1
|
Iyer DR, Venkatraman J, Tanguy E, Vitale N, Mahapatra NR. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell Mol Life Sci 2023; 80:271. [PMID: 37642733 PMCID: PMC11072126 DOI: 10.1007/s00018-023-04908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Janani Venkatraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
2
|
Moawad UK, Soliman SMM, Mazher KM, Hassan RM, Nabil TM. Histological, histochemical, ultrastructural and immunohistochemical identification and characterization of the neurosecretory cells of the adult rabbit's adrenal medulla. Anat Histol Embryol 2022; 51:280-288. [PMID: 35119700 DOI: 10.1111/ahe.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/01/2022] [Accepted: 01/22/2022] [Indexed: 11/27/2022]
Abstract
The present investigation was conducted on the adrenal glands of 40 adult New Zealand rabbits of both sexes to characterize and identify the histological, histochemical, ultrastructural, and immunohistochemical features of the neurosecretory cells of the adrenal medulla. The obtained specimens of adrenal medulla were subjected to routine histological techniques and then stained with different histological stains, including general, non-specific, specific, and highly specific stains for neurosecretory cells, in addition to immunohistochemical reactions. The obtained results showed two types of adrenal medullary neurosecretory cells containing secretory granules (SGs) of different electron densities: adrenaline and noradrenaline (NA) secreting cells. These secretory granules showed a strong positive reaction to the Grimelius silver impregnation technique. Sections stained with Gomori's chrome alum haematoxylin stain, and the secretory granules showed a strong dark blackish-blue positive colour. The medullary cells showed typical chromaffin reactions when stained by H&E and Giemsa stains after formol dichromate 'Ortha's fluid' fixation. The noradrenaline secretory granules gave a strong positive Schmorl's test, while the adrenaline ones showed a moderate reaction. Immunohistochemically, the adrenal medullary cells were subjected to anti-chromogranin A (CHGA) antibody using the PAP technique, which gave positive reactions.
Collapse
Affiliation(s)
- Usama Kamal Moawad
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | | - Khaled Mohamed Mazher
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Randa Mohamed Hassan
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Taghreed Mohamed Nabil
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
3
|
Li R, Qiao M, Li S, Wei A, Ren S, Tao M, Zhao Y, Zhang L, Huang L, Shen Y. Antifungal Peptide CGA-N9 Protects Against Systemic Candidiasis in Mice. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Herold Z, Doleschall M, Somogyi A. Role and function of granin proteins in diabetes mellitus. World J Diabetes 2021; 12:1081-1092. [PMID: 34326956 PMCID: PMC8311481 DOI: 10.4239/wjd.v12.i7.1081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The granin glycoprotein family consists of nine acidic proteins; chromogranin A (CgA), chromogranin B (CgB), and secretogranin II–VIII. They are produced by a wide range of neuronal, neuroendocrine, and endocrine cells throughout the human body. Their major intracellular function is to sort peptides and proteins into secretory granules, but their cleavage products also take part in the extracellular regulation of diverse biological processes. The contribution of granins to carbohydrate metabolism and diabetes mellitus is a recent research area. CgA is associated with glucose homeostasis and the progression of type 1 diabetes. WE-14, CgA10-19, and CgA43-52 are peptide derivates of CgA, and act as CD4+ or CD8+ autoantigens in type 1 diabetes, whereas pancreastatin (PST) and catestatin have regulatory effects in carbohydrate metabolism. Furthermore, PST is related to gestational and type 2 diabetes. CgB has a crucial role in physiological insulin secretion. Secretogranins II and III have angiogenic activity in diabetic retinopathy (DR), and are novel targets in recent DR studies. Ongoing studies are beginning to investigate the potential use of granin derivatives as drugs to treat diabetes based on the divergent relationships between granins and different types of diabetes.
Collapse
Affiliation(s)
- Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest 1083, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| | - Marton Doleschall
- Molecular Medicine Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest 1089, Hungary
| | - Aniko Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| |
Collapse
|
5
|
Catestatin peptide of chromogranin A as a potential new target for several risk factors management in the course of metabolic syndrome. Biomed Pharmacother 2020; 134:111113. [PMID: 33341043 DOI: 10.1016/j.biopha.2020.111113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity, lipodystrophy, diabetes, and hypertension collectively constitute the main features of Metabolic Syndrome (MetS), together with insulin resistance (IR), which is considered as a defining element. MetS generally leads to the development of cardiovascular disease (CVD), which is a determinant cause of mortality and morbidity in humans and animals. Therefore, it is essential to implement and put in place adequate management strategies for the treatment of this disease. Catestatin is a bioactive peptide with 21 amino acids, which is derived through cleaving of the prohormone chromogranin A (CHGA/CgA) that is co-released with catecholamines from secretory vesicles and, which is responsible for hepatic/plasma lipids and insulin levels regulation, improves insulin sensitivity, reduces hypertension and attenuates obesity in murine models. In humans, there were few published studies, which showed that low levels of catestatin are significant risk factors for hypertension in adult patients. These accumulating evidence documents clearly that catestatin peptide (CST) is linked to inflammatory and metabolic syndrome diseases and can be a novel regulator of insulin and lipid levels, blood pressure, and cardiac function. The goal of this review is to provide an overview of the CST effects in metabolic syndrome given its role in metabolic regulation and thus, provide new insights into the use of CST as a diagnostic marker and therapeutic target.
Collapse
|
6
|
Li X, Fan Y, Lin Q, Luo J, Huang Y, Bao Y, Xu L. Expression of chromogranin A-derived antifungal peptide CGA-N12 in Pichia pastoris. Bioengineered 2020; 11:318-327. [PMID: 32163000 PMCID: PMC7161563 DOI: 10.1080/21655979.2020.1736237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human chromogranin A-derived peptide CGA-N12, which is composed of 12 amino acid residues with the sequence ALQGAKERAHQQ, showed strong antifungal activity and the least hemolytic activity in previous studies. However, synthetic peptides are relatively expensive to produce. Recombinant expression of peptides in the host cells, such as bacteria or yeast, can fastly provide cost-efficient products of peptides. Here, we developed an innovative system to produce CGA-N12 peptides in the yeast Pichia pastoris GS115 using genetic engineering technology. In order to directly secret short CGA-N12 peptides into the culture media from GS115 cells and enhance its expression effect, the structure of the CGA-N12 coding sequence was designed to mimic that of native α-factor gene of Saccharomyces cerevisiae. Four long primer pairs with sticky end were used to synthesize CGA-N12 expression sequence which contains four copies of CGA-N12 flanked by a Lys-Arg pair and two Glu-Ala repeating units. Endogenous proteases Kex2 and Ste13 in Golgi apparatus recognize and excise Lys-Arg and Glu-Ala pair to release short CGA-N12 peptides from the tandem repeat sequences, respectively. The CGA-N12 peptides were successfully expressed in Pichia pastoris with a yield of up to 30 mg/L of yeast culture as determined using HPLC. Our study indicated that the strategy employed in this work may be a good way to express small-molecule peptides directly in the Pichia pastoris system.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Respiratory Medicine, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yong Fan
- Central Laboratory, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qiong Lin
- Department of Respiratory Medicine, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jianxiong Luo
- Department of Respiratory Medicine, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yuwang Bao
- Department of Respiratory Medicine, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Liyu Xu
- Department of Respiratory Medicine, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Central Laboratory, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
The antifungal peptide CGA-N12 inhibits cell wall synthesis of Candida tropicalis by interacting with KRE9. Biochem J 2020; 477:747-762. [DOI: 10.1042/bcj20190678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/13/2019] [Accepted: 01/14/2020] [Indexed: 12/27/2022]
Abstract
CGA-N12, an antifungal peptide derived from chromogranin A, has specific antagonistic activity against Candida spp., especially against Candida tropicalis, by inducing cell apoptosis. However, the effect of CGA-N12 on the Candida cell wall is unknown. The Candida protein KRE9, which possesses β-1,6-glucanase activity, was screened by affinity chromatography after binding to CGA-N12. In this study, the effect of CGA-N12 on KRE9 and the interaction between CGA-N12 and KRE9 was studied to clarify the effect of CGA-N12 on C. tropicalis cell wall synthesis. The effect of CGA-N12 on recombinant KRE9 β-1,6-glucanase activity was investigated by analyzing the consumption of glucose. The results showed that CGA-N12 inhibited the activity of KRE9. After C. tropicalis was treated with CGA-N12, the structure of the C. tropicalis cell wall was damaged. The interaction between CGA-N12 and KRE9 was analyzed by isothermal titration calorimetry (ITC). The results showed that their interaction process was involved an endothermic reaction, and the interaction force was mainly hydrophobic with a few electrostatic forces. The results of the fluorescence resonance energy transfer (FRET) assay showed that the distance between CGA-N12 and KRE9 was 7 ∼ 10 nm during their interaction. Therefore, we concluded that the target of CGA-N12 in the C. tropicalis cell membrane is KRE9, and that CGA-N12 weakly binds to KRE9 within a 7 ∼ 10 nm distance and inhibits KRE9 activity.
Collapse
|
8
|
Sekulic M, Waikar S, Motwani SS, Weins A, Rennke HG. Chromogranin A Tubulopathy: Differing Histopathologic Patterns of Acute Tubular Injury in the Setting of Neuroendocrine Neoplasms. Kidney Int Rep 2019; 4:1085-1093. [PMID: 31440699 PMCID: PMC6698283 DOI: 10.1016/j.ekir.2019.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 02/01/2023] Open
Abstract
Introduction Neoplasms of neuroendocrine derivation or differentiation may express specific peptides, some of which are capable of producing clinical symptomatology and others used as biomarkers: one such peptide being chromogranin A (CGA). Herein, we describe histopathologic changes present in kidney specimens from patients with such neoplasms, and illustrate 2 patterns of acute tubular injury (ATI) attributable to CGA. Methods Eleven patients with a history of a neoplasm of neuroendocrine derivation or differentiation and having histopathologic sampling of the kidney were retrospectively identified, 3 of whom had ATI with either engorgement of the proximal tubular epithelium by resorbed material or tubular cast formation. Results Two patterns of ATI were observed. One characterized by acutely injured proximal tubular cells engorged with resorption granules that expressed CGA via immunoperoxidase staining. Another pattern was characterized by intraluminal tubular cast material associated with ATI that did not exhibit restriction of immunoglobulin light chains (LCs), but immunoperoxidase staining for CGA revealed that the cast material was composed of the neuroendocrine-associated peptide. The level of serum CGA does not appear to necessarily equate to developing either of these 2 patterns of ATI. Conclusions Patients with a neoplasm of neuroendocrine derivation or differentiation may develop ATI, and in certain cases may be secondary to CGA renal tubular deposition.
Collapse
Affiliation(s)
- Miroslav Sekulic
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sushrut Waikar
- Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shveta S Motwani
- Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Helmut G Rennke
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
CGA-N9, an antimicrobial peptide derived from chromogranin A: direct cell penetration of and endocytosis by Candida tropicalis. Biochem J 2019; 476:483-497. [PMID: 30610128 PMCID: PMC6362824 DOI: 10.1042/bcj20180801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/22/2018] [Accepted: 01/04/2019] [Indexed: 12/15/2022]
Abstract
CGA-N9 is a peptide derived from the N-terminus of human chromogranin A comprising amino acids 47–55. Minimum inhibitory concentration (MIC) assays showed that CGA-N9 had antimicrobial activity and exhibited time-dependent inhibition activity against Candida tropicalis, with high safety in human red blood cells (HRBCs) and mouse brain microvascular endothelial cells (bEnd.3). According to the results of transmission electron microscopy (TEM), flow cytometry and confocal microscopy, CGA-N9 accumulated in cells without destroying the integrity of the cell membrane; the peptide was initially localized to the cell membrane and subsequently internalized into the cytosol. An investigation of the cellular internalization mechanism revealed that most CGA-N9 molecules entered the yeast cells, even at 4°C and in the presence of sodium azide (NaN3), both of which block all energy-dependent transport mechanisms. In addition, peptide internalization was affected by the endocytic inhibitors 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), cytochalasin D (CyD) and heparin; chlorpromazine (CPZ) also had some effect on CGA-N9 internalization. Similar results were obtained in the MIC assays, whereby the anticandidal activity of CGA-N9 was blocked to different degrees in the presence of EIPA, CyD, heparin or CPZ. Therefore, most CGA-N9 passes through the C. tropicalis cell membrane via direct cell penetration, whereas the remainder enters through macropinocytosis and sulfate proteoglycan-mediated endocytosis, with a slight contribution from clathrin-mediated endocytosis.
Collapse
|
10
|
Antimicrobial Peptides Are Expressed during Early Development of Zebrafish (Danio rerio) and Are Inducible by Immune Challenge. FISHES 2017. [DOI: 10.3390/fishes2040020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T, Cerra MC, Nowosielski Y, Mätzler R, Troger J, Gayen JR, Trudeau V, Corti A, Helle KB. Granin-derived peptides. Prog Neurobiol 2017; 154:37-61. [PMID: 28442394 DOI: 10.1016/j.pneurobio.2017.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022]
Abstract
The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.
Collapse
Affiliation(s)
- Josef Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Markus Theurl
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Yvonne Nowosielski
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphaela Mätzler
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jasmin Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vance Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelo Corti
- Vita-Salute San Raffaele University and Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Karen B Helle
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
12
|
Li R, Zhang L, Zhang H, Yi Y, Wang L, Chen L, Zhang L. Protective effect of a novel antifungal peptide derived from human chromogranin a on the immunity of mice infected with Candida krusei. Exp Ther Med 2017; 13:2429-2434. [PMID: 28565859 DOI: 10.3892/etm.2017.4290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Invasive fungal infections threat the life of immunocompromised patients. Chromogranin A N-46 (CGA-N46), corresponding to the 31st to 76th amino acids of the N-terminus of human chromogranin A, is an antifungal peptide. In order to elucidate the antifungal effects of CGA-N46 in vivo, we studied its effects on cell-mediated immunity in Candida krusei-infected mice. The results showed that the treatment with CGA-N46 increased the average body weight and decreased the mortality of the immunocompromised mice model infected with Candida krusei. The spleen and thymus indices of treated mice has markedly increased compared with that of the control group (P<0.05), and the immune cell levels in peripheral blood also increased significantly (P<0.05). The immuno-modulatory effect of CGA-N46 (60 mg/kg/day) was found to be comparable to that of terbinafine. Additionally, CGA-N46 could alleviate or eliminate histopathological symptoms in the liver, spleen, kidney, and lung tissues. In conclusion, the present study suggests that CGA-N46 may offer a new strategy for antifungal therapeutic option. This study is an essential step in elucidating the effect of CGA-N46 in vivo.
Collapse
Affiliation(s)
- Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Lin Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Yanjie Yi
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Le Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Liang Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Lan Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
13
|
Li RF, Lu ZF, Sun YN, Chen SH, Yi YJ, Zhang HR, Yang SY, Yu GH, Huang L, Li CN. Molecular Design, Structural Analysis and Antifungal Activity of Derivatives of Peptide CGA-N46. Interdiscip Sci 2016; 8:319-26. [PMID: 27165480 PMCID: PMC4982898 DOI: 10.1007/s12539-016-0163-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 12/30/2022]
Abstract
Chromogranin A (CGA)-N46, a derived peptide of human chromogranin A, has antifungal activity. To further research the active domain of CGA-N46, a series of derivatives were designed by successively deleting amino acid from both terminus of CGA-N46, and the amino acid sequence of each derivative was analyzed by bioinformatic software. Based on the predicted physicochemical properties of the peptides, including half-life time in mammalian reticulocytes (in vitro), yeast (in vivo) and E. coli (in vivo), instability index, aliphatic index and grand average of hydropathicity (GRAVY), the secondary structure, net charge, the distribution of hydrophobic residues and hydrophilic residues, the final derivatives CGA-N15, CGA-N16, CGA-N12 and CGA-N8 were synthesized by solid-phase peptide synthesis. The results of bioinformatic analysis showed that CGA-N46 and its derivatives were α-helix, neutral or weak positive charge, hydrophilic, and CGA-N12 and CGA-N8 were more stable than the other derivatives. The results of circular dichroism confirmed that CGA-N46 and its derived peptides displayed α-helical structure in an aqueous solution and 30 mM sodium dodecylsulfate, but α-helical contents decreased in hydrophobic lipid vesicles. CGA-N15, CGA-N16, CGA-N12 and CGA-N8 had higher antifungal activities than their mother peptide CGA-N46. Among of the derived peptides, CGA-N12 showed the least hemolytic activity. In conclusion, we have successfully identified the active domain of CGA-N46 with strong antifungal activity and weak hemolytic activity, which provides the possibility to develop a new class of antibiotics.
Collapse
Affiliation(s)
- Rui-Fang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Zhi-Fang Lu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Ya-Nan Sun
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shi-Hua Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yan-Jie Yi
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Hui-Ru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shuo-Ye Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Guang-Hai Yu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Liang Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Chao-Nan Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
14
|
Li Q, Zhang CS, Zhang Y. Molecular aspects of prostate cancer with neuroendocrine differentiation. Chin J Cancer Res 2016; 28:122-9. [PMID: 27041934 DOI: 10.3978/j.issn.1000-9604.2016.01.02] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuroendocrine differentiation (NED), which is not uncommon in prostate cancer, is increases in prostate cancer after androgen-deprivation therapy (ADT) and generally appears in castration-resistant prostate cancer (CRPC). Neuroendocrine cells, which are found in normal prostate tissue, are a small subset of cells and have unique function in regulating the growth of prostate cells. Prostate cancer with NED includes different types of tumor, including focal NED, pure neuroendocrine tumor or mixed neuroendocrine-adenocarcinoma. Although more and more studies are carried out on NED in prostate cancer, the molecular components that are involved in NED are still poorly elucidated. We review neuroendocrine cells in normal prostate tissue, NED in prostate cancer, terminology of NED and biomarkers used for detecting NED in routine pathological practice. Some recently reported molecular components which drive NED in prostate cancer are listed in the review.
Collapse
Affiliation(s)
- Qi Li
- 1 Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China ; 2 MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Connie S Zhang
- 1 Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China ; 2 MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yifen Zhang
- 1 Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China ; 2 MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Li RF, Yan XH, Lu YB, Lu YL, Zhang HR, Chen SH, Liu S, Lu ZF. Anti-candidal activity of a novel peptide derived from human chromogranin A and its mechanism of action against Candida krusei. Exp Ther Med 2015; 10:1768-1776. [PMID: 26640548 PMCID: PMC4665730 DOI: 10.3892/etm.2015.2731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/13/2015] [Indexed: 11/17/2022] Open
Abstract
Candida species (Candida spp.) are important fungal pathogens, which cause numerous clinical diseases associated with significant mortality and morbidity in healthcare settings. In our previous study, we identified a recombinant peptide, chromogranin A (CGA)-N46, corresponding to the N-terminal Pro31-Gln76 sequence of human CGA, that exhibited antifungal activity against Candida albicans. The present study investigated the antifungal activity of CGA-N46, and its underlying mechanism, against numerous Candida spp. CGA-N46 inhibited the growth of all of the tested Candida spp., of which Candida krusei exhibited the greatest sensitivity. CGA-N46 was able to disrupt the stability of the phospholipid monolayer without damaging the integrity and permeability of the outer membrane of C. krusei cells, and induced cytoplasm vacuolization and mitochondrial damage. In addition, treatment of C. krusei with CGA-N46 was associated with decreased levels of intracellular reactive oxygen species, a reduction in the mitochondrial membrane potential, and DNA synthesis inhibition. The results of the present study suggested that CGA-N46 was able to pass through the cell membrane of Candida spp. by temporarily destabilizing the phospholipid membrane, which in turn led to mitochondrial dysfunction and inhibition of DNA synthesis. Therefore, CGA-N46 may be considered a novel antifungal compound for the treatment of patients with C. krusei infections.
Collapse
Affiliation(s)
- Rui-Fang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Xiao-Hui Yan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Yan-Bo Lu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Ya-Li Lu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Hui-Ru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Shi-Hua Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Shuai Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Zhi-Fang Lu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
16
|
Herold Z, Nagy P, Patócs A, Somogyi A. [The role of chromogranin-A and its derived peptide, WE-14 in the development of type 1 diabetes mellitus]. Orv Hetil 2015; 156:163-70. [PMID: 25618857 DOI: 10.1556/oh.2015.30087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chromogranin-A is a member of the granine protein family. It is produced in neuroendocrine cells via secretory granules. Many cleavage proteins are formed from chromogranin-A, from which some have well known biological activity, while the function of others is not yet fully known. Serum chromogranin-A levels are used in neuroendocrine tumour diagnostics. Recent studies showed that one of its cleavage protein, WE-14 may also play a role in the development of type 1 diabetes. WE-14 may function as an autoantigen for T-cells involved in the destruction of β-cells. This mechanism was previously observed only in non-obese diabetic mice. Novel results show that WE-14 also serves as a target for autoreactive cells in newly diagnosed type 1 diabetic patients as well, which reaction can be increased with transglutaminase. In this paper the authors summarize the recent knowledge about chromogranin-A and its potential role in the pathomechanism of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Zoltán Herold
- Szent István Egyetem Állatorvos-tudományi Kar Budapest Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest Szentkirályi utca 46. 1088
| | - Péter Nagy
- Semmelweis Egyetem, Általános Orvostudományi Kar I. Patológiai és Kísérleti Rákkutató Intézet Budapest
| | - Attila Patócs
- Semmelweis Egyetem, Általános Orvostudományi Kar Laboratóriumi Medicina Intézet Budapest MTA-SE "Lendület" Örökletes Endokrin Daganatok Kutatócsoport Budapest
| | - Anikó Somogyi
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest Szentkirályi utca 46. 1088
| |
Collapse
|
17
|
Valicherla GR, Hossain Z, Mahata SK, Gayen JR. Pancreastatin is an endogenous peptide that regulates glucose homeostasis. Physiol Genomics 2013; 45:1060-71. [PMID: 24064537 DOI: 10.1152/physiolgenomics.00131.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pancreastatin (PST) is a regulatory peptide containing 49 amino acids, first isolated from porcine pancreas. Intracellular and extracellular processing of the prohormone Chromogranin A (Chga) results various bioactive peptides of which PST has dysglycemic activity. PST regulates glucose, lipid, and protein metabolism in liver and adipose tissues. It also regulates the secretion of leptin and expression of leptin and uncoupling protein 2 in adipose tissue. In Chga knockout mice, PST induces gluconeogenesis in the liver. PST reduces glucose uptake in mice hepatocytes and adipocytes. In rat hepatocytes, PST induces glycogenolysis and glycolysis and inhibits glycogen synthesis. In rat adipocytes, PST inhibits lactate production and lipogenesis. These metabolic effects are confirmed in humans. In the dual signaling mechanism of PST receptor, mostly PST activates Gαq/11 protein leads to the activation of phospholipase C β3-isoform, therefore increasing cytoplasmic free calcium and stimulating protein kinase C. PST inhibits the cell growth in rat HTC hepatoma cells, mediated by nitric oxide and cyclic GMP production. Elevated levels of PST correlating with catecholamines have been found in gestational diabetes and essential hypertension. Rise in the blood PST level in Type 2 diabetes suggests that PST is a negative regulator of insulin sensitivity and glucose homeostasis.
Collapse
Affiliation(s)
- Guru Raghavendra Valicherla
- Pharmacokinetics and Metabolism Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | | | | | | |
Collapse
|
18
|
Reshma AP, Arunachalam R, Pillai JK, Kurra SB, Varkey VK, Prince MJ. Chromogranin A: Novel biomarker between periodontal disease and psychosocial stress. J Indian Soc Periodontol 2013; 17:214-8. [PMID: 23869129 PMCID: PMC3713754 DOI: 10.4103/0972-124x.113076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 03/22/2013] [Indexed: 12/12/2022] Open
Abstract
CONTEXT The psychosocial stress has long been regarded as a significant pre-disposing factor for periodontal disease. The association between the periodontal disease and the neuroendocrine hormones has been observed. Chromogranin A (CgA) is supposed to link the activity of the neuroendocrine system to local and systemic immune functions and to be related to periodontitis. AIMS The aim of this study was to determine the CgA levels in saliva and plasma in periodontal health and disease and to assess their potential relationship to periodontitis. SETTINGS AND DESIGNS In this case-control study, the association between periodontal disease and stress marker has been assessed. MATERIALS AND METHODS SIXTY SUBJECTS WERE CHOSEN FOR THIS STUDY: With case group comprising of 30 subjects with chronic periodontitis and control group comprising of 30 healthy subjects. Salivary and plasma CgA levels were determined by ELISA technique. Clinical parameters included were plaque index, papillary bleeding index and clinical attachment loss and probing depth. Correlation analysis was calculated by independent sample t-test. RESULTS Significantly higher CgA levels were found in saliva and plasma of patients with chronic periodontitis compared with healthy individuals (P < 0.05). No significant difference were observed between salivary and plasma CgA levels. CONCLUSIONS The elevated level CgA in the plasma and saliva of subjects with stress induced chronic periodontitis has yielded insights into biological plausible association between the psychosocial stress and chronic periodontitis. Thus, our results suggest that CgA is a useful biomarker for evaluating at least in part the etiopathogenesis of periodontitis.
Collapse
Affiliation(s)
- Arunima Padmakumar Reshma
- Department of Periodontics, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari, Tamil Nadu, India
| | - Rajeev Arunachalam
- Department of Periodontics, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari, Tamil Nadu, India
| | - Jayakumar Kochu Pillai
- Department of Biochemistry, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari, Tamil Nadu, India
| | - Sarath Babu Kurra
- Department of Pharmacology, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari, Tamil Nadu, India
| | - Vini K. Varkey
- Department of Prosthodontics, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari, Tamil Nadu, India
| | - Mohanraj J. Prince
- Department of Periodontics, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari, Tamil Nadu, India
| |
Collapse
|
19
|
Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 2012; 70:2099-121. [PMID: 22986507 DOI: 10.1007/s00018-012-1156-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/01/2023]
Abstract
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e., secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane, and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules.
Collapse
|
20
|
Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SRJ. The extended granin family: structure, function, and biomedical implications. Endocr Rev 2011; 32:755-97. [PMID: 21862681 PMCID: PMC3591675 DOI: 10.1210/er.2010-0027] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chromogranins (chromogranin A and chromogranin B), secretogranins (secretogranin II and secretogranin III), and additional related proteins (7B2, NESP55, proSAAS, and VGF) that together comprise the granin family subserve essential roles in the regulated secretory pathway that is responsible for controlled delivery of peptides, hormones, neurotransmitters, and growth factors. Here we review the structure and function of granins and granin-derived peptides and expansive new genetic evidence, including recent single-nucleotide polymorphism mapping, genomic sequence comparisons, and analysis of transgenic and knockout mice, which together support an important and evolutionarily conserved role for these proteins in large dense-core vesicle biogenesis and regulated secretion. Recent data further indicate that their processed peptides function prominently in metabolic and glucose homeostasis, emotional behavior, pain pathways, and blood pressure modulation, suggesting future utility of granins and granin-derived peptides as novel disease biomarkers.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
21
|
Significance of plasma chromogranin A determination in neuroendocrine tumour (NET) diagnosis. Folia Histochem Cytobiol 2011; 48:603-10. [DOI: 10.2478/v10042-010-0088-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Mahata SK, Mahata M, Fung MM, O'Connor DT. Reprint of: Catestatin: a multifunctional peptide from chromogranin A. REGULATORY PEPTIDES 2010; 165:52-62. [PMID: 20965217 PMCID: PMC10838673 DOI: 10.1016/j.regpep.2010.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In 1997, we identified a novel peptide, catestatin (CST: bovine chromogranin A [CHGA]₃₄₄₋₃₆₄: RSMRLSFRARGYGFRGPGLQL; human CHGA₃₅₂₋₃₇₂: SSMKLSFRARGYGFRGPGPQL), which is a potent inhibitor of nicotinic-cholinergic-stimulated catecholamine secretion. CST shows characteristic inhibitory effects on nicotinic cationic (Na+, Ca²+) signal transduction, which are specific to the neuronal nicotinic receptor. Utilizing systematic polymorphism discovery at the human CHGA locus we discovered three human variants of CST: G³⁶⁴S, P³⁷⁰L, and R³⁷⁴Q that showed differential potencies towards the inhibition of catecholamine secretion. In humans, CHGA is elevated and its processing to CST is diminished in hypertension. Diminished CST is observed not only in hypertensive individuals but also in the early-normotensive offspring of patients with hypertension, suggesting that an early deficiency of CST might play a pathogenic role in the subsequent development of the disease. Consistent with human findings, prevention of endogenous CST expression by targeted ablation (knockout) of the mouse Chga locus (Chga-KO) resulted in severe hypertension that can be "rescued" specifically by replacement of the CST peptide. CST acts directly on the heart to inhibit the inotropic and lusitropic properties of the rodent heart and also acts as a potent vasodilator in rats and humans. While the G³⁶⁴S CST variant caused profound changes in human autonomic activity and seemed to reduce the risk of developing hypertension, CST replacement rescued Chga-KO mice from dampened baroreflex sensitivity. In addition, CST has been shown to induce chemotaxis and acts as an antimicrobial as well as an antimalarial peptide. The present review summarizes these multiple actions of CST.
Collapse
Affiliation(s)
- Sushil K Mahata
- Department of Medicine (0838), University of California at San Diego, and Veterans Affairs San Diego Healthcare System, 9500 Gilman Drive, La Jolla, CA 92093-0838, USA.
| | | | | | | |
Collapse
|
23
|
Vaudry H, Metz-Boutigue MH. Granins--peptides derived from the secretory proteins. REGULATORY PEPTIDES 2010; 165:1-2. [PMID: 20417667 DOI: 10.1016/j.regpep.2010.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 04/19/2010] [Indexed: 05/29/2023]
|
24
|
Yoo SH, Huh YH, Hur YS. Inositol 1,4,5-trisphosphate receptor in chromaffin secretory granules and its relation to chromogranins. Cell Mol Neurobiol 2010; 30:1155-61. [PMID: 21046461 DOI: 10.1007/s10571-010-9564-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 09/02/2010] [Indexed: 09/29/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP(3))-mediated intracellular Ca(2+) releases in secretory cells play vital roles in controlling not only the intracellular Ca(2+) concentrations but also the Ca(2+)-dependent exocytotic processes. Of intracellular organelles that release Ca(2+) in response to IP(3), secretory granules stand out as the most prominent organelle and are responsible for the majority of IP(3)-dependent Ca(2+) releases in the cytoplasm of chromaffin cells. Bovine chromaffin granules were the first granules that demonstrated the IP(3)-mediated Ca(2+) release as well as the presence of the IP(3) receptor (IP(3)R) in granule membranes. Secretory granules contain all three (type 1, 2, and 3) IP(3)R isoforms, and 58-69% of total cellular IP(3)R isoforms are expressed in bovine chromaffin granules. Moreover, secretory granules contain large amounts (2-4 mM) of chromogranins and secretogranins; chromogranins A and B, and secretogranin II being the major species. Chromogranins A and B, and secretogranin II are high-capacity, low-affinity Ca(2+) binding proteins, binding 30-93 mol of Ca(2+)/mol of protein with dissociation constants of 1.5-4.0 mM. Due to this high Ca(2+) storage properties of chromogranins secretory granules contain ~40 mM Ca(2+). Furthermore, chromogranins A and B directly interact with the IP(3)Rs and modulate the IP(3)R/Ca(2+) channels, i.e., increasing the open probability and the mean open time of the channels 8- to 16-fold and 9- to 42-fold, respectively. Coupled chromogranins change the IP(3)R/Ca(2+) channels to a more ordered, release-ready state, whereby making the IP(3)R/Ca(2+) channels significantly more sensitive to IP(3).
Collapse
Affiliation(s)
- Seung Hyun Yoo
- Department of Biochemistry, Inha University School of Medicine, Jung Gu, Incheon 400-712, Korea.
| | | | | |
Collapse
|
25
|
Corti A. Chromogranin A and the tumor microenvironment. Cell Mol Neurobiol 2010; 30:1163-70. [PMID: 21080056 DOI: 10.1007/s10571-010-9587-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/02/2010] [Indexed: 01/26/2023]
Abstract
Chromogranin A (CgA) is an acidic glycoprotein belonging to a family of regulated secretory proteins stored in the dense core granules of the adrenal medulla and of many other neuroendocrine cells and neurons. This protein is frequently used as a diagnostic and prognostic serum marker for a range of neuroendocrine tumors. Circulating CgA is also increased in patients with other diseases, including subpopulations of patients with non-neuroendocrine tumors, with important prognostic implications. A growing body of evidence suggests that CgA is more than a diagnostic/prognostic marker for cancer patients. Indeed, results of in vitro experiments and in vivo studies in animal models suggest that this protein and its fragments can affect several elements of the tumor microenvironment, including fibroblasts and endothelial cells. In this article, recent findings implicating CgA as a modulator of the tumor microenvironment and suggesting that abnormal secretion of CgA could play important roles in tumor progression and response to therapy in cancer patients are reviewed and discussed.
Collapse
Affiliation(s)
- Angelo Corti
- Division of Molecular Oncology and IIT Network Research Unit of Molecular Neuroscience, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
26
|
Madu CO, Lu Y. Novel diagnostic biomarkers for prostate cancer. J Cancer 2010; 1:150-77. [PMID: 20975847 PMCID: PMC2962426 DOI: 10.7150/jca.1.150] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/04/2010] [Indexed: 01/08/2023] Open
Abstract
Prostate cancer is the most frequently diagnosed malignancy in American men, and a more aggressive form of the disease is particularly prevalent among African Americans. The therapeutic success rate for prostate cancer can be tremendously improved if the disease is diagnosed early. Thus, a successful therapy for this disease depends heavily on the clinical indicators (biomarkers) for early detection of the presence and progression of the disease, as well as the prediction after the clinical intervention. However, the current clinical biomarkers for prostate cancer are not ideal as there remains a lack of reliable biomarkers that can specifically distinguish between those patients who should be treated adequately to stop the aggressive form of the disease and those who should avoid overtreatment of the indolent form. A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. A biomarker reveals further information to presently existing clinical and pathological analysis. It facilitates screening and detecting the cancer, monitoring the progression of the disease, and predicting the prognosis and survival after clinical intervention. A biomarker can also be used to evaluate the process of drug development, and, optimally, to improve the efficacy and safety of cancer treatment by enabling physicians to tailor treatment for individual patients. The form of the prostate cancer biomarkers can vary from metabolites and chemical products present in body fluid to genes and proteins in the prostate tissues. Current advances in molecular techniques have provided new tools facilitating the discovery of new biomarkers for prostate cancer. These emerging biomarkers will be beneficial and critical in developing new and clinically reliable indicators that will have a high specificity for the diagnosis and prognosis of prostate cancer. The purpose of this review is to examine the current status of prostate cancer biomarkers, with special emphasis on emerging markers, by evaluating their diagnostic and prognostic potentials. Both genes and proteins that reveal loss, mutation, or variation in expression between normal prostate and cancerous prostate tissues will be covered in this article. Along with the discovery of prostate cancer biomarkers, we will describe the criteria used when selecting potential biomarkers for further development towards clinical use. In addition, we will address how to appraise and validate candidate markers for prostate cancer and some relevant issues involved in these processes. We will also discuss the new concept of the biomarkers, existing challenges, and perspectives of biomarker development.
Collapse
Affiliation(s)
- Chikezie O Madu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
27
|
Mahata SK, Mahata M, Fung MM, O'Connor DT. Catestatin: a multifunctional peptide from chromogranin A. ACTA ACUST UNITED AC 2010; 162:33-43. [PMID: 20116404 DOI: 10.1016/j.regpep.2010.01.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 01/11/2010] [Accepted: 01/21/2010] [Indexed: 12/16/2022]
Abstract
In 1997, we identified a novel peptide, catestatin (CST: bovine chromogranin A [CHGA](344-364): RSMRLSFRARGYGFRGPGLQL; human CHGA(352-372): SSMKLSFRARGYGFRGPGPQL), which is a potent inhibitor of nicotinic-cholinergic-stimulated catecholamine secretion. CST shows characteristic inhibitory effects on nicotinic cationic (Na(+), Ca(2+)) signal transduction, which are specific to the neuronal nicotinic receptor. Utilizing systematic polymorphism discovery at the human CHGA locus we discovered three human variants of CST: G(364)S, P(370)L, and R(374)Q that showed differential potencies towards the inhibition of catecholamine secretion. In humans, CHGA is elevated and its processing to CST is diminished in hypertension. Diminished CST is observed not only in hypertensive individuals but also in the early-normotensive offspring of patients with hypertension, suggesting that an early deficiency of CST might play a pathogenic role in the subsequent development of the disease. Consistent with human findings, prevention of endogenous CST expression by targeted ablation (knockout) of the mouse Chga locus (Chga-KO) resulted in severe hypertension that can be "rescued" specifically by replacement of the CST peptide. CST acts directly on the heart to inhibit the inotropic and lusitropic properties of the rodent heart and also acts as a potent vasodilator in rats and humans. While the G(364)S CST variant caused profound changes in human autonomic activity and seemed to reduce the risk of developing hypertension, CST replacement rescued Chga-KO mice from dampened baroreflex sensitivity. In addition, CST has been shown to induce chemotaxis and acts as an antimicrobial as well as an antimalarial peptide. The present review summarizes these multiple actions of CST.
Collapse
Affiliation(s)
- Sushil K Mahata
- Department of Medicine (0838), University of California at San Diego, and Veterans Affairs San Diego Healthcare System, 9500 Gilman Drive, La Jolla, CA 92093-0838, USA.
| | | | | | | |
Collapse
|
28
|
Sugawara M, Resende JM, Moraes CM, Marquette A, Chich J, Metz‐Boutigue M, Bechinger B. Membrane structure and interactions of human catestatin by multidimensional solution and solid‐state NMR spectroscopy. FASEB J 2010; 24:1737-46. [DOI: 10.1096/fj.09-142554] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Masae Sugawara
- Université de Strasbourg Centre National de la Recherche Scientifique Strasbourg France
| | - Jarbas M. Resende
- Université de Strasbourg Centre National de la Recherche Scientifique Strasbourg France
| | | | - Arnaud Marquette
- Université de Strasbourg Centre National de la Recherche Scientifique Strasbourg France
| | - Jean‐Francois Chich
- INSERM U575 Physiopathologie du Système Nerveux Université de Strasbourg Strasbourg France
| | | | - Burkhard Bechinger
- Université de Strasbourg Centre National de la Recherche Scientifique Strasbourg France
| |
Collapse
|
29
|
Inomoto C, Osamura RY. Formation of secretory granules by chromogranins. Med Mol Morphol 2009; 42:201-3. [PMID: 20033364 DOI: 10.1007/s00795-009-0472-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 10/05/2009] [Indexed: 11/28/2022]
Abstract
This review article covers the molecular mechanisms of secretory granule formation by chromogranin transfection. Recently, a few investigators have reported that the transfection of chromogranin A and B produces the structures of secretory granules. We used the GFP-chromogranin A transfection method to nonendocrine cells, COS-7 cells, which are not equipped with secretory granules. Despite the absence of endogenous secretory granules in nontransfected COS-7 cells, COS-7 cells transfected with chromogranin A contained granule-like structures in electron micrographs. The granules were composed of an outer limiting membrane with core structures that were interpreted as secretory granules. Human chromogranin A (CgA) labeled with 5-nm gold particles was present in several dense-core granules in our previous electron microscopy study. This review depicts the role of chromogranin A in the formation of secretory granules. It emphasizes the application of recently developed new technologies and the genesis of secretory granules.
Collapse
Affiliation(s)
- Chie Inomoto
- Department of Pathology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | | |
Collapse
|
30
|
Santodomingo J, Vay L, Camacho M, Hernández-Sanmiguel E, Fonteriz RI, Lobatón CD, Montero M, Moreno A, Alvarez J. Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules. Eur J Neurosci 2009; 28:1265-74. [PMID: 18973554 DOI: 10.1111/j.1460-9568.2008.06440.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The secretory granules constitute one of the less well-known compartments in terms of Ca2+ dynamics. They contain large amounts of total Ca2+, but the free intragranular [Ca2+] ([Ca2+]SG), the mechanisms for Ca2+ uptake and release from the granules and their physiological significance regarding exocytosis are still matters of debate. We used in the present work an aequorin chimera targeted to the granules to investigate [Ca2+]SG homeostasis in bovine adrenal chromaffin cells. We found that most of the intracellular aequorin chimera is present in a compartment with 50-100 microM Ca2+. Ca2+ accumulation into this compartment takes place mainly through an ATP-dependent mechanism, namely, a thapsigargin-sensitive Ca2+-ATPase. In addition, fast Ca2+ release was observed in permeabilized cells after addition of inositol 1,4,5-trisphosphate (InsP3) or caffeine, suggesting the presence of InsP3 and ryanodine receptors in the vesicular membrane. Stimulation of intact cells with the InsP3-producing agonist histamine or with caffeine also induced Ca2+ release from the vesicles, whereas acetylcholine or high-[K+] depolarization induced biphasic changes in vesicular[Ca2+], suggesting heterogeneous responses of different vesicle populations, some of them releasing and some taking up Ca2+during stimulation. In conclusion, our data show that chromaffin cell secretory granules have the machinery required for rapid uptake and release of Ca2+, and this strongly supports the hypothesis that granular Ca2+ may contribute to its own secretion.
Collapse
Affiliation(s)
- Jaime Santodomingo
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Ramón y Cajal, 7, E-47005 Valladolid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hong MC, Huang YS, Lin WW, Fang LS, Chen MC. ApRab3, a biosynthetic Rab protein, accumulates on the maturing phagosomes and symbiosomes in the tropical sea anemone, Aiptasia pulchella. Comp Biochem Physiol B Biochem Mol Biol 2008; 152:249-59. [PMID: 19110066 DOI: 10.1016/j.cbpb.2008.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/02/2008] [Accepted: 12/02/2008] [Indexed: 11/16/2022]
Abstract
Symbiosome biogenesis and function are central to the endosymbiotic interaction between symbiotic dinoflagellates and their host cnidarians. To understand these important organelles, we have been conducting studies to identify and characterize symbiosome-associated proteins of the Rab family, key regulatory components of vesicular trafficking and membrane fusion in eukaryotic cells. Our prior studies have implicated three endocytic Rab proteins in the regulation of symbiosome biogenesis. Here, we show that ApRab3 is a new member of the Rab3 subfamily, associating with symbiosomes and accumulating on the maturing phagosomes in the A. pulchella digestive cells. ApRab3 is 78% identical to human Rab3C, and contains all Rab 3-specific signature motifs. EGFP-ApRab3-labeled vesicular structures tended to either align along the cell peripheral, or aggregate at one side of the nucleus. ApRab3 specifically co-distributed with the TGN marker, WGA, but not other organelle-specific markers tested. Immunofluorescence staining with a specific peptide antibody showed similar results. Significantly, an expression of a constitutively active mutant caused the enlargement and random dispersion of EGFP-ApRab3-decorated compartments in PC12 cells. Together, these data suggest that ApRab3 is a new member of the Rab3 subfamily, participating in the biosynthetic trafficking pathway, and symbiosome biogenesis involves an interaction with ApRab3-positive vesicles.
Collapse
Affiliation(s)
- Ming-Cheng Hong
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| | | | | | | | | |
Collapse
|
32
|
Montironi R, Cheng L, Mazzucchelli R, Santinelli A, Bono A, Lopez-Beltran A. Putative tissue markers in prostate cancer. Urologia 2008. [DOI: 10.1177/039156030807500302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A variety of putative prostate cancer markers have been described in human serum, urine, seminal fluid, and histological specimens. These markers exhibit varying capacities to detect prostate cancer and to predict disease course. In order to be considered markers for diagnosis or prognosis of disease course, and to be brought forward for large-scale clinical evaluation, they should fulfill several criteria. Firstly, there should be a biological or therapeutic rationale for choosing the marker, or at least a consistent association with disease presence, disease characteristics such as stage, or disease aggressiveness. Secondly, there should be an assessment of the strength of marker association with disease outcome. Thirdly, the marker should be assessed as an independent predictor in a multivariate analysis.
Collapse
Affiliation(s)
- R. Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - L. Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R. Mazzucchelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - A. Santinelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - A. Bono
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - A. Lopez-Beltran
- Department of Pathology, University of Cordoba Faculty of Medicine, Cordoba, Spain
| |
Collapse
|
33
|
Yoo SH, Chu SY, Kim KD, Huh YH. Presence of secretogranin II and high-capacity, low-affinity Ca2+ storage role in nucleoplasmic Ca2+ store vesicles. Biochemistry 2007; 46:14663-71. [PMID: 18020452 DOI: 10.1021/bi701339m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chromogranins and secretogranins have traditionally been known as marker proteins of secretory granules that contain the highest concentrations of cellular calcium, reaching approximately 40 mM. In addition, chromogranin B was also shown to exist in the nucleus, localizing in the putative inositol 1,4,5-trisphosphate (IP3)-sensitive nucleoplasmic Ca2+ store vesicles. Chromogranins A (CGA) and B (CGB) are high-capacity, low-affinity Ca2+ binding proteins, binding 30-90 mol of Ca2+/mol with dissociation constants (Kd) of 1.5-4 mM. Yet the Ca2+-binding property of secretogranins has not been studied. Here, we show the localization of secretogranin II (SgII) in the nucleus, more specifically, in the IP3-sensitive nucleoplasmic Ca2+ store vesicles along with CGB and the IP3 receptors. We have also determined the Ca2+-binding property of SgII and found that SgII binds 61 mol of Ca2+/mol (910 nmol Ca2+/mg) with a Kd of 3.0 mM at the intragranular pH 5.5 and 30 mol of Ca2+/mol (440 nmol Ca2+/mg) with a Kd of 2.2 mM at a near-physiological pH 7.5. Chromogranin B also bound 50 mol of Ca2+/mol (670 nmol Ca2+/mg) with a Kd of 3.1 mM at pH 7.5. Given the high-capacity, low-affinity Ca2+-binding property of SgII and its presence in the IP3-sensitive nucleoplasmic Ca2+ store vesicles, these results suggest that SgII may function in the storage and control of Ca2+ in the nucleus through its interaction with CGB in the nucleoplasmic vesicles.
Collapse
Affiliation(s)
- Seung Hyun Yoo
- Department of Biochemistry, Inha University College of Medicine, Jung Gu, Incheon 400-712, Korea.
| | | | | | | |
Collapse
|
34
|
Leja J, Dzojic H, Gustafson E, Oberg K, Giandomenico V, Essand M. A novel chromogranin-A promoter-driven oncolytic adenovirus for midgut carcinoid therapy. Clin Cancer Res 2007; 13:2455-62. [PMID: 17438105 DOI: 10.1158/1078-0432.ccr-06-2532] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The use of replication-selective oncolytic adenoviruses is an emerging therapeutic approach for cancer, which thus far has not been employed for carcinoids. We therefore constructed Ad[CgA-E1A], a novel replication-selective oncolytic adenovirus, where the chromogranin A (CgA) promoter controls expression of the adenoviral E1A gene. EXPERIMENTAL DESIGN The Ad[CgA-E1A] virus was evaluated for E1A protein expression, replication ability, and cytolytic activity in various cell lines. It was also evaluated for treatment of xenografted human carcinoid tumors in nude mice. To use Ad[CgA-E1A] for the treatment of carcinoid liver metastases, it is important that normal hepatocytes do not support virus replication to minimize hepatotoxicity. We therefore evaluated CgA protein expression in normal hepatocytes. We also evaluated CgA gene expression in normal hepatocytes and microdissected tumor cells from carcinoid metastases. RESULTS We found that Ad[CgA-E1A] replicates similarly to wild-type virus in tumor cells with neuroendocrine features, including the BON carcinoid cell line and the SH-SY-5Y neuroblastoma cell lines, whereas it is attenuated in other cell types. Thus, cells where the CgA promoter is active are selectively killed. We also found that Ad[CgA-E1A] is able to suppress fast-growing human BON carcinoid tumors in nude mice. Furthermore, CgA is highly expressed in microdissected cells from carcinoid metastases, whereas it is not expressed in normal hepatocytes. CONCLUSION Ad[CgA-E1A] is an interesting agent for the treatment of carcinoid liver metastases in conjunction with standard therapy for these malignancies.
Collapse
Affiliation(s)
- Justyna Leja
- Division of Clinical Immunology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
35
|
Inomoto C, Umemura S, Egashira N, Minematsu T, Takekoshi S, Itoh Y, Itoh J, Taupenot L, O'Connor DT, Osamura RY. Granulogenesis in Non-neuroendocrine COS-7 Cells Induced by EGFP-tagged Chromogranin A Gene Transfection: Identical and Distinct Distribution of CgA and EGFP. J Histochem Cytochem 2007; 55:487-93. [PMID: 17242462 DOI: 10.1369/jhc.6a7110.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined whether an enhanced green fluorescent protein (EGFP)-tagged chromogranin A (CgA) gene construct could serve as a marker protein to follow the synthesis of CgA and the process of granulogenesis in non-neuroendocrine (NE) cells. We transfected a CgA-EGFP expression vector into non-NE COS-7 cells and investigated the localization of a chimeric CgA-EGFP protein using confocal laser scanning microscopy (CLSM). The fluorescent signal of CgA-EGFP was distributed granularly in the cytoplasm. An immunocytochemical study using anti-CgA antibody with a quantum dot (Qd)525 shows colocalization of fluorescent signal of chimeric CgA-EGFP and CgA-Qd525 signals in granular structures, particularly at the periphery of the cytoplasm. We interpreted granules that were immunoreactive to CgA in electron micrographs as secretory. Spectral analysis of EGFP fluorescence revealed distinct EGFP signals without CgA colocalization. This is the first report to show that a granular structure can be induced by transfecting the EGFP-tagged human CgA gene into non-NE cells. The EGFP-tagged CgA gene could be a useful tool to investigate processes of the regulatory pathway. A more precise analysis of the fluorescence signal of EGFP by combination with the Qd system or by spectral analysis with CLSM can provide insight into biological phenomena.
Collapse
Affiliation(s)
- Chie Inomoto
- Dept of Pathology, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Glattard E, Angelone T, Strub JM, Corti A, Aunis D, Tota B, Metz-Boutigue MH, Goumon Y. Characterization of natural vasostatin-containing peptides in rat heart. FEBS J 2006; 273:3311-21. [PMID: 16857014 DOI: 10.1111/j.1742-4658.2006.05334.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromogranin A (CGA) is a protein that is stored and released together with neurotransmitters and hormones in the nervous, endocrine and diffuse neuroendocrine systems. As human vasostatins I and II [CGA(1-76) and CGA(1-113), respectively] have been reported to affect vessel motility and exert concentration-dependent cardiosuppressive effects on isolated whole heart preparations of eel, frog and rat (i.e. negative inotropism and antiadrenergic activity), we investigated the presence of vasostatin-containing peptides in rat heart. Rat heart extracts were purified by RP-HPLC, and the resulting fractions analyzed for the presence of CGA N-terminal fragments using dot-blot analysis. CGA-immunoreactive fractions were submitted to western blot and MS analysis using the TOF/TOF technique. Four endogenous N-terminal CGA-derived peptides [CGA(4-113), CGA(1-124), CGA(1-135) and CGA(1-199)] containing the vasostatin sequence were characterized. The following post-translational modifications of these fragments were identified: phosphorylation at Ser96, O-glycosylation (trisaccharide, NAcGal-Gal-NeuAc) at Thr126, and oxidation at three methionine residues. This first identification of CGA-derived peptides containing the vasostatin motif in rat heart supports their role in cardiac physiology by an autocrine/paracrine mechanism.
Collapse
Affiliation(s)
- Elise Glattard
- Inserm U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mori M, Takeuchi H, Sato M, Sumitomo S. Antimicrobial Peptides in Saliva and Salivary Glands: Their Roles in the Oral Defense System. ACTA ACUST UNITED AC 2006. [DOI: 10.3353/omp.11.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Masahiko Mori
- Department of Oral and Maxillofacial Surgery, Asahi University School of Dentistry
| | - Hiroshi Takeuchi
- Department of Oral Pathology, Asahi University School of Dentistry
| | - Masaru Sato
- Department of Oral Pathology, Asahi University School of Dentistry
| | - Shinichiro Sumitomo
- Department of Oral and Maxillofacial Surgery, Asahi University School of Dentistry
| |
Collapse
|
38
|
Huh YH, Bahk SJ, Ghee JY, Yoo SH. Subcellular distribution of chromogranins A and B in bovine adrenal chromaffin cells. FEBS Lett 2005; 579:5145-51. [PMID: 16140299 DOI: 10.1016/j.febslet.2005.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/15/2005] [Accepted: 08/16/2005] [Indexed: 11/30/2022]
Abstract
The major secretory granule proteins chromogranins A (CGA) and B (CGB) have recently been shown to play critical roles in inositol 1,4,5-trisphosphate-dependent intracellular Ca(2+) mobilizations. We determined here the subcellular distribution of CGA and CGB based on 3D-images of chromaffin cells, and found that approximately 95% of cellular CGA was present in secretory granules while approximately 5% was in the endoplasmic reticulum (ER), whereas approximately 57% of cellular CGB was in secretory granules while approximately 24% and approximately 19% were in the ER and nucleus, respectively. These results suggest that chromogranins are at the center of intracellular Ca(2+) homeostasis in secretory cells.
Collapse
Affiliation(s)
- Yang Hoon Huh
- National Creative Research Initiative Center for Secretory Granule Research, and Department of Biochemistry, Inha University College of Medicine, Jung Gu, Incheon 400-712, Republic of Korea
| | | | | | | |
Collapse
|
39
|
Boutahricht M, Guillemot J, Montero-Hadjadje M, Bellafqih S, El Ouezzani S, Alaoui A, Yon L, Vaudry H, Anouar Y, Magoul R. Biochemical characterisation and immunohistochemical localisation of the secretogranin II-derived peptide EM66 in the hypothalamus of the jerboa (Jaculus orientalis): modulation by food deprivation. J Neuroendocrinol 2005; 17:372-8. [PMID: 15929742 DOI: 10.1111/j.1365-2826.2005.01314.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The neuroendocrine protein secretogranin II is the precursor of several neuropeptides, including secretoneurin and a novel 66-amino acid peptide, EM66, the sequence of which has been highly conserved across the vertebrae phylum. The presence of EM66 has been detected in the adult and fetal human adrenal gland, as well as the rat pituitary and adrenal glands. The present study aimed to explore a possible neuroendocrine role of EM66 by analysing its occurrence and distribution within the jerboa hypothalamus, and its potential implication in the control of feeding behaviour. High-performance liquid chromatography analysis of jerboa hypothalamic extracts combined with a radioimmunoassay of EM66 revealed a single peak of immunoreactive material exhibiting the same retention time as recombinant EM66. Immunocytochemical labelling showed that EM66-producing neurones are widely distributed in several hypothalamic regions, including the preoptic area, the suprachiasmatic, supraoptic, parvocellular paraventricular and arcuate nuclei, and the lateral hypothalamus. Food deprivation for 5 days induced a significant increase in the number of EM66-containing neurones within the arcuate nucleus (105% increase) and the parvocellular aspect of the paraventricular nucleus (115% increase), suggesting that EM66 could be involved in the control of feeding behaviour and/or the response to stress associated with fasting. Altogether, these data reveal the physiological plasticity of the EM66 system in the hypothalamus and implicate this novel peptide in the regulation of neuroendocrine functions.
Collapse
Affiliation(s)
- M Boutahricht
- Laboratory of Animal Physiology, University Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar-Mehraz, Fès-Atlas, Morocco
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Moreno A, Lobatón CD, Santodomingo J, Vay L, Hernández-SanMiguel E, Rizzuto R, Montero M, Alvarez J. Calcium dynamics in catecholamine-containing secretory vesicles. Cell Calcium 2005; 37:555-64. [PMID: 15862346 DOI: 10.1016/j.ceca.2005.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 02/17/2005] [Accepted: 02/21/2005] [Indexed: 11/19/2022]
Abstract
We have used an aequorin chimera targeted to the membrane of the secretory granules to monitor the free [Ca(2+)] inside them in neurosecretory PC12 cells. More than 95% of the probe was located in a compartment with an homogeneous [Ca(2+)] around 40 microM. Cell stimulation with either ATP, caffeine or high-K(+) depolarization increased cytosolic [Ca(2+)] and decreased secretory granule [Ca(2+)] ([Ca(2+)](SG)). Inositol-(1,4,5)-trisphosphate, cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate were all ineffective to release Ca(2+) from the granules. Changes in cytosolic [Na(+)] (0-140 mM) or [Ca(2+)] (0-10 microM) did not modify either ([Ca(2+)](SG)). Instead, [Ca(2+)](SG) was highly sensitive to changes in the pH gradient between the cytosol and the granules. Both carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) and nigericin, as well as cytosolic acidification, reversibly decreased [Ca(2+)](SG), while cytosolic alcalinization reversibly increased [Ca(2+)](SG). These results are consistent with the operation of a H(+)/Ca(2+) antiporter in the vesicular membrane. This antiporter could also mediate the effects of ATP, caffeine and high-K(+) on [Ca(2+)](SG), because all of them induced a transient cytosolic acidification. The FCCP-induced decrease in [Ca(2+)](SG) was reversible in 10-15 min even in the absence of cytosolic Ca(2+) or ATP, suggesting that most of the calcium content of the vesicles is bound to a slowly exchanging Ca(2+) buffer. This large store buffers [Ca(2+)](SG) changes in the long-term but allows highly dynamic free [Ca(2+)](SG) changes to occur in seconds or minutes.
Collapse
Affiliation(s)
- Alfredo Moreno
- Instituto de Biología y Genética Molecular (IBGM), Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Helle KB. The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects. Biol Rev Camb Philos Soc 2005; 79:769-94. [PMID: 15682870 DOI: 10.1017/s146479310400644x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chromogranins A (CgA) and B (CgB) and secretogranin II (SgII) constitute the main members of a family of uniquely acidic secretory proteins in elements of the diffuse neuroendocrine system. These genetically distinct proteins, CgA, CgB, SgII and the less well known secretogranins III-VII are collectively referred to as 'granins' and characterised by numerous pairs of basic amino acids as potential cleavage sites for processing by the co-stored prohormone converting enzymes PC 1/3 and PC2. This review is directed towards comparative and functional aspects of the granins with emphasis on their phylogenetically conserved sequences. Recent developments provide ample evidence of widely different effects and targets for the intact granins and their derived peptides, intracellularly in the directed trafficking of storage components during granule maturation and extracellularly in autocrine, paracrine and endocrine interactions. Most of the effects assigned to the granin derived peptides fit into patterns of direct or indirect inhibitory modulations of major functions. So far, peptides derived from CgA (vasostatins, chromacin, pancreastatin, WE-14, catestatin and parastatin), CgB (secretolytin) and SgII (secretoneurin) are the most likely candidates for granin-derived regulatory peptides, of postulated relevance not only for homeostatic processes, but also for tissue assembly and repair, inflammatory responses and the first line of defence against invading microorganisms.
Collapse
Affiliation(s)
- Karen B Helle
- Department of Biomedicine, Division of Physiology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
42
|
Yoo SH, You SH, Huh YH. Presence of syntaxin 1A in secretory granules of chromaffin cells and interaction with chromogranins A and B. FEBS Lett 2005; 579:222-8. [PMID: 15620717 DOI: 10.1016/j.febslet.2004.11.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/11/2004] [Accepted: 11/11/2004] [Indexed: 10/26/2022]
Abstract
Syntaxin 1A and synaptotagmin I are key participants of fusion complex formation during exocytotic processes, and syntaxin 1A is known to be present in the plasma membrane. Here, we show the presence of not only synaptotagmin I but also syntaxin 1A in secretory granules of bovine adrenal chromaffin cells by immunogold electron microscopy, and further demonstrate the interaction of these proteins with chromogranins A and B (CGA and CGB), two major proteins of secretory granules. Interaction between chromogranins and the components of fusion complex also suggests active participation of CGA and CGB in fusion complex formation and subsequent exocytosis.
Collapse
Affiliation(s)
- Seung Hyun Yoo
- Department of Biochemistry, National Creative Research Initiative Center for Secretory Granule Research, Inha University College of Medicine, Jung Gu, Incheon 400-712, Republic of Korea.
| | | | | |
Collapse
|
43
|
Ghia JE, Crenner F, Metz-Boutigue MH, Aunis D, Angel F. Effects of a chromogranin-derived peptide (CgA 47-66) in the writhing nociceptive response induced by acetic acid in rats. ACTA ACUST UNITED AC 2005; 119:199-207. [PMID: 15120481 DOI: 10.1016/j.regpep.2004.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 01/16/2004] [Accepted: 02/05/2004] [Indexed: 11/30/2022]
Abstract
Chromogranin A (CgA) is an acidic protein identified within a large variety of endocrine cells. Colocalized with catecholamines in chromaffin cells, CgA is a prohormone precursor of small biologically active peptides. Vasostatin (CgA 1-76) is the most conserved fragment of CgA and chromogranin A 47-66 peptide (CgA 47-66) possesses potent antimicrobial activities. The aim of this study was to test the hypothesis that CgA 47-66 may be involved in mechanisms modulating nociception. Thus, we used acetic acid (AA) which produces a delayed inflammatory response and episodes of abdominal writhing, a marker of pain, when injected intraperitoneally (i.p.) to rats. Administration (i.p.) of CgA 47-66 induced specific opposite dose-dependent effects depending on concentration. That is, CgA 47-66 below 0.5 mg/kg produced antinociceptive effects, whereas at 2 mg/kg it produced a marked pronociceptive effect. The latter effect was blocked by diltiazem and indomethacin. CgA 47-66-induced antinociceptive effects on AA-induced responses were reversed when the corticotropin-releasing factor (CRF) antagonist alpha-helical CRF 9-41 was i.p. injected to animals prior to AA and CgA 47-66 administration. The administration of i.p. calcitonin gene-related peptide (CGRP) or substance P (SP) evoked dose-dependent abdominal writhing; this effect was abolished when CgA 47-66 was injected. The present data suggest, for the first time, that a fragment of CgA, CgA 47-66, possesses potent antinociceptive effects at low doses. Although the mechanism triggered by this peptide is unknown, CRF receptors are likely to be involved.
Collapse
Affiliation(s)
- Jean-Eric Ghia
- INSERM Unit 575, Hôpital Civil Pavillon Poincaré, 1 place de l'Hôpital, 67091 Strasbourg, France
| | | | | | | | | |
Collapse
|
44
|
Bernini GP, Moretti A, Borgioli M, Bardini M, Miccoli P, Berti P, Basolo F, Faviana P, Birindelli R, Salvetti A. Plasma and tissue chromogranin in patients with adrenocortical adenomas. J Endocrinol Invest 2004; 27:821-5. [PMID: 15648545 DOI: 10.1007/bf03346275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adrenal adenomas frequently arise from cortical islets in the medulla, and these islets seem to present a greater risk for pathological growth than cortical cells within the adrenal cortex. Chromogranin A (CgA), a glycoprotein co-stored in secreting granules and co-released with resident hormones of chromaffin cells, behaves as a prohormone, generating several biologically active peptides capable of influencing growth, morphogenesis and progression of endocrine tumors. The aim of our study was to investigate whether chromaffin cells may be involved in the development and growth of adrenocortical adenomas. We enrolled 19 patients (12 females and 7 males, mean+/-SD age 54.9+/-11.2 yr, age range 34-75 yr) with incidental, non-functioning, benign adrenocortical adenomas, and measured circulating levels of CgA, catecholamines and creatinine before and 2 months after surgery. Plasma CgA was evaluated by immunoradiometric assay. Testing for CgA immunoreactivity in the removed tissues was performed by immunohistochemical analysis. Mean plasma CgA did not significantly change following surgery (before 73.7+/-15.2 ng/ml; after 68.9+/-14.8 ng/ml). Individual CgA values indicated that 4 patients had plasma CgA levels above our cut-off of normality. After mass removal, CgA further increased in 2 cases, decreased in 1 and normalized in 1. No variation in CgA levels was found in the other patients. No correlation was observed between CgA and the variables measured, except between CgA and plasma creatinine (r=0.472, p<0.05). Histopathological evaluation revealed adrenocortical adenomas in all cases and immunohistochemical analysis detected no CgA immunoreactivity in any specimen. Our results show that in human adrenocortical adenomas CgA is not expressed and that removal of the mass does not modify plasma CgA levels. For these reasons the endocrine involvement of local CgA in adrenocortical tumorigenesis is unlikely.
Collapse
Affiliation(s)
- G P Bernini
- Department of Internal Medicine, Univeristy of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ghia JE, Crenner F, Metz-Boutigue MH, Aunis D, Angel F. The effect of a chromogranin A-derived peptide (CgA4-16) in the writhing nociceptive response induced by acetic acid in rats. Life Sci 2004; 75:1787-99. [PMID: 15302224 DOI: 10.1016/j.lfs.2004.02.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 02/25/2004] [Indexed: 12/31/2022]
Abstract
The nociceptive effects of i.p administration of a synthetic peptide (CgA4-16) derived from chromogranin A (CgA) were studied on a model of inflammatory (somato-visceral) pain. Inflammatory mediators participate in controlling the activity of enterochromaffin cells that store and release chromogranins. Adult male Wistar rats were injected i.p with diluted acetic acid (AA) to induce abdominal writhes. Pharmacological agents were injected prior to CgA4-16 and/or AA together. While i.p CgA4-16 alone did not produce any effect, the peptide increased the number of abdominal constrictions induced by i.p AA administration in a dose-related manner. To determine the possible mechanisms involved in CgA4-16 produced pronociceptive effect, i.p diltiazem or indomethacin were tested. The pronociceptive effect induced by CgA4-16 was blocked by pretreatment of either substance. I.p administration of CGRP, substance P (SP) or capsaicin evoked dose-related abdominal writhing. CgA4-16, 20 min prior to CGRP or capsaicin, potentiated the nociceptive effects induced by CGRP or capsaicin, but not those induced by SP. Taken together, these data suggest for the first time that a CgA-derived peptide may modulate inflammatory pain.
Collapse
Affiliation(s)
- Jean-Eric Ghia
- INSERM U575, Hôpital Civil Pavillon Poincaré, 1, place de l'Hôpital, 67091 Strasbourg, France
| | | | | | | | | |
Collapse
|
46
|
Choe CU, Harrison KD, Grant W, Ehrlich BE. Functional Coupling of Chromogranin with the Inositol 1,4,5-Trisphosphate Receptor Shapes Calcium Signaling. J Biol Chem 2004; 279:35551-6. [PMID: 15194698 DOI: 10.1074/jbc.m311261200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromogranins A and B are high capacity, low affinity calcium (Ca(2+)) storage proteins that bind to the inositol 1,4,5-trisphosphate-gated receptor (InsP(3) R). Although most commonly associated with secretory granules of neuroendocrine cells, chromogranins have also been found in the lumen of the endoplasmic reticulum (ER) of many cell types. To investigate the functional consequences of the interaction between the InsP(3) R and the chromogranins, we disrupted the interaction between the two proteins by adding a chromogranin fragment, which competed with chromogranin for its binding site on the InsP(3)R. Responses were monitored at the single channel level and in intact cells. When using InsP(3) R type I incorporated into planar lipid bilayers and activated by cytoplasmic InsP(3) and luminal chromogranin, the addition of the fragment reversed the enhancing effect of chromogranin. Moreover, the expression of the fragment in the ER of neuronally differentiated PC12 cells attenuated agonist-induced intracellular Ca(2+) signaling. These results show that the InsP(3)R/chromogranin interaction amplifies Ca(2+) release from the ER and that chromogranin is an essential component of this intracellular channel complex.
Collapse
Affiliation(s)
- Chi-Un Choe
- Department of Pharmacology and Cellular & Molecular Physiology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Carcinoma of the prostate is the second leading cause of male cancer-related death in the United States. Better indicators of prostate cancer presence and progression are needed to avoid unnecessary treatment, predict disease course, and develop more effective therapy. Numerous molecular markers have been described in human serum, urine, seminal fluid, and histological specimens that exhibit varying capacities to detect prostate cancer and predict disease course. However, to date, few of these markers have been adequately validated for clinical use. The purpose of this review is to examine the current status of these markers in prostate cancer and to assess the diagnostic potential for future markers from identified genes and molecules that display loss, mutation, or alteration in expression between tumor and normal prostate tissues. In this review we cite 91 molecular markers that display some level of correlation with prostate cancer presence, disease progression, cancer recurrence, prediction of response to therapy, and/or disease-free survival. We suggest criteria to consider when selecting a marker for further development as a clinical tool and discuss five examples of markers (chromogranin A, glutathione S-transferase pi 1, prostate stem cell antigen, prostate-specific membrane antigen, and telomerase reverse transcriptase) that fulfill some of these criteria. Finally, we discuss how to conduct evaluations of candidate prostate cancer markers and some of the issues involved in the validation process.
Collapse
Affiliation(s)
- James V Tricoli
- Diagnostics Research Branch, Cancer Diagnosis Program, National Cancer Institute, Rockville, Maryland, USA.
| | | | | |
Collapse
|
48
|
Goumon Y, Angelone T, Schoentgen F, Chasserot-Golaz S, Almas B, Fukami MM, Langley K, Welters ID, Tota B, Aunis D, Metz-Boutigue MH. The Hippocampal Cholinergic Neurostimulating Peptide, the N-terminal Fragment of the Secreted Phosphatidylethanolamine-binding Protein, Possesses a New Biological Activity on Cardiac Physiology. J Biol Chem 2004; 279:13054-64. [PMID: 14724289 DOI: 10.1074/jbc.m308533200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylethanolamine-binding protein (PEBP), alternatively named Raf-1 kinase inhibitor protein, is the precursor of the hippocampal cholinergic neurostimulating peptide (HCNP) corresponding to its natural N-terminal fragment, previously described to be released by hippocampal neurons. PEBP is a soluble cytoplasmic protein, also associated with plasma and reticulum membranes of numerous cell types. In the present report, using biochemistry and cell biology techniques, we report for the first time the presence of PEBP in bovine chromaffin cell, a well described secretion model. We have examined its presence at the subcellular level and characterized this protein on both secretory granule membranes and intragranular matrix. In addition, its presence in bovine chromaffin cell and platelet exocytotic medium, as well as in serum, was reported showing that it is secreted. Like many other proteins that lack signal sequence, PEBP may be secreted through non-classic signal secretory mechanisms, which could be due to interactions with granule membrane lipids and lipid rafts. By two-dimensional liquid chromatography-tandem mass spectrometry, HCNP was detected among the intragranular matrix components. The observation that PEBP and HCNP were secreted with catecholamines into the circulation prompted us to investigate endocrine effects of this peptide on cardiovascular system. By using as bioassay an isolated and perfused frog (Rana esculenta) heart preparation, we show here that HCNP acts on the cardiac mechanical performance exerting a negative inotropism and counteracting the adrenergic stimulation of isoproterenol. All together, these data suggest that PEBP and HCNP might be considered as new endocrine factors involved in cardiac physiology.
Collapse
Affiliation(s)
- Yannick Goumon
- INSERM Unité 575, Physiopathologie du Système Nerveux, IFR 37, 67084 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Metz-Boutigue MH, Kieffer AE, Goumon Y, Aunis D. Innate immunity: involvement of new neuropeptides. Trends Microbiol 2004; 11:585-92. [PMID: 14659691 DOI: 10.1016/j.tim.2003.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Secretory granules of chromaffin cells from the adrenal medulla store catecholamines and a variety of peptides that are secreted in the extracellular medium during exocytosis. Among these fragments, several natural peptides displaying antimicrobial activities at the micromolar range have been isolated and characterized. We have shown that these peptides, derived from the natural processing of chromogranins (CGs), proenkephalin-A (PEA) and free ubiquitin (Ub), are released into the circulation and display antibacterial and antifungal activities. In this review we focus on three naturally secreted antimicrobial peptides corresponding to CGA1-76 (vasostatin-I), the bisphosphorylated form of PEA209-237 (enkelytin) and Ub. In addition, the antimicrobial properties of the synthetic active domains of vasostatin-I (CGA47-66 or chromofungin) and Ub (Ub65-76 or ubifungin) are reported.
Collapse
Affiliation(s)
- M H Metz-Boutigue
- Unité Inserm U 575 "Physiopathologie du Système Nerveux", IFR 37, 5 rue Blaise Pascal, 67084 Cedex, Strasbourg, France.
| | | | | | | |
Collapse
|
50
|
Ferrero E, Scabini S, Magni E, Foglieni C, Belloni D, Colombo B, Curnis F, Villa A, Ferrero ME, Corti A. Chromogranin A protects vessels against tumor necrosis factor alpha-induced vascular leakage. FASEB J 2004; 18:554-6. [PMID: 14734634 DOI: 10.1096/fj.03-0922fje] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Elevated levels of circulating chromogranin A (CgA), a protein stored in the secretory granules of many neuroendocrine cells and neurons, have been detected in the blood of patients with neuroendocrine tumors or heart failure. The pathophysiological role of increased secretion of CgA is unknown. Using mice bearing subcutaneous tumors genetically engineered to secrete CgA in circulation, we have found that increased blood levels of this protein prevent vascular leakage induced by tumor necrosis factor-alpha (TNF) in the liver venous system. Structure-activity studies, carried out with CgA fragments administered to normal mice, showed that an active site is located within residues 7-57 of CgA. Accordingly, an anti-CgA antibody directed to residues 53-57 inhibited the effect of circulating CgA, either endogenously produced or exogenously administered, on liver vessels. Studies of the mechanism of action showed that CgA inhibits TNF-induced VE-cadherin down-regulation and barrier alteration of cultured endothelial cells, in an indirect manner. Other effectors, such as thrombin and vascular endothelial growth factor were partially inhibited by CgA N-terminal fragments in in vitro permeability assays. These findings suggest that circulating CgA could help regulate the endothelial barrier function and to protect vessels against TNF-induced plasma leakage in pathological conditions characterized by increased production of TNF and CgA, such as cancer or heart failure.
Collapse
Affiliation(s)
- Elisabetta Ferrero
- Department Biological and Technological Research (DIBIT), San Raffaele H Scientific Institute, Via Olgettina 60, 20132 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|