1
|
Yadav R, Nigam A, Mishra R, Gupta S, Chaudhary AA, Khan SUD, almuqri EA, Ahmed ZH, Rustagi S, Singh DP, Kumar S. Novel Therapeutic Approach for Obesity: Seaweeds as an Alternative Medicine with the Latest Conventional Therapy. Med Sci (Basel) 2024; 12:55. [PMID: 39449411 PMCID: PMC11503287 DOI: 10.3390/medsci12040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of overweight and obesity is increasing worldwide. Common comorbidities related to obesity, significantly polygenic disorders, cardiovascular disease, and heart conditions affect social and monetary systems. Over the past decade, research in drug discovery and development has opened new paths for alternative and conventional medicine. With a deeper comprehension of its underlying mechanisms, obesity is now recognized more as a chronic condition rather than merely a result of lifestyle choices. Nonetheless, addressing it solely through lifestyle changes is challenging due to the intricate nature of energy regulation dysfunction. The Federal Drug Administration (FDA) has approved six medications for the management of overweight and obesity. Seaweed are plants and algae that grow in oceans, rivers, and lakes. Studies have shown that seaweed has therapeutic potential in the management of body weight and obesity. Seaweed compounds such as carotenoids, xanthophyll, astaxanthin, fucoidans, and fucoxanthin have been demonstrated as potential bioactive components in the treatment of obesity. The abundance of natural seaweed bioactive compounds has been explored for their therapeutic potential for treating obesity worldwide. Keeping this view, this review covered the latest developments in the discovery of varied anti-obese seaweed and its bioactive components for the management of obesity.
Collapse
Affiliation(s)
- Rajesh Yadav
- Department of Dialysis Technology, Sharda School of Allied Health Science, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Physiology, All India Institute of Medical Science, New Delhi 110029, India
| | - Ankita Nigam
- Department of Physiotherapy, Sharda School of Allied Health Science, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Richa Mishra
- Department of Computer Engineering, Parul Institute of Engineering and Technology (PIET), Parul University, Ta. Waghodia, Vadodara 391760, Gujarat, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Eman Abdullah almuqri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Zakir Hassain Ahmed
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11632, Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Science, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Deependra Pratap Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Sanjay Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
2
|
Wang S, Fu Z, Chen W, Wu S, Ke S, Tu J, Wei B. Saccharina Japonica Polysaccharides Suppress High-Fat Diet-Induced Obesity and Modulate Gut Microbiota Composition and Function. Chem Biodivers 2024; 21:e202401088. [PMID: 38856108 DOI: 10.1002/cbdv.202401088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Recent studies have highlighted the potential of Saccharina japonica Polysaccharides (SJPs) in alleviating high-fat diet (HFD)-induced obesity by regulating gut microbiota, which warrants further exploration to elucidate the underlying structure-activity relationship. In this study, five polysaccharide fractions (Sj-T, Sj-T-1, Sj-T-2, Sj-T-3, and Sj-T-4) with different structure characteristics were prepared from S. japonica, and their effects on HFD-induced obesity and gut microbiota composition were investigated using C57BL/6J mice. The results revealed that oral administration of Sj-T considerably suppressed HFD-induced obesity, glucose metabolic dysfunction, and other disordered symptoms. While, Sj-T-2, which has the lowest molecular weight, was the most effective in alleviating HFD-induced obesity and had the second-best effect on improving HFD-induced impaired glucose tolerance among the five SJPs. Supplementation with SJPs significantly modulated HFD-induced gut microbiota dysbiosis both at the phylum and species levels, such as enriching Desulfobacterota and Actinobacteriota, while suppressing the abundance of Bacteroidota. Sj-T also dramatically restored the gut microbiota composition by modulating the abundance of many crucial gut bacterial taxa, including s_Bacteroides_acidifaciens, s_Lachnospiraceae _bacterium, and g_Lachnospiraceae_NK4A136_group. Besides, SJPs also dramatically altered the function of gut microbiota, including many carbohydrate-metabolism enzymes. This study highlights the potential of SJPs in preventing obesity and restoring intestinal homeostasis in obese individuals.
Collapse
Affiliation(s)
- Sijia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang University of Technology, Hangzhou, 310014, China
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, CA-90024, USA
| | - Zixi Fu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Weibing Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Sitong Wu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Songze Ke
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianfeng Tu
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, PR China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
3
|
Wang N, Ma M, Mu G, Qian F, Xuemei Z. Lipid analysis of breast milk and formula for preterm infants and the application and prospects of novel structural lipids - a comprehensive review. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39066633 DOI: 10.1080/10408398.2024.2383964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Preterm infants, often characterized by lower birth weights and underdeveloped physiologies, necessitate specialized nutritional care. While breast milk stands as the ideal nutritional source, offering substantial energy through its fatty acid content to support the infants' growth and developmental needs, its usage might not always be feasible. Fatty acids in breast milk are critical for the development of these infants. In scenarios where breast milk is not an option, formula feeding becomes a necessary alternative. Thus, a comprehensive understanding of the fatty acid profiles in both breast milk and formulas is crucial for addressing the distinct nutritional requirements of preterm infants. This paper aims to summarize the effects of lipid composition, structure, and positioning in breast milk and formula on the growth and development of preterm infants. Furthermore, it explores recent advancements in the use of novel structural lipids in formulas, laying the groundwork for future innovations in formula design specifically catered to the needs of preterm infants.
Collapse
Affiliation(s)
- Ning Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Mingyang Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhu Xuemei
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Geurts KAM, Meijer S, Roeters van Lennep JE, Wang X, Özcan B, Voortman G, Liu H, Castro Cabezas M, Berk KA, Mulder MT. The Effect of Sargassum fusiforme and Fucus vesiculosus on Continuous Glucose Levels in Overweight Patients with Type 2 Diabetes Mellitus: A Feasibility Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024; 16:1837. [PMID: 38931192 PMCID: PMC11206271 DOI: 10.3390/nu16121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Brown seaweed is promising for the treatment of type 2 diabetes mellitus (T2DM). Its bioactive constituents can positively affect plasma glucose homeostasis in healthy humans. We investigated the effect of the brown seaweeds Sargassum (S.) fusiforme and Fucus (F.) vesiculosus in their natural form on glucose regulation in patients with T2DM. METHODS We conducted a randomized, double-blind, placebo-controlled pilot trial. Thirty-six participants with T2DM received, on a daily basis, either 5 g of dried S. fusiforme, 5 g of dried F. vesiculosus, or 0.5 g of dried Porphyra (control) for 5 weeks, alongside regular treatment. The primary outcome was the between-group difference in the change in weekly average blood glucose levels (continuous glucose monitoring). The secondary outcomes were the changes in anthropometrics, plasma lipid levels, and dietary intake. The data were analyzed using a linear mixed-effects model. RESULTS The change in weekly average glucose levels was 8.2 ± 2.1 to 9.0 ± 0.7 mmol/L (p = 0.2) in the S. fusiforme group (n = 12) and 10.1 ± 3.3 to 9.2 ± 0.7 mmol/L (p = 0.9) in the F. vesiculosus group (n = 10). The between-group difference was non-significant. Similarly, no between-group differences were observed for the changes in the secondary outcomes. DISCUSSION A daily intake of 5 g of fresh, dried S. fusiforme or F. vesiculosus alongside regular treatment had no differential effect on weekly average blood glucose levels in T2DM.
Collapse
Affiliation(s)
- Karlijn A. M. Geurts
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Sjoerd Meijer
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Jeanine E. Roeters van Lennep
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Xi Wang
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Behiye Özcan
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Gardi Voortman
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Manuel Castro Cabezas
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Schiedamse Vest 180, 3011 BH Rotterdam, The Netherlands
| | - Kirsten A. Berk
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Monique T. Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| |
Collapse
|
5
|
Murakami S, Hirazawa C, Mizutani T, Ohya T, Yoshikawa R, Ma N, Ikemori T, Ito T, Matsuzaki C. Edible Red Seaweed Hypnea asiatica Ameliorates High-Fat Diet-Induced Metabolic Diseases in Mice. J Med Food 2023; 26:799-808. [PMID: 37939270 DOI: 10.1089/jmf.2023.k.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Metabolic diseases, including obesity, diabetes, and fatty liver disease, are dramatically increasing around the world. Seaweed is low in calories and rich in many active ingredients that are necessary for maintaining good health, and is expected to be effective for preventing metabolic diseases. The purpose of this study was to examine the effects of a traditional Japanese edible seaweed Hypnea asiatica (H. asiatica) on obesity, using a mouse model. H. asiatica was dried and powdered, mixed with a high-fat diet, and fed to male C57BL/6J mice for 13 weeks. On the last day of the experiment, blood samples were collected under anesthesia and biochemical parameters such as lipids and adipokines were measured. Liver and adipose tissue were excised, weighed, and oxidant/antioxidant parameters were measured. Some mice were perfused with a fixative solution containing formalin, and tissue specimens were prepared. A glucose tolerance test was used to assess insulin resistance. The inhibition of lipase activity was evaluated in vitro. Thirteen-week supplementation with H. asiatica suppressed body weight gain, body fat accumulation, and blood glucose levels. H. asiatica also improved fatty liver and hypercholesterolemia, and reduced the oxidant and inflammatory parameters of serum and liver. H. asiatica increased fecal triglyceride excretion and polyphenol-rich ethanol extract of H. asiatica inhibited lipase activity in vitro. These results suggest that polysaccharides and polyphenols in H. asiatica may ameliorate obesity and diabetes by inhibiting intestinal fat absorption and reducing oxidative stress and inflammation. H. asiatica may be useful in preventing metabolic diseases such as obesity, diabetes, and fatty liver.
Collapse
Affiliation(s)
- Shigeru Murakami
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
- Fukui Bioincubation Center, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Chihiro Hirazawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Toshiki Mizutani
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Takuma Ohya
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Rina Yoshikawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Ning Ma
- Division of Health Science, Graduate School of Health Science, Suzuka University, Suzuka, Mie, Japan
| | - Takahiko Ikemori
- Ishikawa Prefecture Fisheries Division, Kanazawa, Ishikawa, Japan
| | - Takashi Ito
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
- Fukui Bioincubation Center, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Chiaki Matsuzaki
- Research Institute for Bioscience and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| |
Collapse
|
6
|
Chen T, Tang R, Lin J, Kuo W, Yang I, Liang Y, Lin F. The synthesis and evaluation of thiolated alginate as the barrier to block nutrient absorption on small intestine for body-weight control. Bioeng Transl Med 2023; 8:e10382. [PMID: 37693067 PMCID: PMC10487312 DOI: 10.1002/btm2.10382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 11/12/2022] Open
Abstract
Obesity is the most common health concern all over the world. However, till now, there is no promising way to manage obesity or body-weight control. The aim of the study is to develop an edible gel as a health supplement that temporarily attaches to the mucus of the intestines, forming an absorption barrier to block the nutrients. We modify the alginate with the thiol group as thiolated alginate (TA) that may stay on the mucosa layer for a much longer time to reduce nutrient absorption. In this study, the TA is synthesized successfully and proved a good mucosal adhesion to serve as a barrier for nutrient absorption both in vitro and in vivo. The results of in vivo imaging system (IVIS) show that the synthesized TA can be exiled from the gastrointestinal tract within 24 h. The animal study shows that the TA by daily oral administration can effectively reduce body weight and fat deposition. The biosafety is evaluated in vitro at the cellular level, based on ISO-10993, and further checked by animal study. We do believe that the TA could have a greater potential to be developed into a safe health supplement to manage obesity and for body-weight control.
Collapse
Affiliation(s)
- Tzu‐Chien Chen
- Department of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Rui‐Chian Tang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research InstitutesZhunan, Miaoli CountyTaiwan
| | - Jhih‐Ni Lin
- Department of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Wei‐Ting Kuo
- Department of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - I‐Hsuan Yang
- Department of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Ya‐Jyun Liang
- Department of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Feng‐Huei Lin
- Department of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research InstitutesZhunan, Miaoli CountyTaiwan
| |
Collapse
|
7
|
Houghton D, Shannon OM, Chater PI, Wilcox MD, Pearson JP, Stanforth K, Jordan C, Avery L, Blain AP, Joel A, Jeffers R, Nolan R, Nelson A, Stewart CJ, Malcomson FC. White kidney bean extract as a nutraceutical: effects on gut microbiota, alpha-amylase inhibition, and user experiences. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e8. [PMID: 39295906 PMCID: PMC11406411 DOI: 10.1017/gmb.2023.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 09/21/2024]
Abstract
White kidney bean extract (WKBE) is a nutraceutical often advocated as an anti-obesity agent. The main proposed mechanism for these effects is alpha-amylase inhibition, thereby slowing carbohydrate digestion and absorption. Thus, it is possible that WKBE could impact the gut microbiota and modulate gut health. We investigated the effects of supplementing 20 healthy adults with WKBE for 1 week in a randomised, placebo-controlled crossover trial on the composition of the gut microbiota, gastrointestinal (GI) inflammation (faecal calprotectin), GI symptoms, and stool habits. We conducted in vitro experiments and used a gut model system to explore potential inhibition of alpha-amylase. We gained qualitative insight into participant experiences of using WKBE via focus groups. WKBE supplementation decreased the relative abundance of Bacteroidetes and increased that of Firmicutes, however, there were no significant differences in post-intervention gut microbiota measurements between the WKBE and control. There were no significant effects on GI inflammation or symptoms related to constipation, or stool consistency or frequency. Our in vitro and gut model system analyses showed no effects of WKBE on alpha-amylase activity. Our findings suggest that WKBE may modulate the gut microbiota in healthy adults, however, the underlying mechanism is unlikely due to active site inhibition of alpha-amylase.
Collapse
Affiliation(s)
- David Houghton
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Oliver M Shannon
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Peter I Chater
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew D Wilcox
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jeffrey P Pearson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kyle Stanforth
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Cara Jordan
- School of Health and Life Sciences, Teesside University, Tees Valley, UK
| | - Leah Avery
- School of Health and Life Sciences, Teesside University, Tees Valley, UK
| | - Alasdair P Blain
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Abraham Joel
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ruth Jeffers
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Ruth Nolan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Andrew Nelson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Fiona C Malcomson
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Guo Y, Liu M, Liu X, Zheng M, Xu X, Liu X, Gong J, Liu H, Liu J. Metagenomic and Untargeted Metabolomic Analysis of the Effect of Sporisorium reilianum Polysaccharide on Improving Obesity. Foods 2023; 12:foods12081578. [PMID: 37107373 PMCID: PMC10137368 DOI: 10.3390/foods12081578] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota plays an important role in the pathophysiology of obesity. Fungal polysaccharide can improve obesity, but the potential mechanism needs further study. This experiment studied the potential mechanism of polysaccharides from Sporisorium reilianum (SRP) to improve obesity in male Sprague Dawley (SD) rats fed with a high-fat diet (HFD) using metagenomics and untargeted metabolomics. After 8 weeks of SRP (100, 200, and 400 mg/kg/day) intervention, we analyzed the related index of obesity, gut microbiota, and untargeted metabolomics of rats. The obesity and serum lipid levels of rats treated with SRP were reduced, and lipid accumulation in the liver and adipocyte hypertrophy was improved, especially in rats treated with a high dose of SRP. SRP improved the composition and function of gut microbiota in rats fed with a high-fat diet, and decreased the ratio of Firmicutes to Bacteroides at the phylum level. At the genus level, the abundance of Lactobacillus increased and that of Bacteroides decreased. At the species level, the abundance of Lactobacillus crispatus, Lactobacillus helveticus, and Lactobacillus acidophilus increased, while the abundance of Lactobacillus reuteri and Staphylococcus xylosus decreased. The function of gut microbiota mainly regulated lipid metabolism and amino acid metabolism. The untargeted metabolomics indicated that 36 metabolites were related to the anti-obesity effect of SRP. Furthermore, linoleic acid metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, and the phenylalanine metabolism pathway played a role in improving obesity in those treated with SRP. The study results suggest that SRP significantly alleviated obesity via gut-microbiota-related metabolic pathways, and SRP could be used for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Yunlong Guo
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meihong Liu
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xin Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mingzhu Zheng
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xiuying Xu
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xiaokang Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiyu Gong
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Huimin Liu
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jingsheng Liu
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
9
|
Sharma PP, Vanajakshi V, Haware D, Baskaran V. Brown algae and barley-based anti-obesity food and its safety in C57BL6 mice. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4230-4243. [PMID: 36193487 PMCID: PMC9525497 DOI: 10.1007/s13197-022-05483-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/26/2022] [Accepted: 05/07/2022] [Indexed: 06/16/2023]
Abstract
Brown algae have been considered a potential source of bioactives and used as a dietary supplement to manage obesity and its associated health complications. However, its effective use is limited due to heavy metals and microbial contamination, unawareness of health benefits and limited dietary exploitation. We developed, the Indian brown algae Padina tetrastromatica and barley-based anti-obesity food (AOF) and examined for microbial and heavy metal safety. Additionally, acute [0 (control), 50, 100, 200, 500 g AOF/kg diet] and sub-acute [0, 5, 50 g AOF/kg diet] doses of AOF were fed to C57BL6 mice and toxicity was examined. The physical, locomotory, hematological, biochemical parameters and histopathology were examined. Postprandial plasma and tissue levels of fucoxanthin and its metabolites were analyzed. Feeding AOF did not affect the general behavior, food and water intake, growth or survival of animals. Biochemical indices did not show any differences between AOF-fed and control groups. However, significantly lower levels of plasma cholesterol and triglycerides in groups fed 5 and 50 g of AOF/kg diet were observed. The post-mortem examination revealed no macroscopic/microscopic alteration in the vital organs. Overall, results validate that AOF is a safe and effective dietary supplement (even at higher doses of 500 g AOF/kg) to mitigate obesity. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05483-4.
Collapse
Affiliation(s)
- Priya Prakash Sharma
- Department of Biochemistry, CSIR-Central Food Technological Institute, Mysore, Karnataka 570020 India
| | - V. Vanajakshi
- Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Institute, Mysore, Karnataka 570020 India
| | - Devendra Haware
- Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Institute, Mysore, Karnataka 570020 India
| | - Vallikannan Baskaran
- Department of Biochemistry, CSIR-Central Food Technological Institute, Mysore, Karnataka 570020 India
| |
Collapse
|
10
|
Chaves Filho GP, Batista LANC, de Medeiros SRB, Rocha HAO, Moreira SMG. Sulfated Glucan from the Green Seaweed Caulerpa sertularioides Inhibits Adipogenesis through Suppression of Adipogenic and Lipogenic Key Factors. Mar Drugs 2022; 20:md20080470. [PMID: 35892938 PMCID: PMC9331110 DOI: 10.3390/md20080470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/22/2022] Open
Abstract
Sulfated polysaccharides (SPS) from seaweeds have great biochemical and biotechnological potential. This study aimed to investigate the effect of SPS isolated from the seaweed Caulerpa sertularioides on adipogenic differentiation as a possible alternative treatment for obesity. The SPS-rich extract from the seaweed C. sertularioides was fractioned into three SPS-rich fractions (F0.5; F0.9; and F1.8) chemically characterized. Among these four samples, only F0.9 showed a significant inhibitory effect on adipogenesis of 3T3-L1 preadipocytes. Ten SPS-rich fractions were isolated from F0.9 through ion-exchange chromatography. However, only the fraction (CS0.2) containing a sulfated glucan was able to inhibit adipogenesis. CS0.2 reduces lipid accumulation and inhibits the expression of key adipogenic (PPARγ, C/EBPβ, and C/EBPα) and lipogenic markers (SREBP-1c, Fabp4, and CD36). The data points to the potential of sulfated glucan from C. sertularioides for the development of functional approaches in obesity management.
Collapse
Affiliation(s)
- Gildacio Pereira Chaves Filho
- Laboratory of Molecular and Genomic Biology, Department of Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil; (G.P.C.F.); (S.R.B.d.M.)
- The Doctoral Program in Biotechnology—Northeast Biotechnology Network (RENORBIO), Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil;
| | - Lucas Alighieri Neves Costa Batista
- Laboratory of Biotechnology of Natural Polymers, Department of Biochemistry, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil;
| | - Silvia Regina Batistuzzo de Medeiros
- Laboratory of Molecular and Genomic Biology, Department of Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil; (G.P.C.F.); (S.R.B.d.M.)
- The Doctoral Program in Biotechnology—Northeast Biotechnology Network (RENORBIO), Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil;
| | - Hugo Alexandre Oliveira Rocha
- The Doctoral Program in Biotechnology—Northeast Biotechnology Network (RENORBIO), Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil;
- Laboratory of Biotechnology of Natural Polymers, Department of Biochemistry, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil;
| | - Susana Margarida Gomes Moreira
- Laboratory of Molecular and Genomic Biology, Department of Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil; (G.P.C.F.); (S.R.B.d.M.)
- The Doctoral Program in Biotechnology—Northeast Biotechnology Network (RENORBIO), Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil;
- Correspondence: ; Tel.: +55-84-3211-9209; Fax: +55-84-3215-3346-29
| |
Collapse
|
11
|
Characterization of Plocamium telfairiae Extract-Functionalized Au Nanostructures and Their Anti-Adipogenic Activity through PLD1. Mar Drugs 2022; 20:md20070421. [PMID: 35877714 PMCID: PMC9320883 DOI: 10.3390/md20070421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Here, Au nanostructure (AuNS) biosynthesis was mediated through ethanolic extract of Plocamium telfairiae (PT) without the use of stabilizers or surfactants. PT-functionalized AuNSs (PT-AuNSs) were analyzed using ultraviolet–visible spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy, energy-dispersive spectroscopy, and Fourier-transform infrared spectroscopy. Stable monodisperse PT-AuNSs were synthesized, with a mean size of 15.36 ± 0.10 nm and zeta potential of −35.85 ± 1.36 mV. Moreover, biosynthetic AuNPs with a face-centered structure of PT-AuNS exhibited crystalline characteristics. In addition, many functional groups playing important roles in the biological reduction of PT extracts were adsorbed on the surface of PT-AuNSs. Furthermore, the effects of PT-AuNSs on adipogenesis in immature adipocytes were investigated. PT-AuNSs reduced morphological changes, lowered triglyceride content, and increased lipid accumulation by approximately 78.6% in immature adipocytes compared with the values in mature adipocytes (MDI-induced). PT-AuNS suppressed lipid accumulation by downregulating the transcript and protein expression of C/EBPα, PPARγ, SREBP 1, FAS, and aP2. Finally, PT-AuNS induced the transcript and protein expression of UCP1, PRDM16, and PGC1a, thereby increasing mitochondrial biogenesis in mature adipocytes and effectively inducing brown adipogenesis. In this study, the biosynthesized PT-AuNS was used as a potential therapeutic candidate because it conferred a potent anti-lipogenic effect. As a result, it can be used in various scientific fields such as medicine and the environment.
Collapse
|
12
|
Cho M, Bu Y, Park JW, Rahman H, Ko SJ. Efficacy of complementary medicine for nonsteroidal anti-inflammatory drug-induced small intestinal injuries: A narrative review. Medicine (Baltimore) 2021; 100:e28005. [PMID: 35049210 PMCID: PMC9191556 DOI: 10.1097/md.0000000000028005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
Nonsteroidal anti-inflammatory drug-induced small bowel injuries (NSIs) have been largely ignored for decades due to the focus on nonsteroidal anti-inflammatory drug gastropathy. With the visualization of the small intestines enabled by video capsule endoscopy, the frequency and severity of NSIs have become more evident. NSIs have a complex pathophysiology, and no effective preventive or treatment options have been proven. Complementary and alternative medicine (CAM) has been used to treat disorders of the small intestine, and more research on its effectiveness for NSIs has been conducted.We reviewed the current evidence and mechanisms of action of CAMs on NSI. Clinical and experimental studies on the effect of CAMs on NSIs were performed using 10 databases.Twenty-two studies (3 clinical and 19 in vivo experimental studies) were included in the final analysis involving 10 kinds of CAMs: bovine colostrum, Orengedokuto (coptis), muscovite, licorice, grape seed, wheat, brown seaweed, Ganoderma lucidum fungus mycelia, Chaenomeles speciosa (sweet) Nakai (muguasantie), and Jinghua Weikang capsule. The mechanisms of CAM include an increase in prostaglandin E2, reparation of the enteric nervous system, inhibition of pro-inflammatory cytokines, reduction of intestinal permeability and enteric bacterial numbers, decrease in oxidative stress, and modulation of small intestinal motility.CAM may be a novel alternative option for treating and preventing NSI, and further studies on human and animal models with relevant comorbidities are warranted.
Collapse
Affiliation(s)
- Minji Cho
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Woo Park
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
13
|
The effect of seaweed enriched bread on carbohydrate digestion and the release of glucose from food. J Funct Foods 2021; 87:104747. [PMID: 34987615 PMCID: PMC8689403 DOI: 10.1016/j.jff.2021.104747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/20/2022] Open
|
14
|
Du ZR, Wang X, Cao X, Liu X, Zhou SN, Zhang H, Yang RL, Wong KH, Tang QJ, Dong XL. Alginate and its Two Components Acted Differently Against Dopaminergic Neuronal Loss in Parkinson's Disease Mice Model. Mol Nutr Food Res 2021; 66:e2100739. [PMID: 34811884 DOI: 10.1002/mnfr.202100739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/07/2021] [Indexed: 11/05/2022]
Abstract
SCOPE This study aims to investigate and compare the potentially neuroprotective effects and underlying mechanisms for brown seaweed polysaccharides (PS) of Alginate (Alg) and its two components, including polymannuronic acid (PM) and polyguluronic acid (PG), against Parkinson's disease (PD) pathogenesis. METHODS AND RESULTS Model mice of PD are pretreated with Alg or PM or PG, separately via oral gavage once per day for four weeks. Our results found PM improved motor functions of PD mice, but Alg or PG did not. PM or PG, but not Alg, can prevent dopaminergic neuronal loss by increasing tyrosine hydroxylase (TH) expressions in midbrain of PD mice. The neuroprotective effects of PM rely on its anti-inflammation effects and its ability to improve striatal neurotransmitters (serotonin (5-HT) and 5-hydroxyindole acetic acid (5-HIAA)) levels in PD mice. PM inhibits inflammation, but PG or Alg induces inflammation in systemic circulation of PD mice. The neuroprotection provided by PG might be related to its ability to increase striatal neurotransmitter of 5-hydroxyindole acetic acid levels in PD mice. CONCLUSION PM plays better than PG to provide neuroprotection, but Alg did not show any neuroprotection against PD. Alg and its two components acted differently in preventing dopaminergic neuronal loss in PD mice.
Collapse
Affiliation(s)
- Zhong-Rui Du
- College of Physical Education, Ludong University, Yantai, China
| | - Xiong Wang
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Institute, Shenzhen, Guangdong Province, China.,College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Xu Cao
- Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong Province, China.,Department of Neurology, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong Province, China
| | - Xin Liu
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Institute, Shenzhen, Guangdong Province, China
| | - Sai-Nan Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Hui Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Rui-Li Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Ka-Hing Wong
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Institute, Shenzhen, Guangdong Province, China.,Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| | - Qing-Juan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Xiao-Li Dong
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Institute, Shenzhen, Guangdong Province, China.,Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
15
|
He D, Yan L, Zhang J, Li F, Wu Y, Su L, Chen P, Wu M, Choi J, Tong H. Sargassum fusiforme polysaccharide attenuates high-sugar-induced lipid accumulation in HepG2 cells and Drosophila melanogaster larvae. Food Sci Nutr 2021; 9:5590-5599. [PMID: 34646529 PMCID: PMC8498055 DOI: 10.1002/fsn3.2521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/22/2022] Open
Abstract
Lipid accumulation is a major factor in the development of non-alcoholic fatty liver disease (NAFLD). Currently, there is a lack of intervention or therapeutic drugs against NAFLD. In this study, we investigated the ability of Sargassum fusiforme polysaccharide (SFPS) to reduce lipid accumulation induced by high sugar in HepG2 cells and Drosophila melanogaster larvae. The results indicated that SFPS significantly (p < .01) decreased the accumulation of lipid droplets in high sugar-induced HepG2 cells. Furthermore, SFPS also suppressed the expression of Srebp and Fas (genes involved in lipogenesis) and increased the expression of PPARɑ and Cpt1 (genes that participated in fatty acid β-oxidation) in these cells. SFPS markedly reduced the content of triglyceride of the third instar larvae developed from D. melanogaster eggs reared on the high-sucrose diet. The expression of the Srebp and Fas genes in the larvae was also inhibited whereas the expression of two genes involved in the β-oxidation of fatty acids, Acox57D-d and Fabp, was increased in the larval fat body (a functional homolog of the human liver). We also found that SFPS ameliorated developmental abnormalities induced by the high-sucrose diet. These results of this study suggest that SFPS could potentially be used as a therapeutic agent for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Dan He
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
- Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuSouth Korea
| | - Liping Yan
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Jiaqi Zhang
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Fang Li
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Yu Wu
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Laijin Su
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Peichao Chen
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Mingjiang Wu
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Jong‐il Choi
- Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuSouth Korea
| | - Haibin Tong
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| |
Collapse
|
16
|
du Preez R, Magnusson M, Majzoub ME, Thomas T, Praeger C, Glasson CRK, Panchal SK, Brown L. Brown Seaweed Sargassum siliquosum as an Intervention for Diet-Induced Obesity in Male Wistar Rats. Nutrients 2021; 13:1754. [PMID: 34064139 PMCID: PMC8224310 DOI: 10.3390/nu13061754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
The therapeutic potential of Sargassum siliquosum grown in Australian tropical waters was tested in a rat model of metabolic syndrome. Forty-eight male Wistar rats were divided into four groups of 12 rats and each group was fed a different diet for 16 weeks: corn starch diet (C); high-carbohydrate, high-fat diet (H) containing fructose, sucrose, saturated and trans fats; and C or H diets with 5% S. siliquosum mixed into the food from weeks 9 to 16 (CS and HS). Obesity, hypertension, dyslipidaemia, impaired glucose tolerance, fatty liver and left ventricular fibrosis developed in H rats. In HS rats, S. siliquosum decreased body weight (H, 547 ± 14; HS, 490 ± 16 g), fat mass (H, 248 ± 27; HS, 193 ± 19 g), abdominal fat deposition and liver fat vacuole size but did not reverse cardiovascular and liver effects. H rats showed marked changes in gut microbiota compared to C rats, while S. siliquosum supplementation increased gut microbiota belonging to the family Muribaculaceae. This selective increase in gut microbiota likely complements the prebiotic actions of the alginates. Thus, S. siliquosum may be a useful dietary additive to decrease abdominal and liver fat deposition.
Collapse
Affiliation(s)
- Ryan du Preez
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
| | - Marie Magnusson
- School of Science, Environmental Research Institute, University of Waikato, Tauranga 3112, New Zealand; (M.M.); (C.R.K.G.)
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christina Praeger
- MACRO—The Centre for Macroalgal Resources and Biotechnology, College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Christopher R. K. Glasson
- School of Science, Environmental Research Institute, University of Waikato, Tauranga 3112, New Zealand; (M.M.); (C.R.K.G.)
| | - Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
- School of Health and Wellbeing, University of Southern Queensland, Ipswich, QLD 4305, Australia
| |
Collapse
|
17
|
John OD, du Preez R, Panchal SK, Brown L. Tropical foods as functional foods for metabolic syndrome. Food Funct 2021; 11:6946-6960. [PMID: 32692322 DOI: 10.1039/d0fo01133a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tropical foods are an integral part of the traditional diet and form part of traditional medicine in many countries. This review examines the potential of tropical foods to treat signs of metabolic syndrome, defined as a chronic low-grade inflammation leading to obesity, hypertension, impaired glucose tolerance, insulin resistance, dyslipidaemia and fatty liver. It is a major risk factor for cardiovascular and metabolic disease as well as osteoarthritis and some cancers. Tropical foods such as seaweeds and tropical fruits including indigenous fruits such as Davidson's plums are effective in reducing these signs of metabolic syndrome in rats, as well as reducing degeneration of bone cartilage and altering gut microbiome. Further, waste products from tropical fruits including mangosteen rind, coffee pulp and spent coffee grounds provide further options to reduce metabolic syndrome. Production of local tropical foods and local recovery of food waste from these foods could allow the development of commercial, sustainable and cost-effective functional foods in tropical countries. The aim is to develop these functional foods to reduce the incidence of metabolic syndrome and decrease the risk of costly chronic cardiovascular and metabolic disorders locally and globally.
Collapse
Affiliation(s)
- Oliver D John
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
| | - Ryan du Preez
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia. and School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Sunil K Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia. and School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia. and School of Health and Wellbeing, University of Southern Queensland, Ipswich, QLD 4305, Australia
| |
Collapse
|
18
|
Murakami S, Hirazawa C, Ohya T, Yoshikawa R, Mizutani T, Ma N, Moriyama M, Ito T, Matsuzaki C. The Edible Brown Seaweed Sargassum horneri (Turner) C. Agardh Ameliorates High-Fat Diet-Induced Obesity, Diabetes, and Hepatic Steatosis in Mice. Nutrients 2021; 13:551. [PMID: 33567531 PMCID: PMC7915656 DOI: 10.3390/nu13020551] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
Sargassum horneri (Turner) C. Agardh (S. horneri) is edible brown seaweed that grows along the coast of East Asia and has been traditionally used as a folk medicine and a local food. In this study, we evaluated the effects of S. horneri on the development of obesity and related metabolic disorders in C57BL/6J mice fed a high-fat diet. S. horneri was freeze-dried, fine-powdered, and mixed with a high-fat diet at a weight ratio of 2% or 6%. Feeding a high-fat diet to mice for 13 weeks induced obesity, diabetes, hepatic steatosis, and hypercholesterolemia. Supplementation of mice with S. horneri suppressed high-fat diet-induced body weight gain and the accumulation of fat in adipose tissue and liver, and the elevation of the serum glucose level. In addition, S. horneri improved insulin resistance. An analysis of the feces showed that S. horneri stimulated the fecal excretion of triglyceride, as well as increased the fecal polysaccharide content. Furthermore, extracts of S. horneri inhibited the activity of pancreatic lipase in vitro. These results showed that S. horneri can ameliorate diet-induced metabolic diseases, and the effect may be partly associated with the suppression of intestinal fat absorption.
Collapse
Affiliation(s)
- Shigeru Murakami
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 9101195, Japan; (C.H.); (T.O.); (R.Y.); (T.M.); (T.I.)
| | - Chihiro Hirazawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 9101195, Japan; (C.H.); (T.O.); (R.Y.); (T.M.); (T.I.)
| | - Takuma Ohya
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 9101195, Japan; (C.H.); (T.O.); (R.Y.); (T.M.); (T.I.)
| | - Rina Yoshikawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 9101195, Japan; (C.H.); (T.O.); (R.Y.); (T.M.); (T.I.)
| | - Toshiki Mizutani
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 9101195, Japan; (C.H.); (T.O.); (R.Y.); (T.M.); (T.I.)
| | - Ning Ma
- Division of Health Science, Graduate School of Health Science, Suzuka University, Mie 5100293, Japan;
| | | | - Takashi Ito
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 9101195, Japan; (C.H.); (T.O.); (R.Y.); (T.M.); (T.I.)
| | - Chiaki Matsuzaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 9218836, Japan;
| |
Collapse
|
19
|
Keleszade E, Patterson M, Trangmar S, Guinan KJ, Costabile A. Clinical Efficacy of Brown Seaweeds Ascophyllum nodosum and Fucus vesiculosus in the Prevention or Delay Progression of the Metabolic Syndrome: A Review of Clinical Trials. Molecules 2021; 26:714. [PMID: 33573121 PMCID: PMC7866543 DOI: 10.3390/molecules26030714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a global public health problem affecting nearly 25.9% of the world population characterised by a cluster of disorders dominated by abdominal obesity, high blood pressure, high fasting plasma glucose, hypertriacylglycerolaemia and low HDL-cholesterol. In recent years, marine organisms, especially seaweeds, have been highlighted as potential natural sources of bioactive compounds and useful metabolites, with many biological and physiological activities to be used in functional foods or in human nutraceuticals for the management of MetS and related disorders. Of the three groups of seaweeds, brown seaweeds are known to contain more bioactive components than either red and green seaweeds. Among the different brown seaweed species, Ascophyllum nodosum and Fucus vesiculosus have the highest antioxidant values and highest total phenolic content. However, the evidence base relies mainly on cell line and small animal models, with few studies to date involving humans. This review intends to provide an overview of the potential of brown seaweed extracts Ascophyllum nodosum and Fucus vesiculosus for the management and prevention of MetS and related conditions, based on the available evidence obtained from clinical trials.
Collapse
Affiliation(s)
- Enver Keleszade
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK; (E.K.); (M.P.); (S.T.)
| | - Michael Patterson
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK; (E.K.); (M.P.); (S.T.)
| | - Steven Trangmar
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK; (E.K.); (M.P.); (S.T.)
| | | | - Adele Costabile
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK; (E.K.); (M.P.); (S.T.)
| |
Collapse
|
20
|
He D, Yan L, Hu Y, Wu Q, Wu M, Choi JI, Tong H. Optimization of Porphyran Extraction from Pyropia yezoensis by Response Surface Methodology and Its Lipid-Lowering Effects. Mar Drugs 2021; 19:53. [PMID: 33498781 PMCID: PMC7911723 DOI: 10.3390/md19020053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/28/2022] Open
Abstract
Macroalgae polysaccharides are phytochemicals that are beneficial to human health. In this study, response surface methodology was applied to optimize the extraction procedure of Pyropia yezoensis porphyran (PYP). The optimum extraction parameters were: 100 °C (temperature), 120 min (time), and 29.32 mL/g (liquid-solid ratio), and the maximum yield of PYP was 22.15 ± 0.55%. The physicochemical characteristics of PPYP, purified from PYP, were analyzed, along with its lipid-lowering effect, using HepG2 cells and Drosophila melanogaster larvae. PPYP was a β-type sulfated hetero-rhamno-galactan-pyranose with a molecular weight of 151.6 kDa and a rhamnose-to-galactose molar ratio of 1:5.3. The results demonstrated that PPYP significantly reduced the triglyceride content in palmitic acid (PA)-induced HepG2 cells and high-sucrose-fed D. melanogaster larvae by regulating the expression of lipid metabolism-related genes, reducing lipogenesis and increasing fatty acid β-oxidation. To summarize, PPYP can lower lipid levels in HepG2 cells and larval fat body (the functional homolog tissue of the human liver), suggesting that PPYP may be administered as a potential marine lipid-lowering drug.
Collapse
Affiliation(s)
- Dan He
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Korea
| | - Liping Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
| | - Yingxia Hu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
| | - Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
| | - Jong-il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Korea
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
| |
Collapse
|
21
|
Attjioui M, Ryan S, Ristic AK, Higgins T, Goñi O, Gibney ER, Tierney J, O'Connell S. Comparison of edible brown algae extracts for the inhibition of intestinal carbohydrate digestive enzymes involved in glucose release from the diet. J Nutr Sci 2021; 10:e5. [PMID: 33889388 PMCID: PMC8057513 DOI: 10.1017/jns.2020.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 01/04/2023] Open
Abstract
Type II diabetes is considered the most common metabolic disorder in the developed world and currently affects about one in ten globally. A therapeutic target for the management of type II diabetes is the inhibition of α- glucosidase, an essential enzyme located at the brush border of the small intestinal epithelium. The inhibition of α-glucosidase results in reduced digestion of carbohydrates and a decrease in postprandial blood glucose. Although pharmaceutical synthetic inhibitors are available, these are usually associated with significant gastrointestinal side effects. In the present study, the impact of inhibitors derived from edible brown algae is being investigated and compared for their effect on glycaemic control. Carbohydrate- and polyphenolic-enriched extracts derived from Ascophyllum nodosum, Fucus vesiculosus and Undaria pinnatifida were characterised and screened for their inhibitory effects on maltase and sucrase enzymes. Furthermore, enzyme kinetics and the mechanism of inhibition of maltase and sucrase were determined using linear and nonlinear regression methods. All tested extracts showed a dose-dependent inhibitory effect of α-glucosidase with IC50 values ranging from 0⋅26 to 0⋅47 mg/ml for maltase; however, the only extract that was able to inhibit sucrase activity was A. nodosum, with an IC50 value of 0⋅83 mg/ml. The present study demonstrates the mechanisms in which different brown seaweed extracts with varying composition and molecular weight distribution differentially inhibit α-glucosidase activities. The data highlight that all brown seaweed extracts are not equal in the inhibition of carbohydrate digestive enzymes involved in postprandial glycaemia.
Collapse
Affiliation(s)
- Maha Attjioui
- Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland
| | | | | | - Thomas Higgins
- Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland
| | | | - Eileen R. Gibney
- UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Joanna Tierney
- Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland
| | - Shane O'Connell
- Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland
- Marigot Ltd., Carrigaline, Ireland
| |
Collapse
|
22
|
Zhang Y, Xie Q, You L, Cheung PCK, Zhao Z. Behavior of Non-Digestible Polysaccharides in Gastrointestinal Tract: A Mechanistic Review of its Anti-Obesity Effect. EFOOD 2021. [DOI: 10.2991/efood.k.210310.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
23
|
Zhang T, Wu S, Ai C, Wen C, Liu Z, Wang L, Jiang L, Shen P, Zhang G, Song S. Galactofucan from Laminaria japonica is not degraded by the human digestive system but inhibits pancreatic lipase and modifies the intestinal microbiota. Int J Biol Macromol 2021; 166:611-620. [PMID: 33130265 DOI: 10.1016/j.ijbiomac.2020.10.219] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
The effects of galactofucan from Laminaria japonica on the digestion and intestinal microbiota of human were investigated in the present study. Crude fraction of the sulfated polysaccharide from L. japonica (CF) and its molecular-weight homogeneous fraction (CGF-3) were prepared and characterized. In the simulated digestion model for the human saliva and gastrointestinal tract, no obvious changes in the molecular weight or the reducing sugar content of CGF-3 were observed, indicating CGF-3 is resistant to the human digestive system. Then CGF-3 did not affect the α-amylase activity while it dose-dependently inhibited the activity of pancreatic lipase partly depending on its sulfate groups. In the in vitro fermentation with the human fecal microbiota, CF did not change the total carbohydrate, reducing sugar and short chain fatty acids contents, which indicated CF was not utilized by the microbiota. However, the microbiota composition was modulated greatly by CF intervention. These findings shed a light on the better understanding of the impacts of dietary galactofucan on the digestion and intestinal microbiota.
Collapse
Affiliation(s)
- Tongtong Zhang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Sufeng Wu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Chunqing Ai
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Chengrong Wen
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Zhengqi Liu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Linlin Wang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Long Jiang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Peili Shen
- Qingdao Brightmoon Seaweed Group Co Ltd, Qingdao, China, State Key Laboratory of Bioactive Seaweed Substances, 266400, China
| | - Guofang Zhang
- Qingdao Brightmoon Seaweed Group Co Ltd, Qingdao, China, State Key Laboratory of Bioactive Seaweed Substances, 266400, China
| | - Shuang Song
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China.
| |
Collapse
|
24
|
Dudefoi W, Rabesona H, Rivard C, Mercier-Bonin M, Humbert B, Terrisse H, Ropers MH. In vitro digestion of food grade TiO 2 (E171) and TiO 2 nanoparticles: physicochemical characterization and impact on the activity of digestive enzymes. Food Funct 2021; 12:5975-5988. [PMID: 34032251 DOI: 10.1039/d1fo00499a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Titanium dioxide is a food additive that has raised some concerns for humans due to the presence of nanoparticles. We were interested in knowing the fate of TiO2 particles in the gastro-intestinal tract and their potential effect on digestive enzymes. For this purpose, we analysed the behaviour of two different food grade TiO2 samples (E171) and one nano-sized TiO2 sample (P25) through a standardized static in vitro digestion protocol simulating the oral, gastric and intestinal phases with appropriate juices including enzymes. Both E171 and P25 TiO2 particles remained intact in the digestive fluids but formed large agglomerates, and especially in the intestinal fluid where up to 500 μm sized particles have been identified. The formation of these agglomerates is mediated by the adsorption of mainly α-amylase and divalent cations. Pepsin was also identified to adsorb onto TiO2 particles but only in the case of silica-covered E171. In the salivary conditions, TiO2 exerted an inhibitory action on the enzymatic activity of α-amylase. The activity was reduced by a factor dependent on enzyme concentrations (up to 34% at 1 mg mL-1) but this inhibitory effect was reduced to hardly 10% in the intestinal fluid. In the gastric phase, pepsin was not affected by any form of TiO2. Our results hint that food grade TiO2 has a limited impact on the global digestion of carbohydrates and proteins. However, the reduced activity specifically observed in the oral phase deserves deeper investigation to prevent any adverse health effects related to the slowdown of carbohydrate metabolism.
Collapse
Affiliation(s)
- William Dudefoi
- INRAE, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France.
| | - Hanitra Rabesona
- INRAE, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France.
| | - Camille Rivard
- INRAE, UAR 1008 TRANSFORM, 44300 Nantes, France and Synchrotron SOLEIL, LUCIA Beamline, 91192 Gif-sur-Yvette, France
| | - Muriel Mercier-Bonin
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Bernard Humbert
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Hélène Terrisse
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | | |
Collapse
|
25
|
Ford L, Curry C, Campbell M, Theodoridou K, Sheldrake G, Dick J, Stella L, Walsh PJ. Effect of Phlorotannins from Brown Seaweeds on the In Vitro Digestibility of Pig Feed. Animals (Basel) 2020; 10:ani10112193. [PMID: 33238648 PMCID: PMC7700568 DOI: 10.3390/ani10112193] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Phlorotannins have been reported to have positive effects on pig health, including improved gut health and digestibility. In this study, we investigate the effect of phenolics found in two brown seaweeds, Ascophyllum nodosum and Fucus serratus, on in vitro dry matter digestibility of seaweeds and commercial pig feed. Phlorotannin extracts and whole seaweeds were supplemented into pig feed to test their effect on digestibility. Solid-phase extraction was used to purify the phenolics to phlorotannins. The results showed a slight decrease in the digestibility of pig feed that was found to be significant when phlorotannin extracts were added from either seaweed. However, when whole A. nodosum was added to the pig feed, the effect on digestibility was less pronounced. Specifically, no significant difference in digestibility was observed at inclusion rates up to 5%, and thereafter results varied. A difference in digestibility was also observed in the same species at the same inclusion rate, collected from different seasons. This suggests that other compounds, e.g., polysaccharides, are having an effect on digestibility when whole seaweeds are supplemented to animal feed. This research has also highlighted the need to base supplementation on phenolic concentration as opposed to a standardised percentage inclusion of seaweeds to ensure that digestibility is not adversely affected.
Collapse
Affiliation(s)
- Lauren Ford
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Northern Ireland BT9 5AG, UK; (L.F.); (C.C.); (G.S.); (L.S.)
| | - Chloe Curry
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Northern Ireland BT9 5AG, UK; (L.F.); (C.C.); (G.S.); (L.S.)
| | - Mairead Campbell
- Institute of Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Northern Ireland, Belfast BT9 5DL, UK; (M.C.); (K.T.); (J.D.)
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Northern Ireland, Belfast BT9 5DL, UK
| | - Katerina Theodoridou
- Institute of Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Northern Ireland, Belfast BT9 5DL, UK; (M.C.); (K.T.); (J.D.)
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Northern Ireland, Belfast BT9 5DL, UK
| | - Gary Sheldrake
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Northern Ireland BT9 5AG, UK; (L.F.); (C.C.); (G.S.); (L.S.)
| | - Jaimie Dick
- Institute of Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Northern Ireland, Belfast BT9 5DL, UK; (M.C.); (K.T.); (J.D.)
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Northern Ireland, Belfast BT9 5DL, UK
- Queen’s Marine Laboratory (QML) Queen’s University Belfast, 12-13 The Strand, Northern Ireland, Portaferry BT22 1PF, UK
| | - Lorenzo Stella
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Northern Ireland BT9 5AG, UK; (L.F.); (C.C.); (G.S.); (L.S.)
- Atomistic Simulation Centre (ASC), School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK
| | - Pamela J. Walsh
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Northern Ireland BT9 5AG, UK; (L.F.); (C.C.); (G.S.); (L.S.)
- Queen’s Marine Laboratory (QML) Queen’s University Belfast, 12-13 The Strand, Northern Ireland, Portaferry BT22 1PF, UK
- School of Mechanical Engineering, Queen’s University Belfast, The Asbhy Building, Stranmillis Road, Northern Ireland, Belfast BT9 5AJ, UK
- Correspondence: ; Tel.: +44-28-9097-4677
| |
Collapse
|
26
|
Gabbia D, De Martin S. Brown Seaweeds for the Management of Metabolic Syndrome and Associated Diseases. Molecules 2020; 25:E4182. [PMID: 32932674 PMCID: PMC7570850 DOI: 10.3390/molecules25184182] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Metabolic syndrome is characterized by the coexistence of different metabolic disorders which increase the risk of developing type 2 diabetes mellitus and cardiovascular diseases. Therefore, metabolic syndrome leads to a reduction in patients' quality of life as well as to an increase in morbidity and mortality. In the last few decades, it has been demonstrated that seaweeds exert multiple beneficial effects by virtue of their micro- and macronutrient content, which could help in the management of cardiovascular and metabolic diseases. This review aims to provide an updated overview on the potential of brown seaweeds for the prevention and management of metabolic syndrome and its associated diseases, based on the most recent evidence obtained from in vitro and in vivo preclinical and clinical studies. Owing to their great potential for health benefits, brown seaweeds are successfully used in some nutraceuticals and functional foods for treating metabolic syndrome comorbidities. However, some issues still need to be tackled and deepened to improve the knowledge of their ADME/Tox profile in humans, in particular by finding validated indexes of their absorption and obtaining reliable information on their efficacy and long-term safety.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
27
|
Peñalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, Nieto G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar Drugs 2020; 18:E301. [PMID: 32517092 PMCID: PMC7345263 DOI: 10.3390/md18060301] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Seaweeds have been used since ancient times as food, mainly by Asian countries, while in Western countries, their main application has been as gelling agents and colloids for the food, pharmaceuticals, and the cosmetic industry. Seaweeds are a good source of nutrients such as proteins, vitamins, minerals, and dietary fiber. Polyphenols, polysaccharides, and sterols, as well as other bioactive molecules, are mainly responsible for the healthy properties associated with seaweed. Antioxidant, anti-inflammatory, anti-cancer, and anti-diabetic properties are attributed to these compounds. If seaweeds are compared to terrestrial plants, they have a higher proportion of essential fatty acids as eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids. In addition, there are several secondary metabolites that are synthesized by algae such as terpenoids, oxylipins, phlorotannins, volatile hydrocarbons, and products of mixed biogenetic origin. Therefore, algae can be considered as a natural source of great interest, since they contain compounds with numerous biological activities and can be used as a functional ingredient in many technological applications to obtain functional foods.
Collapse
Affiliation(s)
- Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| |
Collapse
|
28
|
|
29
|
Mendez RL, Miranda C, Armour CR, Sharpton TJ, Stevens JF, Kwon JY. Supplementation with Sea Vegetables Palmaria mollis and Undaria pinnatifida Exerts Metabolic Benefits in Diet-Induced Obesity in Mice. Curr Dev Nutr 2020; 4:nzaa072. [PMID: 32467865 PMCID: PMC7245532 DOI: 10.1093/cdn/nzaa072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/19/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sea vegetables are rich sources of nutrients as well as bioactive components that are linked to metabolic health improvement. Algal polysaccharides improve satiety and modulate gut microbiota while proteins, peptides, and phenolic fractions exert anti-inflammatory, antioxidant, and antidiabetic effects. OBJECTIVE We tested the hypothesis that dietary supplementation with either Pacific dulse (Palmaria mollis, red algae) or wakame (Undaria pinnatifida, brown algae) could remediate metabolic complications in high-fat diet-induced obesity. METHODS Individually caged C57BL/6J mice (n = 8) were fed ad libitum with either a low-fat diet (LFD), 10% kcal fat; high-fat diet (HFD), 60% kcal fat; HFD + 5% (wt:wt) dulse (HFD + D); or HFD + 5% (wt:wt) wakame (HFD + W) for 8 weeks. Food intake and weight gain were monitored weekly. Glucose tolerance, hepatic lipids, fecal lipids, and plasma markers were evaluated, and the gut microbiome composition was assessed. RESULTS Despite the tendency of higher food and caloric intake than the HFD (P = 0.04) group, the HFD + D group mice did not exhibit higher body weight, indicating lower food and caloric efficiency (P < 0.001). Sea vegetable supplementation reduced plasma monocyte chemotactic protein (MCP-1) (P < 0.001) and increased fecal lipid excretion (P < 0.001). Gut microbiome analysis showed that the HFD + D group had higher alpha-diversity than the HFD or LFD group, whereas beta-diversity analyses indicated that sea vegetable-supplemented HFD-fed mice (HFD + D and HFD + W groups) developed microbiome compositions more similar to those of the LFD-fed mice than those of the HFD-fed mice. CONCLUSION Sea vegetable supplementation showed protective effects against obesity-associated metabolic complications in C57BL/6J male mice by increasing lipid excretion, reducing systemic inflammatory marker, and mitigating gut microbiome alteration. While the obese phenotype development was not prevented, metabolic issues related to lipid absorption, inflammation, and gut microbial balance were improved, showing therapeutic promise and warranting eventual mechanistic elucidations.
Collapse
Affiliation(s)
- Rufa L Mendez
- Department of Food Science and Technology, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | - Cristobal Miranda
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Courtney R Armour
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA
| | - Thomas J Sharpton
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA
- Department of Statistics, College of Science, Oregon State University, Corvallis, OR, USA
| | - Jan Frederik Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Jung Yeon Kwon
- Department of Food Science and Technology, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
- Seafood Research and Education Center, Oregon State University, Astoria, OR, USA
| |
Collapse
|
30
|
Variation in Lipid Components from 15 Species of Tropical and Temperate Seaweeds. Mar Drugs 2019; 17:md17110630. [PMID: 31698797 PMCID: PMC6891767 DOI: 10.3390/md17110630] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The present study describes the variation in lipid components from 15 species of seaweeds belonging to the Chlorophyta, Ochrophyta, and Rhodophyta phyla collected in tropical (Indonesia) and temperate (Japan) areas. Analyses were performed of multiple components, including chlorophylls, carotenoids, n-3 and n-6 polyunsaturated fatty acids (PUFAs), and alpha tocopherol (α-Toc). Chlorophyll (Chl) and carotenoid contents varied among phyla, but not with the sampling location. Chl a and b were the major chlorophylls in Chlorophyta. Chl a and Chl c were the main chlorophylls in Ochrophyta, while Chl a was the dominant chlorophylls in Rhodophyta. β-Carotene and fucoxanthin were detected as major seaweed carotenoids. The former was present in all species in a variety of ranges, while the latter was mainly found in Ochrophyta and in small quantities in Rhodophyta, but not in Chlorophyta. The total lipids (TL) content and fatty acids composition were strongly affected by sampling location. The TL and n-3 PUFAs levels tended to be higher in temperate seaweeds compared with those in tropical seaweeds. The major n-3 PUFAs in different phyla, namely, eicosapentaenoic acid (EPA) and stearidonic acid (SDA) in Ochrophyta, α-linolenic acid (ALA) and SDA in Chlorophyta, and EPA in Rhodophyta, accumulated in temperate seaweeds. Chlorophylls, their derivatives, and carotenoids are known to have health benefits, such as antioxidant activities, while n-3 PUFAs are known to be essential nutrients that positively influence human nutrition and health. Therefore, seaweed lipids could be used as a source of ingredients with health benefits for functional foods and nutraceuticals.
Collapse
|
31
|
De Martin S, Gabbia D, Carrara M, Ferri N. The Brown Algae Fucus vesiculosus and Ascophyllum nodosum Reduce Metabolic Syndrome Risk Factors: A Clinical Study. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fucus vesiculosus and Ascophyllum nodosum have been traditionally used for the treatment of obesity and several gastrointestinal diseases. We have recently demonstrated that the phytocomplex obtained from these algae (Gdue™) controls postprandial glucose levels in a mouse model of steatohepatitis, a condition often associated with obesity and type 2 diabetes mellitus. We analyzed the effect of Gdue™ on HOMA index, waist circumference, fasting blood glucose and insulin levels in overweight or obese subjects. Waist circumference decreased significantly after 6 months of treatment (112 ± 17 at t0 vs 105 ± 13 cm after 6 months of treatment; p<0.0001). Both blood glucose and insulin levels were significantly reduced after 6 months of treatment with Gdue™ (110 ± 15 at t0 vs 98 ± 15 mg/dL after 6 months for glucose; p<0.0001; 22.6 ± 9.5 at t0 vs 17.8 ± 8.6 μU/mL after 6 months for insulin; p<0.05). Accordingly, HOMA index decreased significantly (6.103 ± 2.548 at t0 vs 4.419 ± 2.382 after 6 months; p<0.01), suggesting an improvement of insulin sensitivity status. This phytocomplex represents a useful dietary supplement for controlling relevant metabolic syndrome risk factors, such as waist circumference, fasting insulin and glucose levels.
Collapse
Affiliation(s)
- Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
32
|
Seo YJ, Lee K, Song JH, Chei S, Lee BY. Ishige okamurae Extract Suppresses Obesity and Hepatic Steatosis in High Fat Diet-Induced Obese Mice. Nutrients 2018; 10:E1802. [PMID: 30463291 PMCID: PMC6267443 DOI: 10.3390/nu10111802] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 01/08/2023] Open
Abstract
Obesity is caused by the expansion of white adipose tissue (WAT), which stores excess triacylglycerol (TG), this can lead to disorders including type 2 diabetes, atherosclerosis, metabolic diseases. Ishige okamurae extract (IOE) is prepared from a brown alga and has anti-oxidative properties. We investigated the detailed mechanisms of the anti-obesity activity of IOE. Treatment with IOE blocked lipid accumulation by reducing expression of key adipogenic transcription factors, such as CCAAT/enhancer-binding protein alpha (C/EBPα) and peroxisome proliferator-activated receptor gamma (PPARγ), in 3T3-L1 cells. Administration of IOE to high fat diet (HFD)-fed mice inhibited body and WAT mass gain, attenuated fasting hyperglycemia and dyslipidemia. The obesity suppression was associated with reductions in expression of adipogenic proteins, such as C/EBPα and PPARγ, increases in expression of lipolytic enzymes, such as adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in WAT of HFD-fed mice. In addition, IOE-treated mice had lower hepatic TG content, associated with lower protein expression of lipogenic genes, such as diglyceride acyltransferase 1 (DGAT1), sterol regulatory element-binding protein 1 (SREBP1), fatty acid synthase (FAS). IOE treatment also reduced serum free fatty acid concentration, probably through the upregulation of β-oxidation genes, suggested by increases in AMPKα and CPT1 expression in WAT and liver. In summary, IOE ameliorates HFD-induced obesity and its related metabolic disease, hepatic steatosis, by regulating multiple pathways.
Collapse
Affiliation(s)
- Young-Jin Seo
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam 13488, Kyeonggi, Korea.
| | - Kippeum Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam 13488, Kyeonggi, Korea.
| | - Ji-Hyeon Song
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam 13488, Kyeonggi, Korea.
| | - Sungwoo Chei
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam 13488, Kyeonggi, Korea.
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam 13488, Kyeonggi, Korea.
| |
Collapse
|
33
|
Overview on the Antihypertensive and Anti-Obesity Effects of Secondary Metabolites from Seaweeds. Mar Drugs 2018; 16:md16070237. [PMID: 30011911 PMCID: PMC6070913 DOI: 10.3390/md16070237] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 12/26/2022] Open
Abstract
Hypertension and obesity are two significant factors that contribute to the onset and exacerbation of a cascade of mechanisms including activation of the sympathetic and renin-angiotensin systems, oxidative stress, release of inflammatory mediators, increase of adipogenesis and thus promotion of systemic dysfunction that leads to clinical manifestations of cardiovascular diseases. Seaweeds, in addition to their use as food, are now unanimously acknowledged as an invaluable source of new natural products that may hold noteworthy leads for future drug discovery and development, including in the prevention and/or treatment of the cardiovascular risk factors. Several compounds including peptides, phlorotannins, polysaccharides, carotenoids, and sterols, isolated from brown, red and green macroalgae exhibit significant anti-hypertensive and anti-obesity properties. This review will provide a comprehensive overview of the recent advances on bioactive pure compounds isolated from different seaweed sources focusing on their potential use as drugs to treat or prevent hypertension and obesity. On the other hand, although it is obvious that macroalgae represent promising sources of antihypertensive and anti-obesity compounds, it is also clear that further efforts are required to fully understand their cellular mechanisms of action, to establish structure-inhibition relationships and mainly to evaluate them in pre-clinical and clinical trials.
Collapse
|
34
|
Austin C, Stewart D, Allwood JW, McDougall GJ. Extracts from the edible seaweed, Ascophyllum nodosum, inhibit lipase activity in vitro: contributions of phenolic and polysaccharide components. Food Funct 2018; 9:502-510. [PMID: 29243753 DOI: 10.1039/c7fo01690e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polyphenol-rich extract (PRE) from the edible seaweed, Ascophyllum nodosum, inhibited pancreatic lipase activity in an oil-based turbidimetric assay with an IC50 of 200 μg gallic acid equivalents (GAE) perassay) [∼230 μg DW] whereas the known inhibitor, Orlistat, gave an IC50 at 0.4 μg per assay. A phlorotannin-enriched fraction (TRF) purified from the PRE was more potent with an IC50 = 60 μg GAE per assay (∼65 μg DW). When the assay was started by the addition of lipase, both Orlistat and TRF were much less effective which suggests that pre-incubation of enzyme and inhibitor improved inhibition. Based on phenol content, water extracts from Ascophyllum were more potent lipase inhibitors than PRE (IC50 ∼ 150 μg GAE per assay). However, this was equivalent to ∼580 μg DW and these extracts contained polysaccharides (e.g. alginate content = 110 μg mL-1) which may also contribute to inhibition. Indeed, a polysaccharide-enriched fraction obtained by ethanol precipitation gave an IC50 of 1000 μg DW which was equivalent to 130 μg GAE and 420 μg alginate per assay. Therefore a >3 fold increase in alginate content did not markedly improve inhibition. Re-precipitation increased alginate content and reduced polyphenol content but lipase inhibition was markedly reduced (i.e. IC50 at ∼1100 μg DW per assay, 700 μg alginate and 25 μg GAE). Purifying the polysaccharide fraction by ion exchange removed all phenolics but the IC50 increased to >2500 μg DW, equivalent to >1970 μg alginate per assay. In conclusion, polysaccharides and phlorotannins may inhibit lipase in an additive fashion, with phlorotannins apparently more effective in vitro. However, interactions between these components may be important when food products containing this edible seaweed are consumed.
Collapse
Affiliation(s)
- Ceri Austin
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| | | | | | | |
Collapse
|
35
|
Brownlee IA, Gill S, Wilcox MD, Pearson JP, Chater PI. Starch digestion in the upper gastrointestinal tract of humans. STARCH-STARKE 2018. [DOI: 10.1002/star.201700111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Iain A. Brownlee
- Human Nutrition Research CentreNewcastle Research and Innovation InstituteNewcastle UniversitySingaporeSingapore
| | - Saloni Gill
- Human Nutrition Research CentreNewcastle Research and Innovation InstituteNewcastle UniversitySingaporeSingapore
| | - Matt D. Wilcox
- Institute for Cell and Molecular BiosciencesThe Medical SchoolNewcastle UniversityNewcastle Upon TyneUnited Kingdom
| | - Jeff P. Pearson
- Institute for Cell and Molecular BiosciencesThe Medical SchoolNewcastle UniversityNewcastle Upon TyneUnited Kingdom
| | - Peter I. Chater
- Institute for Cell and Molecular BiosciencesThe Medical SchoolNewcastle UniversityNewcastle Upon TyneUnited Kingdom
| |
Collapse
|
36
|
Corona G, Coman MM, Guo Y, Hotchkiss S, Gill C, Yaqoob P, Spencer JPE, Rowland I. Effect of simulated gastrointestinal digestion and fermentation on polyphenolic content and bioactivity of brown seaweed phlorotannin-rich extracts. Mol Nutr Food Res 2017; 61. [PMID: 28718977 DOI: 10.1002/mnfr.201700223] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 11/11/2022]
Abstract
SCOPE Unlike other classes of polyphenols, there is a lack of knowledge regarding brown seaweed phlorotannins and their bioactivity. We investigated the impact of in vitro gastrointestinal digestion and colonic fermentation on the bioactivity of a seaweed phlorotannin extract from Ascophyllum nodosum and its high molecular weight (HMW) and low molecular weight (LMW) fractions. METHODS AND RESULTS The highest phlorotannin and total polyphenol (TP) concentration was observed in the HMW fraction. Antioxidant capacity broadly followed phlorotannin and TP levels, with HMW having the highest activity. Both gastrointestinal digestion (GID) and colonic fermentation (CF) significantly affected phlorotannin and TP levels, and antioxidant capacity of the extract and fractions. Despite this, in HT-29 cells, all GID extracts significantly inhibit cell growth, whereas CF extracts effectively counteracted H2 O2 induced DNA damage. CONCLUSION Although phlorotannins, TP levels and antioxidant power of the extracts were strongly reduced after in vitro digestion and fermentation, their anti-genotoxic activity and cell growth inhibitory effect in colon HT-29 cells was maintained and enhanced. HMW was the most effective fraction, indicating that the high molecular weight phlorotannins potentially exert a stronger beneficial effect in the colon.
Collapse
Affiliation(s)
- Giulia Corona
- Health Sciences Research Centre, University of Roehampton, London, UK
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Maria Magdalena Coman
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, (MC), Italy
| | - Yuxuan Guo
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Sarah Hotchkiss
- CyberColloids Ltd. Carrigaline Industrial Estate, Carrigaline, County Cork, Northern Ireland
| | - Chris Gill
- Northern Ireland Centre for Food and Health, University of Ulster, Coleraine, Northern Ireland
| | - Parveen Yaqoob
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Jeremy P E Spencer
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Ian Rowland
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| |
Collapse
|
37
|
Huebbe P, Nikolai S, Schloesser A, Herebian D, Campbell G, Glüer CC, Zeyner A, Demetrowitsch T, Schwarz K, Metges CC, Roeder T, Schultheiss G, Ipharraguerre IR, Rimbach G. An extract from the Atlantic brown algae Saccorhiza polyschides counteracts diet-induced obesity in mice via a gut related multi-factorial mechanisms. Oncotarget 2017; 8:73501-73515. [PMID: 29088722 PMCID: PMC5650277 DOI: 10.18632/oncotarget.18113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
In this study we addressed the questions whether an Atlantic brown algae extract (BAE) affects diet induced obesity in mice and which would be the primary targets and underlying key mechanisms. Male C57 BL/6 mice were fed a hypercaloric diet, referred to as high fat diet (HFD), supplemented with a freeze-dried aqueous BAE from Saccorhiza polyschides (5 %) for 8 months. Compared to the control group, dietary BAE supplementation significantly attenuated increase in body weight and fat mass. We observed apparent metabolic improvement including normalization of blood glucose, reduced plasma leptin, reduced fecal bile salt hydrolase activity with lower microbial production of toxic bile acid metabolites in the gut and increased systemic bile acid circulation in BAE-fed mice counteracting adverse effects of long term HFD feeding. Survival of mice receiving dietary BAE supplementation appeared slightly enhanced; however, median and maximal life spans as well as hepatic mTOR activation were not significantly different between BAE and control mice. We suggest that the beneficial metabolic effects of our BAE are at least partly mediated by alterations in gut microbiota associated with fermentation of indigestible polysaccharides that are major components of brown algae such as alginates and fucoidans. We moreover propose a multi-factorial mechanism that involves profound alterations in bile acid homeostasis, changes in intestinal and systemic glucose metabolism likely including increased intestinal gluconeogenesis, increased activity of the intestinally derived hormone GLP-1 contributing to promote systemic insulin sensitivity, and inhibition of α-amylase activity, which expectably limits dietary carbohydrate digestion and glucose release.
Collapse
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
- * These authors share the first authorship
| | - Sibylle Nikolai
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
- * These authors share the first authorship
| | - Anke Schloesser
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Graeme Campbell
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University of Kiel, Kiel, Germany
| | - Claus-Christian Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University of Kiel, Kiel, Germany
| | - Annette Zeyner
- Institute of Agricultural and Nutritional Sciences, Group Animal Nutrition, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Tobias Demetrowitsch
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Cornelia C. Metges
- Institute of Nutritional Physiology ‘Oskar Kellner’, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Thomas Roeder
- Institute of Zoology, University of Kiel, Kiel, Germany
| | | | | | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
38
|
Chen LM, Liu PY, Chen YA, Tseng HY, Shen PC, Hwang PA, Hsu HL. Oligo-Fucoidan prevents IL-6 and CCL2 production and cooperates with p53 to suppress ATM signaling and tumor progression. Sci Rep 2017; 7:11864. [PMID: 28928376 PMCID: PMC5605496 DOI: 10.1038/s41598-017-12111-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/05/2017] [Indexed: 01/07/2023] Open
Abstract
Low-molecular-weight Fucoidan (Oligo-Fucoidan) is a sulfated polysaccharide that has a variety of biological effects and has also been shown to have beneficial health effects. However, the molecular mechanisms underlying the therapeutic effects of Oligo-Fucoidan in patients with cancer remain unclear. Using human colorectal cancer HCT116 cells with (p53+/+) or without (p53−/−) normal p53 expression, we found that Oligo-Fucoidan treatment reduces the occurrence of spontaneous DNA lesions. Etoposide induces double strand DNA breaks. Subsequent administration of Oligo-Fucoidan to etoposide-treated cells promotes p53 accumulation, p21 expression and significant decreases in ataxia-telangiectasia-mutated (ATM), checkpoint kinase 1 (Chk1) and γ-H2AX phosphorylation in p53+/+ cells compared with p53−/− cells. Similarly, co-administration of Oligo-Fucoidan with etoposide inhibits ATM, Chk1 and γ-H2AX phosphorylation, particularly in the presence of p53. Furthermore, Oligo-Fucoidan supplementation increases cancer cell death and attenuates the adverse effects induced by etoposide that decreases production of the pro-inflammatory cytokine IL-6 and chemokine CCL2/MCP-1. Importantly, Oligo-Fucoidan decreases the tumor-promoting M2 macrophages in microenvironment as well as collaborates with p53 and works in combination with etoposide to prevent HCT116 tumorigenicity. Our results first demonstrate that p53 enables Oligo-Fucoidan to effectively inhibit tumor progression, and Oligo-Fucoidan minimizes the side effects of chemotherapy and alters tumor microenvironment.
Collapse
Affiliation(s)
- Li-Mei Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Yen Liu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yen-An Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hong-Yu Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Chun Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsin-Ling Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
39
|
Wan-Loy C, Siew-Moi P. Marine Algae as a Potential Source for Anti-Obesity Agents. Mar Drugs 2016; 14:md14120222. [PMID: 27941599 PMCID: PMC5192459 DOI: 10.3390/md14120222] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023] Open
Abstract
Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans), effect on satiety feeling (e.g., alginates), and inhibition of adipocyte differentiation (e.g., fucoxanthin). Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.
Collapse
Affiliation(s)
- Chu Wan-Loy
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Phang Siew-Moi
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Institute of Ocean & Earth Sciences (IOES), University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
40
|
Red seaweeds for obesity prevention? Food Chem Toxicol 2016; 94:268-9. [PMID: 27265265 DOI: 10.1016/j.fct.2016.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 11/21/2022]
|
41
|
Liu G, Kuang S, Wu S, Jin W, Sun C. A novel polysaccharide from Sargassum integerrimum induces apoptosis in A549 cells and prevents angiogensis in vitro and in vivo. Sci Rep 2016; 6:26722. [PMID: 27216943 PMCID: PMC4877640 DOI: 10.1038/srep26722] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022] Open
Abstract
Many polysaccharides isolated from plants have exhibited promising antitumor activities. The aim of this study is to investigate the antitumor activity of the novel polysaccharide named SPS from Sargassum integerrimum, elucidate the underlying anticancer mechanism in a human lung cancer cell line A549, and evaluate its anti-angiogenic activity both in vitro and in vivo. The results show that SPS significantly reduces A549 cells viability in a dose- and time-dependent manner via MTT method. Flow cytometry analysis indicates that SPS could induce cell apoptosis, the loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) and G2/M phase cell cycle arrest of A549 cells. Up-regulation of the expressions of P53 and Bax, down-regulation of the expression of Bcl-2, and activation of cleaved caspase-3, caspase-9 and PARP are also detected by western blotting after the treatment of SPS. In addition, SPS inhibits the proliferation, migration and cord formation of human umbilical vein endothelial cells (HUVECs) in vitro, and prevents the vascular development of zebrafish embryos in vivo. Altogether, our data prove the anticancer and anti-angiogenesis properties of SPS, and provide further insights into the potential pharmacological application of SPS as antitumor and anti-angiogenic agent against lung cancer.
Collapse
Affiliation(s)
- Ge Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Kuang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Shimei Wu
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Weihua Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|