1
|
Padhy I, Sharma T, Banerjee B, Mohapatra S, Sahoo CR, Padhy RN. Structure based exploration of mitochondrial alpha carbonic anhydrase inhibitors as potential leads for anti-obesity drug development. Daru 2024:10.1007/s40199-024-00535-w. [PMID: 39276204 DOI: 10.1007/s40199-024-00535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/11/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Obesity has emerged as a major health challenge globally in the last two decades. Dysregulated fatty acid metabolism and de novo lipogenesis are prime causes for obesity development which ultimately trigger other co-morbid pathological conditions thereby risking life longevity. Fatty acid metabolism and de novo lipogenesis involve several biochemical steps both in cytosol and mitochondria. Reportedly, the high catalytically active mitochondrial carbonic anhydrases (CAVA/CAVB) regulate the intercellular depot of bicarbonate ions and catalyze the rapid carboxylation of pyruvate and acetyl-co-A to acetyl-co-A and malonate respectively, which are the precursors of fatty acid synthesis and lipogenesis. Several in vitro and in vivo investigations indicate inhibition of mitochondrial carbonic anhydrase isoforms interfere in the functioning of pyruvate, fatty acid and succinate pathways. Targeting of mitochondrial carbonic anhydrase isoforms (CAVA/CAVB) could thereby modulate gluconeogenetic as well as lipogenetic pathways and pave way for designing of novel leads in the development pipeline of anti-obesity medications. METHODS The present review unveils a diverse chemical space including synthetic sulphonamides, sulphamates, sulfamides and many natural bioactive molecules which selectively inhibit the mitochondrial isoform CAVA/CAVB with an emphasis on major state-of-art drug design strategies. RESULTS More than 60% similarity in the structural framework of the carbonic anhydrase isoforms has converged the drug design methods towards the development of isoform selective chemotypes. While the benzene sulphonamide derivatives selectively inhibit CAVA/CAVB in low nanomolar ranges depending on the substitutions on the phenyl ring, the sulpamates and sulpamides potently inhibit CAVB. The virtual screening and drug repurposing methods have also explored many non-sulphonamide chemical scaffolds which can potently inhibit CAVA. CONCLUSION The review could pave way for the development of novel and effective anti-obesity drugs which can modulate the energy metabolism.
Collapse
Affiliation(s)
- Ipsa Padhy
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Tripti Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
- School of Pharmaceutical Sciences and Research, Chhatrapati Shivaji Maharaj University, Panvel, Navi Mumbai, Maharashtra, 410221, India.
| | - Biswajit Banerjee
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Sujata Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Chita R Sahoo
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Bhubaneswar, India
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
2
|
Denner TC, Heise NV, Al-Harrasi A, Csuk R. Synthesis and Enzymatic Evaluation of a Small Library of Substituted Phenylsulfonamido-Alkyl Sulfamates towards Carbonic Anhydrase II. Molecules 2024; 29:3015. [PMID: 38998967 PMCID: PMC11243685 DOI: 10.3390/molecules29133015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
A small library of 79 substituted phenylsulfonamidoalkyl sulfamates, 1b-79b, was synthesized starting from arylsulfonyl chlorides and amino alcohols with different numbers of methylene groups between the hydroxyl and amino moieties yielding intermediates 1a-79a, followed by the reaction of the latter with sulfamoyl chloride. All compounds were screened for their inhibitory activity on bovine carbonic anhydrase II. Compounds 1a-79a showed no inhibition of the enzyme, in contrast to sulfamates 1b-79b. Thus, the inhibitory potential of compounds 1b-79b towards this enzyme depends on the substituent and the substitution pattern of the phenyl group as well as the length of the spacer. Bulkier substituents in the para position proved to be better for inhibiting CAII than compounds with the same substituent in the meta or ortho position. For many substitution patterns, compounds with shorter spacer lengths were superior to those with long chain spacers. Compounds with shorter spacer lengths performed better than those with longer chain spacers for a variety of substitution patterns. The most active compound held inhibition constant as low as Ki = 0.67 μM (for 49b) and a tert-butyl substituent in para position and acted as a competitive inhibitor of the enzyme.
Collapse
Affiliation(s)
- Toni C. Denner
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany (N.V.H.)
| | - Niels V. Heise
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany (N.V.H.)
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany (N.V.H.)
| |
Collapse
|
3
|
Berkowitz E, Falik Zaccai TC, Irge D, Gur I, Tiosano B, Kesler A. A genetic survey of patients with familial idiopathic intracranial hypertension residing in a Middle Eastern village: genetic association study. Eur J Med Res 2024; 29:194. [PMID: 38528581 DOI: 10.1186/s40001-024-01800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/18/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The aim of this study was to determine whether genetic variants are associated with idiopathic intracranial hypertension (IIH) in a unique village where many of the IIH patients have familial ties, a homogenous population and a high prevalence of consanguinity. Several autosomal recessive disorders are common in this village and its population is considered at a high risk for genetic disorders. METHODS The samples were genotyped by the Ilumina OmniExpress-24 Kit, and analyzed by the Eagle V2.4 and DASH software package to cluster haplotypes shared between our cohort. Subsequently, we searched for specific haplotypes that were significantly associated with the patient groups. RESULTS Fourteen patients and 30 controls were included. Samples from 22 female participants (11 patients and 11 controls) were evaluated for haplotype clustering and genome-wide association studies (GWAS). A total of 710,000 single nucleotide polymorphisms (SNPs) were evaluated. Candidate areas positively associated with IIH included genes located on chromosomes 16, 8 (including the CA5A and BANP genes, p < 0.01), and negatively associated with genes located on chromosomes 1 and 6 (including PBX1, LMX1A, ESR1 genes, p < 0.01). CONCLUSIONS We discovered new loci possibly associated with IIH by employing a GWAS technique to estimate the associations with haplotypes instead of specific SNPs. This method can in all probability be used in cases where there is a limited amount of samples but strong familial connections. Several loci were identified that might be strong candidates for follow-up studies in other well-phenotypes cohorts.
Collapse
Affiliation(s)
- Eran Berkowitz
- Department of Ophthalmology, Hillel Yaffe Medical Center, 1 Ha-Shalom Street, 38100, Hadera, Israel.
- The Adelson School of Medicine, Ariel University, Ariel, Israel.
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| | | | - Dana Irge
- Genetic Institue, Meir Medical center, Kfar Saba, Israel
| | - Inbar Gur
- Department of Ophthalmology, Hillel Yaffe Medical Center, 1 Ha-Shalom Street, 38100, Hadera, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hillel Yaffe Medical Center, 1 Ha-Shalom Street, 38100, Hadera, Israel
| | - Anat Kesler
- Department of Ophthalmology, Hillel Yaffe Medical Center, 1 Ha-Shalom Street, 38100, Hadera, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
4
|
Pearl NZ, Babin CP, Catalano NT, Blake JC, Ahmadzadeh S, Shekoohi S, Kaye AD. Narrative Review of Topiramate: Clinical Uses and Pharmacological Considerations. Adv Ther 2023; 40:3626-3638. [PMID: 37368102 DOI: 10.1007/s12325-023-02586-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Due to the diverse mechanisms of action of antiseizure drugs, there has been a rise in prescriptions of these drugs for non-epileptic pathologies. One drug that is now being used for a variety of conditions is topiramate. This is a narrative review that used PubMed, Google Scholar, MEDLINE, and ScienceDirect to review literature on the clinical and pharmacologic properties of topiramate. Topiramate is a commonly prescribed second-generation antiseizure drug. The drug works through multiple pathways to prevent seizures. In this regard, topiramate blocks sodium and calcium voltage-gated channels, inhibits glutamate receptors, enhances gamma-aminobutyric acid (GABA) receptors, and inhibits carbonic anhydrase. Topiramate is approved by the Food and Drug Administration (FDA) for epilepsy treatment and migraine prophylaxis. Topiramate in combination with phentermine is also FDA-approved for weight loss in patients with a body mass index (BMI) > 30. The current target dosing for topiramate monotherapy is 400 mg/day and 100 mg/day to treat epilepsy and migraines, respectively. Commonly reported side effects include paresthesia, confusion, fatigue, dizziness, and change in taste. More uncommon and serious adverse effects can include acute glaucoma, metabolic acidosis, nephrolithiasis, hepatotoxicity, and teratogenicity. Related to a broad side effect profile, physicians prescribing this drug should routinely monitor for side effects and/or toxicity. The present investigation reviews various anti-seizure medications before summarizing indications of topiramate, off-label uses, pharmacodynamics, pharmacokinetics, adverse effects, and drug-drug interactions.
Collapse
Affiliation(s)
- Nathan Z Pearl
- School of Medicine, LSU Health Sciences Center New Orleans, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Caroline P Babin
- School of Medicine, LSU Health Sciences Center New Orleans, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Nicole T Catalano
- School of Medicine, LSU Health Sciences Center New Orleans, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - James C Blake
- School of Medicine, LSU Health Sciences Center New Orleans, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| |
Collapse
|
5
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
6
|
Aspatwar A, Supuran CT, Waheed A, Sly WS, Parkkila S. Mitochondrial carbonic anhydrase VA and VB: properties and roles in health and disease. J Physiol 2023; 601:257-274. [PMID: 36464834 PMCID: PMC10107955 DOI: 10.1113/jp283579] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Carbonic anhydrase V (CA V), a mitochondrial enzyme, was first isolated from guinea-pig liver and subsequently identified in mice and humans. Later, studies revealed that the mouse genome contains two mitochondrial CA sequences, named Car5A and Car5B. The CA VA enzyme is most highly expressed in the liver, whereas CA VB shows a broad tissue distribution. Car5A knockout mice demonstrated a predominant role for CA VA in ammonia detoxification, whereas the roles of CA VB in ureagenesis and gluconeogenesis were evident only in the absence of CA VA. Previous studies have suggested that CA VA is mainly involved in the provision of HCO3 - for biosynthetic processes. In children, mutations in the CA5A gene led to reduced CA activity, and the enzyme was sensitive to increased temperature. The metabolic profiles of these children showed a reduced supply of HCO3 - to the enzymes that take part in intermediary metabolism: carbamoylphosphate synthetase, pyruvate carboxylase, propionyl-CoA carboxylase and 3-methylcrotonyl-CoA carboxylase. Although the role of CA VB is still poorly understood, a recent study reported that it plays an essential role in human Sertoli cells, which sustain spermatogenesis. Metabolic disease associated with CA VA appears to be more common than other inborn errors of metabolism and responds well to treatment with N-carbamyl-l-glutamate. Therefore, early identification of hyperammonaemia will allow specific treatment with N-carbamyl-l-glutamate and prevent neurological sequelae. Carbonic anhydrase VA deficiency should therefore be considered a treatable condition in the differential diagnosis of hyperammonaemia in neonates and young children.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and Tampere University Hospital, Tampere, Finland
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St Louis, MO, USA
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
7
|
Abstract
The mitochondrial isoforms VA/VB of metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) are involved in metabolic processes, such as de novo lipogenesis and fatty acid biosynthesis. We review the drug design landscape for obtaining CA VA/VB-selective/effective inhibitors, starting from the clinical observations that CA inhibitory drugs, such as the antiepileptics topiramate and zonisamide, or the diuretic acetazolamide induce a significant weight loss. The main approaches for designing such compounds consisted in drug repurposing of already known CA inhibitors (CAIs); screening of synthetic/natural products libraries both in the classical and virtual modes, and de novo drug design using the tail approach. A number of such studies allowed the identification of lead compounds diverse from sulphonamides, such as tropolones, phenols, polyphenols, flavones, glycosides, fludarabine, lenvatinib, rufinamide, etc., for which the binding mode to the enzyme is not always well understood. Classical drug design studies of sulphonamides, sulfamates and sulfamides afforded low nanomolar mitochondrial CA-selective inhibitors, but detailed antiobesity studies were poorly performed with most of them. A breakthrough in the field may be constituted by the design of hybrids incorporating CAIs and other antiobesity chemotypes.
Collapse
Affiliation(s)
- Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
8
|
Weerasooriya HN, DiMario RJ, Rosati VC, Rai AK, LaPlace LM, Filloon VD, Longstreth DJ, Moroney JV. Arabidopsis plastid carbonic anhydrase βCA5 is important for normal plant growth. PLANT PHYSIOLOGY 2022; 190:2173-2186. [PMID: 36149291 PMCID: PMC9706431 DOI: 10.1093/plphys/kiac451] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/07/2022] [Indexed: 05/19/2023]
Abstract
Carbonic anhydrases (CAs) are zinc-metalloenzymes that catalyze the interconversion of CO2 and HCO3-. In heterotrophic organisms, CAs provide HCO3- for metabolic pathways requiring a carboxylation step. Arabidopsis (Arabidopsis thaliana) has 14 α- and β-type CAs, two of which are plastid CAs designated as βCA1 and βCA5. To study their physiological properties, we obtained knock-out (KO) lines for βCA1 (SALK_106570) and βCA5 (SALK_121932). These mutant lines were confirmed by genomic PCR, RT-PCR, and immunoblotting. While βca1 KO plants grew normally, growth of βca5 KO plants was stunted under ambient CO2 conditions of 400 µL L-1; high CO2 conditions (30,000 µL L-1) partially rescued their growth. These results were surprising, as βCA1 is more abundant than βCA5 in leaves. However, tissue expression patterns of these genes indicated that βCA1 is expressed only in shoot tissue, while βCA5 is expressed throughout the plant. We hypothesize that βCA5 compensates for loss of βCA1 but, owing to its expression being limited to leaves, βCA1 cannot compensate for loss of βCA5. We also demonstrate that βCA5 supplies HCO3- required for anaplerotic pathways that take place in plastids, such as fatty acid biosynthesis.
Collapse
Affiliation(s)
- Hiruni N Weerasooriya
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Robert J DiMario
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - Viviana C Rosati
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, York YO10 5DD, UK
| | - Ashwani K Rai
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Lillian M LaPlace
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Victoria D Filloon
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - David J Longstreth
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
9
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|
10
|
Ghazi AR, Sucipto K, Rahnavard A, Franzosa EA, McIver LJ, Lloyd-Price J, Schwager E, Weingart G, Moon YS, Morgan XC, Waldron L, Huttenhower C. High-sensitivity pattern discovery in large, paired multiomic datasets. Bioinformatics 2022; 38:i378-i385. [PMID: 35758795 PMCID: PMC9235493 DOI: 10.1093/bioinformatics/btac232] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Modern biological screens yield enormous numbers of measurements, and identifying and interpreting statistically significant associations among features are essential. In experiments featuring multiple high-dimensional datasets collected from the same set of samples, it is useful to identify groups of associated features between the datasets in a way that provides high statistical power and false discovery rate (FDR) control. RESULTS Here, we present a novel hierarchical framework, HAllA (Hierarchical All-against-All association testing), for structured association discovery between paired high-dimensional datasets. HAllA efficiently integrates hierarchical hypothesis testing with FDR correction to reveal significant linear and non-linear block-wise relationships among continuous and/or categorical data. We optimized and evaluated HAllA using heterogeneous synthetic datasets of known association structure, where HAllA outperformed all-against-all and other block-testing approaches across a range of common similarity measures. We then applied HAllA to a series of real-world multiomics datasets, revealing new associations between gene expression and host immune activity, the microbiome and host transcriptome, metabolomic profiling and human health phenotypes. AVAILABILITY AND IMPLEMENTATION An open-source implementation of HAllA is freely available at http://huttenhower.sph.harvard.edu/halla along with documentation, demo datasets and a user group. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrew R Ghazi
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kathleen Sucipto
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ali Rahnavard
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric A Franzosa
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lauren J McIver
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jason Lloyd-Price
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emma Schwager
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - George Weingart
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yo Sup Moon
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xochitl C Morgan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Levi Waldron
- Department of Epidemiology and Biostatistics, City University of New York Graduate School of Public Health and Health Policy, New York City, NY 10035, USA
| | - Curtis Huttenhower
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
11
|
Aspatwar A, Tolvanen MEE, Barker H, Syrjänen L, Valanne S, Purmonen S, Waheed A, Sly WS, Parkkila S. Carbonic Anhydrases in Metazoan Model Organisms: Molecules, Mechanisms, and Physiology. Physiol Rev 2022; 102:1327-1383. [PMID: 35166161 DOI: 10.1152/physrev.00018.2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the past three decades, mice, zebrafish, fruit flies, and Caenorhabditis elegans have been the primary model organisms used for the study of various biological phenomena. These models have also been adopted and developed to investigate the physiological roles of carbonic anhydrases (CAs) and carbonic anhydrase-related proteins (CARPs). These proteins belong to eight CA families and are identified by Greek letters: α, β, γ, δ, ζ, η, θ, and ι. Studies using model organisms have focused on two CA families, α-CAs and β-CAs, which are expressed in both prokaryotic and eukaryotic organisms with species-specific distribution patterns and unique functions. This review covers the biological roles of CAs and CARPs in light of investigations performed in model organisms. Functional studies demonstrate that CAs are not only linked to the regulation of pH homeostasis, the classical role of CAs but also contribute to a plethora of previously undescribed functions.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Leo Syrjänen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Otorhinolaryngology, Tampere University Hospital, Tampere, Finland
| | - Susanna Valanne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Purmonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
12
|
Yamamoto H, Uramaru N, Kawashima A, Higuchi T. Carbonic anhydrase 3 increases during liver adipogenesis even in pre-obesity, and its inhibitors reduce liver adipose accumulation. FEBS Open Bio 2022; 12:827-834. [PMID: 35108454 PMCID: PMC8972057 DOI: 10.1002/2211-5463.13376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/14/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
The abnormal lipid metabolism in the liver that occurs after high caloric intake is the main cause of nonalcoholic fatty liver disease (NAFLD). Differences between samples from healthy livers and livers from individuals with NAFLD indicate that changes in liver function occur during disease progression. Here, we examined changes in protein expression in a fatty liver model in the early stages of obesity to identify potential alterations in function. The proteins expressed in the liver tissue of pre‐obese rats were separated via SDS/PAGE and stained with Coomassie brilliant blue‐G250. Peptide mass fingerprinting indicated an increase in the expression of carbonic anhydrase 3 (CA3) relative to controls. Western blotting analysis confirmed the increase in CA3 expression, even in an early fat‐accumulation state in which excessive weight gain had not yet occurred. In human hepatoma HepG2 cells, fat accumulation induced with oleic acid also resulted in increased CA3 expression. When the cells were in a state of fat accumulation, treating them with the CA3 inhibitors acetazolamide (ACTZ) or 6‐ethoxyzolamide (ETZ) suppressed fat accumulation, but only ETZ somewhat reduced the fat‐induced upregulation of CA3 expression. Expression of CA3 was therefore upregulated in response to the consumption of a high‐fat diet, even in the absence of an increase in body weight. The suppression of CA3 activity by ACTZ or ETZ reduced fat accumulation in hepatocytes, suggesting that CA3 is involved in the development of fatty liver.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Department of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Naoto Uramaru
- Department of Health Biosciences, Nihon Pharmaceutical University, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Azusa Kawashima
- Department of Health Biosciences, Nihon Pharmaceutical University, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Toshiyuki Higuchi
- Department of Health Biosciences, Nihon Pharmaceutical University, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| |
Collapse
|
13
|
Srivastava RAK, Hurley TR, Oniciu D, Adeli K, Newton RS. Discovery of analogues of non-β oxidizable long-chain dicarboxylic fatty acids as dual inhibitors of fatty acids and cholesterol synthesis: Efficacy of lead compound in hyperlipidemic hamsters reveals novel mechanism. Nutr Metab Cardiovasc Dis 2021; 31:2490-2506. [PMID: 34172319 DOI: 10.1016/j.numecd.2021.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Cholesterol and triglycerides are risk factors for developing cardiovascular disease. Therefore, appropriate cells and assays are required to discover and develop dual cholesterol and fatty acid inhibitors. A predictive hyperlipidemic animal model is needed to evaluate mechanism of action of lead molecule for therapeutic indications. METHODS AND RESULTS Primary hepatocytes from rat, hamster, rabbit, and humans were compared for suitability to screen compounds by de novo lipogenesis (DNL) using14C-acetate. Hyperlipidemic hamsters were used to evaluate efficacy and mode of action. In rat hepatocytes DNL assay, both the central moiety and carbon chain length influenced the potency of lipogenesis inhibition. In hyperlipidemic hamsters, ETC-1002 decreased plasma cholesterol and triglycerides by 41% and 49% at the 30 mg/kg dose. Concomitant decreases in non-esterified fatty acids (-34%) and increases in ketone bodies (20%) were associated with induction of hepatic CPT1-α. Reductions in proatherogenic VLDL-C and LDL-C (-71% and -64%) occurred partly through down-regulation of DGAT2 and up-regulation of LPL and PDK4. Activation of PLIN1 and PDK4 dampened adipogenesis and showed inverse correlation with adipose mass. Hepatic concentrations of cholesteryl ester and TG decreased by 67% and 64%, respectively. Body weight decreased with concomitant decreases in epididymal fat. Plasma and liver concentrations of ETC-1002 agreed with the observed dose-response efficacy. CONCLUSIONS Taken together, ETC-1002 reduced proatherogenic lipoproteins, hepatic lipids and adipose tissues in hyperlipidemic hamsters via induction of LPL, CPT1-α, PDK4, and PLIN1, and downregulation of DGAT2. These characteristics may be useful in the treatment of fatty livers that causes non-alcoholic steatohepatitis.
Collapse
|
14
|
Liu D, Wong CC, Zhou Y, Li C, Chen H, Ji F, Go MYY, Wang F, Su H, Wei H, Cai Z, Wong N, Wong VWS, Yu J. Squalene Epoxidase Induces Nonalcoholic Steatohepatitis Via Binding to Carbonic Anhydrase III and is a Therapeutic Target. Gastroenterology 2021; 160:2467-2482.e3. [PMID: 33647280 DOI: 10.1053/j.gastro.2021.02.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUNDS & AIMS Squalene epoxidase (SQLE) is the rate-limiting enzyme for cholesterol biosynthesis. We elucidated the functional significance, molecular mechanisms, and clinical impact of SQLE in nonalcoholic steatohepatitis (NASH). METHODS We performed studies with hepatocyte-specific Sqle overexpression transgenic (Sqle tg) mice and mice given high-fat high-cholesterol (HFHC) or methionine- and choline-deficient (MCD) diet to induce NASH. SQLE downstream target carbonic anhydrase III (CA3) was identified using co-immunoprecipitation and Western Blot. Some mice were given SQLE inhibitor (terbinafine) and CA3 inhibitor (acetazolamide) to study the therapeutic effects in NASH. Human samples (N = 217) including 65 steatoses, 80 NASH, and 72 healthy controls were analyzed for SQLE levels in liver tissue and in serum. RESULTS SQLE is highly up-regulated in human NASH and mouse models of NASH. Sqle tg mice triggered spontaneous insulin resistance, hepatic steatosis, liver injury, and accelerated HFHC or MCD diet-induced NASH development. Mechanistically, SQLE tg mice caused hepatic cholesterol accumulation, thereby triggering proinflammatory nuclear factor-κB signaling and steatohepatitis. SQLE directly bound to CA3, which induced sterol regulatory element-binding protein 1C activation, acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase1 expression and de novo hepatic lipogenesis. Combined targeting SQLE (terbinafine) and CA3 (acetazolamide) synergistically ameliorated NASH in mice with superior efficacy to either drug alone. Serum SQLE with CA3 could distinguish patients with NASH from steatosis and healthy controls (area under the receiver operating characteristic curve, 0.815; 95% confidence interval, 0.758-0.871). CONCLUSIONS SQLE drives the initiation and progression of NASH through inducing cholesterol biosynthesis, and SQLE/CA3 axis-mediated lipogenesis. Combined targeting of SQLE and CA3 confers therapeutic benefit in NASH. Serum SQLE and CA3 are novel biomarkers for the noninvasive diagnosis of patients with NASH.
Collapse
Affiliation(s)
- Dabin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Yunfei Zhou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Chuangen Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Fenfen Ji
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Minnie Y Y Go
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Feixue Wang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Su
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Wei
- Department of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Nathalie Wong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent W S Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
From Homology Modeling to the Hit Identification and Drug Repurposing: A Structure-Based Approach in the Discovery of Novel Potential Anti-Obesity Compounds. Methods Mol Biol 2021; 2266:263-277. [PMID: 33759132 DOI: 10.1007/978-1-0716-1209-5_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although science and technology have progressed rapidly, de novo drug development has been a costly and time-consuming process over the past decades. In this scenario, drug repurposing has appeared as an alternative tool to accelerate the drug development process. Herein, we applied such an approach to the highly popular human Carbonic Anhydrase (hCA) VA drug target, that is involved in ureagenesis, gluconeogenesis, lipogenesis, and in the metabolism regulation. Albeit several hCA inhibitors have been designed and are currently in clinical use, serious drug interactions have been reported due to their poor selectivity. In this perspective, the drug repurposing approach could be a useful tool for investigating the drug promiscuity/polypharmacology profile. In this chapter, we describe a combination of virtual screening techniques and in vitro assays aimed to identify novel selective hCA VA inhibitors and to repurpose drugs known for other clinical indications.
Collapse
|
16
|
Shen J, Tomar JS. Elevated Brain Glutamate Levels in Bipolar Disorder and Pyruvate Carboxylase-Mediated Anaplerosis. Front Psychiatry 2021; 12:640977. [PMID: 33708149 PMCID: PMC7940766 DOI: 10.3389/fpsyt.2021.640977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
In vivo 1H magnetic resonance spectroscopy studies have found elevated brain glutamate or glutamate + glutamine levels in bipolar disorder with surprisingly high reproducibility. We propose that the elevated glutamate levels in bipolar disorder can be explained by increased pyruvate carboxylase-mediated anaplerosis in brain. Multiple independent lines of evidence supporting increased pyruvate carboxylase-mediated anaplerosis as a common mechanism underlying glutamatergic hyperactivity in bipolar disorder and the positive association between bipolar disorder and obesity are also described.
Collapse
Affiliation(s)
- Jun Shen
- Section on Magnetic Resonance Spectroscopy, Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, United States
| | - Jyoti Singh Tomar
- Section on Magnetic Resonance Spectroscopy, Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020; 40:2485-2565. [PMID: 32691504 DOI: 10.1002/med.21713] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widely distributed metalloenzymes in both prokaryotes and eukaryotes. They efficiently catalyze the reversible hydration of carbon dioxide to bicarbonate and H+ ions and play a crucial role in regulating many physiological processes. CAs are well-studied drug target for various disorders such as glaucoma, epilepsy, sleep apnea, and high altitude sickness. In the past decades, a large category of diverse families of CA inhibitors (CAIs) have been developed and many of them showed effective inhibition toward specific isoforms, and effectiveness in pathological conditions in preclinical and clinical settings. The discovery of isoform-selective CAIs in the last decade led to diminished side effects associated with off-target isoforms inhibition. The many new classes of such compounds will be discussed in the review, together with strategies for their development. Pharmacological advances of the newly emerged CAIs in diseases not usually associated with CA inhibition (neuropathic pain, arthritis, cerebral ischemia, and cancer) will also be discussed.
Collapse
Affiliation(s)
- Chandra B Mishra
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.,Department of Pharmaceutical Chemistry, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Manisha Tiwari
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
18
|
Han X, Yang S, Kam WR, Sullivan DA, Liu Y. The Carbonic Anhydrase Inhibitor Dorzolamide Stimulates the Differentiation of Human Meibomian Gland Epithelial Cells. Curr Eye Res 2020; 45:1604-1610. [PMID: 32434386 DOI: 10.1080/02713683.2020.1772832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Clinical studies have indicated that the long-term use of topical antiglaucoma drugs, such as carbonic anhydrase inhibitors (CAIs), may lead to meibomian gland dysfunction (MGD). We hypothesize that these adverse effects involve a direct influence on human MG epithelial cells (HMGECs). The purpose our present investigation was to test our hypothesis and determine whether exposure to dorzolamide, a CAI, impacts the proliferation, intracellular signaling and differentiation of HMGECs. MATERIALS AND METHODS We cultured immortalized (i) HMGECs with vehicle or various concentrations of dorzolamide for 6 days. Cells were enumerated with a hemocytometer, and examined for their morphology, Akt signaling activity, accumulation of neutral lipids, phospholipids and lysosomes, and the expression of protein biomarkers for lipogenesis regulation, lysosomes and autophagosomes. RESULTS Our results show that a high, 500 µg/ml concentration of dorzolamide causes a significant decrease in Akt signaling and the proliferation of iHMGECs. However, the high dose of dorzolamide also promotes the differentiation of iHMGECs. This response features increases in the number of lysosomes, the accumulation of phospholipids, and the expression of the light chain 3A biomarker for autophagosomes. In contrast, the therapeutic amount (50 µg/ml) of dorzolamide has no impact on the proliferative or differentiative abilities of iHMGECs. CONCLUSIONS Our results support our hypothesis and demonstrate that the CAI dorzolamide does exert a direct influence on the proliferation and differentiation of iHMGECs. However, this effect is elicited only by a high, and not a therapeutic, amount of dorzolamide. Abbreviations: AKT: phosphoinositide 3-kinase-protein kinase B; BPE: bovine pituitary extract; CAD: cationic amphiphilic drug; DED: dry eye disease; DMEM/F12: 1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F-12; EGF: epidermal growth factor; FBS: fetal bovine serum; iHMGECs: immortalized human meibomian gland epithelial cells; KSFM: keratinocyte serum-free medium; LAMP-1: lysosomal-associated membrane protein 1; LC3A: light chain 3A; MGD: meibomian gland dysfunction; SREBP-1: sterol regulatory element-binding protein 1.
Collapse
Affiliation(s)
- Xi Han
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School , Boston, Massachusetts, USA.,Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Shan Yang
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School , Boston, Massachusetts, USA.,Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing, China
| | - Wendy R Kam
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School , Boston, Massachusetts, USA
| | - David A Sullivan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School , Boston, Massachusetts, USA
| | - Yang Liu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School , Boston, Massachusetts, USA
| |
Collapse
|
19
|
Li Z, Jiang L, Toyokuni S. Role of carbonic anhydrases in ferroptosis-resistance. Arch Biochem Biophys 2020; 689:108440. [PMID: 32485154 DOI: 10.1016/j.abb.2020.108440] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Iron is essential for all the lives on earth but may trigger a switch toward ferroptosis, a novel form of regulated necrosis. Carbonic anhydrases (CAs) are ubiquitous enzymes from microbes to humans. The primary function of CAs is to regulate cellular pH by hydrating carbon dioxide (CO2) to protons (H+) and bicarbonate ions (HCO3-). Furthermore, CAs play roles in biosynthetic reactions, such as gluconeogenesis, lipogenesis, ureagenesis and are also associated with tumor metabolism, suggesting that CAs may be a potential target for the treatment of cancers. We have recently revealed a novel function of CA IX in ferroptosis-resistance by using human malignant mesothelioma cells. Herein, we aim to review the potential molecular association between ferroptosis and CAs, from the viewpoint of iron-metabolism, lipogenesis and signaling pathways both under physiological and pathological contexts.
Collapse
Affiliation(s)
- Zan Li
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan; Sydney Medical School, The University of Sydney, NSW, Australia.
| |
Collapse
|
20
|
Nguyen GTH, Nocentini A, Angeli A, Gratteri P, Supuran CT, Donald WA. Perfluoroalkyl Substances of Significant Environmental Concern Can Strongly Inhibit Human Carbonic Anhydrase Isozymes. Anal Chem 2020; 92:4614-4622. [PMID: 32096628 DOI: 10.1021/acs.analchem.0c00163] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Perfluoroalkyl substances (PFASs) persist and are ubiquitous in the environment. The origins of PFAS toxicity and how they specifically affect the functions of proteins remain unclear. Herein, we report that PFASs can strongly inhibit the activity of human carbonic anhydrases (hCAs), which are ubiquitous enzymes that catalyze the hydration of CO2, are abundant in the blood and organs of mammals, and involved in pH regulation, ion homeostasis, and biosynthesis. The interactions between PFASs and hCAs were investigated using stopped-flow kinetic enzyme-inhibition measurements, native mass spectrometry (MS), and ligand-docking simulations. Narrow-bore emitters in native MS with inner diameters of ∼300 nm were used to directly and simultaneously measure the dissociation constants of 11 PFASs to an enzyme, which was not possible using conventional emitters. The data from native MS and stopped-flow measurements were in excellent agreement. Of 15 PFASs investigated, eight can inhibit at least one of four hCA isozymes (I, II, IX, and XII) with submicromolar inhibition constants, including perfluorooctanoic acid, perfluorooctanesulfonamide, and perfluorooctanesulfonic acid. Some PFASs, including those with both short and long perfluoromethylene chains, can effectively inhibit at least one hCA isozyme with low nanomolar inhibition constants.
Collapse
Affiliation(s)
- Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Alessio Nocentini
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy.,Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Andrea Angeli
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
21
|
Wang Y, Ma S, Ruzzo WL. Spatial modeling of prostate cancer metabolic gene expression reveals extensive heterogeneity and selective vulnerabilities. Sci Rep 2020; 10:3490. [PMID: 32103057 PMCID: PMC7044328 DOI: 10.1038/s41598-020-60384-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/11/2020] [Indexed: 01/24/2023] Open
Abstract
Spatial heterogeneity is a fundamental feature of the tumor microenvironment (TME), and tackling spatial heterogeneity in neoplastic metabolic aberrations is critical for tumor treatment. Genome-scale metabolic network models have been used successfully to simulate cancer metabolic networks. However, most models use bulk gene expression data of entire tumor biopsies, ignoring spatial heterogeneity in the TME. To account for spatial heterogeneity, we performed spatially-resolved metabolic network modeling of the prostate cancer microenvironment. We discovered novel malignant-cell-specific metabolic vulnerabilities targetable by small molecule compounds. We predicted that inhibiting the fatty acid desaturase SCD1 may selectively kill cancer cells based on our discovery of spatial separation of fatty acid synthesis and desaturation. We also uncovered higher prostaglandin metabolic gene expression in the tumor, relative to the surrounding tissue. Therefore, we predicted that inhibiting the prostaglandin transporter SLCO2A1 may selectively kill cancer cells. Importantly, SCD1 and SLCO2A1 have been previously shown to be potently and selectively inhibited by compounds such as CAY10566 and suramin, respectively. We also uncovered cancer-selective metabolic liabilities in central carbon, amino acid, and lipid metabolism. Our novel cancer-specific predictions provide new opportunities to develop selective drug targets for prostate cancer and other cancers where spatial transcriptomics datasets are available.
Collapse
Affiliation(s)
- Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Shuyi Ma
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Walter L Ruzzo
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98102, USA
| |
Collapse
|
22
|
Zhang X, Li R, Chen Y, Dai Y, Chen L, Qin L, Cheng X, Lu Y. The Role of Thyroid Hormones and Autoantibodies in Metabolic Dysfunction Associated Fatty Liver Disease: TgAb May Be a Potential Protective Factor. Front Endocrinol (Lausanne) 2020; 11:598836. [PMID: 33363517 PMCID: PMC7755111 DOI: 10.3389/fendo.2020.598836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Previous studies have shown that metabolic dysfunction associated fatty liver disease (MAFLD) is associated with thyroid hormones (THs), immunity, and inflammation status, but few studies involved thyroid autoimmunity. This study aimed to evaluate the role of THs, thyroid autoantibodies, inflammatory biomarkers in MAFLD, its cofactors, and other possible determinants. MATERIALS AND METHODS In the study, a total of 424 Chinese patients were selected and categorized as non-MAFLD and MAFLD. Serum thyroid hormone, thyroid autoantibody and high-sensitive C-reactive protein (hsCRP) levels were measured. The data of blood pressure, the serum lipid profile, glucose and liver enzymes were collected. The differences and association between research findings were examined and analyzed by Wilcoxon Signed Rank Test, One-Way ANOVA test and Multiple Logistic Regression models. RESULTS The study showed significant increase in the prevalence of MAFLD with high thyroid stimulating hormone (TSH) levels (P < 0.01) and abnormal high-sensitive C-reactive protein (hsCRP) levels (P < 0.01). The proportion of MAFLD patients decreased significantly with the rise of free thyroxine (FT4) (P = 0.04), thyrotropin receptor antibodies (TRAb) (P < 0.01), anti-thyroglobulin antibodies (TgAb) (P < 0.01), and thyroid peroxidase antibodies (TPOAb) levels (P < 0.01). Based on logistic regression analysis, MAFLD was significantly associated with lower levels of TgAb (P < 0.01), TPOAb (P < 0.01), and higher levels of hsCRP (P < 0.01) in male. In female, elevated TgAb (P < 0.01) may be a protective factor, while higher levels of hsCRP (P < 0.01) showed increased risk of MAFLD. Logistic models were adjusted for age, BMI, SBP, DBP, FBG, ALT, AST, TC, TG, LDL, HDL. CONCLUSIONS Taken together, TgAb may be a potential protective factor for MAFLD and elevated hsCRP level should be considered as an independent risk factor for MAFLD in both genders. TPOAb also demonstrated protective effect, but only in male. The prevalence of MAFLD increased with higher TSH levels and lower FT4, TRAb levels, but no significant association were found. However, Our findings provide a new insight into the pathogenesis of MAFLD by further investigating the impact of THs, thyroid autoimmunity, and inflammation on MAFLD patients.
Collapse
Affiliation(s)
- Xiaofu Zhang
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, China
| | - Ruyi Li
- Department of Preventive Medicine and Public Health, Medical College of Soochow University, Suzhou, China
| | - Yingjie Chen
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, China
| | - Yuning Dai
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, China
| | - Ling Chen
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingbo Cheng
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Lu
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Yan Lu,
| |
Collapse
|
23
|
Bozdag M, Altamimi ASA, Vullo D, Supuran CT, Carta F. State of the Art on Carbonic Anhydrase Modulators for Biomedical Purposes. Curr Med Chem 2019; 26:2558-2573. [PMID: 29932025 DOI: 10.2174/0929867325666180622120625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 01/13/2023]
Abstract
The current review is intended to highlight recent advances in the search of new and effective modulators of the metalloenzymes Carbonic Anhydrases (CAs, EC 4.2.1.1) expressed in humans (h). CAs reversibly catalyze the CO2 hydration reaction, which is of crucial importance in the regulation of a plethora of fundamental processes at cellular level as well as in complex organisms. The first section of this review will be dedicated to compounds acting as activators of the hCAs (CAAs) and their promising effects on central nervous system affecting pathologies mainly characterized from memory and learning impairments. The second part will focus on the emerging chemical classes acting as hCA inhibitors (CAIs) and their potential use for the treatment of diseases.
Collapse
Affiliation(s)
- Murat Bozdag
- Universita degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Abdulmalik Saleh Alfawaz Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Alkharj 11942, Saudi Arabia
| | - Daniela Vullo
- Universita degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T Supuran
- Universita degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Fabrizio Carta
- Universita degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
24
|
Zaraei SO, El-Gamal MI, Shafique Z, Amjad ST, Afridi S, Zaib S, Anbar HS, El-Gamal R, Iqbal J. Sulfonate and sulfamate derivatives possessing benzofuran or benzothiophene nucleus as potent carbonic anhydrase II/IX/XII inhibitors. Bioorg Med Chem 2019; 27:3889-3901. [PMID: 31345748 DOI: 10.1016/j.bmc.2019.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/30/2022]
Abstract
In the current work, we report the discovery of new sulfonate and sulfamate derivatives of benzofuran- and benzothiophene as potent inhibitors of human carbonic anhydrases (hCAs) II, IX and XII. A set of derivatives, 1a-t, having different substituents on the fused benzofuran and benzothiophene rings (R = alkyl, cyclohexyl, aryl, NH2, NHMe, or NMe2) was designed and synthesized. Most of the derivatives exhibited higher potency than acetazolamide as inhibitors of the purified hCAII, IX and XII isoforms. The most potent inhibitors for hCAII, hCAIX and hCAXII were 1g, 1b and 1d with an IC50 ± SEM values of 0.14 ± 0.03, 0.13 ± 0.03 and 0.17 ± 0.06 µM, respectively. In addition, compounds 1d and 1n exerted preferential inhibitory effect against hCAXII isozyme with good potencies. Some selected compounds were docked within the active pocket of these isozymes and binding of the molecules revealed that sulfonate and sulfamate rings were located towards the active cavity and compounds coordinated to zinc ions.
Collapse
Affiliation(s)
- Seyed-Omar Zaraei
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
| | - Zainab Shafique
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sayyeda Tayyeba Amjad
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Saifullah Afridi
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; Department of Biological Sciences (DBS), National University of Medical Sciences (NUMS), Secretariat c/o Military Hospital, Adjacent to Armed Force Institute of Cardiology, The Mall Rawalpindi 46000, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Hanan S Anbar
- Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, University of Mansoura, Mansoura 35516, Egypt
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
25
|
Costa G, Carta F, Ambrosio FA, Artese A, Ortuso F, Moraca F, Rocca R, Romeo I, Lupia A, Maruca A, Bagetta D, Catalano R, Vullo D, Alcaro S, Supuran CT. A computer-assisted discovery of novel potential anti-obesity compounds as selective carbonic anhydrase VA inhibitors. Eur J Med Chem 2019; 181:111565. [PMID: 31387062 DOI: 10.1016/j.ejmech.2019.111565] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/25/2022]
Abstract
The human Carbonic anhydrases (hCA) VA and VB play a key role in ureagenesis, gluconeogenesis, lipogenesis and in the metabolism regulation, thus representing highly popular drug targets. Albeit several hCA inhibitors have been designed and are currently in clinical use, serious drug interactions have been reported due to their poor selectivity. In this perspective, the drug repurposing approach could be a useful tool in order to investigate the drug promiscuity/polypharmacology profile. In this study, virtual screening techniques and in vitro assays were combined to identify novel selective hCA VA inhibitors from among around 94000 compounds. The docking analysis highlighted 12 promising best hits, biologically characterized in terms of their hCA VA inhibitory activity. Interestingly, among them, the anticancer agents fludarabine and lenvatinib and the antiepileptic rufinamide were able to selectively inhibit the enzyme activity in the micromolar range, while a pyrido-indole derivative, the homovanillic acid sulfate and the desacetyl metabolite of the antibacterial cephapirin in the nanomolar range.
Collapse
Affiliation(s)
- Giosuè Costa
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Fabrizio Carta
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università; degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy.
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Federica Moraca
- Department of Pharmacy, University "Federico II" of Naples, Via D. Montesano, 49 I-80131, Naples, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Isabella Romeo
- Dipartimento di Chimica e Tecnologie chimiche, Università della Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Cosenza, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Antonio Lupia
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Annalisa Maruca
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Donatella Bagetta
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Raffaella Catalano
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Daniela Vullo
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università; degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Claudiu T Supuran
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università; degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
26
|
Lee JY, Onanyan M, Garrison I, White R, Crook M, Alexeyev MF, Kozhukhar N, Pastukh V, Swenson ER, Supuran CT, Stevens T. Extrinsic acidosis suppresses glycolysis and migration while increasing network formation in pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2019; 317:L188-L201. [PMID: 31042076 DOI: 10.1152/ajplung.00544.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acidosis is common among critically ill patients, but current approaches to correct pH do not improve disease outcomes. During systemic acidosis, cells are either passively exposed to extracellular acidosis that other cells have generated (extrinsic acidosis) or they are exposed to acid that they generate and export into the extracellular space (intrinsic acidosis). Although endothelial repair following intrinsic acidosis has been studied, the impact of extrinsic acidosis on migration and angiogenesis is unclear. We hypothesized that extrinsic acidosis inhibits metabolism and migration but promotes capillary-like network formation in pulmonary microvascular endothelial cells (PMVECs). Extrinsic acidosis was modeled by titrating media pH. Two types of intrinsic acidosis were compared, including increasing cellular metabolism by chemically inhibiting carbonic anhydrases (CAs) IX and XII (SLC-0111) and with hypoxia. PMVECs maintained baseline intracellular pH for 24 h with both extrinsic and intrinsic acidosis. Whole cell CA IX protein expression was decreased by extrinsic acidosis but not affected by hypoxia. When extracellular pH was equally acidic, extrinsic acidosis suppressed glycolysis, whereas intrinsic acidosis did not. Extrinsic acidosis suppressed migration, but increased Matrigel network master junction and total segment length. CRISPR-Cas9 CA IX knockout PMVECs revealed an independent role of CA IX in promoting glycolysis, as loss of CA IX alone was accompanied by decreased hexokinase I and pyruvate dehydrogenase E1α expression and decreasing migration. 2-deoxy-d-glucose had no effect on migration but profoundly inhibited network formation and increased N-cadherin expression. Thus, we report that while extrinsic acidosis suppresses endothelial glycolysis and migration, it promotes network formation.
Collapse
Affiliation(s)
- Ji Young Lee
- Departments of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Department of Internal Medicine, University of South Alabama, Mobile, Alabama.,Division of Pulmonary and Critical Care Medicine, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| | - Mher Onanyan
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama.,Division of Pulmonary and Critical Care Medicine, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ian Garrison
- College of Medicine, University of South Alabama, Mobile, Alabama
| | - Roderica White
- College of Medicine, University of South Alabama, Mobile, Alabama.,Center for Healthy Communities, University of South Alabama, Mobile, Alabama
| | - Maura Crook
- College of Medicine, University of South Alabama, Mobile, Alabama.,Office of Diversity and Inclusion, University of South Alabama, Mobile, Alabama
| | - Mikhail F Alexeyev
- Departments of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| | - Natalya Kozhukhar
- Departments of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| | - Viktoriya Pastukh
- Departments of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| | - Erik R Swenson
- Medical Service, VA Puget Sound Health Care System, University of Washington, Seattle, Washington
| | | | - Troy Stevens
- Departments of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Department of Internal Medicine, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
27
|
Noel BM, Ouellette SB, Marholz L, Dickey D, Navis C, Yang TY, Nguyen V, Parker SJ, Bernlohr D, Sachs Z, Parker LL. Multiomic Profiling of Tyrosine Kinase Inhibitor-Resistant K562 Cells Suggests Metabolic Reprogramming To Promote Cell Survival. J Proteome Res 2019; 18:1842-1856. [PMID: 30730747 DOI: 10.1021/acs.jproteome.9b00028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resistance to chemotherapy can occur through a wide variety of mechanisms. Resistance to tyrosine kinase inhibitors (TKIs) often arises from kinase mutations-however, "off-target" resistance occurs but is poorly understood. Previously, we established cell line resistance models for three TKIs used in chronic myeloid leukemia treatment, and found that resistance was not attributed entirely to failure of kinase inhibition. Here, we performed global, integrated proteomic and transcriptomic profiling of these cell lines to describe mechanisms of resistance at the protein and gene expression level. We used whole transcriptome sequencing and SWATH-based data-independent acquisition mass spectrometry (DIA-MS), which does not require isotopic labels and provides quantitative measurements of proteins in a comprehensive, unbiased fashion. The proteomic and transcriptional data were correlated to generate an integrated understanding of the gene expression and protein alterations associated with TKI resistance. We defined mechanisms of resistance and two novel markers, CA1 and alpha-synuclein, that were common to all TKIs tested. Resistance to all of the TKIs was associated with oxidative stress responses, hypoxia signatures, and apparent metabolic reprogramming of the cells. Metabolite profiling and glucose-dependence experiments showed that resistant cells had routed their metabolism through glycolysis (particularly through the pentose phosphate pathway) and exhibited disruptions in mitochondrial metabolism. These experiments are the first to report a global, integrated proteomic, transcriptomic, and metabolic analysis of TKI resistance. These data suggest that although the mechanisms are complex, targeting metabolic pathways along with TKI treatment may overcome pan-TKI resistance.
Collapse
Affiliation(s)
- Brett M Noel
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Department of Medicinal Chemistry and Molecular Pharmacology , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Steven B Ouellette
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Laura Marholz
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Deborah Dickey
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Connor Navis
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Tzu-Yi Yang
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Vinh Nguyen
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Sarah J Parker
- Smidt Heart Institute , Cedars Sinai , Los Angeles , California 90048 , United States
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Zohar Sachs
- Department of Medicine , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Laurie L Parker
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
28
|
Karami-Mohajeri S, Ahmadipour A, Rahimi HR, Abdollahi M. Adverse effects of organophosphorus pesticides on the liver: a brief summary of four decades of research. Arh Hig Rada Toksikol 2018; 68:261-275. [DOI: 10.1515/aiht-2017-68-2989] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 12/01/2017] [Indexed: 01/20/2023] Open
Abstract
Abstract
Organophosphorus pesticides (OPs) are widely used volatile pesticides that have harmful effects on the liver in acute and chronic exposures. This review article summarises and discusses a wide collection of studies published over the last 40 years reporting on the effects of OPs on the liver, in an attempt to propose general mechanisms of OP hepatotoxicity and possible treatment. Several key biological processes have been reported as involved in OP-induced hepatotoxicity such as disturbances in the antioxidant defence system, oxidative stress, apoptosis, and mitochondrial and microsomal metabolism. Most studies show that antioxidants can attenuate oxidative stress and the consequent changes in liver function. However, few studies have examined the relationship between OP structures and the severity and mechanism of their action. We hope that future in vitro, in vivo, and clinical trials will answer the remaining questions about the mechanisms of OP hepatotoxicity and its management.
Collapse
Affiliation(s)
- Somayyeh Karami-Mohajeri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Tehran , Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran , Iran
| | - Ahmad Ahmadipour
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran , Iran
| | - Hamid-Reza Rahimi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Tehran , Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran , Iran
| | - Mohammad Abdollahi
- Kerman University of Medical Sciences, Kerman , Pharmaceutical Sciences Research Center, Iran
- Department of Toxicology and Pharmacology4, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran , Iran
| |
Collapse
|
29
|
Čapkauskaitė E, Zakšauskas A, Ruibys V, Linkuvienė V, Paketurytė V, Gedgaudas M, Kairys V, Matulis D. Benzimidazole design, synthesis, and docking to build selective carbonic anhydrase VA inhibitors. Bioorg Med Chem 2017; 26:675-687. [PMID: 29305297 DOI: 10.1016/j.bmc.2017.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
The similarity of human carbonic anhydrase (CA) active sites makes it difficult to design selective inhibitors for one or several CA isoforms that are drug targets. Here we synthesize a series of compounds that are based on 5-[2-(benzimidazol-1-yl)acetyl]-2-chloro-benzenesulfonamide (1a) which demonstrated picomolar binding affinity and significant selectivity for CA isoform five A (VA), and explain the structural influence of inhibitor functional groups to the binding affinity and selectivity. A series of chloro-substituted benzenesulfonamides bearing a heterocyclic tail, together with molecular docking, was used to build inhibitors that explore substituent influence on the binding affinity to the CA VA isoform.
Collapse
Key Words
- 3,4-Dihydro-2H-quinoline
- CA inhibitor
- Carbonic anhydrase isozyme I, II, III, IV, VA, VB, VI, VII, IX, XII, XIII, and XIV
- Docking
- Fluorescent thermal shift assay
- Imidazole
- Indoline
- N-Alkylated benzimidazole
- Sulfonamide
- ThermoFluor®
Collapse
Affiliation(s)
- Edita Čapkauskaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Audrius Zakšauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Virginijus Ruibys
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
| | - Vaida Linkuvienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Vaida Paketurytė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Marius Gedgaudas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania.
| |
Collapse
|
30
|
Ryaboshapkina M, Hammar M. Human hepatic gene expression signature of non-alcoholic fatty liver disease progression, a meta-analysis. Sci Rep 2017; 7:12361. [PMID: 28955037 PMCID: PMC5617840 DOI: 10.1038/s41598-017-10930-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a wide-spread chronic liver condition that places patients at risk of developing cardiovascular diseases and may progress to cirrhosis or hepatocellular carcinoma if untreated. Challenges in clinical and basic research are caused by poor understanding of NAFLD mechanisms. The purpose of current study is to describe molecular changes occurring in human liver during NAFLD progression by defining a reproducible gene expression signature. We conduct a systematic meta-analysis of published human gene expression studies on liver biopsies and bariatric surgery samples of NAFLD patients. We relate gene expression levels with histology scores using regression models and identify a set of genes showing consistent-sign associations with NAFLD progression that are replicated in at least three independent studies. The analysis reveals genes that have not been previously characterized in the context of NAFLD such as HORMAD2 and LINC01554. In addition, we highlight biomarker opportunities for risk stratification and known drugs that could be used as tool compounds to study NAFLD in model systems. We identify gaps in current knowledge of molecular mechanisms of NAFLD progression and discuss ways to address them. Finally, we provide an extensive data supplement containing meta-analysis results in a computer-readable format.
Collapse
Affiliation(s)
- Maria Ryaboshapkina
- Cardiovascular and Metabolic Diseases, Translational Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.
| | - Mårten Hammar
- Cardiovascular and Metabolic Diseases, Translational Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
31
|
Renner SW, Walker LM, Forsberg LJ, Sexton JZ, Brenman JE. Carbonic anhydrase III (Car3) is not required for fatty acid synthesis and does not protect against high-fat diet induced obesity in mice. PLoS One 2017; 12:e0176502. [PMID: 28437447 PMCID: PMC5402959 DOI: 10.1371/journal.pone.0176502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/11/2017] [Indexed: 12/31/2022] Open
Abstract
Carbonic anhydrases are a family of enzymes that catalyze the reversible condensation of water and carbon dioxide to carbonic acid, which spontaneously dissociates to bicarbonate. Carbonic anhydrase III (Car3) is nutritionally regulated at both the mRNA and protein level. It is highly enriched in tissues that synthesize and/or store fat: liver, white adipose tissue, brown adipose tissue, and skeletal muscle. Previous characterization of Car3 knockout mice focused on mice fed standard diets, not high-fat diets that significantly alter the tissues that highly express Car3. We observed lower protein levels of Car3 in high-fat diet fed mice treated with niclosamide, a drug published to improve fatty liver symptoms in mice. However, it is unknown if Car3 is simply a biomarker reflecting lipid accumulation or whether it has a functional role in regulating lipid metabolism. We focused our in vitro studies toward metabolic pathways that require bicarbonate. To further determine the role of Car3 in metabolism, we measured de novo fatty acid synthesis with in vitro radiolabeled experiments and examined metabolic biomarkers in Car3 knockout and wild type mice fed high-fat diet. Specifically, we analyzed body weight, body composition, metabolic rate, insulin resistance, serum and tissue triglycerides. Our results indicate that Car3 is not required for de novo lipogenesis, and Car3 knockout mice fed high-fat diet do not have significant differences in responses to various diets to wild type mice.
Collapse
Affiliation(s)
- Sarah W. Renner
- Genetics and Molecular Biology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Lauren M. Walker
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lawrence J. Forsberg
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan Z. Sexton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, United States of America
| | - Jay E. Brenman
- Genetics and Molecular Biology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
32
|
Zolfaghari Emameh R, Barker HR, Syrjänen L, Urbański L, Supuran CT, Parkkila S. Identification and inhibition of carbonic anhydrases from nematodes. J Enzyme Inhib Med Chem 2016; 31:176-184. [DOI: 10.1080/14756366.2016.1221826] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Reza Zolfaghari Emameh
- School of Medicine, University of Tampere, Tampere, Finland,
- BioMediTech, University of Tampere, Tampere, Finland,
- Fimlab Laboratories Ltd and Tampere University Hospital, Tampere, Finland,
| | | | - Leo Syrjänen
- School of Medicine, University of Tampere, Tampere, Finland,
- Department of Otorhinolaryngology, Central Finland Central Hospital, Jyväskylä, Finland, and
| | - Linda Urbański
- School of Medicine, University of Tampere, Tampere, Finland,
| | - Claudiu T. Supuran
- Neurofarba Dipartment, Sezione di Scienza Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Firenze, Italy
| | - Seppo Parkkila
- School of Medicine, University of Tampere, Tampere, Finland,
- Fimlab Laboratories Ltd and Tampere University Hospital, Tampere, Finland,
| |
Collapse
|
33
|
Probing the surface of human carbonic anhydrase for clues towards the design of isoform specific inhibitors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:453543. [PMID: 25811028 PMCID: PMC4355338 DOI: 10.1155/2015/453543] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022]
Abstract
The alpha carbonic anhydrases (α-CAs) are a group of structurally related zinc metalloenzymes that catalyze the reversible hydration of CO2 to HCO3−. Humans have 15 different α-CAs with numerous physiological roles and expression patterns. Of these, 12 are catalytically active, and abnormal expression and activities are linked with various diseases, including glaucoma and cancer. Hence there is a need for CA isoform specific inhibitors to avoid off-target CA inhibition, but due to the high amino acid conservation of the active site and surrounding regions between each enzyme, this has proven difficult. However, residues towards the exit of the active site are variable and can be exploited to design isoform selective inhibitors. Here we discuss and characterize this region of “selective drug targetability” and how these observations can be utilized to develop isoform selective CA inhibitors.
Collapse
|
34
|
Sawano T, Shimizu T, Yamada T, Nanashima N, Miura T, Morohashi S, Kudo D, Hui FM, Kijima H, Hakamada K, Tsuchida S. Fatty acid synthase-positive hepatocytes and subsequent steatosis in rat livers by irinotecan. Oncol Rep 2015; 33:2151-60. [PMID: 25708528 PMCID: PMC4391592 DOI: 10.3892/or.2015.3814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/03/2015] [Indexed: 01/22/2023] Open
Abstract
Using a rat model, we investigated factors contributing to the pathogenesis of irinotecan-associated fatty liver disease. Male Sprague-Dawley rats were administered 200 mg/kg irinotecan by intraperitoneal injection on days 1–4, but not on days 5–7. This schedule was repeated 3 times. Rats were sacrificed 4, 18 and 25 days after the last injection, and liver steatosis was evaluated by hematoxylin and eosin (H&E) staining, microarray analysis and immunohistochemistry. Panacinar intrahepatocyte vacuoles were absent on days 4 and 25, but present on day 18, and this alteration was more prominent around the bile ducts than the central veins. Microarray analysis showed that the expression of genes involved in the synthesis of cholesterol and fatty acids was upregulated on day 4. Immunohistochemistry detected fatty acid synthase (Fasn)-strongly positive hepatocytes as well as the activation of liver progenitor cells on day 4, whereas intracellular vacuoles were evident in carbonic anhydrase 3 (CA3)-positive hepatocytes on day 18. Thus, irinotecan-induced liver steatosis was preceded by Fasn-strongly-positive hepatocytes and liver progenitor cell activation. The magnitude of the decrease in the number of Fasn-strongly positive hepatocytes between days 4 and 18 was similar to that of the increase in the number of CA3-positive hepatocytes accompanying vacuoles.
Collapse
Affiliation(s)
- Takeyuki Sawano
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takeshi Shimizu
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toshiyuki Yamada
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Naoki Nanashima
- Department of Medical Technology, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Takuya Miura
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Satoko Morohashi
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Daisuke Kudo
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Feng Mao Hui
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroshi Kijima
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shigeki Tsuchida
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
35
|
Ellagic acid modulates lipid accumulation in primary human adipocytes and human hepatoma Huh7 cells via discrete mechanisms. J Nutr Biochem 2015; 26:82-90. [DOI: 10.1016/j.jnutbio.2014.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 12/23/2022]
|
36
|
Sulfa drugs as inhibitors of carbonic anhydrase: new targets for the old drugs. BIOMED RESEARCH INTERNATIONAL 2014; 2014:162928. [PMID: 25538942 PMCID: PMC4241293 DOI: 10.1155/2014/162928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/19/2014] [Accepted: 07/15/2014] [Indexed: 01/02/2023]
Abstract
Sulfa drugs are well-known antibacterial agents containing N-substituted sulfonamide group on para position of aniline ring (NH2RSO2NHR′). In this study 2,4-dichloro-1,3,5-triazine derivatives of sulfa drugs, sulfamerazine (1b), sulfaquinoxaline (2b), sulfadiazine (3b), sulfadimidine (4b), and sulfachloropyrazine (5b) (1a–5a) were synthesized and characterized. Their carbonic anhydrase inhibition activity was evaluated against bovine cytosolic carbonic anhydrase isozyme II (bCA II). For the sake of comparison the CA inhibition activity of the parent sulfa drugs (1b–5b) was also evaluated. A significant increase in CA inhibition activity of sulfa drugs was observed upon substitution with 2,4-dichloro-1,3,5-triazine moiety. Molecular docking studies were carried out to highlight binding site interactions. ADME properties were calculated to evaluate drug likeness of the compounds.
Collapse
|
37
|
Catoira NP, Viale L, Di Girolamo G, Gonzalez C. New centrally acting agents for appetite control: from biological mechanisms to clinical efficacy. Curr Med Res Opin 2014; 30:961-9. [PMID: 24432840 DOI: 10.1185/03007995.2014.884494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Obesity is one of the major problems of health policy in different countries. Pharmacological attempts have been made to help affected people without a definitive solution. Some agents--either with peripheral or central effect--are available in the market. On July 2012, the FDA approved two novel preparations for obese patients: (1) topiramate-phentermine--the first one an anticonvulsant and the second one a sympathomimetic amine--and (2) lorcaserin, a 5-HT2CR agonist. Both preparations emerged as new options for weight management. SCOPE Based on the complex biology of eating behavior, in this review we discuss the features, mechanisms of action, pharmacokinetics, advantages and possible disadvantages of these new agents. CONCLUSION With differences in efficacy (higher for the topiramate-phentermine combination), both preparations are active in reducing appetite and body weight, as well as in improving comorbidities. Additional information will be collected from Phase IV surveillance. Focus on cardiovascular, neuropsychiatric (for both introductions) and embrio-fetal safety (especially for topiramate) is expected.
Collapse
Affiliation(s)
- Natalia Paola Catoira
- Hospital Enrique Tornú, Department of Pharmacology, Universidad de Buenos Aires, Buenos Aires , Argentina
| | | | | | | |
Collapse
|
38
|
Abstract
Carbonic anhydrases are ubiquitous enzymes that catalyze the reversible hydration of carbon dioxide. These enzymes are of ancient origin as they are found in the deepest of branches of the evolutionary tree. Of the five different classes of carbonic anhydrases, the alpha class has perhaps received the most attention because of its role in human pathology. This review focuses on the physiological function of this class of carbonic anhydrases organized by their cellular location.
Collapse
Affiliation(s)
- Susan C Frost
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA,
| |
Collapse
|
39
|
Shah GN, Rubbelke TS, Hendin J, Nguyen H, Waheed A, Shoemaker JD, Sly WS. Targeted mutagenesis of mitochondrial carbonic anhydrases VA and VB implicates both enzymes in ammonia detoxification and glucose metabolism. Proc Natl Acad Sci U S A 2013; 110:7423-8. [PMID: 23589845 PMCID: PMC3645511 DOI: 10.1073/pnas.1305805110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prior studies with carbonic anhydrase (CA) inhibitors implicated mitochondrial CA in ureagenesis and gluconeogenesis. Subsequent studies identified two mitochondrial CAs. To distinguish the contribution of each enzyme, we studied the effects of targeted disruption of the murine CA genes, called Car5A and Car5B. The Car5A mutation had several deleterious consequences. Car5A null mice were smaller than wild-type littermates and bred poorly. However, on sodium-potassium citrate-supplemented water, they produced offspring in expected numbers. Their blood ammonia concentrations were markedly elevated, but their fasting blood sugars were normal. By contrast, Car5B null mice showed normal growth and normal blood ammonia levels. They too had normal fasting blood sugars. Car5A/B double-knockout (DKO) mice showed additional abnormalities. Impaired growth was more severe than for Car5A null mice. Hyperammonemia was even greater as well. Although fertile, DKO animals were produced in less-than-predicted numbers even when supplemented with sodium-potassium citrate in their drinking water. Survival after weaning was also reduced, especially for males. In addition, fasting blood glucose levels for DKO mice were significantly lower than for controls (153 ± 33 vs. 230 ± 24 mg/dL). The enhanced hyperammonemia and lower fasting blood sugar, which are both seen in the DKO mice, indicate that both Car5A and Car5B contribute to both ammonia detoxification (ureagenesis) and regulation of fasting blood sugar (gluconeogenesis). Car5A, which is expressed mainly in liver, clearly has the predominant role in ammonia detoxification. The contribution of Car5B to ureagenesis and gluconeogenesis was evident only on a Car5A null background.
Collapse
Affiliation(s)
| | - Timothy S. Rubbelke
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Joshua Hendin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Hien Nguyen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Abdul Waheed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - James D. Shoemaker
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - William S. Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
40
|
Scozzafava A, Supuran CT, Carta F. Antiobesity carbonic anhydrase inhibitors: a literature and patent review. Expert Opin Ther Pat 2013; 23:725-35. [DOI: 10.1517/13543776.2013.790957] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Supuran CT. Carbonic anhydrase inhibitors as emerging drugs for the treatment of obesity. Expert Opin Emerg Drugs 2012; 17:11-5. [DOI: 10.1517/14728214.2012.664132] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
de Lange P, Cioffi F, Senese R, Moreno M, Lombardi A, Silvestri E, De Matteis R, Lionetti L, Mollica MP, Goglia F, Lanni A. Nonthyrotoxic prevention of diet-induced insulin resistance by 3,5-diiodo-L-thyronine in rats. Diabetes 2011; 60:2730-9. [PMID: 21926273 PMCID: PMC3198093 DOI: 10.2337/db11-0207] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE High-fat diets (HFDs) are known to induce insulin resistance. Previously, we showed that 3,5-diiodothyronine (T2), concomitantly administered to rats on a 4-week HFD, prevented gain in body weight and adipose mass. Here we investigated whether and how T2 prevented HFD-induced insulin resistance. RESEARCH DESIGN AND METHODS We investigated the biochemical targets of T2 related to lipid and glucose homeostasis over time using various techniques, including genomic and proteomic profiling, immunoblotting, transient transfection, and enzyme activity analysis. RESULTS Here we show that, in rats, HFD feeding induced insulin resistance (as expected), whereas T2 administration prevented its onset. T2 did so by rapidly stimulating hepatic fatty acid oxidation, decreasing hepatic triglyceride levels, and improving the serum lipid profile, while at the same time sparing skeletal muscle from fat accumulation. At the mechanistic level, 1) transfection studies show that T2 does not act via thyroid hormone receptor β; 2) AMP-activated protein kinase is not involved in triggering the effects of T2; 3) in HFD rats, T2 rapidly increases hepatic nuclear sirtuin 1 (SIRT1) activity; 4) in an in vitro assay, T2 directly activates SIRT1; and 5) the SIRT1 targets peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC-1α) and sterol regulatory element-binding protein (SREBP)-1c are deacetylated with concomitant upregulation of genes involved in mitochondrial biogenesis and downregulation of lipogenic genes, and PPARα/δ-induced genes are upregulated, whereas genes involved in hepatic gluconeogenesis are downregulated. Proteomic analysis of the hepatic protein profile supported these changes. CONCLUSIONS T2, by activating SIRT1, triggers a cascade of events resulting in improvement of the serum lipid profile, prevention of fat accumulation, and, finally, prevention of diet-induced insulin resistance.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Federica Cioffi
- Dipartimento di Scienze per la Biologia, la Geologia e l’Ambiente, Università degli Studi del Sannio, Benevento, Italy
| | - Rosalba Senese
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Maria Moreno
- Dipartimento di Scienze per la Biologia, la Geologia e l’Ambiente, Università degli Studi del Sannio, Benevento, Italy
| | - Assunta Lombardi
- Dipartimento delle Scienze Biologiche, Sez. Fisiologia ed Igiene, Università degli Studi di Napoli “Federico II,” Napoli, Italy
| | - Elena Silvestri
- Dipartimento di Scienze per la Biologia, la Geologia e l’Ambiente, Università degli Studi del Sannio, Benevento, Italy
| | - Rita De Matteis
- Dipartimento di Scienze Biomolecolari, Università di Urbino “Carlo Bo,” Urbino, Italy
| | - Lillà Lionetti
- Dipartimento delle Scienze Biologiche, Sez. Fisiologia ed Igiene, Università degli Studi di Napoli “Federico II,” Napoli, Italy
| | - Maria Pina Mollica
- Dipartimento delle Scienze Biologiche, Sez. Fisiologia ed Igiene, Università degli Studi di Napoli “Federico II,” Napoli, Italy
| | - Fernando Goglia
- Dipartimento di Scienze per la Biologia, la Geologia e l’Ambiente, Università degli Studi del Sannio, Benevento, Italy
- Corresponding author: Fernando Goglia, , or Antonia Lanni,
| | - Antonia Lanni
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Caserta, Italy
- Corresponding author: Fernando Goglia, , or Antonia Lanni,
| |
Collapse
|
43
|
Singh S, Supuran CT. QSARs on human carbonic anhydrase VA and VB inhibitors of some new not yet synthesized, substituted aromatic/heterocyclic sulphonamides as anti-obesity agent. J Enzyme Inhib Med Chem 2011; 27:666-72. [DOI: 10.3109/14756366.2011.606544] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shalini Singh
- QSAR & Cheminformatics Laboratory, Department of Chemistry, Bareilly College, Bareilly, India
| | - Claudiu T. Supuran
- Universita degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica,
Sesto Fiorentino (Florence), Italy
| |
Collapse
|
44
|
Maresca A, Supuran CT. (R)-/(S)-10-Camphorsulfonyl-substituted aromatic/heterocyclic sulfonamides selectively inhibit mitochondrial over cytosolic carbonic anhydrases. Bioorg Med Chem Lett 2011; 21:1334-7. [DOI: 10.1016/j.bmcl.2011.01.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 11/27/2022]
|
45
|
Pan PW, Waheed A, Sly WS, Parkkila S. Carbonic anhydrases in the mouse harderian gland. J Mol Histol 2010; 41:411-7. [PMID: 20820888 DOI: 10.1007/s10735-010-9290-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 08/16/2010] [Indexed: 12/17/2022]
Abstract
The harderian gland is located within the orbit of the eye of most terrestrial vertebrates. It is especially noticeable in rodents, in which it synthesises lipids, porphyrins, and indoles. Various functions have been ascribed to the harderian gland, such as lubrication of the eyes, a site of immune response, and a source of growth factors. Carbonic anhydrases (CAs) are zinc-containing metalloenzymes that catalyse the reaction CO₂ + H₂O <--> H+ + HCO₃. They are involved in the adjustment of pH in the secretions of different glands. Thirteen enzymatically active isozymes have been described in the mammalian α-CA family. Here, we first investigated the mRNA expression of all 13 active CAs in the mouse harderian gland by quantitative real-time PCR. Nine CA mRNAs were detectable in the gland. Car5b and Car13 showed the highest signals. Car4, Car6, and Car12 showed moderate expression levels, whereas Car2, Car3, Car7, and Car15 mRNAs were barely within the detection limits. Immunohistochemical staining was performed to study the expression of Car2, Car4, Car5b, Car12, and Car13 at the protein level. The epithelial cells were intensively stained for CAVB, whereas only weak signal was detected for CAXIII. Positive signals for CAIV and CAXII were observed in the capillary endothelial cells and the basolateral plasma membrane of the epithelial cells, respectively. This study provides an expression profile of all CAs in the mouse harderian gland. These results should improve our understanding of the distribution of CA isozymes and their potential roles in the function of harderian gland. The high expression of mitochondrial CAVB at both mRNA and protein levels suggests a role in lipid synthesis, a key physiological process of the harderian gland.
Collapse
Affiliation(s)
- Pei-wen Pan
- Institute of Medical Technology, University of Tampere, Biokatu 6, 33520 Tampere, Finland.
| | | | | | | |
Collapse
|
46
|
Davis RA, Innocenti A, Poulsen SA, Supuran CT. Carbonic anhydrase inhibitors. Identification of selective inhibitors of the human mitochondrial isozymes VA and VB over the cytosolic isozymes I and II from a natural product-based phenolic library. Bioorg Med Chem 2010; 18:14-8. [DOI: 10.1016/j.bmc.2009.11.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/29/2009] [Accepted: 11/07/2009] [Indexed: 12/21/2022]
|
47
|
Güzel Ö, Innocenti A, Scozzafava A, Salman A, Supuran CT. Carbonic anhydrase inhibitors. Aromatic/heterocyclic sulfonamides incorporating phenacetyl, pyridylacetyl and thienylacetyl tails act as potent inhibitors of human mitochondrial isoforms VA and VB. Bioorg Med Chem 2009; 17:4894-9. [DOI: 10.1016/j.bmc.2009.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/28/2009] [Accepted: 06/05/2009] [Indexed: 11/25/2022]
|
48
|
Carbonic anhydrase inhibitors: 2-Substituted-1,3,4-thiadiazole-5-sulfamides act as powerful and selective inhibitors of the mitochondrial isozymes VA and VB over the cytosolic and membrane-associated carbonic anhydrases I, II and IV. Bioorg Med Chem Lett 2008; 18:6332-5. [DOI: 10.1016/j.bmcl.2008.10.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 10/20/2008] [Accepted: 10/20/2008] [Indexed: 11/22/2022]
|
49
|
Supuran CT, Fiore AD, Simone GD. Carbonic anhydrase inhibitors as emerging drugs for the treatment of obesity. Expert Opin Emerg Drugs 2008; 13:383-92. [DOI: 10.1517/14728214.13.2.383] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Khanna V, Arumugam S, Roy S, Mittra S, Bansal VS. Topiramate and type 2 diabetes: an old wine in a new bottle. Expert Opin Ther Targets 2008; 12:81-90. [PMID: 18076372 DOI: 10.1517/14728222.12.1.81] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Topiramate, a marketed antiepileptic drug, has been used to treat seizures and allied neurological problems since 1999. Recently, a series of newer findings for the use of topiramate have cropped up, which include Type 2 diabetes and obesity. In a series of clinical studies, a subset of neurological patients with Type 2 diabetes mellitus (T2DM) serendipitously showed better glycaemic control when treated with topiramate. It has since been demonstrated that topiramate can act both as an insulin secretagogue and sensitiser in T2DM animal models. Pathogenesis of Type 2 diabetes involves both beta-cell dysfunction and insulin resistance. Therefore, an agent that has dual action (insulin secretagougue and sensitisation) is preferred for T2DM. Topiramate seems to act through multiple mechanisms to ameliorate diabetic symptoms, some of them unknown. Hence, it becomes imperative to discuss its probable modes of action. Topiramate raises new hope as an antidiabetic agent or a potential new chemotype with a better safety profile for the treatment of T2DM.
Collapse
Affiliation(s)
- Vivek Khanna
- Ranbaxy Research Laboratories, Department of Pharmacology, New Drug Discovery Research, R&D III, Plot No. 20, Sector 18, Udyog Vihar Industrial Area, Gurgaon-122015, Haryana, India.
| | | | | | | | | |
Collapse
|