1
|
El-Mouty Raslan MA, Kassem IAA, Ghaly NS, El-Manawaty MA, Melek FR, Nabil M. Aloe juvenna Brandham & S.Carter as α-Amylase Inhibitor and Hypoglycaemic Agent with Anti-inflammatory Properties for Diabetes Management. Chem Biodivers 2024; 21:e202400245. [PMID: 38436134 DOI: 10.1002/cbdv.202400245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
Despite Aloe's traditional use, Aloe juvenna Brandham & S.Carter is poorly characterized. Other Aloes are known for their antidiabetic activity. This study describes the antidiabetic potentials and phytoconstituents of the A. juvenna leaves methanolic extract (AJME). Twenty-six phytoconstituents of AJME were described using HPLC/MS-MS. Lupeol and vitexin were isolated using column chromatography. The antidiabetic activity of AJME was investigated using an in vivo high-fat diet/streptozotocin-induced diabetic rat model and in vitro α-glucosidase and α-amylase inhibitory activity assays. AJME demonstrated its α-amylase inhibitory activity (IC50=313±39.9 ppm) with no effect on α-glucosidase. In vivo, AJME dose-dependently improved hyperglycaemia in a high-fat diet/streptozotocin-induced diabetic rat model. Notably, the higher dose (1600 mg/kg) of AJME significantly downregulated serum interleukin-6, tumor necrosis factor-α, and matrix metalloproteinase-1 genes, suggesting its anti-inflammatory effect. These findings indicate AJME's potential as a significant antidiabetic agent through its α-amylase inhibition, hypoglycaemic, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Mona Abd El-Mouty Raslan
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Iman AbdelKhalek AbdelKhalek Kassem
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Neveen Sabry Ghaly
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - May Aly El-Manawaty
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Farouk Rasmy Melek
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Marian Nabil
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| |
Collapse
|
2
|
Au TTD, Ho YL, Chang YS. Qualitative and quantitative analysis methods for quality control of rhubarb in Taiwan's markets. Front Pharmacol 2024; 15:1364460. [PMID: 38746013 PMCID: PMC11091417 DOI: 10.3389/fphar.2024.1364460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction: Rhubarb is a traditional Chinese medicine (TCM) used to release heat and has cathartic effects. Official rhubarb in Taiwan Herbal Pharmacopeias 4th edition (THP 4th) and China Pharmacopeia 2020 (CP 2020) are the roots and rhizomes of Rheum palmatum L., Rheum tanguticum Maxim. ex Balf., and Rheum officinale Baill. However, the Rheum genus is a large genus with many different species, and owing to the similarity in appearance and taste with official rhubarb, there needs to be more clarity in the distinction between the species of rhubarb and their applications. Given the time-consuming and complicated extraction and chromatography methods outlined in pharmacopeias, we improved the qualitative analysis and quantitative analysis methods for rhubarb in the market. Hence, we applied our method to identify the species and quality of official and unofficial rhubarb. Method: We analyzed 21 rhubarb samples from the Taiwanese market using a proposed HPLC-based extraction and qualitative analysis employing eight markers: aloe-emodin, rhein, emodin, chrysophanol, physcion, rhapontigenin, rhaponticin, and resveratrol. Additionally, we developed a TLC method for the analysis of rhubarb. KEGG pathway analysis was used to clarify the phytochemical and pharmacological knowledge of official and unofficial rhubarb. Results: Rhein and rhapontigenin emerged as key markers to differentiate official and unofficial rhubarb. Rhapontigenin is abundant in unofficial rhubarb; however, rhein content was low. In contrast, their contents in official rhubarb were opposite to their contents in unofficial rhubarb. The TLC analysis used rhein and rhapontigenin to identify rhubarb in Taiwan's markets, whereas the KEGG pathway analysis revealed that anthraquinones and stilbenes affected different pathways. Discussion: Eight reference standards were used in this study to propose a quality control method for rhubarb in Taiwanese markets. We propose a rapid extraction method and quantitative analysis of rhubarb to differentiate between official and unofficial rhubarb.
Collapse
Affiliation(s)
- Thanh-Thuy-Dung Au
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung, Taiwan
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Zhang S, Wang X, Wang X, Fan X, Liu K, Sa Y, Wilson G, Ma X, Chen G. Establishment and application of a screening method for α-glucosidase inhibitors based on dual sensing and affinity chromatography. J Chromatogr A 2024; 1720:464822. [PMID: 38502989 DOI: 10.1016/j.chroma.2024.464822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
α-Glucosidase plays a direct role in the metabolic pathways of starch and glycogen, any dysfunction in its activity could result in metabolic disease. Concurrently, this enzyme serves as a target for diverse drugs and inhibitors, contributing to the regulation of glucose metabolism in the human body. Here, an integrated analytical method was established to screen inhibitors of α-glucosidase. This step-by-step screening model was accomplished through the biosensing and affinity chromatography techniques. The newly proposed sensing program had a good linear relationship within the enzyme activity range of 0.25 U mL-1 to 1.25 U mL-1, which can quickly identify active ingredients in complex samples. Then the potential active ingredients can be captured, separated, and identified by an affinity chromatography model. The combination of the two parts was achieved by an immobilized enzyme technology and a microdevice for reaction, and the combination not only ensured efficiency and accuracy for inhibitor screening but also eliminated the occurrence of false positive results in the past. The emodin, with a notable inhibitory effect on α-glucosidase, was successfully screened from five traditional Chinese medicines using this method. The molecular docking results also demonstrated that emodin was well embedded into the active pocket of α-glucosidase. In summary, the strategy provided an efficient method for developing new enzyme inhibitors from natural products.
Collapse
Affiliation(s)
- Shuxian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaofei Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoxuan Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Keshuai Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Yuping Sa
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Gidion Wilson
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
4
|
Duong TH, Vu YT, Long NP, Phan NHN, Pham NKT, Sichaem J, Kieu NKD, Duong CB, Nguyen TT, Dang VS, Nguyen HT. Bioactive-Guided Phytochemical Investigations, In Vitro and In Silico Alpha-Glucosidase Inhibition of Two Vietnamese Medicinal Plants Dicranopteris linearis and Psychotria adenophylla. Pharmaceuticals (Basel) 2023; 16:1253. [PMID: 37765061 PMCID: PMC10538207 DOI: 10.3390/ph16091253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Little is known about the chemical and biological profiles of Dicranopteris linearis and Psychotria adenophylla. No previous studies have investigated alpha-glucosidase inhibition using extracts from D. linearis and P. adenophylla. In this paper, bioactive-guided isolation procedures were applied to the plants D. linearis and P. adenophylla based on alpha-glucosidase inhibition. From the most active fractions, 20 compounds (DL1-DL13 and PA1-PA7) were isolated. The chemical structures were elucidated using spectroscopic data and compared with those available in the literature. These compounds were evaluated for alpha-glucosidase inhibition, while a molecular docking study was performed to elucidate the mechanisms involved. Consequently, D. linearis and P. adenophylla might serve as a good potential for developing new antidiabetic preparations.
Collapse
Affiliation(s)
- Thuc-Huy Duong
- Department of Chemistry, University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City 700000, Vietnam; (T.-H.D.); (N.-H.-N.P.); (N.-K.-D.K.); (C.-B.D.)
| | - Y Thien Vu
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea;
| | - Nguyen-Hong-Nhi Phan
- Department of Chemistry, University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City 700000, Vietnam; (T.-H.D.); (N.-H.-N.P.); (N.-K.-D.K.); (C.-B.D.)
- Faculty of Environment, Sai Gon University, 273 An Duong Vuong, Ward 3, District 5, Ho Chi Minh City 700000, Vietnam;
| | - Nguyen-Kim-Tuyen Pham
- Faculty of Environment, Sai Gon University, 273 An Duong Vuong, Ward 3, District 5, Ho Chi Minh City 700000, Vietnam;
| | - Jirapast Sichaem
- Research Unit in Natural Products Chemistry and Bioactivities, Faculty of Science and Technology, Thammasat University Lampang Campus, Lampang 52190, Thailand;
| | - Nguyen-Khanh-Duy Kieu
- Department of Chemistry, University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City 700000, Vietnam; (T.-H.D.); (N.-H.-N.P.); (N.-K.-D.K.); (C.-B.D.)
| | - Chi-Bao Duong
- Department of Chemistry, University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City 700000, Vietnam; (T.-H.D.); (N.-H.-N.P.); (N.-K.-D.K.); (C.-B.D.)
- Faculty of Environment, Sai Gon University, 273 An Duong Vuong, Ward 3, District 5, Ho Chi Minh City 700000, Vietnam;
| | - Thanh-Trung Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
- Center for Pharmaceutical Biotechnology, School of Medicine and Pharmacy, Duy Tan University, Danang 550000, Vietnam
| | - Van-Son Dang
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam;
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, 85 Tran Quoc Toan Street, District 3, Ho Chi Minh City 700000, Vietnam
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| |
Collapse
|
5
|
Bilal M, Rashid EU, Munawar J, Iqbal HMN, Cui J, Zdarta J, Ashraf SS, Jesionowski T. Magnetic metal-organic frameworks immobilized enzyme-based nano-biocatalytic systems for sustainable biotechnology. Int J Biol Macromol 2023; 237:123968. [PMID: 36906204 DOI: 10.1016/j.ijbiomac.2023.123968] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Nanobiocatalysts, in which enzyme molecules are integrated into/onto multifunctional materials, such as metal-organic frameworks (MOFs), have been fascinating and appeared as a new interface of nanobiocatalysis with multi-oriented applications. Among various nano-support matrices, functionalized MOFs with magnetic attributes have gained supreme interest as versatile nano-biocatalytic systems for organic bio-transformations. From the design (fabrication) to deployment (application), magnetic MOFs have manifested notable efficacy in manipulating the enzyme microenvironment for robust biocatalysis and thus assure requisite applications in several areas of enzyme engineering at large and nano-biocatalytic transformations, in particular. Magnetic MOFs-linked enzyme-based nano-biocatalytic systems offer chemo-regio- and stereo-selectivities, specificities, and resistivities under fine-tuned enzyme microenvironments. Considering the current sustainable bioprocesses demands and green chemistry needs, we reviewed synthesis chemistry and application prospects of magnetic MOFs-immobilized enzyme-based nano-biocatalytic systems for exploitability in different industrial and biotechnological sectors. More specifically, following a thorough introductory background, the first half of the review discusses various approaches to effectively developed magnetic MOFs. The second half mainly focuses on MOFs-assisted biocatalytic transformation applications, including biodegradation of phenolic compounds, removal of endocrine disrupting compounds, dye decolorization, green biosynthesis of sweeteners, biodiesel production, detection of herbicides and screening of ligands and inhibitors.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040 Faisalabad, Pakistan
| | - Junaid Munawar
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
6
|
Gupta MK, Gouda G, Sultana S, Punekar SM, Vadde R, Ravikiran T. Structure-related relationship: Plant-derived antidiabetic compounds. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2023:241-295. [DOI: 10.1016/b978-0-323-91294-5.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
7
|
Wen N, Song PS, Ni L, Chen J. Tannic acid-aminopropyltriethoxysilane co-deposition modified polymer membrane for α-glucosidase immobilization. J Chromatogr A 2022; 1683:463550. [DOI: 10.1016/j.chroma.2022.463550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
|
8
|
Sharifi-Rad J, Herrera-Bravo J, Kamiloglu S, Petroni K, Mishra AP, Monserrat-Mesquida M, Sureda A, Martorell M, Aidarbekovna DS, Yessimsiitova Z, Ydyrys A, Hano C, Calina D, Cho WC. Recent advances in the therapeutic potential of emodin for human health. Biomed Pharmacother 2022; 154:113555. [PMID: 36027610 DOI: 10.1016/j.biopha.2022.113555] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 01/01/2023] Open
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a bioactive compound, a natural anthraquinone aglycone, present mainly in herbaceous species of the families Fabaceae, Polygonaceae and Rhamnaceae, with a physiological role in protection against abiotic stress in vegetative tissues. Emodin is mainly used in traditional Chinese medicine to treat sore throats, carbuncles, sores, blood stasis, and damp-heat jaundice. Pharmacological research in the last decade has revealed other potential therapeutic applications such as anticancer, neuroprotective, antidiabetic, antioxidant and anti-inflammatory. The present study aimed to summarize recent studies on bioavailability, preclinical pharmacological effects with evidence of molecular mechanisms, clinical trials and clinical pitfalls, respectively the therapeutic limitations of emodin. For this purpose, extensive searches were performed using the PubMed/Medline, Scopus, Google scholar, TRIP database, Springer link, Wiley and SciFinder databases as a search engines. The in vitro and in vivo studies included in this updated review highlighted the signaling pathways and molecular mechanisms of emodin. Because its bioavailability is low, there are limitations in clinical therapeutic use. In conclusion, for an increase in pharmacotherapeutic efficacy, future studies with carrier molecules to the target, thus opening up new therapeutic perspectives.
Collapse
Affiliation(s)
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile; Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Senem Kamiloglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Gorukle, Bursa, Turkey; Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, 16059 Gorukle, Bursa, Turkey
| | - Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174, India.
| | - Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health and Health Research Institute of Balearic Islands (IdISBa), University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health and Health Research Institute of Balearic Islands (IdISBa), University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Miquel Martorell
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile; Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile.
| | - Dossymbetova Symbat Aidarbekovna
- Almaty Tecnological University, Kazakh-Russian Medical University, Almaty 050012, str. Tole bi 100, Str. Torekulova 71, Kazakhstan.
| | - Zura Yessimsiitova
- Department of Biodiversity and Bioresource, Al-Farabi Kazakh National University, al-Farabi av. 71, 050040 Almaty, Kazakhstan.
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, al-Farabi av. 71, 050040 Almaty, Kazakhstan.
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure et Loir Campus, 28000 Chartres, France.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
9
|
Development of a Colloidal Gold Immunochromatographic Strip for the One-Step Evaluation of the Total Content of Rhein and Aloe-Emodin in Rhubarb. Int J Anal Chem 2022; 2022:7067245. [PMID: 35521627 PMCID: PMC9064498 DOI: 10.1155/2022/7067245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
In this study, a colloidal gold immunochromatographic strip was developed for simultaneous detection of rhein and aloe-emodin in rhubarb. The cutoff value, defined as the lowest concentration for which the test line was invisible on the strip, was 50 ng mL−1 for both rhein and aloe-emodin. By contrast, the cutoff value for emodin was 2,000 ng mL−1. No competitive inhibition was observed up to 5,000 ng mL−1 of physcion, chrysophanol, sennoside A, sennoside B, or rhaponticin. Semiquantitative analyses of the total contents of rhein and aloe-emodin in raw drug materials via our colloidal gold immunochromatographic strips produced results agreeable with those determined by HPLC. Taken together, our findings suggest that the implementation of our colloidal gold immunochromatographic strips provides a rapid one-step method for estimating the total contents of rhein and aloe-emodin, which may represent a powerful tool for quality control of rhubarb.
Collapse
|
10
|
Ardalani H, Hejazi Amiri F, Hadipanah A, Kongstad KT. Potential antidiabetic phytochemicals in plant roots: a review of in vivo studies. J Diabetes Metab Disord 2021; 20:1837-1854. [PMID: 34900828 PMCID: PMC8630315 DOI: 10.1007/s40200-021-00853-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
Background Medicinal plants are used to treat various disorders, including diabetes, globally in a range of formulations. While attention has mainly been on the aerial plant parts, there are only a few review studies to date that are focused on the natural constituents present in the plant roots with health benefits. Thus, the present study was performed to review in vivo studies investigating the antidiabetic potential of the natural compounds in plant roots. Methods We sorted relevant data in 2001-2019 from scientific databases and search engines, including Web of Knowledge, PubMed, ScienceDirect, Medline, Reaxys, and Google Scholar. The class of phytochemicals, plant families, major compounds, active constituents, effective dosages, type of extracts, time of experiments, and type of diabetic induction were described. Results In our literature review, we found 104 plants with determined antidiabetic activity in their root extracts. The biosynthesis pathways and mechanism of actions of the most frequent class of compounds were also proposed. The results of this review indicated that flavonoids, phenolic compounds, alkaloids, and phytosteroids are the most abundant natural compounds in plant roots with antidiabetic activity. Phytochemicals in plant roots possess different mechanisms of action to control diabetes, including inhibition of α-amylase and α-glucosidase enzymes, oxidative stress reduction, secretion of insulin, improvement of diabetic retinopathy/nephropathy, slow the starch digestion, and contribution against hyperglycemia. Conclusion This review concludes that plant roots are a promising source of bioactive compounds which can be explored to develop against diabetes and diabetes-related complications. Graphical abstract
Collapse
Affiliation(s)
- Hamidreza Ardalani
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.,Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | - Fatemeh Hejazi Amiri
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Amin Hadipanah
- Department of Plant Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Saleh-E-In MM, Choi YE. Anethum sowa Roxb. ex fleming: A review on traditional uses, phytochemistry, pharmacological and toxicological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:113967. [PMID: 33640440 DOI: 10.1016/j.jep.2021.113967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anethum sowa Roxb. ex Fleming (Syn. Peucedanum sowa Roxb. ex Fleming, Family: Apiaceae) is a pharmacologically important as aromatic and medicinal plant. Various parts of this plant are used in traditional medicine systems for carminative, uterine and colic pain, digestion disorder, flatulence in babies, appetite-stimulating agent and used to treat mild flue and cough. The essential oil is used for aromatherapy. It is also used as a spice for food flavouring and culinary preparations in many Asian and European countries. AIM OF THE REVIEW This review aims to provide a comprehensive and critical assessment from the reported traditional and pharmaceutical uses and pharmacological activities of the extracts, essential oil and phytoconstituents with emphasis on its therapeutic potential as well as toxicological evaluation of A. sowa. MATERIALS AND METHODS Online search engines such as SciFinder®, GoogleScholar®, ResearchGate®, Web of Science®, Scopus®, PubMed and additional data from books, proceedings and local prints were searched using relevant keywords and terminologies related to A. sowa for critical analyses. RESULTS The literature studies demonstrated that A. sowa possesses several ethnopharmacological activities, including pharmaceutical prescriptions, traditional applications, and spice in food preparations. The phytochemical investigation conducted on crude extracts has been characterized and identified various classes of compounds, including coumarins, anthraquinone, terpenoids, alkaloid, benzodioxoles, phenolics, polyphenols, phenolic and polyphenols, fatty acids, phthalides and carotenoids. The extracts and compounds from the different parts of A. sowa showed diverse in vitro and in vivo biological activities including antioxidant, antiviral, antibacterial, analgesic and anti-inflammatory, Alzheimer associating neuromodulatory, cytotoxic, anticancer, antidiabetes, insecticidal and larvicidal. CONCLUSION A. sowa is a valuable medicinal plant which is especially used in food flavouring and culinary preparations. This review summarized the pertinent information on A. sowa and its traditional and culinary uses, as well as potential pharmacological properties of essential oils, extracts and isolated compounds. The traditional uses of A. sowa are supported by in vitro/vivo pharmacological studies; however, further investigation on A. sowa should be focused on isolation and identification of more active compounds and establish the links between the traditional uses and reported pharmacological activities with active compounds, as well as structure-activity relationship and in vivo mechanistic studies before integrated into the medicine. The toxicological report confirmed its safety. Nonetheless, pharmacokinetic evaluation tests to validate its bioavailability should be encouraged.
Collapse
Affiliation(s)
- Md Moshfekus Saleh-E-In
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea.
| |
Collapse
|
12
|
Malik MS, Alsantali RI, Jassas RS, Alsimaree AA, Syed R, Alsharif MA, Kalpana K, Morad M, Althagafi II, Ahmed SA. Journey of anthraquinones as anticancer agents - a systematic review of recent literature. RSC Adv 2021; 11:35806-35827. [PMID: 35492773 PMCID: PMC9043427 DOI: 10.1039/d1ra05686g] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Anthraquinones are privileged chemical scaffolds that have been used for centuries in various therapeutic applications. The anthraquinone moiety forms the core of various anticancer agents. However, the emergence of drug-resistant cancers warrants the development of new anticancer agents. The research endeavours towards new anthraquinone-based compounds are increasing rapidly in recent years. They are used as a core chemical template to achieve structural modifications, resulting in the development of new anthraquinone-based compounds as promising anticancer agents. Mechanistically, most of the anthraquinone-based compounds inhibit cancer progression by targeting essential cellular proteins. Herein, we review new anthraquinone analogues that have been developed in recent years as anticancer agents. This includes a systematic review of the recent literature (2005-2021) on anthraquinone-based compounds in cell-based models and key target proteins such as kinases, topoisomerases, telomerases, matrix metalloproteinases and G-quadruplexes involved in the viability of cancer cells. In addition to this, the developments in PEG-based delivery of anthraquinones and the toxicity aspects of anthraquinone derivatives are also discussed. The review dispenses a compact background knowledge to understanding anthraquinones for future research on the expansion of anticancer therapeutics.
Collapse
Affiliation(s)
- M Shaheer Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Abdulrahman A Alsimaree
- Department of Basic Science (Chemistry), College of Science and Humanities, Shaqra University Afif Saudi Arabia
| | - Riyaz Syed
- Centalla Discovery, JHUB, Jawaharlal Nehru Technological University Hyderabad Kukatpally Hyderabad 500085 India
| | - Meshari A Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Kulkarni Kalpana
- Department of Humanities and Sciences (Chemistry), Gokaraju Rangaraju Institute of Engineering and Technology Bachupally Hyderabad 500090 India
| | - Moataz Morad
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ismail I Althagafi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
13
|
Zheng Q, Li S, Li X, Liu R. Advances in the study of emodin: an update on pharmacological properties and mechanistic basis. Chin Med 2021; 16:102. [PMID: 34629100 PMCID: PMC8504117 DOI: 10.1186/s13020-021-00509-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Rhei Radix et Rhizoma, also known as rhubarb or Da Huang, has been widely used as a spice and as traditional herbal medicine for centuries, and is currently marketed in China as the principal herbs in various prescriptions, such as Da-Huang-Zhe-Chong pills and Da-Huang-Qing-Wei pills. Emodin, a major bioactive anthraquinone derivative extracted from rhubarb, represents multiple health benefits in the treatment of a host of diseases, such as immune-inflammatory abnormality, tumor progression, bacterial or viral infections, and metabolic syndrome. Emerging evidence has made great strides in clarifying the multi-targeting therapeutic mechanisms underlying the efficacious therapeutic potential of emodin, including anti-inflammatory, immunomodulatory, anti-fibrosis, anti-tumor, anti-viral, anti-bacterial, and anti-diabetic properties. This comprehensive review aims to provide an updated summary of recent developments on these pharmacological efficacies and molecular mechanisms of emodin, with a focus on the underlying molecular targets and signaling networks. We also reviewed recent attempts to improve the pharmacokinetic properties and biological activities of emodin by structural modification and novel material-based targeted delivery. In conclusion, emodin still has great potential to become promising therapeutic options to immune and inflammation abnormality, organ fibrosis, common malignancy, pathogenic bacteria or virus infections, and endocrine disease or disorder. Scientifically addressing concerns regarding the poor bioavailability and vague molecular targets would significantly contribute to the widespread acceptance of rhubarb not only as a dietary supplement in food flavorings and colorings but also as a health-promoting TCM in the coming years.
Collapse
Affiliation(s)
- Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
14
|
Martorell M, Castro N, Victoriano M, Capó X, Tejada S, Vitalini S, Pezzani R, Sureda A. An Update of Anthraquinone Derivatives Emodin, Diacerein, and Catenarin in Diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3313419. [PMID: 34589130 PMCID: PMC8476274 DOI: 10.1155/2021/3313419] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Diabetes is part of metabolic diseases and is characterized by high blood sugar levels over a prolonged period as result of an insulin-deficient production or an inappropriate response to insulin by our cells. This chronic disease was the direct cause of 1.6 million deaths in 2016 as reported by the World Health Organization. Emodin is a natural product and active ingredient of various Chinese herbs with the chemical formula 1,3,8-trihydroxy-6-methylanthraquinone. Diacerein is another naturally occurring anthraquinone (1,8-diacetoxy-3-carboxyanthraquinone) commonly used as commercial drug to treat osteoarthritis. These two anthraquinone derivatives have been shown to exert antidiabetic activities. Emodin seems to enhance the glucose tolerance and insulin sensibility via activation of PPARγ and modulation of metabolic-related genes. Diacerein seems to decrease inflammatory cytokines and increase insulin secretion enhancing insulin sensibility and therefore improving glucose control. Other naturally occurring anthraquinone derivatives, such as catenarin (1,4,6,8-tetrahydroxy-3-methylanthraquinone), have been shown to have antidiabetic activities although few studies have been performed. The synthesis of new emodin derivatives is increasing, but these new molecules have not been tested for diabetes treatment. In the current work, available literature on anthraquinone derivatives' effects in diabetes disease is reviewed. Moreover, we discuss the chemistry, food sources, bioavailability, and toxicity of the naturally occurring anthraquinone with antidiabetic effects.
Collapse
Affiliation(s)
- Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | - Natalia Castro
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca 07122, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University Research Institute of Health Sciences (IUNICS), University of Balearic Islands, Palma E-07122, Balearic Islands, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid E-28029, Spain
- Research Institute of the Balearic Islands, Palma de Mallorca E-07120, Spain
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via G. Celoria 2 20133, Milan, Italy
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova 35128, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca 07122, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid E-28029, Spain
- Research Institute of the Balearic Islands, Palma de Mallorca E-07120, Spain
| |
Collapse
|
15
|
α-glucosidase immobilization on magnetic core-shell metal-organic frameworks for inhibitor screening from traditional Chinese medicines. Colloids Surf B Biointerfaces 2021; 205:111847. [PMID: 34022705 DOI: 10.1016/j.colsurfb.2021.111847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022]
Abstract
In this work, a simple and rapid screening strategy was developed combining capillary electrophoresis analysis with enzymatic assay based on immobilized α-glucosidase. For α-glucosidase immobilization, magnetic core-shell metal-organic frameworks composite (Fe3O4@CS@ZIF-8) was fabricated by a step-by-step assembly method, and α-glucosidase was in situ encapsulated in crystal lattice of ZIF-8. The composite was characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometer. After immobilization, α-glucosidase exhibited enhanced tolerance to temperature and pH, and its reusability was greatly improved with 74 % of initial enzyme activity after being recycled 10 times. The Michaelis-Menten constant of immobilized enzyme was calculated to be 0.47 mM and its inhibition constant and IC50 for acarbose were 0.57 μM and 0.18 μM, respectively. The immobilized enzyme was subsequently applied to inhibitor screening from 14 TCMs, and Rhei Radix et Rhizoma was screened out. Among the commercially available 10 components presented in Rhei Radix et Rhizoma, gallic acid, (+)-catechin and epicatechin exhibited the strongest inhibitory effect on α-glucosidase. Their binding sites and modes with α-glucosidase were simulated via molecular docking to further verify the inhibition screening assay results. The positive results indicated that the Fe3O4@CS@ZIF-8-based screening strategy may provide a new avenue for discovering enzyme inhibitors from TCMs.
Collapse
|
16
|
Trybus W, Król T, Trybus E, Stachurska A, Król G. The potential antitumor effect of chrysophanol in relation to cervical cancer cells. J Cell Biochem 2021; 122:639-652. [PMID: 33417255 DOI: 10.1002/jcb.29891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022]
Abstract
Chrysophanol is an anthraquinone with proven antitumor activity against several tumor cell lines. However, its effect on cervical cancer cells is still unknown. Therefore, HeLa cells were exposed to various concentrations of chrysophanol and then subjected to biochemical, ultrastructural, and morphological analysis. It has been shown using flow cytometry and MTT reduction assay that chrysophanol has been shown to inhibit cell viability and arrest cells in the G2/M phase of the cell cycle. Using Annexin V/propidium iodide staining, a significant increase in apoptosis was found after chrysophanol treatment on HeLa cells, and this process was mediated by caspases 3/7 with a clear inactivation of the antiapoptotic Bcl-2 family protein. However, the demonstrated increased number of cells with double-stranded DNA breaks suggests that chrysophanol also causes DNA damage. By means of electron and fluorescence microscopy, a clear effect of chrysophanol on the intensification of degradation processes, on changes in the structure of the nucleus, endoplasmic reticulum and mitochondria was demonstrated. The changes visible in the mitochondria may be related to the increase in the level of free radicals induced by chrysophanol, which induces apoptosis, inter alia, by increasing the permeability of mitochondrial membranes. The range of observed changes depended on the concentration of anthraquinone was tested.
Collapse
Affiliation(s)
- Wojciech Trybus
- Laboratory of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Teodora Król
- Laboratory of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Ewa Trybus
- Laboratory of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Anna Stachurska
- Department of Immunohematology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Grzegorz Król
- Faculty of Management, University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Zolkeflee NKZ, Isamail NA, Maulidiani M, Abdul Hamid NA, Ramli NS, Azlan A, Abas F. Metabolite variations and antioxidant activity of Muntingia calabura leaves in response to different drying methods and ethanol ratios elucidated by NMR-based metabolomics. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:69-83. [PMID: 31953888 DOI: 10.1002/pca.2917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/03/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Muntingia calabura from the Muntingiaceae family has been documented for several medicinal uses. The combinations of drying treatment and extracting solvents for a plant species need to be determined and optimised to ensure that the extracts contain adequate amounts of the bioactive metabolites. OBJECTIVE Evaluate the metabolite variations and antioxidant activity among M. calabura leaves subjected to different drying methods and extracted with different ethanol ratios using proton nuclear magnetic resonance (1 H-NMR)-based metabolomics. Methodology The antioxidant activity of M. calabura leaves dried with three different drying methods and extracted with three different ethanol ratios was determined by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging assays. The metabolites variation among the extracts and correlation with antioxidant activity were analysed by 1 H-NMR-based metabolomics. RESULTS Muntingia calabura leaves extracted with 50% and 100% ethanol from air-drying and freeze-drying methods had the highest total phenolic content and the lowest IC50 value for the DPPH scavenging activity. Meanwhile, oven-dried leaves extracted with 100% ethanol had the lowest IC50 value for the NO scavenging activity. A total of 43 metabolites, including sugars, organic acids, amino acids, phytosterols, phenolics and terpene glycoside were tentatively identified. A noticeable discrimination was observed in the different ethanol ratios by the principal component analysis. The partial least-squares analysis suggested that 32 compounds out of 43 compounds identified were the contributors to the bioactivities. CONCLUSION The results established set the preliminary steps towards developing this plant into a high value product for phytomedicinal preparations.
Collapse
Affiliation(s)
| | - Nor Amira Isamail
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Maulidiani Maulidiani
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Schoool of Fundamental Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Nur Ashikin Abdul Hamid
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurul Shazini Ramli
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Azrina Azlan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Network Pharmacology-Based Identification of the Mechanisms of Shen-Qi Compound Formula in Treating Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5798764. [PMID: 32595730 PMCID: PMC7292981 DOI: 10.1155/2020/5798764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/20/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
Aim The purpose of this research is to identify the mechanisms of Shen-Qi compound formula (SQC), a traditional Chinese medicine (TCM), for treating diabetes mellitus (DM) using system pharmacology. Methods The active components and therapeutic targets were identified, and these targets were analyzed using gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) analysis. Finally, an integrated pathway was constructed to show the mechanisms of SQC. Results A total of 282 active components and 195 targets were identified through a database search. The component-target network was constructed, and the key components were screened out according to their degree. Through the GO, PPI, and KEGG analyses, the mechanism network of SQC treating DM was constructed. Conclusions This study shows that the mechanisms of SQC treating DM are related to various pathways and targets. This study provides a good foundation and basis for further in-depth verification and clinical application.
Collapse
|
19
|
Characterization of α-glucosidase inhibitory activity of Tetracera scandens leaves by Fourier transform infrared spectroscopy-based metabolomics. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-019-00417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Anthraquinone: a promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med Chem 2020; 12:1037-1069. [PMID: 32349522 DOI: 10.4155/fmc-2019-0198] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer, characterized by uncontrolled malignant neoplasm, is a leading cause of death in both advanced and emerging countries. Although, ample drugs are accessible in the market to intervene with tumor progression, none are totally effective and safe. Natural anthraquinone (AQ) equivalents such as emodin, aloe-emodin, alchemix and many synthetic analogs extend their antitumor activity on different targets including telomerase, topoisomerases, kinases, matrix metalloproteinases, DNA and different phases of cell lines. Nano drug delivery strategies are advanced tools which deliver drugs into tumor cells with minimum drug leakage to normal cells. This review delineates the way AQ derivatives are binding on these targets by abolishing tumor cells to produce anticancer activity and purview of nanoformulations related to AQ analogs.
Collapse
|
21
|
An investigation of the inhibitory mechanism of α-glucosidase by chysalodin from Aloe vera. Int J Biol Macromol 2020; 147:314-318. [DOI: 10.1016/j.ijbiomac.2020.01.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/09/2023]
|
22
|
Bhatia A, Arora S, Nagpal A, Singh B. Screening of rhizomes of Rheum emodi Wall. Ex. Meissen for antimutagenic potential employing Ames assay. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00309-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
23
|
Mohammed A, Ibrahim MA, Tajuddeen N, Aliyu AB, Isah MB. Antidiabetic potential of anthraquinones: A review. Phytother Res 2019; 34:486-504. [DOI: 10.1002/ptr.6544] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/03/2019] [Accepted: 10/19/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Aminu Mohammed
- Department of BiochemistryAhmadu Bello University Zaria Nigeria
| | | | - Nasir Tajuddeen
- Department of ChemistryAhmadu Bello University Zaria Nigeria
| | | | | |
Collapse
|
24
|
Salehi B, Ata A, V. Anil Kumar N, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, Abdulmajid Ayatollahi S, Valere Tsouh Fokou P, Kobarfard F, Amiruddin Zakaria Z, Iriti M, Taheri Y, Martorell M, Sureda A, N. Setzer W, Durazzo A, Lucarini M, Santini A, Capasso R, Adrian Ostrander E, -ur-Rahman A, Iqbal Choudhary M, C. Cho W, Sharifi-Rad J. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019; 9:E551. [PMID: 31575072 PMCID: PMC6843349 DOI: 10.3390/biom9100551] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is one of the major health problems in the world, the incidence and associated mortality are increasing. Inadequate regulation of the blood sugar imposes serious consequences for health. Conventional antidiabetic drugs are effective, however, also with unavoidable side effects. On the other hand, medicinal plants may act as an alternative source of antidiabetic agents. Examples of medicinal plants with antidiabetic potential are described, with focuses on preclinical and clinical studies. The beneficial potential of each plant matrix is given by the combined and concerted action of their profile of biologically active compounds.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran;
| | - Athar Ata
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada;
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576104, India;
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan;
| | - Karina Ramírez-Alarcón
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepción 4070386, Chile;
| | - Ana Ruiz-Ortega
- Facultad de Educación y Ciencias Sociales, Universidad Andrés Bello, Autopista Concepción—Talcahuano, Concepción 7100, Chile;
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (S.A.A.); (F.K.); (Y.T.)
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
| | - Patrick Valere Tsouh Fokou
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon;
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (S.A.A.); (F.K.); (Y.T.)
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
| | - Zainul Amiruddin Zakaria
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Integrative Pharmacogenomics Institute (iPROMISE), Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam Selangor 42300, Malaysia
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (S.A.A.); (F.K.); (Y.T.)
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepción 4070386, Chile;
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN—Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, E-07122 Palma de Mallorca, Spain;
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA;
| | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49-80131 Napoli, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Elise Adrian Ostrander
- Medical Illustration, Kendall College of Art and Design, Ferris State University, Grand Rapids, MI 49503, USA;
| | - Atta -ur-Rahman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.-u.-R.); (M.I.C.)
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.-u.-R.); (M.I.C.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Javad Sharifi-Rad
- Department of Pharmacology, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft 7861756447, Iran
| |
Collapse
|
25
|
Physcion and physcion 8-O-β-glucopyranoside: A review of their pharmacology, toxicities and pharmacokinetics. Chem Biol Interact 2019; 310:108722. [DOI: 10.1016/j.cbi.2019.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/27/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022]
|
26
|
Xie L, Tang H, Song J, Long J, Zhang L, Li X. Chrysophanol: a review of its pharmacology, toxicity and pharmacokinetics. ACTA ACUST UNITED AC 2019; 71:1475-1487. [PMID: 31373015 DOI: 10.1111/jphp.13143] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/30/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Chrysophanol is a natural anthraquinone, also known as chrysophanic acid and 1,8-dihydroxy-3-methyl-anthraquinone. It has been widely used in the food and pharmaceutical fields. This review is intended to provide a comprehensive overview of the pharmacology, toxicity and pharmacokinetic researches of chrysophanol. KEY FINDING Information on chrysophanol was collected from the Internet database PubMed, Elsevier, ResearchGate, Web of Science, Wiley Online Library and Europe PM using a combination of keywords including 'pharmacology', 'toxicology' and 'pharmacokinetics'. The literature we collected included from January 2010 to June 2019. Chrysophanol has a wide spectrum of pharmacological effects, including anticancer, antioxidation, neuroprotection, antibacterial and antiviral, and regulating blood lipids. However, chrysophanol has obvious hepatotoxicity and nephrotoxicity, and pharmacokinetics indicate that the use of chrysophanol in combination with other drugs can reduce toxicity and enhance efficacy. SUMMARY Chrysophanol can be used in many diseases. Future research directions include how the concentration of chrysophanol affects pharmacological effects and toxicity; the mechanism of synergy between chrysophanol and other drugs.
Collapse
Affiliation(s)
- Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailong Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linlin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Cui HX, Zhang LS, Luo Y, Yuan K, Huang ZY, Guo Y. A Purified Anthraquinone-Glycoside Preparation From Rhubarb Ameliorates Type 2 Diabetes Mellitus by Modulating the Gut Microbiota and Reducing Inflammation. Front Microbiol 2019; 10:1423. [PMID: 31293553 PMCID: PMC6603233 DOI: 10.3389/fmicb.2019.01423] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022] Open
Abstract
Rheum palmatum L. is widely used in traditional Chinese medicine for the treatment of constipation. Here, the therapeutic effects and underlying mechanisms of purified anthraquinone-glycoside preparation from rhubarb (RAGP) on the type 2 diabetes mellitus (T2DM) rats were investigated. After 6 weeks of metformin and RAGP treatment, the weight returned to normal. Fasting blood glucose (FBG), glycated serum protein (GSP), insulin concentration and HOMA-IR index had significantly decreased, and glucagon-like peptide-1 (GLP-1) concentrations had increased. Histological abnormalities in the pancreas and ileum had improved. These effects were associated with enhanced intestinal integrity, thereby reducing the absorption of lipopolysaccharide (LPS) and inflammation. To investigate whether RAGP ameliorated insulin resistance via effects on the gut microbiota, we performed 16s rDNA sequencing of ileal gut contents. This showed an amelioration of gut dysbiosis, with greater abundance of probiotic Lactobacillus and short-chain fatty acid-producing bacteria, and lower abundance of the Lachnospiraceae NK4A136 group and LPS-producing Desulfovibrio. The mechanism of the hypoglycemic effect of RAGP involves regulation of the gut microbiota, activation of the GLP-1/cAMP pathway to ameliorate insulin resistance. Thus, this study provides a theoretical basis for the use of RAGP to treat T2DM, and it may be a novel approach to restore the gut microbiota.
Collapse
Affiliation(s)
- Hong-Xin Cui
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Ling-Shuai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Luo
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhuji, China
| | - Ke Yuan
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhuji, China
| | | | - Ying Guo
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
28
|
Kumar A, Aswal S, Chauhan A, Semwal RB, Kumar A, Semwal DK. Ethnomedicinal Investigation of Medicinal Plants of Chakrata Region (Uttarakhand) Used in the Traditional Medicine for Diabetes by Jaunsari Tribe. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:175-200. [PMID: 30968350 PMCID: PMC6538708 DOI: 10.1007/s13659-019-0202-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The Himalayan region is the treasure house of natural wealth, particularly of medicinal and aromatic plants. These plants are used by the Indian traditional healers for the past many centuries to treat various ailments such as skin disorders, asthma, diabetes, snake bite, fever, pain, eye diseases, diarrhoea, indigestion, jaundice, burn, wound, liver disorder, CNS disorders and urinary tract infection. The indigenous traditional knowledge of medicinal plants and therapies of various local communities has been lost due to changes in traditional culture and the introduction of modern technologies. Therefore, it is essential to explore the traditional knowledge of the indigenous medicinal plants mainly in such areas where there is a severe threat to natural vegetation owing to human inhabitation. The present study aimed to explore the medicinal plants of Chakrata region (Jaunsar-Bawar Hills), Uttarakhand, India used in the folk medicine for the management of diabetes by Jaunsari Tribe. In a comprehensive field survey, the information about the medicinal plants have been mainly collected from the traditional healers and other elderly people belong to the tribal community. All the information about the medicinal plants of the study area was documented in a field book. Various tools have been used to collect the samples for identification purpose and the authentication of the plants was done with the help of taxonomists. The literature on these plants was also searched from online (PubMed and Scopus) as well as from some textbooks and Ayurvedic classical texts. The present survey-based work described a total of 54 plants belonging to 47 genera and 30 families used in the traditional medicine for the management of diabetes in Chakrata region. The information gathered from the local community revealed that the plants are effective in diabetes and one can use most of them without consulting a practitioner or traditional healer. The literature revealed that most of the surveyed plants are already used in the preparation of various antidiabetic formulations such as Chandraprabha vati, Nishamalaki chunra, Amritamehari churna and Nisakathakadi kashayam along with various patent drugs which are frequently prescribed by the Ayurvedic practitioners in India. The present study explored the traditional as well as scientific knowledge on the antidiabetic plants used by the tribal community. The documented information on these plants can be further used by the scientific community to develop new drugs/formulations with the help of modern techniques.
Collapse
Affiliation(s)
- Ankit Kumar
- Research and Development Centre, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Sonali Aswal
- Research and Development Centre, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Ashutosh Chauhan
- Department of Biotechnology, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Ruchi Badoni Semwal
- Department of Chemistry, Pt. Lalit Mohan Sharma Government Postgraduate College, Rishikesh, Uttarakhand, 249201, India
| | - Abhimanyu Kumar
- Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Deepak Kumar Semwal
- Department of Phytochemistry, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India.
| |
Collapse
|
29
|
Optimization of Ultrasonic-Assisted Extraction and Purification of Rhein from Cassia fistula Pod Pulp. Molecules 2019; 24:molecules24102013. [PMID: 31130673 PMCID: PMC6572533 DOI: 10.3390/molecules24102013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 11/26/2022] Open
Abstract
Rhein is used as an active ingredient in laxatives in medicinal herbal products and is a chemical marker for quality control purposes. Thus, a simple and effective method for the optimized extraction of a high amount of rhein from the fruit pulp of Cassia fistula was investigated using ultrasonic-assisted extraction (UAE). The response surface methodology was applied to find the most suitable parameters for optimizing the extraction process and to study the factors’ relationships with each other. The best conditions for ultrasonic extraction were the application of 1:40 g/mL solid-to-liquid ratio and 10% EtOH–H2O as a solvent at 75 °C for 40 min. This method was compared to a conventional decoction in two variations. In these experiments, it was confirmed that the UAE was more favorable than the decoction methods. The resulting crude extract was further purified by liquid–liquid extraction with a basic pH adjustment, followed by recrystallization. High-purity rhein was obtained by using chromatographic techniques and nuclear magnetic resonance spectroscopy. Therefore, this study suggests that UAE is an efficient alternative method for the extraction of rhein from C. fistula pod pulp. The resulting optimized conditions can be applied as a useful tool for the large-scale industrial production of a rhein-rich plant extract.
Collapse
|
30
|
Cheng FR, Cui HX, Fang JL, Yuan K, Guo Y. Ameliorative Effect and Mechanism of the Purified Anthraquinone-Glycoside Preparation from Rheum Palmatum L. on Type 2 Diabetes Mellitus. Molecules 2019; 24:E1454. [PMID: 31013790 PMCID: PMC6515271 DOI: 10.3390/molecules24081454] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
Rheum palmatum L. is a traditional Chinese medicine with various pharmacological properties, including anti-inflammatory, antibacterial, and detoxification effects. In this study, the mechanism of the hypoglycemic effect of purified anthraquinone-Glycoside from Rheum palmatum L. (PAGR) in streptozotocin (STZ) and high-fat diet induced type 2 diabetes mellitus (T2DM) in rats was investigated. The rats were randomly divided into normal (NC), T2DM, metformin (Met), low, middle (Mid), and high (Hig) does of PAGR groups. After six weeks of continuous administration of PAGR, the serum indices and tissue protein expression were determined, and the pathological changes in liver, kidney, and pancreas tissues were observed. The results showed that compared with the type 2 diabetes mellitus group, the fasting blood glucose (FBG), total cholesterol (TC), and triglyceride (TG) levels in the serum of rats in the PAGR treatment groups were significantly decreased, while superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) levels were noticeably increased. The expression of Fas ligand (FasL), cytochrome C (Cyt-c), and caspase-3 in pancreatic tissue was obviously decreased, and the pathological damage to the liver, kidney, and pancreas was improved. These indicate that PAGR can reduce oxidative stress in rats with diabetes mellitus by improving blood lipid metabolism and enhancing their antioxidant capacity, thereby regulating the mitochondrial apoptotic pathway to inhibitβ-cell apoptosis and improve β-cell function. Furthermore, it can regulate Fas/FasL-mediated apoptosis signaling pathway to inhibit β-cell apoptosis, thereby lowering blood glucose levels and improving T2DM.
Collapse
Affiliation(s)
- Fang-Rong Cheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Hong-Xin Cui
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| | - Ji-Li Fang
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji 311800, China.
| | - Ke Yuan
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji 311800, China.
| | - Ying Guo
- Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China.
| |
Collapse
|
31
|
Prateeksha, Yusuf MA, Singh BN, Sudheer S, Kharwar RN, Siddiqui S, Abdel-Azeem AM, Fernandes Fraceto L, Dashora K, Gupta VK. Chrysophanol: A Natural Anthraquinone with Multifaceted Biotherapeutic Potential. Biomolecules 2019; 9:E68. [PMID: 30781696 PMCID: PMC6406798 DOI: 10.3390/biom9020068] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Chrysophanol is a unique anthraquinone having broad-spectrum therapeutic potential along with ecological importance. It is the first polyketide that has been reported to be biosynthesized in an organism-specific manner. The traditional Chinese and Korean medicinal systems provide evidence of the beneficial effects of chrysophanol on human health. The global distribution of chrysophanol encountered in two domains of life (bacteria and eukaryota) has motivated researchers to critically evaluate the properties of this compound. A plethora of literature is available on the pharmacological properties of chrysophanol, which include anticancer, hepatoprotective, neuroprotective, anti-inflammatory, antiulcer, and antimicrobial activities. However, the pharmacokinetics and toxicity studies on chrysophanol demand further investigations for it to be used as a drug. This is the first comprehensive review on the natural sources, biosynthetic pathways, and pharmacology of chrysophanol. Here we reviewed recent advancements made on the pharmacokinetics of the chrysophanol. Additionally, we have highlighted the knowledge gaps of its mechanism of action against diseases and toxicity aspects.
Collapse
Affiliation(s)
- Prateeksha
- Department of Biosciences, Integral University, Lucknow-226026, Uttar Pradesh, India;
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, Uttar Pradesh, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow-226016, Uttar Pradesh, India;
| | - Brahma N. Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, Uttar Pradesh, India
| | - Surya Sudheer
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia;
| | - Ravindra N. Kharwar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India;
| | - Saba Siddiqui
- Integral Institute of Agricultural Science and Technology (IIAST), Integral University, Lucknow-226026, Uttar Pradesh, India;
| | - Ahmed M. Abdel-Azeem
- Botany Department, Faculty of Science, University of Suez Canal, Ismailia 41522, Egypt;
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology of Sorocaba, São Paulo State University–Unesp, Sorocaba–São Paulo 18087-180, Brazil;
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India;
| | - Vijai K. Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia;
| |
Collapse
|
32
|
Chandrasekhar C, Rajpurohit H, Javaji K, Kuncha M, Setti A, Ali AZ, Tiwari AK, Misra S, Kumar CG. Anti-hyperglycemic and genotoxic studies of 1- O-methyl chrysophanol, a new anthraquinone isolated from Amycolatopsis thermoflava strain SFMA-103. Drug Chem Toxicol 2019; 44:148-160. [PMID: 30614298 DOI: 10.1080/01480545.2018.1551406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The compound 1-O-methyl chrysophanol (OMC) which belongs to a class of hydroxyanthraquinones was isolated from Amycolatopsis thermoflava strain SFMA-103 and studied for their anti-diabetic properties. OMC was evaluated as an anti-diabetic agent based on in silico studies which initially predicted the binding energy with α-amylase (-188.81 KJ mol-1) and with α-glucosidase (70.53 KJ mol-1). Further, these results were validated based on enzyme inhibition assays where OMC demonstrated enzyme inhibitory activity towards α-amylase (IC50 3.4 mg mL-1) and α-glucosidase (IC50 38.49 μg mL-1). To confirm the anti-diabetic activity, in vivo studies (oral dose in Wistar rats) revealed that OMC inhibited significantly the increase in glucose concentration at 100 mg/kg as compared to starch control (p < 0.05). Further, to understand the safety of OMC as a therapeutic agent, the genotoxic analysis was performed in both in vitro Chinese Hamster Ovary cells (250, 500, and 1000 µM/mL) and in vivo Swiss albino mice (250, 500, and 1000 mg/kg). In vitro results showed that OMC concentration of up to 250 µM/mL did not elicit significant changes in CAs, MI, and MN counts in CHO cells. Similarly, in mice experiments (i.p. injection), no significant changes in CAs, MI, and MN induction were observed till 500 mg/kg of OMC when compared with chrysophanic acid (Cy) (200 mg/kg). In addition, mice that received the lowest dose of OMC (250 mg/kg) did not show any histological changes in liver, kidney, and heart. The study concluded that five times higher therapeutic dose (100 mg/kg) of OMC can be utilized against hyperglycemia with no genotoxic effects.
Collapse
Affiliation(s)
- Cheemalamarri Chandrasekhar
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Hyderabad, India
| | - Hemshikha Rajpurohit
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Kalpana Javaji
- Toxicology and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Madhusudana Kuncha
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Aravind Setti
- Department of Genetics, Osmania University, Hyderabad, India
| | - A Zehra Ali
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Ashok K Tiwari
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Sunil Misra
- Toxicology and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - C Ganesh Kumar
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
33
|
Pandith SA, Dar RA, Lattoo SK, Shah MA, Reshi ZA. Rheum australe, an endangered high-value medicinal herb of North Western Himalayas: a review of its botany, ethnomedical uses, phytochemistry and pharmacology. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:573-609. [PMID: 32214920 PMCID: PMC7088705 DOI: 10.1007/s11101-018-9551-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/25/2018] [Indexed: 05/05/2023]
Abstract
Rheum australe (Himalayan Rhubarb) is a multipurpose, endemic and endangered medicinal herb of North Western Himalayas. It finds extensive use as a medicinal herb since antiquity in different traditional systems of medicine to cure a wide range of ailments related to the circulatory, digestive, endocrine, respiratory and skeletal systems as well as to treat various infectious diseases. The remedying properties of this plant species are ascribed to a set of diverse bioactive secondary metabolite constituents, particularly anthraquinones (emodin, chrysophanol, physcion, aloe-emodin and rhein) and stilbenoids (piceatannol, resveratrol), besides dietary flavonoids known for their putative health benefits. Recent studies demonstrate the pharmacological efficacy of some of these metabolites and/or their derivatives as lead molecules for the treatment of various human diseases. Present review comprehensively covers the literature available on R. australe from 1980 to early 2018. The review provides up-to-date information available on its botany for easy identification of the plant, and origin and historical perspective detailing its trade and commerce. Distribution, therapeutic potential in relation to traditional uses and pharmacology, phytochemistry and general biosynthesis of major chemical constituents are also discussed. Additionally, efficient and reproducible in vitro propagation studies holding vital significance in preserving the natural germplasm of the plant and for its industrial exploitation have also been highlighted. The review presents a detailed perspective for future studies to conserve and sustainably make use of this endangered plant species at a commercial scale.
Collapse
Affiliation(s)
- Shahzad A. Pandith
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Riyaz Ahmad Dar
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Surrinder K. Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India
| | - Manzoor A. Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Zafar A. Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| |
Collapse
|
34
|
Melucci D, Locatelli M, Locatelli C, Zappi A, De Laurentiis F, Carradori S, Campestre C, Leporini L, Zengin G, Picot CMN, Menghini L, Mahomoodally MF. A Comparative Assessment of Biological Effects and Chemical Profile of Italian Asphodeline lutea Extracts. Molecules 2018; 23:molecules23020461. [PMID: 29463056 PMCID: PMC6017467 DOI: 10.3390/molecules23020461] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 12/14/2022] Open
Abstract
The present study aims to highlight the therapeutic potential of Asphodeline lutea (AL), a wild edible plant of the Mediterranean diet. Roots, aerial parts, and flowers of AL at two different phenological stages were collected from three locations in Italy. The inhibitory activities of extracts on strategic enzymes linked to human diseases were assessed. The antioxidant properties were evaluated in vitro, using six standard bioassays. The phenolic and anthraquinone profiles were also established using HPLC-PDA. Zinc, cadmium, lead, and copper contents were also determined. All the samples inhibited acetylcholinesterase (from 1.51 to 2.20 mg GALAEs/g extract), tyrosinase (from 7.50 to 25.3 mg KAEs/g extract), and α-amylase (from 0.37 to 0.51 mmol ACAEs/g extract). Aloe-emodin and physcion were present in all parts, while rhein was not detected. The phenolic profile and the heavy metals composition of specimens gathered from three different regions of Italy were different. It can be argued that samples collected near the street can contain higher concentrations of heavy metals. The experimental data confirm that the A. lutea species could be considered as a potential source of bioactive metabolites, and its consumption could play a positive and safe role in human health maintenance.
Collapse
Affiliation(s)
- Dora Melucci
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna 40126, Italy.
| | - Marcello Locatelli
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy.
- Interuniversity Consortium of Structural and Systems Biology, Rome 00136, Italy.
| | - Clinio Locatelli
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna 40126, Italy.
| | - Alessandro Zappi
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna 40126, Italy.
| | | | - Simone Carradori
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy.
| | - Cristina Campestre
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy.
| | - Lidia Leporini
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy.
| | - Gokhan Zengin
- Department of Biology, Selcuk University, Campus, 42250, Konya 42130, Turkey.
| | | | - Luigi Menghini
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy.
| | | |
Collapse
|
35
|
Qian K, Wang H, Liu J, Gao S, Liu W, Wan X, Zhang Y, Liu QS, Yin XY. Synthesis of α-glycosidase hybrid nano-flowers and their application for enriching and screening α-glycosidase inhibitors. NEW J CHEM 2018. [DOI: 10.1039/c7nj03545d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To rapidly and accurately screen compounds present in traditional Chinese herbal medicines for α-glycosidase inhibitors, we synthesized a novel nano-affinity material to enable the targeted screening of α-glycosidase inhibitors.
Collapse
Affiliation(s)
- Kang Qian
- College of Pharmacy
- Jiangxi University of Traditional Chinese Medicine
- Nanchang
- China
| | - Han Wang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Jieming Liu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Shuting Gao
- College of Pharmacy
- Jiangxi University of Traditional Chinese Medicine
- Nanchang
- China
| | - Weiting Liu
- College of Pharmacy
- Jiangxi University of Traditional Chinese Medicine
- Nanchang
- China
| | - Xi Wan
- College of Pharmacy
- Jiangxi University of Traditional Chinese Medicine
- Nanchang
- China
| | - Yuanyuan Zhang
- College of Pharmacy
- Jiangxi University of Traditional Chinese Medicine
- Nanchang
- China
| | - Qing-Shan Liu
- China Key Lab of Ministry of Education
- National Research Center for Chinese Minority Medicine
- Minzu University of China
- Beijing
- China
| | - Xiao-Ying Yin
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| |
Collapse
|
36
|
Yatoo MI, Saxena A, Gopalakris A, Alagawany M, Dhama K. Promising Antidiabetic Drugs, Medicinal Plants and Herbs: An Update. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.732.745] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Anchi P, Khurana A, Bale S, Godugu C. The Role of Plant-derived Products in Pancreatitis: Experimental and Clinical Evidence. Phytother Res 2017; 31:591-623. [DOI: 10.1002/ptr.5792] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Pratibha Anchi
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| | - Amit Khurana
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| | - Swarna Bale
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| |
Collapse
|
38
|
Ganesan P, Arulselvan P, Choi DK. Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus - current status. Int J Nanomedicine 2017; 12:1097-1111. [PMID: 28223801 PMCID: PMC5310641 DOI: 10.2147/ijn.s124601] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major chronic disease that is prevalent worldwide, and it is characterized by an increase in blood glucose, disturbances in the metabolism, and alteration in insulin secretion. Nowadays, food-based therapy has become an important treatment mode for type 2 diabetes, and phytobioactive compounds have gained an increasing amount of attention to this end because they have an effect on multiple biological functions, including the sustained secretion of insulin and regeneration of pancreatic islets cells. However, the poor solubility and lower permeability of these phyto products results in a loss of bioactivity during processing and oral delivery, leading to a significant reduction in the bioavailability of phytobioactive compounds to treat T2DM. Recently, nanotechnological systems have been developed for use as various types of carrier systems to improve the delivery of bioactive compounds and thus obtain a greater bioavailability. Furthermore, carrier systems in most nanodelivery systems are highly biocompatible, with nonimmunologic behavior, a high degree of biodegradability, and greater mucoadhesive strength. Therefore, this review focuses on the various types of nanodelivery systems that can be used for phytobioactive compounds in treating T2DM with greater antidiabetic effects. There is also additional focus on improving the effects of various phytobioactive compounds through nanotechnological delivery to ensure a highly efficient treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Nanotechnology Research Center and Department of Applied Life Science
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Dong-Kug Choi
- Nanotechnology Research Center and Department of Applied Life Science
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
39
|
Manimaran A, Buddhan R, Manoharan S. EMODIN DOWNREGULATES CELL PROLIFERATION MARKERS DURING DMBA INDUCED ORAL CARCINOGENESIS IN GOLDEN SYRIAN HAMSTERS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 14:83-91. [PMID: 28573225 PMCID: PMC5446469 DOI: 10.21010/ajtcam.v14i2.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Cell-cycle disruption is the major characteristic features of neoplastic transformation and the status of cell-cycle regulators can thus be utilized to assess the prognostic significance in patients with cancer. The PCNA, cyclin D1, CDK4, CDK6 and survivin expression in the buccal mucosa was utilized to evaluate the Emodin efficacy on abnormal cell proliferation during 7,12-dimethylbenz(a)anthracene (DMBA) induced oral carcinogenesis in golden Syrian hamsters. Materials and methods: Topical application of DMBA, three times a week for 14 weeks, on the hamsters’ buccal pouches developed well differentiated squamous cell carcinoma. Results: Cyclin D1 and PCNA over-expression and up-regulation of CDK4, CDK6 and survivin were noticed in the buccal mucosa of hamsters treated with DMBA alone. Emodin administration (50mg/kg b.w) orally to hamsters treated with DMBA down-regulated the expression of cell proliferation markers in the buccal mucosa. Conclusions: The anti-cell proliferative role of Emodin is owing to its modulating efficacy on cell-cycle markers towards the tumor suppression during DMBA induced oral carcinogenesis.
Collapse
Affiliation(s)
- Asokan Manimaran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Rajamanickam Buddhan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Shanmugam Manoharan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| |
Collapse
|
40
|
Hosseini A, Mollazadeh H, Amiri MS, Sadeghnia HR, Ghorbani A. Effects of a standardized extract of Rheum turkestanicum Janischew root on diabetic changes in the kidney, liver and heart of streptozotocin-induced diabetic rats. Biomed Pharmacother 2016; 86:605-611. [PMID: 28027536 DOI: 10.1016/j.biopha.2016.12.059] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022] Open
Abstract
Numerus studies highlighted benefits of natural flavonoids in the management of diabetes. The present study was aimed to investigate the effects of a high flavonoids containing extract of Rheum turkestanicum on diabetic changes in different tissues. Male Wistar rats were divided into normal and streptozotocin-induced diabetic groups received saline or hydroalcoholic extract of R. turkestanicum root (100, 200 and 300mg/kg) through orogastric gavage for 4 weeks. Serum glucose, HbA1c, lipids, creatinine, uric acid, liver enzymes (alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase), and cardiac enzymes (lactate dehydrogenase and creatine phosphokinase) in diabetic control group were significantly higher compared to normal control group (p<0.001). The extract significantly reduced these factors, increased body weight, and improved both glucosurea and proteinuria. Lipid peroxidation was high in the liver of diabetic rats compared to normal rats (p<0.001) and reverted toward control values by R. turkestanicum. Also, the extract significantly protected the liver, kidney, and heart of diabetic rats against histopathological changes. In conclusion, R. turkestanicum inhibited the development of nephropathy, liver injury, and myocardial damage in diabetes by lowering the serum levels of glucose and lipids, and by inhibiting oxidative stress mediated lipid peroxidation.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Hamid Reza Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Analysis of Metabolites of Anthraquinones by Human Fecal Bacteria Using UPLC-Q-TOF-HRMS/MS. Chromatographia 2016. [DOI: 10.1007/s10337-016-3183-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
The anti-hyperglycemic efficacy of a lipid-lowering drug Daming capsule and the underlying signaling mechanisms in a rat model of diabetes mellitus. Sci Rep 2016; 6:34284. [PMID: 27721485 PMCID: PMC5056381 DOI: 10.1038/srep34284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder manifested by hyperglycemia. Daming Capsule (DMC), a combination of traditional Chinese herbs, is used clinically as a lipid-lowering drug. This study was designed to evaluate if DMC possesses an anti-hyperglycemic effect and to elucidate the underlying mechanisms. Compared to diabetic rats, the rats received DMC (200 mg/kg/d) had significantly lower blood lipid and glucose levels. DMC markedly restored the decreased secretion of GLP-1 and GIP as well as the coding gene GCG and GIP in ileum. Moreover, DMC normalized depressed GCG and GIP transcription by significantly enhancing the GSK-3β/β-catenin signaling pathway and expression of TCF7L2, a transactivator of GCG and GIP in diabetic rats. DMC possesses an anti-hyperglycemic property characterized by preservation/stimulation of GLP-1 and GIP secretion in DM rats. Here, we proposed DMC → GSK-3β/β-catenin↑ → TCF7L2↑ → GLP-1, GIP secretion↑ → blood glucose↓ as a regulatory pathway of blood glucose homeostasis. Our findings suggest DMC as a promising therapeutic drug in the clinical treatment of diabetes.
Collapse
|
43
|
Monisha BA, Kumar N, Tiku AB. Emodin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:47-73. [DOI: 10.1007/978-3-319-41334-1_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
44
|
Yu CP, Lin HJ, Lin SP, Shia CS, Chang PH, Hou YC, Hsieh YW. Rhubarb decreased the systemic exposure of cyclosporine, a probe substrate of P-glycoprotein and CYP 3A. Xenobiotica 2015; 46:677-82. [PMID: 26634287 DOI: 10.3109/00498254.2015.1117159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1. Rhubarb, rhizome of Rheum palmatum L. (RP), is an important herb in clinical Chinese medicine. 2. Cyclosporine (CSP) is an immunosuppressant with narrow therapeutic window. The oral bioavailability of CSP was associated with P-glycoprotein (P-gp) and CYP 3A4. CSP was used as a probe substrate to investigate the in vivo modulation effects of RP on P-gp and CYP 3A. 3. Rats were orally administered 2.5 mg/kg of CSP with and without 0.25 and 1.0 g/kg of RP. The blood CSP concentration was determined by a specific monoclonal fluorescence polarization immunoassay. 4. Both dosages of RP significantly decreased the Cmax and AUC0-t of CSP in rats. Mechanism studies indicated that RP activated the functions of P-gp and CYP 3A. 5. RP ingestion reduced the systemic exposure of CSP through activating P-gp and CYP 3A.
Collapse
Affiliation(s)
- Chung-Ping Yu
- a School of Chinese Medicine, China Medical University , Taichung , Taiwan, R.O.C.
| | - Hui-Ju Lin
- a School of Chinese Medicine, China Medical University , Taichung , Taiwan, R.O.C. .,b Department of Ophthalmology , China Medical University Hospital , Taichung , Taiwan, R.O.C.
| | - Shiuan-Pey Lin
- c School of Pharmacy, China Medical University , Taichung , Taiwan, R.O.C.
| | - Chi-Sheng Shia
- c School of Pharmacy, China Medical University , Taichung , Taiwan, R.O.C.
| | - Pei-Hua Chang
- d Graduate Institute of Pharmaceutical Chemistry, China Medical University , Taichung , Taiwan, R.O.C. , and
| | - Yu-Chi Hou
- c School of Pharmacy, China Medical University , Taichung , Taiwan, R.O.C. .,e Department of Pharmacy , China Medical University Hospital , Taichung , Taiwan, R.O.C
| | - Yo-Wen Hsieh
- c School of Pharmacy, China Medical University , Taichung , Taiwan, R.O.C. .,e Department of Pharmacy , China Medical University Hospital , Taichung , Taiwan, R.O.C
| |
Collapse
|