1
|
Mikesell AR, Isaeva E, Schulte ML, Menzel AD, Sriram A, Prahl MM, Shin SM, Sadler KE, Yu H, Stucky CL. Increased keratinocyte activity and PIEZO1 signaling contribute to paclitaxel-induced mechanical hypersensitivity. Sci Transl Med 2024; 16:eadn5629. [PMID: 39661703 DOI: 10.1126/scitranslmed.adn5629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Recent work demonstrates that epidermal keratinocytes are critical for normal touch sensation. However, it is unknown whether keratinocytes contribute to touch-evoked pain and hypersensitivity after tissue injury. Here, we used a mouse model of paclitaxel treatment to determine the extent to which keratinocyte activity contributes to the severe neuropathic pain that accompanies chemotherapy. We found that keratinocyte inhibition by either optogenetic or chemogenetic methods largely alleviated paclitaxel-induced mechanical hypersensitivity across acute and persistent time points from 2 days through 3 weeks. Furthermore, we found that paclitaxel exposure sensitized mouse and human keratinocytes to mechanical stimulation and enhanced currents of PIEZO1, a mechanosensitive channel highly expressed in keratinocytes. Deletion of PIEZO1 from keratinocytes alleviated paclitaxel-induced mechanical hypersensitivity in mice. These findings suggest that nonneuronal cutaneous cells contribute substantially to neuropathic pain and pave the way for the development of new pain relief strategies that target epidermal keratinocytes and PIEZO1.
Collapse
Affiliation(s)
- Alexander R Mikesell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Anthony D Menzel
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anvitha Sriram
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Megan M Prahl
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Katelyn E Sadler
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Fujita Y, Biswas KB, Kawai Y, Takayama S, Masutani T, Iddamalgoda A, Sakamoto K. Mentha piperita leaf extract suppresses the release of ATP from epidermal keratinocytes and reduces dermal thinning as well as wrinkle formation. Int J Cosmet Sci 2024; 46:972-981. [PMID: 39049707 DOI: 10.1111/ics.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES To achieve a more beautiful and younger appearance, reducing wrinkles is a key concern. The process of wrinkle formation is complex and the development of truly effective cosmetic ingredients to reduce wrinkles remains a challenge. Recent studies have revealed a close relationship between wrinkles and skin thinning, suggesting that preventing skin thinning could also prevent wrinkle formation. In this study, we examined the role of extracellular adenosine triphosphate (eATP) in the progression of thinning, as eATP reportedly increases skin ageing factors, such as senescence-associated secreted phenotype (SASP) factors in epidermal cells. We determined the effects of Mentha piperita leaf extract on suppressing eATP to reduce thinning and wrinkles. METHODS Adenosine triphosphate (ATP) levels were measured in normal human epidermal keratinocytes (NHEK) in the presence of M. piperita leaf extract. Dryness, high pH, and UVB radiation were used as extrinsic ageing factors. Intrinsic skin ageing was evaluated by comparing cells from adults (AD-NHEK) and newborns (NB-NHEK). A placebo-controlled in vivo study was carried out with a formulation containing 1% M. piperita leaf extract. RESULTS The eATP levels were significantly higher in AD-NHEK compared with that in NB-NHEK cells. M. piperita leaf extract significantly decreased eATP levels in adult cells. Extrinsic ageing factors increased eATP levels in NHEK, whereas M. piperita leaf extract significantly suppressed eATP under all conditions. The active components of M. piperita leaf extract, luteolin glucuronide and rosmarinic acid, also decreased eATP. Moreover, compared with placebo lotion, M. piperita leaf extract-formulated lotion markedly increased dermal thickness and reduced wrinkles associated with crow's feet and the neck area. CONCLUSION We demonstrated for the first time that M. piperita leaf extract containing rosmarinic acid and luteolin-7-O-glucuronide has the potential to reduce eATP release from epidermal keratinocytes. An increase in eATP was observed not only during inflammation but also during natural ageing. Furthermore, the in vivo experiment revealing that 1% M. piperita leaf extract-containing lotion improved dermal thinning and wrinkles across multiple areas is attributed to the amelioration of dermal thinning. Thus, our data suggest the possibility of a novel cosmetic approach for reducing skin ageing by reducing eATP-mediated dermal thinning.
Collapse
Affiliation(s)
- Yukiko Fujita
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Kazal Boron Biswas
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Yuka Kawai
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Satoru Takayama
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Teruaki Masutani
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | | | - Kotaro Sakamoto
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| |
Collapse
|
3
|
Li YJ, Lin J, Tang SQ, Zuo WM, Ding GH, Shen XY, Wang LN. CD39 activities in the treated acupoints contributed to the analgesic mechanism of acupuncture on arthritis rats. Purinergic Signal 2024:10.1007/s11302-024-10065-4. [PMID: 39542981 DOI: 10.1007/s11302-024-10065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Our previous work had identified that at the acupuncture point (acupoint), acupuncture-induced ATP release was a pivotal event in the initiation of analgesia. We aimed to further elucidate the degradation of ATP by CD39. Acupuncture was administered at Zusanli acupoint on arthritis rats, and pain thresholds of the hindpaws were determined. Pharmacological tools or adeno-associated viruses were administered at the acupoints to interfere with targeting signals. Protein expression was determined with qRT-PCR, WB, or immunofluorescent labeling. Cultured keratinocytes, HaCaT line, were subjected to hypotonic shock to simulate needling stimulation. Extracellular ATP and adenosine levels were quantified using luciferase-luciferin assay and ELISA, respectively. Acupuncture-induced prompt analgesia was impaired by inhibiting CD39 activities to prevent the degradation of ATP to AMP but was mimicked by using CD39 agonists. Acupuncture-induced ATP accumulation exhibited synchronous changes. Similarly, acupuncture analgesia was hindered by suppressing CD73 to prevent the conversion of AMP to adenosine. Furthermore, the acupuncture effect was replicated by agonism at P2Y2Rs but inhibited by antagonism at them. Acupuncture upregulated CD73 and P2Y2Rs but not CD39. Immunofluorescent labeling demonstrated that keratinocytes were a primary site for these proteins. Shallow acupuncture also demonstrated antinociception. In vitro tests showed that hypotonic shock induced HaCaT cells to release ATP and adenosine, which was impaired by suppressing CD39 and CD73, respectively. Finally, agonism at P2Y2Rs promoted ATP release and [Ca2+]i rise. CD39 at the acupoints contributes to the analgesic mechanism of acupuncture. It may facilitate adenosine signaling in conjunction with CD73 or provide an appropriate ATP milieu for P2Y2Rs. Skin tissue may be one of the scenes for these signalings.
Collapse
Affiliation(s)
- Yu-Jia Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Lin
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Si-Qi Tang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei-Min Zuo
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guang-Hong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (21DZ2271800), Department of Aeronautics and Astronautics, Fudan University, Shanghai, 200433, China
| | - Xue-Yong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, 201203, China.
| | - Li-Na Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, 201203, China.
| |
Collapse
|
4
|
Yamamura K, Ohno F, Yotsumoto S, Sato Y, Kimura N, Nishio K, Inoue K, Ichiki T, Kuba-Fuyuno Y, Fujishima K, Ito T, Kido-Nakahara M, Tsuji G, Nakahara T. Extracellular ATP Contributes to Barrier Function and Inflammation in Atopic Dermatitis: Potential for Topical Treatment of Atopic Dermatitis by Targeting Extracellular ATP. Int J Mol Sci 2024; 25:12294. [PMID: 39596359 PMCID: PMC11595171 DOI: 10.3390/ijms252212294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Atopic dermatitis (AD) is characterized by chronic inflammation, barrier dysfunction, and pruritus, exacerbated by external stimuli, such as scratching. This study investigates the role of extracellular adenosine triphosphate (ATP) in the pathophysiology of AD and assesses the therapeutic potential of clodronate, an ATP release inhibitor. Our research demonstrates that extracellular ATP impairs skin barrier function by reducing the filaggrin expression in the keratinocytes, a critical protein for barrier integrity. Furthermore, ATP release, triggered by IL-4 and mechanical stimuli, amplifies inflammation by promoting cytokine and chemokine production by the immune cells. Clodronate, by inhibiting ATP release, restores the filaggrin levels in the keratinocytes, reduces TARC production in the dendritic cells, and alleviates AD symptoms in a mouse model. These findings suggest that targeting extracellular ATP could offer a novel therapeutic approach to improving skin barrier function and reducing inflammation in AD. Future studies should explore the long-term efficacy and safety of ATP-targeted therapies in clinical settings.
Collapse
Affiliation(s)
- Kazuhiko Yamamura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Fumitaka Ohno
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Shu Yotsumoto
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Yuki Sato
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Nanae Kimura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Kiichiro Nishio
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Keiichi Inoue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Toshio Ichiki
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Yoko Kuba-Fuyuno
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Kei Fujishima
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Makiko Kido-Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
| |
Collapse
|
5
|
Staedtler ES, Sapio MR, King DM, Maric D, Ghetti A, Mannes AJ, Iadarola MJ. The μ-opioid receptor differentiates two distinct human nociceptive populations relevant to clinical pain. Cell Rep Med 2024; 5:101788. [PMID: 39413733 PMCID: PMC11513826 DOI: 10.1016/j.xcrm.2024.101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/26/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
The shortfall in new analgesic agents is a major impediment to reducing reliance on opioid medications for control of severe pain. In both animals and man, attenuating nociceptive transmission from primary afferent neurons with a μ-opioid receptor agonist yields highly effective analgesia. Consequently, deeper molecular characterization of human nociceptive afferents expressing OPRM1, the μ-opioid receptor gene, is a key component for advancing analgesic drug discovery and understanding clinical pain control. A co-expression matrix for the μ-opioid receptor and a variety of nociceptive channels as well as δ- and κ-opioid receptors is established by multiplex in situ hybridization. Our results indicate an OPRM1-positive population with strong molecular resemblance to rodent peptidergic C-nociceptors associated with tissue damage pain and an OPRM1-negative population sharing molecular characteristics of murine non-peptidergic C-nociceptors. The empirical identification of two distinct human nociceptive populations that differ profoundly in their presumed responsiveness to opioids provides an actionable translational framework for human pain control.
Collapse
Affiliation(s)
- Ellen S Staedtler
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana M King
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, MD 20892, USA
| | | | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Luedke KP, Yoshino J, Yin C, Jiang N, Huang JM, Huynh K, Parrish JZ. Dendrite intercalation between epidermal cells tunes nociceptor sensitivity to mechanical stimuli in Drosophila larvae. PLoS Genet 2024; 20:e1011237. [PMID: 38662763 DOI: 10.1371/journal.pgen.1011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/07/2024] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
An animal's skin provides a first point of contact with the sensory environment, including noxious cues that elicit protective behavioral responses. Nociceptive somatosensory neurons densely innervate and intimately interact with epidermal cells to receive these cues, however the mechanisms by which epidermal interactions shape processing of noxious inputs is still poorly understood. Here, we identify a role for dendrite intercalation between epidermal cells in tuning sensitivity of Drosophila larvae to noxious mechanical stimuli. In wild-type larvae, dendrites of nociceptive class IV da neurons intercalate between epidermal cells at apodemes, which function as body wall muscle attachment sites, but not at other sites in the epidermis. From a genetic screen we identified miR-14 as a regulator of dendrite positioning in the epidermis: miR-14 is expressed broadly in the epidermis but not in apodemes, and miR-14 inactivation leads to excessive apical dendrite intercalation between epidermal cells. We found that miR-14 regulates expression and distribution of the epidermal Innexins ogre and Inx2 and that these epidermal gap junction proteins restrict epidermal dendrite intercalation. Finally, we found that altering the extent of epidermal dendrite intercalation had corresponding effects on nociception: increasing epidermal intercalation sensitized larvae to noxious mechanical inputs and increased mechanically evoked calcium responses in nociceptive neurons, whereas reducing epidermal dendrite intercalation had the opposite effects. Altogether, these studies identify epidermal dendrite intercalation as a mechanism for mechanical coupling of nociceptive neurons to the epidermis, with nociceptive sensitivity tuned by the extent of intercalation.
Collapse
Affiliation(s)
- Kory P Luedke
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jiro Yoshino
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Chang Yin
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Nan Jiang
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jessica M Huang
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Kevin Huynh
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| |
Collapse
|
7
|
Mikesell AR, Isaeva E, Schulte ML, Menzel AD, Sriram A, Prahl MM, Shin SM, Sadler KE, Yu H, Stucky CL. Keratinocyte Piezo1 drives paclitaxel-induced mechanical hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571332. [PMID: 38168305 PMCID: PMC10760029 DOI: 10.1101/2023.12.12.571332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Recent work demonstrates that epidermal keratinocytes are critical for normal touch sensation. However, it is unknown if keratinocytes contribute to touch evoked pain and hypersensitivity following tissue injury. Here, we used inhibitory optogenetic and chemogenetic techniques to determine the extent to which keratinocyte activity contributes to the severe neuropathic pain that accompanies chemotherapeutic treatment. We found that keratinocyte inhibition largely alleviates paclitaxel-induced mechanical hypersensitivity. Furthermore, we found that paclitaxel exposure sensitizes mouse and human keratinocytes to mechanical stimulation through the keratinocyte mechanotransducer Piezo1. These findings demonstrate the contribution of non-neuronal cutaneous cells to neuropathic pain and pave the way for the development of new pain-relief strategies that target epidermal keratinocytes and Piezo1.
Collapse
Affiliation(s)
- Alexander R Mikesell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | | | - Anthony D Menzel
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Anvitha Sriram
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Megan M Prahl
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Katelyn E Sadler
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas; Richardson, TX 75080, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Agramunt J, Parke B, Mena S, Ubels V, Jimenez F, Williams G, Rhodes ADY, Limbu S, Hexter M, Knight L, Hashemi P, Kozlov AS, Higgins CA. Mechanical stimulation of human hair follicle outer root sheath cultures activates adjacent sensory neurons. SCIENCE ADVANCES 2023; 9:eadh3273. [PMID: 37889977 PMCID: PMC10610912 DOI: 10.1126/sciadv.adh3273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Mechanical stimuli, such as stroking or pressing on the skin, activate mechanoreceptors transmitting information to the sensory nervous system and brain. It is well accepted that deflection of the hair fiber that occurs with a light breeze or touch directly activates the sensory neurons surrounding the hair follicle, facilitating transmission of mechanical information. Here, we hypothesized that hair follicle outer root sheath cells act as transducers of mechanical stimuli to sensory neurons surrounding the hair follicle. Using electrochemical analysis on human hair follicle preparations in vitro, we were able to show that outer root sheath cells release ATP and the neurotransmitters serotonin and histamine in response to mechanical stimulation. Using calcium imaging combined with pharmacology in a coculture of outer root sheath cells with sensory neurons, we found that the release of these three molecules from hair follicle cells leads to activation of sensory neurons.
Collapse
Affiliation(s)
- Julià Agramunt
- Department of Bioengineering, Imperial College London, London, UK
| | - Brenna Parke
- Department of Bioengineering, Imperial College London, London, UK
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, UK
| | - Victor Ubels
- Department of Bioengineering, Imperial College London, London, UK
| | - Francisco Jimenez
- Mediteknia Clinic, Las Palmas, Gran Canaria, Spain
- University Fernando Pessoa Canarias, Gran Canaria, Spain
| | | | - Anna DY Rhodes
- Department of Bioengineering, Imperial College London, London, UK
| | - Summik Limbu
- Department of Bioengineering, Imperial College London, London, UK
| | - Melissa Hexter
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Parastoo Hashemi
- Department of Bioengineering, Imperial College London, London, UK
| | - Andriy S. Kozlov
- Department of Bioengineering, Imperial College London, London, UK
| | | |
Collapse
|
9
|
Piccini I, Chéret J, Tsutsumi M, Sakaguchi S, Ponce L, Almeida L, Funk W, Kückelhaus M, Kajiya K, Paus R, Bertolini M. Preliminary evidence that Merkel cells exert chemosensory functions in human epidermis. Exp Dermatol 2023; 32:1848-1855. [PMID: 37587642 DOI: 10.1111/exd.14907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/30/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
The mechanotransduction of light-touch sensory stimuli is considered to be the main physiological function of epidermal Merkel cells (MCs). Recently, however, MCs have been demonstrated to be also thermo-sensitive, suggesting that their role in skin physiologically extends well beyond mechanosensation. Here, we demonstrate that in healthy human skin epidermal MCs express functional olfactory receptors, namely OR2AT4, just like neighbouring keratinocytes. Selective stimulation of OR2AT4 by topical application of the synthetic odorant, Sandalore®, significantly increased Piccolo protein expression in MCs, as assessed by quantitative immunohistomorphometry, indicating increased vesicle trafficking and recycling, and significantly reduced nerve growth factor (NGF) immunoreactivity within MCs, possibly indicating increased neurotrophin release upon OR2AT4 activation. Live-cell imaging showed that Sandalore® rapidly induces a loss of FFN206-dependent fluorescence in MCs, suggesting OR2AT4-dependent MC depolarization and subsequent vesicle secretion. Yet, in contrast to keratinocytes, OR2AT4 stimulation by Sandalore® altered neither the number nor the proliferation status of MCs. These preliminary ex vivo findings demonstrate that epidermal MCs also exert OR-dependent chemosensory functions in human skin, and invite one to explore whether these newly identified properties are dysregulated in selected skin disorders, for example, in pruritic dermatoses, and if these novel MC functions can be therapeutically targeted to maintain/promote skin health.
Collapse
Affiliation(s)
- Ilaria Piccini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Jeremy Chéret
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Moe Tsutsumi
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Saito Sakaguchi
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Leslie Ponce
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Luis Almeida
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Wolfgang Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Munich, Germany
| | | | - Kentaro Kajiya
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Ralf Paus
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- CUTANEON - Skin & Hair Innovations, Hamburg, Germany
| | - Marta Bertolini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| |
Collapse
|
10
|
Luedke KP, Yoshino J, Yin C, Jiang N, Huang JM, Huynh K, Parrish JZ. Dendrite intercalation between epidermal cells tunes nociceptor sensitivity to mechanical stimuli in Drosophila larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557275. [PMID: 37745567 PMCID: PMC10515945 DOI: 10.1101/2023.09.14.557275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
An animal's skin provides a first point of contact with the sensory environment, including noxious cues that elicit protective behavioral responses. Nociceptive somatosensory neurons densely innervate and intimately interact with epidermal cells to receive these cues, however the mechanisms by which epidermal interactions shape processing of noxious inputs is still poorly understood. Here, we identify a role for dendrite intercalation between epidermal cells in tuning sensitivity of Drosophila larvae to noxious mechanical stimuli. In wild-type larvae, dendrites of nociceptive class IV da neurons intercalate between epidermal cells at apodemes, which function as body wall muscle attachment sites, but not at other sites in the epidermis. From a genetic screen we identified miR-14 as a regulator of dendrite positioning in the epidermis: miR-14 is expressed broadly in the epidermis but not in apodemes, and miR-14 inactivation leads to excessive apical dendrite intercalation between epidermal cells. We found that miR-14 regulates expression and distribution of the epidermal Innexins ogre and Inx2 and that these epidermal gap junction proteins restrict epidermal dendrite intercalation. Finally, we found that altering the extent of epidermal dendrite intercalation had corresponding effects on nociception: increasing epidermal intercalation sensitized larvae to noxious mechanical inputs and increased mechanically evoked calcium responses in nociceptive neurons, whereas reducing epidermal dendrite intercalation had the opposite effects. Altogether, these studies identify epidermal dendrite intercalation as a mechanism for mechanical coupling of nociceptive neurons to the epidermis, with nociceptive sensitivity tuned by the extent of intercalation.
Collapse
Affiliation(s)
- Kory P. Luedke
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Jiro Yoshino
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Chang Yin
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Nan Jiang
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Jessica M. Huang
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Kevin Huynh
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Jay Z. Parrish
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Andelic M, Salvi E, Marcuzzo S, Marchi M, Lombardi R, Cartelli D, Cazzato D, Mehmeti E, Gelemanovic A, Paolini M, Pardo C, D’Amato I, Hoeijmakers JGJ, Dib-Hajj S, Waxman SG, Faber CG, Lauria G. Integrative miRNA-mRNA profiling of human epidermis: unique signature of SCN9A painful neuropathy. Brain 2023; 146:3049-3062. [PMID: 36730021 PMCID: PMC10316770 DOI: 10.1093/brain/awad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Personalized management of neuropathic pain is an unmet clinical need due to heterogeneity of the underlying aetiologies, incompletely understood pathophysiological mechanisms and limited efficacy of existing treatments. Recent studies on microRNA in pain preclinical models have begun to yield insights into pain-related mechanisms, identifying nociception-related species differences and pinpointing potential drug candidates. With the aim of bridging the translational gap towards the clinic, we generated a human pain-related integrative miRNA and mRNA molecular profile of the epidermis, the tissue hosting small nerve fibres, in a deeply phenotyped cohort of patients with sodium channel-related painful neuropathy not responding to currently available therapies. We identified four miRNAs strongly discriminating patients from healthy individuals, confirming their effect on differentially expressed gene targets driving peripheral sensory transduction, transmission, modulation and post-transcriptional modifications, with strong effects on gene targets including NEDD4. We identified a complex epidermal miRNA-mRNA network based on tissue-specific experimental data suggesting a cross-talk between epidermal cells and axons in neuropathy pain. Using immunofluorescence assay and confocal microscopy, we observed that Nav1.7 signal intensity in keratinocytes strongly inversely correlated with NEDD4 expression that was downregulated by miR-30 family, suggesting post-transcriptional fine tuning of pain-related protein expression. Our targeted molecular profiling advances the understanding of specific neuropathic pain fine signatures and may accelerate process towards personalized medicine in patients with neuropathic pain.
Collapse
Affiliation(s)
- Mirna Andelic
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Stefania Marcuzzo
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Raffaella Lombardi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniele Cartelli
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniele Cazzato
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Elkadia Mehmeti
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Andrea Gelemanovic
- Biology of Robustness Group, Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Matilde Paolini
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Carlotta Pardo
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Ilaria D’Amato
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Janneke G J Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| |
Collapse
|
12
|
Moore JL, Bhaskar D, Gao F, Matte-Martone C, Du S, Lathrop E, Ganesan S, Shao L, Norris R, Campamà Sanz N, Annusver K, Kasper M, Cox A, Hendry C, Rieck B, Krishnaswamy S, Greco V. Cell cycle controls long-range calcium signaling in the regenerating epidermis. J Cell Biol 2023; 222:e202302095. [PMID: 37102999 PMCID: PMC10140546 DOI: 10.1083/jcb.202302095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023] Open
Abstract
Skin homeostasis is maintained by stem cells, which must communicate to balance their regenerative behaviors. Yet, how adult stem cells signal across regenerative tissue remains unknown due to challenges in studying signaling dynamics in live mice. We combined live imaging in the mouse basal stem cell layer with machine learning tools to analyze patterns of Ca2+ signaling. We show that basal cells display dynamic intercellular Ca2+ signaling among local neighborhoods. We find that these Ca2+ signals are coordinated across thousands of cells and that this coordination is an emergent property of the stem cell layer. We demonstrate that G2 cells are required to initiate normal levels of Ca2+ signaling, while connexin43 connects basal cells to orchestrate tissue-wide coordination of Ca2+ signaling. Lastly, we find that Ca2+ signaling drives cell cycle progression, revealing a communication feedback loop. This work provides resolution into how stem cells at different cell cycle stages coordinate tissue-wide signaling during epidermal regeneration.
Collapse
Affiliation(s)
- Jessica L. Moore
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Dhananjay Bhaskar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Feng Gao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Shuangshuang Du
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth Lathrop
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Smirthy Ganesan
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Lin Shao
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Rachael Norris
- Department of Cell Biology, UConn Health, Farmington, CT, USA
| | - Nil Campamà Sanz
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Andy Cox
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hendry
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Bastian Rieck
- Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg, Germany
| | - Smita Krishnaswamy
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
- Applied Mathematics Program, Yale University, New Haven, CT, USA
- Program for Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Valentina Greco
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Samain-Aupic L, Gilbert L, André N, Ackerley R, Ribot-Ciscar E, Aimonetti JM. Applying cosmetic oil with added aromatic compounds improves tactile sensitivity and skin properties. Sci Rep 2023; 13:10550. [PMID: 37386024 PMCID: PMC10310855 DOI: 10.1038/s41598-023-37361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Tactile sensitivity generally decreases with aging and is associated with impairments in skin properties. Products that hydrate the skin can combat touch deficits and aromatic compounds have been shown to improve skin mechanical properties. Thus, we tested a base cosmetic oil against a perfumed oil, applied to the skin of females aged 40-60 years, on tactile sensitivity and skin properties after repeated application. Tactile detection thresholds were assessed using calibrated monofilaments applied at the index finger, palm, forearm, and cheek. Spatial discrimination on the finger was assessed using pairs of plates with different inter-band spaces. These tests were performed before and after 1 month of base or perfumed oil use. We found that tactile detection thresholds and spatial discrimination improved only in perfumed oil group. A complementary immunohistological study using human skin was conducted to estimate the expression of olfactory receptor OR2A4 and elastic fiber length. Further, the expression of OR2A4 intensity and the length of elastic fibers increased significantly with oil application, where larger effects were seen with the perfumed oil. We conclude that the application of a perfumed oil may be of additional benefit and could repair, and even prevent, tactile decline with aging by ameliorating skin condition.
Collapse
Affiliation(s)
- Léonard Samain-Aupic
- Aix-Marseille Univ, CNRS, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), 3 place Victor Hugo, 13003, Marseille, France
| | - Laura Gilbert
- Laboratoires Clarins, 5 rue Ampère, 95300, Pontoise, France
| | - Nathalie André
- Laboratoires Clarins, 5 rue Ampère, 95300, Pontoise, France
| | - Rochelle Ackerley
- Aix-Marseille Univ, CNRS, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), 3 place Victor Hugo, 13003, Marseille, France
| | - Edith Ribot-Ciscar
- Aix-Marseille Univ, CNRS, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), 3 place Victor Hugo, 13003, Marseille, France
| | - Jean-Marc Aimonetti
- Aix-Marseille Univ, CNRS, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), 3 place Victor Hugo, 13003, Marseille, France.
| |
Collapse
|
14
|
Bataille-Savattier A, Le Gall-Ianotto C, Lebonvallet N, Misery L, Talagas M. Do Merkel complexes initiate mechanical itch? Exp Dermatol 2023; 32:226-234. [PMID: 36208286 DOI: 10.1111/exd.14685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
Abstract
Itch is a common sensation which is amenable to disabling patients' life under pathological and chronic conditions. Shared assertion easily limits itch to chemical itch, without considering mechanical itch and alloknesis, its pathological counterpart. However, in recent years, our understanding of the mechanical itch pathway, particularly in the central nervous system, has been enhanced. In addition, Merkel complexes, conventionally considered as tactile end organs only responsible for light touch perception due to Piezo2 expressed by both Merkel cells and SA1 Aβ-fibres - low threshold mechanical receptors (LTMRs) -, have recently been identified as modulators of mechanical itch. However, the tactile end organs responsible for initiating mechanical itch remain unexplored. The consensus is that some LTMRs, either SA1 Aβ- or A∂- and C-, are cutaneous initiators of mechanical itch, even though they are not self-sufficient to finely detect and encode light mechanical stimuli into sensory perceptions, which depend on the entire hosting tactile end organ. Consequently, to enlighten our understanding of mechanical itch initiation, this article discusses the opportunity to consider Merkel complexes as potential tactile end organs responsible for initiating mechanical itch, under both healthy and pathological conditions. Their unsuspected modulatory abilities indeed show that they are tuned to detect and encode light mechanical stimuli leading to mechanical itch, especially as they host not only SA1 Aβ-LTMRs but also A∂- and C-fibres.
Collapse
Affiliation(s)
| | | | | | - Laurent Misery
- University of Brest, LIEN, Brest, France.,CHU Brest, Department of Dermatology, Brest, France
| | - Matthieu Talagas
- University of Brest, LIEN, Brest, France.,CHU Brest, Department of Dermatology, Brest, France
| |
Collapse
|
15
|
Huang Y, Zhang X, Zou Y, Yuan Q, Xian YF, Lin ZX. Quercetin Ameliorates Neuropathic Pain after Brachial Plexus Avulsion via Suppressing Oxidative Damage through Inhibition of PKC/MAPK/ NOX Pathway. Curr Neuropharmacol 2023; 21:2343-2361. [PMID: 37533160 PMCID: PMC10556381 DOI: 10.2174/1570159x21666230802144940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Brachial plexus avulsion (BPA) animally involves the separation of spinal nerve roots themselves and the correlative spinal cord segment, leading to formidable neuropathic pain of the upper limb. METHODS The right seventh cervical (C7) ventral and dorsal roots were avulsed to establish a neuropathic pain model in rats. After operation, rats were treated with quercetin (QCN) by intragastric administration for 1 week. The effects of QCN were evaluated using mechanical allodynia tests and biochemical assay kits. RESULTS QCN treatment significantly attenuated the avulsion-provoked mechanical allodynia, elevated the levels of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) and total antioxidant capacity (TAC) in the C7 spinal dorsal horn. In addition, QCN administration inhibited the activations of macrophages, microglia and astrocytes in the C6 dorsal root ganglion (DRG) and C6-8 spinal dorsal horn, as well as attenuated the release of purinergic 2X (P2X) receptors in C6 DRG. The molecular mechanism underlying the above alterations was found to be related to the suppression of the PKC/MAPK/NOX signal pathway. To further study the anti-oxidative effects of QCN, we applied QCN on the H2O2-induced BV-2 cells in vitro, and the results attested that QCN significantly ameliorated the H2O2-induced ROS production in BV-2 cells, inhibited the H2O2-induced activation of PKC/MAPK/NOX pathway. CONCLUSION Our study for the first time provided evidence that QCN was able to attenuate pain hypersensitivity following the C7 spinal root avulsion in rats, and the molecular mechanisms involve the reduction of both neuro-inflammatory infiltration and oxidative stress via suppression of P2X receptors and inhibition of the activation of PKC/MAPK/NOX pathway. The results indicate that QCN is a natural compound with great promise worthy of further development into a novel therapeutic method for the treatment of BPA-induced neuropathic pain.
Collapse
Affiliation(s)
- Yanfeng Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Xie Zhang
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong. P.R. China
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong. P.R. China
| | - Yidan Zou
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Scott-Solomon E, Hsu YC. Neurobiology, Stem Cell Biology, and Immunology: An Emerging Triad for Understanding Tissue Homeostasis and Repair. Annu Rev Cell Dev Biol 2022; 38:419-446. [PMID: 36201298 PMCID: PMC10085582 DOI: 10.1146/annurev-cellbio-120320-032429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The peripheral nervous system (PNS) endows animals with the remarkable ability to sense and respond to a dynamic world. Emerging evidence shows the PNS also participates in tissue homeostasis and repair by integrating local changes with organismal and environmental changes. Here, we provide an in-depth summary of findings delineating the diverse roles of peripheral nerves in modulating stem cell behaviors and immune responses under steady-state conditions and in response to injury and duress, with a specific focus on the skin and the hematopoietic system. These examples showcase how elucidating neuro-stem cell and neuro-immune cell interactions provides a conceptual framework that connects tissue biology and local immunity with systemic bodily changes to meet varying demands. They also demonstrate how changes in these interactions can manifest in stress, aging, cancer, and inflammation, as well as how these findings can be harnessed to guide the development of new therapeutics.
Collapse
Affiliation(s)
- Emily Scott-Solomon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Xu X, Yu C, Xu L, Xu J. Emerging roles of keratinocytes in nociceptive transduction and regulation. Front Mol Neurosci 2022; 15:982202. [PMID: 36157074 PMCID: PMC9500148 DOI: 10.3389/fnmol.2022.982202] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023] Open
Abstract
Keratinocytes are the predominant block-building cells in the epidermis. Emerging evidence has elucidated the roles of keratinocytes in a wide range of pathophysiological processes including cutaneous nociception, pruritus, and inflammation. Intraepidermal free nerve endings are entirely enwrapped within the gutters of keratinocyte cytoplasm and form en passant synaptic-like contacts with keratinocytes. Keratinocytes can detect thermal, mechanical, and chemical stimuli through transient receptor potential ion channels and other sensory receptors. The activated keratinocytes elicit calcium influx and release ATP, which binds to P2 receptors on free nerve endings and excites sensory neurons. This process is modulated by the endogenous opioid system and endothelin. Keratinocytes also express neurotransmitter receptors of adrenaline, acetylcholine, glutamate, and γ-aminobutyric acid, which are involved in regulating the activation and migration, of keratinocytes. Furthermore, keratinocytes serve as both sources and targets of neurotrophic factors, pro-inflammatory cytokines, and neuropeptides. The autocrine and/or paracrine mechanisms of these mediators create a bidirectional feedback loop that amplifies neuroinflammation and contributes to peripheral sensitization.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Catherine Yu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States,Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States
| | - Li Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China,*Correspondence: Li Xu,
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States,Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Li Xu,
| |
Collapse
|
18
|
Mikesell AR, Isaeva O, Moehring F, Sadler KE, Menzel AD, Stucky CL. Keratinocyte PIEZO1 modulates cutaneous mechanosensation. eLife 2022; 11:e65987. [PMID: 36053009 PMCID: PMC9512397 DOI: 10.7554/elife.65987] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Epidermal keratinocytes mediate touch sensation by detecting and encoding tactile information to sensory neurons. However, the specific mechanotransducers that enable keratinocytes to respond to mechanical stimulation are unknown. Here, we found that the mechanically-gated ion channel PIEZO1 is a key keratinocyte mechanotransducer. Keratinocyte expression of PIEZO1 is critical for normal sensory afferent firing and behavioral responses to mechanical stimuli in mice.
Collapse
Affiliation(s)
- Alexander R Mikesell
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinWauwatosaUnited States
| | - Olena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinWauwatosaUnited States
| | - Francie Moehring
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinWauwatosaUnited States
| | - Katelyn E Sadler
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinWauwatosaUnited States
| | - Anthony D Menzel
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinWauwatosaUnited States
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinWauwatosaUnited States
| |
Collapse
|
19
|
Chiocchetti R, De Silva M, Aspidi F, Cunha RZ, Gobbo F, Tagliavia C, Sarli G, Morini M. Distribution of Cannabinoid Receptors in Keratinocytes of Healthy Dogs and Dogs With Atopic Dermatitis. Front Vet Sci 2022; 9:915896. [PMID: 35873682 PMCID: PMC9305491 DOI: 10.3389/fvets.2022.915896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023] Open
Abstract
It is commonly accepted that some form of skin barrier dysfunction is present in canine atopic dermatitis (AD), one of the most common cutaneous pruritic inflammatory diseases of dogs. The impaired skin barrier function facilitates the penetration of allergens and subsequently stronger sensitization responses. The role of the endocannabinoid system (ECS) in the physiology and pathology of the skin is becoming increasingly established. It has been demonstrated that cannabinoid receptors are expressed in healthy and diseased skin and, based on current knowledge, it could be stated that cannabinoids are important mediators in the skin. The present study has been designed to immunohistochemically investigate the expression of the cannabinoid receptors type 1 (CB1R) and 2 (CB2R) and the cannabinoid-related receptors G protein-coupled receptor 55 (GPR55), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), peroxisome proliferator-activated receptors alpha (PPARα), and serotoninergic receptor 1a (5-HT1aR) in keratinocytes of healthy dogs and of dogs with AD. Samples of skin tissues were collected from 7 healthy controls (CTRL-dogs) and from 8 dogs with AD (AD-dogs). The tissue samples were processed using an immunofluorescence assay with commercially available antibodies, and the immunolabelling of the receptors studied was quantitatively evaluated. The keratinocytes of the CTRL- and the AD-dogs showed immunoreactivity for all the receptors investigated with a significant upregulation of CB2R, TRPA1, and 5-HT1aR in the epidermis of the AD-dogs. The presence of cannabinoid and cannabinoid-related receptors in healthy keratinocytes suggested the possible role of the ECS in canine epidermal homeostasis while their overexpression in the inflamed tissues of the AD-dogs suggested the involvement of the ECS in the pathogenesis of this disease, having a possible role in the related skin inflammation and itching. Based on the present findings, the ECS could be considered a potential therapeutic target for dogs with AD.
Collapse
|
20
|
Shutova MS, Boehncke WH. Mechanotransduction in Skin Inflammation. Cells 2022; 11:2026. [PMID: 35805110 PMCID: PMC9265324 DOI: 10.3390/cells11132026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In the process of mechanotransduction, the cells in the body perceive and interpret mechanical stimuli to maintain tissue homeostasis and respond to the environmental changes. Increasing evidence points towards dysregulated mechanotransduction as a pathologically relevant factor in human diseases, including inflammatory conditions. Skin is the organ that constantly undergoes considerable mechanical stresses, and the ability of mechanical factors to provoke inflammatory processes in the skin has long been known, with the Koebner phenomenon being an example. However, the molecular mechanisms and key factors linking mechanotransduction and cutaneous inflammation remain understudied. In this review, we outline the key players in the tissue's mechanical homeostasis, the available data, and the gaps in our current understanding of their aberrant regulation in chronic cutaneous inflammation. We mainly focus on psoriasis as one of the most studied skin inflammatory diseases; we also discuss mechanotransduction in the context of skin fibrosis as a result of chronic inflammation. Even though the role of mechanotransduction in inflammation of the simple epithelia of internal organs is being actively studied, we conclude that the mechanoregulation in the stratified epidermis of the skin requires more attention in future translational research.
Collapse
Affiliation(s)
- Maria S. Shutova
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| |
Collapse
|
21
|
Matsuya Y, Hamada N, Yachi Y, Satou Y, Ishikawa M, Date H, Sato T. Inflammatory Signaling and DNA Damage Responses after Local Exposure to an Insoluble Radioactive Microparticle. Cancers (Basel) 2022; 14:cancers14041045. [PMID: 35205797 PMCID: PMC8869995 DOI: 10.3390/cancers14041045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary A cesium-bearing microparticle (Cs-BMP) is an insoluble radioactive microparticle possessing high specific radioactivity, which was discovered after the incident at the Fukushima nuclear power plant. Due to their insoluble nature, such Cs-BMPs are assumed to adhere in the long term to normal tissue, leading to chronic local exposure. However, radiation risk due to the intake of internal exposure to radioactive cesium is conventionally estimated from the organ dose given by uniform exposure to soluble cesium. As such, it is critical to clarify the normal tissue effects posed by heterogeneous exposure to Cs-BMPs. This in vitro study reports on the relationship between the inflammatory responses and DNA damage induction during local exposure to a Cs-BMP. Abstract Cesium-bearing microparticles (Cs-BMPs) can reach the human respiratory system after inhalation, resulting in chronic local internal exposure. We previously investigated the spatial distribution of DNA damage induced in areas around a Cs-BMP; however, the biological impacts have not been fully clarified due to the limited amount of data. Here, we investigated the inflammatory signaling and DNA damage responses after local exposure to a Cs-BMP in vitro. We used two normal human lung cell lines, i.e., lung fibroblast cells (WI-38) and bronchial epithelial cells (HBEC3-KT). After 24 h exposure to a Cs-BMP, inflammation was evaluated by immunofluorescent staining for nuclear factor κB (NF-κB) p65 and cyclooxygenase 2 (COX-2). The number of DNA double-strand breaks (DSBs) was also detected by means of phospholylated histone H2AX (γ-H2AX) focus formation assay. Cs-BMP exposure significantly increased NF-κB p65 and COX-2 expressions, which were related to the number of γ-H2AX foci in the cell nuclei. Compared to the uniform (external) exposure to 137Cs γ-rays, NF-κB tended to be more activated in the cells proximal to the Cs-BMP, while both NF-κB p65 and COX-2 were significantly activated in the distal cells. Experiments with chemical inhibitors for NF-κB p65 and COX-2 suggested the involvement of such inflammatory responses both in the reduced radiosensitivity of the cells proximal to Cs-BMP and the enhanced radiosensitivity of the cells distal from Cs-BMP. The data show that local exposure to Cs-BMP leads to biological effects modified by the NF-κB pathway, suggesting that the radiation risk for Cs-BMP exposure can differ from that estimated based on conventional uniform exposure to normal tissues.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai 319-1195, Ibaraki, Japan;
- Correspondence:
| | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae 201-8511, Tokyo, Japan;
| | - Yoshie Yachi
- Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-8, Kita-ku, Sapporo 060-0812, Hokkaido, Japan;
| | - Yukihiko Satou
- Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), 790-1 Otsuka, Motooka Tomioka, Futaba 979-1151, Fukushima, Japan;
| | - Masayori Ishikawa
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-8, Kita-ku, Sapporo 060-0812, Hokkaido, Japan; (M.I.); (H.D.)
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-8, Kita-ku, Sapporo 060-0812, Hokkaido, Japan; (M.I.); (H.D.)
| | - Tatsuhiko Sato
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai 319-1195, Ibaraki, Japan;
| |
Collapse
|
22
|
Inami Y, Fukushima M, Kume T, Uta D. Histamine enhances ATP-induced itching and responsiveness to ATP in keratinocytes. J Pharmacol Sci 2022; 148:255-261. [PMID: 35063141 DOI: 10.1016/j.jphs.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Mechanical stimulation of cultured keratinocytes and a living epidermis increases intracellular calcium ion concentrations ([Ca2+]i) in stimulated cells. This action propagates a Ca2+ wave to neighboring keratinocytes via ATP/P2Y2 receptors. Recent behavioral, pharmacological studies revealed that exogenous ATP induces itching via P2X3 receptors in mice. We previously showed that alloknesis occurs when an external stimulus is applied to the skin with increased epidermal histamine in the absence of spontaneous pruritus. Based on these results, we investigated the effects of histamine at a concentration that does not cause itching on ATP-induced itching. The mean number of scratching events induced by the mixture of ATP and histamine increased by 28% over the sum of that induced by histamine alone or ATP alone. A317491, a P2X3 receptor antagonist, suppressed the mixture-induced scratching more often than the ATP-induced scratching. Next, we examined the ATP-induced [Ca2+]i change before and after histamine stimulation using normal human epidermal keratinocytes. Some cells did not respond to ATP before histamine stimulation but responded to ATP afterward, the phenomenon suppressed by chlorpheniramine maleate. These findings suggest that histamine enhances ATP-induced itching and that a potential mechanism could involve increased responsiveness to ATP in keratinocytes.
Collapse
Affiliation(s)
- Yoshihiro Inami
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences University of Toyama, Toyama, Japan; Advanced Research Laboratory, Hoyu Co., Ltd., Nagakute, Aichi, Japan
| | - Miki Fukushima
- Advanced Research Laboratory, Hoyu Co., Ltd., Nagakute, Aichi, Japan
| | - Toshiaki Kume
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences University of Toyama, Toyama, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences University of Toyama, Toyama, Japan.
| |
Collapse
|
23
|
Kurisu R, Saigusa T, Aono Y, Hayashi Y, Hitomi S, Shimada M, Iwata K, Shinoda M. Pannexin 1 role in the trigeminal ganglion in infraorbital nerve injury-induced mechanical allodynia. Oral Dis 2022; 29:1770-1781. [PMID: 35029007 DOI: 10.1111/odi.14129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The detailed pathological mechanism of orofacial neuropathic pain remains unknown. We aimed to examine the pannexin 1 (Panx1) signaling in the trigeminal ganglion (TG) involvement in infraorbital nerve injury (IONI)-induced orofacial neuropathic pain. MATERIALS AND METHODS Mechanical head-withdrawal threshold (MHWT) was measured in IONI-treated rats receiving intra-TG Panx1 inhibitor or metabotropic glutamate receptor 5 (mGluR5) antagonist administration and MHWTs in naive rats receiving intra-TG mGluR5 agonist administration post-IONI. Glutamate and Panx1 in the TG were measured post-IONI. Panx1, mGluR5, and glutamine synthetase expression in TG were immunohistochemically identified, and changes in the number of mGluR5-P2X3 -expressed TG neurons were examined. RESULTS MHWT was significantly decreased post-IONI, and this decrease was reversed by Panx1 inhibition or mGluR5 antagonism. mGluR5 agonism induced a decrease in the MHWT. IONI increased extracellular glutamate in TG. Panx1 was expressed in satellite glial cells and TG neurons, and intra-TG mGluR5 antagonism decreased the number of mGluR5 and P2X3 positive TG neurons post-IONI. CONCLUSIONS IONI facilitates glutamate release via Panx1 that activates mGluR5 which was expressed in the nociceptive TG neurons innervating the orofacial region. In turn, P2X3 receptor-expressed TG neurons is enhanced via mGluR5 signaling, resulting in orofacial neuropathic pain.
Collapse
Affiliation(s)
- Ryoko Kurisu
- Dental Anesthesiology and Orofacial Pain Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadashi Saigusa
- Department of Pharmacology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Yuri Aono
- Department of Pharmacology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masahiko Shimada
- Dental Anesthesiology and Orofacial Pain Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
24
|
Shindo Y, Fujita K, Tanaka M, Fujio H, Hotta K, Oka K. Mechanical stimulus-evoked signal transduction between keratinocytes and sensory neurons via extracellular ATP. Biochem Biophys Res Commun 2021; 582:131-136. [PMID: 34710828 DOI: 10.1016/j.bbrc.2021.10.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022]
Abstract
The skin is exposed to various external stimuli. Keratinocytes, which are the main cell type in the epidermis, interact with peripheral sensory neurons and modulate neuronal activity. Recent studies have revealed that keratinocytes play crucial roles in nociception, and that ATP is one of the main mediators of signal transduction from keratinocytes to sensory neurons. However, no quantitative cellular level analyses of ATP-mediated information flow from keratinocytes to sensory dorsal root ganglion (DRG) neurons have been conducted. In this study, we performed simultaneous imaging of cell surface ATP and intracellular Ca2+ signals using both iATPSnFR, a genetically encoded ATP probe localized to the outside of the cell membrane, and the Ca2+ probe, Fura-red. Upon mechanical stimulation of the keratinocyte with a glass needle, an increase in Ca2+ and ATP release were observed around the stimulated area, and these phenomena were positively correlated. In cultured DRG neurons and keratinocytes neighboring the stimulated keratinocyte, increased intracellular Ca2+ concentration and levels of cell surface ATP on the side closer to the stimulated cell were detected. The ratio of Ca2+ response to input ATP signal was significantly larger in DRG neurons than in keratinocytes. We found that DRG neurons were more sensitive to ATP than keratinocytes, and therefore, only DRG neurons responded to ATP at 1 μM or lower concentrations when in co-culture with keratinocytes. Moreover, signals caused by moderate mechanical stimulation of keratinocytes were transmitted predominantly to DRG neurons. These findings would be important in the further determination of the detailed mechanism of nociception in the epidermis.
Collapse
Affiliation(s)
- Yutaka Shindo
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Keigo Fujita
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Mari Tanaka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Hiroki Fujio
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan; Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo, 162-8480, Japan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.
| |
Collapse
|
25
|
Muñoz MF, Griffith TN, Contreras JE. Mechanisms of ATP release in pain: role of pannexin and connexin channels. Purinergic Signal 2021; 17:549-561. [PMID: 34792743 PMCID: PMC8677853 DOI: 10.1007/s11302-021-09822-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Pain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have implicated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling evidence for an important role of connexins and pannexins in pain processing.
Collapse
Affiliation(s)
- Manuel F. Muñoz
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| |
Collapse
|
26
|
Donati V, Peres C, Nardin C, Scavizzi F, Raspa M, Ciubotaru CD, Bortolozzi M, Pedersen MG, Mammano F. Calcium Signaling in the Photodamaged Skin: In Vivo Experiments and Mathematical Modeling. FUNCTION 2021; 3:zqab064. [PMID: 35330924 PMCID: PMC8788836 DOI: 10.1093/function/zqab064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/07/2023] Open
Abstract
The epidermis forms an essential barrier against a variety of insults. The overall goal of this study was to shed light not only on the effects of accidental epidermal injury, but also on the mechanisms that support laser skin resurfacing with intra-epidermal focal laser-induced photodamage, a widespread medical practice used to treat a range of skin conditions. To this end, we selectively photodamaged a single keratinocyte with intense, focused and pulsed laser radiation, triggering Ca2+ waves in the epidermis of live anesthetized mice with ubiquitous expression of a genetically encoded Ca2+ indicator. Waves expanded radially and rapidly, reaching up to eight orders of bystander cells that remained activated for tens of minutes, without displaying oscillations of the cytosolic free Ca2+ concentration ([Formula: see text]). By combining in vivo pharmacological dissection with mathematical modeling, we demonstrate that Ca2+ wave propagation depended primarily on the release of ATP, a prime damage-associated molecular patterns (DAMPs), from the hit cell. Increments of the [Formula: see text] in bystander cells were chiefly due to Ca2+ release from the endoplasmic reticulum (ER), downstream of ATP binding to P2Y purinoceptors. ATP-dependent ATP release though connexin hemichannels (HCs) affected wave propagation at larger distances, where the extracellular ATP concentration was reduced by the combined effect of passive diffusion and hydrolysis due to the action of ectonucleotidases, whereas pannexin channels had no role. Bifurcation analysis suggests basal keratinocytes have too few P2Y receptors (P2YRs) and/or phospholipase C (PLC) to transduce elevated extracellular ATP levels into inositol trisphosphate (IP3) production rates sufficiently large to sustain [Formula: see text] oscillations.
Collapse
Affiliation(s)
- Viola Donati
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| | - Chiara Peres
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| | - Chiara Nardin
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| | | | - Mario Bortolozzi
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
- Foundation for Advanced Biomedical Research, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova (PD), Italy
| | - Morten Gram Pedersen
- Department of Information Engineering, University of Padova, 35131 Padova (PD), Italy
- Department of Mathematics “Tullio Levi-Civita”, University of Padova, 35121 Padova (PD), Italy
| | - Fabio Mammano
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| |
Collapse
|
27
|
Hudson L, Begg M, Wright B, Cheek T, Jahoda CAB, Reynolds NJ. Dominant effect of gap junction communication in wound-induced calcium-wave, NFAT activation and wound closure in keratinocytes. J Cell Physiol 2021; 236:8171-8183. [PMID: 34180060 DOI: 10.1002/jcp.30488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/18/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Wounding induces a calcium wave and disrupts the calcium gradient across the epidermis but mechanisms mediating calcium and downstream signalling, and longer-term wound healing responses are incompletely understood. As expected, live-cell confocal imaging of Fluo-4-loaded normal human keratinocytes showed an immediate increase in [Ca2+ ]i at the wound edge that spread as a calcium wave (8.3 µm/s) away from the wound edge with gradually diminishing rate of rise and amplitude. The amplitude and area under the curve of [Ca2+ ]i flux was increased in high (1.2 mM) [Ca2+ ]o media. 18α-glycyrrhetinic acid (18αGA), a gap-junction inhibitor or hexokinase, an ATP scavenger, blocked the wound-induced calcium wave, dependent in part on [Ca2+ ]o . Wounding in a high [Ca2+ ]o increased nuclear factor of activated T-cells (NFAT) but not NFkB activation, assessed by dual-luciferase receptor assays compared to unwounded cells. Treatment with 18αGA or the store-operated channel blocker GSK-7975A inhibited wound-induced NFAT activation, whereas treatment with hexokinase did not. Real-time cell migration analysis, measuring wound closure rates over 24 h, revealed that 18αGA essentially blocked wound closure whereas hexokinase and GSK-7975A showed relatively minimal effects. Together these data indicate that while both gap-junction communication and ATP release from damaged cells are important in regulating the wound-induced calcium wave, long-term transcriptional and functional responses are dominantly regulated by gap-junction communication.
Collapse
Affiliation(s)
- Laura Hudson
- Institute of Translational and Clinical Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Malcolm Begg
- Medicines Research Centre, GlaxoSmithKline, London, UK
| | - Blythe Wright
- Institute of Translational and Clinical Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Tim Cheek
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | | | - Nick J Reynolds
- Institute of Translational and Clinical Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Department of Dermatology, Royal Victoria Infirmary and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
28
|
Yin C, Peterman E, Rasmussen JP, Parrish JZ. Transparent Touch: Insights From Model Systems on Epidermal Control of Somatosensory Innervation. Front Cell Neurosci 2021; 15:680345. [PMID: 34135734 PMCID: PMC8200473 DOI: 10.3389/fncel.2021.680345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
Somatosensory neurons (SSNs) densely innervate our largest organ, the skin, and shape our experience of the world, mediating responses to sensory stimuli including touch, pressure, and temperature. Historically, epidermal contributions to somatosensation, including roles in shaping innervation patterns and responses to sensory stimuli, have been understudied. However, recent work demonstrates that epidermal signals dictate patterns of SSN skin innervation through a variety of mechanisms including targeting afferents to the epidermis, providing instructive cues for branching morphogenesis, growth control and structural stability of neurites, and facilitating neurite-neurite interactions. Here, we focus onstudies conducted in worms (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), and zebrafish (Danio rerio): prominent model systems in which anatomical and genetic analyses have defined fundamental principles by which epidermal cells govern SSN development.
Collapse
Affiliation(s)
| | | | | | - Jay Z. Parrish
- Department of Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
29
|
Rhyu MR, Kim Y, Lyall V. Interactions between Chemesthesis and Taste: Role of TRPA1 and TRPV1. Int J Mol Sci 2021; 22:ijms22073360. [PMID: 33806052 PMCID: PMC8038011 DOI: 10.3390/ijms22073360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
In addition to the sense of taste and olfaction, chemesthesis, the sensation of irritation, pungency, cooling, warmth, or burning elicited by spices and herbs, plays a central role in food consumption. Many plant-derived molecules demonstrate their chemesthetic properties via the opening of transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels. TRPA1 and TRPV1 are structurally related thermosensitive cation channels and are often co-expressed in sensory nerve endings. TRPA1 and TRPV1 can also indirectly influence some, but not all, primary taste qualities via the release of substance P and calcitonin gene-related peptide (CGRP) from trigeminal neurons and their subsequent effects on CGRP receptor expressed in Type III taste receptor cells. Here, we will review the effect of some chemesthetic agonists of TRPA1 and TRPV1 and their influence on bitter, sour, and salt taste qualities.
Collapse
Affiliation(s)
- Mee-Ra Rhyu
- Korea Food Research Institute, Wanju-gun 55365, Korea;
- Correspondence: ; Tel.: +82-63-219-9268
| | - Yiseul Kim
- Korea Food Research Institute, Wanju-gun 55365, Korea;
| | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| |
Collapse
|
30
|
Ho HKY, Bigliardi PL, Stelmashenko O, Ramasamy S, Postlethwaite M, Bigliardi-Qi M. Functionally expressed bitter taste receptor TAS2R14 in human epidermal keratinocytes serves as a chemosensory receptor. Exp Dermatol 2021; 30:216-225. [PMID: 33253444 DOI: 10.1111/exd.14250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 01/23/2023]
Abstract
Traditionally, it is theorized that skin sensation is initiated when cutaneous sensory afferents and Merkel cells receive sensory stimuli, while epidermal keratinocytes were deemed to have no role. However, mounting evidence has shown that keratinocytes can initiate skin sensation by receiving sensory stimuli and transmitting sensory information to sensory afferents. Knowledge regarding the mechanisms by which keratinocytes receive exogenous stimuli is limited, with TRP channels and olfactory receptors having been proposed to serve as receptors for exogenous stimuli in keratinocytes. Recently, expression analyses have demonstrated the expression of multiple TAS2R genes in human skin. TAS2Rs are chemosensory GPCRs employed by taste cells to detect bitter-tasting substances. However, only subtypes TAS2R1 and TAS2R38 have been characterized in epidermal keratinocytes. We present evidence suggesting that subtype TAS2R14 is functionally expressed in epidermal keratinocytes. TAS2R14 transcripts and protein were detected in primary and N/TERT-1 keratinocytes. Additionally, keratinocytes responded to α-thujone, a TAS2R14 ligand, with an increase in intracellular free Ca2+ concentration. The tastant-evoked Ca2+ signals were found to be mediated by wild-type TAS2R14 and heterotrimeric G proteins. We conclude that TAS2R14 serves as a chemosensory receptor in epidermal keratinocytes and hypothesize that it enables the cells to recognize potentially harmful chemical substances.
Collapse
Affiliation(s)
- Hilary Kung-Yu Ho
- Agency for Science, Technology and Research, Institute of Medical Biology, Singapore, Singapore
| | - Paul Lorenz Bigliardi
- Department of Dermatology, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Olga Stelmashenko
- Agency for Science, Technology and Research, Institute of Medical Biology, Singapore, Singapore
| | - Srinivas Ramasamy
- Agency for Science, Technology and Research, Skin Research Institute Singapore, Singapore, Singapore
| | - Michael Postlethwaite
- Agency for Science, Technology and Research, Institute of Medical Biology, Singapore, Singapore
| | - Mei Bigliardi-Qi
- Department of Dermatology, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
31
|
Fei X, He X, Tai Z, Wang H, Qu S, Chen L, Hu Q, Fang J, Jiang Y. Electroacupuncture alleviates diabetic neuropathic pain in rats by suppressing P2X3 receptor expression in dorsal root ganglia. Purinergic Signal 2020; 16:491-502. [PMID: 33011961 PMCID: PMC7855163 DOI: 10.1007/s11302-020-09728-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic neuropathic pain (DNP) is a troublesome diabetes complication all over the world. P2X3 receptor (P2X3R), a purinergic receptor from dorsal root ganglion (DRG), has important roles in neuropathic pain pathology and nociceptive sensations. Here, we investigated the involvement of DRG P2X3R and the effect of 2 Hz electroacupuncture (EA) on DNP. We monitored the rats' body weight, fasting blood glucose level, paw withdrawal thresholds, and paw withdrawal latency, and evaluated P2X3R expression in DRG. We found that P2X3R expression is upregulated on DNP, while 2 Hz EA is analgesic against DNP and suppresses P2X3R expression in DRG. To evaluate P2X3R involvement in pain modulation, we then treated the animals with A317491, a P2X3R specific antagonist, or α β-me ATP, a P2X3R agonist. We found that A317491 alleviates hyperalgesia, while α β-me ATP blocks EA's analgesic effects. Our findings indicated that 2 Hz EA alleviates DNP, possibly by suppressing P2X3R upregulation in DRG.
Collapse
Affiliation(s)
- Xueyu Fei
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhaoxia Tai
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hanzhi Wang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siying Qu
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Luhang Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qunqi Hu
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
32
|
Goto T, Sapio MR, Maric D, Robinson JM, Saligan LN, Mannes AJ, Iadarola MJ. Longitudinal Transcriptomic Profiling in Carrageenan-Induced Rat Hind Paw Peripheral Inflammation and Hyperalgesia Reveals Progressive Recruitment of Innate Immune System Components. THE JOURNAL OF PAIN 2020; 22:322-343. [PMID: 33227508 DOI: 10.1016/j.jpain.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022]
Abstract
Pain is a common but potentially debilitating symptom, often requiring complex management strategies. To understand the molecular dynamics of peripheral inflammation and nociceptive pain, we investigated longitudinal changes in behavior, tissue structure, and transcriptomic profiles in the rat carrageenan-induced peripheral inflammation model. Sequential changes in the number of differentially expressed genes are consistent with temporal recruitment of key leukocyte populations, mainly neutrophils and macrophages with each wave being preceded by upregulation of the cell-specific chemoattractants, Cxcl1 and Cxcl2, and Ccl2 and Ccl7, respectively. We defined 12 temporal gene clusters based on expression pattern. Within the patterns we extracted genes comprising the inflammatory secretome and others related to nociceptive tissue remodeling and to sensory perception of pain. Structural tissue changes, involving upregulation of multiple collagens occurred as soon as 1-hour postinjection, consistent with inflammatory tissue remodeling. Inflammatory expression profiling revealed a broad-spectrum, temporally orchestrated molecular and cellular recruitment process. The results provide numerous potential targets for modulation of pain and inflammation. PERSPECTIVE: This study investigates the highly orchestrated biological response during tissue inflammation with precise assessment of molecular dynamics at the transcriptional level. The results identify transcriptional changes that define an evolving inflammatory state in rats. This study provides foundational data for identifying markers of, and potential treatments for, inflammation and pain in patients.
Collapse
Affiliation(s)
- Taichi Goto
- National Institutes of Health, National Institute of Nursing Research, Symptom Biology Unit, Bethesda, Maryland
| | - Matthew R Sapio
- National Institutes of Health, Clinical Center, Department of Perioperative Medicine, Bethesda, Maryland
| | - Dragan Maric
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, Maryland
| | - Jeffrey M Robinson
- University of Maryland, Baltimore County, Translational Life Science Technology Program, Baltimore, Maryland
| | - Leorey N Saligan
- National Institutes of Health, National Institute of Nursing Research, Symptom Biology Unit, Bethesda, Maryland
| | - Andrew J Mannes
- National Institutes of Health, Clinical Center, Department of Perioperative Medicine, Bethesda, Maryland
| | - Michael J Iadarola
- National Institutes of Health, Clinical Center, Department of Perioperative Medicine, Bethesda, Maryland.
| |
Collapse
|
33
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Chemosensory Ion Channels in Peripheral Swallowing-Related Regions for the Management of Oropharyngeal Dysphagia. Int J Mol Sci 2020; 21:E6214. [PMID: 32867366 PMCID: PMC7503421 DOI: 10.3390/ijms21176214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
Oropharyngeal dysphagia, or difficulty in swallowing, is a major health problem that can lead to serious complications, such as pulmonary aspiration, malnutrition, dehydration, and pneumonia. The current clinical management of oropharyngeal dysphagia mainly focuses on compensatory strategies and swallowing exercises/maneuvers; however, studies have suggested their limited effectiveness for recovering swallowing physiology and for promoting neuroplasticity in swallowing-related neuronal networks. Several new and innovative strategies based on neurostimulation in peripheral and cortical swallowing-related regions have been investigated, and appear promising for the management of oropharyngeal dysphagia. The peripheral chemical neurostimulation strategy is one of the innovative strategies, and targets chemosensory ion channels expressed in peripheral swallowing-related regions. A considerable number of animal and human studies, including randomized clinical trials in patients with oropharyngeal dysphagia, have reported improvements in the efficacy, safety, and physiology of swallowing using this strategy. There is also evidence that neuroplasticity is promoted in swallowing-related neuronal networks with this strategy. The targeting of chemosensory ion channels in peripheral swallowing-related regions may therefore be a promising pharmacological treatment strategy for the management of oropharyngeal dysphagia. In this review, we focus on this strategy, including its possible neurophysiological and molecular mechanisms.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| |
Collapse
|
34
|
Sadler KE, Moehring F, Stucky CL. Keratinocytes contribute to normal cold and heat sensation. eLife 2020; 9:58625. [PMID: 32729832 PMCID: PMC7402674 DOI: 10.7554/elife.58625] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Keratinocytes are the most abundant cell type in the epidermis, the most superficial layer of skin. Historically, epidermal-innervating sensory neurons were thought to be the exclusive detectors and transmitters of environmental stimuli. However, recent work from our lab (Moehring et al., 2018) and others (Baumbauer et al., 2015) has demonstrated that keratinocytes are also critical for normal mechanotransduction and mechanically-evoked behavioral responses in mice. Here, we asked whether keratinocyte activity is also required for normal cold and heat sensation. Using calcium imaging, we determined that keratinocyte cold activity is conserved across mammalian species and requires the release of intracellular calcium through one or more unknown cold-sensitive proteins. Both epidermal cell optogenetic inhibition and interruption of ATP-P2X4 signaling reduced reflexive behavioral responses to cold and heat stimuli. Based on these data and our previous findings, keratinocyte purinergic signaling is a modality-conserved amplification system that is required for normal somatosensation in vivo.
Collapse
Affiliation(s)
- Katelyn E Sadler
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Francie Moehring
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
35
|
Talagas M, Lebonvallet N, Berthod F, Misery L. Lifting the veil on the keratinocyte contribution to cutaneous nociception. Protein Cell 2020; 11:239-250. [PMID: 31907794 PMCID: PMC7093357 DOI: 10.1007/s13238-019-00683-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Cutaneous nociception is essential to prevent individuals from sustaining injuries. According to the conventional point of view, the responses to noxious stimuli are thought to be exclusively initiated by sensory neurons, whose activity would be at most modulated by keratinocytes. However recent studies have demonstrated that epidermal keratinocytes can also act as primary nociceptive transducers as a supplement to sensory neurons. To enlighten our understanding of cutaneous nociception, this review highlights recent and relevant findings on the cellular and molecular elements that underlie the contribution of epidermal keratinocytes as nociceptive modulators and noxious sensors, both under healthy and pathological conditions.
Collapse
Affiliation(s)
- Matthieu Talagas
- Univ Brest, LIEN, 29200, Brest, France.
- Laboratoire d'Organogenèse Expérimentale (LOEX), University of Laval, Quebec, Canada.
- Department of Dermatology, Brest University Hospital, Brest, France.
- Univ Brest, IBSAM (Institut Brestois de Santé Agro matière), 29200, Brest, France.
| | - Nicolas Lebonvallet
- Univ Brest, LIEN, 29200, Brest, France
- Univ Brest, IBSAM (Institut Brestois de Santé Agro matière), 29200, Brest, France
| | - François Berthod
- Laboratoire d'Organogenèse Expérimentale (LOEX), University of Laval, Quebec, Canada
| | - Laurent Misery
- Univ Brest, LIEN, 29200, Brest, France
- Department of Dermatology, Brest University Hospital, Brest, France
- Univ Brest, IBSAM (Institut Brestois de Santé Agro matière), 29200, Brest, France
| |
Collapse
|
36
|
Goto T, Nakagami G, Minematsu T, Tomida S, Shinoda M, Iwata K, Sanada H. Topically injected adrenocorticotropic hormone induces mechanical hypersensitivity on a full‐thickness cutaneous wound model in rats. Exp Dermatol 2019; 28:1010-1016. [DOI: 10.1111/exd.13994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/01/2019] [Accepted: 06/19/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Taichi Goto
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
- Global Leadership Initiative for an Age‐Friendly Society The University of Tokyo Bunkyo‐ku Tokyo Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
- Division of Care Innovation, Global Nursing Research Center, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
| | - Takeo Minematsu
- Division of Care Innovation, Global Nursing Research Center, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
- Department of Skincare Science, Graduate School of Medicine The University of Tokyo, Bunkyo‐ku Tokyo Japan
| | - Sanai Tomida
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
| | - Masamichi Shinoda
- Department of Physiology Nihon University School of Dentistry Chiyoda‐ku Tokyo Japan
| | - Koichi Iwata
- Department of Physiology Nihon University School of Dentistry Chiyoda‐ku Tokyo Japan
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
- Division of Care Innovation, Global Nursing Research Center, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
| |
Collapse
|
37
|
Weinberg R, Coulombe P, Polydefkis M, Caterina M. Pain mechanisms in hereditary palmoplantar keratodermas. Br J Dermatol 2019; 182:543-551. [DOI: 10.1111/bjd.17880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Affiliation(s)
- R.L. Weinberg
- Department of Neurosurgery Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Department of Biological Chemistry Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Solomon H. Snyder Department of Neuroscience Neurosurgery Pain Research Institute Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
| | - P.A. Coulombe
- Department of Cell and Developmental Biology University of Michigan Medical School Ann Arbor MI 48109 U.S.A
- Department of Dermatology University of Michigan Medical School Ann Arbor MI 48109 U.S.A
| | - M. Polydefkis
- Department of Neurology Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
| | - M.J. Caterina
- Department of Neurosurgery Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Department of Biological Chemistry Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Solomon H. Snyder Department of Neuroscience Neurosurgery Pain Research Institute Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
| |
Collapse
|
38
|
Matsuya Y, Satou Y, Hamada N, Date H, Ishikawa M, Sato T. DNA damage induction during localized chronic exposure to an insoluble radioactive microparticle. Sci Rep 2019; 9:10365. [PMID: 31316118 PMCID: PMC6637188 DOI: 10.1038/s41598-019-46874-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/05/2019] [Indexed: 12/27/2022] Open
Abstract
Insoluble radioactive microparticles emitted by the incident at the Fukushima nuclear power plant have drawn keen interests from the viewpoint of radiation protection. Cs-bearing particles have been assumed to adhere in the long term to trachea after aspirated into respiratory system, leading to heterogeneous dose distribution within healthy tissue around the particles. However, the biological effects posed by an insoluble radioactive particle remain unclear. Here, we show cumulative DNA damage in normal human lung cells proximal and distal to the particle (β-ray and γ-ray-dominant areas, respectively) under localized chronic exposure in comparison with uniform exposure. We put a Cs-bearing particle into a microcapillary tip and placed it onto a glass-base dish containing fibroblast or epithelial cells cultured in vitro. A Monte Carlo simulation with PHITS code provides the radial distribution of absorbed dose-rate around the particle, and subsequently we observed a significant change in nuclear γ-H2AX foci after 24 h or 48 h exposure to the particle. The nuclear foci in the cells distal to the particle increased even under low-dose-rate exposure compared with uniform exposure to 137Cs γ-rays, which was suppressed by a treatment with a scavenger of reactive oxygen species. In contrast, such focus formation was less manifested in the exposed cells proximal to the particle compared with uniform exposure. These data suggest that the localized exposure to a Cs-bearing particle leads to not only disadvantage to distal cells but also advantage to proximal cells. This study is the first to provide quantitative evaluation for the spatial distribution of DNA double strand breaks after the heterogeneous chronic exposure to a Cs-bearing particle in comparison with uniform Cs exposure.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan.
| | - Yukihiko Satou
- Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), 790-1 Otsuka, Motooka, Tomioka, Fukushima, 979-1151, Japan
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo, 201-8511, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-8, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Masayori Ishikawa
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-8, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Tatsuhiko Sato
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| |
Collapse
|
39
|
Chatterjee SK, Malick C, Bhattacharya S, Suresh VR, Kundu R, Saikia SK. Ectopic expression of olfactory receptors and associated G-protein subunits in the head integument of the amphihaline migratory fish hilsa Tenualosa ilisha. JOURNAL OF FISH BIOLOGY 2019; 95:324-334. [PMID: 30238997 DOI: 10.1111/jfb.13801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
The chemosensory nature of the tissue from the dorsal surface of the head (also termed sensory pad; SP) of the amphihaline diadromous fish hilsa Tenualosa ilisha was investigated for odorant receptor (OR), olfactory marker protein (OMP) and G-protein subunits (Gαs-olf, Gαq, Gαo, Gαi3) through immunolocalization and immunoblotting techniques. The immunolocalization of OR, OMP and G-protein subunits showed clear expression of these proteins in the tissues of the SP. Robust expressions of these proteins in the SP were detected with immunoblot analysis. The strong expression of these proteins in the SP indicates that the tissues from this area in riverine T. ilisha may play significant role in chemosensing and signalling through ectopic expression of olfactory receptor proteins which are otherwise reported in olfactory organs in vertebrates. Being migratory in nature, ectopic expression of these receptors in T. ilisha probably helps them to prevent damage to epidermal tissues of the SP, or they may also utilize them as a chemo and mechanosensory tool to optimize chemo-communications during migration.
Collapse
Affiliation(s)
- Subhendu K Chatterjee
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, India
- Molecular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, India
| | - Chandan Malick
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, India
- Cell Signaling Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, India
| | - Samir Bhattacharya
- Molecular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, India
| | - Vettath R Suresh
- Riverine Ecology and Fisheries Division, Central Inland Fisheries Research Institute, Kolkata, India
| | - Rakesh Kundu
- Cell Signaling Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, India
| | - Surjya K Saikia
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, India
| |
Collapse
|
40
|
Tan JJ, Ponomarchuk O, Grygorczyk R, Boudreault F. Wide field of view quantitative imaging of cellular ATP release. Am J Physiol Cell Physiol 2019; 317:C566-C575. [PMID: 31216191 DOI: 10.1152/ajpcell.00096.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although several mechanical stressors promote ATP secretion from eukaryotic cells, few mechanosensitive pathways for ATP release have been precisely characterized and none have been clearly identified. To facilitate progress, we report here a wide field of view (∼20 × 20 mm sample area) imaging technique paired with a quantitative image analysis to accurately map the dynamics of ATP release from a cell population. The approach has been tested on A549 cells stretched at high initial strain rate (2-5 s-1) or swelled by hypotonic shock. The amount of ATP secreted in response to a series of five graded stretch pulses (5-37% linear deformation, 1-s duration at 25°C) changed nonmonotonically with respect to strain amplitude and was inhomogeneous across the cell monolayer. In a typical experiment, extracellular ATP density averaged 250 fmol/mm2, but the area of detectable signal covered only ∼40% of the cells. In some areas, ATP accumulation peaked around 900 fmol/mm2, which corresponded to an estimated concentration of 4.5 µM. The total amount of ATP released from the combined stretch pulses reached 384 ± 224 pmol/million cells (n = 4). Compared with stretch, hypotonic shock (50%, 30°C) elicited a more homogeneous ATP secretion from the entire cell population but at a lower yield totaling 28 ± 12 pmol/million cells (n = 4). The quantitative extracellular ATP mapping of several thousand cells at once, with this wide field of view imaging system, will help identify ATP release pathways by providing unique insights on the dynamics and inhomogeneities of the cellular ATP secretion that are otherwise difficult to assess within the smaller field of view of a microscope.
Collapse
Affiliation(s)
- Ju Jing Tan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Olga Ponomarchuk
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Ryszard Grygorczyk
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Francis Boudreault
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Jiang N, Rasmussen JP, Clanton JA, Rosenberg MF, Luedke KP, Cronan MR, Parker ED, Kim HJ, Vaughan JC, Sagasti A, Parrish JZ. A conserved morphogenetic mechanism for epidermal ensheathment of nociceptive sensory neurites. eLife 2019; 8:42455. [PMID: 30855229 PMCID: PMC6450671 DOI: 10.7554/elife.42455] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Interactions between epithelial cells and neurons influence a range of sensory modalities including taste, touch, and smell. Vertebrate and invertebrate epidermal cells ensheath peripheral arbors of somatosensory neurons, including nociceptors, yet the developmental origins and functional roles of this ensheathment are largely unknown. Here, we describe an evolutionarily conserved morphogenetic mechanism for epidermal ensheathment of somatosensory neurites. We found that somatosensory neurons in Drosophila and zebrafish induce formation of epidermal sheaths, which wrap neurites of different types of neurons to different extents. Neurites induce formation of plasma membrane phosphatidylinositol 4,5-bisphosphate microdomains at nascent sheaths, followed by a filamentous actin network, and recruitment of junctional proteins that likely form autotypic junctions to seal sheaths. Finally, blocking epidermal sheath formation destabilized dendrite branches and reduced nociceptive sensitivity in Drosophila. Epidermal somatosensory neurite ensheathment is thus a deeply conserved cellular process that contributes to the morphogenesis and function of nociceptive sensory neurons. Humans and other animals perceive and interact with the outside world through their sensory nervous system. Nerve cells, acting as the body’s ‘telegraph wires’, convey signals from sensory organs – like the eyes – to the brain, which then processes this information and tells the body how to respond. There are different kinds of sensory nerve cells that carry different types of information, but they all associate closely with the tissues and organs they connect to the brain. Human skin contains sensory nerve cells, which underpin our senses of touch and pain. There is a highly specialized, complex connection between some of these nerve cells and cells in the skin: the skin cells wrap tightly around the nerve cells’ free ends, forming sheath-like structures. This ‘ensheathment’ process happens in a wide range of animals, including those with a backbone, like fish and humans, and those without, like insects. Ensheathment is thought to be important for the skin’s nerve cells to work properly. Yet it remains unclear how or when these connections first appear. Jiang et al. therefore wanted to determine the developmental origins of ensheathment and to find out if these were also similar in animals with and without backbones. Experiments using fruit fly and zebrafish embryos revealed that nerve cells, not skin cells, were responsible for forming and maintaining the sheaths. In embryos where groups of sensory nerve cells were selectively killed – either using a laser or by making the cells produce a toxin – ensheathment did not occur. Further studies, using a variety of microscopy techniques, revealed that the molecular machinery required to stabilize the sheaths was similar in both fish and flies, and therefore likely to be conserved across different groups of animals. Removing sheaths in fly embryos led to nerve cells becoming unstable; the animals were also less sensitive to touch. This confirmed that ensheathment was indeed necessary for sensory nerve cells to work properly. By revealing how ensheathment first emerges, these findings shed new light on how the sensory nervous system develops and how its activity is controlled. In humans, skin cells ensheath the nerve cells responsible for sensing pain. A better understanding of how ensheathments first arise could therefore lead to new avenues for treating chronic pain and related conditions.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Biology, University of Washington, Seattle, United States
| | - Jeffrey P Rasmussen
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Joshua A Clanton
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Marci F Rosenberg
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Kory P Luedke
- Department of Biology, University of Washington, Seattle, United States
| | - Mark R Cronan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
| | - Edward D Parker
- Department of Opthalmology, University of Washington, Seattle, United States
| | - Hyeon-Jin Kim
- Department of Chemistry, University of Washington, Seattle, United States.,Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, United States.,Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Alvaro Sagasti
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, United States
| |
Collapse
|
42
|
Zinc in Keratinocytes and Langerhans Cells: Relevance to the Epidermal Homeostasis. J Immunol Res 2018; 2018:5404093. [PMID: 30622978 PMCID: PMC6304883 DOI: 10.1155/2018/5404093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/10/2018] [Indexed: 02/07/2023] Open
Abstract
In the skin, the epidermis is continuously exposed to various kinds of external substances and stimuli. Therefore, epidermal barriers are crucial for providing protection, safeguarding health, and regulating water balance by maintaining skin homeostasis. Disruption of the epidermal barrier allows external substances and stimuli to invade or stimulate the epidermal cells, leading to the elicitation of skin inflammation. The major components of the epidermal barrier are the stratum corneum (SC) and tight junctions (TJs). The presence of zinc in the epidermis promotes epidermal homeostasis; hence, this study reviewed the role of zinc in the formation and function of the SC and TJs. Langerhans cells (LCs) are one of the antigen-presenting cells found in the epidermis. They form TJs with adjacent keratinocytes (KCs), capture external antigens, and induce antigen-specific immune reactions. Thus, the function of zinc in LCs was examined in this review. We also summarized the general knowledge of zinc and zinc transporters in the epidermis with updated findings.
Collapse
|
43
|
Moehring F, Waas M, Keppel TR, Rathore D, Cowie AM, Stucky CL, Gundry RL. Quantitative Top-Down Mass Spectrometry Identifies Proteoforms Differentially Released during Mechanical Stimulation of Mouse Skin. J Proteome Res 2018; 17:2635-2648. [PMID: 29925238 PMCID: PMC6195672 DOI: 10.1021/acs.jproteome.8b00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mechanotransduction refers to the processes whereby mechanical stimuli are converted into electrochemical signals that allow for the sensation of our surrounding environment through touch. Despite its fundamental role in our daily lives, the molecular and cellular mechanisms of mechanotransduction are not yet well-defined. Previous data suggest that keratinocytes may release factors that activate or modulate cutaneous sensory neuron terminals, including small molecules, lipids, peptides, proteins, and oligosaccharides. This study presents a first step toward identifying soluble mediators of keratinocyte-sensory neuron communication by evaluating the potential for top-down mass spectrometry to identify proteoforms released during 1 min of mechanical stimulation of mouse skin from naı̈ve animals. Overall, this study identified 47 proteoforms in the secretome of mouse hind paw skin, of which 14 were differentially released during mechanical stimulation, and includes proteins with known and previously unknown relevance to mechanotransduction. Finally, this study outlines a bioinformatic workflow that merges output from two complementary analysis platforms for top-down data and demonstrates the utility of this workflow for integrating quantitative and qualitative data.
Collapse
Affiliation(s)
- Francie Moehring
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew Waas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Theodore R. Keppel
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Deepali Rathore
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ashley M. Cowie
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rebekah L. Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
44
|
Cho YT, Hsu WY, Lin LF, Lin YN. Kinesio taping reduces elbow pain during resisted wrist extension in patients with chronic lateral epicondylitis: a randomized, double-blinded, cross-over study. BMC Musculoskelet Disord 2018; 19:193. [PMID: 29921250 PMCID: PMC6010177 DOI: 10.1186/s12891-018-2118-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/29/2018] [Indexed: 11/28/2022] Open
Abstract
Background Lateral epicondylitis is frequently seen in racquet sport players and the treatments are usually symptomatic rather than curative. Taping therapy is cheap and easy to apply in the sport field. In this study we valued the effectiveness of Kinesio taping (KT) on immediate pain control for patients with chronic lateral epicondylitis. Methods We conducted a randomized, double-blinded, cross-over study with 15 patients with chronic lateral epicondylitis. All participants received two taping sessions in a random order with a 3-day interval in between: one with KT and the other with sham taping (ST). Pain perceived during resisted wrist extension and at rest using numeric rating scale (NRS), the pain-free grip strength, and the pressure pain threshold, were measured before and 15 min after the tape was applied. Results A significant reduction of 2.1 ± 1.6 (Z = − 3.081, P = 0.002) and 0.7 ± 0.8 (Z = − 2.428, P = 0.015) was found on a NRS with KT and ST, respectively, indicating that both taping sessions produced immediate pain relief for resisted wrist extension. Both taping sessions significantly improved the pain-free grip strength with increases of 3.31 ± 5.05 (Z = − 2.615, P = 0.009) and 2.43 ± 3.31 (Z = − 2.783, P = 0.005) kg found with KT and ST, respectively. Compared with ST, KT exhibited superiority in controlling pain experienced during resisted wrist extension (Z = − 2.168, P = 0.030). Conclusions Taping produced unneglectable placebo effects on pain relief and painf-free grip strength for patients with lateral epicondylitis, and KT seemed to have additional effects on controlling pain that was elicited by resisted wrist extension. Trial registration ISRCTN13618356 (retrospectively registered on 13/02/2017).
Collapse
Affiliation(s)
- Yen-Ting Cho
- Department of Physical Medicine and Rehabilitation, Wan Fang Hospital, Taipei Medical University, No.111, Hsing-Long Road, Section 3, Taipei, 116, Taiwan
| | - Wen-Yen Hsu
- Department of Physical Medicine and Rehabilitation, Wan Fang Hospital, Taipei Medical University, No.111, Hsing-Long Road, Section 3, Taipei, 116, Taiwan
| | - Li-Fong Lin
- Department of Physical Medicine and Rehabilitation, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yen-Nung Lin
- Department of Physical Medicine and Rehabilitation, Wan Fang Hospital, Taipei Medical University, No.111, Hsing-Long Road, Section 3, Taipei, 116, Taiwan. .,Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
45
|
Malakou LS, Gargalionis AN, Piperi C, Papadavid E, Papavassiliou AG, Basdra EK. Molecular mechanisms of mechanotransduction in psoriasis. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:245. [PMID: 30069447 DOI: 10.21037/atm.2018.04.09] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Psoriasis is an immune disease of the skin that frequently develops upon triggering events of mechanical nature and leads to increased proliferation and damaged differentiation of keratinocytes of the epidermis. Mechanical forces are mediated through mechanotransduction, which is the process that translates physical cues into biochemical signaling networks. Latest updates underline the role of mechanotransduction during the acquisition of aberrant properties by the keratinocytes of the skin, therefore implying a potential contribution that promotes psoriasis pathogenesis. The present review discusses the mechano-induced signaling pathways and individual molecules that become activated in psoriasis and in keratinocytes, along with mechano-based putative treatment strategies. We also suggest emerging mechanosensitive molecules for further investigation with potential diagnostic and therapeutic utility in psoriasis.
Collapse
Affiliation(s)
- Lina S Malakou
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Papadavid
- Second Department of Dermatology, Medical School, National and Kapodistrian University of Athens, 'Attikon' General University Hospital, Athens, Greece
| | - Athanasios G Papavassiliou
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
Abstract
The skin is the third most zinc (Zn)-abundant tissue in the body. The skin consists of the epidermis, dermis, and subcutaneous tissue, and each fraction is composed of various types of cells. Firstly, we review the physiological functions of Zn and Zn transporters in these cells. Several human disorders accompanied with skin manifestations are caused by mutations or dysregulation in Zn transporters; acrodermatitis enteropathica (Zrt-, Irt-like protein (ZIP)4 in the intestinal epithelium and possibly epidermal basal keratinocytes), the spondylocheiro dysplastic form of Ehlers-Danlos syndrome (ZIP13 in the dermal fibroblasts), transient neonatal Zn deficiency (Zn transporter (ZnT)2 in the secretory vesicles of mammary glands), and epidermodysplasia verruciformis (ZnT1 in the epidermal keratinocytes). Additionally, acquired Zn deficiency is deeply involved in the development of some diseases related to nutritional deficiencies (acquired acrodermatitis enteropathica, necrolytic migratory erythema, pellagra, and biotin deficiency), alopecia, and delayed wound healing. Therefore, it is important to associate the existence of mutations or dysregulation in Zn transporters and Zn deficiency with skin manifestations.
Collapse
|
47
|
Moehring F, Cowie AM, Menzel AD, Weyer AD, Grzybowski M, Arzua T, Geurts AM, Palygin O, Stucky CL. Keratinocytes mediate innocuous and noxious touch via ATP-P2X4 signaling. eLife 2018; 7:31684. [PMID: 29336303 PMCID: PMC5777822 DOI: 10.7554/elife.31684] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022] Open
Abstract
The first point of our body’s contact with tactile stimuli (innocuous and noxious) is the epidermis, the outermost layer of skin that is largely composed of keratinocytes. Here, we sought to define the role that keratinocytes play in touch sensation in vivo and ex vivo. We show that optogenetic inhibition of keratinocytes decreases behavioral and cellular mechanosensitivity. These processes are inherently mediated by ATP signaling, as demonstrated by complementary cutaneous ATP release and degradation experiments. Specific deletion of P2X4 receptors in sensory neurons markedly decreases behavioral and primary afferent mechanical sensitivity, thus positioning keratinocyte-released ATP to sensory neuron P2X4 signaling as a critical component of baseline mammalian tactile sensation. These experiments lay a vital foundation for subsequent studies into the dysfunctional signaling that occurs in cutaneous pain and itch disorders, and ultimately, the development of novel topical therapeutics for these conditions. The skin is the largest sensory organ of the body, and the first point of contact with the outside world. Whether it is being pinched or caressed, the skin’s sense of touch informs organisms about their surroundings and allows them to react appropriately. Nerve cells present in the skin capture information about touch and transmit it to the brain where it is decoded. However, there are many other types of cells in the skin besides nerve cells. The role that these other skin cells play in perceiving non-painful and painful touch is still unclear. Moehring et al. now report how the skin cells that form 95% of the most outer layer of the skin are involved in detecting touch. In mutant mice whose cells can be ‘switched off’ by a certain light, artificially deactivating these cells makes the animals less able to respond to tactile stimuli. Further experiments show that when pressure is applied onto the skin, the surface skin cells release a chemical messenger, which then binds specifically to the nerve cells. When the messaging molecule is experimentally destroyed or prevented from attaching to the nerve cell, the mice react less to non-painful and painful touch. This means the cells at the surface of the skin detect tactile signals from the environment and then communicate this information to the nerve cells, where it is taken to the brain. Disrupted communication between the cells in the outer layer of the skin and the nerve cells is found in painful and itchy skin conditions such as eczema and psoriasis. Knowing how these two types of cells normally work together may help with finding new pain and itch treatments for these skin disorders.
Collapse
Affiliation(s)
- Francie Moehring
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Ashley M Cowie
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Anthony D Menzel
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Andy D Weyer
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Thiago Arzua
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
48
|
Jeon S, Caterina MJ. Molecular basis of peripheral innocuous warmth sensitivity. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:69-82. [PMID: 30454610 DOI: 10.1016/b978-0-444-63912-7.00004-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The perception of innocuous warmth is a sensory capability that facilitates thermoregulatory, social, hedonic, and even predatory functions. It has long been recognized that innocuous warmth perception is triggered by activation of a subpopulation of specially tuned peripheral thermosensory neurons. In addition, there is growing evidence that thermotransduction by nonneuronal cells, such as skin keratinocytes, might contribute to or modulate our thermosensory experience. Yet, the precise molecular mechanisms underlying warmth transduction are only now being uncovered. Recent molecular genetics approaches have led to the identification of multiple candidate warmth-transducing molecules that appear to confer thermosensitivity upon innocuous warmth afferents and/or neighboring cell types. Most, but not all, of these candidate transducers are members of the transient receptor potential (TRP) ion channel family. Among the latter, evidence supporting a function in innocuous warmth sensation is strongest for TRPV1 and TRPM2 in mammals and for TRPA1 in nonmammalian species.
Collapse
Affiliation(s)
- Sangmin Jeon
- Departments of Neurosurgery, Biological Chemistry, and Neuroscience, and Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Michael J Caterina
- Departments of Neurosurgery, Biological Chemistry, and Neuroscience, and Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
49
|
Shimada Y, Sato K, Takeda T, Tokuji Y. The Organogermanium Compound Ge-132 Interacts with Nucleic Acid Components and Inhibits the Catalysis of Adenosine Substrate by Adenosine Deaminase. Biol Trace Elem Res 2018; 181:164-172. [PMID: 28429285 DOI: 10.1007/s12011-017-1020-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
Abstract
Poly-trans-[(2-carboxyethyl)germasesquioxane] (Ge-132) is a water-soluble organogermanium compound that exerts various physiological effects, including anti-inflammatory activity and pain relief. In water, Ge-132 is hydrolyzed to 3-(trihydroxygermyl)propanoic acid (THGP), which in turn is capable of interacting with cis-diol compounds through its trihydroxy group, indicating that this compound could also interact with diol-containing nucleic acid constituents. In this study, we evaluated the ability of THGP to interact with nucleosides or nucleotides via nuclear magnetic resonance (NMR) analysis. In addition, we evaluated the effect of added THGP on the enzymatic activity of adenosine deaminase (ADA) when using adenosine or 2'-deoxyadenosine as a substrate. In solution, THGP indeed formed complexes with nucleotides or nucleosides through their cis-diol group. Moreover, the ability of THGP to form complexes with nucleotides was influenced by the number of phosphate groups present on the ribose moiety. Notably, THGP also inhibited the catalysis of adenosine by ADA in a concentration-dependent manner. Thus, interactions between THGP and important biological nucleic acid constituents might be implicated in the physiological effects of Ge-132.
Collapse
Affiliation(s)
- Yasuhiro Shimada
- Asai Germanium Research Institute Co., Ltd., Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan.
- The United Graduate School of Agricultural Science, Iwate University, Ueda, Morioka, Iwate, 020-8550, Japan.
| | - Katsuyuki Sato
- Asai Germanium Research Institute Co., Ltd., Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan
| | - Tomoya Takeda
- Asai Germanium Research Institute Co., Ltd., Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan
- Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Yoshihiko Tokuji
- The United Graduate School of Agricultural Science, Iwate University, Ueda, Morioka, Iwate, 020-8550, Japan
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
50
|
Talagas M, Lebonvallet N, Leschiera R, Marcorelles P, Misery L. What about physical contacts between epidermal keratinocytes and sensory neurons? Exp Dermatol 2017; 27:9-13. [DOI: 10.1111/exd.13411] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Matthieu Talagas
- Laboratory of Interactions Neurons Keratinocytes (EA4685); Faculty of Medicine and Health Sciences; University of Western Brittany; Brest France
- Department of Pathology; Brest University Hospital; Brest France
- IBSAM (Institut Brestois de Santé Agro Matière); University of Western Brittany; Brest France
| | - Nicolas Lebonvallet
- Laboratory of Interactions Neurons Keratinocytes (EA4685); Faculty of Medicine and Health Sciences; University of Western Brittany; Brest France
- IBSAM (Institut Brestois de Santé Agro Matière); University of Western Brittany; Brest France
| | - Raphael Leschiera
- Laboratory of Interactions Neurons Keratinocytes (EA4685); Faculty of Medicine and Health Sciences; University of Western Brittany; Brest France
- IBSAM (Institut Brestois de Santé Agro Matière); University of Western Brittany; Brest France
| | - Pascale Marcorelles
- Laboratory of Interactions Neurons Keratinocytes (EA4685); Faculty of Medicine and Health Sciences; University of Western Brittany; Brest France
- Department of Pathology; Brest University Hospital; Brest France
- IBSAM (Institut Brestois de Santé Agro Matière); University of Western Brittany; Brest France
| | - Laurent Misery
- Laboratory of Interactions Neurons Keratinocytes (EA4685); Faculty of Medicine and Health Sciences; University of Western Brittany; Brest France
- IBSAM (Institut Brestois de Santé Agro Matière); University of Western Brittany; Brest France
- Department of Dermatology; Brest University Hospital; Brest France
| |
Collapse
|