1
|
Razavi SA, Kalari M, Haghzad T, Haddadi F, Nasiri S, Hedayati M. Exploring the potential of myo-inositol in thyroid disease management: focus on thyroid cancer diagnosis and therapy. Front Endocrinol (Lausanne) 2024; 15:1418956. [PMID: 39329107 PMCID: PMC11424451 DOI: 10.3389/fendo.2024.1418956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/28/2024] Open
Abstract
Thyroid cancer (TC) is a malignancy that is increasing in prevalence on a global scale, necessitating the development of innovative approaches for both diagnosis and treatment. Myo-inositol (MI) plays a crucial role in a wide range of physiological and pathological functions within human cells. To date, studies have investigated the function of MI in thyroid physiology as well as its potential therapeutic benefits for hypothyroidism and autoimmune thyroiditis. However, research in the field of TC is very restricted. Metabolomics studies have highlighted the promising diagnostic capabilities of MI, recognizing it as a metabolic biomarker for identifying thyroid tumors. Furthermore, MI can influence therapeutic characteristics by modulating key cellular pathways involved in TC. This review evaluates the potential application of MI as a naturally occurring compound in the management of thyroid diseases, including hypothyroidism, autoimmune thyroiditis, and especially TC. The limited number of studies conducted in the field of TC emphasizes the critical need for future research to comprehend the multifaceted role of MI in TC. A significant amount of research and clinical trials is necessary to understand the role of MI in the pathology of TC, its diagnostic and therapeutic potential, and to pave the way for personalized medicine strategies in managing this intricate disease.
Collapse
Affiliation(s)
- S. Adeleh Razavi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Kalari
- Department of Biochemistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Tahereh Haghzad
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Fatemeh Haddadi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Shirzad Nasiri
- Department of Surgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Barbaro F, Conza GD, Quartulli FP, Quarantini E, Quarantini M, Zini N, Fabbri C, Mosca S, Caravelli S, Mosca M, Vescovi P, Sprio S, Tampieri A, Toni R. Correlation between tooth decay and insulin resistance in normal weight males prompts a role for myo-inositol as a regenerative factor in dentistry and oral surgery: a feasibility study. Front Bioeng Biotechnol 2024; 12:1374135. [PMID: 39144484 PMCID: PMC11321979 DOI: 10.3389/fbioe.2024.1374135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Background In an era of precision and stratified medicine, homogeneity in population-based cohorts, stringent causative entry, and pattern analysis of datasets are key elements to investigate medical treatments. Adhering to these principles, we collected in vivo and in vitro data pointing to an insulin-sensitizing/insulin-mimetic effect of myo-inositol (MYO) relevant to cell regeneration in dentistry and oral surgery. Confirmation of this possibility was obtained by in silico analysis of the relation between in vivo and in vitro results (the so-called bed-to-benchside reverse translational approach). Results Fourteen subjects over the 266 screened were young adult, normal weight, euglycemic, sedentary males having normal appetite, free diet, with a regular three-times-a-day eating schedule, standard dental hygiene, and negligible malocclusion/enamel defects. Occlusal caries were detected by fluorescence videoscanning, whereas body composition and energy balance were estimated with plicometry, predictive equations, and handgrip. Statistically significant correlations (Pearson r coefficient) were found between the number of occlusal caries and anthropometric indexes predicting insulin resistance (IR) in relation to the abdominal/visceral fat mass, fat-free mass, muscular strength, and energy expenditure adjusted to the fat and muscle stores. This indicated a role for IR in affecting dentin reparative processes. Consistently, in vitro administration of MYO to HUVEC and Swiss NIH3T3 cells in concentrations corresponding to those administered in vivo to reduce IR resulted in statistically significant cell replication (ANOVA/Turkey tests), suggesting that MYO has the potential to counteract inhibitory effects of IR on dental vascular and stromal cells turnover. Finally, in in silico experiments, quantitative evaluation (WOE and information value) of a bioinformatic Clinical Outcome Pathway confirmed that in vitro trophic effects of MYO could be transferred in vivo with high predictability, providing robust credence of its efficacy for oral health. Conclusion Our reverse bed-to-benchside data indicate that MYO might antagonize the detrimental effects of IR on tooth decay. This provides feasibility for clinical studies on MYO as a regenerative factor in dentistry and oral surgery, including dysmetabolic/aging conditions, bone reconstruction in oral destructive/necrotic disorders, dental implants, and for empowering the efficacy of a number of tissue engineering methodologies in dentistry and oral surgery.
Collapse
Affiliation(s)
- Fulvio Barbaro
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Giusy Di Conza
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Francesca Pia Quartulli
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Enrico Quarantini
- Odontostomatology Unit, and R&D Center for Artificial Intelligence in Biomedicine and Odontostomatology (A.I.B.O), Galliera Medical Center, San Venanzio di Galliera, Italy
| | - Marco Quarantini
- Odontostomatology Unit, and R&D Center for Artificial Intelligence in Biomedicine and Odontostomatology (A.I.B.O), Galliera Medical Center, San Venanzio di Galliera, Italy
| | - Nicoletta Zini
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
| | - Celine Fabbri
- Course on Odontostomatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Salvatore Mosca
- Course on Disorders of the Locomotor System, Fellow Program in Orthopaedics and Traumatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvio Caravelli
- O.U. Orthopedics Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimiliano Mosca
- O.U. Orthopedics Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo Vescovi
- Department of Medicine and Surgery - DIMEC, Odontostomatology Section, University of Parma, Parma, Italy
| | | | | | - Roberto Toni
- CNR - ISSMC, Faenza, Italy
- Academy of Sciences of the Institute of Bologna, Section IV - Medical Sciences, Bologna, Italy
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic - OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and R&D Center A.I.B.O, Centro Medico Galliera, San Venanzio di Galliera, Italy
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Tufts Medical Center - Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
3
|
Bashiri Z, Sheibak N, Amjadi F, Zandieh Z. The role of myo-inositol supplement in assisted reproductive techniques. HUM FERTIL 2023; 26:1044-1060. [PMID: 35730666 DOI: 10.1080/14647273.2022.2073273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/20/2021] [Indexed: 11/04/2022]
Abstract
Assisted reproductive techniques can help many infertile couples conceive. Therefore, there is a need for an effective method to overcome the widespread problems of infertile men and women. Oocyte and sperm quality can increase the chances of successful in vitro fertilisation. The maturation environment in which gametes are present can affect their competency for fertilisation. It is well established that myo-inositol (MI) plays a pivotal role in reproductive physiology. It participates in cell membrane formation, lipid synthesis, cell proliferation, cardiac regulation, metabolic alterations, and fertility. This molecule also acts as a direct messenger of insulin and improves glucose uptake in various reproductive tissues. Evidence suggests that MI regulates events such as gamete maturation, fertilisation, and embryo growth through intracellular Ca2 + release and various signalling pathways. In addition to the in-vivo production of MI from glucose in the reproductive organs, its synthesis by in vitro-cultured sperm and follicles has also been reported. Therefore, MI is suggested as a therapeutic approach to maintain sperm and oocyte health in men and women with reproductive disorders and individuals of reproductive age.
Collapse
Affiliation(s)
- Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Omid Fertility and Infertility Clinic, Hamedan, Iran
| | - Nadia Sheibak
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
de Ligny W, Smits RM, Mackenzie-Proctor R, Jordan V, Fleischer K, de Bruin JP, Showell MG. Antioxidants for male subfertility. Cochrane Database Syst Rev 2022; 5:CD007411. [PMID: 35506389 PMCID: PMC9066298 DOI: 10.1002/14651858.cd007411.pub5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The inability to have children affects 10% to 15% of couples worldwide. A male factor is estimated to account for up to half of the infertility cases with between 25% to 87% of male subfertility considered to be due to the effect of oxidative stress. Oral supplementation with antioxidants is thought to improve sperm quality by reducing oxidative damage. Antioxidants are widely available and inexpensive when compared to other fertility treatments, however most antioxidants are uncontrolled by regulation and the evidence for their effectiveness is uncertain. We compared the benefits and risks of different antioxidants used for male subfertility. OBJECTIVES To evaluate the effectiveness and safety of supplementary oral antioxidants in subfertile men. SEARCH METHODS The Cochrane Gynaecology and Fertility (CGF) Group trials register, CENTRAL, MEDLINE, Embase, PsycINFO, AMED, and two trial registers were searched on 15 February 2021, together with reference checking and contact with experts in the field to identify additional trials. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment, or treatment with another antioxidant, among subfertile men of a couple attending a reproductive clinic. We excluded studies comparing antioxidants with fertility drugs alone and studies that included men with idiopathic infertility and normal semen parameters or fertile men attending a fertility clinic because of female partner infertility. DATA COLLECTION AND ANALYSIS We used standard methodological procedures recommended by Cochrane. The primary review outcome was live birth. Clinical pregnancy, adverse events and sperm parameters were secondary outcomes. MAIN RESULTS We included 90 studies with a total population of 10,303 subfertile men, aged between 18 and 65 years, part of a couple who had been referred to a fertility clinic and some of whom were undergoing medically assisted reproduction (MAR). Investigators compared and combined 20 different oral antioxidants. The evidence was of 'low' to 'very low' certainty: the main limitation was that out of the 67 included studies in the meta-analysis only 20 studies reported clinical pregnancy, and of those 12 reported on live birth. The evidence is current up to February 2021. Live birth: antioxidants may lead to increased live birth rates (odds ratio (OR) 1.43, 95% confidence interval (CI) 1.07 to 1.91, P = 0.02, 12 RCTs, 1283 men, I2 = 44%, very low-certainty evidence). Results in the studies contributing to the analysis of live birth rate suggest that if the baseline chance of live birth following placebo or no treatment is assumed to be 16%, the chance following the use of antioxidants is estimated to be between 17% and 27%. However, this result was based on only 246 live births from 1283 couples in 12 small or medium-sized studies. When studies at high risk of bias were removed from the analysis, there was no evidence of increased live birth (Peto OR 1.22, 95% CI 0.85 to 1.75, 827 men, 8 RCTs, P = 0.27, I2 = 32%). Clinical pregnancy rate: antioxidants may lead to increased clinical pregnancy rates (OR 1.89, 95% CI 1.45 to 2.47, P < 0.00001, 20 RCTs, 1706 men, I2 = 3%, low-certainty evidence) compared with placebo or no treatment. This suggests that, in the studies contributing to the analysis of clinical pregnancy, if the baseline chance of clinical pregnancy following placebo or no treatment is assumed to be 15%, the chance following the use of antioxidants is estimated to be between 20% and 30%. This result was based on 327 clinical pregnancies from 1706 couples in 20 small studies. Adverse events Miscarriage: only six studies reported on this outcome and the event rate was very low. No evidence of a difference in miscarriage rate was found between the antioxidant and placebo or no treatment group (OR 1.46, 95% CI 0.75 to 2.83, P = 0.27, 6 RCTs, 664 men, I2 = 35%, very low-certainty evidence). The findings suggest that in a population of subfertile couples, with male factor infertility, with an expected miscarriage rate of 5%, the risk of miscarriage following the use of an antioxidant would be between 4% and 13%. Gastrointestinal: antioxidants may lead to an increase in mild gastrointestinal discomfort when compared with placebo or no treatment (OR 2.70, 95% CI 1.46 to 4.99, P = 0.002, 16 RCTs, 1355 men, I2 = 40%, low-certainty evidence). This suggests that if the chance of gastrointestinal discomfort following placebo or no treatment is assumed to be 2%, the chance following the use of antioxidants is estimated to be between 2% and 7%. However, this result was based on a low event rate of 46 out of 1355 men in 16 small or medium-sized studies, and the certainty of the evidence was rated low and heterogeneity was high. We were unable to draw conclusions from the antioxidant versus antioxidant comparison as insufficient studies compared the same interventions. AUTHORS' CONCLUSIONS In this review, there is very low-certainty evidence from 12 small or medium-sized randomised controlled trials suggesting that antioxidant supplementation in subfertile males may improve live birth rates for couples attending fertility clinics. Low-certainty evidence suggests that clinical pregnancy rates may increase. There is no evidence of increased risk of miscarriage, however antioxidants may give more mild gastrointestinal discomfort, based on very low-certainty evidence. Subfertile couples should be advised that overall, the current evidence is inconclusive based on serious risk of bias due to poor reporting of methods of randomisation, failure to report on the clinical outcomes live birth rate and clinical pregnancy, often unclear or even high attrition, and also imprecision due to often low event rates and small overall sample sizes. Further large well-designed randomised placebo-controlled trials studying infertile men and reporting on pregnancy and live births are still required to clarify the exact role of antioxidants.
Collapse
Affiliation(s)
- Wiep de Ligny
- Department of Gynaecology and Obstetrics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roos M Smits
- Department of Gynaecology and Obstetrics, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Vanessa Jordan
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Kathrin Fleischer
- Department of Gynaecology and Obstetrics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan Peter de Bruin
- Department of Obstetrics and Gynaecology, Jeroen Bosch Hospital, 's-Hertogenbosch, Netherlands
| | - Marian G Showell
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Greene E, Mallmann B, Wilson JW, Cowieson AJ, Dridi S. Monitoring Phytate Hydrolysis Using Serial Blood Sampling and Feather Myo-Inositol Levels in Broilers. Front Physiol 2020; 11:736. [PMID: 32676038 PMCID: PMC7333251 DOI: 10.3389/fphys.2020.00736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/08/2020] [Indexed: 12/23/2022] Open
Abstract
Phytate forms insoluble precipitates with various cations that are recalcitrant to digestion in poultry. Dietary supplementation with exogenous phytase has been shown to improve phytate solubility and digestibility and, in turn, improve animal growth performance. Although the kinetics of phytate hydrolysis by exogenous phytase are well described in vitro, the progression of the reaction in vivo is still not well defined. The aim of the present study was, therefore, to monitor the kinetic variation of myo-inositol (myo-Ins) levels in both circulation and feather following exogenous phytase supplementation. In experiment 1, 4 week-old male broilers were individually housed with ad libitum access to water and a standard commercial diet. Birds were maintained under environmental temperature of 24°C and 30% RH. Birds were cannulated in the cutaneous ulnar vein on the right wing and remained untouched for 3 days. On the day of the experiment, birds were randomly divided into three body weight-matched groups and fed either the control diet, the control diet-supplemented with myo-Ins or Ronozyme HiPhos (0.06%, DSM Nutritional Products, Switzerland) for 10 h. In the experiment 2, birds were fed only HiPhos for 30 h. Growing feathers and blood were collected at baseline and then every 2 h for 10 h (experiment 1) and 30 h (experiment 2) post-prandially. Plasma and feather myo-Ins levels were determined by UHPLC-MS/MS. The relative expression of inositol polyphosphate-1-phosphatase (INPP1), inositol hexakisphosphate kinase 1-3 (IP6K1-3), inositol-3-phosphate synthase (ISYNA), and multiple inositol-polyphosphate phosphatase 1 (MNPP1) genes in blood and feathers was determined by real-time qPCR using 2–ΔΔCt method. Plasma and feather myo-Ins levels were significantly increased by HiPhos at 6 h to 8 h post-prandial. The mRNA abundances of INPP1, IP6K1, and ISYNA in the circulation were significantly down regulated at all periods compared to the baseline levels. IP6K2, IP6K3, and MINPP1 gene expression, however, was up regulated at 8 h post-prandial and then returned to the baseline levels. In feathers, the expression of INPP1 was induced at 8 h post-prandial and remained higher compared to the baseline. The expression of IP6K2, IP6K3, and MINPP1 was down regulated during the first 10 h and then returned to baseline levels for the rest of the post-prandial period. Taken together, our data show that phytase modulates the expression of genes associated with myo-Ins metabolism and generates release of myo-Ins in both circulation and feather at 6–10 h post-feeding. Feather myo-Ins concentration could be used as a non-invasive method to monitor phytate hydrolysis in practice.
Collapse
Affiliation(s)
- Elizabeth Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Barbara Mallmann
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | | | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
6
|
Benvenga S, Ferrari SM, Elia G, Ragusa F, Patrizio A, Paparo SR, Camastra S, Bonofiglio D, Antonelli A, Fallahi P. Nutraceuticals in Thyroidology: A Review of in Vitro, and in Vivo Animal Studies. Nutrients 2020; 12:nu12051337. [PMID: 32397091 PMCID: PMC7285044 DOI: 10.3390/nu12051337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Nutraceuticals are defined as a food, or parts of a food, that provide medical or health benefits, including the prevention of different pathological conditions, and thyroid diseases, or the treatment of them. Nutraceuticals have a place in complementary medicines, being positioned in an area among food, food supplements, and pharmaceuticals. The market of certain nutraceuticals such as thyroid supplements has been growing in the last years. In addition, iodine is a fundamental micronutrient for thyroid function, but also other dietary components can have a key role in clinical thyroidology. Here, we have summarized the in vitro, and in vivo animal studies present in literature, focusing on the commonest nutraceuticals generally encountered in the clinical practice (such as carnitine, flavonoids, melatonin, omega-3, resveratrol, selenium, vitamins, zinc, and inositol), highlighting conflicting results. These experimental studies are expected to improve clinicians’ knowledge about the main supplements being used, in order to clarify the potential risks or side effects and support patients in their use.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Master Program on Childhood, Adolescent and Women’s Endocrine Health, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina;
- Interdepartmental Program of Molecular & Clinical Endocrinology, and Women’s Endocrine Health, University Hospital, Policlinico Universitario G. Martino, 98125 Messina, Italy
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Armando Patrizio
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Sabrina Rosaria Paparo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy;
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
- Correspondence: ; Tel.: +39-050-992318
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
7
|
Gonzalez-Uarquin F, Rodehutscord M, Huber K. Myo-inositol: its metabolism and potential implications for poultry nutrition-a review. Poult Sci 2019; 99:893-905. [PMID: 32036985 PMCID: PMC7587644 DOI: 10.1016/j.psj.2019.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/26/2019] [Accepted: 10/06/2019] [Indexed: 12/11/2022] Open
Abstract
Myo-inositol (MI) has gained relevance in physiology research during the last decade. As a constituent of animal cells, MI was proven to be crucial in several metabolic and regulatory processes. Myo-inositol is involved in lipid signaling, osmolarity, glucose, and insulin metabolism. In humans and rodents, dietary MI was assessed to be important for health so that MI supplementation appeared to be a valuable alternative for treatment of several diseases as well as for improvements in metabolic performance. In poultry, there is a lack of evidence not only related to specific species-linked metabolic processes but also about the effects of dietary MI on performance and health. This review intends to provide information about the meaning of dietary MI in animal metabolism as well as to discuss potential implications of dietary MI in poultry health and performance with the aim to identify open questions in poultry research.
Collapse
Affiliation(s)
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
8
|
Vazquez-Levin M, Verón G. Myo‐inositol in health and disease: its impact on semen parameters and male fertility. Andrology 2019; 8:277-298. [DOI: 10.1111/andr.12718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Affiliation(s)
- M.H. Vazquez-Levin
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer Instituto de Biología y Medicina Experimental (IBYME)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐ Fundación IBYME (FIBYME) Ciudad Autónoma de Buenos Aires Argentina
| | - G.L. Verón
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer Instituto de Biología y Medicina Experimental (IBYME)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐ Fundación IBYME (FIBYME) Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
9
|
|
10
|
Cheng F, Ge X, Gao C, Li Y, Wang M. The distribution of D-chiro-inositol in buckwheat and its antioxidative effect in HepG2. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Smits RM, Mackenzie‐Proctor R, Yazdani A, Stankiewicz MT, Jordan V, Showell MG. Antioxidants for male subfertility. Cochrane Database Syst Rev 2019; 3:CD007411. [PMID: 30866036 PMCID: PMC6416049 DOI: 10.1002/14651858.cd007411.pub4] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The inability to have children affects 10% to 15% of couples worldwide. A male factor is estimated to account for up to half of the infertility cases with between 25% to 87% of male subfertility considered to be due to the effect of oxidative stress. Oral supplementation with antioxidants is thought to improve sperm quality by reducing oxidative damage. Antioxidants are widely available and inexpensive when compared to other fertility treatments, however most antioxidants are uncontrolled by regulation and the evidence for their effectiveness is uncertain. We compared the benefits and risks of different antioxidants used for male subfertility. This review did not examine the use of antioxidants in normospermic men. OBJECTIVES To evaluate the effectiveness and safety of supplementary oral antioxidants in subfertile men. SEARCH METHODS The Cochrane Gynaecology and Fertility (CGF) Group trials register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL, and two trials registers were searched on 1 February 2018, together with reference checking and contact with study authors and experts in the field to identify additional trials. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment or treatment with another antioxidant, among subfertile men of a couple attending a reproductive clinic. We excluded studies comparing antioxidants with fertility drugs alone and studies that included fertile men attending a fertility clinic because of female partner infertility. DATA COLLECTION AND ANALYSIS We used standard methodological procedures recommended by Cochrane. The primary review outcome was live birth. Clinical pregnancy, adverse events and sperm parameters were secondary outcomes. MAIN RESULTS We included 61 studies with a total population of 6264 subfertile men, aged between 18 and 65 years, part of a couple who had been referred to a fertility clinic and some of whom were undergoing assisted reproductive techniques (ART). Investigators compared and combined 18 different oral antioxidants. The evidence was of 'low' to 'very low' quality: the main limitation was that out of the 44 included studies in the meta-analysis only 12 studies reported on live birth or clinical pregnancy. The evidence is current up to February 2018.Live birth: antioxidants may lead to increased live birth rates (OR 1.79, 95% CI 1.20 to 2.67, P = 0.005, 7 RCTs, 750 men, I2 = 40%, low-quality evidence). Results suggest that if in the studies contributing to the analysis of live birth rate, the baseline chance of live birth following placebo or no treatment is assumed to be 12%, the chance following the use of antioxidants is estimated to be between 14% and 26%. However, this result was based on only 124 live births from 750 couples in seven relatively small studies. When studies at high risk of bias were removed from the analysis, there was no evidence of increased live birth (Peto OR 1.38, 95% CI 0.89 to 2.16; participants = 540 men, 5 RCTs, P = 0.15, I2 = 0%).Clinical pregnancy rate: antioxidants may lead to increased clinical pregnancy rates (OR 2.97, 95% CI 1.91 to 4.63, P < 0.0001, 11 RCTs, 786 men, I2 = 0%, low-quality evidence) compared to placebo or no treatment. This suggests that if in the studies contributing to the analysis of clinical pregnancy, the baseline chance of clinical pregnancy following placebo or no treatment is assumed to be 7%, the chance following the use of antioxidants is estimated to be between 12% and 26%. This result was based on 105 clinical pregnancies from 786 couples in 11 small studies.Adverse eventsMiscarriage: only three studies reported on this outcome and the event rate was very low. There was no difference in miscarriage rate between the antioxidant and placebo or no treatment group (OR 1.74, 95% CI 0.40 to 7.60, P = 0.46, 3 RCTs, 247 men, I2 = 0%, very low-quality evidence). The findings suggest that in a population of subfertile men with an expected miscarriage rate of 2%, the chance following the use of an antioxidant would result in the risk of a miscarriage between 1% and 13%.Gastrointestinal: antioxidants may lead to an increase in mild gastrointestinal upsets when compared to placebo or no treatment (OR 2.51, 95% CI 1.25 to 5.03, P = 0.010, 11 RCTs, 948 men, I2 = 50%, very low-quality evidence). This suggests that if the chance of gastrointestinal upsets following placebo or no treatment is assumed to be 2%, the chance following the use of antioxidants is estimated to be between 2% and 9%. However, this result was based on a low event rate of 35 out of 948 men in 10 small or medium-sized studies, and the quality of the evidence was rated very low and was high in heterogeneity.We were unable to draw any conclusions from the antioxidant versus antioxidant comparison as insufficient studies compared the same interventions. AUTHORS' CONCLUSIONS In this review, there is low-quality evidence from seven small randomised controlled trials suggesting that antioxidant supplementation in subfertile males may improve live birth rates for couples attending fertility clinics. Low-quality evidence suggests that clinical pregnancy rates may also increase. Overall, there is no evidence of increased risk of miscarriage, however antioxidants may give more mild gastrointestinal upsets but the evidence is of very low quality. Subfertilte couples should be advised that overall, the current evidence is inconclusive based on serious risk of bias due to poor reporting of methods of randomisation, failure to report on the clinical outcomes live birth rate and clinical pregnancy, often unclear or even high attrition, and also imprecision due to often low event rates and small overall sample sizes. Further large well-designed randomised placebo-controlled trials reporting on pregnancy and live births are still required to clarify the exact role of antioxidants.
Collapse
Affiliation(s)
- Roos M Smits
- Radboud University Medical CenterDepartment of Gynaecology and ObstetricsNijmegenNetherlands
| | | | - Anusch Yazdani
- Queensland Fertility Group Research Foundation55 Little Edward St, Level 2 Boundary CourtSpring HillBrisbaneQueenslandAustralia4000
| | - Marcin T Stankiewicz
- Ashford Specialist Centre Suite 2257‐59 Anzac Highway AshfordAdelaideSAAustralia
| | - Vanessa Jordan
- University of AucklandDepartment of Obstetrics and GynaecologyPrivate Bag 92019AucklandNew Zealand1003
| | - Marian G Showell
- University of AucklandDepartment of Obstetrics and GynaecologyPrivate Bag 92019AucklandNew Zealand1003
| | | |
Collapse
|
12
|
Abstract
Myo-inositol is a ubiquitous cyclitol, has an important regulatory role, and its intracellular depletion is associated with pathological changes. Effects of myo-inositol on adipose tissue are poorly elucidated. In this report, short-term influence of 20, 100, and 500 µM myo-inositol on metabolism of the isolated rat adipocytes was studied. Cells were incubated for 90 min with glucose and insulin with or without myo-inositol and glucose conversion to lipids and lactate release were measured. Moreover, effects of myo-inositol on lipolysis and on the antilipolytic action of insulin were also studied. It was demonstrated that lipogenesis and lactate release were unchanged by myo-inositol. Moreover, lipolytic response to epinephrine and dibutyryl-cAMP was also unchanged. Myo-inositol was also found to be without influence on the antilipolytic action of insulin. Results of this study show that metabolism of the isolated rat adipocytes is not affected by short-term exposure of these cells to myo-inositol.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- a Department of Animal Physiology and Biochemistry , Poznan University of Life Sciences , Poznan , Poland
| | - Iwona Hertig
- a Department of Animal Physiology and Biochemistry , Poznan University of Life Sciences , Poznan , Poland
| | - Katarzyna Szkudelska
- a Department of Animal Physiology and Biochemistry , Poznan University of Life Sciences , Poznan , Poland
| |
Collapse
|
13
|
Disruption of INOS, a Gene Encoding myo-Inositol Phosphate Synthase, Causes Male Sterility in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:2913-2922. [PMID: 29991509 PMCID: PMC6118315 DOI: 10.1534/g3.118.200403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Inositol is a precursor for the phospholipid membrane component phosphatidylinositol (PI), involved in signal transduction pathways, endoplasmic reticulum stress, and osmoregulation. Alterations of inositol metabolism have been implicated in human reproductive issues, the therapeutic effects of drugs used to treat epilepsy and bipolar disorder, spinal cord defects, and diseases including diabetes and Alzheimer’s. The sole known inositol synthetic enzyme is myo-inositol synthase (MIPS), and the homolog in Drosophilia melanogaster is encoded by the Inos gene. Three identical deletion strains (inosΔDF/CyO) were constructed, confirmed by PCR and sequencing, and homozygotes (inosΔDF/inosΔDF) were shown to lack the transcript encoding the MIPS enzyme. Without inositol, homozygous inosΔDF deletion fertilized eggs develop only to the first-instar larval stage. When transferred as pupae to food without inositol, however, inosΔDF homozygotes die significantly sooner than wild-type flies. Even with dietary inositol the homozygous inosΔDF males are sterile. An inos allele, with a P-element inserted into the first intron, fails to complement this male sterile phenotype. An additional copy of the Inos gene inserted into another chromosome rescues all the phenotypes. These genetic and phenotypic analyses establish D. melanogaster as an excellent model organism in which to examine the role of inositol synthesis in development and reproduction.
Collapse
|
14
|
Scientific Opinion on the safety and efficacy of inositol as a feed additive for fish, dogs and cats. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Croze ML, Soulage CO. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 2013; 95:1811-27. [PMID: 23764390 DOI: 10.1016/j.biochi.2013.05.011] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/30/2013] [Indexed: 02/08/2023]
Abstract
Several inositol isomers and in particular myo-inositol (MI) and D-chiro-inositol (DCI), were shown to possess insulin-mimetic properties and to be efficient in lowering post-prandial blood glucose. In addition, abnormalities in inositol metabolism are associated with insulin resistance and with long term microvascular complications of diabetes, supporting a role of inositol or its derivatives in glucose metabolism. The aim of this review is to focus on the potential benefits of a dietary supplement of myo-inositol, by far the most common inositol isomer in foodstuffs, in human disorders associated with insulin resistance (polycystic ovary syndrome, gestational diabetes mellitus or metabolic syndrome) or in prevention or treatment of some diabetic complications (neuropathy, nephropathy, cataract). The relevance of such a nutritional strategy will be discussed for each context on the basis of the clinical and/or animal studies. The dietary sources of myo-inositol and its metabolism from its dietary uptake to its renal excretion will be also covered in this review. Finally, the actual insights into inositol insulin-sensitizing effects will be addressed and in particular the possible role of inositol glycans as insulin second messengers.
Collapse
Affiliation(s)
- Marine L Croze
- Université de Lyon, INSA de Lyon, CarMeN, INSERM U1060, Univ Lyon-1, F-69621 Villeurbanne, France.
| | | |
Collapse
|
16
|
Stenman K, Stattin P, Stenlund H, Riklund K, Gröbner G, Bergh A. H HRMAS NMR Derived Bio-markers Related to Tumor Grade, Tumor Cell Fraction, and Cell Proliferation in Prostate Tissue Samples. Biomark Insights 2011; 6:39-47. [PMID: 21499438 PMCID: PMC3076017 DOI: 10.4137/bmi.s6794] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A high-resolution magic angle spinning NMR spectroscopic approach is presented for evaluating the occurrence, amount and aggressiveness of cancer in human prostate tissue samples. Using this technique, key metabolites in malignant and non-malignant samples (n = 149) were identified, and patterns of their relative abundance were analyzed by multivariate statistical methods. Ratios of various metabolites – including (glycerophophorylcholine + phosphorylcholine)/creatine, myo-inositol/scyllo-inositol, scyllo-inositol/creatine, choline/creatine, and citrate/creatine – correlated with: i) for non-malignant tissue samples, the distance to the nearest tumor and its Gleason score and; ii) the fraction of tumor cells present in the sample; and iii) tumor cell proliferation (Ki67 labelling index). This NMR-based approach allows the extraction of information that could be useful for developing novel diagnostic methods for prostate cancer.
Collapse
|
17
|
Chauvin TR, Griswold MD. Characterization of the expression and regulation of genes necessary for myo-inositol biosynthesis and transport in the seminiferous epithelium. Biol Reprod 2003; 70:744-51. [PMID: 14613899 DOI: 10.1095/biolreprod.103.022731] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In many mammals, the concentration of myo-inositol in the fluid of the seminiferous tubules is dramatically higher than levels found in serum. Two enzymes involved in myo-inositol synthesis: myo-inositol-1-phosphate synthase (ISYNA1) and myo-inositol monophosphatase-1 (IMPA1), are known to have high activity in the testes. ISYNA1 is an isomerase that catalyzes the conversion of glucose-6-phoshate to myo-inositol-1-phosphate. IMPA1 then hydrolyzes the phosphate group to produce myo-inositol. Although no physiological role for the high concentration of myo-inositol has yet to be elucidated, it has been suggested that it could be involved in osmoregulation. Previous research on these enzymes in the testis has focused on enzyme activity. The objective of this study was to evaluate the expression of these genes and the myo-inositol transporter, Slc5a3, within the testis. Using Northern blot analyses, we found that all three genes, Impa1, Isyna1, and Slc5a3 are expressed in Sertoli cells. Isyna1 is highly expressed in two types of germ cells, pachytene spermatocytes and round spermatids. IMPA1 was expressed in round spermatids. Slc5a3 expression is upregulated when Sertoli cells are treated with 0.1 mM dibutyryl cAMP. When Sertoli cells were cultured in a hypertonic medium, there was an increase in the expression of Isyna1 and Slc5a3. We postulate that this upregulation is a result of the capability of the Sertoli cell to sense and then react to a change in osmolarity by increasing the transport and production of the osmolyte myo-inositol.
Collapse
Affiliation(s)
- Theodore R Chauvin
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, 99164, USA
| | | |
Collapse
|
18
|
Christensen SC, Kolbjørn Jensen A, Simonsen LO. Aberrant 3H in Ehrlich mouse ascites tumor cell nucleotides after in vivo labeling with myo-[2-3H]- and L-myo-[1-3H]inositol: implications for measuring inositol phosphate signaling. Anal Biochem 2003; 313:283-91. [PMID: 12605865 DOI: 10.1016/s0003-2697(02)00592-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
After in vivo radiolabeling of Ehrlich cells for 24h with conventional myo-[2-3H]inositol we previously demonstrated an aberrant 3H-labeling of ATP that interfered in the HPLC analysis of inositol trisphosphates. This aberrant 3H-labeling was accounted for by the extensive kidney catabolism of myo-[2-3H] inositol with delivery of 3H-labeled metabolites to extrarenal tissues. As expected, the aberrant labeling of ATP is markedly reduced with the use of 3H-myo-inositol labeled at L-C1 rather than at C2, reflecting that the 3H at L-C1 disappears in the first step of the myo-inositol catabolism: the oxidative conversion to D-glucuronate. In contrast, with the 3H at C2 of myo-inositol, the 3H-C2 passes into the pentose phosphate conversions with resulting labeling of nucleotides. The extent of catabolism to 3H-labeled water, the cellular accumulation of 3H-myo-inositol, the incorporation into cellular inositol phospholipids, and the labeling pattern of cellular phosphoinositides were all found to be similar for the two labeled myo-inositol moieties. With the use of L-myo-[1-3H]inositol an aberrant 3H-labeling at about 25% remained, for which a presumptive mechanism is proposed. L-myo-[1-3H]Inositol appears nevertheless to be a preferable alternative to myo-[2-3H]inositol for tracing the intact myo-inositol molecule after in vivo labeling, with minimized interference from aberrant 3H-labeling of nucleotides.
Collapse
Affiliation(s)
- Søren C Christensen
- Laboratory for Cellular and Molecular Physiology, August Krogh Institute, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
19
|
Sotoda Y, Negoro M, Wakabayashi I. Involvement of decreased myo-inositol transport in lipopolysaccharide-induced depression of phosphoinositide hydrolysis in vascular smooth muscle. FEBS Lett 2002; 519:227-30. [PMID: 12023050 DOI: 10.1016/s0014-5793(02)02747-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mechanism underlying lipopolysaccharide (LPS)-induced depression of phosphoinositide (PI) hydrolysis was investigated using rat aortas. In LPS-pretreated aortas, the 5-hydroxytryptamine-stimulated accumulation of inositol monophosphate and incorporation of exogenous myo-inositol into PIs were significantly less than those in control aortas. Both sodium-myo-inositol cotransporter (SMIT) and phosphatidylinositol transfer protein (PITP) genes were constituently expressed in rat aortas. The mRNA level of SMIT was remarkably lower in LPS-pretreated aortas, while that of PITP mRNA was not affected by LPS. These results suggest that LPS-induced depression of SMIT expression is involved in inhibition of agonist-stimulated PI hydrolysis by LPS.
Collapse
Affiliation(s)
- Yoko Sotoda
- Department of Hygiene and Preventive Medicine, School of Medicine, Yamagata University, Iida-Nishi 2-2-2, Yamagata, Japan
| | | | | |
Collapse
|
20
|
Yorek MA, Dunlap JA, Lowe WL. Wortmannin and LY294002 inhibit myo-inositol accumulation by cultured bovine aorta endothelial cells and murine 3T3-L1 adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1497:328-40. [PMID: 10996657 DOI: 10.1016/s0167-4889(00)00070-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have previously reported that myo-inositol uptake and metabolism is reduced in human fibroblasts derived from patients with ataxia telangiectasia (AT). Treating normal fibroblasts with 10-100 microM wortmannin duplicates some of the phenotypic properties of AT fibroblasts including the decrease in myo-inositol accumulation. In the present study we examined whether treatment of other types of mammalian cells with wortmannin or LY294002 altered myo-inositol uptake. Cultured bovine aorta endothelial cells or 3T3-L1 adipocytes were incubated with either wortmannin or LY294002, and afterwards, myo-inositol uptake and SMIT mRNA levels were determined. Incubating cultured bovine aorta endothelial cells and 3T3-L1 adipocytes with either wortmannin or LY294002 caused a time- and concentration-dependent decrease in myo-inositol accumulation that was independent of changes in SMIT mRNA levels. The effect of wortmannin and LY294002 on myo-inositol accumulation was not due to an increase in myo-inositol secretion. The effect of LY294002 on myo-inositol accumulation was reversible. Furthermore, the LY294002-induced decrease in myo-inositol accumulation was specific since the uptake of serine or choline by cultured bovine aorta endothelial cells and 3T3-L1 adipocytes treated with LY294002 was not significantly decreased. Co-incubation of cultured bovine aorta endothelial cells and 3T3-L1 adipocytes with either wortmannin or LY294002 and hyperosmotic medium caused a significant decrease in the induction of myo-inositol accumulation by hyperosmolarity without significantly affecting the hyperosmotic-induced increase in SMIT mRNA levels. These data suggest that myo-inositol accumulation is regulated post-translationally by wortmannin and LY294002.
Collapse
Affiliation(s)
- M A Yorek
- Department of Internal Medicine, Diabetes-Endocrinology Research Centerand Veterans Affairs Medical Center (3 E 17), University of Iowa, Iowa City, IA 52246, USA.
| | | | | |
Collapse
|
21
|
Yorek MA, Dunlap JA, Liu W, Lowe WL. Normalization of hyperosmotic-induced inositol uptake by renal and endothelial cells is regulated by NF-kappaB. Am J Physiol Cell Physiol 2000; 278:C1011-8. [PMID: 10794675 DOI: 10.1152/ajpcell.2000.278.5.c1011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperosmolarity is a stress factor that has been shown to cause an increase in the transcription of the Na(+)-dependent myo-inositol cotransporter (SMIT). However, regulation of the reversion of SMIT mRNA levels and transporter activity following removal of hyperosmotic stress is less understood. Previously we have shown that postinduction normalization of SMIT mRNA levels and myo-inositol accumulation following removal of hyperosmotic stress is inhibited by actinomycin D and cycloheximide, suggesting that normalization requires RNA transcription and protein synthesis. We now demonstrate that removal of hyperosmotic stress causes an activation of the transcription factor NF-kappaB in renal and endothelial cells. Inhibiting NF-kappaB activation with pyrrolidine dithiocarbamate (PD) blocks the normalization of SMIT mRNA levels and myo-inositol accumulation on removal of the cells from hyperosmotic medium. These studies demonstrate that the downregulation of the myo-inositol transporter following reversal of hyperosmotic induction is regulated via the activation of NF-kappaB.
Collapse
Affiliation(s)
- M A Yorek
- Department of Internal Medicine, Diabetes-Endocrinology Research Center and Veterans Affairs Medical Center, University of Iowa, Iowa City, Iowa 52246, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
Inositol monophosphatase (IMPase) catalyses the hydrolysis of myo-inositol monophosphates to myo-inositol, which is required in the phosphatidyl inositol cell signalling pathway. Here the enzyme structure, mechanism and inhibition of IMPase are reviewed. Lithium, an effective therapy for manic depression, is an uncompetitive inhibitor. In the search for alternative inhibitors to lithium, substrate-based inhibitors, bisphosphonates, terpenoid and tropolone analogues are described.
Collapse
Affiliation(s)
- C M Fauroux
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK
| | | |
Collapse
|
23
|
Yorek MA, Dunlap JA, Lowe WL. Osmotic regulation of the Na+/myo-inositol cotransporter and postinduction normalization. Kidney Int 1999; 55:215-24. [PMID: 9893130 DOI: 10.1046/j.1523-1755.1999.00235.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In renal cells, hyperosmolarity has been shown to induce the accumulation of myo-inositol, via the Na+/myo-inositol cotransporter (SMIT). Previously we showed that SMIT mRNA in the kidney is localized in the medullary thick ascending limb of Henle (TALH). Here we used renal cells derived from the rabbit outer medullary TALH to examine the regulation of myo-inositol transport by hyperosmolarity. In addition, using both cultured renal and endothelial cells, we examined the normalization of SMIT activity and mRNA levels following induction by hyperosmolarity. METHODS TALH cells were exposed to isotonic or hyperosmotic medium, and then SMIT mRNA levels and myo-inositol accumulation were determined. To examine postinduction normalization, cultured endothelial and renal cells were first exposed to hyperosmotic medium and then to isotonic medium containing actinomycin D or cycloheximide. Afterwards, SMIT mRNA levels and myo-inositol accumulation were determined. RESULTS Hyperosmolarity increased SMIT mRNA levels and myo-inositol accumulation in TALH cells. The hyperosmolarity-induced increase in myo-inositol uptake by TALH cells was characterized by an increase in the Vmax for the high-affinity myo-inositol transport system, with no change in the Km. This increase was blocked by actinomycin D or cycloheximide. Examination of postinduction normalization showed that returning hyperosmotic-treated cells to isotonic medium caused a rapid reversion of SMIT mRNA levels, followed by a return of myo-inositol accumulation to basal values. However, the addition of cycloheximide or actinomycin D partially to totally prevented the reversal in SMIT mRNA levels and activity. CONCLUSIONS These results suggest that RNA and protein synthesis is required for the hyperosmotic induction of SMIT mRNA levels and myo-inositol accumulation by TALH cells. Furthermore, normalization of SMIT mRNA levels and myo-inositol accumulation following hyperosmotic induction requires RNA transcription and protein synthesis.
Collapse
Affiliation(s)
- M A Yorek
- Department of Internal Medicine, Diabetes Endocrinology Research Center, and Veterans Affairs Medical Center, University of Iowa, Iowa City, Iowa, USA. myorek@ucva,gov
| | | | | |
Collapse
|
24
|
Liu BL, Rafiq A, Tzeng YM, Rob A. The Induction and Characterization of Phytase and Beyond. Enzyme Microb Technol 1998. [DOI: 10.1016/s0141-0229(97)00210-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Guo W, Shimada S, Tajiri H, Yamauchi A, Yamashita T, Okada S, Tohyama M. Developmental regulation of Na+ / myo-inositol cotransporter gene expression. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 51:91-6. [PMID: 9427510 DOI: 10.1016/s0169-328x(97)00220-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
myo-Inositol plays a role in many important aspects of cellular regulation including membrane structure, signal transduction and osmoregulation. It is taken up into the cells by the Na+ / myo-inositol cotransporter (SMIT). We investigated developmental changes in the expression of SMIT mRNA and protein in the rat. In the fetal rat brain, SMIT mRNA was abundantly and diffusely expressed throughout the whole brain and the spinal cord. Positive signals were expressed in neuronal and non-neuronal cells in these regions. SMIT is gradually down-regulated nearer birth, but intense signals were still detected in the brain at postnatal day one. In the adult rat brain, very weak hybridization signals were detected throughout whole brain except for the choroid plexus where SMIT mRNA expression remained high. In contrast, the pattern of developmental regulation of SMIT gene expression in the kidney was opposite to that seen in the brain. Signals in the kidney were very weak during embryonic stages, whereas SMIT expression increased significantly after birth. These results suggest that myo-inositol and its transporter play an important role in the CNS developmental stage.
Collapse
Affiliation(s)
- W Guo
- Department of Pediatrics, Osaka University School of Medicine, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Wiese TJ, Matsushita K, Lowe WL, Stokes JB, Yorek MA. Localization and regulation of renal Na+/myo-inositol cotransporter in diabetic rats. Kidney Int 1996; 50:1202-11. [PMID: 8887279 DOI: 10.1038/ki.1996.429] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have examined the effect of diabetes on sodium/myo-inositol cotransporter (SMIT) mRNA levels and myo-inositol content in the kidney to test the hypothesis that diabetes-induced changes in renal myo-inositol levels are due to the regulation of SMIT mRNA levels. In streptozotocin-induced diabetic rats, after 3, 7 and 28 days of diabetes, SMIT mRNA levels in the whole kidney were increased three to fivefold, and remained increased by about twofold after six months of diabetes. Insulin treatment of diabetic rats normalized blood glucose levels and prevented the increase in SMIT mRNA levels. Treating diabetic rats with sorbinil, an aldose reductase inhibitor, corrected the abnormal accumulation of sorbitol but had no effect on the diabetes-induced increase in renal SMIT mRNA levels. The regional distribution of SMIT mRNA from normal rats showed a relative abundance in cortex, outer medulla, and inner medulla of 1.0:3.4:7.0. After seven days of diabetes, the levels of SMIT mRNA and myo-inositol content were significantly increased only in the outer medulla. In situ hybridization studies revealed that SMIT mRNA in the outer medulla was predominately localized to the medullary thick ascending limbs of Henle's loop and was not localized to any specific cell in the inner medulla. This distribution pattern was unchanged in diabetic rats. These studies show that diabetes causes an increase in renal SMIT mRNA, which is primarily localized to the outer medulla. Accumulation of myo-inositol by the thick ascending limb of Henle's loop may account for most of the increase caused by diabetes.
Collapse
Affiliation(s)
- T J Wiese
- Department of Internal Medicine, University of Iowa, Iowa City, USA
| | | | | | | | | |
Collapse
|
27
|
Stoltenberg M, Ernst E, Andreasen A, Danscher G. Histochemical localization of zinc ions in the epididymis of the rat. THE HISTOCHEMICAL JOURNAL 1996; 28:173-85. [PMID: 8735284 DOI: 10.1007/bf02331441] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the present study, the autometallograpic zinc sulphide technique, an improved version of the original Timm sulphide-silver method, was used. This technique reveals a particular pool of ionic zinc that is chelatable by diethyldithiocarbamate. At the light microscopical level, no reaction for zinc was found in tissues of young prepubertal rats. In adult mating and non-mating rats low zinc staining was found in the head and intermediate epididymis whereas the tail of the epididymis demonstrated high levels of zinc ions. Sections from the epididymal tail revealed a 'compartmentalization', based on pronounced differences in staining intensity along the epididymal ducts. At higher magnification zinc ions were found in the apical part of the principal cell and in the lumen. At the ultrastructural level autometallographic grains were located in vesicles and in lysosome-like structures of the apical parts of the principal cells. The luminal grains were found either associated with sperm cells, with the surface of the large microvilli (stereocilia), or free in the seminal fluid. The variation in content of zinc ions in the epididymal epithelium and lumen suggests that zinc ions are secreted into the lumen from the epididymal tail and may somehow be involved in maturation of the sperm cells.
Collapse
Affiliation(s)
- M Stoltenberg
- Department of Neurobiology, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
28
|
Berry GT, Mallee JJ, Kwon HM, Rim JS, Mulla WR, Muenke M, Spinner NB. The human osmoregulatory Na+/myo-inositol cotransporter gene (SLC5A3): molecular cloning and localization to chromosome 21. Genomics 1995; 25:507-13. [PMID: 7789985 DOI: 10.1016/0888-7543(95)80052-n] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A human Na+/myo-inositol cotransporter (SLC5A3) gene was cloned; sequencing revealed a single intron-free open reading frame of 2157 nucleotides. Containing 718 amino acid residues, the predicted protein is highly homologous to the product of the canine osmoregulatory SLC5A3 gene. The SLC5A3 protein is number 3 of the solute carrier family 5 and was previously designated SMIT. Using fluorescence in situ hybridization, the human SLC5A3 gene was localized to band q22 on chromosome 21. Many tissues including brain demonstrate gene expression. The inability of a trisomic 21 cell to downregulate expression of three copies of this osmoregulatory gene could result in increased flux of both myo-inositol and Na+ across the plasma membrane. The potential consequences include perturbations in the cell membrane potential and tissue osmolyte levels. The SLC5A3 gene may play a role in the pathogenesis of Down syndrome.
Collapse
Affiliation(s)
- G T Berry
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Nilsson A, Chen Q, Dahlman E. Metabolism of chylomicron phosphatidylinositol in the rat: fate in vivo and hydrolysis with lipoprotein lipase and hepatic lipase in vitro. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)39921-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Danoff SK, Ross CA. The inositol trisphosphate receptor gene family: implications for normal and abnormal brain function. Prog Neuropsychopharmacol Biol Psychiatry 1994; 18:1-16. [PMID: 8115665 DOI: 10.1016/0278-5846(94)90021-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. The phosphatidyl inositol (PI) second messenger system has been extensively investigated in the past decade. This complex pathway results in the production of two second messengers, one of which, inositol 1,4,5-trisphosphate, will be the focus of this review. 2. The intracellular receptor for this second messenger (IP3R) has been purified, reconstituted and extensively characterized in both brain and peripheral tissues. 3. Localization and functional studies show that IP3 binding causes the receptor to release portions of the intracellular calcium stores. 4. Multiple modulators of the receptor have been identified, including pH, calcium concentration, adenine nucleotide concentration and phosphorylation. 5. The cDNA for this molecule has been cloned from a number of sources. Studies of the molecular structure of the receptor have revealed additional levels of complexity including multiple alternative splicing events in the initially cloned cerebellar (Type I) receptor, as well as the existence of highly related but distinct cDNAs which likely reflect a gene family. 6. There is suggestive evidence linking the PI system, and thus the IP3R, to bipolar disorder and the actions of lithium.
Collapse
Affiliation(s)
- S K Danoff
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
31
|
Berry GT, Johanson RA, Prantner JE, States B, Yandrasitz JR. myo-inositol transport and metabolism in fetal-bovine aortic endothelial cells. Biochem J 1993; 295 ( Pt 3):863-9. [PMID: 8240303 PMCID: PMC1134641 DOI: 10.1042/bj2950863] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The myo-inositol transport system in confluent fetal-bovine aortic endothelial cells was characterized after 7-10 days in subculture, at which time the myo-inositol levels and rates of myo-[2-3H]-inositol uptake and incorporation into phospholipid had reached steady state. Kinetic analysis indicated that the uptake occurred by both a high-affinity transport system with an apparent Kt of 31 microM and Vmax. of 45 pmol/min per mg of protein, and a non-saturable low-affinity system. Uptake was competitively inhibited by phlorhizin, with a Ki of 50 microM; phloretin was a non-competitive inhibitor, with half-maximal inhibition between 0.2 and 0.5 mM. Glucose was a weak competitive inhibitor, with a Ki of 37 mM; galactose failed to inhibit uptake. A weak dependence on Na+ for the initial rate of uptake was observed at 11 microM myo-inositol. When fetal-bovine-serum (FBS)-supplemented medium, which contained 225 microM myo-inositol, was used, the cells contained about 200 nmol of myo-inositol/mg of DNA. With adult-bovine-serum (ABS)-supplemented medium, which contained 13 microM myo-inositol, the cells contained about 110 nmol/mg of DNA. Transport of 11 microM myo-[2-3]inositol was 18 and 125 pmol/min per mg of DNA for cells grown in FBS and ABS respectively. Kinetic analysis showed that for the cells grown in FBS the Vmax. of the high-affinity system was decreased by 64%, whereas the Kt remained essentially unchanged. Increased cell myo-inositol levels were not associated with an increased rate of phosphatidylinositol synthesis. After prolonged exposure of fetal endothelial cells to a myo-inositol concentration which approximated to a high fetal as opposed to a low adult blood level, cell myo-inositol levels doubled and high-affinity transport underwent down-regulation.
Collapse
Affiliation(s)
- G T Berry
- Department of Pediatrics, University of Pennsylvania School of Medicine, Children's Hospital of Philadelphia 19104
| | | | | | | | | |
Collapse
|
32
|
Gani D, Downes CP, Batty I, Bramham J. Lithium and myo-inositol homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1177:253-69. [PMID: 8391849 DOI: 10.1016/0167-4889(93)90121-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- D Gani
- Chemistry Department, University, St. Andrews, Fife, UK
| | | | | | | |
Collapse
|
33
|
Abstract
myo-Inositol uptake and conversion to phosphatidylinositol (PI) was studied in isolated rat hepatocytes. Uptake of myo-[2-3H]-inositol into the trichloroacetic acid (TCA)-soluble fraction showed no evidence of saturation, while incorporation into lipid had an apparent Km of 0.28 mmol/L for external myo-inositol. With 50 mumol/L myo-[2-3H]-inositol, approximately half of the radiolabel was found in lipid at 30 minutes. Glucose and galactose were weak inhibitors, while phlorizin at 1 mmol/L reduced uptake by 50%. Metabolic inhibitors reduced incorporation of myo-[2-3H]-inositol into lipid, but had no effect on uptake. Hepatocytes maintained myo-inositol levels of 0.4 mmol/L for 60 minutes when incubated with 50 mumol/L myo-inositol, but levels increased when incubated with 1 mmol/L myo-inositol. Efflux of label was studied in hepatocytes prelabeled for 20 minutes with myo-[2-3H]-inositol. Loss of label was initially rapid, but had slowed by 20 minutes, with much of the label remaining in the cells. Phlorizin inhibited the loss of myo-[2-3H]-inositol, while increasing myo-inositol concentration in the medium enhanced efflux. The effects of these agents on the rate of efflux was found in lipid rather than in the TCA-soluble myo-inositol fraction. These findings suggest that myo-inositol is compartmentalized within hepatocytes, with a bulk metabolically inert pool and a smaller active pool that equilibrates with extracellular myo-inositol via an energy-independent carrier-mediated mechanism, and is preferentially available for efflux or for synthesis of phosphoinositides.
Collapse
Affiliation(s)
- S H Sigal
- Division of Biochemical Development and Molecular Diseases, Children's Hospital of Philadelphia, PA 19104
| | | | | |
Collapse
|
34
|
Affiliation(s)
- S Garattini
- Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
35
|
Nahorski SR, Ragan CI, Challiss RA. Lithium and the phosphoinositide cycle: an example of uncompetitive inhibition and its pharmacological consequences. Trends Pharmacol Sci 1991; 12:297-303. [PMID: 1658998 DOI: 10.1016/0165-6147(91)90581-c] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability of lithium to exert profound and selective psychopharmacological effects to ameliorate manic-depressive psychosis has been the focus of considerable research effort. There is increasing evidence that lithium exerts its therapeutic action by interfering with polyphosphoinositide metabolism in brain and prevention of inositol recycling by an uncompetitive inhibition of inositol monophosphatase. Stefan Nahorski, Ian Ragan and John Challiss discuss this unusual stimulus-dependent form of enzyme inhibition, emphasizing that the selectivity exhibited by lithium depends upon the degree of inositol lipid hydrolysis and polyphosphoinositide dephosphorylation.
Collapse
Affiliation(s)
- S R Nahorski
- Department of Pharmacology and Therapeutics, University of Leicester, UK
| | | | | |
Collapse
|
36
|
vom Dahl S, Hallbrucker C, Lang F, Häussinger D. Role of eicosanoids, inositol phosphates and extracellular Ca2+ in cell-volume regulation of rat liver. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 198:73-83. [PMID: 2040292 DOI: 10.1111/j.1432-1033.1991.tb15988.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. In isolated perfused rat liver, the time-course of volume-regulatory K+ efflux following exposure to hypoosmolar perfusate resembled the leukotriene-C4-induced K+ efflux in normotonic perfusion. Omission of Ca2+ from the perfusion fluid had no effect on volume-regulatory K+ efflux, but abolished completely the leukotriene-C4-induced K+ efflux. 2. Volume-regulatory K+ fluxes following hypoosmolar exposure (225 mOsmol l-1) and subsequent reexposure to normotonic media (305 mOsmol l-1) were not significantly affected by the cyclooxygenase inhibitors indomethacin (5 mumol l-1) or ibuprofen (50 mumol l-1), the leukotriene D4/C4-receptor antagonist 1-[2-hydroxy-3-propyl-4-[4-(1H-tetrazol-5-yl)butoxy]phenyl]etha none (YL 171883, 50 microM), the lipoxygenase inhibitor nordihydroguaiaretic acid (20 microM), the phospholipase-A2 inhibitor bromophenacyl bromide (50 microM) or the thromboxane-receptor antagonist 4-[2-(benzenesulfonamido)ethyl]-phenoxyacetic acid (BM 13.177, 20 microM). Also the effects of hypoosmotic cell swelling on lactate, pyruvate and glucose balance across the liver remained largely unaffected in presence of these inhibitors. Neither exposure of perfused rat liver to hypoosmolar (225 mOsmol l-1) nor to hyperosmolar (385 mOsmol l-1) perfusion media affected hepatic prostaglandin-D2 release. 3. When livers were 3H-labeled in vivo by an intraperitoneal injection of myo-[2-3H]inositol about 16 h prior to the perfusion experiment, cell swelling due to lowering the perfusate osmolarity from 305 mOsmol l-1 to 225 mOsmol l-1 led to about a threefold stimulation of [3H]inositol release. The maximum of hypotonicity-induced [3H]inositol release preceded maximal volume-regulatory K+ efflux by about 30 s, but came after the maximum of water shift into the cells. Hypotonicity-induced [3H]inositol release was largely prevented in presence of Li+ (10 mM), but simultaneously inositol monophosphate accumulated inside the liver within 10 min and a small, but significant increase of inositol trisphosphate 1 min after onset of hypoosmolar exposure was detectable. No stimulation of [3H]inositol release was observed during cell shrinkage by switching the perfusate osmolarity from 225 mOsmol l-1 to 305 mOsmol l-1 or from 305 mOsmol l-1 to 385 mOsmol l-1. No stimulation of [3H]inositol release was observed upon swelling of preshrunken livers by lowering the osmolarity from 385 mOsmol l-1 to 305 mOsmol l-1, although the volume-regulatory K+ efflux under these conditions was almost identical to that observed after lowering the osmolarity from 305 mOsmol l-1 to 225 mOsmol l-1. 4.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S vom Dahl
- Medizinische Universitätsklinik Freiburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
37
|
Reboulleau CP. Inositol metabolism during neuroblastoma B50 cell differentiation: effects of differentiating agents on inositol uptake. J Neurochem 1990; 55:641-50. [PMID: 2164574 DOI: 10.1111/j.1471-4159.1990.tb04181.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inositol uptake was studied in the rat CNS neuroblastoma B50 cell line. Eadie-Hofstee analysis of the uptake pattern reveals two defined modes of inositol entry into the cell. The high-affinity uptake component requires the presence of extracellular sodium and is inhibited by phloridzin. Analysis of the uptake velocities of the high-affinity uptake component provided the following apparent kinetic parameters: Km = 13.7 microM and Vmax = 14.7 pmol/mg of protein/min (without correcting for residual diffusion) and Km = 12.9 microM and Vmax = 12.3 pmol/mg of protein/min (with correction). At physiological concentrations, the high-affinity transport process contributes approximately 70% to total uptake; the remainder is due to a low-affinity diffusion-like process. Uptake inhibition studies reveal that the uptake process is sensitive to ouabain, amiloride, and dichlorobenzamil inhibition but relatively insensitive to cytochalasin B or phloretin. When neuroblastoma B50 cells are induced to differentiate morphologically with high extracellular calcium or with dibutyryl cyclic AMP, a significant decrease in inositol uptake is observed. The dibutyryl cyclic AMP-mediated inhibition of uptake affects only the high-affinity uptake component and is noncompetitive in nature. The high extracellular calcium-mediated inhibition is less specific; it involves "disappearance" of the high-affinity process, some inhibition of the low-affinity process, and an increase of inositol efflux. The significance of these observations is discussed in the context of neuroblastoma B50 cell differentiation.
Collapse
Affiliation(s)
- C P Reboulleau
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102
| |
Collapse
|
38
|
Affiliation(s)
- M J Berridge
- AFRC Unit of Insect Neurophysiology and Pharmacology, Department of Zoology, Cambridge, England
| | | | | |
Collapse
|
39
|
vom Dahl S, Graf P, Sies H. Hepatic inositol release upon hormonal stimulation of perfused rat liver. Biochem J 1988; 251:843-8. [PMID: 2843165 PMCID: PMC1149079 DOI: 10.1042/bj2510843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A sustained increase in the hepatic release of 3H radioactivity was shown to occur upon hormonal stimulation of perfused rat liver 15-20 h after intraperitoneal injection of 100 microCi of myo-[2-3H]inositol. Hormone-released radioactive material was analysed by t.l.c. and was found to consist predominantly of [3H]inositol, without further metabolites. Vasopressin (14 nM), phenylephrine (1.7 microM), angiotensin II (15 nM), glucagon (0.5 nM) and dibutyryl cyclic AMP (5 microM) exert maximal effects on hepatic inositol efflux after 10-15 min of stimulation. Omission of Ca2+ from the perfusion medium abolishes the hormone-dependent inositol release. LiCl (10 mM) does not significantly affect the basal release of [3H]inositol, but suppresses vasopressin- and angiotensin-triggered inositol release. Inositol efflux induced by glucagon, dibutyryl cyclic AMP and phenylephrine, however, remains essentially unchanged by LiCl infusion. This establishes a further metabolic difference between these two groups of agonists in that stimuli that act through cyclic AMP produce a stimulated outflow of inositol, but apparently without a Li+-sensitive phosphatase being involved in the overall process.
Collapse
Affiliation(s)
- S vom Dahl
- Institut für Physiologische Chemie I, Universität Düsseldorf, West Germany
| | | | | |
Collapse
|
40
|
Sujarit S, Chaturapanich G, Pholpramool C. Evidence for blood myo-inositol as a source of the epididymal secretion in the perfused cauda epididymidis of the rat. Andrologia 1985; 17:321-6. [PMID: 4051199 DOI: 10.1111/j.1439-0272.1985.tb01012.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The movement of radioactive inositol and glucose across the epididymal epithelium have been studied by perfusion of fluid, which has the major electrolyte compositions resemble those in the native epididymal fluid, through the lumen of a sperm free tubule of the distal cauda epididymidis of intact and nephrectomized rats. During intravenous infusion of (3H)-myo-inositol into the intact rats, labelled myo-inositol and its metabolites entered the lumen. However, only labelled inositol was found in the luminal perfusate when radioactive inositol was infused into the nephrectomized rat. On the other hand, after infusion of (14C)-glucose no trace of labelled inositol appeared in the lumen. Instead, the luminal radioactivity could be accounted for by labelled glucose. The results indicate that the myo-inositol present in the luminal fluid of the rat cauda epididymidis originates, in part, from blood inositol and, in part, from blood glucose.
Collapse
|
41
|
Fliesler SJ, Kelleher PA, Anderson RE. Catabolism of myo-inositol to precursors utilized for de novo glycerolipid biosynthesis. J Neurochem 1985; 44:171-4. [PMID: 3871119 DOI: 10.1111/j.1471-4159.1985.tb07127.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Systemic injection of [2-3H]myo-inositol into frogs resulted in the incorporation of more than half of the label into glycerolipid classes other than phosphoinositides in retinal rod outer segment membranes. Following methanolysis and differential extraction of isolated lipid classes, radioactivity was recovered primarily in the aqueous phase. After phospholipase C hydrolysis of the total membrane lipids, 97% of the radioactivity was extractable with organic solvents, and 70% of the label in lipids was in 1,2-diglycerides. These results indicate that the label was incorporated primarily into the glyceryl moiety of the membrane glycerolipids. Intraocular injection of frog eyes or in vitro incubation of frog retinas with [2-3H]myo-inositol resulted in the incorporation of radioactivity almost exclusively into phosphoinositides in rod outer segment membranes. Incubation of retinas with [U-14C]glucuronic acid did not result in the formation of labeled retinal lipids. These results suggest that myo-inositol can be catabolized systemically to precursors utilized for glycerolipid biosynthesis in the retina.
Collapse
|
42
|
Prpić V, Blackmore PF, Exton JH. myo-Inositol uptake and metabolism in isolated rat liver cells. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33760-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
43
|
Lewin LM, Yannai Y, Melmed S, Weiss M. myo-inositol in the reproductive tract of the female rat. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1982; 14:147-50. [PMID: 7200041 DOI: 10.1016/0020-711x(82)90154-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
1. myo-Inositol concentrations in oviduct, ovary and uterus were many-fold those of blood serum during all four stages of the estrous cycle of the female rat. 2. Inositol concentration was higher in oviduct than in ovary or uterus and was lower in uterine fluid than in uterus. 3. Estrus uteri had higher inositol concentrations than uteri in other phases of the cycle. 4. In order to measure dynamic aspects of the distribution of inositol, the distribution of radioactivity among organs of the reproductive tract of mature female rats was measured 45 min after i.p. injection of [2-3H]myo-inositol. 5. These organs concentrated inositol from the blood, and the tissue radioactivity (expressed as dpm/mg wet wt of tissue) increased in the sequence: vagina less than cervix less than uterus less than ovary less than oviduct. 6. The uterus and ovary concentrated myo-inositol more strongly during proestrus than during metestrus, diestrus of estrus. 7. The contents of proestrus follicles were more highly radioactive than was the ovary itself, whereas proestrus uterine fluid was less radioactive than the uterine tissue.
Collapse
|
44
|
Holub BJ. The nutritional significance, metabolism, and function of myo-inositol and phosphatidylinositol in health and disease. ADVANCES IN NUTRITIONAL RESEARCH 1982; 4:107-41. [PMID: 6278902 DOI: 10.1007/978-1-4613-9934-6_5] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent advances in nutritional and biochemical research have substantiated the importance of inositol as a dietary and cellular constituent. The processes involved in the metabolism of inositol and its derivatives in mammalian tissues have been characterized both in vivo and at the enzyme level. Biochemical functions elucidated for phosphatidylinositol in biological membranes include the mediation of cellular responses to external stimuli, nerve transmission, and the regulation of enzyme activity through specific interactions with various proteins. Inositol deficiency in animals has been shown to produce an accumulation of triglyceride in liver, intestinal lipodystrophy, and other abnormalities. The metabolic mechanisms giving rise to these latter phenomena have been extensively studied as a function of dietary inositol. Altered metabolism of inositol has been documented in patients with diabetes mellitus, chronic renal failure, galactosemia, and multiple sclerosis. A moderate increase in plasma and nerve inositol levels by dietary supplementation has been suggested as a means of treating diabetic neuropathy, although excessively high levels, such as are found in uremic patients, may be neurotoxic. A thorough consideration of the biochemical functions of inositol and a further characterization of various diseases with the aid of appropriate animal models may suggest a possible role for inositol and other dietary components in their prevention and treatment
Collapse
|
45
|
Abstract
Apparent turnover of myo-inositol in the brain of urethane-anesthetized rats was estimated in vivo from the rate of appearance of endogenous myo-inositol in the cerebroventricular compartment. Ventricular-cisternal perfusion technique combined with isotope dilution of [14C]myo-inositol was used to determine the rate of appearance of brain-produced myo-inositol and its modification by d-amphetamine. A mean value of 0.75 nmol/min was obtained for the rate of appearance in the cerebroventricular system. A dose-dependent increase in this rate was seen after the administration of d-amphetamine. The endogenous removal of myo-inositol from the perfusate was also studied and found to be mediated in part by a saturable transport system that was not influenced by d-amphetamine. The rate of entry of myo-inositol from blood to the cerebroventricular system was very low and accounted for only 2% of the total rate of appearance, indicating that the majority of myo-inositol in the rat cerebroventricular fluid originates in the brain.
Collapse
|
46
|
White IG. Epididymal compounds and their influence on the metabolism and survival of spermatozoa. Am J Primatol 1981; 1:143-155. [DOI: 10.1002/ajp.1350010205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/1980] [Accepted: 12/12/1980] [Indexed: 11/08/2022]
|
47
|
Shukla SD, Coleman R, Finean JB, Michell RH. Selective release of plasma-membrane enzymes from rat hepatocytes by a phosphatidylinositol-specific phospholipase C. Biochem J 1980; 187:277-80. [PMID: 6250535 PMCID: PMC1162522 DOI: 10.1042/bj1870277] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
When isolated hepatocytes are incubated with phosphatidylinositol-specific phospholipase C, three cell-surface enzymes show markedly different behaviour. Most of the alkaline phosphatase is released at very low values of phosphatidylinositol hydrolysis, whereas further phosphatidylinositol hydrolysis releases only a maximum of about one-third of the 5'-nucleotidase. Alkaline phosphodiesterase I is not released. If cells containing phosphatidyl[3H]inositol are similarly treated, then the released [3H]inositol is in the form of inositol phosphate: no evidence has been obtained for any covalent association between released [3H]inositol and alkaline phosphatase.
Collapse
|
48
|
Abstract
Myoinositol uptake by rat hepatocytes in vitro was studied. Adult rat hepatocytes were prepared by digestion of the perfused liver with collagenase. Cell suspensions were incubated with tritium-labeled myoinositol in pH 7.4 Krebs bicarbonate solution containing 1% gelatin at 37 degrees. 14C-Carbon-labeled polyethylene glycol was used as a marker of adherent extracellular fluid volume. Myoinositol uptake was demonstrable after 5 min of incubation, but no intracellular concentration in excess of that in the incubation medium was observed after 60 min of incubation. Uptake saturation over a wide myoinositol concentration range could not be demonstrated. Neither the omission of sodium ions nor the inclusion of ouabain suppressed the distribution ratio significantly. Metabolic inhibitors and lower temperatures also showed no effect. Hexoses, phlorizin or mannitol, exerted no observable effect on myoinositol uptake. The results indicated that myoinositol uptake by rat hepatocytes is probably a passive process.
Collapse
|
49
|
|