1
|
Srisomwat C, Bawornnithichaiyakul N, Khonyoung S, Tiyapongpattana W, Butcha S, Youngvises N, Chailapakul O. Unveiling the potential of the capillary-driven microfluidic paper-based device integrated with smartphone-based for simultaneously colorimetric salivary ethanol and △ 9-tetrahydrocannabinol analysis. Talanta 2024; 280:126770. [PMID: 39208678 DOI: 10.1016/j.talanta.2024.126770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Monitoring various biomarkers in saliva samples emerges as a dynamic and non-invasive method. However, the high viscosity of saliva presents a distinct challenge when integrating paper-based platforms for on-site analysis. In addressing this challenge, we introduced the capillary-driven microfluidic paper-based analytical devices (μCD-PAD) designed for user-friendly and simultaneous detection of ethanol and tetrahydrocannabinol (THC) in saliva without a sample preparation step. Employing a colorimetric approach, we quantified both analytes. Synthetic salivas of varying viscosity flowed seamlessly to the detection zone without needing a sample preparation step, and no impact on colorimetric detection due to viscosity was observed (RSD <5 %). Within 10 min after the solution reached the detection zone, the device produced a homogeneous color signal, easily analyzed by a smartphone camera. To extend the application for determination to cover a legal limit concentration of ethanol and concentration of salivary THC even 24 h after marijuana consumption, the detection time of 30 min was optimized. Moreover, a saliva sample containing both analytes was used to demonstrate the capability of the developed device to detect ethanol and THC simultaneously. No cross-talk between ethanol and THC occurred and showed recovery in the 98-102 % for ethanol and 95-105 % for THC with acceptable accuracy. This developed device exhibits excellent potential for forensic applications, providing a user-friendly, cost-effective, and real-time screening tool for detecting ethanol and THC in saliva.
Collapse
Affiliation(s)
- Chawin Srisomwat
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12121, Thailand.
| | | | - Supada Khonyoung
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12121, Thailand
| | - Warawut Tiyapongpattana
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12121, Thailand
| | - Sopon Butcha
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12121, Thailand
| | - Napaporn Youngvises
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12121, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Ma J, Li H, Anwer S, Umer W, Antwi-Afari MF, Xiao EB. Evaluation of sweat-based biomarkers using wearable biosensors for monitoring stress and fatigue: a systematic review. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2024; 30:677-703. [PMID: 38581242 DOI: 10.1080/10803548.2024.2330242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Objectives. This systematic review aims to report the evaluation of wearable biosensors for the real-time measurement of stress and fatigue using sweat biomarkers. Methods. A thorough search of the literature was carried out in databases such as PubMed, Web of Science and IEEE. A three-step approach for selecting research articles was developed and implemented. Results. Based on a systematic search, a total of 17 articles were included in this review. Lactate, cortisol, glucose and electrolytes were identified as sweat biomarkers. Sweat-based biomarkers are frequently monitored in real time using potentiometric and amperometric biosensors. Wearable biosensors such as an epidermal patch or a sweatband have been widely validated in scientific literature. Conclusions. Sweat is an important biofluid for monitoring general health, including stress and fatigue. It is becoming increasingly common to use biosensors that can measure a wide range of sweat biomarkers to detect fatigue during high-intensity work. Even though wearable biosensors have been validated for monitoring various sweat biomarkers, such biomarkers can only be used to assess stress and fatigue indirectly. In general, this study may serve as a driving force for academics and practitioners to broaden the use of wearable biosensors for the real-time assessment of stress and fatigue.
Collapse
Affiliation(s)
- Jie Ma
- Department of Building and Real Estate, Hong Kong Polytechnic University, People's Republic of China
| | - Heng Li
- Department of Building and Real Estate, Hong Kong Polytechnic University, People's Republic of China
| | - Shahnawaz Anwer
- Department of Building and Real Estate, Hong Kong Polytechnic University, People's Republic of China
| | - Waleed Umer
- Department of Mechanical and Construction Engineering, Northumbria University, UK
| | | | - Eric Bo Xiao
- Department of Building and Real Estate, Hong Kong Polytechnic University, People's Republic of China
| |
Collapse
|
3
|
Rzepczyk S, Nijakowski K, Jankowski J, Nowicki F, Żaba C. Salivary markers of aggression - The possible alterations in salivary hormones levels to identify perpetrators of aggression-related violence. Leg Med (Tokyo) 2024; 71:102501. [PMID: 39083886 DOI: 10.1016/j.legalmed.2024.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Aggression, understood as intentional actions aimed at causing harm, remains in a direct relation with the phenomenon of interpersonal violence, especially its physical form. Creating an objective marker of aggression would be an important tool for preventing, protecting the victims and maintaining control over suspects. There have been attempts to link aggression with shifts in hormone levels, including those that can be measured in saliva, especially testosterone and cortisol. The systematic review aimed to assess changes in salivary hormone levels among perpetrators of violence, with particular emphasis on physical violence, as parameters pointing to perpetrators of violence. Following the inclusion and exclusion criteria, 22 studies were included. Most of the papers included in the analysis came from the USA and Europe. Studies typically included adults as well as children, while focusing mainly on men. Among the hormones, salivary testosterone levels were the ones analyzed most frequently. On the basis of the included studies, a meta-analysis was conducted on the relationship between aggressive behavior and the levels of concentration of testosterone and cortisol measured in saliva. Regardless of gender, individuals exhibiting aggressive behavior were proved to have significantly higher testosterone levels and lower cortisol concentrations in saliva measurements. The obtained results indicate the feasibility of using the examined parameters for initial detection of perpetrators of aggression-related violence. However, further research is necessary to more precisely determine the relationship between aggressive behavior and hormonal changes in order to determine the feasibility of using these parameters as an objective marker for early identification of perpetrators.
Collapse
Affiliation(s)
- Szymon Rzepczyk
- Department of Forensic Medicine, Poznan University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland.
| | - Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznań, Poland
| | - Jakub Jankowski
- Student's Scientific Group in Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznań, Poland
| | - Filip Nowicki
- Department of Forensic Medicine, Poznan University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| | - Czesław Żaba
- Department of Forensic Medicine, Poznan University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| |
Collapse
|
4
|
Winkler PM, Siri C, Buczkowski J, Silva JVC, Bovetto L, Schmitt C, Stellacci F. Modulating Weak Protein-Protein Cross-Interactions by the Addition of Free Amino Acids at Millimolar Concentrations. J Phys Chem B 2024; 128:7199-7207. [PMID: 38992922 DOI: 10.1021/acs.jpcb.4c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
In this paper, we quantify weak protein-protein interactions in solution using cross-interaction chromatography (CIC) and surface plasmon resonance (SPR) and demonstrate that they can be modulated by the addition of millimolar concentrations of free amino acids. With CIC, we determined the second osmotic virial cross-interaction coefficient (B23) as a proxy for the interaction strength between two different proteins. We perform SPR experiments to establish the binding affinity between the same proteins. With CIC, we show that the amino acids proline, glutamine, and arginine render the protein cross-interactions more repulsive or equivalently less attractive. Specifically, we measured B23 between lysozyme (Lys) and bovine serum albumin (BSA) and between Lys and protein isolates (whey and canola). We find that B23 increases when amino acids are added to the solution even at millimolar concentrations, corresponding to protein/ligand stoichiometric ratios as low as 1:1. With SPR, we show that the binding affinity between proteins can change by 1 order of magnitude when 10 mM glutamine is added. In the case of Lys and one whey protein isolate (WPI), it changes from the mM to the M range, thus by 3 orders of magnitude. Interestingly, this efficient modulation of the protein cross-interactions does not alter the protein's secondary structure. The capacity of amino acids to modulate protein cross-interactions at mM concentrations is remarkable and may have an impact across fields in particular for specific applications in the food or pharmaceutical industries.
Collapse
Affiliation(s)
- Pamina M Winkler
- Laboratory of Supramolecular Nanomaterials and Interfaces, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 12, 1015 Lausanne, Switzerland
| | - Cécilia Siri
- Laboratory of Supramolecular Nanomaterials and Interfaces, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 12, 1015 Lausanne, Switzerland
| | - Johann Buczkowski
- Nestlé Research, Nestlé Institute of Food Sciences, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | - Juliana V C Silva
- Nestlé Research, Nestlé Institute of Food Sciences, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | - Lionel Bovetto
- Nestlé Research, Nestlé Institute of Food Sciences, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | - Christophe Schmitt
- Nestlé Research, Nestlé Institute of Food Sciences, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | - Francesco Stellacci
- Laboratory of Supramolecular Nanomaterials and Interfaces, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 12, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Ferreira CR, Lima Gomes PCFD, Robison KM, Cooper BR, Shannahan JH. Implementation of multiomic mass spectrometry approaches for the evaluation of human health following environmental exposure. Mol Omics 2024; 20:296-321. [PMID: 38623720 PMCID: PMC11163948 DOI: 10.1039/d3mo00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Omics analyses collectively refer to the possibility of profiling genetic variants, RNA, epigenetic markers, proteins, lipids, and metabolites. The most common analytical approaches used for detecting molecules present within biofluids related to metabolism are vibrational spectroscopy techniques, represented by infrared, Raman, and nuclear magnetic resonance (NMR) spectroscopies and mass spectrometry (MS). Omics-based assessments utilizing MS are rapidly expanding and being applied to various scientific disciplines and clinical settings. Most of the omics instruments are operated by specialists in dedicated laboratories; however, the development of miniature portable omics has made the technology more available to users for field applications. Variations in molecular information gained from omics approaches are useful for evaluating human health following environmental exposure and the development and progression of numerous diseases. As MS technology develops so do statistical and machine learning methods for the detection of molecular deviations from personalized metabolism, which are correlated to altered health conditions, and they are intended to provide a multi-disciplinary overview for researchers interested in adding multiomic analysis to their current efforts. This includes an introduction to mass spectrometry-based omics technologies, current state-of-the-art capabilities and their respective strengths and limitations for surveying molecular information. Furthermore, we describe how knowledge gained from these assessments can be applied to personalized medicine and diagnostic strategies.
Collapse
Affiliation(s)
- Christina R Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Kiley Marie Robison
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Bruce R Cooper
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Farsaeivahid N, Grenier C, L. Wang M. Filtered Saliva for Rapid and Accurate Analyte Detection for POC Diagnostics. Diagnostics (Basel) 2024; 14:1088. [PMID: 38893615 PMCID: PMC11171550 DOI: 10.3390/diagnostics14111088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Saliva has shown considerable promise as a diagnostic medium for point-of-care (POC) and over-the-counter (OTC) diagnostic devices due to the non-invasive nature of its collection. However, a significant limitation of saliva-based detection is undesirable interference in a sensor's readout caused by interfering components in saliva. In this study, we develop standardized sample treatment procedures to eliminate bubbles and interfering molecules while preserving the sample's target molecules such as spike (S) protein and glucose. We then test the compatibility of the pretreatment system with our previously designed SARS-CoV-2 and glucose diagnostic biosensing systems for detecting S protein and glucose in subject saliva. Ultimately, the effectiveness of each filter in enhancing biomarker sensitivity is assessed. The results show that a 20 mg nylon wool (NW) filter shows an 80% change in viscosity reduction with only a 6% reduction in protein content, making it an appropriate filter for the salivary S protein diagnostic system. Meanwhile, a 30 mg cotton wool (CW) filter is identified as the optimal choice for salivary glucose detection, achieving a 90% change in viscosity reduction and a 60.7% reduction in protein content with a minimal 4.3% reduction in glucose content. The NW pretreatment filtration significantly improves the limit of detection (LOD) for salivary S protein detection by five times (from 0.5 nM to 0.1 nM) and it reduces the relative standard deviation (RSD) two times compared to unfiltered saliva. Conversely, the CW filter used for salivary glucose detection demonstrated improved linearity with an R2 of 0.99 and a sensitivity of 36.6 μA/mM·cm2, over twice as high as unfiltered saliva. This unique filtration process can be extended to any POC diagnostic system and optimized for any biomarker detection, making electrochemical POC diagnostics more viable in the current market.
Collapse
Affiliation(s)
- Nadia Farsaeivahid
- Interdisciplinary Engineering Program, College of Engineering, Northeastern University, Boston, MA 02115, USA; (N.F.); (C.G.)
| | - Christian Grenier
- Interdisciplinary Engineering Program, College of Engineering, Northeastern University, Boston, MA 02115, USA; (N.F.); (C.G.)
| | - Ming L. Wang
- Civil and Environmental Engineering Department, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
7
|
Kolenchukova OA, Dedora AO, Stepanova LV, Kravchuk VU, Kratasyuk VA. The use of bioluminescent enzyme bioassay for the analysis of human saliva: Advantages and disadvantages. LUMINESCENCE 2024; 39:e4776. [PMID: 38769690 DOI: 10.1002/bio.4776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
The purpose of the work was to find optimal conditions for bioluminescent enzymatic analysis of saliva (based on the use of NADH:FMN oxidoreductase + luciferase) and then to determine the biological effect of using bioluminescence assay of saliva to study the physiological state of the body under normal and pathological conditions. The saliva of snowboarders and students were studied in the "rest-training" model. The saliva of patients diagnosed with acute pharyngitis was examined in the "sick-healthy" model. Bioluminescence assay was performed with a lyophilized and immobilized bi-enzyme system using cuvette, plate, and portable luminometers. The concentrations of secretory immunoglobulin A (sIgA) and cortisol were determined by enzyme immunoassay, and the total protein content was measured by spectrophotometric method. The activity of the bioluminescent system enzymes increased as the amount and volume of saliva in the sample was decreased. The cuvette and plate luminometers were sensitive to changes in the luminescence intensity in saliva assay. Luminescence intensity correlated with the concentrations of sIgA and cortisol. The integrated bioluminescent index for saliva was reduced in the "rest-training" model and increased in the "sick-healthy" model. Thus, the non-invasive bioluminescent saliva analysis may be a promising tool for assessing the health of the population.
Collapse
Affiliation(s)
- Oksana A Kolenchukova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Research Institute of Medical Problems of the North, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk, Russia
- Krasnoyarsk State Agrarian University, Krasnoyarsk, Russia
| | - Anastasia O Dedora
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Lyudmila V Stepanova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Vlada U Kravchuk
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Valentina A Kratasyuk
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Institute of Biophysics, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk, Russia
| |
Collapse
|
8
|
Kainat R, Ahmed I, Alolaywi AM, Waheed H, Sultan ZK, Moin SF. Assessment of Salivary MMP-8 and IL-1β for the Diagnosis of Periodontal Diseases in Pakistani Population. Eur J Dent 2024; 18:672-679. [PMID: 38086426 PMCID: PMC11132764 DOI: 10.1055/s-0043-1772779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVE Clinical methods use the subjective diagnosis of periodontal diseases by visual observation that could result in differences and variability of diagnosis. The addition of specific markers could aid in the accurate diagnosis of the local population. The objective of the study was to target two of the major proteins for possible significance in such an approach. MATERIALS AND METHODS Unstimulated saliva samples were collected from 60 participants aged between 18 and 70 years. Three groups each with twenty participants were recruited into periodontitis, gingivitis, and healthy control. STATISTICAL ANALYSIS The samples were analyzed using human enzyme-linked immunosorbent assay kits for matrix metalloproteinase-8 (MMP-8) and interleukin-1β (IL-1β). RESULTS SPSS version 20 was used to analyze the result. Posthoc analysis by Tukey's test revealed that MMP-8 levels were higher in gingivitis and periodontitis groups as compared with healthy controls. The test also revealed that IL-1β levels were higher in the periodontitis group compared with the healthy control and gingivitis group. Additionally, one-way analysis of variance analysis showed a significant effect on probing depth in gingivitis and periodontitis patients. The mean age of periodontitis group was significantly higher than other groups. CONCLUSION Salivary biomarkers may provide useful diagnostic information and could be utilized as tests for periodontal disease screening, prognosis, and prediction.
Collapse
Affiliation(s)
- Rida Kainat
- Department of Biochemistry, Baqai Medical University, Karachi, Pakistan
| | - Iftikhar Ahmed
- Department of Biochemistry, Baqai Medical University, Karachi, Pakistan
| | | | - Humera Waheed
- Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan
| | - Zohaib Khurshid Sultan
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa, Saudia Arabia
- Department of Anatomy, Faculty of Dentistry, Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Syed Faraz Moin
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, Pakistan
| |
Collapse
|
9
|
Myochin H, Ohshima N, Izumi T, Hisajima T, Chaleckis R, Mori M. Capillary electrophoresis using triple layer modified capillary facilitating salivary ion analyses: Application to search for potential stress markers induced by cold pressure test. J Chromatogr A 2024; 1720:464769. [PMID: 38442499 DOI: 10.1016/j.chroma.2024.464769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
In this study, we introduce a novel approach for the analysis of salivary ions using capillary electrophoresis (CE) with a triple-layer coated capillary. The capillary is sequentially coated with cationic silylating reagents, poly(vinylsulfonate), and polybrene to form a custom designed surface that effectively inhibits adsorption of protein matrix on the capillary inner wall and allows for reproducible ion analysis. For the CE with capacitively coupled contactless conductivity detection, we used suitable background electrolytes (BGEs) for salivary ion analysis. Anions were separated using a mixture of 2-(N-morpholino)ethanesulfonic acid and l-arginine, and cations were separated using that with 18-crown-6. This setup enabled rapid separation, within 4 min, together with sensitive detection. We quantified nine common anions and five cations typically found in saliva samples using this CE method, both before and after a cold pressure test (CPT, a standard stress test). The CE system demonstrated consistent ion separation across 30 consecutive measurements without requiring capillary replacement. Notably, the salivary ion balance remained predominantly anion-rich, regardless of the CPT. Cold water exposure induced greater variation in the total anion concentration than in the total cation concentration. Further analysis using multiple regression analysis revealed strong relationships between nitrate and nitrite, formate and phosphate, and potassium and nitrate, before and after the CPT. Notably, potassium and nitrate ions exhibited variations in response to stress. These results provided a method for assessing salivary ion composition and insights into the potential of salivary ions as biomarkers for stress.
Collapse
Affiliation(s)
- Hironori Myochin
- Department of Chemistry and Life Science, Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Noriyasu Ohshima
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Takashi Izumi
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan; Faculty of Health Care, Teikyo Heisei University, 2-51-4, Higashiikebukuro, Toshima-ku, Tokyo 170-8445, Japan
| | - Tatsuya Hisajima
- Faculty of Health Care, Teikyo Heisei University, 2-51-4, Higashiikebukuro, Toshima-ku, Tokyo 170-8445, Japan
| | - Romanas Chaleckis
- Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Masanobu Mori
- Department of Chemistry and Life Science, Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan.
| |
Collapse
|
10
|
Grutle LA, Holm HV, Kopperud HBM, Uhlig S. Validation of a human saliva model for the determination of leachable monomers and other chemicals from dental materials. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124073. [PMID: 38452631 DOI: 10.1016/j.jchromb.2024.124073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
This study aimed to prove the validity of a mixture of chemicals, including salts, small organic molecules, mucin, and α-amylase, as saliva surrogate ("artificial saliva") for assessing leakage of methacrylate monomers and other constituents from dental materials. To achieve this, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of 2-hydroxyethyl methacrylate (HEMA), triethylene glycol dimethacrylate (TEGDMA), diurethane dimethacrylate (UDMA), bisphenol A glycerolate dimethacrylate (BisGMA), diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO), bisphenol A (BPA), and five homologues of ethoxylated bisphenol A dimethacrylate (BisEMA EO2-6) in unstimulated and artificial saliva, and compared their concentrations in the two saliva media following either spiking with a mixture of the compounds or incubation of test specimens of printed biomaterials. Test specimens were immersed in unstimulated/artificial saliva, incubated at 37 °C for 24 h, and saliva aliquots were extracted with methanol and subsequently analyzed by LC-MS/MS. The method was validated with regard to matrix effects, linearity, selectivity, lower limits of quantification (LLOQ), precision, bias and combined measurement uncertainty (u'). The performance characteristics of the method were comparable for unstimulated and artificial saliva samples. The combined u' for individual chemicals at a concentration of 10 × LLOQ were within the range of 5.3-14 % for unstimulated saliva and 6.9-16 % for artificial saliva, except for the BisEMA homologues. Combined u' for the latter were 27-74 % in unstimulated saliva, and 27-79 % in artificial saliva. There was no detectable release of BPA from the test specimens, and the TPO concentrations were mainly below the LLOQ. TEGDMA and UDMA were detected in the highest quantities, and at comparable concentrations in the unstimulated and artificial saliva. For all BisEMA homologues, the release was higher in unstimulated saliva than in artificial saliva. The study showed that the artificial saliva model can be a suitable replacement for native saliva, but might underestimate leakage of more lipophilic methacrylates.
Collapse
Affiliation(s)
- Lene A Grutle
- Nordic Institute of Dental Materials (NIOM), Sognsveien 70A, 0855 Oslo, Norway
| | - Heidi V Holm
- Nordic Institute of Dental Materials (NIOM), Sognsveien 70A, 0855 Oslo, Norway
| | - Hilde B M Kopperud
- Nordic Institute of Dental Materials (NIOM), Sognsveien 70A, 0855 Oslo, Norway
| | - Silvio Uhlig
- Nordic Institute of Dental Materials (NIOM), Sognsveien 70A, 0855 Oslo, Norway.
| |
Collapse
|
11
|
Apoorva S, Nguyen NT, Sreejith KR. Recent developments and future perspectives of microfluidics and smart technologies in wearable devices. LAB ON A CHIP 2024; 24:1833-1866. [PMID: 38476112 DOI: 10.1039/d4lc00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Wearable devices are gaining popularity in the fields of health monitoring, diagnosis, and drug delivery. Recent advances in wearable technology have enabled real-time analysis of biofluids such as sweat, interstitial fluid, tears, saliva, wound fluid, and urine. The integration of microfluidics and emerging smart technologies, such as artificial intelligence (AI), machine learning (ML), and Internet of Things (IoT), into wearable devices offers great potential for accurate and non-invasive monitoring and diagnosis. This paper provides an overview of current trends and developments in microfluidics and smart technologies in wearable devices for analyzing body fluids. The paper discusses common microfluidic technologies in wearable devices and the challenges associated with analyzing each type of biofluid. The paper emphasizes the importance of combining smart technologies with microfluidics in wearable devices, and how they can aid diagnosis and therapy. Finally, the paper covers recent applications, trends, and future developments in the context of intelligent microfluidic wearable devices.
Collapse
Affiliation(s)
- Sasikala Apoorva
- UKF Centre for Advanced Research and Skill Development(UCARS), UKF College of Engineering and Technology, Kollam, Kerala, India, 691 302
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| | - Kamalalayam Rajan Sreejith
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| |
Collapse
|
12
|
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, Falcon‐Perez JM, Fu Q, Hill AF, Lenassi M, Lim SK, Mahoney MG, Mohanty S, Möller A, Nieuwland R, Ochiya T, Sahoo S, Torrecilhas AC, Zheng L, Zijlstra A, Abuelreich S, Bagabas R, Bergese P, Bridges EM, Brucale M, Burger D, Carney RP, Cocucci E, Colombo F, Crescitelli R, Hanser E, Harris AL, Haughey NJ, Hendrix A, Ivanov AR, Jovanovic‐Talisman T, Kruh‐Garcia NA, Ku'ulei‐Lyn Faustino V, Kyburz D, Lässer C, Lennon KM, Lötvall J, Maddox AL, Martens‐Uzunova ES, Mizenko RR, Newman LA, Ridolfi A, Rohde E, Rojalin T, Rowland A, Saftics A, Sandau US, Saugstad JA, Shekari F, Swift S, Ter‐Ovanesyan D, Tosar JP, Useckaite Z, Valle F, Varga Z, van der Pol E, van Herwijnen MJC, Wauben MHM, Wehman AM, Williams S, Zendrini A, Zimmerman AJ, MISEV Consortium, Théry C, Witwer KW. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 2024; 13:e12404. [PMID: 38326288 PMCID: PMC10850029 DOI: 10.1002/jev2.12404] [Citation(s) in RCA: 318] [Impact Index Per Article: 318.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
Collapse
Affiliation(s)
- Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Deborah C. I. Goberdhan
- Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Edit I. Buzas
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HCEMM‐SU Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
| | - Cherie Blenkiron
- Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tom A. P. Driedonks
- Department CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Uta Erdbrügger
- University of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Qing‐Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Metka Lenassi
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Paracrine Therapeutics Pte. Ltd.SingaporeSingapore
- Department of Surgery, YLL School of MedicineNational University SingaporeSingaporeSingapore
| | - Mỹ G. Mahoney
- Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Sujata Mohanty
- Stem Cell FacilityAll India Institute of Medical SciencesNew DelhiIndia
| | - Andreas Möller
- Chinese University of Hong KongHong KongHong Kong S.A.R.
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Susmita Sahoo
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP) Campus DiademaDiademaBrazil
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Andries Zijlstra
- Department of PathologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- GenentechSouth San FranciscoCaliforniaUSA
| | - Sarah Abuelreich
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Reem Bagabas
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
- National Center for Gene Therapy and Drugs based on RNA TechnologyPaduaItaly
| | - Esther M. Bridges
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Dylan Burger
- Kidney Research CentreOttawa Hopsital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
- School of Pharmaceutical SciencesUniversity of OttawaOttawaCanada
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Edveena Hanser
- Department of BiomedicineUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Norman J. Haughey
- Departments of Neurology and PsychiatryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nicole A. Kruh‐Garcia
- Bio‐pharmaceutical Manufacturing and Academic Resource Center (BioMARC)Infectious Disease Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Vroniqa Ku'ulei‐Lyn Faustino
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Diego Kyburz
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Department of RheumatologyUniversity Hospital BaselBaselSwitzerland
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical NutritionInstitute of Medicine at Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Adam L. Maddox
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Elena S. Martens‐Uzunova
- Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam, Department of UrologyRotterdamThe Netherlands
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andrea Ridolfi
- Department of Physics and Astronomy, and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Eva Rohde
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GmbH of Paracelsus Medical UniversitySalzburgAustria
- GMP Unit, Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies, EV‐TTSalzburgAustria
| | - Tatu Rojalin
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Expansion Therapeutics, Structural Biology and BiophysicsJupiterFloridaUSA
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andras Saftics
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Celer DiagnosticsTorontoCanada
| | - Simon Swift
- Waipapa Taumata Rau University of AucklandAucklandNew Zealand
| | - Dmitry Ter‐Ovanesyan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Juan P. Tosar
- Universidad de la RepúblicaMontevideoUruguay
- Institut Pasteur de MontevideoMontevideoUruguay
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Zoltan Varga
- Biological Nanochemistry Research GroupInstitute of Materials and Environmental Chemistry, Research Centre for Natural SciencesBudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Edwin van der Pol
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Andrea Zendrini
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
| | - Alan J. Zimmerman
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | | | - Clotilde Théry
- Institut Curie, INSERM U932PSL UniversityParisFrance
- CurieCoreTech Extracellular Vesicles, Institut CurieParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
13
|
Fotouhi M, Seidi S, Razeghi Y, Torfinezhad S. A dual-mode assay kit using a portable potentiostat connected to a smartphone via Bluetooth communication and a potential-power angle-based paper device susceptible for low-cost point-of-care testing of iodide and dopamine. Anal Chim Acta 2024; 1287:342127. [PMID: 38182351 DOI: 10.1016/j.aca.2023.342127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Considering that the brain controls most of the body's activities, it is very important to measure the factors affecting its function, such as dopamine and iodide. Due to the growing population in the world, it is necessary to provide fast, cheap and accurate methods with the capability of on-site analysis and without the need for invasive sampling and operator skill. As a result, there is a strong desire to replace laboratory instruments with small sensors for point-of-care testing. Paper-based analytical devices (PADs) are one of the popular zero-cost approaches to achieve this goal. RESULTS We developed a simple and disposable diagnostic paper system based on electroanalytical and potential-power angle-based methods. First, we prepared an angle-based analytical system capable of performing semi-quantitative iodide analysis simply by reading the colored angle traveled. This system design is based on a channel containing complex reagents and two pencil-drawn electrodes to apply a constant voltage accelerating the anions migration. Meanwhile, a three-electrode system based on conductive pencil graphite is developed to measure dopamine concentration based on linear sweep voltammetry. For the quantitative analysis, the voltammetric data was wirelessly transmitted to a mobile device via Bluetooth communication. In this context, a power supply providing the required voltage for the migration of iodide ions, a portable potentiostat system, and a mobile application for measuring dopamine were developed. The calibration curves for I- and dopamine range from 3.5 × 10-4-47.0 × 10-4 and 10.0 × 10-6-1000.0 × 10-6 mol L-1 with LODs of 2.3 × 10-4 and 5.0 × 10-6 mol L-1, respectively. SIGNIFICANCE AND NOVELTY A new portable dual-mode voltage-assisted integrated PAD platform was designed for iodide and dopamine analysis. The characteristics of this device allow non-experts to carry out in-field analysis using sub-100 μL saliva sample with a time-to-result of <10 min along with reducing the overall cost and operational complexity.
Collapse
Affiliation(s)
- Mina Fotouhi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran.
| | - Yasaman Razeghi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran
| | - Shahab Torfinezhad
- Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
14
|
Li Z, Chen F, Zhu N, Zhang L, Xie Z. Tip-Enhanced Sub-Femtomolar Steroid Immunosensing via Micropyramidal Flexible Conducting Polymer Electrodes for At-Home Monitoring of Salivary Sex Hormones. ACS NANO 2023; 17:21935-21946. [PMID: 37922489 DOI: 10.1021/acsnano.3c08315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Noninvasive testing and continuous monitoring of ultralow-concentration hormones in biofluids have attracted increasing interest for health management and personalized medicine, in which saliva could fulfill the demand. Steroid sex hormones such as progesterone (P4) and β-estradiol (E2) are crucial for female wellness and reproduction; however, their concentrations in saliva can vary down to sub-pM and constantly fluctuate over several orders of magnitude. This remains a major obstacle toward user-friendly and reliable monitoring at home with low-cost flexible biosensors. Herein we introduce a 3D micropyramidal electrode architecture to address such challenges and achieve an ultrasensitive flexible electrochemical immunosensor with sub-fM-level detection capability of salivary sex hormones within a few minutes. This is enabled by micropyramidal electrode arrays consisting of a poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) thin film as the coating layer and electrochemically decorated gold nanoparticles (AuNPs) to improve the antibody immobilization. The enhanced mass transport around the 3D tips provided by the micropyramidal architecture is discovered to improve the detection limit by 3 orders of magnitude, pushing it to as low as ∼100 aM for P4 and ∼20 aM for E2, along with a wide linear range up to μM. Accordingly, these hormones down to sub-fM in >1000-fold-diluted saliva samples can be accurately measured by the printed soft immunosensors, thus allowing at-home testing through simple saliva dilution to minimize the interfering substances instead of centrifugation. Finally, monitoring of the female ovarian hormone cycle of both P4 and E2 is successfully demonstrated based on the centrifuge-free saliva testing during a period of 4 weeks. This ultrasensitive and soft 3D microarchitected electrode design is believed to provide a universal platform for a diverse variety of applications spanning from accurate clinical diagnostics and counselling and in vivo detection of bioactive species to environmental and food quality tracing.
Collapse
Affiliation(s)
- Zhaoxian Li
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Fubin Chen
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Limei Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Zhuang Xie
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
15
|
Zhou Y, Sham TT, Boisdon C, Smith BL, Blair JC, Hawcutt DB, Maher S. Emergency diagnosis made easy: matrix removal and analyte enrichment from raw saliva using paper-arrow mass spectrometry. Analyst 2023; 148:5366-5379. [PMID: 37702052 DOI: 10.1039/d3an00850a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Paracetamol overdose is a leading cause of acute liver failure that can prove fatal. Establishing paracetamol concentration accurately and quickly is critical. Current detection methods are invasive, time-consuming and/or expensive. Non-invasive, rapid and cost-effective techniques are urgently required. To address this challenge, a novel approach, called Paper-Arrow Mass Spectrometry (PA-MS) has been developed. This technique combines sample collection, extraction, enrichment, separation and ionisation onto a single paper strip, and the entire analysis process, from sample to result, can be carried out in less than 10 min requiring only 2 μL of raw human saliva. PA-MS achieved a LOQ of 185 ng mL-1, mean recovery of 107 ± 7%, mean accuracy of 11 ± 8% and precision ≤5% using four concentrations, and had excellent linearity (r2 = 0.9988) in the range of 0.2-200 μg mL-1 covering the treatment concentration range, surpassing the best-in-class methods currently available for paracetamol analysis. Furthermore, from a panel of human saliva samples, inter-individual variability was found to be <10% using this approach. This technique represents a promising tool for rapid and accurate emergency diagnosis.
Collapse
Affiliation(s)
- Yufeng Zhou
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, UK.
| | - Tung-Ting Sham
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, UK.
| | - Cedric Boisdon
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, UK.
| | - Barry L Smith
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, UK.
| | - Joanne C Blair
- Department of Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
| | - Daniel B Hawcutt
- NIHR Clinical Research Facility, Alder Hey Children's Hospital, Liverpool, UK
- Department of Women's and Children's Health, University of Liverpool, UK
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, UK.
| |
Collapse
|
16
|
Liu S, Hou Y, Li Z, Yang C, Liu G. μPADs on Centrifugal Microfluidic Discs for Rapid Sample-to-Answer Salivary Diagnostics. ACS Sens 2023; 8:3520-3529. [PMID: 37669403 DOI: 10.1021/acssensors.3c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
A fully integrated device for salivary detection with a sample-in-answer-out fashion is critical for noninvasive point-of-care testing (POCT), especially for the screening of contagious disease infection. Microfluidic paper-based analytical devices (μPADs) have demonstrated their huge potential in POCT due to their low cost and easy adaptation with other components. This study developed a generic POCT platform by integrating a centrifugal microfluidic disc with μPADs to realize sample-to-answer salivary diagnostics. Specifically, a custom centrifugal microfluidic disc integrated with μPADs is fabricated, which demonstrated a high efficiency in saliva treatment. To demonstrate the capability of the integrated device for salivary analysis, the SARS-CoV-2 Nucleocapsid (N) protein, a reliable biomarker for SARS-CoV-2 acute infection, is used as the model analyte. By the chemical treatment of the μPAD surface, and by optimizing the protein immobilization conditions, the on-disc μPADs were able to detect the SARS-CoV-2 N protein down to 10 pg mL-1 with a dynamic range of 10-1000 pg mL-1 and an assay time of 8 min. The integrated device was successfully used for the quantification of the N protein of pseudovirus in saliva with high specificity and demonstrated a comparable performance to the commercial paper lateral flow assay test strips.
Collapse
Affiliation(s)
- Shixian Liu
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuting Hou
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zirui Li
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chenyu Yang
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Guozhen Liu
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
17
|
Rasitanon N, Rattanapan P, Kaewpradub K, Buranachai C, Jeerapan I. Glucose Oxidase/Egg White Protein Microparticles with a Redox Mediator for Glucose Biosensors on a Screen-Printed Electrode and a Decomposable Electrode. BIOSENSORS 2023; 13:772. [PMID: 37622858 PMCID: PMC10452649 DOI: 10.3390/bios13080772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Glucose oxidase (GOx) is a typical model enzyme used to create biosensors. Exploring a strategy to prepare ready-to-use functional enzymatic microparticles combining GOx and food-based proteins offers compelling advantages. However, no reports exist on the integration of egg white materials to synthesize functional biorecognition particles with glucose oxidation catalytic functions for electrochemical biosensors. Here, we demonstrate functional microparticles combining egg white proteins, GOx, and 9,10-phenanthrenequinone (PQ). The egg white proteins crosslink to form three-dimensional scaffolds to accommodate GOx and redox molecules. The PQ mediator enhances electron transfer between the electrode surface and the GOx enzyme's flavin adenine dinucleotides. The functional microparticles are directly applied to the printed electrode. The performance of these microparticles is evaluated using a screen-printed carbon nanotube (CNT)-modified electrode coated with GOx/PQ/egg white protein microparticles. The analytical performance of the system exhibits a linear range of 0.125-40 mM, with a maximum current (Imax) and a Michaelis-Menten constant (Km) being 0.2 µA and 4.6 mM, respectively. Additionally, a decomposable electrode composed of CNTs and edible oil conjugated with functional enzyme microparticles is shown to undergo degradation under gastric conditions. Utilizing food-based proteins to accommodate enzymes and to create redox-active microparticles for catalyzing glucose oxidation offers advantages in developing affordable and degradable bioelectrodes. This concept holds promise for advancing biocompatible electrodes in biosensor and bioelectronics applications.
Collapse
Affiliation(s)
- Natcha Rasitanon
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand; (N.R.); (P.R.); (K.K.); (C.B.)
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Parinthorn Rattanapan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand; (N.R.); (P.R.); (K.K.); (C.B.)
| | - Kanyawee Kaewpradub
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand; (N.R.); (P.R.); (K.K.); (C.B.)
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Chittanon Buranachai
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand; (N.R.); (P.R.); (K.K.); (C.B.)
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Itthipon Jeerapan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand; (N.R.); (P.R.); (K.K.); (C.B.)
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| |
Collapse
|
18
|
Kagawa M, Morioka K, Osashima M, Hemmi A, Yamamoto S, Shoji A, Uchiyama K, Nakajima H. Development of small-sized fluorescence detector for pipette tip-based biosensor for on-site diagnosis. Talanta 2023; 256:124311. [PMID: 36738624 DOI: 10.1016/j.talanta.2023.124311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
A small-sized fluorescence detector (referred to as a pipette tip [PT]-reader) was developed for a pipette tip-based biosensor. The PT-reader allows us to measure the fluorescence intensity of a solution in a truncated cone-shaped pipette tip with only the tip inserted into the PT-reader. A pipette holder made from a mixture of polydimethylsiloxane (PDMS) and carbon black was capable of the rigorous position arrangement of a truncated cone shaped-pipette tip and the prevention of stray light. The detection performance of the PT-reader was evaluated by measurement of resorufin. The limit of detection (LOD; 3σ) and the relative standard deviation (RSD, n = 4) were estimated to be 0.46 μM and 0.47-4.1%, respectively. This performance was comparable to that of a desktop-type fluorescence microplate reader. In addition, the PT-reader was applied to the quantification of immunoglobulin A (IgA), and the LOD (3σ) of IgA was estimated to be 1.0 ng/mL. The quantitation values of IgA in human saliva obtained by the PT-based enzyme-linked immunosorbent assay (PT-ELISA) were in agreement with those obtained by conventional ELISA. The PT-reader is expected to be useful for low-cost and user-friendly measurements, and the technique of device development proposed in this study will contribute to the progress of on-site medical diagnosis.
Collapse
Affiliation(s)
- Masakazu Kagawa
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Kazuhiro Morioka
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Moeko Osashima
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Akihide Hemmi
- Mebius Advanced Technology Ltd., 3-31-6 Nishiogi-kita, Suginami-ku, Tokyo, 167-0042, Japan
| | - Shoji Yamamoto
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Atsushi Shoji
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Katsumi Uchiyama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
19
|
Yan Z, Shi Z, Wu Y, Lv J, Deng P, Liu G, An Z, Che Z, Lu Y, Shan J, Liu Q. Wireless, noninvasive therapeutic drug monitoring system for saliva measurement toward medication management of schizophrenia. Biosens Bioelectron 2023; 234:115363. [PMID: 37146537 DOI: 10.1016/j.bios.2023.115363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
As an efficient patient management tool of precision medicine, decentralized therapeutic drug monitoring (TDM) provides new vision for therapy adherence and health management of schizophrenia in a convenient manner. To dispense with psychologically burdensome blood sampling and to achieve real-time, noninvasive, and continual circulating tracking of drugs with narrow therapeutic window, we study the temporal metabolism of clozapine, an antipsychotic with severe side effect, in rat saliva by a wireless, integrated and patient-friendly smart lollipop sensing system. Highly sensitive and efficient sensing performance with acceptable anti-biofouling property was realized based on the synergistic effect of electrodeposited reduced graphene oxide and ionic liquids in pretreatment-free saliva with low detection limit and good accuracy cross-validated with conventional method. On this basis, continual salivary drug levels with distinctive pharmacokinetics were found in different routes of drug administration. Pilot experiment reveals a strong correlation between blood and saliva clozapine and a positive relationship between drug dosage and salivary drug level, indicating potential applications presented by noninvasive saliva analysis towards patient-centered and personalized pharmacotherapy and adherence management via proposed smart lollipop system.
Collapse
Affiliation(s)
- Zupeng Yan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhenghan Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yue Wu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Jingjiang Lv
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Peixue Deng
- Life Sciences Institute, Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Guang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Zijian An
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ziyuan Che
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China; Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, PR China.
| | - Jianzhen Shan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; Cancer Center, Zhejiang University, Hangzhou, 310058, PR China.
| | - Qingjun Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
20
|
Kanioura A, Geka G, Kochylas I, Likodimos V, Gardelis S, Dimitriou A, Papanikolaou N, Kakabakos S, Petrou P. SERS Determination of Oxidative Stress Markers in Saliva Using Substrates with Silver Nanoparticle-Decorated Silicon Nanowires. BIOSENSORS 2023; 13:273. [PMID: 36832039 PMCID: PMC9953924 DOI: 10.3390/bios13020273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Glutathione and malondialdehyde are two compounds commonly used to evaluate the oxidative stress status of an organism. Although their determination is usually performed in blood serum, saliva is gaining ground as the biological fluid of choice for oxidative stress determination at the point of need. For this purpose, surface-enhanced Raman spectroscopy (SERS), which is a highly sensitive method for the detection of biomolecules, could offer additional advantages regarding the analysis of biological fluids at the point of need. In this work, silicon nanowires decorated with silver nanoparticles made by metal-assisted chemical etching were evaluated as substrates for the SERS determination of glutathione and malondialdehyde in water and saliva. In particular, glutathione was determined by monitoring the reduction in the Raman signal obtained from substrates modified with crystal violet upon incubation with aqueous glutathione solutions. On the other hand, malondialdehyde was detected after a reaction with thiobarbituric acid to produce a derivative with a strong Raman signal. The detection limits achieved after optimization of several assay parameters were 50 and 3.2 nM for aqueous solutions of glutathione and malondialdehyde, respectively. In artificial saliva, however, the detection limits were 2.0 and 0.32 μM for glutathione and malondialdehyde, respectively, which are, nonetheless, adequate for the determination of these two markers in saliva.
Collapse
Affiliation(s)
- Anastasia Kanioura
- Immunoassays/Immunosensors Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece
| | - Georgia Geka
- Immunoassays/Immunosensors Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece
| | - Ioannis Kochylas
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece
| | - Vlassis Likodimos
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece
| | - Spiros Gardelis
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece
| | - Anastasios Dimitriou
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece
| | - Nikolaos Papanikolaou
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece
| | - Sotirios Kakabakos
- Immunoassays/Immunosensors Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece
| | - Panagiota Petrou
- Immunoassays/Immunosensors Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece
| |
Collapse
|
21
|
Cardoso AG, Viltres H, Ortega GA, Phung V, Grewal R, Mozaffari H, Ahmed SR, Rajabzadeh AR, Srinivasan S. Electrochemical sensing of analytes in saliva: Challenges, progress, and perspectives. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
22
|
Shang YF, Shen YY, Zhang MC, Lv MC, Wang TY, Chen XQ, Lin J. Progress in salivary glands: Endocrine glands with immune functions. Front Endocrinol (Lausanne) 2023; 14:1061235. [PMID: 36817607 PMCID: PMC9935576 DOI: 10.3389/fendo.2023.1061235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
The production and secretion of saliva is an essential function of the salivary glands. Saliva is a complicated liquid with different functions, including moistening, digestion, mineralization, lubrication, and mucosal protection. This review focuses on the mechanism and neural regulation of salivary secretion, and saliva is secreted in response to various stimuli, including odor, taste, vision, and mastication. The chemical and physical properties of saliva change dynamically during physiological and pathophysiological processes. Moreover, the central nervous system modulates salivary secretion and function via various neurotransmitters and neuroreceptors. Smell, vision, and taste have been investigated for the connection between salivation and brain function. The immune and endocrine functions of the salivary glands have been explored recently. Salivary glands play an essential role in innate and adaptive immunity and protection. Various immune cells such as B cells, T cells, macrophages, and dendritic cells, as well as immunoglobins like IgA and IgG have been found in salivary glands. Evidence supports the synthesis of corticosterone, testosterone, and melatonin in salivary glands. Saliva contains many potential biomarkers derived from epithelial cells, gingival crevicular fluid, and serum. High level of matrix metalloproteinases and cytokines are potential markers for oral carcinoma, infectious disease in the oral cavity, and systemic disease. Further research is required to monitor and predict potential salivary biomarkers for health and disease in clinical practice and precision medicine.
Collapse
Affiliation(s)
- Yu Feng Shang
- Department of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yi Yang Shen
- Department of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University School of Stomatology, Hangzhou, China
| | - Meng Chen Zhang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Min Chao Lv
- Department of Orthopedics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Tong Ying Wang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xue Qun Chen
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Jun Lin
- Department of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University School of Stomatology, Hangzhou, China
- *Correspondence: Jun Lin,
| |
Collapse
|
23
|
Hao Y, Zeng Z, Peng X, Ai P, Han Q, Ren B, Li M, Wang H, Zhou X, Zhou X, Ma Y, Cheng L. The human oral - nasopharynx microbiome as a risk screening tool for nasopharyngeal carcinoma. Front Cell Infect Microbiol 2022; 12:1013920. [PMID: 36530430 PMCID: PMC9748088 DOI: 10.3389/fcimb.2022.1013920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common head and neck cancer with a poor prognosis. There is an urgent need to develop a simple and convenient screening tool for early detection and risk screening of NPC. 139 microbial samples were collected from 40 healthy people and 39 patients with nasopharyngeal biopsy. A total of 40 and 39 oral, eight and 27 nasal cavity, nine and 16 nasopharyngeal microbial samples were collected from the two sets of individuals. A risk screening tool for NPC was established by 16S rDNA sequencing and random forest. Patients with nasopharyngeal biopsy had significantly lower nasal cavity and nasopharynx microbial diversities than healthy people. The beta diversity of the oral microbiome was significantly different between the two groups. The NPC screening tools based on nasopharyngeal and oral microbiomes have 88% and 77.2% accuracies, respectively. The nasopharyngeal biopsy patients had significantly higher Granulicatella abundance in their oral cavity and lower Pseudomonas and Acinetobacter in the nasopharynx than healthy people. This study established microbiome-based non-invasive, simple, no radiation, and low-cost NPC screening tools. Individuals at a high risk of NPC should be advised to seek further examination, which might improve the early detection of NPC and save public health costs.
Collapse
Affiliation(s)
- Yu Hao
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhi Zeng
- Head & Neck Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Ping Ai
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Han
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Oral Pathology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Haohao Wang
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yue Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China,*Correspondence: Lei Cheng, ; Yue Ma,
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Lei Cheng, ; Yue Ma,
| |
Collapse
|
24
|
Wentland L, Cook JM, Minzlaff J, Ramsey SA, Johnston ML, Fu E. Field-use device for the electrochemical quantification of carbamazepine levels in a background of human saliva. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Santonocito R, Tuccitto N, Pappalardo A, Trusso Sfrazzetto G. Smartphone-Based Dopamine Detection by Fluorescent Supramolecular Sensor. Molecules 2022; 27:7503. [PMID: 36364331 PMCID: PMC9654496 DOI: 10.3390/molecules27217503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 08/26/2023] Open
Abstract
Supramolecular recognition of dopamine by two quinoxaline cavitands was studied in solution by fluorescence titrations, ESI-MS and ROESY measurements. In addition, the tetraquinoxaline cavitand was dropped onto a siloxane-based polymeric solid support, obtaining a sensor able to detect dopamine in a linear range of concentrations 10 Mm-100 pM, with a detection limit of 1 pM, much lower than the normal concentration values in the common human fluids (plasma, urine and saliva), by using a simple smartphone as detector. This sensor shows also good selectivity for dopamine respect to the other common analytes contained in a saliva sample and can be reused after acid-base cycles, paving the way for the realization of real practical sensor for human dopamine detection.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- Laboratory for Molecular Surfaces and Nanotechnology—CSGI, 95125 Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, 95125 Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, 95125 Catania, Italy
| |
Collapse
|
26
|
Ngamchuea K, Moonla C, Watwiangkham A, Wannapaiboon S, Suthirakun S. Electrochemical and structural investigation of copper phthalocyanine: Application in the analysis of kidney disease biomarker. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Goyal A, Sakata T. Development of a Redox-Label-Doped Molecularly Imprinted Polymer on β-Cyclodextrin/Reduced Graphene Oxide for Electrochemical Detection of a Stress Biomarker. ACS OMEGA 2022; 7:33491-33499. [PMID: 36157772 PMCID: PMC9494674 DOI: 10.1021/acsomega.2c04423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Cortisol is a major stress biomarker involved in the regulation of metabolic and immune responses. Readily accessible assays with sufficient quantitative and temporal resolution can assist in prevention, early diagnosis, and management of chronic diseases. Whereas conventional assays are costly in terms of time, labor, and capital, an electrochemical approach offers the possibility of miniaturization and detection at the point-of-care. Here, we investigate the biosensor application of molecularly imprinted polypyrrole (PPy) doped with hexacyanoferrate (HCF) and coupled to reduced graphene oxide functionalized with β-cyclodextrin (β-CD). β-CD provides an inclusion site for lipophilic cortisol and was electrochemically grafted simultaneous with reduction of GO. Next, PPy was electrochemically deposited in presence of cortisol template with HCF dopant ions serving as intrinsic redox probe. Thus, the sensor response was evaluated via changes of redox peak current in cyclic voltammetry and demonstrated a broad logarithmic detection range (5 pg/mL to 5000 ng/mL, R 2 = 0.995), with a sensitivity of 8.809 μA log-1 (ng/mL) cm-2 and LOD of 19.3 pM. The sensor was shown to be specific toward cortisol in reference to salivary cortisol concentration in saliva over structural analogues. The sensor was exhibited to determine cortisol in artificial saliva at normal and elevated levels. The good performance and facile electrochemical fabrication of this antibody- and external label-free interface are promising for the development of affordable point-of-care biosensors.
Collapse
|
28
|
Plasmonic sensor for hydrogen sulphide in saliva: Multisensor platform and bag format. Talanta 2022; 245:123449. [DOI: 10.1016/j.talanta.2022.123449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 01/01/2023]
|
29
|
Walker MD, Vincent JC, Benson L, Stone CA, Harris G, Ambler RE, Watts P, Slatter T, López-García M, King MF, Noakes CJ, Thomas RJ. Effect of Relative Humidity on Transfer of Aerosol-Deposited Artificial and Human Saliva from Surfaces to Artificial Finger-Pads. Viruses 2022; 14:v14051048. [PMID: 35632793 PMCID: PMC9146372 DOI: 10.3390/v14051048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
Surface to hand transfer of viruses represents a potential mechanism for human exposure. An experimental process for evaluating the touch transfer of aerosol-deposited material is described based on controlling surface, tribological, and soft matter components of the transfer process. A range of high-touch surfaces were evaluated. Under standardized touch parameters (15 N, 1 s), relative humidity (RH) of the atmosphere around the contact transfer event significantly influenced transfer of material to the finger-pad. At RH < 40%, transfer from all surfaces was <10%. Transfer efficiency increased markedly as RH increased, reaching a maximum of approximately 50%. The quantity of material transferred at specific RHs above 40% was also dependent on roughness of the surface material and the properties of the aerosol-deposited material. Smooth surfaces, such as melamine and stainless steel, generated higher transfer efficiencies compared to those with textured roughness, such as ABS pinseal and KYDEX® plastics. Pooled human saliva was transferred at a lower rate compared to artificial saliva, indicating the role of rheological properties. The artificial saliva data were modeled by non-linear regression and the impact of environmental humidity and temperature were evaluated within a Quantitative Microbial Risk Assessment model using SARS-CoV-2 as an example. This illustrated that the trade-off between transfer efficiency and virus survival may lead to the highest risks of fomite transmissions in indoor environments with higher humidity.
Collapse
Affiliation(s)
- Maurice D. Walker
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (M.D.W.); (J.C.V.); (C.A.S.); (G.H.); (R.E.A.); (P.W.)
| | - Jack C. Vincent
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (M.D.W.); (J.C.V.); (C.A.S.); (G.H.); (R.E.A.); (P.W.)
| | - Lee Benson
- School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK; (L.B.); (M.-F.K.); (C.J.N.)
| | - Corinne A. Stone
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (M.D.W.); (J.C.V.); (C.A.S.); (G.H.); (R.E.A.); (P.W.)
| | - Guy Harris
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (M.D.W.); (J.C.V.); (C.A.S.); (G.H.); (R.E.A.); (P.W.)
| | - Rachael E. Ambler
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (M.D.W.); (J.C.V.); (C.A.S.); (G.H.); (R.E.A.); (P.W.)
| | - Pat Watts
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (M.D.W.); (J.C.V.); (C.A.S.); (G.H.); (R.E.A.); (P.W.)
| | - Tom Slatter
- Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK;
| | - Martín López-García
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK;
| | - Marco-Felipe King
- School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK; (L.B.); (M.-F.K.); (C.J.N.)
| | - Catherine J. Noakes
- School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK; (L.B.); (M.-F.K.); (C.J.N.)
| | - Richard J. Thomas
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (M.D.W.); (J.C.V.); (C.A.S.); (G.H.); (R.E.A.); (P.W.)
- Correspondence:
| |
Collapse
|
30
|
Response to Treatment with Melatonin and Clonazepam versus Placebo in Patients with Burning Mouth Syndrome. J Clin Med 2022; 11:jcm11092516. [PMID: 35566642 PMCID: PMC9101769 DOI: 10.3390/jcm11092516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 12/23/2022] Open
Abstract
Objective: to evaluate the efficacy of melatonin and clonazepam versus placebo in patients with burning mouth syndrome (BMS). Methods: a prospective double-blind study was carried out in patients with BMS and randomized to three groups: melatonin (1 mg once a day), clonazepam (0.5 mg/twice a day), or a placebo once a day, for 8 weeks. The clinical changes were evaluated, including xerostomia, the Oral Health Impact Profile 14 (OHIP-14) score, Pittsburg Sleep Quality Index, and the Hospital Anxiety and Depression Scale (HADS). Oxygen saturation and heart rate were recorded, with an analysis of salivary biomarkers in the forms of oxytocin, ferritin, adenosine deaminase (ADA), total proteins, and alpha-amylase. Results: a total of 64 patients were analyzed. A significant decrease in burning sensation was recorded with melatonin (7.8 ± 1.54 pre-treatment, 5.78 ± 2.54 post-treatment; p < 0.001) and clonazepam (8.75 ± 1.2 pre-treatment, 5.5 ± 3.6 post-treatment (p < 0.01). With regard to quality of life (OHIP-14), significant improvements were observed before and after the administration of melatonin (p < 0.001) and clonazepam (p = 0.001). On the other hand, with regard to the changes in salivary biomarkers following treatment, negative correlations were found between oxytocin and drainage (r = −0.410; p = 0.009) and between the HADS-D score and ferritin (r = −0.312; p = 0.05). While salivary amylase showed positive correlation with heart rate (r = 0.346; p = 0.029) and oxygen saturation (r = 0.419; p = 0.007). Conclusions: melatonin and clonazepam were shown to be effective at reducing the burning sensation and improving quality of life. Both drugs were found to be safe, with no major adverse effects in patients with BMS. Melatonin may be regarded as an alternative treatment for patients with BMS, though further studies are needed to confirm its effectiveness.
Collapse
|
31
|
Tsiasioti A, Georgiadou E, Zacharis CK, Tzanavaras PD. Development and validation of a direct HPLC method for the determination of salivary glutathione disulphide using a core shell column and post column derivatization with o-phthalaldehyde. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1197:123216. [PMID: 35306350 DOI: 10.1016/j.jchromb.2022.123216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Glutathione disulfide (GSSG) has been monitored in human saliva samples by an optimized and validated method that is based on liquid chromatography coupled to on-line post column derivatization. The analyte was separated from the sample matrix using a 100% aqueous mobile phase through a core-shell reversed phase column. Following optimization of the reaction using Box- Behnken experimental design and validation, GSSG was quantified accurately and selectively in the range of 100-2000 nmol L-1 with a LOD of 20 nmol L-1. GSSG was quantified in 15 out of 20 human saliva samples (75%) with a mean value of 860 nmol L-1 (150-4600 nmol L-1). Blocking of reduced Glutathione with N-ethylmaleimide ensured stability of the samples for at least 72 h at all temperatures examined.
Collapse
Affiliation(s)
- Apostolia Tsiasioti
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Eirini Georgiadou
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece.
| |
Collapse
|
32
|
Quartieri E, Casali E, Ferrari E, Ghezzi B, Gallo M, Spisni A, Meleti M, Pertinhez TA. Sample optimization for saliva 1H-NMR metabolic profiling. Anal Biochem 2022; 640:114412. [PMID: 34656613 DOI: 10.1016/j.ab.2021.114412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 11/01/2022]
Abstract
Nuclear Magnetic Resonance (NMR) based metabolomic analysis of whole saliva has provided potential diagnostic biomarkers for numerous human diseases contributing to a better understanding of their mechanisms. However, a comprehensive interpretation of the significance of metabolites in whole, parotid, and submandibular/sublingual saliva subtypes is still missing. Precision and reproducibility of sample preparation is an essential step. Here, we present a simple and efficient protocol for saliva 1H-NMR metabolic profiling. This procedure has been specifically designed and optimized for the identification and quantification of low concentration metabolites (as low as 1.1 μM) and is suitable for all the saliva subtypes.
Collapse
Affiliation(s)
- Eleonora Quartieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Emanuela Casali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Benedetta Ghezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Centro Universitario di Odontoiatria, University of Parma, Parma, Italy
| | - Mariana Gallo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marco Meleti
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Centro Universitario di Odontoiatria, University of Parma, Parma, Italy
| | - Thelma A Pertinhez
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
33
|
Gkantiri AM, Tsiasioti A, Zacharis CK, Tzanavaras PD. HPLC method with post-column derivatization for the analysis of endogenous histidine in human saliva validated using the total-error concept. Amino Acids 2022; 54:399-409. [PMID: 35182245 DOI: 10.1007/s00726-022-03135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
Histidine (His) is an essential amino acid that plays an important biological role and associated with various pathological conditions. A simple and reliable method for the determination of endogenous histidine in human saliva was optimized and validated. The analyte was separated from the saliva matrix by cation exchange chromatography and detected fluorimetrically (λex/λem = 360/440 nm) after online, specific post-column derivatization (PCD) reaction with o-phthalaldehyde. The chemical and instrumental variables of the post-column reaction were optimized using Box-Behnken experimental design to achieve maximum sensitivity. Method validation was carried out employing the total-error concept. Histidine could be analyzed reliably in the range of 0.5-5.0 μΜ, with an LOD (S/N = 3) of 50 nM. Monte Carlo simulations and capability analysis were used to investigate the ruggedness of the PCD reaction. The sampling strategy, sample preparation and stability were also investigated. Seventeen saliva samples were successfully analyzed with histidine levels being in the range of 2.7-19.5 μΜ.
Collapse
Affiliation(s)
- Anna-Maria Gkantiri
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Apostolia Tsiasioti
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
34
|
Yu M, Roszkowska A, Pawliszyn J. In Vivo Solid-Phase Microextraction and Applications in Environmental Sciences. ACS ENVIRONMENTAL AU 2022; 2:30-41. [PMID: 37101756 PMCID: PMC10114724 DOI: 10.1021/acsenvironau.1c00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solid-phase microextraction (SPME) is a well-established sample-preparation technique for environmental studies. The application of SPME has extended from the headspace extraction of volatile compounds to the capture of active components in living organisms via the direct immersion of SPME probes into the tissue (in vivo SPME). The development of biocompatible coatings and the availability of different calibration approaches enable the in vivo sampling of exogenous and endogenous compounds from the living plants and animals without the need for tissue collection. In addition, new geometries such as thin-film coatings, needle-trap devices, recession needles, coated tips, and blades have increased the sensitivity and robustness of in vivo sampling. In this paper, we detail the fundamentals of in vivo SPME, including the various extraction modes, coating geometries, calibration methods, and data analysis methods that are commonly employed. We also discuss recent applications of in vivo SPME in environmental studies and in the analysis of pollutants in plant and animal tissues, as well as in human saliva, breath, and skin analysis. As we show, in vivo SPME has tremendous potential for the targeted and untargeted screening of small molecules in living organisms for environmental monitoring applications.
Collapse
Affiliation(s)
- Miao Yu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Gdansk 80-416, Poland
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
35
|
Wang B, Zhao C, Wang Z, Yang KA, Cheng X, Liu W, Yu W, Lin S, Zhao Y, Cheung KM, Lin H, Hojaiji H, Weiss PS, Stojanović MN, Tomiyama AJ, Andrews AM, Emaminejad S. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. SCIENCE ADVANCES 2022; 8:eabk0967. [PMID: 34985954 PMCID: PMC8730602 DOI: 10.1126/sciadv.abk0967] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Wearable technologies for personalized monitoring require sensors that track biomarkers often present at low levels. Cortisol—a key stress biomarker—is present in sweat at low nanomolar concentrations. Previous wearable sensing systems are limited to analytes in the micromolar-millimolar ranges. To overcome this and other limitations, we developed a flexible field-effect transistor (FET) biosensor array that exploits a previously unreported cortisol aptamer coupled to nanometer-thin-film In2O3 FETs. Cortisol levels were determined via molecular recognition by aptamers where binding was transduced to electrical signals on FETs. The physiological relevance of cortisol as a stress biomarker was demonstrated by tracking salivary cortisol levels in participants in a Trier Social Stress Test and establishing correlations between cortisol in diurnal saliva and sweat samples. These correlations motivated the development and on-body validation of an aptamer-FET array–based smartwatch equipped with a custom, multichannel, self-referencing, and autonomous source measurement unit enabling seamless, real-time cortisol sweat sensing.
Collapse
Affiliation(s)
- Bo Wang
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhaoqing Wang
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kyung-Ae Yang
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Xuanbing Cheng
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wenzhuo Yu
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shuyu Lin
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichao Zhao
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haisong Lin
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hannaneh Hojaiji
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Milan N. Stojanović
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - A. Janet Tomiyama
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author. (A.M.A.); (S.E.)
| | - Sam Emaminejad
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author. (A.M.A.); (S.E.)
| |
Collapse
|
36
|
Rattanaumpa T, Maensiri S, Ngamchuea K. Microporous carbon in the selective electro-oxidation of molecular biomarkers: uric acid, ascorbic acid, and dopamine. RSC Adv 2022; 12:18709-18721. [PMID: 35873328 PMCID: PMC9235059 DOI: 10.1039/d2ra03126d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 12/13/2022] Open
Abstract
Herein, we demonstrate the superior electrocatalytic activities of microporous carbon in the oxidation of three molecular biomarkers, ascorbic acid (AA), dopamine (DA), and uric acid (UA), which are co-present in biological fluids.
Collapse
Affiliation(s)
- Tidapa Rattanaumpa
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Santi Maensiri
- School of Physics, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Kamonwad Ngamchuea
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
37
|
Shakeel S, Ilyas MS, Fahim A, Ahsan A, Majid H, Ashraf M, Akhter N, Alam MK. Effect of Different Preparations of Fluoride Gel on Salivary pH of Albino Rats. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2022. [DOI: 10.1590/pboci.2022.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Affiliation(s)
| | | | | | - Amna Ahsan
- Post Graduate Medical Institute, Pakistan
| | - Hina Majid
- Post Graduate Medical Institute, Pakistan
| | | | - Naseem Akhter
- The Children’s Hospital and Institute of Child Health, Pakistan
| | | |
Collapse
|
38
|
Li ZX, Zha YM, Jiang GY, Huang YX. AI aided analysis on saliva crystallization of pregnant women for accurate estimation of delivery date and fetal status. IEEE J Biomed Health Inform 2021; 26:2320-2330. [PMID: 34910643 DOI: 10.1109/jbhi.2021.3135534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Saliva contains similar molecular components to serum. Analysis of saliva can provide important diagnostic information about the body. Here we report an artificial intelligence (AI) aided home-based method that can let pregnant women perform daily monitoring on their pregnant status and accurate prediction on their delivery date by the pattern analysis of their salivary crystals. The method was developed based on the information obtained from our investigation on the saliva samples of 170 pregnant women about the correlation of the salivary crystal pattern with pregnant age and fetal status. It demonstrated that the patterns of salivary crystallization could act as indicators of the pregnant age, fetal state, and some medical conditions of pregnant women. On this basis, with the aid of AI recognition and analysis of the fractal dimension and some characteristic crystals in the salivary crystallization, we performed estimation on the delivery date in both quantitative and qualitative manners. The accuracy of the prediction on 15 pregnant women was satisfactory: 100 % delivering in the predicted week, 93.3 % within the estimated three days, and 86.7 % on the day as the prediction. We also developed a simple smartphone-based AI-aided salivary crystal imaging and analysis device as an auxiliary means to let pregnant women monitor their fetal status daily at home and predict their delivery date with adequate accuracy.
Collapse
|
39
|
Abstract
The use of saliva as a diagnostic biofluid has been increasing in recent years, thanks to the identification and validation of new biomarkers and improvements in test accuracy, sensitivity, and precision that enable the development of new noninvasive and cost-effective devices. However, the lack of standardized methods for sample collection, treatment, and storage contribute to the overall variability and lack of reproducibility across analytical evaluations. Furthermore, the instability of salivary biomarkers after sample collection hinders their translation into commercially available technologies for noninvasive monitoring of saliva in home settings. The present review aims to highlight the status of research on the challenges of collecting and using diagnostic salivary samples, emphasizing the methodologies used to preserve relevant proteins, hormones, genomic, and transcriptomic biomarkers during sample handling and analysis.
Collapse
Affiliation(s)
- Luciana d'Amone
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Giusy Matzeu
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Fiorenzo G Omenetto
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States.,Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States.,Department of Physics, Tufts University, Medford, Massachusetts 02155, United States.,Laboratory for Living Devices, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
40
|
McKetney J, Jenkins CC, Minogue C, Mach PM, Hussey EK, Glaros TG, Coon J, Dhummakupt ES. Proteomic and metabolomic profiling of acute and chronic stress events associated with military exercises. Mol Omics 2021; 18:279-295. [PMID: 34860218 DOI: 10.1039/d1mo00271f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By characterizing physiological changes that occur in warfighters during simulated combat, we can start to unravel the key biomolecular components that are linked to physical and cognitive performance. Viable field-based sensors for the warfighter must be rapid and noninvasive. In an effort to facilitate this, we applied a multiomics pipeline to characterize the stress response in the saliva of warfighters to correlate biomolecular changes with overall performance and health. In this study, two different stress models were observed - one of chronic stress and one of acute stress. In both models, significant perturbations in the immune, metabolic, and protein manufacturing/processing systems were observed. However, when differentiating between stress models, specific metabolites associated with the "fight or flight" response and protein folding were seen to be discriminate of the acute stress model.
Collapse
Affiliation(s)
- Justin McKetney
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706, USA. .,National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Conor C Jenkins
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, MD 21010, USA.
| | - Catie Minogue
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706, USA. .,National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Phillip M Mach
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, MD 21010, USA.
| | - Erika K Hussey
- DEVCOM Soldier Center, Natick, MA 01760, USA.,Defense Innovation Unit, Mountain View, CA 94043, USA
| | - Trevor G Glaros
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, MD 21010, USA. .,Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Joshua Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706, USA. .,National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA.,Morgridge Institute for Research, Madison, WI 53515, USA.,Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
41
|
Papavasileiou AV, Trachioti MG, Hrbac J, Prodromidis MI. Simultaneous determination of guanine and adenine in human saliva with graphite sparked screen-printed electrodes. Talanta 2021; 239:123119. [PMID: 34864536 DOI: 10.1016/j.talanta.2021.123119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
Saliva represents one of the most useful biological samples for non-invasive testing of health status and diseases prognosis and therefore, the development of advanced sensors enabling the determination of biomarkers in unspiked human whole saliva is of immense importance. Herein, we report on the development of a screen-printed graphite sensor modified with carbon nanomaterials generated by spark discharge for the determination of guanine and adenine in unspiked human whole saliva. The designed sensor was developed with a "green", extremely simple, fast (16 s), fully automated "linear mode" sparking process implemented with a 2D positioning device. Carbon nanomaterial-modified surfaces exhibit outstanding electrocatalytic properties enabling the determination of guanine and adenine over the concentration range 5 - 1000 nM and 25 - 1000 nM, while achieving limits of detection (S/N 3) as low as 2 nM and 8 nM, respectively. The sensor was successfully applied to the determination of purine bases in unspiked human whole saliva following a simple assay protocol based on ultrafiltration that effectively alleviates biofouling issues. Recovery was 96-108%.
Collapse
Affiliation(s)
| | - Maria G Trachioti
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Jan Hrbac
- Department of Chemistry, Masaryk University, 625 00, Brno, Czech Republic
| | - Mamas I Prodromidis
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece; Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina, Greece.
| |
Collapse
|
42
|
Ornelas-González A, Ortiz-Martínez M, González-González M, Rito-Palomares M. Enzymatic Methods for Salivary Biomarkers Detection: Overview and Current Challenges. Molecules 2021; 26:7026. [PMID: 34834116 PMCID: PMC8624596 DOI: 10.3390/molecules26227026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection is a key factor in patient fate. Currently, multiple biomolecules have been recognized as biomarkers. Nevertheless, their identification is only the starting line on the way to their implementation in disease diagnosis. Although blood is the biofluid par excellence for the quantification of biomarkers, its extraction is uncomfortable and painful for many patients. In this sense, there is a gap in which saliva emerges as a non-invasive and valuable source of information, as it contains many of the biomarkers found in blood. Recent technological advances have made it possible to detect and quantify biomarkers in saliva samples. However, there are opportunity areas in terms of cost and complexity, which could be solved using simpler methodologies such as those based on enzymes. Many reviews have focused on presenting the state-of-the-art in identifying biomarkers in saliva samples. However, just a few of them provide critical analysis of technical elements for biomarker quantification in enzymatic methods for large-scale clinical applications. Thus, this review proposes enzymatic assays as a cost-effective alternative to overcome the limitations of current methods for the quantification of biomarkers in saliva, highlighting the technical and operational considerations necessary for sampling, method development, optimization, and validation.
Collapse
Affiliation(s)
| | | | - Mirna González-González
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. Morones Prieto 3000, Monterrey 64710, N.L., Mexico; (A.O.-G.); (M.O.-M.)
| | - Marco Rito-Palomares
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. Morones Prieto 3000, Monterrey 64710, N.L., Mexico; (A.O.-G.); (M.O.-M.)
| |
Collapse
|
43
|
Sangsawang R, Buranachai C, Thavarungkul P, Kanatharana P, Jeerapan I. Cavitas electrochemical sensors for the direct determination of salivary thiocyanate levels. Mikrochim Acta 2021; 188:415. [PMID: 34755233 DOI: 10.1007/s00604-021-05067-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022]
Abstract
Noninvasive diagnosis using salivary samples to detect thiocyanate provides vital information on individual health. This article demonstrates the first example of a wearable sensing device to noninvasively assess thiocyanate levels. The customized screen-printed electrode system is integrated into a form of a mouthguard squarewave-voltammetric sensor toward the convenient and fast detection of the salivary biomarker within 15 s. The sensor with a protective film to mitigate the effect of biofouling offers high sensitivity and selectivity toward the detection of thiocyanate ions. Partial least square regression is applied to analyze the high-order squarewave-voltammetric data over the applied potential range of 0-1.75 V vs Ag/AgCl and quantify the thiocyanate concentration in a complex matrix. The mouthguard sensor operating under physiological conditions can monitor a wide range of thiocyanate (up to 11 mM) with a low detection limit of 30 µM. The demonstration introduces a unique approach, that obviates the requirement for blood sampling, to study thiocyanate levels of healthy people, cigarette smokers, or people with other health conditions. It is envisioned that the new cavitas device possesses a substantial promise for diverse biomedical diagnosis applications.
Collapse
Affiliation(s)
- Rachanon Sangsawang
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Chongdee Buranachai
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Itthipon Jeerapan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand. .,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
44
|
Parrilla M, Vanhooydonck A, Watts R, De Wael K. Wearable wristband-based electrochemical sensor for the detection of phenylalanine in biofluids. Biosens Bioelectron 2021; 197:113764. [PMID: 34753096 DOI: 10.1016/j.bios.2021.113764] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/16/2021] [Accepted: 10/31/2021] [Indexed: 01/08/2023]
Abstract
Wearable electrochemical sensors are driven by the user-friendly capability of on-site detection of key biomarkers for health management. Despite the advances in biomolecule monitoring such as glucose, still, several unmet clinical challenges need to be addressed. For example, patients suffering from phenylketonuria (PKU) should be able to monitor their phenylalanine (PHE) level in a rapid, decentralized, and affordable manner to avoid high levels of PHE in the body which can lead to a profound and irreversible mental disability. Herein, we report a wearable wristband electrochemical sensor for the monitoring of PHE tackling the necessity of controlling PHE levels in PHE hydroxylase deficiency patients. The proposed electrochemical sensor is based on a screen-printed electrode (SPE) modified with a membrane consisting of Nafion, to avoid interferences in biofluids. The membrane also consists of sodium 1,2-naphthoquinone-4-sulphonate for the in situ derivatization of PHE into an electroactive product, allowing its electrochemical oxidation at the surface of the SPE in alkaline conditions. Importantly, the electrochemical sensor is integrated into a wristband configuration to enhance user interaction and engage the patient with PHE self-monitoring. Besides, a paper-based sampling strategy is designed to alkalinize the real sample without the need for sample pretreatment, and thus simplify the analytical process. Finally, the wearable device is tested for the determination of PHE in saliva and blood serum. The proposed wristband-based sensor is expected to impact the PKU self-monitoring, facilitating the daily lives of PKU patients toward optimal therapy and disease management.
Collapse
Affiliation(s)
- Marc Parrilla
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Andres Vanhooydonck
- Product Development Research Group, Faculty of Design Sciences, University of Antwerp, Ambtmanstraat 1, 2000, Antwerp, Belgium
| | - Regan Watts
- Product Development Research Group, Faculty of Design Sciences, University of Antwerp, Ambtmanstraat 1, 2000, Antwerp, Belgium
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
45
|
De San-Martin BS, Ferreira VG, Bitencourt MR, Pereira PCG, Carrilho E, de Assunção NA, de Carvalho LRS. Metabolomics as a potential tool for the diagnosis of growth hormone deficiency (GHD): a review. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 64:654-663. [PMID: 33085993 PMCID: PMC10528619 DOI: 10.20945/2359-3997000000300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/25/2020] [Indexed: 11/23/2022]
Abstract
Metabolomics uses several analytical tools to identify the chemical diversity of metabolites present in organisms. These metabolites are low molecular weight molecules (<1500 Da) classified as a final or intermediary product of metabolic processes. The application of this omics technology has become prominent in inferring physiological conditions through reporting on the phenotypic state; therefore, the introduction of metabolomics into clinical studies has been growing in recent years due to its efficiency in discriminating pathophysiological states. Regarding endocrine diseases, there is a great interest in verifying comprehensive and individualized physiological scenarios, in particular for growth hormone deficiency (GHD). The current GHD diagnostic tests are laborious and invasive and there is no exam with ideal reproducibility and sensitivity for diagnosis neither standard GH cut-off point. Therefore, this review was focussed on articles that applied metabolomics in the search for new biomarkers for GHD. The present work shows that the applications of metabolomics in GHD are still limited, since the little complementarily of analytical techniques, a low number of samples, GHD combined to other deficiencies, and idiopathic diagnosis shows a lack of progress. The results of the research are relevant and similar; however, their results do not provide an application for clinical practice due to the lack of multidisciplinary actions that would be needed to mediate the translation of the knowledge produced in the laboratory, if transferred to the medical setting.
Collapse
Affiliation(s)
- Breno Sena De San-Martin
- Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brasil
| | - Vinícius Guimarães Ferreira
- Instituto de Química de São Carlos da Universidade de São Paulo (IQSC-USP), São Carlos, SP, Brasil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio, Campinas, SP, Brasil
| | - Mariana Rechia Bitencourt
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brasil
| | - Paulo Cesar Gonçalves Pereira
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brasil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos da Universidade de São Paulo (IQSC-USP), São Carlos, SP, Brasil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio, Campinas, SP, Brasil
| | - Nilson Antônio de Assunção
- Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brasil
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brasil,
| | - Luciani Renata Silveira de Carvalho
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brasil,
| |
Collapse
|
46
|
Zhang R, Jia Y. A Disposable Printed Liquid Gate Graphene Field Effect Transistor for a Salivary Cortisol Test. ACS Sens 2021; 6:3024-3031. [PMID: 34344148 DOI: 10.1021/acssensors.1c00949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circadian rhythm of salivary cortisol is of clinical significance, tracking salivary cortisol in domicile is welcomed by both doctor and patient, due to its merits of noninvasion, ease of sampling, and free-of-stress response. Here, we present a portable salivary cortisol test setup based on a liquid gate graphene field effect transistor (Lg-GFET) for the first time. In this work, the Lg-GFET was prepared by the printing technology and exploited as a sensitive material. In the procedures of device preparation, the modified liquid exfoliation method and direct-ink-write technology were utilized for synthesizing the graphene ink and printing Lg-GFETs; then, the as-prepared Lg-GFETs were decorated and functionalized by tetrakis(4-carboxyphenyl) porphyrin and the cortisol aptamer, successively. Their sensitivity, selectivity, and robustness are seriously examined. The test results indicate that the sensors have good linear sensitivities over a seven-log analyte concentration range (0.01 to 104 nM) and the anti-interference ability to distinguish from the substancess with similar chemical structures. Moreover, the conceptual application for tracking circadian rhythm was carried out successfully. Conclusively, the proposed flexible Lg-GFET-based salivary cortisol detection platform can satisfy the requirements of the salivary cortisol's assay for instant detection. Additionally, it also provides an alternative solution for developing similar household medical appliances.
Collapse
Affiliation(s)
- Rong Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yunfang Jia
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
47
|
Zhang Z, Wang S, Liu G, Hu D, Yang B, Dai Q, Dou Q. Antifouling hydrogel film based on a sandwich array for salivary glucose monitoring. RSC Adv 2021; 11:27561-27569. [PMID: 35480666 PMCID: PMC9037900 DOI: 10.1039/d1ra03517g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/30/2021] [Indexed: 01/28/2023] Open
Abstract
A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast response and high sensitivity. However, the IPN hydrogel circumvents the traditional antifouling strategy, which often requires thick antifouling coating that can result in poor glucose sensitivity owing to its energetic physical barrier (greater than 43 nm); thus a complex, time-consuming and high-cost salivary preprocessing is needed to remove protein contaminants before salivary glucose detection using the IPN hydrogel. This limits its practical application in trace salivary glucose-level monitoring. Herein, a new hydrogel film based on a sandwich array (HFSA) with a weak physical barrier, which exhibits superior antifouling and sensitivity in salivary glucose detection is reported. HFSA relies on the formation of the sandwich structure containing substrate-grafted, surface-grafted zwitterionic polymer brushes (pSBMA) and phenylboronic acid (PBA)-functionalized hydrogel. The synergistic effect originating from pSBMA brushes on the surface of HFSA and inside the HFSA matrix provides a suitable physical barrier (∼28 nm) and a robust hydration layer for HFSA, which can enhance its sensitivity and antifouling. The results show that HFSA reduce the adsorption of nonspecific protein in 10% saliva by nearly 90% and enhanced the glucose sensitivity by 130%, compared to the IPN hydrogel film. These results demonstrate that HFSA exhibits significant potential as an antifouling and sensitive glucose probe for QCM sensors in non-invasive salivary glucose monitoring.
Collapse
Affiliation(s)
- Zifeng Zhang
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 China
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Shiwen Wang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Guanjiang Liu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Debo Hu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Bei Yang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Qing Dai
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 China
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Qian Dou
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| |
Collapse
|
48
|
|
49
|
Rosa LK, Costa FS, Hauagge CM, Mobile RZ, de Lima AAS, Amaral CDB, Machado RC, Nogueira ARA, Brancher JA, de Araujo MR. Oral health, organic and inorganic saliva composition of men with Schizophrenia: Case-control study. J Trace Elem Med Biol 2021; 66:126743. [PMID: 33740480 DOI: 10.1016/j.jtemb.2021.126743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Schizophrenia (SCZ) presents complex challenges related to diagnosis and clinical monitoring. The study of conditions associated with SCZ can be facilitated by using potential markers and patterns that provide information to support the diagnosis and oral health. METHODS The salivary composition of patients diagnosed with SCZ (n = 50) was evaluated and compared to the control (n = 50). Saliva samples from male patients were collected and clinical parameters were evaluated. The concentration of total proteins and amylase were determined and salivary macro- and microelements were quantified by ICP OES and ICP-MS. Exploratory data analysis based on artificial intelligence tools was used in the investigation. RESULTS There was a significant increase in the salivary concentrations of Al, Fe, Li, Mg, Na, and V, higher prevalence of caries (p < 0.001), periodontal disease (p < 0.001), and reduced salivary flow rate (p = 0.019) in SCZ patients. Also, samples were grouped into six clusters. As, Co, Cr, Cu, Mn, Mo, Ni, Se, and Sr were correlated with each other, while Fe, K, Li, Ti, and V showed the highest concentrations in the samples distributed in the clusters with the highest association between SZC patients and controls. CONCLUSIONS The results obtained indicate changes in salivary flow, organic composition, and levels of macro- and microelements in SCZ patients. Salivary concentrations of Fe, Mg, and Na may be related to oral conditions, higher prevalence of caries, and periodontal disease. The exploratory analysis showed different patterns in the salivary composition of SCZ patients impacted by associations between oral health conditions and the use of medications. Future studies are encouraged to confirm the results investigated in this study.
Collapse
Affiliation(s)
- Letícia Kreutz Rosa
- Federal University of Paraná, Department of Stomatology, Curitiba, PR, 80210-170, Brazil
| | | | - Cecília Moraes Hauagge
- Federal University of Paraná, Department of Stomatology, Curitiba, PR, 80210-170, Brazil
| | - Rafael Zancan Mobile
- Federal University of Paraná, Department of Stomatology, Curitiba, PR, 80210-170, Brazil
| | | | - Clarice D B Amaral
- Federal University of Paraná, Department of Chemistry, Curitiba, PR, 81531-980, Brazil
| | - Raquel C Machado
- Federal University of São Carlos, Department of Chemistry, São Carlos, SP, 13565-905, Brazil
| | | | - João Armando Brancher
- Pontifícia Universidade Católica do Paraná, Escola de Ciências da Vida, Curitiba, PR, 80215-901, Brazil
| | | |
Collapse
|
50
|
Influence of Build Orientation, Geometry and Artificial Saliva Aging on the Mechanical Properties of 3D Printed Poly(ε-caprolactone). MATERIALS 2021; 14:ma14123335. [PMID: 34208779 PMCID: PMC8235663 DOI: 10.3390/ma14123335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/14/2021] [Indexed: 01/17/2023]
Abstract
Additive manufacturing of polymers has evolved from rapid prototyping to the production of functional components/parts with applications in distinct areas, ranging from health to aeronautics. The possibility of producing complex customized geometries with less environmental impact is one of the critical factors that leveraged the exponential growth of this processing technology. Among the several processing parameters that influence the properties of the parts, the geometry (shape factor) is amid less reported. Considering the geometric complexity of the mouth, including the uniqueness of each teething, this study can contribute to a better understanding of the performance of polymeric devices used in the oral environment for preventive, restorative, and regenerative therapies. Thus, this work aims to evaluate 3D printed poly(ε-caprolactone) mechanical properties with different build orientations and geometries. Longitudinal and transversal toolpaths produced specimens with parallelepiped and tubular geometry. Moreover, as it is intended to develop devices for dentistry, the influence of artificial saliva on mechanical properties was determined. The research concluded that the best mechanical properties are obtained for parallelepiped geometry with a longitudinal impression and that aging in artificial saliva negatively influences all the mechanical properties evaluated in this study.
Collapse
|