1
|
Al-Awadhi F, Kokkaliari S, Ratnayake R, Paul VJ, Luesch H. Isolation and Characterization of the Cyanobacterial Macrolide Glycoside Moorenaside, an Anti-Inflammatory Analogue of Aurisides Targeting the Keap1/Nrf2 Pathway. JOURNAL OF NATURAL PRODUCTS 2024; 87:2355-2365. [PMID: 39315953 PMCID: PMC11519913 DOI: 10.1021/acs.jnatprod.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024]
Abstract
A new 14-membered ring brominated macrolide glycoside, named moorenaside (1), was discovered from a marine cyanobacterial sample collected from Shands Key in Florida. The structure of 1 was established by analysis of spectroscopic data including its relative configuration. The absolute configuration was inferred from optical rotation data and comparison with related compounds. The structure of 1 features an α,β-unsaturated carbonyl system, which is also found in aurisides. The presence of this motif in 1 prompted us to evaluate its effect on Keap1/Nrf2 signaling, a cytoprotective pathway culminating in the activation of antioxidant genes activated upstream by the cysteine alkylation of Keap1. Moorenaside exhibited moderate ARE luciferase activity at 32 μM. Due to the established crosstalk between Nrf2 and NF-κB pathways, we investigated the anti-inflammatory effects of 1 in LPS-induced mouse macrophages (RAW264.7 cells), a commonly used model for inflammation. Moorenaside significantly upregulated Nqo1 (Nrf2 target gene) and downregulated iNos (NF-κB target gene) at 32 μM by 5.0- and 2.5-fold, respectively, resulting in a significant reduction of nitric oxide (NO) levels. Furthermore, we performed RNA-sequencing and demonstrated the transcriptional activity of 1 on a global level and identified canonical pathways and upstream regulators involved in inflammation, immune response, and certain oxidative-stress-underlying diseases such as multiple sclerosis and chronic kidney disease.
Collapse
Affiliation(s)
- Fatma
H. Al-Awadhi
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Sofia Kokkaliari
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Ranjala Ratnayake
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian
Marine Station, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
2
|
Maktabi B, Collins A, Safee R, Bouyer J, Wisner AS, Williams FE, Schiefer IT. Zebrafish as a Model for Multiple Sclerosis. Biomedicines 2024; 12:2354. [PMID: 39457666 PMCID: PMC11504653 DOI: 10.3390/biomedicines12102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Zebrafish have become a key model organism in neuroscience research because of their unique advantages. Their genetic, anatomical, and physiological similarities to humans, coupled with their rapid development and transparent embryos, make them an excellent tool for investigating various aspects of neurobiology. They have specifically emerged as a valuable and versatile model organism in biomedical research, including the study of neurological disorders such as multiple sclerosis. Multiple sclerosis is a chronic autoimmune disease known to cause damage to the myelin sheath that protects the nerves in the brain and spinal cord. Objective: This review emphasizes the importance of continued research in both in vitro and in vivo models to advance our understanding of MS and develop effective treatments, ultimately improving the quality of life for those affected by this debilitating disease. Conclusions: Recent studies show the significance of zebrafish as a model organism for investigating demyelination and remyelination processes, providing new insights into MS pathology and potential therapies.
Collapse
Affiliation(s)
- Briana Maktabi
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
| | - Abigail Collins
- Center for Drug Design and Development 3, University of Toledo, Toledo, OH 43614, USA
| | - Raihaanah Safee
- Department of Pharmacy Practice, University of Toledo, Toledo, OH 43614, USA
| | - Jada Bouyer
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
| | - Alexander S. Wisner
- Center for Drug Design and Development 3, University of Toledo, Toledo, OH 43614, USA
| | - Frederick E. Williams
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
| | - Isaac T. Schiefer
- Department of Pharmacy Practice, University of Toledo, Toledo, OH 43614, USA
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
3
|
Piel S, McManus MJ, Heye KN, Beaulieu F, Fazelinia H, Janowska JI, MacTurk B, Starr J, Gaudio H, Patel N, Hefti MM, Smalley ME, Hook JN, Kohli NV, Bruton J, Hallowell T, Delso N, Roberts A, Lin Y, Ehinger JK, Karlsson M, Berg RA, Morgan RW, Kilbaugh TJ. Effect of dimethyl fumarate on mitochondrial metabolism in a pediatric porcine model of asphyxia-induced in-hospital cardiac arrest. Sci Rep 2024; 14:13852. [PMID: 38879681 PMCID: PMC11180202 DOI: 10.1038/s41598-024-64317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Neurological and cardiac injuries are significant contributors to morbidity and mortality following pediatric in-hospital cardiac arrest (IHCA). Preservation of mitochondrial function may be critical for reducing these injuries. Dimethyl fumarate (DMF) has shown potential to enhance mitochondrial content and reduce oxidative damage. To investigate the efficacy of DMF in mitigating mitochondrial injury in a pediatric porcine model of IHCA, toddler-aged piglets were subjected to asphyxia-induced CA, followed by ventricular fibrillation, high-quality cardiopulmonary resuscitation, and random assignment to receive either DMF (30 mg/kg) or placebo for four days. Sham animals underwent similar anesthesia protocols without CA. After four days, tissues were analyzed for mitochondrial markers. In the brain, untreated CA animals exhibited a reduced expression of proteins of the oxidative phosphorylation system (CI, CIV, CV) and decreased mitochondrial respiration (p < 0.001). Despite alterations in mitochondrial content and morphology in the myocardium, as assessed per transmission electron microscopy, mitochondrial function was unchanged. DMF treatment counteracted 25% of the proteomic changes induced by CA in the brain, and preserved mitochondrial structure in the myocardium. DMF demonstrates a potential therapeutic benefit in preserving mitochondrial integrity following asphyxia-induced IHCA. Further investigation is warranted to fully elucidate DMF's protective mechanisms and optimize its therapeutic application in post-arrest care.
Collapse
Affiliation(s)
- Sarah Piel
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA.
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany.
| | - Meagan J McManus
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Kristina N Heye
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Forrest Beaulieu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Hossein Fazelinia
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Joanna I Janowska
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Bryce MacTurk
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Jonathan Starr
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Hunter Gaudio
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Nisha Patel
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Martin E Smalley
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jordan N Hook
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Neha V Kohli
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - James Bruton
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Thomas Hallowell
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Nile Delso
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Anna Roberts
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Yuxi Lin
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Johannes K Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | | | - Robert A Berg
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Ryan W Morgan
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Todd J Kilbaugh
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
4
|
Huang J, Zhang Y, Turhon M, Zheng Z, Li W, Kang H, Wang C, Liu J, Jiang P. Dimethyl fumarate treatment for unruptured intracranial aneurysms: a study protocol for a double-blind randomised controlled trial. BMJ Open 2024; 14:e080333. [PMID: 38772883 PMCID: PMC11110581 DOI: 10.1136/bmjopen-2023-080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/26/2024] [Indexed: 05/23/2024] Open
Abstract
INTRODUCTION Intracranial aneurysm (IA) is a common cerebrovascular disease. Considering the risks and benefits of surgery, a significant proportion of patients with unruptured IA (UIA) choose conservative observation. Previous studies suggest that inflammation of aneurysm wall is a high-risk factor of rupture. Dimethyl fumarate (DMF) acts as an anti-inflammatory agent by activating nuclear factor erythroid 2-related factor 2 (Nrf2) and other pathways. Animal experiments found DMF reduces the formation and rupture of IAs. In this study, DMF will be evaluated for its ability to reduce inflammation of the aneurysm wall in high-resolution vessel wall imaging. METHODS AND ANALYSIS This is a multi-centre, randomised, controlled, double-blind clinical trial. Three hospitals will enrol a total of 60 patients who have UIA with enhanced wall. Participants will be assigned randomly in a 1:1 proportion, taking either 240 mg DMF or placebo orally every day for 6 months. As the main result, aneurysm wall enhancement will be measured by the signal intensity after 6 months of DMF treatment. Secondary endpoints include morphological changes of aneurysms and factors associated with inflammation. This study will provide prospective data on the reduction of UIA wall inflammation by DMF. ETHICS AND DISSEMINATION This study has been approved by Medical Ethics Committee of the Beijing Tiantan Hospital, Capital Medical University (approval no: KY2022-064-02). We plan to disseminate our research findings through peer-reviewed journal publication and relevant academic conferences. TRIAL REGISTRATION NUMBER NCT05959759.
Collapse
Affiliation(s)
- Jiliang Huang
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yisen Zhang
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Mirzat Turhon
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhaoxu Zheng
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wenqiang Li
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huibin Kang
- Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Chao Wang
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jian Liu
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Peng Jiang
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Kaye AD, Lacey J, Le V, Fazal A, Boggio NA, Askins DH, Anderson L, Robinson CL, Paladini A, Mosieri CN, Kaye AM, Ahmadzadeh S, Shekoohi S, Varrassi G. The Evolving Role of Monomethyl Fumarate Treatment as Pharmacotherapy for Relapsing-Remitting Multiple Sclerosis. Cureus 2024; 16:e57714. [PMID: 38711693 PMCID: PMC11070887 DOI: 10.7759/cureus.57714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Multiple sclerosis is the most common autoimmune disease affecting the central nervous system (CNS) worldwide. Multiple sclerosis involves inflammatory demyelination of nerve fibers in the CNS, often presenting with recurrent episodes of focal sensory or motor deficits associated with the region of the CNS affected. The prevalence of this disease has increased rapidly over the last decade. Despite the approval of many new pharmaceutical therapies in the past 20 years, there remains a growing need for alternative therapies to manage the course of this disease. Treatments are separated into two main categories: management of acute flare versus long-term prevention of flares via disease-modifying therapy. Primary drug therapies for acute flare include corticosteroids to limit inflammation and symptomatic management, depending on symptoms. Several different drugs have been recently approved for use in modifying the course of the disease, including a group of medications known as fumarates (e.g., dimethyl fumarate, diroximel fumarate, monomethyl fumarate) that have been shown to be efficacious and relatively safe. In the present investigation, we review available evidence focused on monomethyl fumarate, also known as Bafiertam®, along with bioequivalent fumarates for the long-term treatment of relapsing-remitting multiple sclerosis.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - John Lacey
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Viet Le
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Ahmed Fazal
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | | | - Dorothy H Askins
- Department of Anesthesiology, Tulane University, New Orleans, USA
| | - Lillian Anderson
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Christopher L Robinson
- Department of Anesthesiology, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Antonella Paladini
- Department of Life, Health, and Environmental Sciences (MESVA), University of L'Aquila, L'Aquila, ITA
| | - Chizoba N Mosieri
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
6
|
Tonev D, Momchilova A. Oxidative Stress and the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Pathway in Multiple Sclerosis: Focus on Certain Exogenous and Endogenous Nrf2 Activators and Therapeutic Plasma Exchange Modulation. Int J Mol Sci 2023; 24:17223. [PMID: 38139050 PMCID: PMC10743556 DOI: 10.3390/ijms242417223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of multiple sclerosis (MS) suggests that, in genetically susceptible subjects, T lymphocytes undergo activation in the peripheral compartment, pass through the BBB, and cause damage in the CNS. They produce pro-inflammatory cytokines; induce cytotoxic activities in microglia and astrocytes with the accumulation of reactive oxygen species, reactive nitrogen species, and other highly reactive radicals; activate B cells and macrophages and stimulate the complement system. Inflammation and neurodegeneration are involved from the very beginning of the disease. They can both be affected by oxidative stress (OS) with different emphases depending on the time course of MS. Thus, OS initiates and supports inflammatory processes in the active phase, while in the chronic phase it supports neurodegenerative processes. A still unresolved issue in overcoming OS-induced lesions in MS is the insufficient endogenous activation of the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) pathway, which under normal conditions plays an essential role in mitochondria protection, OS, neuroinflammation, and degeneration. Thus, the search for approaches aiming to elevate endogenous Nrf2 activation is capable of protecting the brain against oxidative damage. However, exogenous Nrf2 activators themselves are not without drawbacks, necessitating the search for new non-pharmacological therapeutic approaches to modulate OS. The purpose of the present review is to provide some relevant preclinical and clinical examples, focusing on certain exogenous and endogenous Nrf2 activators and the modulation of therapeutic plasma exchange (TPE). The increased plasma levels of nerve growth factor (NGF) in response to TPE treatment of MS patients suggest their antioxidant potential for endogenous Nrf2 enhancement via NGF/TrkA/PI3K/Akt and NGF/p75NTR/ceramide-PKCζ/CK2 signaling pathways.
Collapse
Affiliation(s)
- Dimitar Tonev
- Department of Anesthesiology and Intensive Care, University Hospital “Tzaritza Yoanna—ISUL”, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| |
Collapse
|
7
|
Kempe PRG, de Castro MV, Khuriyeh VC, Barraviera B, Ferreira RS, de Oliveira ALR. Ultrastructural Evidence of Synapse Preservation and Axonal Regeneration Following Spinal Root Repair with Fibrin Biopolymer and Therapy with Dimethyl Fumarate. Polymers (Basel) 2023; 15:3171. [PMID: 37571065 PMCID: PMC10421511 DOI: 10.3390/polym15153171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Spinal cord injury causes critical loss in motor and sensory function. Ventral root avulsion is an experimental model in which there is the tearing of the ventral (motor) roots from the surface of the spinal cord, resulting in several morphological changes, including motoneuron degeneration and local spinal cord circuitry rearrangements. Therefore, our goal was to test the combination of surgical repair of lesioned roots with a fibrin biopolymer and the pharmacological treatment with dimethyl fumarate, an immunomodulatory drug. Thus, adult female Lewis rats were subjected to unilateral ventral root avulsion of L4-L6 roots followed by repair with fibrin biopolymer and daily treatment with dimethyl fumarate (15 mg/Kg; gavage) for 4 weeks, the survival time post-surgery being 12 weeks; n = 5/group/technique. Treatments were evaluated by immunofluorescence and transmission electron microscopy, morphometry of the sciatic nerve, and motor function recovery. Our results indicate that the combination between fibrin biopolymer and dimethyl fumarate is neuroprotective since most of the synapses apposed to alfa motoneurons were preserved in clusters. Also, nerve sprouting occurred, and the restoration of the 'g' ratio and large axon diameter was achieved with the combined treatment. Such parameters were combined with up to 50% of gait recovery, observed by the walking track test. Altogether, our results indicate that combining root restoration with fibrin biopolymer and dimethyl fumarate administration can enhance motoneuron survival and regeneration after proximal lesions.
Collapse
Affiliation(s)
- Paula Regina Gelinski Kempe
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil; (P.R.G.K.); (M.V.d.C.); (V.C.K.)
| | - Mateus Vidigal de Castro
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil; (P.R.G.K.); (M.V.d.C.); (V.C.K.)
| | - Victor Campos Khuriyeh
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil; (P.R.G.K.); (M.V.d.C.); (V.C.K.)
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu 18610-307, SP, Brazil; (B.B.); (R.S.F.J.)
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu 18610-307, SP, Brazil; (B.B.); (R.S.F.J.)
| | - Alexandre Leite Rodrigues de Oliveira
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil; (P.R.G.K.); (M.V.d.C.); (V.C.K.)
| |
Collapse
|
8
|
Coutinho Costa VG, Araújo SES, Alves-Leon SV, Gomes FCA. Central nervous system demyelinating diseases: glial cells at the hub of pathology. Front Immunol 2023; 14:1135540. [PMID: 37261349 PMCID: PMC10227605 DOI: 10.3389/fimmu.2023.1135540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
Inflammatory demyelinating diseases (IDDs) are among the main causes of inflammatory and neurodegenerative injury of the central nervous system (CNS) in young adult patients. Of these, multiple sclerosis (MS) is the most frequent and studied, as it affects about a million people in the USA alone. The understanding of the mechanisms underlying their pathology has been advancing, although there are still no highly effective disease-modifying treatments for the progressive symptoms and disability in the late stages of disease. Among these mechanisms, the action of glial cells upon lesion and regeneration has become a prominent research topic, helped not only by the discovery of glia as targets of autoantibodies, but also by their role on CNS homeostasis and neuroinflammation. In the present article, we discuss the participation of glial cells in IDDs, as well as their association with demyelination and synaptic dysfunction throughout the course of the disease and in experimental models, with a focus on MS phenotypes. Further, we discuss the involvement of microglia and astrocytes in lesion formation and organization, remyelination, synaptic induction and pruning through different signaling pathways. We argue that evidence of the several glia-mediated mechanisms in the course of CNS demyelinating diseases supports glial cells as viable targets for therapy development.
Collapse
Affiliation(s)
| | - Sheila Espírito-Santo Araújo
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Soniza Vieira Alves-Leon
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
9
|
Xu N, Bai Y, Han X, Yuan J, Wang L, He Y, Yang L, Wu H, Shi H, Wu X. Taurochenodeoxycholic acid reduces astrocytic neuroinflammation and alleviates experimental autoimmune encephalomyelitis in mice. Immunobiology 2023; 228:152388. [PMID: 37079985 DOI: 10.1016/j.imbio.2023.152388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is an immune regulatory disease that affects the central nervous system (CNS). The main pathological features include demyelination and neurodegeneration, and the pathogenesis is associated with astrocytic neuroinflammation. Taurochenodeoxycholic acid (TCDCA) is one of the conjugated bile acids in animal bile, and it is not clear whether TCDCA could improve MS by inhibiting the activation of astrocytes. This study was aimed to evaluate the effects of TCDCA on experimental autoimmune encephalomyelitis (EAE)-a classical animal model of MS, and to probe its mechanism from the aspect of suppressing astrocytic neuroinflammation. It is expected to prompt the potential application of TCDCA for the treatment of MS. RESULTS TCDCA effectively alleviated the progression of EAE and improved the impaired neurobehavior in mice. It mitigated the hyperactivation of astrocytes and down-regulated the mRNA expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 in the brain cortex. In the C6 astrocytic cell line induced by lipopolysaccharide (LPS), TCDCA treatment dose-dependently decreased the production of NO and the protein expression of iNOS and glial fibrillary acidic protein (GFAP). TCDCA consistently inhibited the mRNA expressions of COX2, iNOS and other inflammatory mediators. Furthermore, TCDCA decreased the protein expression of phosphorylated serine/threonine kinase (AKT), inhibitor of NFκB α (IκBα) and nuclear factor κB (NFκB). And TCDCA also inhibited the nuclear translocation of NFκB. Conversely, as an inhibitor of the G-protein coupled bile acid receptor Gpbar1 (TGR5), triamterene eliminated the effects of TCDCA in LPS-stimulated C6 cells. CONCLUSION TCDCA improves the progress of EAE by inhibiting the astrocytic neuroinflammation, which might be exerted by the regulation of TGR5 mediated AKT/NFκB signaling pathway. These findings may prompt the potential application of TCDCA for MS therapy by suppressing astrocyte inflammation.
Collapse
Affiliation(s)
- Nuo Xu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyan Bai
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lupeng Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixin He
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
10
|
Manai F, Govoni S, Amadio M. The Challenge of Dimethyl Fumarate Repurposing in Eye Pathologies. Cells 2022; 11:cells11244061. [PMID: 36552824 PMCID: PMC9777082 DOI: 10.3390/cells11244061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dimethyl fumarate (DMF) is a small molecule currently approved and used in the treatment of psoriasis and multiple sclerosis due to its immuno-modulatory, anti-inflammatory, and antioxidant properties. As an Nrf2 activator through Keap1 protein inhibition, DMF unveils a potential therapeutical use that is much broader than expected so far. In this comprehensive review we discuss the state-of-art and future perspectives regarding the potential repositioning of this molecule in the panorama of eye pathologies, including Age-related Macular Degeneration (AMD). The DMF's mechanism of action, an extensive analysis of the in vitro and in vivo evidence of its beneficial effects, together with a search of the current clinical trials, are here reported. Altogether, this evidence gives an overview of the new potential applications of this molecule in the context of ophthalmological diseases characterized by inflammation and oxidative stress, with a special focus on AMD, for which our gene-disease (KEAP1-AMD) database search, followed by a protein-protein interaction analysis, further supports the rationale of DMF use. The necessity to find a topical route of DMF administration to the eye is also discussed. In conclusion, the challenge of DMF repurposing in eye pathologies is feasible and worth scientific attention and well-focused research efforts.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987888
| |
Collapse
|
11
|
Hoelz AG, Bernardes D, Cartarozzi LP, de Oliveira ALR. Gliosis attenuation in experimental autoimmune encephalomyelitis by a combination of dimethyl fumarate and pregabalin. Front Cell Neurosci 2022; 16:921916. [PMID: 36052340 PMCID: PMC9426298 DOI: 10.3389/fncel.2022.921916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Dysregulated microglia and astrocytes have been associated with progressive neurodegeneration in multiple sclerosis (MS), highlighting the need for strategies that additionally target intrinsic inflammation in the central nervous system (CNS). The objective of the present study was to investigate the glial response in experimental autoimmune encephalomyelitis (EAE)-induced mice treated with a combination of dimethyl fumarate (DMF) and pregabalin (PGB). For that, 28 C57BL/6J mice were randomly assigned to the five experimental groups: naïve, EAE, EAE-DMF, EAE-PGB, and EAE-DMF + PGB. Pharmacological treatments were initiated with the beginning of clinical signs, and all animals were euthanized at 28 dpi for the lumbar spinal cord evaluation. The results demonstrated a stronger attenuation of the clinical presentation by the combined approach. DMF alone promoted the downregulation of Iba-1 (microglia/macrophages marker) in the ventral horn compared with the non-treated EAE animals (P < 0.05). PGB treatment was associated with reduced Iba-1 immunofluorescence in both the dorsal (P < 0.05) and ventral horn (P < 0.05) compared to EAE vehicle-treated counterparts. However, the combined approach reduced the Iba-1 marker in the dorsal (P < 0.05) and ventral (P < 0.01) horns compared to non-treated EAE animals and further reduced Iba-1 in the ventral horn compared to each drug-alone approach (P < 0.05). In addition, the combination of DMF and PGB reduced activated astrocytes (GFAP) in both the dorsal and ventral horns of the spinal cord to a naïve-like level and upregulated Nrf-2 expression. Taken together, the data herein suggest robust attenuation of the glial response in EAE mice treated with DMF and PGB.
Collapse
|
12
|
Patel V, Joharapurkar A, Kshirsagar S, Patel M, Savsani H, Patel A, Ranvir R, Jain M. Repurposing dimethyl fumarate for gastric ulcer and ulcerative colitis: evidence of local efficacy without systemic side effect. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
13
|
The Role of Concomitant Nrf2 Targeting and Stem Cell Therapy in Cerebrovascular Disease. Antioxidants (Basel) 2022; 11:antiox11081447. [PMID: 35892653 PMCID: PMC9332234 DOI: 10.3390/antiox11081447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the reality that a death from cerebrovascular accident occurs every 3.5 min in the United States, there are few therapeutic options which are typically limited to a narrow window of opportunity in time for damage mitigation and recovery. Novel therapies have targeted pathological processes secondary to the initial insult, such as oxidative damage and peripheral inflammation. One of the greatest challenges to therapy is the frequently permanent damage within the CNS, attributed to a lack of sufficient neurogenesis. Thus, recent use of cell-based therapies for stroke have shown promising results. Unfortunately, stroke-induced inflammatory and oxidative damage limit the therapeutic potential of these stem cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been implicated in endogenous antioxidant and anti-inflammatory activity, thus presenting an attractive target for novel therapeutics to enhance stem cell therapy and promote neurogenesis. This review assesses the current literature on the concomitant use of stem cell therapy and Nrf2 targeting via pharmaceutical and natural agents, highlighting the need to elucidate both upstream and downstream pathways in optimizing Nrf2 treatments in the setting of cerebrovascular disease.
Collapse
|
14
|
Majkutewicz I. Dimethyl fumarate: A review of preclinical efficacy in models of neurodegenerative diseases. Eur J Pharmacol 2022; 926:175025. [DOI: 10.1016/j.ejphar.2022.175025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
|
15
|
Campione E, Mazzilli S, Di Prete M, Dattola A, Cosio T, Lettieri Barbato D, Costanza G, Lanna C, Manfreda V, Gaeta Schumak R, Prignano F, Coniglione F, Ciprani F, Aquilano K, Bianchi L. The Role of Glutathione-S Transferase in Psoriasis and Associated Comorbidities and the Effect of Dimethyl Fumarate in This Pathway. Front Med (Lausanne) 2022; 9:760852. [PMID: 35211489 PMCID: PMC8863102 DOI: 10.3389/fmed.2022.760852] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Psoriasis vulgaris is a chronic inflammatory skin disease characterized by well-demarcated scaly plaques. Oxidative stress plays a crucial role in the psoriasis pathogenesis and is associated with the disease severity. Dimethyl fumarate modulates the activity of the pro-inflammatory transcription factors. This is responsible for the downregulation of inflammatory cytokines and an overall shift from a pro-inflammatory to an anti-inflammatory/regulatory response. Both steps are necessary for the amelioration of psoriatic inflammation, although additional mechanisms have been proposed. Several studies reported a long-term effectiveness and safety of dimethyl fumarate monotherapy in patients with moderate-to-severe psoriasis. Furthermore, psoriasis is a chronic disease often associated to metabolic comorbidities, as obesity, diabetes, and cardiovascular diseases, in which glutathione-S transferase deregulation is present. Glutathione-S transferase is involved in the antioxidant system. An increase of its activity in psoriatic epidermis in comparison with the uninvolved and normal epidermal biopsies has been reported. Dimethyl fumarate depletes glutathione-S transferase by formation of covalently linked conjugates. This review investigates the anti-inflammatory role of dimethyl fumarate in oxidative stress and its effect by reducing oxidative stress. The glutathione-S transferase regulation is helpful in treating psoriasis, with an anti-inflammatory effect on the keratinocytes hyperproliferation, and in modulation of metabolic comorbidities.
Collapse
Affiliation(s)
- Elena Campione
- Dermatology Unit, University of Rome Tor Vergata, Rome, Italy
| | - Sara Mazzilli
- Italy State Police Health Service Department, Ministry of Interior, Rome, Italy
| | - Monia Di Prete
- Anatomic Pathology Unit, University of Rome Tor Vergata, Rome, Italy.,Anatomic Pathology, Santa Maria di Ca' Foncello Hospital, Treviso, Italy
| | | | - Terenzio Cosio
- Dermatology Unit, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Lettieri Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | | | - Caterina Lanna
- Dermatology Unit, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Francesca Prignano
- Unit of Dermatology, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Filadelfo Coniglione
- Department of Surgical Sciences, University Nostra Signora del Buon Consiglio, Tirana, Albania
| | - Fabrizio Ciprani
- Italy State Police Health Service Department, Ministry of Interior, Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
16
|
Jiménez-Villegas J, Ferraiuolo L, Mead RJ, Shaw PJ, Cuadrado A, Rojo AI. NRF2 as a therapeutic opportunity to impact in the molecular roadmap of ALS. Free Radic Biol Med 2021; 173:125-141. [PMID: 34314817 DOI: 10.1016/j.freeradbiomed.2021.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/12/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating heterogeneous disease with still no convincing therapy. To identify the most strategically significant hallmarks for therapeutic intervention, we have performed a comprehensive transcriptomics analysis of dysregulated pathways, comparing datasets from ALS patients and healthy donors. We have identified crucial alterations in RNA metabolism, intracellular transport, vascular system, redox homeostasis, proteostasis and inflammatory responses. Interestingly, the transcription factor NRF2 (nuclear factor (erythroid-derived 2)-like 2) has significant effects in modulating these pathways. NRF2 has been classically considered as the master regulator of the antioxidant cellular response, although it is currently considered as a key component of the transduction machinery to maintain coordinated control of protein quality, inflammation, and redox homeostasis. Herein, we will summarize the data from NRF2 activators in ALS pre-clinical models as well as those that are being studied in clinical trials. As we will discuss, NRF2 is a promising target to build a coordinated transcriptional response to motor neuron injury, highlighting its therapeutic potential to combat ALS.
Collapse
Affiliation(s)
- J Jiménez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - L Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - R J Mead
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - A Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - A I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
17
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
18
|
Astrocytes in Multiple Sclerosis-Essential Constituents with Diverse Multifaceted Functions. Int J Mol Sci 2021; 22:ijms22115904. [PMID: 34072790 PMCID: PMC8198285 DOI: 10.3390/ijms22115904] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022] Open
Abstract
In multiple sclerosis (MS), astrocytes respond to the inflammatory stimulation with an early robust process of morphological, transcriptional, biochemical, and functional remodeling. Recent studies utilizing novel technologies in samples from MS patients, and in an animal model of MS, experimental autoimmune encephalomyelitis (EAE), exposed the detrimental and the beneficial, in part contradictory, functions of this heterogeneous cell population. In this review, we summarize the various roles of astrocytes in recruiting immune cells to lesion sites, engendering the inflammatory loop, and inflicting tissue damage. The roles of astrocytes in suppressing excessive inflammation and promoting neuroprotection and repair processes is also discussed. The pivotal roles played by astrocytes make them an attractive therapeutic target. Improved understanding of astrocyte function and diversity, and the mechanisms by which they are regulated may lead to the development of novel approaches to selectively block astrocytic detrimental responses and/or enhance their protective properties.
Collapse
|
19
|
Hoogendoorn A, Avery TD, Li J, Bursill C, Abell A, Grace PM. Emerging Therapeutic Applications for Fumarates. Trends Pharmacol Sci 2021; 42:239-254. [PMID: 33618840 PMCID: PMC7954891 DOI: 10.1016/j.tips.2021.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
Fumarates are successfully used for the treatment of psoriasis and multiple sclerosis. Their antioxidative, immunomodulatory, and neuroprotective properties make fumarates attractive therapeutic candidates for other pathologies. The exact working mechanisms of fumarates are, however, not fully understood. Further elucidation of the mechanisms is required if these drugs are to be successfully repurposed for other diseases. Towards this, administration route, dosage, and treatment timing, frequency, and duration are important parameters to consider and optimize with clinical paradigms in mind. Here, we summarize the rapidly expanding literature on the pharmacokinetics and pharmacodynamics of fumarates, including a discussion on two recently FDA-approved fumarates VumerityTM and BafiertamTM. We review emerging applications of fumarates, focusing on neurological and cardiovascular diseases.
Collapse
Affiliation(s)
- Ayla Hoogendoorn
- Vascular and Heart Health, Life Long Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Australia.
| | - Thomas D Avery
- ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Australia; Institute for Photonics and Advanced Sensing & Department of Chemistry, The University of Adelaide, Australia
| | - Jiahe Li
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christina Bursill
- Vascular and Heart Health, Life Long Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide, Australia
| | - Andrew Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Australia; Institute for Photonics and Advanced Sensing & Department of Chemistry, The University of Adelaide, Australia
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Alborghetti M, Bellucci G, Gentile A, Calderoni C, Nicoletti F, Capra R, Salvetti M, Centonze D. Drugs used in the treatment of multiple sclerosis during COVID-19 pandemic: a critical viewpoint. Curr Neuropharmacol 2021; 20:107-125. [PMID: 33784961 PMCID: PMC9199540 DOI: 10.2174/1570159x19666210330094017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 11/22/2022] Open
Abstract
Since COVID-19 has emerged as a word public health problem, attention has been focused on how immune-suppressive drugs used for the treatment of autoimmune disorders influence the risk for SARS-CoV-2 infection and the development of acute respiratory distress syndrome (ARDS). Here, we discuss the disease-modifying agents approved for the treatment of multiple sclerosis (MS) within this context. Interferon (IFN)-β1a and -1b, which display antiviral activity, could be protective in the early stage of COVID-19 infection, although SARS-CoV-2 may have developed resistance to IFNs. However, in the hyperinflammation stage, IFNs may become detrimental by facilitating macrophage invasion in the lung and other organs. Glatiramer acetate and its analogues should not interfere with the development of COVID-19 and may be considered safe. Teriflunomide, a first-line oral drug used in the treatment of relapsing-remitting MS (RRMS), may display antiviral activity by depleting cellular nucleotides necessary for viral replication. The other first-line drug, dimethyl fumarate, may afford protection against SARS-CoV-2 by activating the Nrf-2 pathway and reinforcing the cellular defenses against oxidative stress. Concern has been raised regarding the use of second-line treatments for MS during the COVID-19 pandemic. However, this concern is not always justified. For example, fingolimod might be highly beneficial during the hyperinflammatory stage of COVID-19 for a number of mechanisms, including the reinforcement of the endothelial barrier. Caution is suggested for the use of natalizumab, cladribine, alemtuzumab, and ocrelizumab, although MS disease recurrence after discontinuation of these drugs may overcome a potential risk for COVID-19 infection.
Collapse
Affiliation(s)
- Marika Alborghetti
- Departments of Neuroscience Mental Health and Sensory Organs (NESMOS), University Sapienza of Rome. Italy
| | - Gianmarco Bellucci
- Departments of Neuroscience Mental Health and Sensory Organs (NESMOS), University Sapienza of Rome. Italy
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome. Italy
| | - Chiara Calderoni
- Departments of Physiology and Pharmacology, University Sapienza of Rome. Italy
| | | | - Ruggero Capra
- Multiple Sclerosis Center, ASST Ospedali Civili, Brescia. Italy
| | - Marco Salvetti
- Departments of Neuroscience Mental Health and Sensory Organs (NESMOS),University Sapienza of Rome. Italy
| | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, 00133 Rome. Italy
| |
Collapse
|
21
|
Abstract
The transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) triggers homeostatic responses against a plethora of environmental or endogenous deviations in redox metabolism, inflammation, proteostasis, etc. Therefore, pharmacological activation of NRF2 is a promising therapeutic strategy for several chronic diseases that are underlined by low-grade oxidative inflammation and dysregulation of redox metabolism, such as neurodegenerative, cardiovascular, and metabolic diseases. While NRF2 activation is useful in inhibiting carcinogenesis, its inhibition is needed in constituted tumors where NRF2 provides a survival advantage in the challenging tumor niche. This review describes the electrophilic and non-electrophilic NRF2 activators with clinical projection in various chronic diseases. We also analyze the status of NRF2 inhibitors, which are for the moment in a proof-of-concept stage. Advanced in silico screening and medicinal chemistry are expected to provide new or repurposing small molecules with increased potential for fostering the development of targeted NRF2 modulators. The nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2) is rapidly degraded by proteasomes under a basal condition in a Keap1-dependent manner. ROS oxidatively modifies Keap1 to release NRF2 and allow its nuclear translocation. Here it binds to the antioxidant response element to regulate gene transcription. An alternative mechanism controlling NRF2 stability is glycogen synthase kinase 3 (GSK-3)-induced phosphorylation. Indicated in blue are NRF2-activating and NRF2-inhibiting drugs.
Collapse
|
22
|
Yu J, Luo Y, Jin H, Lv J, Zhou T, Yabasin IB, Wen Q. Scorpion alleviates bone cancer pain through inhibition of bone destruction and glia activation. Mol Pain 2021; 16:1744806920909993. [PMID: 32052691 PMCID: PMC7054730 DOI: 10.1177/1744806920909993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Bone cancer pain is common in patients with advanced cancers as
tumor metastasizes to bone. The inefficient clinical treatment
severely reduces quality of life of bone cancer pain patients.
During the pain status, activated spinal astrocytes and
microglia release various inflammatory cytokines, resulting in
spinal inflammation and the development of neuron sensitization.
Scorpion is the dry body of Buthus martensii Karsch and is often
used for various pain management in clinical practice. However,
its function on bone cancer pain is unclear. Methods We investigated the effects of intragastric administration of
scorpion on bone cancer pain induced by left tibial cavity
injection of Walker 256 cells. Nociceptive behavior was measured
using the von Frey filaments test and the spontaneous ambulatory
pain score. The bone destruction was assessed by tibial
radiographs. Expression of spinal cord astrocyte marker glial
fibrillary acidic protein and microglial marker Iba1 was
monitored by Western blot assay and immunofluorescence. Tumor
necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-1β was
detected by real-time polymerase chain reaction. The
proliferation of Walker 256 cells was evaluated by CCK8
assay. Results Intragastric administration of scorpion reduced bone cancer pain
behavior and relieved bone destruction, accompanied by decreased
expression of spinal glial fibrillary acidic protein and Iba1
protein level and TNF-α, IL-6, and IL-1β mRNA level. Besides,
scorpion inhibited proliferation of Walker 256 cells in a dose-
and time-dependent manner. Conclusion Our results demonstrate that scorpion produces an analgesic effect
in a rat model of bone cancer pain via inhibiting bone
destruction and activation of spinal cord astrocytes and
microglia.
Collapse
Affiliation(s)
- Jiachuan Yu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuanyuan Luo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huidan Jin
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaxin Lv
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tingting Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Iddrisu Baba Yabasin
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
23
|
Kahroba H, Ramezani B, Maadi H, Sadeghi MR, Jaberie H, Ramezani F. The role of Nrf2 in neural stem/progenitors cells: From maintaining stemness and self-renewal to promoting differentiation capability and facilitating therapeutic application in neurodegenerative disease. Ageing Res Rev 2021; 65:101211. [PMID: 33186670 DOI: 10.1016/j.arr.2020.101211] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neurons in nervous system. NDs are categorized as acute NDs such as stroke and head injury, besides chronic NDs including Alzheimer's, Parkinson's, Huntington's diseases, Friedreich's Ataxia, Multiple Sclerosis. The exact etiology of NDs is not understood but oxidative stress, inflammation and synaptic dysfunction are main hallmarks. Oxidative stress leads to free radical attack on neural cells which contributes to protein misfolding, glia cell activation, mitochondrial dysfunction, impairment of DNA repair system and subsequently cellular death. Neural stem cells (NSCs) support adult neurogenesis in nervous system during injuries which is limited to certain regions in brain. NSCs can differentiate into the neurons, astrocytes or oligodendrocytes. Impaired neurogenesis and inadequate induction of neurogenesis are the main obstacles in treatment of NDs. Protection of neural cells from oxidative damages and supporting neurogenesis are promising strategies to treat NDs. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional master regulator that maintains the redox homeostasis in cells by provoking expression of antioxidant, anti-inflammatory and cytoprotective genes. Nrf2 can strongly influence the NSCs function and fate determination by reducing levels of reactive oxygen species in benefit of NSC survival and neurogenesis. In this review we will summarize the role of Nrf2 in NSC function, and exogenous and endogenous therapeutic strategies in treatment of NDs.
Collapse
Affiliation(s)
- Houman Kahroba
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Ramezani
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamid Maadi
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Jaberie
- Department of Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Timpani CA, Rybalka E. Calming the (Cytokine) Storm: Dimethyl Fumarate as a Therapeutic Candidate for COVID-19. Pharmaceuticals (Basel) 2020; 14:15. [PMID: 33375288 PMCID: PMC7824470 DOI: 10.3390/ph14010015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has rapidly spread worldwide and incidences of hospitalisation from respiratory distress are significant. While a vaccine is in the pipeline, there is urgency for therapeutic options to address the immune dysregulation, hyperinflammation and oxidative stress that can lead to death. Given the shared pathogenesis of severe cases of COVID-19 with aspects of multiple sclerosis and psoriasis, we propose dimethyl fumarate as a viable treatment option. Currently approved for multiple sclerosis and psoriasis, dimethyl fumarate is an immunomodulatory, anti-inflammatory and anti-oxidative drug that could be rapidly implemented into the clinic to calm the cytokine storm which drives severe COVID-19.
Collapse
Affiliation(s)
- Cara A. Timpani
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, St Albans, VIC 3021, Australia
| | - Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, St Albans, VIC 3021, Australia
| |
Collapse
|
25
|
Bjørklund G, Tinkov AA, Hosnedlová B, Kizek R, Ajsuvakova OP, Chirumbolo S, Skalnaya MG, Peana M, Dadar M, El-Ansary A, Qasem H, Adams JB, Aaseth J, Skalny AV. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic Biol Med 2020; 160:149-162. [PMID: 32745763 DOI: 10.1016/j.freeradbiomed.2020.07.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022]
Abstract
The role of glutathione in autism spectrum disorder (ASD) is emerging as a major topic, due to its role in the maintenance of the intracellular redox balance. Several studies have implicated glutathione redox imbalance as a leading factor in ASD, and both ASD and many other neurodevelopmental disorders involve low levels of reduced glutathione (GSH), high levels of oxidized glutathione (GSSG), and abnormalities in the expressions of glutathione-related enzymes in the blood or brain. Glutathione metabolism, through its impact on redox environment or redox-independent mechanisms, interferes with multiple mechanisms involved in ASD pathogenesis. Glutathione-mediated regulation of glutamate receptors [e.g., N-methyl-d-aspartate (NMDA) receptor], as well as the role of glutamate as a substrate for glutathione synthesis, may be involved in the regulation of glutamate excitotoxicity. However, the interaction between glutathione and glutamate in the pathogenesis of brain diseases may vary from synergism to antagonism. Modulation of glutathione is also associated with regulation of redox-sensitive transcription factors nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) and downstream signaling (proinflammatory cytokines and inducible enzymes), thus providing a significant impact on neuroinflammation. Mitochondrial dysfunction, as well as neuronal apoptosis, may also provide a significant link between glutathione metabolism and ASD. Furthermore, it has been recently highlighted that glutathione can affect and modulate DNA methylation and epigenetics. Review analysis including research studies meeting the required criteria for analysis showed statistically significant differences between the plasma GSH and GSSG levels as well as GSH:GSSG ratio in autistic patients compared with healthy individuals (P = 0.0145, P = 0.0150 and P = 0.0202, respectively). Therefore, the existing data provide a strong background on the role of the glutathione system in ASD pathogenesis. Future research is necessary to investigate the role of glutathione redox signaling in ASD, which could potentially also lead to promising therapeutics.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo I Rana, Norway.
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Božena Hosnedlová
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
| | - Rene Kizek
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic; Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Olga P Ajsuvakova
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Margarita G Skalnaya
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Afaf El-Ansary
- Medicinal Chemistry Department, King Saud University, Riyadh, Saudi Arabia; Autism Research and Treatment Center, Riyadh, Saudi Arabia; CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Qasem
- Autism Research and Treatment Center, Riyadh, Saudi Arabia; CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia
| | - James B Adams
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
26
|
Titus HE, Chen Y, Podojil JR, Robinson AP, Balabanov R, Popko B, Miller SD. Pre-clinical and Clinical Implications of "Inside-Out" vs. "Outside-In" Paradigms in Multiple Sclerosis Etiopathogenesis. Front Cell Neurosci 2020; 14:599717. [PMID: 33192332 PMCID: PMC7654287 DOI: 10.3389/fncel.2020.599717] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated neurological disorder, characterized by central nervous system (CNS) inflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Although autoimmunity, inflammatory demyelination and neurodegeneration underlie MS, the initiating event has yet to be clarified. Effective disease modifying therapies need to both regulate the immune system and promote restoration of neuronal function, including remyelination. The challenge in developing an effective long-lived therapy for MS requires that three disease-associated targets be addressed: (1) self-tolerance must be re-established to specifically inhibit the underlying myelin-directed autoimmune pathogenic mechanisms; (2) neurons must be protected from inflammatory injury and degeneration; (3) myelin repair must be engendered by stimulating oligodendrocyte progenitors to remyelinate CNS neuronal axons. The combined use of chronic and relapsing remitting experimental autoimmune encephalomyelitis (C-EAE, R-EAE) (“outside-in”) as well as progressive diphtheria toxin A chain (DTA) and cuprizone autoimmune encephalitis (CAE) (“inside-out”) mouse models allow for the investigation and specific targeting of all three of these MS-associated disease parameters. The “outside-in” EAE models initiated by myelin-specific autoreactive CD4+ T cells allow for the evaluation of both myelin-specific tolerance in the absence or presence of neuroprotective and/or remyelinating agents. The “inside-out” mouse models of secondary inflammatory demyelination are triggered by toxin-induced oligodendrocyte loss or subtle myelin damage, which allows evaluation of novel therapeutics that could promote remyelination and neuroprotection in the CNS. Overall, utilizing these complementary pre-clinical MS models will open new avenues for developing therapeutic interventions, tackling MS from the “outside-in” and/or “inside-out”.
Collapse
Affiliation(s)
- Haley E Titus
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yanan Chen
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States
| | - Andrew P Robinson
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Roumen Balabanov
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brian Popko
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
27
|
Bjørklund G, Peana M, Maes M, Dadar M, Severin B. The glutathione system in Parkinson's disease and its progression. Neurosci Biobehav Rev 2020; 120:470-478. [PMID: 33068556 DOI: 10.1016/j.neubiorev.2020.10.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Redox dysfunctions and neuro-oxidative stress play a major role in the pathophysiology and progression of Parkinson's disease (PD). Glutathione (GSH) and the reduced/oxidized glutathione (GSH/GSSG) ratio are lowered in oxidative stress conditions and may lead to increased oxidative toxicity. GSH is involved not only in neuro-immune and neuro-oxidative processes, including thiol redox signaling, but also in cell proliferation and differentiation and in the regulation of cell death, including apoptotic pathways. Lowered GSH metabolism and a low GSH/GSSG ratio following oxidative stress are associated with mitochondrial dysfunctions and constitute a critical factor in the neuroinflammatory and neurodegenerative processes accompanying PD. This review provides indirect evidence that GSH redox signaling is associated with the pathophysiology of PD. Nevertheless, it has not been delineated whether GSH redox imbalances are a causative factor in PD or whether PD-associated pathways cause the GSH redox imbalances in PD. The results show that antioxidant approaches, including neuroprotective and anti-neuroinflammatory agents, which neutralize reactive oxygen species, may have therapeutic efficacy in the treatment of PD and its progression.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Impact Research Center, Deakin University, Geelong, Australia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Beatrice Severin
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|
28
|
Mallah K, Couch C, Borucki DM, Toutonji A, Alshareef M, Tomlinson S. Anti-inflammatory and Neuroprotective Agents in Clinical Trials for CNS Disease and Injury: Where Do We Go From Here? Front Immunol 2020; 11:2021. [PMID: 33013859 PMCID: PMC7513624 DOI: 10.3389/fimmu.2020.02021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Neurological disorders are major contributors to death and disability worldwide. The pathology of injuries and disease processes includes a cascade of events that often involve molecular and cellular components of the immune system and their interaction with cells and structures within the central nervous system. Because of this, there has been great interest in developing neuroprotective therapeutic approaches that target neuroinflammatory pathways. Several neuroprotective anti-inflammatory agents have been investigated in clinical trials for a variety of neurological diseases and injuries, but to date the results from the great majority of these trials has been disappointing. There nevertheless remains great interest in the development of neuroprotective strategies in this arena. With this in mind, the complement system is being increasingly discussed as an attractive therapeutic target for treating brain injury and neurodegenerative conditions, due to emerging data supporting a pivotal role for complement in promoting multiple downstream activities that promote neuroinflammation and degeneration. As we move forward in testing additional neuroprotective and immune-modulating agents, we believe it will be useful to review past trials and discuss potential factors that may have contributed to failure, which will assist with future agent selection and trial design, including for complement inhibitors. In this context, we also discuss inhibition of the complement system as a potential neuroprotective strategy for neuropathologies of the central nervous system.
Collapse
Affiliation(s)
- Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Christine Couch
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Davis M. Borucki
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Amer Toutonji
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Mohammed Alshareef
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Ralph Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
29
|
Itaconate: A Metabolite Regulates Inflammation Response and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5404780. [PMID: 32724492 PMCID: PMC7382747 DOI: 10.1155/2020/5404780] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
Metabolic products can lead to crucial biological function alterations. Itaconate is probably the best example of how a metabolic process can be diverted to generate an immunomodulator effect in macrophages. Through inflammatory stimuli, such as lipopolysaccharide, the immune response gene 1 is activated and promotes the production of itaconate from the tricarboxylic acid cycle by decarboxylating cis-aconitate. Itaconate has been reported to have multiple immunoregulatory and antioxidative effects. In addition, reports have described its antibacterial and protumor effects. The involved mechanism in these effects includes the activation of nuclear factor E2-related factor 2 by alkylation of Kelch-like ECH-associated protein 1, inhibition of aerobic glycolysis by targeting glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate aldolase A, inhibition of succinate dehydrogenase, and blockade of IκBζ translation. All of these discoveries elucidated the transformation of the pro- into anti-inflammatory status in macrophages, which is crucial in innate immunity and set the ground for the emerging therapeutic implications of itaconate. In this review, we point out that itaconate is a novel and pivotal metabolic determinant of the immunoregulatory response in macrophages and highlight studies that have improved our understanding of the connection between the immune response and metabolism. In addition, we shed light on the therapeutic potential of itaconate and its derivatives to treat inflammatory diseases.
Collapse
|
30
|
Scuderi SA, Ardizzone A, Paterniti I, Esposito E, Campolo M. Antioxidant and Anti-inflammatory Effect of Nrf2 Inducer Dimethyl Fumarate in Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:antiox9070630. [PMID: 32708926 PMCID: PMC7402174 DOI: 10.3390/antiox9070630] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (NDs) represents debilitating conditions characterized by degeneration of neuronal cells in specific brain areas, causing disability and death in patients. In the pathophysiology of NDs, oxidative stress, apoptosis and neuroinflammation have a key role, as demonstrated by in vivo and in vitro models. Therefore, the use of molecules with antioxidant and anti-inflammatory activities represents a possible strategy for the treatment of NDs. Many studies demonstrated the beneficial effects of fumaric acid esters (FAEs) to counteract neuroinflammation and oxidative stress. Among these molecules, dimethyl fumarate (DMF) showed a valid therapeutic approach to slow down neurodegeneration and relieve symptoms in patients with NDs. DMF is a methyl ester of fumaric acid and acts as modulator of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway as well as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) translocation. Therefore, this review aims to examine the potential beneficial effects of DMF to counteract oxidative stress and inflammation in patients with NDs.
Collapse
|
31
|
Takeda T, Tsubaki M, Asano R, Itoh T, Imano M, Satou T, Nishida S. Dimethyl fumarate suppresses metastasis and growth of melanoma cells by inhibiting the nuclear translocation of NF-κB. J Dermatol Sci 2020; 99:168-176. [PMID: 32693971 DOI: 10.1016/j.jdermsci.2020.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Malignant melanoma is among the deadliest forms of skin cancers, and its incidence has been increasing over the past decades. In malignant melanoma, activation of the nuclear factor kappa B (NF-κB) promotes survival, migration, and invasion of cancer cells. Anti-NF-κB agents for treating metastatic melanoma would be beneficial, but no such drug is approved as either monotherapy or adjuvant therapy. Dimethyl fumarate (DMF) is an approved anti-inflammatory drug already in clinical use for psoriasis and multiple sclerosis. OBJECTIVE We investigated the anti-tumour effect of DMF treatment in metastatic melanoma in vitro and in vivo. METHODS The cell viability was assessed via trypan blue exclusion assay. The migration and invasion was analyzed in a Boyden chamber assay. The anti-metastatic effects and anti-tumour activity of DMF was determined in an in-vivo model. The expressions of NF-κB pathway and NF-κB regulatory proteins were detected via western blotting. RESULTS DMF decreased the cell viability, migration and invasion in vitro. In addition, DMF inhibited spontaneous metastasis and tumour growth. Mechanistically, DMF prevented the nuclear translocation of NF-κB, whereas no changes were observed in the phosphorylation levels of inhibitor of kappa B (IκB). In addition, DMF inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs). Furthermore, DMF treatment decreased the expression of Survivin and Bcl-extra large (Bcl-XL) proteins. CONCLUSION Our results suggest that DMF as a novel inhibitor of NF-κB may be a potential therapeutic agent for metastatic melanoma.
Collapse
Affiliation(s)
- Tomoya Takeda
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Osaka, Japan
| | - Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Osaka, Japan
| | - Ryota Asano
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Osaka, Japan
| | - Tatsuki Itoh
- Department of Food Science and Nutrition, Kindai University School of Agriculture, Nara, Japan
| | - Motohiro Imano
- Department of Surgery, Kindai University School of Medicine, Osaka, Japan
| | - Takao Satou
- Department of Pathology, Kindai University School of Medicine, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Osaka, Japan.
| |
Collapse
|
32
|
Sangineto M, Grabherr F, Adolph TE, Grander C, Reider S, Jaschke N, Mayr L, Schwärzler J, Dallio M, Moschen AR, Moschetta A, Sabbà C, Tilg H. Dimethyl fumarate ameliorates hepatic inflammation in alcohol related liver disease. Liver Int 2020; 40:1610-1619. [PMID: 32306456 PMCID: PMC7383968 DOI: 10.1111/liv.14483] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Alcohol-related liver disease (ALD) comprises different liver disorders which impose a health care issue. ALD and particularly alcoholic steatohepatitis, an acute inflammatory condition, cause a substantial morbidity and mortality as effective treatment options remain elusive. Inflammation in ALD is fuelled by macrophages (Kupffer cells [KCs]) which are activated by intestinal pathogen associated molecular patterns, eg lipopolysaccharide (LPS), disseminated beyond a defective intestinal barrier. We hypothesized that the immunomodulator dimethyl-fumarate (DMF), which is approved for the treatment of human inflammatory conditions such as multiple sclerosis or psoriasis, ameliorates the course of experimental ALD. METHODS Dimethyl-fumarate or vehicle was orally administered to wild-type mice receiving a Lieber-DeCarli diet containing 5% ethanol for 15 days. Liver injury, steatosis and inflammation were evaluated by histology, biochemical- and immunoassays. Moreover, we investigated a direct immunosuppressive effect of DMF on KCs and explored a potential impact on ethanol-induced intestinal barrier disruption. RESULTS Dimethyl-fumarate protected against ethanol-induced hepatic injury, steatosis and inflammation in mice. Specifically, we observed reduced hepatic triglyceride and ALT accumulation, reduced hepatic expression of inflammatory cytokines (Tnf-α, Il-1β, Cxcl1) and reduced abundance of neutrophils and macrophages in ethanol-fed and DMF-treated mice when compared to vehicle. DMF protected against ethanol-induced barrier disruption and abrogated systemic LPS concentration. In addition, DMF abolished LPS-induced cytokine responses of KCs. CONCLUSIONS Dimethyl-fumarate counteracts ethanol-induced barrier dysfunction, suppresses inflammatory responses of KCs and ameliorates hepatic inflammation and steatosis, hallmarks of experimental ALD. Our data indicates that DMF treatment might be beneficial in human ALD and respective clinical trials are eagerly awaited.
Collapse
Affiliation(s)
- Moris Sangineto
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria,Department of Interdisciplinary MedicineUniversity of BariBariItaly
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria
| | - Timon E. Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria
| | - Simon Reider
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria,Christian Doppler Laboratory for Mucosal ImmunologyMedical University InnsbruckInnsbruckAustria
| | - Nikolai Jaschke
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria
| | - Marcello Dallio
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria,Department of Precision MedicineUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Alexander R. Moschen
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria,Christian Doppler Laboratory for Mucosal ImmunologyMedical University InnsbruckInnsbruckAustria
| | | | - Carlo Sabbà
- Department of Interdisciplinary MedicineUniversity of BariBariItaly
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria
| |
Collapse
|
33
|
Zinovkin RA, Grebenchikov OA. Transcription Factor Nrf2 as a Potential Therapeutic Target for Prevention of Cytokine Storm in COVID-19 Patients. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:833-837. [PMID: 33040727 PMCID: PMC7356136 DOI: 10.1134/s0006297920070111] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Nrf2 is a key transcription factor responsible for antioxidant defense in many tissues and cells, including alveolar epithelium, endothelium, and macrophages. Furthermore, Nrf2 functions as a transcriptional repressor that inhibits expression of the inflammatory cytokines in macrophages. Critically ill patients with COVID-19 infection often present signs of high oxidative stress and systemic inflammation - the leading causes of mortality. This article suggests rationale for the use of Nrf2 inducers to prevent development of an excessive inflammatory response in COVID-19 patients.
Collapse
Affiliation(s)
- R A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, 119992, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| | - O A Grebenchikov
- Negovsky Research Institute of General Reanimatology, Russian Academy of Medical Sciences, Moscow, 107031, Russia
| |
Collapse
|
34
|
Inhibition of JNK Alleviates Chronic Hypoperfusion-Related Ischemia Induces Oxidative Stress and Brain Degeneration via Nrf2/HO-1 and NF- κB Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5291852. [PMID: 32617137 PMCID: PMC7315317 DOI: 10.1155/2020/5291852] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Cerebral ischemia is one of the leading causes of neurological disorders. The exact molecular mechanism related to chronic unilateral cerebral ischemia-induced neurodegeneration and memory deficit has not been precisely elucidated. In this study, we examined the effect of chronic ischemia on the induction of oxidative stress and c-Jun N-terminal kinase-associated detrimental effects and unveiled the inhibitory effect of specific JNK inhibitor (SP600125) on JNK-mediated brain degeneration in adult mice. Our behavioral, biochemical, and immunofluorescence studies revealed that chronic ischemic injuries sustained increased levels of oxidative stress-induced active JNK for a long time, whereas SP600125 significantly reduced the elevated level of active JNK and further regulated Nrf2/HO-1 and NF-κB signaling, which have been confirmed in vivo. Neuroinflammatory mediators and loss of neuronal cells was significantly reduced with the administration of SP600125. Ischemic brain injury caused synaptic dysfunction and memory impairment in mice. However, these were significantly improved with SP600125. On the whole, these findings suggest that elevated ROS-mediated JNK is a key mediator in chronic ischemic conditions and has a crucial role in neuroinflammation, neurodegeneration, and memory dysfunction. Our findings suggest that chronic oxidative stress associated JNK would be a potential target in time-dependent studies of chronic ischemic conditions induced brain degeneration.
Collapse
|
35
|
Safavi F, Thome R, Li Z, Zhang GX, Rostami A. Dimethyl fumarate suppresses granulocyte macrophage colony-stimulating factor-producing Th1 cells in CNS neuroinflammation. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/4/e729. [PMID: 32371548 PMCID: PMC7217662 DOI: 10.1212/nxi.0000000000000729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/02/2020] [Indexed: 11/29/2022]
Abstract
Objective To study the immunomodulatory effect of dimethyl fumarate (DF) on granulocyte macrophage colony-stimulating factor (GM-CSF) production in CD4+ T cells in experimental autoimmune encephalomyelitis (EAE) and human peripheral blood mononuclear cells (PBMCs). Methods We collected splenocytes and CD4+ T cells from C57BL/6 wild-type and interferon (IFN)-γ–deficient mice. For human PBMCs, venous blood was collected from healthy donors, and PBMCs were collected using the Percoll gradient method. Cells were cultured with anti-CD3/28 in the presence/absence of DF for 3 to 5 days. Cells were stained and analyzed by flow cytometry. Cytokines were measured by ELISA in cell supernatants. For in vivo experiments, EAE was induced by myelin oligodendrocyte glycoprotein35–55 and mice were treated with oral DF or vehicle daily. Results DF acts directly on CD4+ T cells and suppresses GM-CSF–producing Th1 not Th17 or single GM-CSF+ T cells in EAE. In addition, GM-CSF suppression depends on the IFN-γ pathway. We also show that DF specifically suppresses Th1 and GM-CSF–producing Th1 cells in PBMCs from healthy donors. Conclusions We suggest that DF exclusively suppresses GM-CSF–producing Th1 cells in both animal and human CD4+ T cells through an IFN-γ–dependent pathway. These findings indicate that DF has a better therapeutic effect on patients with Th1-dominant immunophenotype. However, future longitudinal study to validate this finding in MS is needed.
Collapse
Affiliation(s)
- Farinaz Safavi
- From the Department of Neurology (F.S., R.T., Z.L., G.-X.Z., A.R.), Thomas Jefferson University, Philadelphia, PA. Dr. Safavi is now at National Institute of Health, NINDS, Bethesda, MD
| | - Rodolfo Thome
- From the Department of Neurology (F.S., R.T., Z.L., G.-X.Z., A.R.), Thomas Jefferson University, Philadelphia, PA. Dr. Safavi is now at National Institute of Health, NINDS, Bethesda, MD
| | - Zichen Li
- From the Department of Neurology (F.S., R.T., Z.L., G.-X.Z., A.R.), Thomas Jefferson University, Philadelphia, PA. Dr. Safavi is now at National Institute of Health, NINDS, Bethesda, MD
| | - Guang-Xian Zhang
- From the Department of Neurology (F.S., R.T., Z.L., G.-X.Z., A.R.), Thomas Jefferson University, Philadelphia, PA. Dr. Safavi is now at National Institute of Health, NINDS, Bethesda, MD
| | - Abdolmohamad Rostami
- From the Department of Neurology (F.S., R.T., Z.L., G.-X.Z., A.R.), Thomas Jefferson University, Philadelphia, PA. Dr. Safavi is now at National Institute of Health, NINDS, Bethesda, MD.
| |
Collapse
|
36
|
Luo Z, Wang H, Fang S, Li L, Li X, Shi J, Zhu M, Tan Z, Lu Z. Annexin-1 Mimetic Peptide Ac2-26 Suppresses Inflammatory Mediators in LPS-Induced Astrocytes and Ameliorates Pain Hypersensitivity in a Rat Model of Inflammatory Pain. Cell Mol Neurobiol 2020; 40:569-585. [PMID: 31722050 DOI: 10.1007/s10571-019-00755-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022]
Abstract
Ac2-26, a mimetic peptide of Annexin-A1, plays a vital role in the anti-inflammatory response mediated by astrocytes. In this study, we aimed to explore the underlying mechanisms of Ac2-26-mediated anti-inflammatory effect. Specifically, we investigated the inhibitory effects of Ac2-26 on lipopolysaccharide (LPS)-induced astrocyte migration and on pro-inflammatory cytokines and chemokines expressions, as well as one glutathione (GSH) reductase mRNA and total intracellular GSH levels in LPS-induced astrocytes. Additionally, we investigated whether mitogen-activated protein kinases (MAPK) and nuclear factor kappa-B (NF-κB) signaling pathway were involved in this process. Finally, we evaluated the analgesic effect of Ac2-26 in complete Freund's adjuvant (CFA)-induced inflammatory pain model. Our results demonstrated that Ac2-26 inhibited LPS-induced astrocytes migration, reduced the production of pro-inflammatory mediators [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1 (MIP-1α)] and upregulated GSH reductase mRNA and GSH levels in LPS-induced astrocytes in vitro. This process was mediated through the p38, JNK-MAPK signaling pathway, but not dependent on the NF-κB pathway. Furthermore, the p38 and JNK inhibitors mimicked the effects of Ac2-26, whereas a p38 and JNK activator anisomycin partially reversed its function. Finally, Ac2-26 treatment reduced CFA-induced activation of astrocytes and production of inflammatory mediators in the spinal cord. These results suggest that Ac2-26 attenuates pain by inhibiting astrocyte activation and the production of inflammatory mediators; thus, this work presents Ac2-26 as a potential drug to treat neuropathic pain.
Collapse
Affiliation(s)
- Zhenzhao Luo
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
| | - Hui Wang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
| | - Shiqiang Fang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
| | - Li Li
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
| | - Xing Li
- Department of Neurobiology, The School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Shi
- Department of Neurobiology, The School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Zhu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
| | - Zheqiong Tan
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
| | - Zhongxin Lu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China.
| |
Collapse
|
37
|
Pascale CL, Martinez AN, Carr C, Sawyer DM, Ribeiro-Alves M, Chen M, O'Donnell DB, Guidry JJ, Amenta PS, Dumont AS. Treatment with dimethyl fumarate reduces the formation and rupture of intracranial aneurysms: Role of Nrf2 activation. J Cereb Blood Flow Metab 2020; 40:1077-1089. [PMID: 31220996 PMCID: PMC7181091 DOI: 10.1177/0271678x19858888] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress and chronic inflammation in arterial walls have been implicated in intracranial aneurysm (IA) formation and rupture. Dimethyl fumarate (DMF) exhibits immunomodulatory properties, partly via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway which reduces oxidative stress by inducing the antioxidant response element (ARE). This study evaluated the effects of DMF both in vitro, using tumor necrosis factor (TNF)-α-treated vascular smooth muscle cells (VSMC), and in vivo, using a murine elastase model to induce aneurysm formation. The mice were treated with either DMF at 100 mg/kg/day P.O. or vehicle for two weeks. DMF treatment protected VSMCs from TNF-α-induced inflammation as demonstrated by its downregulation of cytokines and upregulation of Nrf2 and smooth muscle cell markers. At higher doses, DMF also inhibited the pro-proliferative action of TNF-α by increasing apoptosis which protected the cells from aponecrosis. In mice, DMF treatment significantly decreased the incidence of aneurysm formation and rupture, at the same time increasing Nrf2 levels. DMF demonstrated a neuroprotective effect in mice with a resultant inhibition of oxidative stress, inflammation, and fibrosis in the cerebrovasculature. This suggests a potential role for DMF as a rescue therapy for patients at risk for formation and rupture of IAs.
Collapse
Affiliation(s)
- Crissey L Pascale
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alejandra N Martinez
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Christopher Carr
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - David M Sawyer
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Marcelo Ribeiro-Alves
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectology Evandro Chagas (INI)-Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Mimi Chen
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Devon B O'Donnell
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jessie J Guidry
- Louisiana State University Health Sciences Center Proteomics Core Facility, New Orleans, LA, USA
| | - Peter S Amenta
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Aaron S Dumont
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
38
|
Van Dingenen J, Pieters L, Van Nuffel E, Lefebvre RA. Hemin reduces postoperative ileus in a heme oxygenase 1-dependent manner while dimethyl fumarate does without heme oxygenase 1-induction. Neurogastroenterol Motil 2020; 32:e13624. [PMID: 31121086 DOI: 10.1111/nmo.13624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Postoperative ileus (POI), the impairment of gastrointestinal motility after abdominal surgery, is mainly due to intestinal muscular inflammation. Carbon monoxide (CO)-releasing compounds were shown to exert an anti-inflammatory effect in murine POI partially through induction of heme oxygenase-1 (HO-1). The influence of hemin and dimethyl fumarate (DMF), currently used for multiple sclerosis (MS), was therefore tested in murine POI. METHODS C57BL/6J mice were anesthetized and after laparotomy, POI was induced via intestinal manipulation (IM). Animals were treated with either 30 mg kg-1 hemin intraperitoneally (ip), 30 mg kg-1 DMF ip, or 100 mg kg-1 intragastrically (ig) 24 hours before IM. Intestinal transit was assessed 24 hours postoperatively and mucosa-free muscularis or whole segments of the small intestine were stored for later analysis. Intestinal HO-1 protein expression was studied at 6, 12, and 24 hours after administration of hemin or DMF in non-manipulated mice. KEY RESULTS Pretreatment with hemin and DMF, both ig and ip, prevented the delayed transit seen after IM. Concomitantly, both hemin and DMF significantly reduced the increased interleukin-6 levels and the elevated leukocyte infiltration in the muscularis. Hemin but not DMF caused a significant increase in intestinal HO-1 protein expression and co-administration of the HO-1 inhibitor chromium mesoporphyrin abolished the protective effects of hemin on POI; DMF reduced the IM-induced activation of NF-κB and ERK 1/2. CONCLUSIONS AND INFERENCES Both hemin and DMF improve the delayed transit and inflammation seen in murine POI, but only hemin does so in a HO-1-dependent manner.
Collapse
Affiliation(s)
- Jonas Van Dingenen
- Department of Basic and Applied Medical Sciences, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Leen Pieters
- Department of Human Structure and Repair, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Elien Van Nuffel
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Romain A Lefebvre
- Department of Basic and Applied Medical Sciences, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Proteasome Composition in Cytokine-Treated Neurons and Astrocytes is Determined Mainly by Subunit Displacement. Neurochem Res 2020; 45:860-871. [PMID: 31939090 DOI: 10.1007/s11064-020-02958-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/11/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
In this study, we investigated if subunit displacement and/or alterations in proteasome biosynthesis are responsible for the changes in the levels of constitutive proteasomes (c-20S), immunoproteasomes (i-20S) and the activators PA28 and PA700 in neurons and astrocytes cultured with a cytokine mixture (IFN-γ/TNF-α/IL-1β). Exposure of both cell types to cytokines for 24 h increases mRNA and protein expression of the i-20S-specific subunit β5i and PA28α/β, and leads to a decline in the amount of the c-20S-specific subunit β5. Since β5 mRNA levels are unchanged by the cytokine treatment, it is fair to conclude that displacement of constitutive β-subunits with inducible β5i subunits is likely the mechanism underlying the decrease in c-20S. As expected, the increase in the amount of the IFN-γ-inducible subunits coincides with elevated expression of phospho-STAT-1 and interferon regulatory factor-1 (IRF-1). However, inhibition of NF-κB signaling in cytokine-treated astrocytes reduces IRF-1 expression without affecting that of i-20S, c-20S and PA28. This suggests that STAT-1 is capable of increasing the transcription of i20S-specific subunits and PA28α/β by itself. The lack of a decrease in proteasome β5 mRNA expression is consistent with the fact that Nrf1 (Nfe2l1) and Nrf2 (Nfe2l2) levels are not reduced by pro-inflammatory cytokines. In contrast, we previously found that there is a significant Nrf1 dysregulation and reduced β5 mRNA expression in the spinal cords of mice with experimental autoimmune encephalomyelitis (EAE). Thus, there are stressors in EAE, other than a pro-inflammatory environment, that are not present in cytokine-treated cells.
Collapse
|
40
|
Martinez AN, Pascale CL, Amenta PS, Israilevich R, Dumont AS. Cell Culture Model to Study Cerebral Aneurysm Biology. ACTA NEUROCHIRURGICA SUPPLEMENT 2020; 127:29-34. [DOI: 10.1007/978-3-030-04615-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
41
|
Sghaier R, Nury T, Leoni V, Caccia C, Pais De Barros JP, Cherif A, Vejux A, Moreau T, Limem K, Samadi M, Mackrill JJ, Masmoudi AS, Lizard G, Zarrouk A. Dimethyl fumarate and monomethyl fumarate attenuate oxidative stress and mitochondrial alterations leading to oxiapoptophagy in 158N murine oligodendrocytes treated with 7β-hydroxycholesterol. J Steroid Biochem Mol Biol 2019; 194:105432. [PMID: 31344443 DOI: 10.1016/j.jsbmb.2019.105432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023]
Abstract
Oxidative stress and mitochondrial dysfunction contribute to the pathogenesis of neurodegenerative diseases and favor lipid peroxidation, leading to increased levels of 7β-hydroxycholesterol (7β-OHC) which induces oxiapoptophagy (OXIdative stress, APOPTOsis, autoPHAGY). The cytoprotective effects of dimethylfumarate (DMF), used in the treatment of relapsing remitting multiple sclerosis and of monomethylfumarate (MMF), its main metabolite, were evaluated on murine oligodendrocytes 158 N exposed to 7β-OHC (50 μM, 24 h) with or without DMF or MMF (25 μM). The activity of 7β-OHC in the presence or absence DMF or MMF was evaluated on several parameters: cell adhesion; plasma membrane integrity measured with propidium iodide (PI), trypan blue and fluoresceine diacetate (FDA) assays; LDH activity; antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)); generation of lipid peroxidation products (malondialdehyde (MDA), conjugated dienes (CDs)) and protein oxidation products (carbonylated proteins (CPs)); reactive oxygen species (ROS) overproduction conducted with DHE and DHR123. The effect on mitochondria was determined with complementary criteria: measurement of succinate dehydrogenase activity, evaluation of mitochondrial potential (ΔΨm) and mitochondrial superoxide anions (O2●-) production using DiOC6(3) and MitoSOX, respectively; quantification of mitochondrial mass with Mitotracker Red, and of cardiolipins and organic acids. The effects on mitochondrial and peroxisomal ultrastructure were determined by transmission electron microscopy. Intracellular sterol and fatty acid profiles were determined. Apoptosis and autophagy were characterized by staining with Hoechst 33,342, Giemsa and acridine orange, and with antibodies raised against caspase-3 and LC3. DMF and MMF attenuate 7β-OHC-induced cytotoxicity: cell growth inhibition; decreased cell viability; mitochondrial dysfunction (decrease of succinate dehydrogenase activity, loss of ΔΨm, increase of mitochondrial O2●- production, alteration of the tricarboxilic acid (TCA) cycle, and cardiolipins content); oxidative stress induction (ROS overproduction, alteration of GPx, CAT, and SOD activities, increased levels of MDA, CDs, and CPs); changes in fatty acid and cholesterol metabolism; and cell death induction (caspase-3 cleavage, activation of LC3-I in LC3-II). Ultrastructural alterations of mitochondria and peroxisomes were prevented. These results demonstrate that DMF and MMF prevent major dysfunctions associated with neurodegenerative diseases: oxidative stress, mitochondrial dysfunction, apoptosis and autophagy.
Collapse
Affiliation(s)
- Randa Sghaier
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France; Univ. Sousse, Laboratory of Biochemistry, Faculty of Medicine, Tunisia; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir; Univ. Manouba, Laboratory of Biotechnology and Valorisation of Bio-Géo Ressources (LR11ES31), Higher Institute of Biotechnology, Sidi Thabet, Tunisia
| | - Thomas Nury
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Claudio Caccia
- Unit of Medical Genetics and Neurogenetics, IRCCS Carlo Besta, Milano, Italy
| | | | - Ameur Cherif
- Univ. Manouba, Laboratory of Biotechnology and Valorisation of Bio-Géo Ressources (LR11ES31), Higher Institute of Biotechnology, Sidi Thabet, Tunisia
| | - Anne Vejux
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France
| | - Thibault Moreau
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France; Univ. Hospital, Department of Neurology, Dijon, France
| | - Khalifa Limem
- Univ. Sousse, Laboratory of Biochemistry, Faculty of Medicine, Tunisia
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Dept of Chemistry, Univ. Lorraine, Metz Technopôle, Metz, France
| | - John J Mackrill
- Department of Physiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Ahmed Slaheddine Masmoudi
- Univ. Manouba, Laboratory of Biotechnology and Valorisation of Bio-Géo Ressources (LR11ES31), Higher Institute of Biotechnology, Sidi Thabet, Tunisia
| | - Gérard Lizard
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France.
| | - Amira Zarrouk
- Univ. Sousse, Laboratory of Biochemistry, Faculty of Medicine, Tunisia; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir.
| |
Collapse
|
42
|
Luo M, Sun Q, Zhao H, Tao J, Yan D. The Effects of Dimethyl Fumarate on Atherosclerosis in the Apolipoprotein E-Deficient Mouse Model with Streptozotocin-Induced Hyperglycemia Mediated By the Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element (Nrf2/ARE) Signaling Pathway. Med Sci Monit 2019; 25:7966-7975. [PMID: 31645538 PMCID: PMC6824188 DOI: 10.12659/msm.918951] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background This study aimed to investigate the effects of dimethyl fumarate (DMF) on thoracic aortic atherosclerosis in the apolipoprotein E (apo-E)-deficient mouse model with streptozotocin (STZ)-induced hyperglycemia, and the signaling pathways involved. Material/Methods Eight-week-old ApoE−/− male mice (n=30) were randomly divided into three groups: the Control group (ApoE−/−) (n=10); the diabetic model (STZ) group (n=10); and the DMF-treated (25 mg/kg) diabetic model (DMF+STZ) group (n=10). The area of the thoracic aortic atherosclerosis was determined by histology. Reactive oxygen species (ROS) levels in mouse serum and homogenates of the thoracic aorta were determined by colorimetry. Levels of nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase subunit gp91phox were detected by immunological hybridization, and levels of heme oxygenase-1 (HO-1) were measured by enzyme-linked immunosorbent assay (ELISA). Results Compared with the Control group, in the STZ group, the area of aortic atherosclerosis was significantly increased, the levels of serum and aortic ROS, HO-1, nuclear factor-κB (NF-κB), intercellular adhesion molecule 1 (ICAM-1), and gp91phox were increased, and nuclear factor erythroid 2-related factor 2 (Nrf2), endothelial nitric oxide synthase (eNOS), and phosphorylated eNOS (p-eNOS) were significantly reduced. Compared with the STZ group, in the DMF+STZ group, the area of aortic atherosclerosis was significantly reduced, the levels of serum and aortic ROS, HO-1, NF-κB, ICAM-1, and gp91phox were significantly reduced, and Nrf2, eNOS, and p-eNOS were significantly increased. Conclusions In the apo-E-deficient mouse model with STZ-induced hyperglycemia, DMF reduced the development of atherosclerosis of the thoracic aorta through the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway.
Collapse
Affiliation(s)
- Man Luo
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China (mainland)
| | - Qingsong Sun
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China (mainland)
| | - Hongmei Zhao
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China (mainland)
| | - Jiali Tao
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China (mainland)
| | - Dongsheng Yan
- Department of Gastroenterological Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China (mainland)
| |
Collapse
|
43
|
Pars K, Gingele M, Kronenberg J, Prajeeth CK, Skripuletz T, Pul R, Jacobs R, Gudi V, Stangel M. Fumaric Acids Do Not Directly Influence Gene Expression of Neuroprotective Factors in Highly Purified Rodent Astrocytes. Brain Sci 2019; 9:brainsci9090241. [PMID: 31546798 PMCID: PMC6769695 DOI: 10.3390/brainsci9090241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Dimethylfumarate (DMF) has been approved for the treatment of relapsing remitting multiple sclerosis. However, the mode of action of DMF and its assumed active primary metabolite monomethylfumarate (MMF) is still not fully understood. Former reports suggest a neuroprotective effect of DMF mediated via astrocytes by reducing pro-inflammatory activation of these glial cells. We investigated potential direct effects of DMF and MMF on neuroprotective factors like neurotrophic factors and growth factors in astrocytes to elucidate further possible mechanisms of the mode of action of fumaric acids; (2) Methods: highly purified cultures of primary rat astrocytes were pre-treated in vitro with DMF or MMF and incubated with lipopolysaccharides (LPS) or a mixture of interferon gamma (IFN-γ) plus interleukin 1 beta (IL-1β) in order to simulate an inflammatory environment. The gene expression of neuroprotective factors such as neurotrophic factors (nuclear factor E2-related factor 2 (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF)) and growth factors (fibroblast growth factor 2 (FGF2), platelet-derived growth factor subunit A (PDGFa), ciliary neurotrophic factor (CNTF)) as well as cytokines (tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6), IL-1β, inducible nitric oxide synthase (iNOS)) was examined by determining the transcription level with real-time quantitative polymerase chain reaction (qPCR); (3) Results: The stimulation of highly purified astrocytes with either LPS or cytokines changed the expression profile of growth factors and pro- inflammatory factors. However, the expression was not altered by either DMF nor MMF in unstimulated or stimulated astrocytes; (4) Conclusions: There was no direct influence of fumaric acids on neuroprotective factors in highly purified primary rat astrocytes. This suggests that the proposed potential neuroprotective effect of fumaric acid is not mediated by direct stimulation of neurotrophic factors in astrocytes but is rather mediated by other pathways or indirect mechanisms via other glial cells like microglia as previously demonstrated.
Collapse
Affiliation(s)
- Kaweh Pars
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Department of Neurology, European Medical School, University Oldenburg, 26129 Oldenburg, Germany.
| | - Marina Gingele
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Jessica Kronenberg
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany.
| | - Chittappen K Prajeeth
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Thomas Skripuletz
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Refik Pul
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Department of Neurology, University Clinic Essen, 45147 Essen, Germany.
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, 30559 Hannover, Germany.
| | - Viktoria Gudi
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany.
| |
Collapse
|
44
|
Selman M, Ou P, Rousso C, Bergeron A, Krishnan R, Pikor L, Chen A, Keller BA, Ilkow C, Bell JC, Diallo JS. Dimethyl fumarate potentiates oncolytic virotherapy through NF-κB inhibition. Sci Transl Med 2019; 10:10/425/eaao1613. [PMID: 29367345 DOI: 10.1126/scitranslmed.aao1613] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022]
Abstract
Resistance to oncolytic virotherapy is frequently associated with failure of tumor cells to get infected by the virus. Dimethyl fumarate (DMF), a common treatment for psoriasis and multiple sclerosis, also has anticancer properties. We show that DMF and various fumaric and maleic acid esters (FMAEs) enhance viral infection of cancer cell lines as well as human tumor biopsies with several oncolytic viruses (OVs), improving therapeutic outcomes in resistant syngeneic and xenograft tumor models. This results in durable responses, even in models otherwise refractory to OV and drug monotherapies. The ability of DMF to enhance viral spread results from its ability to inhibit type I interferon (IFN) production and response, which is associated with its blockade of nuclear translocation of the transcription factor nuclear factor κB (NF-κB). This study demonstrates that unconventional application of U.S. Food and Drug Administration-approved drugs and biological agents can result in improved anticancer therapeutic outcomes.
Collapse
Affiliation(s)
- Mohammed Selman
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Paula Ou
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Christopher Rousso
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Anabel Bergeron
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ramya Krishnan
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Larissa Pikor
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Andrew Chen
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Brian A Keller
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Carolina Ilkow
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
45
|
Borne AL, Huang T, McCloud RL, Pachaiyappan B, Bullock TNJ, Hsu KL. Deciphering T Cell Immunometabolism with Activity-Based Protein Profiling. Curr Top Microbiol Immunol 2019; 420:175-210. [PMID: 30128827 PMCID: PMC7134364 DOI: 10.1007/82_2018_124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
As a major sentinel of adaptive immunity, T cells seek and destroy diseased cells using antigen recognition to achieve molecular specificity. Strategies to block checkpoint inhibition of T cell activity and thus reawaken the patient's antitumor immune responses are rapidly becoming standard of care for treatment of diverse cancers. Adoptive transfer of patient T cells genetically engineered with tumor-targeting capabilities is redefining the field of personalized medicines. The diverse opportunities for exploiting T cell biology in the clinic have prompted new efforts to expand the scope of targets amenable to immuno-oncology. Given the complex spatiotemporal regulation of T cell function and fate, new technologies capable of global molecular profiling in vivo are needed to guide selection of appropriate T cell targets and subsets. In this chapter, we describe the use of activity-based protein profiling (ABPP) to illuminate different aspects of T cell metabolism and signaling as fertile starting points for investigation. We highlight the merits of ABPP methods to enable target, inhibitor, and biochemical pathway discovery of T cells in the burgeoning field of immuno-oncology.
Collapse
Affiliation(s)
- Adam L Borne
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Tao Huang
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Rebecca L McCloud
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Boobalan Pachaiyappan
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Timothy N J Bullock
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA.
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
46
|
Hooftman A, O’Neill LA. The Immunomodulatory Potential of the Metabolite Itaconate. Trends Immunol 2019; 40:687-698. [DOI: 10.1016/j.it.2019.05.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
|
47
|
Astrocytes in multiple sclerosis and experimental autoimmune encephalomyelitis: Star-shaped cells illuminating the darkness of CNS autoimmunity. Brain Behav Immun 2019; 80:10-24. [PMID: 31125711 DOI: 10.1016/j.bbi.2019.05.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathology in the human autoimmune disease multiple sclerosis (MS) is considered to be mediated by autoreactive leukocytes, such as T cells, B cells, and macrophages. However, the inflammation and tissue damage in MS and its animal model experimental autoimmune encephalomyelitis (EAE) is also critically regulated by astrocytes, the most abundant cell population in the central nervous system (CNS). Under physiological conditions, astrocytes are integral to the development and function of the CNS, whereas in CNS autoimmunity, astrocytes influence the pathogenesis, progression, and recovery of the diseases. In this review, we summarize recent advances in astrocytic functions in the context of MS and EAE, which are categorized into two opposite aspects, one being detrimental and the other beneficial. Inhibition of the detrimental functions and/or enhancement of the beneficial functions of astrocytes might be favorable for the treatment of MS.
Collapse
|
48
|
Ahmadi-Beni R, Najafi A, Savar SM, Mohebbi N, Khoshnevisan A. Role of dimethyl fumarate in the treatment of glioblastoma multiforme: A review article. IRANIAN JOURNAL OF NEUROLOGY 2019; 18:127-133. [PMID: 31749934 PMCID: PMC6858600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/16/2019] [Indexed: 10/28/2022]
Abstract
Glioblastoma multiforme (GBM), the most frequent malignant and aggressive primary brain tumor, is characterized by genetically unstable heterogeneous cells, diffused growth pattern, microvascular proliferation, and resistance to chemotherapy. Extensive investigations are being carried out to identify the molecular origin of resistance to chemo- and radio-therapy in GBM and find novel targets for therapy to improve overall survival rate. Dimethyl fumarate (DMF) has been shown to be a safe drug with limited short and long-term side effects, and fumaric acid esters (FAEs), including DMF, present both anti-oxidative and anti-inflammatory activity in different cell types and tissues. DMF has also anti-tumoral and neuroprotective effects and so it could be repurposed in the treatment of this invasive tumor in the future. Here, we have reviewed DMF pharmacokinetics and different mechanisms by which DMF could have therapeutic effects on GBM.
Collapse
Affiliation(s)
- Reza Ahmadi-Beni
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Najafi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Niayesh Mohebbi
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khoshnevisan
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Zaro BW, Vinogradova EV, Lazar DC, Blewett MM, Suciu RM, Takaya J, Studer S, de la Torre JC, Casanova JL, Cravatt BF, Teijaro JR. Dimethyl Fumarate Disrupts Human Innate Immune Signaling by Targeting the IRAK4-MyD88 Complex. THE JOURNAL OF IMMUNOLOGY 2019; 202:2737-2746. [PMID: 30885957 DOI: 10.4049/jimmunol.1801627] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022]
Abstract
Dimethyl fumarate (DMF) is a prescribed treatment for multiple sclerosis and has also been used to treat psoriasis. The electrophilicity of DMF suggests that its immunosuppressive activity is related to the covalent modification of cysteine residues in the human proteome. Nonetheless, our understanding of the proteins modified by DMF in human immune cells and the functional consequences of these reactions remains incomplete. In this study, we report that DMF inhibits human plasmacytoid dendritic cell function through a mechanism of action that is independent of the major electrophile sensor NRF2. Using chemical proteomics, we instead identify cysteine 13 of the innate immune kinase IRAK4 as a principal cellular target of DMF. We show that DMF blocks IRAK4-MyD88 interactions and IRAK4-mediated cytokine production in a cysteine 13-dependent manner. Our studies thus identify a proteomic hotspot for DMF action that constitutes a druggable protein-protein interface crucial for initiating innate immune responses.
Collapse
Affiliation(s)
- Balyn W Zaro
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Daniel C Lazar
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Megan M Blewett
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Radu M Suciu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Junichiro Takaya
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Sean Studer
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Juan Carlos de la Torre
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037;
| | - John R Teijaro
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037; and
| |
Collapse
|
50
|
Yadav SK, Soin D, Ito K, Dhib-Jalbut S. Insight into the mechanism of action of dimethyl fumarate in multiple sclerosis. J Mol Med (Berl) 2019; 97:463-472. [PMID: 30820593 DOI: 10.1007/s00109-019-01761-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/26/2022]
Abstract
Dimethyl fumarate (DMF) is an oral, disease-modifying agent for the treatment of relapsing-remitting multiple sclerosis (RRMS). However, details regarding its mode of action are still emerging. It is believed that the mode of action of DMF involves both nuclear factor erythroid-derived 2-related factor (Nrf2)-dependent and independent pathways, which lead to an anti-inflammatory immune response due to type II myeloid cell and Th2 cell differentiation and neuroprotection. In this review, we will focus on the molecular and signaling effects of DMF that lead to changes in peripheral immune cell composition and function, alteration in CNS cell-specific functions, and effect on the blood-brain barrier.
Collapse
Affiliation(s)
- Sudhir Kumar Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Devika Soin
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|