1
|
Garcia-Perez E, Vazquez-Vilar M, Lozano-Duran R, Orzaez D. CuBe: a geminivirus-based copper-regulated expression system suitable for post-harvest activation. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39435699 DOI: 10.1111/pbi.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/30/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Abstract
The growing demand for sustainable platforms for biomolecule manufacturing has fuelled the development of plant-based production systems. Agroinfiltration, the current industry standard, offers several advantages but faces limitations for large-scale production due to high operational costs and batch-to-batch variability. Alternatively, here, we describe the CuBe system, a novel bean yellow dwarf virus (BeYDV)-derived conditional replicative expression platform stably transformed in Nicotiana benthamiana and activated by copper sulphate (CuSO4), an inexpensive and widely used agricultural input. The CuBe system utilizes a synthetic circuit of four genetic modules integrated into the plant genome: (i) a replicative vector harbouring the gene of interest (GOI) flanked by cis-acting elements for geminiviral replication and novelly arranged to enable transgene transcription exclusively upon formation of the circular replicon, (ii) copper-inducible Rep/RepA proteins essential for replicon formation, (iii) the yeast-derived CUP2-Gal4 copper-responsive transcriptional activator for Rep/RepA expression, and (iv) a copper-inducible Flp recombinase to minimize basal Rep/RepA expression. CuSO4 application triggers the activation of the system, leading to the formation of extrachromosomal replicons, expression of the GOI, and accumulation of the desired recombinant protein. We demonstrate the functionality of the CuBe system in N. benthamiana plants expressing high levels of eGFP and an anti-SARS-CoV-2 antibody upon copper treatment. Notably, the system is functional in post-harvest applications, a strategy with high potential impact for large-scale biomanufacturing. This work presents the CuBe system as a promising alternative to agroinfiltration for cost-effective and scalable production of recombinant proteins in plants.
Collapse
Affiliation(s)
- Elena Garcia-Perez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Rosa Lozano-Duran
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| |
Collapse
|
2
|
Küpper H, Gokul A, Alavez D, Dhungana SR, Bokhari SNH, Keyster M, Mendoza-Cozatl DG. Identification and characterization of transition metal-binding proteins and metabolites in the phloem sap of Brassica napus. J Biol Chem 2024; 300:107741. [PMID: 39222686 PMCID: PMC11497405 DOI: 10.1016/j.jbc.2024.107741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Transition metal (TM) distribution through the phloem is an essential part of plant metabolism and is required for systemic signaling and balancing source-to-sink relationships. Due to their reactivity, TMs are expected to occur in complexes within the phloem sap; however, metal speciation in the phloem sap remains largely unexplored. Here, we isolated phloem sap from Brassica napus and analyzed it via size exclusion chromatography coupled online to sector-field ICP-MS. Our data identified known TM-binding proteins and molecules including metallothioneins (MT), glutathione, and nicotianamine. While the main peak of all metals was low MW (∼1.5 kD), additional peaks ∼10 to 15 kD containing Cu, Fe, S, and Zn were also found. Further physicochemical analyses of MTs with and without affinity tags corroborated that MTs can form complexes of diverse molecular weights. We also identified and characterized potential artifacts in the TM-biding ability of B. napus MTs between tagged and non-tagged MTs. That is, the native BnMT2 binds Zn, Cu, and Fe, while MT3a and MT3b only bind Cu and Zn. In contrast, his-tagged MTs bind less Cu and were found to bind Co and Mn and aggregated to oligomeric forms to a greater extent compared to the phloem sap. Our data indicates that TM chemistry in the phloem sap is more complex than previously anticipated and that more systematic analyses are needed to establish the precise speciation of TM and TM-ligand complexes within the phloem sap.
Collapse
Affiliation(s)
- Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic; Department of Experimental Plant Biology, University of South Bohemia, České Budějovice, Czech Republic.
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthaditjhaba, South Africa
| | - Dario Alavez
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Singha R Dhungana
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - David G Mendoza-Cozatl
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, Missouri, USA; Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
3
|
Chitolina SF, Dartora N, de Pelegrin CMG, Dos Santos MV, Cassol F, Friedrich T, da Veiga JD, Borkowski JE, Vieira IAM. Excess copper promotes an increase in the concentration of metabolites in Tridax procumbens L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51870-51882. [PMID: 39134796 DOI: 10.1007/s11356-024-34688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
The study investigated the effects of cultivating Tridax procumbens in hydroponic conditions with different concentrations of copper ions, aiming to understand the physiological changes and the impact on the biosynthesis of secondary metabolites. The treatments consisted of a completely randomized design, with five increasing concentrations of copper (T0 = 0.235, T1 = 12.5, T2 = 25, T3 = 50, T4 = 100 µmol L-1 of Cu), under controlled conditions for 36 days. Analysis of bioactive compounds in leaves was performed by HPLC-DAD and ESI-MS. Several phenolic compounds, alkaloids, phytosterols and triterpenoids were identified, demonstrating the plant's metabolic plasticity. The highest dose of copper (100 µmol L-1) significantly promoted voacangine, the most predominant compound in the analyses. Notably, 66.7% of the metabolites that showed an increase in concentration, were phenolic compounds. Furthermore, treatments with 12.5 and 25 µmol L-1 of copper were identified as promoting the biosynthesis of phytosterols and triterpenoids. These biochemical adaptations can play a fundamental role in the survival and development of plants in environments contaminated by metals, and from this it is possible to determine cultivation techniques that maximize the biosynthesis of the compound of interest.
Collapse
Affiliation(s)
- Samuel Francisco Chitolina
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Nessana Dartora
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil.
| | - Carla Maria Garlet de Pelegrin
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
- Programa de Pós-Graduação Em Ambientes E Tecnologias Sustentáveis (UFFS), Unidade Seminário, Sala 1-2-16, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Marlei Veiga Dos Santos
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
- Programa de Pós-Graduação Em Ambientes E Tecnologias Sustentáveis (UFFS), Unidade Seminário, Sala 1-2-16, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Fabiano Cassol
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
- Programa de Pós-Graduação Em Ambientes E Tecnologias Sustentáveis (UFFS), Unidade Seminário, Sala 1-2-16, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Thalía Friedrich
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Jayne Deboni da Veiga
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Júnior Eugênio Borkowski
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Isabelle Alícia Melo Vieira
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| |
Collapse
|
4
|
Zacchini M. Bismuth interaction with plants: Uptake and transport, toxic effects, tolerance mechanisms - A review. CHEMOSPHERE 2024; 360:142414. [PMID: 38789054 DOI: 10.1016/j.chemosphere.2024.142414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Bismuth (Bi) is a minor metal whose abundance on Earth is estimated at 0.025 ppm. Known since ancient times for its medical properties, its use in many industrial applications has increased significantly in recent years due to its physical and chemical properties. Considered less toxic than other metals, Bi has been defined as a "green metal" and has been suggested as a replacement for lead in many industrial processes. Although the occurrence of Bi in the environment is predicted to increase, there is still a lack of information on its interaction with biota. Even though it is absorbed by many organisms, Bi has not been directly implicated in the regulation of fundamental metabolic processes. This review summarises the fragmentary knowledge on the interaction between Bi and plants. Toxic effects at the growth, physiological and biochemical levels have been described in Bi-treated plants, with varying degrees and consequences for plant vitality, mostly depending on the chemical formulation of Bi, the concentration of Bi, the growth medium, the time of exposure, and the experimental conditions (laboratory or outdoor conditions). Bismuth has been shown to be readily absorbed and translocated in plants, interfering with plant growth and development, photosynthetic processes, nutrient uptake and accumulation, and metal (especially iron) homeostasis. Like other metals, Bi can induce an oxidative stress state in plant cells, and genotoxic effects have been reported in Bi-treated plants. Tolerance responses to the excess presence of Bi have been poorly described and are mostly referred to as the activation of antioxidant defences involving enzymatic and non-enzymatic molecules. The goal of this review is to offer an overview of the present knowledge on the interaction of Bi and plants, highlighting the gaps to be filled to better understand the role of Bi in affecting key physiological processes in plants. This will help to assess the potential harm of this metal in the environment, where its occurrence is predicted to increase due to the growing demand for medicinal and industrial applications.
Collapse
Affiliation(s)
- Massimo Zacchini
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Salaria Km 29.300, 00015, Monterotondo Scalo Roma, Italy; NBFC, National Biodiversity Future Center S.c.a.r.l., Piazza Marina 61 (c/o Palazzo Steri), 90133, Palermo, Italy.
| |
Collapse
|
5
|
Xu E, Liu Y, Gu D, Zhan X, Li J, Zhou K, Zhang P, Zou Y. Molecular Mechanisms of Plant Responses to Copper: From Deficiency to Excess. Int J Mol Sci 2024; 25:6993. [PMID: 39000099 PMCID: PMC11240974 DOI: 10.3390/ijms25136993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Copper (Cu) is an essential nutrient for plant growth and development. This metal serves as a constituent element or enzyme cofactor that participates in many biochemical pathways and plays a key role in photosynthesis, respiration, ethylene sensing, and antioxidant systems. The physiological significance of Cu uptake and compartmentalization in plants has been underestimated, despite the importance of Cu in cellular metabolic processes. As a micronutrient, Cu has low cellular requirements in plants. However, its bioavailability may be significantly reduced in alkaline or organic matter-rich soils. Cu deficiency is a severe and widespread nutritional disorder that affects plants. In contrast, excessive levels of available Cu in soil can inhibit plant photosynthesis and induce cellular oxidative stress. This can affect plant productivity and potentially pose serious health risks to humans via bioaccumulation in the food chain. Plants have evolved mechanisms to strictly regulate Cu uptake, transport, and cellular homeostasis during long-term environmental adaptation. This review provides a comprehensive overview of the diverse functions of Cu chelators, chaperones, and transporters involved in Cu homeostasis and their regulatory mechanisms in plant responses to varying Cu availability conditions. Finally, we identified that future research needs to enhance our understanding of the mechanisms regulating Cu deficiency or stress in plants. This will pave the way for improving the Cu utilization efficiency and/or Cu tolerance of crops grown in alkaline or Cu-contaminated soils.
Collapse
Affiliation(s)
- Ending Xu
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yuanyuan Liu
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing 210095, China
| | - Dongfang Gu
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xinchun Zhan
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jiyu Li
- Institute of Horticultural Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Kunneng Zhou
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Peijiang Zhang
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yu Zou
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
6
|
Issler T, Sule K, Lewrenz AM, Prenner EJ. Differential interactions of essential and toxic metal ions with biologically relevant phosphatidic acid and phosphatidylserine membranes. Biometals 2024; 37:631-648. [PMID: 38289415 DOI: 10.1007/s10534-023-00576-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/20/2023] [Indexed: 05/18/2024]
Abstract
Metal pollutants are a growing concern due to increased use in mining and other industrial processes. Moreover, the use of metals in daily life is becoming increasingly prevalent. Metals such as manganese (Mn), cobalt (Co), and nickel (Ni) are toxic in high amounts whereas lead (Pb) and cadmium (Cd) are acutely toxic at low µM concentrations. These metals are associated with system dysfunction in humans including cancer, neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, and other cellular process'. One known but lesser studied target of these metals are lipids that are key membrane building blocks or serve signalling functions. It was shown that Mn, Co, Ni, Pb, and Cd cause rigidification of liposomes and increase the phase transition in membranes composed of both saturated or partly unsaturated phosphatidic acid (PA) and phosphatidylserine (PS). The selected metals showed differential effects that were more pronounced on saturated lipids. In addition, more rigidity was induced in the biologically relevant liquid-crystalline phase. Moreover, metal affinity, induced rigidification and liposome size increases also varied with the headgroup architecture, whereby the carboxyl group of PS appeared to play an important role. Thus, it can be inferred that Mn, Co, Ni, Cd, and Pb may have preferred binding coordination with the lipid headgroup, degree of acyl chain unsaturation, and membrane phase.
Collapse
Affiliation(s)
- Travis Issler
- Deptartment of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Kevin Sule
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Anna-Marie Lewrenz
- Deptartment of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Elmar J Prenner
- Deptartment of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
7
|
Bhat MA, Mishra AK, Shah SN, Bhat MA, Jan S, Rahman S, Baek KH, Jan AT. Soil and Mineral Nutrients in Plant Health: A Prospective Study of Iron and Phosphorus in the Growth and Development of Plants. Curr Issues Mol Biol 2024; 46:5194-5222. [PMID: 38920984 PMCID: PMC11201952 DOI: 10.3390/cimb46060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Plants being sessile are exposed to different environmental challenges and consequent stresses associated with them. With the prerequisite of minerals for growth and development, they coordinate their mobilization from the soil through their roots. Phosphorus (P) and iron (Fe) are macro- and micronutrient; P serves as an important component of biological macromolecules, besides driving major cellular processes, including photosynthesis and respiration, and Fe performs the function as a cofactor for enzymes of vital metabolic pathways. These minerals help in maintaining plant vigor via alterations in the pH, nutrient content, release of exudates at the root surface, changing dynamics of root microbial population, and modulation of the activity of redox enzymes. Despite this, their low solubility and relative immobilization in soil make them inaccessible for utilization by plants. Moreover, plants have evolved distinct mechanisms to cope with these stresses and coregulate the levels of minerals (Fe, P, etc.) toward the maintenance of homeostasis. The present study aims at examining the uptake mechanisms of Fe and P, and their translocation, storage, and role in executing different cellular processes in plants. It also summarizes the toxicological aspects of these minerals in terms of their effects on germination, nutrient uptake, plant-water relationship, and overall yield. Considered as an important and indispensable component of sustainable agriculture, a separate section covers the current knowledge on the cross-talk between Fe and P and integrates complete and balanced information of their effect on plant hormone levels.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sheezma Nazir Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| |
Collapse
|
8
|
Voigt RAL, MacFarlane GR. Tolerance of the Australian halophyte, beaded samphire, Sarcocornia quinqueflora, to Pb and Zn under glasshouse conditions: Evaluating metal uptake and partitioning, photosynthetic performance, biomass, and growth. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106887. [PMID: 38461756 DOI: 10.1016/j.aquatox.2024.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Saltmarsh sediments are susceptible to accumulation of excessive concentrations of anthropogenically elevated metals such as lead (Pb) and zinc (Zn). The resident salt tolerant plants of saltmarsh ecosystems form the basal underpinning of these ecosystems. As such, metal-associated adverse impacts on their physiology can have detrimental flow-on effects at individual, population, and community levels. The present study assessed the accumulation and partitioning of ecologically relevant concentrations of Pb, Zn, and their combination in a dominant Australian saltmarsh species, Sarcocornia quinqueflora. Plants were hydroponically maintained under glasshouse conditions for 16 weeks exposure to either Pb (20 µg l-1), Zn (100 µg l-1), or their mixture. We evaluated the chronic toxicological effects of single and mixed metal treatments with reference to metal uptake and partitioning, photosynthetic performance, photosynthetic pigment concentration, biomass and growth. Lead was more toxic than Zn, and Zn appeared to have an antagonistic effect on the toxicological effects of Pb in S.quinqueflora in terms of metal uptake, photosynthetic performance, photosynthetic pigment concentrations, and growth. Indeed, the tolerance index was 55 % in plants treated with Pb compared to 77 % in Zn treated plants and 73 % in Pb+Zn treated plants. Finally, Sarcocornia quinqueflora primarily accumulated both Pb and Zn in roots at concentrations exceeding unity whilst translocation of these metals to above ground tissues was restricted regardless of treatment. This suggests that S. quinqueflora may be suitable for phytostabilisation of Zn, and of Pb particularly in the presence of Zn.
Collapse
Affiliation(s)
- Rebecca A L Voigt
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, 2308, Australia.
| |
Collapse
|
9
|
Cao K, Jaime-Pérez N, Mijovilovich A, Morina F, Bokhari SNH, Liu Y, Küpper H, Tao Q. Symplasmic and transmembrane zinc transport is modulated by cadmium in the Cd/Zn hyperaccumulator Sedum alfredii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116272. [PMID: 38564870 DOI: 10.1016/j.ecoenv.2024.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
This study investigated the influence of Cd (25 µM) on Zn accumulation in a hyperaccumulating (HE) and a non-hyperaccumulating (NHE) ecotype of Sedum alfredii Hance at short-term supply of replete (Zn5, 5 µM) and excess (Zn400, 400 µM) Zn. Cd inhibited Zn accumulation in both ecotypes, especially under Zn400, in organs with active metal sequestration, i.e. roots of NHE and shoots of HE. Direct biochemical Cd/Zn competition at the metal-protein interaction and changes in transporter gene expression contributed to the observed accumulation patterns in the roots. Specifically, in HE, Cd stimulated SaZIP4 and SaPCR2 under Zn5, but downregulated SaIRT1 and SaZIP4 under Zn400. However, Cd downregulated related transporter genes, except for SaNRAMP1, in NHE, irrespective of Zn. Cadmium stimulated casparian strip (CSs) development in NHE, as part of the defense response, while it had a subtle effect on the (CS) in HE. Moreover, Cd delayed the initiation of the suberin lamellae (SL) in HE, but stimulated SL deposition in NHE under both Zn5 or Zn400. Changes in suberization were mainly ascribed to suberin-biosynthesis-related genes and hormonal signaling. Altogether, Cd regulated Zn accumulation mainly via symplasmic and transmembrane transport in HE, while Cd inhibited both symplasmic and apoplasmic Zn transport in NHE.
Collapse
Affiliation(s)
- Ke Cao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Noelia Jaime-Pérez
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Filis Morina
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Yunqi Liu
- Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing, China
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic; University of South Bohemia, Department of Experimental Plant Biology, Branišovská 1160/31, České Budějovice 370 05, Czech Republic.
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Dziuba J, Nowicka B. Unravelling the Mechanisms of Heavy Metal Tolerance: Enhancement in Hydrophilic Antioxidants and Major Antioxidant Enzymes Is Not Crucial for Long-Term Adaptation to Copper in Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:999. [PMID: 38611528 PMCID: PMC11013226 DOI: 10.3390/plants13070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Understanding of the mechanisms of heavy metal tolerance in algae is important for obtaining strains that can be applied in wastewater treatment. Cu is a redox-active metal directly inducing oxidative stress in exposed cells. The Cu-tolerant Chlamydomonas reinhardtii strain Cu2, obtained via long-term adaptation, displayed increased guaiacol peroxidase activity and contained more lipophilic antioxidants, i.e., α-tocopherol and plastoquinol, than did non-tolerant strain N1. In the present article, we measured oxidative stress markers; the content of ascorbate, soluble thiols, and proline; and the activity of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in N1 and Cu2 strains grown in the absence or presence of excessive Cu. The Cu2 strain displayed less pronounced lipid peroxidation and increased APX activity compared to N1. The amount of antioxidants was similar in both strains, while SOD and CAT activity was lower in the Cu2 strain. Exposure to excessive Cu led to a similar increase in proline content in both strains and a decrease in ascorbate and thiols, which was more pronounced in the N1 strain. The Cu2 strain was less tolerant to another redox-active heavy metal, namely chromium. Apparently other mechanisms, probably connected to Cu transport, partitioning, and chelation, are more important for Cu tolerance in Cu2 strain.
Collapse
|
11
|
Moore RET, Ullah I, Dunwell JM, Rehkämper M. Stable Isotope Analyses Reveal Impact of Fe and Zn on Cd Uptake and Translocation by Theobroma cacao. PLANTS (BASEL, SWITZERLAND) 2024; 13:551. [PMID: 38498553 PMCID: PMC10893372 DOI: 10.3390/plants13040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
High concentrations of toxic cadmium (Cd) in soils are problematic as the element accumulates in food crops such as rice and cacao. A mitigation strategy to minimise Cd accumulation is to enhance the competitive uptake of plant-essential metals. Theobroma cacao seedlings were grown hydroponically with added Cd. Eight different treatments were used, which included/excluded hydroponic or foliar zinc (Zn) and/or iron (Fe) for the final growth period. Analyses of Cd concentrations and natural stable isotope compositions by multiple collector ICP-MS were conducted. Cadmium uptake and translocation decreased when Fe was removed from the hydroponic solutions, while the application of foliar Zn-EDTA may enhance Cd translocation. No significant differences in isotope fractionation during uptake were found between treatments. Data from all treatments fit a single Cd isotope fractionation model associated with sequestration (seq) of isotopically light Cd in roots and unidirectional mobilisation (mob) of isotopically heavier Cd to the leaves (ε114Cdseq-mob = -0.13‱). This result is in excellent agreement with data from an investigation of 19 genetically diverse cacao clones. The different Cd dynamics exhibited by the clones and seen in response to different Fe availability may be linked to similar physiological processes, such as the regulation of specific transporter proteins.
Collapse
Affiliation(s)
- Rebekah E. T. Moore
- Department of Earth Science and Engineering, Imperial College, London SW7 2BP, UK;
| | - Ihsan Ullah
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK; (I.U.); (J.M.D.)
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK; (I.U.); (J.M.D.)
| | - Mark Rehkämper
- Department of Earth Science and Engineering, Imperial College, London SW7 2BP, UK;
| |
Collapse
|
12
|
Navarro-Gómez C, León-Mediavilla J, Küpper H, Rodríguez-Simón M, Paganelli-López A, Wen J, Burén S, Mysore KS, Bokhari SNH, Imperial J, Escudero V, González-Guerrero M. Nodule-specific Cu + -chaperone NCC1 is required for symbiotic nitrogen fixation in Medicago truncatula root nodules. THE NEW PHYTOLOGIST 2024; 241:793-810. [PMID: 37915139 DOI: 10.1111/nph.19360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Cu+ -chaperones are a diverse group of proteins that allocate Cu+ ions to specific copper proteins, creating different copper pools targeted to specific physiological processes. Symbiotic nitrogen fixation carried out in legume root nodules indirectly requires relatively large amounts of copper, for example for energy delivery via respiration, for which targeted copper deliver systems would be required. MtNCC1 is a nodule-specific Cu+ -chaperone encoded in the Medicago truncatula genome, with a N-terminus Atx1-like domain that can bind Cu+ with picomolar affinities. MtNCC1 is able to interact with nodule-specific Cu+ -importer MtCOPT1. MtNCC1 is expressed primarily from the late infection zone to the early fixation zone and is located in the cytosol, associated with plasma and symbiosome membranes, and within nuclei. Consistent with its key role in nitrogen fixation, ncc1 mutants have a severe reduction in nitrogenase activity and a 50% reduction in copper-dependent cytochrome c oxidase activity. A subset of the copper proteome is also affected in the ncc1 mutant nodules. Many of these proteins can be pulled down when using a Cu+ -loaded N-terminal MtNCC1 moiety as a bait, indicating a role in nodule copper homeostasis and in copper-dependent physiological processes. Overall, these data suggest a pleiotropic role of MtNCC1 in copper delivery for symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Cristina Navarro-Gómez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Javier León-Mediavilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Hendrik Küpper
- Laboratory of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Department of Experimental Plant Biology, Faculty of Sciences, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Mario Rodríguez-Simón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Alba Paganelli-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agraria, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agraria, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Syed Nadeem Hussain Bokhari
- Laboratory of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agraria, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| |
Collapse
|
13
|
Weber JN, Minner-Meinen R, Kaufholdt D. The Mechanisms of Molybdate Distribution and Homeostasis with Special Focus on the Model Plant Arabidopsis thaliana. Molecules 2023; 29:40. [PMID: 38202623 PMCID: PMC10780190 DOI: 10.3390/molecules29010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
This review article deals with the pathways of cellular and global molybdate distribution in plants, especially with a full overview for the model plant Arabidopsis thaliana. In its oxidized state as bioavailable molybdate, molybdenum can be absorbed from the environment. Especially in higher plants, molybdenum is indispensable as part of the molybdenum cofactor (Moco), which is responsible for functionality as a prosthetic group in a variety of essential enzymes like nitrate reductase and sulfite oxidase. Therefore, plants need mechanisms for molybdate import and transport within the organism, which are accomplished via high-affinity molybdate transporter (MOT) localized in different cells and membranes. Two different MOT families were identified. Legumes like Glycine max or Medicago truncatula have an especially increased number of MOT1 family members for supplying their symbionts with molybdate for nitrogenase activity. In Arabidopsis thaliana especially, the complete pathway followed by molybdate through the plant is traceable. Not only the uptake from soil by MOT1.1 and its distribution to leaves, flowers, and seeds by MOT2-family members was identified, but also that inside the cell. the transport trough the cytoplasm and the vacuolar storage mechanisms depending on glutathione were described. Finally, supplying the Moco biosynthesis complex by MOT1.2 and MOT2.1 was demonstrated.
Collapse
Affiliation(s)
| | | | - David Kaufholdt
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106 Braunschweig, Germany
| |
Collapse
|
14
|
Murgia I, Morandini P. Plant Iron Research in African Countries: Current "Hot Spots", Approaches, and Potentialities. PLANTS (BASEL, SWITZERLAND) 2023; 13:14. [PMID: 38202322 PMCID: PMC10780554 DOI: 10.3390/plants13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]
Abstract
Plant iron (Fe) nutrition and metabolism is a fascinating and challenging research topic; understanding the role of Fe in the life cycle of plants requires knowledge of Fe chemistry and biochemistry and their impact during development. Plant Fe nutritional status is dependent on several factors, including the surrounding biotic and abiotic environments, and influences crop yield and the nutritional quality of edible parts. The relevance of plant Fe research will further increase globally, particularly for Africa, which is expected to reach 2.5 billion people by 2050. The aim of this review is to provide an updated picture of plant Fe research conducted in African countries to favor its dissemination within the scientific community. Three main research hotspots have emerged, and all of them are related to the production of plants of superior quality, i.e., development of Fe-dense crops, development of varieties resilient to Fe toxicity, and alleviation of Fe deficiency, by means of Fe nanoparticles for sustainable agriculture. An intensification of research collaborations between the African research groups and plant Fe groups worldwide would be beneficial for the progression of the identified research topics.
Collapse
Affiliation(s)
- Irene Murgia
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy;
| | | |
Collapse
|
15
|
Aqeel U, Parwez R, Aftab T, Khan MMA, Naeem M. Silicon dioxide nanoparticles suppress copper toxicity in Mentha arvensis L. by adjusting ROS homeostasis and antioxidant defense system and improving essential oil production. ENVIRONMENTAL RESEARCH 2023; 236:116851. [PMID: 37558115 DOI: 10.1016/j.envres.2023.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Copper (Cu) is an essential micronutrient for plants; however, the excessive accumulation of Cu due to various anthropogenic activities generates progressive pollution of agricultural land and that causes a major constraint for crop production. Excess Cu (80 mg kg-1) in the soil diminished growth and biomass, photosynthetic efficiency and essential oil (EO) content in Mentha arvensis L., while amplifying the antioxidant enzyme's function and reactive oxygen species (ROS) production. Therefore, there is a pressing need to explore effective approaches to overcome Cu toxicity in M. arvensis plants. Thus, the present study unveils the potential of foliar supplementation of two distinct forms of silicon dioxide nanoparticles (SiO2 NPs) i.e., Aerosil 200F and Aerosil 300 to confer Cu stress tolerance attributes to M. arvensis. The experiment demonstrated that applied forms of SiO2 NPs (120 mg L-1), enhanced plants' growth and augmented the photosynthetic efficiency along with the activities of CA (carbonic anhydrase) and NR (nitrate reductase), however, the effects were more accentuated by Aerosil 200F application. Supplementation of SiO2 NPs also exhibited a beneficial effect on the antioxidant machinery of Cu-disturbed plants by raising the level of proline and total phenol as well as the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR), thereby lowering ROS and electrolytic leakage (EL). Interestingly, SiO2 NPs supplementation upscaled EO production in Cu-stressed plants with more pronounced effects received in the case of Aerosil 200F over Aerosil 300. We concluded that the nano form (Aerosil 200F) of SiO2 proved to be the best in improving the Cu-stress tolerance in plants.
Collapse
Affiliation(s)
- Umra Aqeel
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Rukhsar Parwez
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India.
| |
Collapse
|
16
|
Morina F, Mijovilovich A, Mishra A, Brückner D, Vujić B, Bokhari SNH, Špak J, Falkenberg G, Küpper H. Cadmium and Zn hyperaccumulation provide efficient constitutive defense against Turnip yellow mosaic virus infection in Noccaea caerulescens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111864. [PMID: 37689279 DOI: 10.1016/j.plantsci.2023.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
To understand the role of Zn and Cd in anti-viral defence, Zn/Cd hyperaccumulator Noccaea caerulescens plants grown with deficient (0.3 µM), replete (10 µM) and excess (100 µM) Zn2+ and Cd (10 µM Zn2+ + 1 µM Cd2+) were infected with Turnip yellow mosaic virus (TYMV). Gas exchange and chlorophyll fluorescence kinetics analyses demonstrated direct TYMV effects on photosynthetic light reactions but N. caerulescens was more resistant against TYMV than the previously studied non-hyperaccumulator N. ochroleucum. Virus abundance and photosynthesis inhibition were the lowest in the high Zn and Cd treatments. RNAseq analysis of 10 µM Zn2+ plants revealed TYMV-induced upregulation of Ca transporters, chloroplastic ZTP29 and defence genes, but none of those that are known to be strongly involved in hyperaccumulation. Synchrotron µ-XRF tomography, however, showed that Zn hyperaccumulation remained strongest in vacuoles of epidermal storage cells regardless of infection. This was in contrast to N. ochroleucum, where apoplastic Zn drastically increased in response to TYMV. These results suggest that the antiviral response of N. caerulescens is less induced by the onset of this biotic stress, but it is rather a permanent resistant state of the plant. Real-time qPCR revealed upregulation of ferritin in Zn10 infected plants, suggesting Fe deprivation as a virus defence strategy under suboptimal Zn supply.
Collapse
Affiliation(s)
- Filis Morina
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic.
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic.
| | - Archana Mishra
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic.
| | - Dennis Brückner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany; University of Hamburg, Department of Physics, Jungiusstr. 9, 20355 Hamburg, Germany; Ruhr-Universität Bochum, Faculty of Chemistry and Biochemistry, Universitätsstr. 150, 44801 Bochum, Germany.
| | - Bojan Vujić
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic.
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic.
| | - Josef Špak
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic.
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, Department of Experimental Plant Biology, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
17
|
Kokavcová A, Bokhari SNH, Mijovilovich A, Morina F, Lukačová Z, Kohanová J, Lux A, Küpper H. Copper and zinc accumulation, distribution, and tolerance in Pistia stratiotes L.; revealing the role of root caps. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106731. [PMID: 37890272 DOI: 10.1016/j.aquatox.2023.106731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Pollution by potentially toxic trace metals, such as copper or zinc, is global. Both Cu and Zn are essential microelements, which in higher concentrations become toxic. The aquatic plant Pistia stratiotes(L. has great potential for phytoremediation. Also, it has an unusually large and easily detachable root cap, which makes it a suitable model for studying the potential role of the root cap in metal uptake. Plant response to environmentally relevant concentrations of Cu (0.1, 0.3, and 1 μM) and Zn (0.3, 1, and 3 μM) was investigated with the aim of studying their interaction and distribution at the root tissue level as well as revealing their tolerance mechanisms. Changes in the root anatomy and plant ionome were determined using light and fluorescence microscopy, ICP-MS, and μXRF imaging. Alterations in photosynthetic activity caused by Cu or Zn excesses were monitored by direct imaging of fast chlorophyll fluorescence kinetics (OJIP). Fe and Mn were preferentially localized in the root cap, while Ca, Cu, Ni, and Zn were mainly in the root tip regardless of the Cu/Zn treatment. Translocation of Cu and Zn to the leaves increased with higher doses, however the translocation factor was the lowest in the highest treatments. Measurements of photosynthetic parameters showed a higher susceptibility of electron transport flux from QA to QB under increasing Cu than Zn supply. This, along with our findings regarding the root anatomy and the differences in Ca accumulation and distribution, led to the conclusion that P. stratiotes is more effective for Zn remediation than Cu.
Collapse
Affiliation(s)
- Anna Kokavcová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Plant Physiology, Mlynská dolina, Ilkovičova 6, Bratislava 842 15, Slovak Republic
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Filis Morina
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Zuzana Lukačová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Plant Physiology, Mlynská dolina, Ilkovičova 6, Bratislava 842 15, Slovak Republic
| | - Jana Kohanová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Plant Physiology, Mlynská dolina, Ilkovičova 6, Bratislava 842 15, Slovak Republic
| | - Alexander Lux
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Plant Physiology, Mlynská dolina, Ilkovičova 6, Bratislava 842 15, Slovak Republic; Slovak Academy of Sciences, Institute of Chemistry, Dúbravská cesta 9, Bratislava 845 38, Slovak Republic.
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic; University of South Bohemia, Faculty of Science, Department of Experimental Plant Biology, Branišovská 1760/31a, České Budějovice 370 05, Czech Republic.
| |
Collapse
|
18
|
Zeng Z, Chen J, Liu X, Li Y, Zhang Y, Cai H, Chen J, Rao D, Shen W. Ultrasonic treatment alleviated cadmium stress in sugarcane via improving antioxidant activity and physiological and biochemical status. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115381. [PMID: 37597288 DOI: 10.1016/j.ecoenv.2023.115381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Cadmium (Cd) is a toxic element that endangers crop growth and affects food safety and human health. Therefore, the study of Cd mitigation technology is important. Ultrasonic treatment can improve crop growth and enhance their ability to resist various abiotic stresses. In this study, the effect of ultrasonic treatment on alleviating sugarcane Cd stress was studied in a barrel experiment using sugarcane varieties 'ROC22' and 'LC05-136' as test materials. Sugarcane buds without ultrasonic treatment and with ultrasonic treatment (20-40 kHz mixed frequency ultrasound for 2 min, dry treatment) were planted in soil with Cd contents of 0, 50, 100, 250, and 500 mg·kg-1. Compared with non-ultrasonic treatment, Ultrasonic treatment significantly increased the activities of antioxidant enzymes in sugarcane, significantly increased the content of osmoregulation substances, significantly reduced the content of superoxide anion (the highest decreases reached 11.55%) and malondialdehyde (the highest decreases reached 20.59%), and significantly increased the expression level of metallothionein (MT)-related genes, with the expression of ScMT1 increased by 8.80-37.49% and the expression of ScMT2-1-5 increased by 1.55-69.33%. In addition, ultrasonic treatment significantly reduced the Cd contents in sugarcane roots, stems, leaves, bagasse, and juice (the highest reduction in Cd content was 49.18%). In general, ultrasonic treatment regulated the metabolism of reactive oxygen species and MT-related gene expression in sugarcane, increased the Cd tolerance of sugarcane, promoted photosynthesis in sugarcane leaves, improved root morphology, enhanced sugarcane growth, and increased cane and sugar yield.
Collapse
Affiliation(s)
- Zhen Zeng
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiaoyun Chen
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiangli Liu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yongjia Li
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yi Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huabo Cai
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jianwen Chen
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Dehua Rao
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wankuan Shen
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
19
|
Liu T, Hu W, Weng L, Deng L, Li J, Yu J, Zhou Z, Liu Y, Chen C, Sheng T, Zhao Z, Xiao G. Phenotypic and genetic dissection of the contents of important metallic elements in hybrid rice grown in cadmium-contaminated paddy fields. Heliyon 2023; 9:e19919. [PMID: 37809877 PMCID: PMC10559331 DOI: 10.1016/j.heliyon.2023.e19919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Rice (Oryza sativa L.) is a staple food that feeds over half of the world's population, and the contents of metallic elements in rice grain play important roles in human nutrition. In this study, the contents of important metallic elements were determined by ICP-OES, and included cadmium (Cd), zinc (Zn), manganese (Mn), copper (Cu), iron (Fe), nickel (Ni), calcium (Ca), and magnesium (Mg) in brown rice, in the first node from the top (Node 1), in the second node from the top (Node 2), and in roots of 55 hybrids and their parental lines. The heritability of metallic element contents (MECs), the general combining ability (GCA) for MEC, and the correlation between MECs in different organs/tissues of hybrids were also analyzed. The results indicated that: (1) there was a positive correlation between the contents of Cd and Zn in nodes and roots, but a negative correlation between the contents of Cd and Zn in brown rice of the hybrids(2) the GCA for MECs can be used to evaluate the ability of the parental lines to improve the metal contents in brown rice of the hybrids(3) the contents of Cd, Zn, Ca, and Mg in brown rice were mainly affected by additive genetic effects(4) the restorer lines R2292 and R2265 can be used to cultivate hybrids with high Zn and low Cd contents in the brown rice.
Collapse
Affiliation(s)
- Tengfei Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Wenbin Hu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Lvshui Weng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Lihua Deng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Jinjiang Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Jianghui Yu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zheng Zhou
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Ye Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Caiyan Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Teng Sheng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenghong Zhao
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Guoying Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
20
|
Galvis DA, Jaimes-Suárez YY, Rojas Molina J, Ruiz R, León-Moreno CE, Carvalho FEL. Unveiling Cacao Rootstock-Genotypes with Potential Use in the Mitigation of Cadmium Bioaccumulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2941. [PMID: 37631153 PMCID: PMC10458809 DOI: 10.3390/plants12162941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
The accumulation of high cadmium (Cd) levels in cacao beans (Theobroma cacao) generate several commercial and health issues. We hypothesized that cacao phenotypic and genotypic diversity could provide new insights to decrease Cd accumulation in cacao beans. Nine cacao rootstock genotypes were evaluated for up to 90 days under 0, 6, and 12 (mg·kg-1) of CdCl2 exposure and Cd content and plant growth dynamics were measured in leaves, stems, and roots. Data revealed that all cacao genotypes studied here were highly tolerant to Cd, since they presented tolerance index ≥ 60%. In shoots, EET61 and PA46 presented the higher (~270 mg·kg DW-1) and lower (~20 mg·kg DW-1) Cd concentration, respectively. Accordingly, only the EET61 showed an increase in the shoot cadmium translocation factor over the 90 days of exposure. However, when analyzing cadmium allocation to different organs based on total plant dry mass production, none of the genotypes maintained high Cd compartmentalization into roots, since P46, which was the genotype with the highest allocation of Cd to the roots, presented only 20% of total cadmium per plant in this plant organ and 80% allocated into the shoots, under Cd 12 (mg·kg-1) and after 90 days of exposure. Thus, genotypic/phenotypic variability in cacao rootstocks may provide valuable strategies for maximizing the reduction in Cd content in shoots. In this sense, IMC67 and PA46 were the ones that stood out in the present study.
Collapse
Affiliation(s)
- Donald A. Galvis
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Colombia
- Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 230002, Colombia;
| | - Yeirme Y. Jaimes-Suárez
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Colombia
| | - Jairo Rojas Molina
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Colombia
| | - Rosalba Ruiz
- Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 230002, Colombia;
| | - Clara E. León-Moreno
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Colombia
| | - Fabricio Eulalio Leite Carvalho
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Colombia
| |
Collapse
|
21
|
Sorce C, Bellini E, Bacchi F, Sanità di Toppi L. Photosynthetic Efficiency of Marchantia polymorpha L. in Response to Copper, Iron, and Zinc. PLANTS (BASEL, SWITZERLAND) 2023; 12:2776. [PMID: 37570930 PMCID: PMC10420882 DOI: 10.3390/plants12152776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
Metal micronutrients are essential for plant nutrition, but their toxicity threshold is low. In-depth studies on the response of light-dependent reactions of photosynthesis to metal micronutrients are needed, and the analysis of chlorophyll a fluorescence transients is a suitable technique. The liverwort Marchantia polymorpha L., a model organism also used in biomonitoring, allowed us to accurately study the effects of metal micronutrients in vivo, particularly the early responses. Gametophytes were treated with copper (Cu), iron (Fe) or zinc (Zn) for up to 120 h. Copper showed the strongest effects, negatively affecting almost the entire light phase of photosynthesis. Iron was detrimental to the flux of energy around photosystem II (PSII), while the acceptor side of PSI was unaltered. The impact of Fe was milder than that of Cu and in both cases the structures of the photosynthetic apparatus that resisted the treatments were still able to operate efficiently. The susceptibility of M. polymorpha to Zn was low: although the metal affected a large part of the electron transport chain, its effects were modest and short-lived. Our results may provide a contribution towards achieving a more comprehensive understanding of response mechanisms to metals and their evolution in plants, and may be useful for supporting the development of biomonitoring techniques.
Collapse
Affiliation(s)
- Carlo Sorce
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
| | - Erika Bellini
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy
| | - Florinda Bacchi
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
| | - Luigi Sanità di Toppi
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
| |
Collapse
|
22
|
Sun X, Kong T, Huang D, Chen Z, Kolton M, Yang J, Huang Y, Cao Y, Gao P, Yang N, Li B, Liu H, Sun W. Arsenic (As) oxidation by core endosphere microbiome mediates As speciation in Pteris vittata roots. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131458. [PMID: 37099912 DOI: 10.1016/j.jhazmat.2023.131458] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Pteris vittata is an arsenic(As)-hyperaccumulator that may be employed in phytoremediation of As-contaminated soils. P. vittata-associated microbiome are adapted to elevated As and may be important for host survival under stresses. Although P. vittata root endophytes could be critical for As biotransformation in planta, their compositions and metabolisms remain elusive. The current study aims to characterize the root endophytic community composition and As-metabolizing potentials in P. vittata. High As(III) oxidase gene abundances and rapid As(III) oxidation activity indicated that As(III) oxidation was the dominant microbial As-biotransformation processes compared to As reduction and methylization in P. vittata roots. Members of Rhizobiales were the core microbiome and the dominant As(III) oxidizers in P. vittata roots. Acquasition of As-metabolising genes, including both As(III) oxidase and As(V) detoxification reductase genes, through horizontal gene transfer was identified in a Saccharimonadaceae genomic assembly, which was another abundant population residing in P. vittata roots. Acquisition of these genes might improve the fitness of Saccharimonadaceae population to elevated As concentrations in P. vittata. Diverse plant growth promoting traits were encoded by the core root microbiome populations Rhizobiales. We propose that microbial As(III) oxidation and plant growth promotion are critical traits for P. vittata survival in hostile As-contaiminated sites.
Collapse
Affiliation(s)
- Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Duanyi Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhenyu Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Max Kolton
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Jinchan Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yuqing Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yue Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Peng Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Nie Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
23
|
Pivetta CP, Chitolina SF, Dartora N, Pelegrin CMGD, Santos MVD, Cassol F, Batista LS. Copper exposure leads to changes in chlorophyll content and secondary metabolite profile in Lantana fucata leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:571-584. [PMID: 37187188 DOI: 10.1071/fp23047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Cultivation of plants in environments polluted by metals at toxic levels can affect the biosynthesis of secondary metabolites. Here, we analysed the effect caused by excess copper on the concentration of chlorophylls a and b and the profile of secondary metabolites of Lantana fucata leaves. Five copper (Cu) treatments (mg Cukg-1 soil) were tested: T0, 0; T1, 210; T2, 420; T3, 630; and T4, 840. We found that the concentrations of chlorophylls in the plants decreased when compared to the control. However, this did not lead to a significant reduction in its growth, possibly due to the low translocation of the metal to shoots and the activation of plant defence systems to tolerate the environment in which they are exposed, increasing the emission of lateral roots and activating pathways for the production of secondary metabolites. Therefore, we found a decrease in the concentration of two key compounds in secondary metabolism, p -coumaric and cinnamic acids in treatments with higher copper concentrations. We also found an increase in phenolics. Decreases in p -coumaric and cinnamic acids may have occurred because these are precursors in the synthesis of phenolic compounds, which are increased in the high Cu treatments. Six secondary metabolites were characterised, described for the first time for this plant species. Thus, the presence of excess Cu in the soil may have triggered an increase in the amount of reactive oxygen species in the plants, which that led to the synthesis of antioxidant compounds, as a defence strategy.
Collapse
Affiliation(s)
- Carlise Patrícia Pivetta
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| | | | - Nessana Dartora
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil
| | - Carla Maria Garlet de Pelegrin
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| | - Marlei Veiga Dos Santos
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| | - Fabiano Cassol
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil
| | - Laura Spohr Batista
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| |
Collapse
|
24
|
Béraud L, Elger A, Rivière T, Berseille O, Déliot P, Silvestre J, Larue C, Poutier L, Fabre S. Impact of potentially toxic elements on pines in a former ore processing mine: Exploitation of hyperspectral response from needle and canopy scales. ENVIRONMENTAL RESEARCH 2023; 227:115747. [PMID: 36966996 DOI: 10.1016/j.envres.2023.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
Anthropic potentially toxic element (PTE) releases can lead to persistent pollution in soil. Monitoring PTEs by their detection and quantification on large scale is of great interest. The vegetation exposed to PTEs can exhibit a reduction of physiological activities, structural damage … Such vegetation trait changes impact the spectral signature in the reflective domain 0.4-2.5 μm. The objective of this study is to characterize the impact of PTEs on the spectral signature of two pine species (Aleppo and Stone pines) in the reflective domain and ensure their assessment. The study focuses on nine PTEs: As, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Zn. The spectra are measured by an in-field spectrometer and an aerial hyperspectral instrument on a former ore processing site. They are completed by measurements related to vegetation traits at needle and tree scales (photosynthetic pigments, dry matter, morphometry …) to define the most sensitive vegetation parameter to each PTE in soil. A result of this study is that chlorophylls and carotenoids are the most correlated to PTE contents. Context-specific spectral indices are specified and used to assess metal contents in soil by regression. These new vegetation indices are compared at needle and canopy scales to literature indices. Most of the PTE contents are predicted at both scales with Pearson correlation scores between 0.6 and 0.9, depending on species and scale.
Collapse
Affiliation(s)
- Luc Béraud
- Office National d'Études et de Recherches Aérospatiales (ONERA), Toulouse, France; Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Arnaud Elger
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Thomas Rivière
- Office National d'Études et de Recherches Aérospatiales (ONERA), Toulouse, France
| | - Olivier Berseille
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Philippe Déliot
- Office National d'Études et de Recherches Aérospatiales (ONERA), Toulouse, France
| | - Jérôme Silvestre
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Camille Larue
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Laurent Poutier
- Office National d'Études et de Recherches Aérospatiales (ONERA), Toulouse, France
| | - Sophie Fabre
- Office National d'Études et de Recherches Aérospatiales (ONERA), Toulouse, France.
| |
Collapse
|
25
|
Fardus J, Hossain S, Rob MM, Fujita M. ʟ-glutamic acid modulates antioxidant defense systems and nutrient homeostasis in lentil (Lens culinaris Medik.) under copper toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27993-0. [PMID: 37270757 DOI: 10.1007/s11356-023-27993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Copper (Cu), an essential micronutrient, can generate reactive oxygen species (ROS) at its supra-optimal level in living cells as a transition metal, thus producing oxidative stress in plants. Therefore, protecting plants from Cu-induced oxidative stress via the exogenous application of chemical substances, particularly L-glutamic acid (L-Glu), could be a viable strategy for mitigating the toxicity of Cu. The aim of our present study was to investigate how ʟ-Glu protects lentil seedlings from oxidative stress produced by toxic Cu and allows them to survive under Cu toxicity. The results exhibited that when lentil seedlings were exposed to excessive Cu, their growth was inhibited and their biomass decreased due to an increase in Cu accumulation and translocation to the root, shoot, and leaves. Exposure to toxic Cu also depleted photosynthetic pigments, imbalanced water content, and other essential nutrients, increased oxidative stress, and reduced enzymatic and non-enzymatic antioxidants. However, pre-treatment of ʟ-Glu improved the phenotypic appearance of lentil seedlings, which was distinctly evidenced by higher biomass production, maintenance of water balance, and an increase in photosynthetic pigments when exposed to toxic Cu. ʟ-Glu also protected the seedlings from Cu-induced oxidative stress by reducing the oxidative stress marker, specifically by the efficient action of enzymatic and non-enzymatic antioxidants, particularly ascorbate, catalase, monodehydroascorbate, and glutathione peroxidase and maintaining redox balance. Furthermore, ʟ-Glu assisted in maintaining the homeostasis of Cu and other nutrient in the roots, shoots, and leaves of lentil. Collectively, our results provide evidence of the mechanism of ʟ-Glu-mediated protective role in lentil against Cu toxicity, thus proposed as a potential chemical for managing Cu toxicity not only in lentil but also other plants.
Collapse
Affiliation(s)
- Jannatul Fardus
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Ikenobe 2393 Kita Gun, Kagawa, Miki-Cho, 761-0795, Japan.
| | - Shahadat Hossain
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Ikenobe 2393 Kita Gun, Kagawa, Miki-Cho, 761-0795, Japan
| | - Md Mahfuzur Rob
- Department of Horticulture, Faculty of Agriculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Ikenobe 2393 Kita Gun, Kagawa, Miki-Cho, 761-0795, Japan
| |
Collapse
|
26
|
Qi F, Gao Y, Liu J, Yao X, Han K, Wu Z, Wang Y. Alleviation of cadmium-induced photoinhibition and oxidative stress by melatonin in Chlamydomonas reinhardtii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27561-6. [PMID: 37269507 DOI: 10.1007/s11356-023-27561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
As one of the most threatening challenges to the natural environment and human health, cadmium (Cd) pollution has seriously impacted natural organisms. Green algae, such as Chlamydomonas reinhardtii (C. reinhardtii), can provide a safer, lower cost, and more effective ecological approach to the treatment of heavy metal ions in wastewater due to their sorption properties. However, heavy metal ions affect C. reinhardtii when adsorbed. Melatonin is able to protect the plant body from damage when the plant is under biotic/abiotic stress. Therefore, we investigated the effects of melatonin on the cell morphology, chlorophyll content, chlorophyll fluorescence parameters, enzymatic activity of the antioxidant system, gene expression, and the ascorbic acid (AsA)-glutathione (GSH) cycle of C. reinhardtii under the stress of Cd (13 mg/L). Our results indicated that Cd significantly induced photoinhibition and overaccumulation of reactive oxygen species (ROS). By application with the concentration of 1.0 μM melatonin, the algal solute of C. reinhardtii under the Cd stress gradually regained its green color, the cell morphology became intact, and the photosynthetic electron transport function was retained. However, in the melatonin-silenced strain, there was a significant decrease in all of the above indicators. In addition, the use of exogenous melatonin or the expression of endogenous melatonin genes could enhance the intracellular enzyme activities of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR). It also upregulated the expression of active enzyme genes such as SOD1, CAT1, FSD1, GSH1, GPX5, and GSHR1. These results indicate that the presence of melatonin effectively protects the activity of photosynthetic system II in C. reinhardtii, enhances antioxidant activity, upregulates gene expression in the AsA-GSH cycle, and reduces the level of ROS, thereby alleviating the damage caused by Cd toxicity.
Collapse
Affiliation(s)
- Fangbing Qi
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yu Gao
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Jiaqi Liu
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Xiangyu Yao
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Kai Han
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Ziyi Wu
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yingjuan Wang
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
27
|
Shen S, Li Y, Chen M, Huang J, Liu F, Xie S, Kong L, Pan Y. Reduced cadmium toxicity in rapeseed via alteration of root properties and accelerated plant growth by a nitrogen-fixing bacterium. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131040. [PMID: 36821906 DOI: 10.1016/j.jhazmat.2023.131040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Cd accumulation in crops has become a global environmental problem because it endangers human health. Screening for microorganisms that can reduce Cd accumulation in crops is a possible measure to address this issue. However, success has been limited, and most previous work did not involve bacteria. In the present study, a strain of N-fixing bacteria (Burkholderia spp.) that exhibits high levels of Cd tolerance was screened. The ability of this bacterium to reduce Cd in rapeseed was then assessed in sterile hydroponic and open soil culture systems. In the hydroponic system, the Burkholderia inoculum promoted Cd fixation in rapeseed roots and thus reduced Cd enrichment in aboveground edible tissues (leaves). The mechanisms were related to increased activity of pectin methylesterase in root cell walls, and the transformation of the chemical form of root Cd from "active" (NaCl-extracted) to "inert" (HCl-extracted and residual Cd) states. Additionally, Burkholderia accelerated plant growth, thus shortening the period in which the plant is available for Cd absorption. In the soil culture system, Burkholderia also reduced Cd enrichment in rapeseed leaves in the presence of other microorganisms. Thus, the bacterial strain shows potential for broad application for reducing the accumulation of Cd in crops.
Collapse
Affiliation(s)
- Shili Shen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Yinghan Li
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Mingbiao Chen
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, China
| | - Juan Huang
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, China
| | - Feng Liu
- Wuzhou Agricultural Products Quality and Safety Comprehensive Testing Center, Wuzhou 543000, Guangxi, China
| | - Shijie Xie
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, China
| | - Liping Kong
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, China
| | - Ying Pan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China.
| |
Collapse
|
28
|
Li C, Li P, Fu H, Chen J, Ye M, Zhai S, Hu F, Zhang C, Ge Y, Fortin C. A comparative study of the accumulation and detoxification of copper and zinc in Chlamydomonas reinhardtii: The role of extracellular polymeric substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161995. [PMID: 36739008 DOI: 10.1016/j.scitotenv.2023.161995] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Extracellular polymeric substances (EPS) form an interface between microalgae and the surrounding water environment. Copper (Cu) and zinc (Zn) are essential micronutrients but may negatively affect microbial growth when their concentrations reach toxic thresholds. However, how EPS affect the accumulation and resistance of Cu and Zn in microalgae remains largely unknown. Here, we investigated EPS production upon Cu/Zn exposure and compared the tolerance strategies to the two metals by Chlamydomonas reinhardtii with and without EPS. Microalgal EPS synthesis was induced by Cu/Zn treatments, and the functional groups of polysaccharides and proteins were involved in complexation with metal ions. The extraction of EPS aggravated the toxicity and reduced the removal of metals from solution, but the effect was more pronounced for Cu than for Zn. Copper bound on the cell surface accounted for 54.6 ± 2.0 % of the Cu accumulated by C. reinhardtii, whose EPS components strongly correlated with Cu adsorption. In contrast, 74.3 ± 3.0 % of accumulated Zn was absorbed in cells, and glutathione synthesis was significantly induced. Redundancy and linear correlation analyses showed that the polysaccharide, protein and DNA contents in EPS were significantly correlated with Cu accumulation, absorption and adsorption but not with Zn. Data fitted to a Michaelis-Menten model further showed that the EPS-intact cells had higher binding capacity for Cu2+ but not for Zn2+. These differential impacts of EPS on Cu/Zn sorption and detoxification contribute to a more comprehensive understanding of the roles of microalgal EPS in the biogeochemical cycle of metals.
Collapse
Affiliation(s)
- Chonghua Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peihuan Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongxuan Fu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Menglei Ye
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Suhua Zhai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Claude Fortin
- EcotoQ, Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| |
Collapse
|
29
|
Pan J, Deng F, Liu Z, Zeng L, Chen J. Construction of molecular logic gates using heavy metal ions as inputs based on catalytic hairpin assembly and CRISPR-Cas12a. Talanta 2023; 255:124210. [PMID: 36566557 DOI: 10.1016/j.talanta.2022.124210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
We successfully constructed several molecular logic gates using heavy metal ions as inputs based on catalytic hairpin assembly (CHA) and CRISPR-Cas12a. The corresponding DNAzymes were used to recognize heavy metal ions (Hg2+, Cd2+, Pb2+, and Mn2+). The specific cleavage between heavy metal ions and DNAzymes leads to the release of the trigger DNA, which can be used to activate CHA through logic computation. The CHA-generated DNA duplexes contain the protospacer adjacent motifs (PAM) sequence, which can be distinguished by CRISPR-Cas12a. The hybridization interactions between the duplexes and gRNA will activate the trans-cleavage capability of Cas12a, which can cleave the single-stranded DNA (ssDNA) reporter. The separation of the fluorescence group and quench group in ssDNA will generate a high fluorescence signal for readout. Using Hg2+ and Cd2+ as the two inputs, several basic logic gates were constructed, including OR, AND, and INHIBT. Using Hg2+, Cd2+, Pb2+, and Mn2+ as the four inputs, cascaded logic gates were further fabricated. With the advantages of scalability, versatility, and logic computing capability, our proposed molecular logic gates can provide an intelligent sensing system for heavy metal ions monitoring.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fang Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lingwen Zeng
- Guangdong Langyuan Biotechnology Co., LTD, Foshan, 528313, China; School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
30
|
Schück M, Greger M. Salinity and temperature influence removal levels of heavy metals and chloride from water by wetland plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58030-58040. [PMID: 36977875 PMCID: PMC10163125 DOI: 10.1007/s11356-023-26490-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/13/2023] [Indexed: 05/08/2023]
Abstract
Stormwater with low temperatures and elevated salinity, common in areas where deicing salt is used, might affect the removal of heavy metals by plants in stormwater treatment systems such as floating treatment wetlands. This short-term study evaluated the effects of combinations of temperature (5, 15, and 25 °C) and salinity (0, 100, and 1000 mg NaCl L-1) on the removal of Cd, Cu, Pb, and Zn (1.2, 68.5, 78.4, and 559 μg L-1) and Cl- (0, 60, and 600 mg Cl- L-1) by Carex pseudocyperus, C. riparia, and Phalaris arundinacea. These species had previously been identified as suitable candidates for floating treatment wetland applications. The study found high removal capacity in all treatment combinations, especially for Pb and Cu. However, low temperatures decreased the removal of all heavy metals, and increased salinity decreased the removal of Cd and Pb but had no effect on the removal of Zn or Cu. No interactions were found between the effects of salinity and of temperature. Carex pseudocyperus best removed Cu and Pb, whereas P. arundinacea best removed Cd, Zu, and Cl-. The removal efficacy for metals was generally high, with elevated salinity and low temperatures having small impacts. The findings indicate that efficient heavy metal removal can also be expected in cold saline waters if the right plant species are used.
Collapse
Affiliation(s)
- Maria Schück
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden.
| | - Maria Greger
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
31
|
Saraiva MP, Maia CF, Batista BL, Lobato AKDS. Ionic homeostasis and redox metabolism upregulated by 24-epibrassinolide are crucial for mitigating nickel excess in soybean plants, enhancing photosystem II efficiency and biomass. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:343-355. [PMID: 36484563 DOI: 10.1111/plb.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Nickel (Ni) excess often generates oxidative stress in chloroplasts, causing redox imbalance, membrane damage and negative impacts on biomass. 24-Epibrassinolide (EBR) is a plant growth regulator of great interest to the scientific community because it is a natural molecule extracted from plants, is biodegradable and environmentally friendly. This study aimed to determine whether EBR can improve ionic homeostasis, antioxidant enzymes, PSII efficiency and biomass by evaluating nutritional, physiological, biochemical and morphological responses of soybean plants subjected to Ni excess. The experiment used four randomized treatments, with two Ni concentrations (0 and 200 μm Ni, described as -Ni2+ and +Ni2+ , respectively) and two concentrations of EBR (0 and 100 nm EBR, described as -EBR and +EBR, respectively). In general, Ni had deleterious effects on chlorophyll fluorescence and gas exchange. In contrast, EBR enhanced the effective quantum yield of PSII photochemistry (15%) and electron transport rate (19%) due to upregulation of SOD, CAT, APX and POX. Exogenous EBR application promoted significant increases in biomass, and these results were explained by improved nutrient content and ionic homeostasis, as demonstrated by increased Ca2+ /Ni2+ , Mg2+ /Ni+2 and Mn2+ /Ni2+ ratios.
Collapse
Affiliation(s)
- M P Saraiva
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Pará, Brazil
| | - C F Maia
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Pará, Brazil
| | - B L Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo, Brazil
| | - A K da S Lobato
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Pará, Brazil
| |
Collapse
|
32
|
Sanaeifar A, Yang C, de la Guardia M, Zhang W, Li X, He Y. Proximal hyperspectral sensing of abiotic stresses in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160652. [PMID: 36470376 DOI: 10.1016/j.scitotenv.2022.160652] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Recent attempts, advances and challenges, as well as future perspectives regarding the application of proximal hyperspectral sensing (where sensors are placed within 10 m above plants, either on land-based platforms or in controlled environments) to assess plant abiotic stresses have been critically reviewed. Abiotic stresses, caused by either physical or chemical reasons such as nutrient deficiency, drought, salinity, heavy metals, herbicides, extreme temperatures, and so on, may be more damaging than biotic stresses (affected by infectious agents such as bacteria, fungi, insects, etc.) on crop yields. The proximal hyperspectral sensing provides images at a sub-millimeter spatial resolution for doing an in-depth study of plant physiology and thus offers a global view of the plant's status and allows for monitoring spatio-temporal variations from large geographical areas reliably and economically. The literature update has been based on 362 research papers in this field, published from 2010, most of which are from four years ago and, in our knowledge, it is the first paper that provides a comprehensive review of the applications of the technique for the detection of various types of abiotic stresses in plants.
Collapse
Affiliation(s)
- Alireza Sanaeifar
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Ce Yang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, United States.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| | - Wenkai Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
33
|
Liao Y, Li Z, Yang Z, Wang J, Li B, Zu Y. Response of Cd, Zn Translocation and Distribution to Organic Acids Heterogeneity in Brassica juncea L. PLANTS (BASEL, SWITZERLAND) 2023; 12:479. [PMID: 36771564 PMCID: PMC9919146 DOI: 10.3390/plants12030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
In order to investigate the translocation, distribution, and organic acid heterogeneity characteristics in Brassica juncea L., a pot experiment with the exogenous application of Cd and Zn was conducted to analyze the effects of Cd, Zn, and organic acid contents and heterogeneity on the translocation and distribution of Cd and Zn. The results showed that the Cd and Zn contents of B. juncea were mainly accumulated in the roots. The Cd content in the symplast sap was 127.66-146.50% higher than that in the apoplast sap, while the opposite was true for Zn. The distribution of Cd in xylem sap occupied 64.60% under 20 mg kg-1 Cd treatment, and Zn in xylem sap occupied 60.14% under 100 mg kg-1 Zn treatment. The Cd was predominantly distributed in the vacuole, but the Zn was predominantly distributed in the cell walls. In addition, oxalic and malic acids were present in high concentrations in B. juncea. In the vacuole, correlation analysis showed that the contents of Cd were negatively correlated with the contents of oxalic acid and succinic acid, and the contents of Zn were positively correlated with the contents of malic acid and acetic acid. The contents of Cd and Zn were negatively related to the contents of oxalic acid and citric acid in xylem sap. Therefore, Cd in B. juncea was mainly absorbed through the symplast pathway, and Zn was mainly absorbed through the apoplast pathway, and then Cd and Zn were distributed in the vacuole and cell walls. The Cd and Zn in B. juncea are transferred upward through the xylem and promoted by oxalic acid, malic acid, and citric acid.
Collapse
Affiliation(s)
- Yumeng Liao
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Zuran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Zhichen Yang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Jixiu Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
34
|
Lin J, Huang X, Kou E, Cai W, Zhang H, Zhang X, Liu Y, Li W, Zheng Y, Lei B. Carbon dot based sensing platform for real-time imaging Cu 2+ distribution in plants and environment. Biosens Bioelectron 2023; 219:114848. [PMID: 36327556 DOI: 10.1016/j.bios.2022.114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
Divalent copper is a double-edged sword for plants, excess or shortage of copper ions will cause adverse reactions in plants. Currently, Cu2+ sensor for plants is still underdeveloped and new technology is urgently required for realizing one-step and real-time detection of Cu2+ in plants. Herein, a home-made and low-cost sensing platform is constructed by using carbon dots (CDs) as the optical probe, electronic devices for image acquisition, and a built-in algorithm program for image processing, which allows the dynamic monitoring of Cu2+ distribution in different plant species with high spatial and temporal resolution. We found that the detection limit of R-CDs for Cu2+ in water sample was 0.375 nM, and 11.7 mg/kg or even less Cu2+ in plants can be visually observed and accurately detected by the sensing platform. Moreover, this sensing platform has also been employed for reporting the spatial distribution of Cu2+ in the external environment of plants, demonstrating its applicability for monitoring Cu2+ both in living plants and the surrounding environment. This study provides a smart sensing platform for precise detection in plant internal and external environments, offering a promising strategy for precision agriculture in real-time and remote-control manners.
Collapse
Affiliation(s)
- Junjie Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiaoman Huang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
| | - Erfeng Kou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
| | - Wenxiao Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Yinjian Zheng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Science, Chengdu, 610218, PR China.
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, Maoming, 525100, PR China.
| |
Collapse
|
35
|
de Oliveira NT, Namorato FA, Rao S, de Souza Cardoso AA, de Rezende PM, Guilherme LRG, Liu J, Li L. Iron counteracts zinc-induced toxicity in soybeans. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:335-344. [PMID: 36459868 DOI: 10.1016/j.plaphy.2022.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Zinc (Zn) and iron (Fe) are essential micronutrients for all living organisms and the major targets for crop biofortification. However, when acquired in excess quantities, Zn and Fe can be toxic to plants. In this study, we examined the interaction between Zn and Fe in soybean plants under various Zn and Fe treatments. While the level of Zn accumulation increased with increasing Zn supplies, Zn content greatly decreased with rising Fe supplies. Moreover, Zn uptake rates were negatively correlated with Fe supplies. However, Fe accumulation was not greatly affected by elevating Zn supplies. Excess Zn supplies were found to induce typical Fe deficiency symptoms under low Fe conditions, which can be counteracted by increasing Fe supplies. Interestingly, leaf chlorosis caused by excess Zn and low Fe supplies was not directly associated with reduced total Fe content but likely associated with deleterious effects of excess Zn. The combination of high Zn and low Fe greatly activates FRO2 and FIT1 gene expression in soybean roots. Besides, Zn-Fe interaction influences the activities of antioxidative enzymes as well as the uptake, accumulation, and homeostasis of other essential micronutrients, such as copper and manganese in soybean plants. These findings provide new perspectives on Zn and Fe interaction and on heavy metal-induced Fe deficiency-like symptoms.
Collapse
Affiliation(s)
- Natalia Trajano de Oliveira
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Department of Agronomy, Federal University of Lavras (ESAL-UFLA), Lavras, MG, 37200-900, Brazil
| | - Filipe Aiura Namorato
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Soil Science Department, Federal University of Lavras (ESAL-UFLA), Lavras, MG, 37200-900, Brazil
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Arnon Afonso de Souza Cardoso
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Soil Science Department, Federal University of Lavras (ESAL-UFLA), Lavras, MG, 37200-900, Brazil
| | | | | | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
36
|
Imran M, Khan AL, Mun BG, Bilal S, Shaffique S, Kwon EH, Kang SM, Yun BW, Lee IJ. Melatonin and nitric oxide: Dual players inhibiting hazardous metal toxicity in soybean plants via molecular and antioxidant signaling cascades. CHEMOSPHERE 2022; 308:136575. [PMID: 36155020 DOI: 10.1016/j.chemosphere.2022.136575] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Melatonin (MT), a ubiquitous signaling molecule, is known to improve plant growth. Its regulatory function alongside nitric oxide (NO) is known to induce heavy metal (Cd and Pb) stress tolerance, although the underlying mechanisms remain unknown. Here, we observed that the combined application of MT and NO remarkably enhanced plant biomass by reducing oxidative stress. Both MT and NO minimized metal toxicity by significantly lowering the levels of endogenous abscisic acid and jasmonic acid via downregulating NCED3 and upregulating catabolic genes (CYP707A1 and CYP707A2). MT/NO-induced mitigation of Cd and Pb stress was associated with increased endo-melatonin and variable endo-S-nitrosothiol levels caused by enhanced expression of gmNR and gmGSNOR mRNAs. Remarkably, the combined application of MT/NO reduced soil Cd and Pb mobilization by increasing the uptake of Ca2+ and K+ and increasing the exudation of organic acids into the rhizosphere. These results correlated with the upregulation of MTF-1 and WARKY27 during metal translocation. MT/NO regulates the MAPK and CDPK cascades to promote plant cell survival and Ca2+ signaling, thereby imparting resistance to heavy metal toxicity. In conclusion, MT/NO modulates the stress-resistance machinery to mitigate Cd and Pb toxicity by regulating the activation of antioxidant and molecular transcription factors.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Abdul Latif Khan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Bong-Gyu Mun
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
37
|
Cheah C, Cheow YL, Yien Ting AS. Immobilization of exopolymeric substances from bacteria for metal removal: A study on characterization, optimization, reusability and toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116244. [PMID: 36116257 DOI: 10.1016/j.jenvman.2022.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the immobilization of exopolymeric substances (EPS) from Bacillus cereus using sodium alginate to form EPS beads for metal removal. The EPS beads were characterized and their optimum biosorption conditions established (biosorbent dosage, initial metal concentration and pH of metal solutions). The EPS beads were also tested for reusability by using them continuously for five metal removal cycles with desorption process in between cycles. The toxicity of the treated metal solutions was tested by phytotoxicity tests. Results revealed that EPS beads demonstrated significantly higher metal removal efficiency (Pb: 99.26%, Cr: 50.73%, Cu: 48.94%, Zn: 29.81%, Cd: 20.29%) compared to plain alginate beads (without EPS) (Pb: 84.45%, Cu: 31%, Cr: 28.37%, Zn: 11.91%, Cd: 9.37%). SEM-EDX analysis detected Cu, Pb, Zn, Cd and Cr on the surface of EPS beads. Optimum conditions for Pb removal by EPS beads were from the use of 0.1 g of biosorbent at 100 mg/L initial metal concentration and pH 5. By contrast, Cu, Zn, Cd and Cr were optimally removed by 0.3 g of biosorbent at 25 mg/L initial metal concentration and pH 5. EPS beads can be reused up to five times while maintaining a high rate of metal removal efficiency (Pb- 99.52%, Cr- 89.23%, Cu- 89.17%, Zn-52.52%, Cd-39.12%). This was achieved through desorption with nitric acid that consistently recovered 76-93% of the metal adsorbed. FTIR analysis reveals that nitric acid is capable of restoring the functional groups present within EPS beads, allowing it to bind with metal ions in repeated cycles. Metal solutions treated with EPS beads were less toxic as seedling shoots (pre-treated: 0-10 cm, post-treated: 1.2-18.1 cm) and roots (pre-treated: 0-7.8 cm, post-treated: 0.8-15.1 cm) grew well, which suggested that reduced levels of metals led to reduced phytotoxicity. This study provides an insight into the use of EPS beads for metal removal, highlighting the benefits and reusability of the beads for future wastewater treatment.
Collapse
Affiliation(s)
- Caleb Cheah
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Yuen Lin Cheow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
38
|
Trethowan LA, Arvidsson C, Bramley GLC. Environmental stress influences Malesian Lamiaceae distributions. Ecol Evol 2022; 12:e9467. [PMID: 36340815 PMCID: PMC9627225 DOI: 10.1002/ece3.9467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Dual effects of spatial distance and environment shape archipelagic floras. In Malesia, there are multiple environmental stressors associated with increasing uplands, drought, and metal-rich ultramafic soils. Here, we examine the contrasting impacts of multifactorial environmental stress and spatial distance upon Lamiaceae species distributions. We used a phylogenetic generalized mixed effects model of species occurrence across Malesia's taxonomic database working group areas from Peninsular Malaysia to New Guinea. Predictor variables were environmental stress, spatial distance between areas and two trait principal component axes responsible for increasing fruit and leaf size and a negative correlation between flower size and plant height. We found that Lamiaceae species with smaller fruits and leaves are more likely to tolerate environmental stress and become widely distributed across megadiverse Malesian islands. How global species distribution and diversification are shaped by multifactorial environmental stress requires further examination.
Collapse
Affiliation(s)
| | - Camilla Arvidsson
- Herbarium KewRoyal Botanic Gardens KewLondonUK
- Department of BiosciencesUniversity of ExeterExeterUK
| | | |
Collapse
|
39
|
Meschichi A, Zhao L, Reeck S, White C, Da Ines O, Sicard A, Pontvianne F, Rosa S. The plant-specific DDR factor SOG1 increases chromatin mobility in response to DNA damage. EMBO Rep 2022; 23:e54736. [PMID: 36278395 PMCID: PMC9724665 DOI: 10.15252/embr.202254736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Abstract
Homologous recombination (HR) is a conservative DNA repair pathway in which intact homologous sequences are used as a template for repair. How the homology search happens in the crowded space of the cell nucleus is, however, still poorly understood. Here, we measure chromosome and double-strand break (DSB) site mobility in Arabidopsis thaliana, using lacO/LacI lines and two GFP-tagged HR reporters. We observe an increase in chromatin mobility upon the induction of DNA damage, specifically at the S/G2 phases of the cell cycle. This increase in mobility is lost in the sog1-1 mutant, a central transcription factor of the DNA damage response in plants. Also, DSB sites show particularly high mobility levels and their enhanced mobility requires the HR factor RAD54. Our data suggest that repair mechanisms promote chromatin mobility upon DNA damage, implying a role of this process in the early steps of the DNA damage response.
Collapse
Affiliation(s)
- Anis Meschichi
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Lihua Zhao
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Svenja Reeck
- John Innes Centre, Norwich Research ParkNorwichUK
| | - Charles White
- Institut Génétique Reproduction et Développement (iGReD)Université Clermont Auvergne, UMR 6293, CNRS, U1103 INSERMClermont‐FerrandFrance
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD)Université Clermont Auvergne, UMR 6293, CNRS, U1103 INSERMClermont‐FerrandFrance
| | - Adrien Sicard
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP)Université de Perpignan Via DomitiaPerpignanFrance
| | - Stefanie Rosa
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
40
|
Purmale L, Jēkabsone A, Andersone-Ozola U, Karlsons A, Osvalde A, Ievinsh G. Comparison of In Vitro and In Planta Heavy Metal Tolerance and Accumulation Potential of Different Armeria maritima Accessions from a Dry Coastal Meadow. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11162104. [PMID: 36015407 PMCID: PMC9413919 DOI: 10.3390/plants11162104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 06/12/2023]
Abstract
The aim of the present study was to compare the tolerance to several heavy metals and their accumulation potential of Armeria maritima subsp. elongata accessions from relatively dry sandy soil habitats in the Baltic Sea region using both in vitro cultivated shoot explants and long-term soil-cultivated plants at the flowering stage as model systems. The hypothesis that was tested was that all accessions will show a relatively high heavy metal tolerance and a reasonable metal accumulation potential, but possibly to varying degrees. Under the conditions of the tissue culture, the explants accumulated extremely high concentration of Cd and Cu, leading to growth inhibition and eventual necrosis, but the accumulation of Pb in their tissues was limited. When grown in soil, the plants from different accessions showed a very high heavy metal tolerance, as the total biomass was not negatively affected by any of the treatments. The accumulation potential for heavy metals in soil-grown plants was high, with several significant accession- and metal-related differences. In general, the heavy metal accumulation potential in roots and older leaves was similar, except for Mn, which accumulated more in older leaves. The absolute higher values of the heavy metal concentrations reached in the leaves of soil-grown A. maritima plants (500 mg Cd kg-1, 600 mg Cu kg-1, 12,000 mg Mn kg-1, 1500 mg Pb kg-1, and 15,000 mg Zn kg-1) exceeded the respective threshold values for hyperaccumulation. In conclusion, A. maritima can be characterized by a species-wide heavy metal tolerance and accumulation potential, but with a relatively high intraspecies diversity.
Collapse
Affiliation(s)
- Līva Purmale
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Astra Jēkabsone
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Una Andersone-Ozola
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Andis Karlsons
- Institute of Biology, University of Latvia, 4 Ojāra Vācieša Str., LV-1004 Rīga, Latvia
| | - Anita Osvalde
- Institute of Biology, University of Latvia, 4 Ojāra Vācieša Str., LV-1004 Rīga, Latvia
| | - Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| |
Collapse
|
41
|
Copper accumulation in the aquatic fern Salvinia minima causes more severe physiological stress than zinc. Biometals 2022; 35:1043-1057. [PMID: 35913688 DOI: 10.1007/s10534-022-00423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/17/2022] [Indexed: 11/02/2022]
Abstract
Copper (Cu) and zinc (Zn) have a high demand in the industry. However, these ions, at high concentrations, can cause severe damage to both fauna and flora. Phytoremediation has gained international importance because its relatively low cost and it is environmentally friendly. The aim of the present study was to evaluate the capacity of Salvinia minima of accumulating Cu and Zn from aqueous solutions of various external concentrations (20, 40 and 80 µmol L-1 of CuSO4 and ZnSO4, separately). In addition, to estimate the effect of exposure of S. minima plants to those metals, on various physiological parameters (growth potential, maximum quantum efficiency of PSII, electrolyte leakage: as a cell membrane integrity index). S. minima was able of accumulating more Zn than Cu in its tissues, reaching values of 6.96 mg Cu g-1 dry weight (DW) and 19.6 mg Zn g-1 DW when exposed to 80 μM of each metal during 96 h, that were stored mainly at roots. Despite accumulating less Cu in its tissues, Cu had more severe reductions in various physiological parameters than Zn (in maximum quantum efficiency, integrity of cell membranes, and growth). We conclude that this species can be useful in the phytoremediation for copper and zinc in relatively short time, as maximum accumulation occurred within the first 24 h. However, in the long term, the accumulation of such metals is accompanied by a negative impact in the appearance, physiology, and growth of this plant species, which was more severe for copper exposure than for zinc.
Collapse
|
42
|
Kumar P, Mishra V, Yadav S, Yadav A, Garg S, Poria P, Farooqi F, Dumée LF, Sharma RS. Heavy metal pollution and risks in a highly polluted and populated Indian river-city pair using the systems approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60212-60231. [PMID: 35416578 DOI: 10.1007/s11356-022-20034-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
A sectorial approach for assessing heavy metal pollution in rivers neglects the inter-relationship between its environmental compartments and thus fails to report realistic pollution status and associated ecological and human health risks. Therefore, a systems approach was adopted to assess heavy metal pollution and associated risks in the Yamuna River (Delhi, India), one of the world's most polluted and populated river-city pairs. Sampling sites selected along the river with distinct land use were uncultivated natural floodplain vegetation, marshy area, invasive community, arable land, and human settlements. The multivariate analysis identified sources of pollutions (Pb, Cd, Cr, and Ni [anthropogenic]; Fe and Zn [geogenic]). Across the land use, a high log Kp value of Zn and Pb in water-soil phase than in water-sediment phase indicates their long-range transfer, whereas low log Kp (water-soil) of Cd suggests river sediments as its reservoirs. Comparison of pollution indices of Cd, Cr, and Pb in water, sediment, and soil across the land use suggested the role of vegetation in reducing pollution in the environment. Ecological risk also gets reduced progressively from water to sediment to the soil in naturally vegetated sites. Similarly, in river water, Cr, Cd, Ni, and Pb pose carcinogenic and non-carcinogenic risks to adults and children, which are also reduced in sediments and soil of different vegetation regimes. This study showed the eco-remediation services rendered by natural vegetation in reducing pollution and associated ecological and human health risks. To conclude, using a systems approach has significance in assessing pollution at the ecosystem level, and focusing on riverbank land use remains significant in developing methods to reduce pollution and ecological and human health risks for sustainable riverbank management.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Environmental Studies, Bioresources and Environmental Biotechnology Laboratory, University of Delhi, Delhi, 110007, India
| | - Vandana Mishra
- Department of Environmental Studies, Bioresources and Environmental Biotechnology Laboratory, University of Delhi, Delhi, 110007, India
| | - Shalu Yadav
- Department of Environmental Studies, Bioresources and Environmental Biotechnology Laboratory, University of Delhi, Delhi, 110007, India
| | - Archana Yadav
- Department of Environmental Studies, Bioresources and Environmental Biotechnology Laboratory, University of Delhi, Delhi, 110007, India
| | - Shafali Garg
- Department of Environmental Studies, Bioresources and Environmental Biotechnology Laboratory, University of Delhi, Delhi, 110007, India
| | - Pankaj Poria
- Department of Environmental Studies, Bioresources and Environmental Biotechnology Laboratory, University of Delhi, Delhi, 110007, India
| | - Furqan Farooqi
- Department of Environmental Studies, Bioresources and Environmental Biotechnology Laboratory, University of Delhi, Delhi, 110007, India
| | - Ludovic F Dumée
- Department of Chemical Engineering; Center for Membrane and Advanced Water Technology; and Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Radhey Shyam Sharma
- Department of Environmental Studies, Bioresources and Environmental Biotechnology Laboratory, University of Delhi, Delhi, 110007, India.
- Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
43
|
Malea P, Emmanouilidis A, Kevrekidis DP, Moustakas M. Copper uptake kinetics and toxicological effects of ionic Cu and CuO nanoparticles on the seaweed Ulva rigida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57523-57542. [PMID: 35352227 DOI: 10.1007/s11356-022-19571-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Copper ion (Cu2+) and copper oxide (CuO) nanoparticle (NP) ecotoxicity are of increasing concern as they are considered to be a potential risk to marine systems. This study represents the first attempt to evaluate CuO NP impacts on the seaweeds and Cu2+ on the chlorophyte Ulva rigida. Effects on oxidative stress, antioxidant defence markers, photosystem II function, thalli growth, and cell viability in U. rigida exposed for 4 up 72 h to1 and 5 mg L-1 Cu2+ and CuO NPs were examined. Hydrogen peroxide (H2O2) generation, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and growth inhibition seemed to be reliable and early warning markers of toxicity. The most important variables of the principal component analysis (PCA): H2O2 generation, antioxidant stress markers, and growth-based toxicity index, were higher at 1 mg L-1 CuO NPs compared to CuSO4 and at 5 mg L-1 CuSO4 compared to CuO NPs. Intracellular uptake kinetics fit well to the Michaelis-Menten equation. The higher toxicity at 5 mg L-1 CuSO4 compared to 1 mg L-1 was due to the higher Cu uptake with increasing concentration, suggesting and higher accumulation ability. On the contrary, 1 mg L-1 CuO NPs induced more strongly toxicity effects than 5 mg L-1. The relatively stronger effect of CuO NPs at 1 mg L-1 than the respective CuSO4 concentration could be attributed to the higher rate of initial uptake (Vc) and the mean rate of Cu uptake [Cmax/(2 × Km)] at CuO NP treatment. The intracellular seaweed experimental threshold of Cu, which coincided with the onset of oxidative stress, was within the Cu concentration range recorded in Mediterranean Ulva spp., indicating that it may pose a substantial risk to marine environments.
Collapse
Affiliation(s)
- Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Macedonia, Greece.
| | - Antonios Emmanouilidis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Macedonia, Greece
| | - Dimitrios Phaedon Kevrekidis
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Macedonia, Greece
| |
Collapse
|
44
|
Soumya V, H B, Kiranmayi P. Potential of Catharanthus roseus applied to remediation of disparate industrial soils owing to accumulation and translocation of metals into plant parts. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:746-758. [PMID: 35914282 DOI: 10.1080/15226514.2022.2106183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil pollution is one of the major environmental concerns. Since the inception of the industrial revolution, numerous perilous compounds are being introduced into the environment by various means. Of these, heavy metals are considered the important soil contaminants that present significant peril to human health. While the preventive measures of environmental pollution lie in the awareness of mankind, eliminating the interfering consequences of pollutants that have already been released into the environment is the current challenge. The present work, therefore, aimed to determine the phytoremediation potential of Catharanthus roseus based on contamination indices. The metal concentrations in soil and plant were assessed using Atomic Absorption Spectrophotometry and Inductively Coupled Plasma -Mass Spectrophotometry. The results showed that C. roseus acted as a good tool in remediating industrially contaminated soils. Plants grown under metal stress showed enhanced antioxidant potential. Further, the plant exhibited increased chlorophyll, pectin and lignin content in response to heavy metals, suggesting significant relation between plant metabolism and mental stress. Phytoremediation using plants like C. roseus therefore, can be esthetically pleasing and more publicly acceptable than the disruptive physical and chemical processes currently in use.
Collapse
Affiliation(s)
- V Soumya
- Department of Biotechnology, Institute of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Basira H
- Department of Biotechnology, Institute of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - P Kiranmayi
- Department of Biotechnology, Institute of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
45
|
Gao ZY, Wang SC, Zhang YX, Liu FF. Single and combined toxicity of polystyrene nanoplastics and copper on Platymonas helgolandica var. tsingtaoensis: Perspectives from growth inhibition, chlorophyll content and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154571. [PMID: 35304149 DOI: 10.1016/j.scitotenv.2022.154571] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The combined toxic effects of nanoplastics and heavy metals on aquatic organisms have attracted widespread attention; however, the results are inconsistent and the mechanisms remain unclear. In this study, the single and combined toxicity effects of Cu and two types of polystyrene nanoplastics (PS-NPs; 50 nm PS and 55 nm PS-COOH) on Platymonas helgolandica var. tsingtaoensis were investigated, including growth inhibition, chlorophyll content, and oxidative stress. An adverse dose-response relationship on growth inhibition was found in the Cu treatment groups, which was related to the decrease in chlorophyll content and damage to cell membranes. The growth inhibitory effect of PS-NPs on microalgae increased with exposure time and concentration, and no significant difference was found in the two types of PS-NPs because of the negligible contribution of functional groups. A more significant increase in chlorophyll content was found in PS treatments than in PS-COOH treatments at 96 h because of the microscale aggregates formed by PS. Higher concentrations (≥ 50 mg/L) of PS-NPs caused membrane lipid peroxidation, which might be responsible for growth inhibition. In the combined exposure experiments, a synergistic effect on the growth inhibition rate was obtained using the independent action model and Abbott model. Combined exposure triggered more severe oxidative damage to the microalgae. Adsorption experiment results showed that there was no adsorption between PS-NPs and Cu, while the interaction of Cu and algal cells could be promoted due to the presence of the PS-NPs, which explained the increasing combined toxicity. This study could improve our understanding of the combined toxicity of nanoplastics and heavy metals and could provide a new explanation for the mechanism of combined toxicity.
Collapse
Affiliation(s)
- Zhi-Yin Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Su-Chun Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Yu-Xue Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Fei-Fei Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
46
|
Mahjoubi Y, Rzigui T, Kharbech O, Mohamed SN, Abaza L, Chaoui A, Nouairi I, Djebali W. Exogenous nitric oxide alleviates manganese toxicity in bean plants by modulating photosynthesis in relation to leaf lipid composition. PROTOPLASMA 2022; 259:949-964. [PMID: 34651236 DOI: 10.1007/s00709-021-01713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) is a signaling molecule controlling several steps of plant development and defense process under stress conditions. NO-induced alleviation of manganese (Mn) toxicity was investigated on bean plants submitted for 28 days to 500 µM MnCl2. Manganese excess decreased plant dry weight and elongation and increased levels of reactive oxygen species and lipid peroxidation leading to up-regulation of superoxide dismutase, catalase, and ascorbate peroxidase activities. The inhibitory effects of Mn on plant growth were associated to reduction of light-saturated carbon assimilation (Amax), stomatal conductance (gs), and transpiration (E). By contrast, Mn induced significant increase in the apparent quantum yield (ɸ) and light compensation point (LCP). Interestingly, intracellular CO2 (Ci) remains stable under Mn stress. Concomitantly, leaf membrane lipids have drastically reduced under high Mn concentration. After Mn exposition, leaf fatty acids exhibited a significant loss of linolenic acid, accompanied by an accumulation of palmitoleic, stearic, and linoleic acids leading to alteration of lipid desaturation. NO supply reversed Mn toxicity as evidenced by enhancement of growth biomass and recovery of Amax, E, ɸ, and LCP. Similarly, NO addition has positive effects on leaf lipid content and composition leading to restoration of lipid unsaturation. The modulation of fatty acid composition can be a way to reduce leaf membrane damages and maintain optimal photosynthesis and plant growth. Despite the absence of enough evidences in how NO is involved in lipid and photosynthesis recovery under Mn stress conditions, it is assumed that NO beneficial effects are attributable to NO/Mn cross-talk.
Collapse
Affiliation(s)
- Yethreb Mahjoubi
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
| | - Touhami Rzigui
- Silvopastoral Institute of Tabarka, University of Jendouba, Jendouba, Tunisia
| | - Oussama Kharbech
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
| | - Salma Nait Mohamed
- Laboratoire de Biotechnologie de l'Olivier, Borj-Cedria Technoparck, 95, 2050, Hammam-Lif, Tunisia
| | - Leila Abaza
- Laboratoire de Biotechnologie de l'Olivier, Borj-Cedria Technoparck, 95, 2050, Hammam-Lif, Tunisia
| | - Abdelilah Chaoui
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
| | - Issam Nouairi
- Laboratory of Legumes, Biotechnology Center of Borj-Cedria, B.P. 901, 2050, Hammam-Lif, Tunisia
| | - Wahbi Djebali
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia.
| |
Collapse
|
47
|
Alamer KH, Galal TM. Safety assessment and sustainability of consuming eggplant (Solanum melongena L.) grown in wastewater-contaminated agricultural soils. Sci Rep 2022; 12:9768. [PMID: 35697742 PMCID: PMC9192686 DOI: 10.1038/s41598-022-13992-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Vegetables cultivated on contaminated agricultural soils are being consumed by the public, and consequently cause serious health concerns due to contaminants' dietary intake. The current study examines the safety and sustainability of eating eggplant (Solanum melongena) by looking into the possibility of heavy metals translocation from polluted soils to the edible sections, as well as the health hazards that come with it. Soil and eggplant samples were taken from three contaminated and other three uncontaminated farms to estimate their chemical constituents and plant growth properties. Based on the pollution load index data, the contaminated soils were highly polluted with Fe, Cu, Pb, and Zn; and relatively polluted with Cr, Mn, Cd, Mn, Co, and V. Under contamination stress, the fresh biomass, dry biomass, and production of eggplant were significantly reduced by 41.2, 44.6, and 52.1%, respectively. Likewise, chlorophyll a and b were significantly reduced from 1.51 to 0.69 mg g−1 and 1.36 to 0.64 mg g−1, respectively. The uncontaminated plant shoots had the highest quantities of N, P, and proteins (1.98, 2.08, and 12.40%, respectively), while the roots of the same plants had the highest K content (44.70 mg kg−1). Because eggplant maintained most tested heavy elements (excluding Zn and Pb) in the root, it is a good candidate for these metals' phytostabilization. However, it had the potential to translocate Mn and Zn to its shoot and Pb, Cr, Mn, and Zn to the edible fruits indicating its possibility to be a phytoextractor and accumulator of these metals. Cd, Cu, Ni, Pb, Mn, and Co quantity in the edible sections of eggplant grown in contaminated soils exceeded the permissible level for normal plants, posing health hazards to adults and children. For safety issues and food sustainability, our investigation strongly recommends avoiding, possibly, the cultivation of eggplant in contaminated agricultural lands due to their toxic effects even in the long run.
Collapse
Affiliation(s)
- Khalid H Alamer
- Biological Sciences Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia.
| | - Tarek M Galal
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 11790, Egypt.,Biology Department, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
48
|
The Butterfly Effect: Mild Soil Pollution with Heavy Metals Elicits Major Biological Consequences in Cobalt-Sensitized Broad Bean Model Plants. Antioxidants (Basel) 2022; 11:antiox11040793. [PMID: 35453478 PMCID: PMC9028058 DOI: 10.3390/antiox11040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Among the heavy metals (HMs), only cobalt induces a polymorphic response in Vicia faba plants, manifesting as chlorophyll morphoses and a ‘break-through’ effect resulting in the elevated accumulation of other HMs, which makes Co-pretreated broad bean plants an attractive model for investigating soil pollution by HMs. In this study, Co-sensitized V. faba plants were used to evaluate the long-term effect of residual industrial pollution by examining biochemical (H2O2, ascorbic acid, malondialdehyde, free proline, flavonoid, polyphenols, chlorophylls, carotenoids, superoxide dismutase) and molecular (conserved DNA-derived polymorphism and transcript-derived polymorphic fragments) markers after long-term exposure. HM-polluted soil induced a significantly higher frequency of chlorophyll morphoses and lower levels of nonenzymatic antioxidants in Co-pretreated V. faba plants. Both molecular markers effectively differentiated plants from polluted and control soils into distinct clusters, showing that HMs in mildly polluted soil are capable of inducing changes in DNA coding regions. These findings illustrate that strong background abiotic stressors (pretreatment with Co) can aid investigations of mild stressors (slight levels of soil pollution) by complementing each other in antioxidant content reduction and induction of DNA changes.
Collapse
|
49
|
Di Lodovico E, Marchand L, Oustrière N, Burges A, Capdeville G, Burlett R, Delzon S, Isaure MP, Marmiroli M, Mench MJ. Potential ability of tobacco (Nicotiana tabacum L.) to phytomanage an urban brownfield soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29314-29331. [PMID: 34661843 PMCID: PMC8521509 DOI: 10.1007/s11356-021-16411-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The ability of tobacco (Nicotiana tabacum L. cv. Badischer Geudertheimer) for phytomanaging and remediating soil ecological functions at a contaminated site was assessed with a potted soil series made by fading an uncontaminated sandy soil with a contaminated sandy soil from the Borifer brownfield site, Bordeaux, SW France, at the 0%, 25%, 50%, 75%, and 100% addition rates. Activities of sandblasting and painting with metal-based paints occurred for decades at this urban brownfield, polluting the soil with metal(loid)s and organic contaminants, e.g., polycyclic aromatic hydrocarbons, in addition to past backfilling. Total topsoil metal(loid)s (e.g., 54,700 mg Zn and 5060 mg Cu kg-1) exceeded by seven- to tenfold the background values for French sandy soils, but the soil pH was 7.9, and overall, the 1M NH4NO3 extractable soil fractions of metals were relatively low. Leaf area, water content of shoots, and total chlorophyll (Chl) progressively decreased with the soil contamination, but the Chl fluorescence remained constant near its optimum value. Foliar Cu and Zn concentrations varied from 17.8 ± 4.2 (0%) to 27 ± 5 mg Cu kg-1 (100%) and from 60 ± 15 (0%) to 454 ± 53 mg Zn kg-1 (100%), respectively. Foliar Cd concentration peaked up to 1.74 ± 0.09 mg Cd kg-1, and its bioconcentration factor had the highest value (0.2) among those of the metal(loid)s. Few nutrient concentrations in the aboveground plant parts decreased with the soil contamination, e.g., foliar P concentration from 5972 ± 1026 (0%) to 2861 ± 334 mg kg-1 (100%). Vulnerability to drought-induced embolism (P50) did not differ for the tobacco stems across the soil series, whereas their hydraulic efficiency (Ks) declined significantly with increasing soil contamination. Overall, this tobacco cultivar grew relatively well even in the Borifer soil (100%), keeping its photosynthetic system healthy under stress, and contaminant exposure did not increase the vulnerability of the vascular system to drought. This tobacco had a relevant potential to annually phytoextract a part of the bioavailable soil Zn and Cd, i.e., shoot removals representing here 8.8% for Zn and 43.3% for Cd of their 1M NH4NO3 extractable amount in the potted Borifer soil.
Collapse
Affiliation(s)
- Eliana Di Lodovico
- Univ. Parma, via Universita 12, 43121 Parma, Italy
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| | - Lilian Marchand
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| | - Nadège Oustrière
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| | - Aritz Burges
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| | - Gaelle Capdeville
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| | - Régis Burlett
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| | - Sylvain Delzon
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| | - Marie-Pierre Isaure
- Univ. Pau et Pays de l’Adour, E2S UPPA, CNRS, IPREM-UMR 5254, Hélioparc, 2 Avenue Pierre Angot, F-64053 Pau cedex9, France
| | | | - Michel J. Mench
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| |
Collapse
|
50
|
İşkil R, Surgun-Acar Y, Çatav ŞS, Zemheri-Navruz F, Erden Y. Mercury toxicity affects oxidative metabolism and induces stress responsive mechanisms in wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:911-920. [PMID: 35592475 PMCID: PMC9110583 DOI: 10.1007/s12298-022-01171-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) toxicity is an increasing problem worldwide, with a negative impact on the environment and living organisms including both animals and plants. In this study, we analyzed molecular and biochemical changes related to Hg toxicity in wheat (Triticum aestivum L.) seedlings. Seven-day-old seedlings were exposed to various concentrations (5, 10, and 20 µM) of HgCl2 for 24 and 48 h. Our results showed that HgCl2 treatments led to an increase in the Hg content of wheat leaves in a time- and concentration-dependent manner. Furthermore, significant increases were observed in hydrogen peroxide, malondialdehyde, and proline contents in response to Hg toxicity. While all HgCl2 treatments decreased the level of superoxide dismutase (SOD), the level of catalase (CAT) was reduced only in seedlings exposed to 5 µM of HgCl2. Mercury stress caused a decline in the expression of Cu/Zn-SOD, Fe-SOD, TaWRKY19, and TaDREB1 genes at both exposure times. On the other hand, 10 and 20 µM HgCl2 treatments caused significant induction (1.9 to 6.1-fold) in the expression of the CAT gene in wheat leaves. The mRNA level of the Mn-SOD and TaWRKY2 genes showed different patterns depending on the concentration and exposure period of HgCl2. In conclusion, the findings of this work demonstrate that Hg toxicity causes oxidative damage in wheat seedlings and changes the expression of some genes encoding WRKY and DREB transcription factor families, which have important functions in abiotic stress response.
Collapse
Affiliation(s)
- Rabia İşkil
- Department of Forest Engineering, Faculty of Forest, Bartın University, 74100 Bartın, Turkey
| | - Yonca Surgun-Acar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Çanakkale Onsekiz Mart University, 17000 Çanakkale, Turkey
| | - Şükrü Serter Çatav
- Division of Botany, Department of Biology, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Fahriye Zemheri-Navruz
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, 74100 Bartın, Turkey
| | - Yavuz Erden
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, 74100 Bartın, Turkey
| |
Collapse
|