| | - Jiangyan Liu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, People's Republic of China
| | - Jingyu Sun
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, People's Republic of China.
| |
Collapse
|
33
|
Qiu J, Ishizuka S, Tonokura K, Enami S. Reactions of Criegee Intermediates with Benzoic Acid at the Gas/Liquid Interface. J Phys Chem A 2018; 122:6303-6310. [DOI: 10.1021/acs.jpca.8b04995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junting Qiu
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563, Japan
| | - Shinnosuke Ishizuka
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Kenichi Tonokura
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563, Japan
| | - Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| |
Collapse
|
34
|
Enami S, Hoffmann MR, Colussi AJ. Extensive H-atom abstraction from benzoate by OH-radicals at the air-water interface. Phys Chem Chem Phys 2018; 18:31505-31512. [PMID: 27827491 DOI: 10.1039/c6cp06652f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Much is known about OH-radical chemistry in the gas-phase and bulk water. Important atmospheric and biological processes, however, involve little investigated OH-radical reactions at aqueous interfaces with hydrophobic media. Here, we report the online mass-specific identification of the products and intermediates generated on the surface of aqueous (H2O, D2O) benzoate-h5 and -d5 microjets by ∼8 ns ˙OH(g) pulses in air at 1 atm. Isotopic labeling lets us unambiguously identify the phenylperoxyl radicals that ensue H-abstraction from the aromatic ring and establish a lower bound (>26%) to this process as it takes place in the interfacial water nanolayers probed by our experiments. The significant extent of H-abstraction vs. its negligible contribution both in the gas-phase and bulk water underscores the unique properties of the air-water interface as a reaction medium. The enhancement of H-atom abstraction in interfacial water is ascribed, in part, to the relative destabilization of a more polar transition state for OH-radical addition vs. H-abstraction due to incomplete hydration at the low water densities prevalent therein.
Collapse
Affiliation(s)
- Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Michael R Hoffmann
- Linde Center for Global Environmental Science, California Institute of Technology, California 91125, USA.
| | - Agustín J Colussi
- Linde Center for Global Environmental Science, California Institute of Technology, California 91125, USA.
| |
Collapse
|
35
|
Ishizuka S, Matsugi A, Hama T, Enami S. Chain-propagation, chain-transfer, and hydride-abstraction by cyclic carbocations on water surfaces. Phys Chem Chem Phys 2018; 20:25256-25267. [DOI: 10.1039/c8cp04993a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New mechanisms for the growth and increase in complexity of atmospheric aerosol particles are elucidated. The present findings will also be useful for interfacial polymer/oligomer synthesis.
Collapse
Affiliation(s)
| | - Akira Matsugi
- Research Institute of Science for Safety and Sustainability
- National Institute of Advanced Industrial Science and Technology
- Tsukuba 305-8569
- Japan
| | - Tetsuya Hama
- Institute of Low Temperature Science
- Hokkaido University
- Sapporo 060-0819
- Japan
| | - Shinichi Enami
- National Institute for Environmental Studies
- Tsukuba 305-8506
- Japan
| |
Collapse
|
36
|
Socorro J, Lakey PSJ, Han L, Berkemeier T, Lammel G, Zetzsch C, Pöschl U, Shiraiwa M. Heterogeneous OH Oxidation, Shielding Effects, and Implications for the Atmospheric Fate of Terbuthylazine and Other Pesticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13749-13754. [PMID: 29125742 DOI: 10.1021/acs.est.7b04307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Terbuthylazine (TBA) is a widely used herbicide, and its heterogeneous reaction with OH radicals is important for assessing its potential to undergo atmospheric long-range transport and to affect the environment and public health. The apparent reaction rate coefficients obtained in different experimental investigations, however, vary by orders of magnitude depending on the applied experimental techniques and conditions. In this study, we used a kinetic multilayer model of aerosol chemistry with reversible surface adsorption and bulk diffusion (KM-SUB) in combination with a Monte Carlo genetic algorithm to simulate the measured decay rates of TBA. Two experimental data sets available from different studies can be described with a consistent set of kinetic parameters resolving the interplay of chemical reaction, mass transport, and shielding effects. Our study suggests that mass transport and shielding effects can substantially extend the atmospheric lifetime of reactive pesticides from a few days to weeks, with strong implications for long-range transport and potential health effects of these substances.
Collapse
Affiliation(s)
- Joanna Socorro
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Pascale S J Lakey
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
- Department of Chemistry, University of California , Irvine, California 92617, United States
| | - Lei Han
- Forschungsstelle für Atmosphärische Chemie, University of Bayreuth , 95440 Bayreuth, Germany
| | - Thomas Berkemeier
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Gerhard Lammel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
- Research Centre for Toxic Compounds in the Environment, Masaryk University , 62500 Brno, Czech Republic
| | - Cornelius Zetzsch
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
- Forschungsstelle für Atmosphärische Chemie, University of Bayreuth , 95440 Bayreuth, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Department of Chemistry, University of California , Irvine, California 92617, United States
| |
Collapse
|
37
|
Ribeiro H, Costa C, Abreu I, Esteves da Silva JCG. Effect of O 3 and NO 2 atmospheric pollutants on Platanus x acerifolia pollen: Immunochemical and spectroscopic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:291-297. [PMID: 28477486 DOI: 10.1016/j.scitotenv.2017.04.206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
In the present study, the effects of two important oxidizing atmospheric pollutants (O3 and NO2) on the allergenic properties and chemical composition of Platanus x acerifolia pollen were studied. Pollen samples were subjected to O3 and/or NO2 under in vitro conditions for 6h at atmospheric concentration levels (O3: 0.061ppm; NO2: 0.025ppm and the mixture of O3 and NO2: 0.060 and 0.031ppm respectively). Immunoblotting (using Pla a 1 and Pla a 2 antibodies), infrared and X-ray photoelectron spectroscopy techniques were used. Immunochemical analysis showed that pollen allergenicity changes were different according to the pollutant tested (gas or mixture of gasses) and that the same pollutant gas may interact in a different manner with each specific allergen. The spectroscopy results showed modifications in the FTIR spectral features of bands assigned to proteins, lipids, and polysaccharides of the pollen exposed to the pollutants, as well as in the XPS spectra high-resolution components C 1s, N 1s, and O 1s. This indicates that while airborne, the pollen wall suffers further modifications of its components induced by air pollution, which can compromise the pollen function.
Collapse
Affiliation(s)
- Helena Ribeiro
- Earth Sciences Institute, Pole of the Faculty of Sciences, University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Célia Costa
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
| | - Ilda Abreu
- Earth Sciences Institute, Pole of the Faculty of Sciences, University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal; Biology Department, Faculty of Sciences, University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
| | - Joaquim C G Esteves da Silva
- Earth Sciences Institute, Pole of the Faculty of Sciences, University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal; Centre of Investigation in Chemistry (CIQ-UP), University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
38
|
Taatjes CA. Criegee Intermediates: What Direct Production and Detection Can Teach Us About Reactions of Carbonyl Oxides. Annu Rev Phys Chem 2017; 68:183-207. [DOI: 10.1146/annurev-physchem-052516-050739] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Craig A. Taatjes
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551-0969
| |
Collapse
|
39
|
Zhang D, Zheng Y, Dou X, Lin H, Shah SNA, Lin JM. Heterogeneous Chemiluminescence from Gas-Solid Phase Interactions of Ozone with Alcohols, Phenols, and Saccharides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3666-3671. [PMID: 28316231 DOI: 10.1021/acs.langmuir.7b00481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gas-solid phase reactions between ozone (O3) and three representative solids (alcohols, phenols, and saccharides) were investigated through a heterogeneous chemiluminescence (CL) strategy. When interactions between these two species occurred at the surface of the solid powder, an obvious CL effect was obtained. This performance could be attributed to the evolution of a ROOOH intermediate, which subsequently released emissive 1O2 species. This is the first report analyzing the gas-solid phase CL performance of O3 with alcohols, phenols, and saccharides. It is believed that this strategy can be extended to applications in other gas-solid phase CL analyses utilizing the O3 system. This has also created a novel area of gas-solid CL performance; thus, relevant processes and mechanisms can be deduced and identified.
Collapse
Affiliation(s)
- Dingkun Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University , Beijing 100084, China
| | - Yongzan Zheng
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University , Beijing 100084, China
| | - Xiangnan Dou
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University , Beijing 100084, China
| | - Haifeng Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University , Beijing 100084, China
| | - Syed Niaz Ali Shah
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University , Beijing 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University , Beijing 100084, China
| |
Collapse
|
40
|
Abstract
In the troposphere, the fate of gas-phase Criegee intermediates (CIs) is deemed to be determined by their reactions with water molecules. Here it is shown that CIs produced in situ on the surface of water/acetonitrile (W/AN) solutions react competitively with millimolar carboxylic acids. Present experiments probe, via online electrospray mass spectrometry, CIs' chemistry on the surface of α-humulene and β-caryophyllene in W/AN microjets exposed to O3(g) for <10 μs. Mass-specific identification lets us establish the progeny of products and intermediates generated in the early stages of CIs' reactions with H2O, D2O, H218O, and n-alkyl-COOH (n = 1-7). It is found that n-alkyl-COOH competes for CIs with interfacial water, their competitiveness being an increasing function of n. Present findings demonstrate that CIs can react with species other than H2O on the surface of aqueous organic aerosols due to the low water concentrations prevalent in the outermost interfacial layers.
Collapse
Affiliation(s)
- Shinichi Enami
- National Institute for Environmental Studies , 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - A J Colussi
- Linde Center for Global Environmental Science, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
41
|
Li S, Du L, Wei Z, Wang W. Aqueous-phase aerosols on the air-water interface: Response of fatty acid Langmuir monolayers to atmospheric inorganic ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1155-1161. [PMID: 27989479 DOI: 10.1016/j.scitotenv.2016.12.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Atmospheric aerosol particles composed of a mixture of organic and inorganic compounds are common and constitute an important fraction of air pollutants. In this study, the activities of common atmospheric inorganic ions (Ag+, Zn2+, Fe3+, Fe2+, Ca2+ and Al3+) and fatty acid molecules (stearic acid and arachidic acid) at air-aqueous interface were investigated by Langmuir methods and infrared reflection-absorption spectroscopy (IRRAS). In the presence of different inorganic ions, surface pressure-area isotherms of the Langmuir films showed compressed or expanded characteristics. IRRAS spectra confirmed that the existence of inorganic ions in the fatty acid monolayer changes the surface properties of aqueous-phase aerosols. Formation of different coordination types of carboxylates at the air-water interface alters the dissolution and partitioning behavior, which has significant influence of Raoult effect on nucleating cloud droplets. Our work displays the relationship between structure and surface properties for aqueous-phase aerosols and implies an efficient method for further understanding of their formation mechanism and potential atmospheric implications.
Collapse
Affiliation(s)
- Siyang Li
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100, Shandong, China
| | - Lin Du
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100, Shandong, China.
| | - Zhongming Wei
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100, Shandong, China
| |
Collapse
|
42
|
Matsuoka K, Sakamoto Y, Hama T, Kajii Y, Enami S. Reactive Uptake of Gaseous Sesquiterpenes on Aqueous Surfaces. J Phys Chem A 2017; 121:810-818. [DOI: 10.1021/acs.jpca.6b11821] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kohei Matsuoka
- Graduate
School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Yosuke Sakamoto
- Graduate
School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- Graduate
School of Human and Environmental Studies, Kyoto University, Kyoto 606-8316, Japan
| | - Tetsuya Hama
- Institute
of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Yoshizumi Kajii
- Graduate
School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- Graduate
School of Human and Environmental Studies, Kyoto University, Kyoto 606-8316, Japan
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
43
|
Skoda MWA, Thomas B, Hagreen M, Sebastiani F, Pfrang C. Simultaneous neutron reflectometry and infrared reflection absorption spectroscopy (IRRAS) study of mixed monolayer reactions at the air–water interface. RSC Adv 2017. [DOI: 10.1039/c7ra04900e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Simultaneous neutron reflectometry and infrared spectroscopy can follow the oxidation of complex, realistic surfactant mixtures relevant for atmospheric chemistry.
Collapse
Affiliation(s)
- Maximilian W. A. Skoda
- ISIS Pulsed Neutron and Muon Source
- Science and Technology Facilities Council
- Rutherford Appleton Laboratory
- Harwell
- UK
| | - Benjamin Thomas
- ISIS Pulsed Neutron and Muon Source
- Science and Technology Facilities Council
- Rutherford Appleton Laboratory
- Harwell
- UK
| | | | | | | |
Collapse
|
44
|
He X, Leng C, Pang S, Zhang Y. Kinetics study of heterogeneous reactions of ozone with unsaturated fatty acid single droplets using micro-FTIR spectroscopy. RSC Adv 2017. [DOI: 10.1039/c6ra25255a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Increasing humidity is seen to accelerate the uptake process as the double bond numbers of organic particles increase.
Collapse
Affiliation(s)
- Xiang He
- Institute of Chemical Physics
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Chunbo Leng
- Institute of Chemical Physics
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Shufeng Pang
- Institute of Chemical Physics
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Yunhong Zhang
- Institute of Chemical Physics
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
45
|
Jin L, Luo X, Fu P, Li X. Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww079] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractRapid urban and industrial development has resulted in severe air-pollution problems in developing countries such as China, especially in highly industrialized and populous urban clusters. Dissecting the complex mixtures of airborne particulate matter (PM) has been a key scientific focus in the last two decades, leading to significant advances in understanding physicochemical compositions for comprehensive source apportionment. However, identifying causative components with an attributable link to population-based health outcomes remains a huge challenge. The microbiome, an integral dimension of the PM mixture, is an unexplored frontier in terms of identities and functions in atmospheric processes and human health. In this review, we identify the major gaps in addressing these issues, and recommend a holistic framework for evaluating the sources, processes and impacts of atmospheric PM pollution. Such an approach and the knowledge generated will facilitate the formulation of regulatory measures to control PM pollution in China and elsewhere.
Collapse
Affiliation(s)
- Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaosan Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Pingqing Fu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
46
|
Ge Y, Liu Y, Chu B, He H, Chen T, Wang S, Wei W, Cheng S. Ozonolysis of Trimethylamine Exchanged with Typical Ammonium Salts in the Particle Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11076-11084. [PMID: 27626464 DOI: 10.1021/acs.est.6b04375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Alkylamines contribute to both new particle formation and brown carbon. The toxicity of particle-phase amines is of great concern in the atmospheric chemistry community. Degradation of particulate amines may lead to secondary products in the particle phase, which are associated with changes in the adverse health impacts of aerosols. In this study, O3 oxidation of particulate trimethylamine (TMA) formed via heterogeneous uptake of TMA by (NH4)2SO4, NH4HSO4, NH4NO3 and NH4Cl, was investigated with in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and proton transfer reaction mass spectrometry (PTR-MS). HCOOH, HCHO, CH3N═CH2, (CH3)2NCHO, CH3NO2, CH3N(OH)CHO, CH3NHOH and H2O were identified as products on all the substrates based upon IR (one-dimensional IR and two-dimensional correlation infrared spectroscopy), quantum chemical calculation and PTR-MS results. A reaction mechanism was proposed to explain the observed products. This work demonstrates that oxidation might be a degradation pathway of particulate amines in the atmosphere. This will aid in understanding the fate of particulate amines formed by nucleation and heterogeneous uptake and their potential health impacts during atmospheric aging.
Collapse
Affiliation(s)
- Yanli Ge
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Yongchun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Shaoxin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, China
| | - Wei Wei
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology , Beijing 100022, China
| | - Shuiyuan Cheng
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology , Beijing 100022, China
| |
Collapse
|
47
|
Estillore AD, Trueblood JV, Grassian VH. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem Sci 2016; 7:6604-6616. [PMID: 28567251 PMCID: PMC5450524 DOI: 10.1039/c6sc02353c] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/17/2016] [Indexed: 12/20/2022] Open
Abstract
Once airborne, biologically-derived aerosol particles are prone to reaction with various atmospheric oxidants such as OH, NO3, and O3.
Advances in analytical techniques and instrumentation have now established methods for detecting, quantifying, and identifying the chemical and microbial constituents of particulate matter in the atmosphere. For example, recent cryo-TEM studies of sea spray have identified whole bacteria and viruses ejected from ocean seawater into air. A focal point of this perspective is directed towards the reactivity of aerosol particles of biological origin with oxidants (OH, NO3, and O3) present in the atmosphere. Complementary information on the reactivity of aerosol particles is obtained from field investigations and laboratory studies. Laboratory studies of different types of biologically-derived particles offer important information related to their impacts on the local and global environment. These studies can also unravel a range of different chemistries and reactivity afforded by the complexity and diversity of the chemical make-up of these particles. Laboratory experiments as the ones reviewed herein can elucidate the chemistry of biological aerosols.
Collapse
Affiliation(s)
- Armando D Estillore
- Department of Chemistry & Biochemistry , University of California San Diego , La Jolla , California 92093 , USA . ; ; Tel: +1-858-534-2499
| | - Jonathan V Trueblood
- Department of Chemistry & Biochemistry , University of California San Diego , La Jolla , California 92093 , USA . ; ; Tel: +1-858-534-2499
| | - Vicki H Grassian
- Department of Chemistry & Biochemistry , University of California San Diego , La Jolla , California 92093 , USA . ; ; Tel: +1-858-534-2499.,Scripps Institution of Oceanography and Department of Nanoengineering , University of California San Diego , La Jolla , California 92093 , USA
| |
Collapse
|
48
|
Enami S, Hoffmann MR, Colussi AJ. Halogen Radical Chemistry at Aqueous Interfaces. J Phys Chem A 2016; 120:6242-8. [DOI: 10.1021/acs.jpca.6b04219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Michael R. Hoffmann
- Linde
Center for Global Environmental Science, California Institute of Technology, Pasadena, California 91125, United States
| | - A. J. Colussi
- Linde
Center for Global Environmental Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
49
|
Enami S, Sakamoto Y. OH-Radical Oxidation of Surface-Active cis-Pinonic Acid at the Air–Water Interface. J Phys Chem A 2016; 120:3578-87. [DOI: 10.1021/acs.jpca.6b01261] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shinichi Enami
- The
Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302, Japan
- Research
Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Yosuke Sakamoto
- Graduate
School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8316, Japan
- Graduate
School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
50
|
Enami S, Sakamoto Y, Hara K, Osada K, Hoffmann MR, Colussi AJ. "Sizing" Heterogeneous Chemistry in the Conversion of Gaseous Dimethyl Sulfide to Atmospheric Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1834-1843. [PMID: 26761399 DOI: 10.1021/acs.est.5b05337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The oxidation of biogenic dimethyl sulfide (DMS) emissions is a global source of cloud condensation nuclei. The amounts of the nucleating H2SO4(g) species produced in such process, however, remain uncertain. Hydrophobic DMS is mostly oxidized in the gas phase into H2SO4(g) + DMSO(g) (dimethyl sulfoxide), whereas water-soluble DMSO is oxidized into H2SO4(g) in the gas phase and into SO4(2-) + MeSO3(-) (methanesulfonate) on water surfaces. R = MeSO3(-)/(non-sea-salt SO4(2-)) ratios would therefore gauge both the strength of DMS sources and the extent of DMSO heterogeneous oxidation if Rhet = MeSO3(-)/SO4(2-) for DMSO(aq) + ·OH(g) were known. Here, we report that Rhet = 2.7, a value obtained from online electrospray mass spectra of DMSO(aq) + ·OH(g) reaction products that quantifies the MeSO3(-) produced in DMSO heterogeneous oxidation on aqueous aerosols for the first time. On this basis, the inverse R dependence on particle radius in size-segregated aerosol collected over Syowa station and Southern oceans is shown to be consistent with the competition between DMSO gas-phase oxidation and its mass accommodation followed by oxidation on aqueous droplets. Geographical R variations are thus associated with variable contributions of the heterogeneous pathway to DMSO atmospheric oxidation, which increase with the specific surface area of local aerosols.
Collapse
Affiliation(s)
- Shinichi Enami
- The Hakubi Center for Advanced Research, Kyoto University , Kyoto 606-8302, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University , Uji 611-0011, Japan
- PRESTO, Japan Science and Technology Agency , Kawaguchi 332-0012, Japan
| | - Yosuke Sakamoto
- Faculty of Environmental Earth Science, Hokkaido University , Sapporo 060-0610, Japan
| | - Keiichiro Hara
- Department of Earth Science System, Fukuoka University , Fukuoka 814-0180, Japan
| | - Kazuo Osada
- Graduate School of Environmental Studies, Nagoya University , Nagoya 464-8601, Japan
| | - Michael R Hoffmann
- Linde Center for Global Environmental Science, California Institute of Technology , California 91125, United States
| | - Agustín J Colussi
- Linde Center for Global Environmental Science, California Institute of Technology , California 91125, United States
| |
Collapse
|