1
|
Nie W, Zhong W, Qian L, Zhong H, Hou Y, Xu H, Qi S, Dai L, Han X, Yang X, Xu R, He Y, Lin D, Gao F. Oral chitosan-cyclodextrin "shell-core" nanoparticles co-loaded Rhein and chlorogenic acid for ulcerative colitis treatment. Int J Biol Macromol 2025; 288:138493. [PMID: 39647762 DOI: 10.1016/j.ijbiomac.2024.138493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The food-derived ingredients Rhein (RH) and chlorogenic acid (CGA) have DEMONSTRATED a potential synergistic effect in the treatment of ulcerative colitis (UC) through their anti-inflammatory and antioxidant properties. However, the oral co-delivery of RH and CGA faces challenges such as differences in hydrophilicity and hydrophobicity, gastrointestinal instability, and inadequate colonic targeting. To address these issues, shell-core nanoparticles were developed for the co-encapsulation of RH and CGA (CP@CGA-FA/TA@RH NPs). These nanoparticles utilize cyclodextrin-based polymers and folate-amantadine polymers to form a supramolecular core that targets macrophages for anti-inflammatory action with RH, while chitosan cross-link to CGA in the outer shell provides microenvironment-sensitive antioxidant release. The results indicate that CP@CGA-FA/TA@RH NPs could effectively inhibit the classical TLR4/MyD88/NF-κB-mediated anti-inflammatory pathway and activate the Nrf2/HO-1-mediated antioxidant pathway, offering a novel approach to UC treatment. Q-value analysis confirms the substantial co-medication effect between RH and CGA. This study is the first to develop a nano-system combining two food-derived ingredients for the integrated treatment of UC.
Collapse
Affiliation(s)
- Wenbiao Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Wenzhen Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Lin Qian
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Huiyun Zhong
- Sichuan Vocational College of Health and Rehabilitation, Zigong 643000, China
| | - Yusen Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Haiting Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Shanshan Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Linxin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Xinyue Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Yao He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Dasheng Lin
- Chengdu Huashen Technology Group Co., Ltd., Chengdu 611137, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| |
Collapse
|
2
|
Krstulović J, Augustin G, Romić I, Tavra A, Batinović F, Hrgović Z. Hyperbaric Oxygen Therapy in the Treatment of Crohn's Disease. Healthcare (Basel) 2025; 13:128. [PMID: 39857155 PMCID: PMC11765433 DOI: 10.3390/healthcare13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Our study describes hyperbaric oxygen therapy (HBOT) as an additional therapy in the conservative treatment of Crohn's disease (CD) and its benefit in the early postoperative period to prevent surgical complications and improve gastrointestinal motility. Methods: This retrospective study evaluated HBOT in patients hospitalized at the Clinical Hospital Center Split for complications of CD between 2015 and 2020. Patients (N = 61) aged 19 to 67 with perianal fistulas, abscesses, fistulas, obstruction, stenosis, or bleeding were included, excluding those with ulcerative colitis or requiring intensive care. Patients were retrospectively divided into conservatively and surgically treated groups, and HBOT was administered over 15-25 days, with treatment lasting 60 min at 2.2 absolute atmospheres (ATA). We analyzed treatment outcomes between the HBOT-treated surgical and conservative groups and compared patients treated with HBOT to a cohort from the preceding five years who did not receive HBOT. Results: We treated 61 CD patients with HBOT, including 34 conservatively and 27 surgically treated patients. HBOT significantly reduced disease activity indices (311.7 ± 59.1 vs. 114 ± 29.8; 203.6 ± 24.1 vs. 83.8 ± 15, for conservatively treated patients, and 352.8 ± 45.7 vs. 109 ± 22.8; 270.4 ± 19.7 vs. 140.3 ± 10.6 for surgically treated patients) and accelerated bowel peristalsis recovery, with 94.1% of conservatively treated patients achieving remission. Comparison with a historical cohort showed faster recovery and improved outcomes in the HBOT group. Conclusions: HBOT is useful in postponing or avoiding surgical treatment, and in operated patients, it improves postoperative recovery and reduces the rate of postoperative complications.
Collapse
Affiliation(s)
- Jure Krstulović
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (J.K.); (A.T.); (F.B.); (Z.H.)
- Department of Surgery, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Goran Augustin
- Department of Surgery, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia;
| | - Ivan Romić
- Department of Surgery, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia;
| | - Ante Tavra
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (J.K.); (A.T.); (F.B.); (Z.H.)
| | - Franko Batinović
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (J.K.); (A.T.); (F.B.); (Z.H.)
- Department of Otorhinolaryngology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Zrinka Hrgović
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (J.K.); (A.T.); (F.B.); (Z.H.)
| |
Collapse
|
3
|
Kim DY, Kim SS, Choi EJ, Kim H, Kim DH, Hong SM, Lee SB, Cho HD. Protective Effects of Peanut Sprouts from a Smart Farming System on the Barrier Function of Human Epithelial Cells. Prev Nutr Food Sci 2024; 29:474-484. [PMID: 39759809 PMCID: PMC11699578 DOI: 10.3746/pnf.2024.29.4.474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 01/07/2025] Open
Abstract
Inflammatory bowel disease, including Crohn's disease and ulcerative colitis, poses an emerging threat as it can lead to colorectal cancer, thrombosis, and other chronic conditions. The present study demonstrated the protective effects of peanut sprout extracts (PSEs) prepared from day 2 to day 7 of germination against lipopolysaccharide (LPS)-induced epithelial barrier breakdown. Although the peanut sprout length increased in a time-dependent manner from day 1 to day 7, the extraction yields remained relatively consistent from day 2 to day 7. With regard to antioxidant activities, the PSE from day 6 of germination exhibited the highest oxidative radical scavenging activity and total phenolic content. Similarly, it showed remarkable anti-permeability effects in LPS-stimulated Caco-2 cells and suppressed the degradation and dissociation of junctional markers (e.g., ZO-1 and E-cadherin) at cell-cell junctions. Collectively, these data demonstrate that PSE from day 6 of germination can be used as a functional food resource to reduce inflammatory barrier dysfunction.
Collapse
Affiliation(s)
- Dong Yoon Kim
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea
| | - Soo-Sung Kim
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea
| | - Eun-Jin Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea
| | - Hoon Kim
- NANUMBIO Co., Ltd., Suncheon 57922, Korea
| | | | - Seong-Min Hong
- College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Sae-Byuk Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Institute of Fermentation Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Hyun-Dong Cho
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea
- Glocal University Project Team, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
4
|
Liu Z, Fu Q, Shao Y, Duan X. The role of mitochondrial DNA copy number in autoimmune disease: a bidirectional two sample mendelian randomization study. Front Immunol 2024; 15:1409969. [PMID: 39464879 PMCID: PMC11502960 DOI: 10.3389/fimmu.2024.1409969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Background Mitochondrial DNA (mtDNA) plays an important role in autoimmune diseases (AD), yet the relationship between mitochondria and autoimmune disease is controversial. This study employed bidirectional Mendelian randomization (MR) to explore the causal relationship between mtDNA copy number and 13 ADs (including ankylosing spondylitis [AS], Crohn's disease [CD], juvenile rheumatoid arthritis [JRA], polymyalgia rheumatica [PMR], psoriasis [PSO], rheumatoid arthritis [RA], Sjogren's syndrome [SS], systemic lupus erythematosus [SLE], thyrotoxicosis, type 1 diabetes mellitus [T1DM], ulcerative colitis [UC], and vitiligo). Methods A two-sample MR analysis was performed to assess the causal relationship between mtDNA copy number and AD. Genome-wide association study (GWAS) for mtDNA copy number were obtained from the UK Biobank (UKBB), while those associated with AD were sourced from the FinnGen Biobank. Inverse variance weighting (IVW) was the primary analysis method, complemented by three sensitivity analyses (MR-Egger, weighted median, weighted mode) to validate the results. Results IVW MR analysis identified significant associations between mtDNA copy number and CD (OR=2.51, 95% CI 1.56-4.22, P<0.001), JRA (OR=1.87, 95% CI 1.17-7.65, P=0.022), RA (OR=1.71, 95%CI 1.18-2.47, P=0.004), thyrotoxicosis (OR=0.51, 95% CI0.27-0.96, P=0.038), and T1DM (OR=0.51, 95% CI 0.27-0.96, P=0.038). Sensitivity analyses indicated no horizontal pleiotropy. Conclusions Our study revealed a potential causal relationship between mtDNA copy number and ADs, indicating that these markers may be relevant in exploring new therapeutic approaches.
Collapse
Affiliation(s)
- Zhekang Liu
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingan Fu
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yijia Shao
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinwang Duan
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Li H, Li X, Wang Y, Han W, Li H, Zhang Q. Hypoxia-Mediated Upregulation of Xanthine Oxidoreductase Causes DNA Damage of Colonic Epithelial Cells in Colitis. Inflammation 2024; 47:1142-1155. [PMID: 38206514 DOI: 10.1007/s10753-024-01966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Xanthine oxidoreductase (XOR) serves as the primary source of hydrogen peroxide and superoxide anions in the intestinal mucosa. However, its specific contribution to the progression of colonic disease remains unclear. In this study, we investigated the role of XOR in ulcerative colitis (UC) and attempted to identify the underlying mechanisms. We used the dextran sulfate sodium (DSS)-induced mouse model to mimic UC and observed that XOR inhibitors, allopurinol and diphenyleneiodonium sulfate (DPI), significantly alleviated UC in mice. In addition, treatment with cobalt chloride (CoCl2) and 1% O2 increased the expression of XOR and induced DNA oxidative damage in colonic epithelial cells. Furthermore, we identified that XOR accumulation in the nucleus may directly cause DNA oxidative damage and regulates HIF1α protein levels. In addition, allopurinol effectively protected colon epithelial cells from CoCl2-induced DNA damage. Altogether, our data provided evidence that XOR could induce DNA damage under hypoxic conditions, indicating a significant role of XOR in the initiation and early development of colitis-associated colorectal cancer (CAC).
Collapse
Affiliation(s)
- Hongling Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaojing Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yupeng Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Weiyu Han
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Haitao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Qi Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
6
|
Muro P, Zhang L, Li S, Zhao Z, Jin T, Mao F, Mao Z. The emerging role of oxidative stress in inflammatory bowel disease. Front Endocrinol (Lausanne) 2024; 15:1390351. [PMID: 39076514 PMCID: PMC11284038 DOI: 10.3389/fendo.2024.1390351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/19/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated condition that affects the digestive system and includes Crohn's disease (CD) and ulcerative colitis (UC). Although the exact etiology of IBD remains uncertain, dysfunctional immunoregulation of the gut is believed to be the main culprit. Amongst the immunoregulatory factors, reactive oxygen species (ROS) and reactive nitrogen species (RNS), components of the oxidative stress event, are produced at abnormally high levels in IBD. Their destructive effects may contribute to the disease's initiation and propagation, as they damage the gut lining and activate inflammatory signaling pathways, further exacerbating the inflammation. Oxidative stress markers, such as malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and serum-free thiols (R-SH), can be measured in the blood and stool of patients with IBD. These markers are elevated in patients with IBD, and their levels correlate with the severity of the disease. Thus, oxidative stress markers can be used not only in IBD diagnosis but also in monitoring the response to treatment. It can also be targeted in IBD treatment through the use of antioxidants, including vitamin C, vitamin E, glutathione, and N-acetylcysteine. In this review, we summarize the role of oxidative stress in the pathophysiology of IBD, its diagnostic targets, and the potential application of antioxidant therapies to manage and treat IBD.
Collapse
Affiliation(s)
- Peter Muro
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Zhang
- Nanjing Lishui People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shuxuan Li
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zihan Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenwei Mao
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Zhang N, Liao H, Lin Z, Tang Q. Insights into the Role of Glutathione Peroxidase 3 in Non-Neoplastic Diseases. Biomolecules 2024; 14:689. [PMID: 38927092 PMCID: PMC11202029 DOI: 10.3390/biom14060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Reactive oxygen species (ROSs) are byproducts of normal cellular metabolism and play pivotal roles in various physiological processes. Disruptions in the balance between ROS levels and the body's antioxidant defenses can lead to the development of numerous diseases. Glutathione peroxidase 3 (GPX3), a key component of the body's antioxidant system, is an oxidoreductase enzyme. GPX3 mitigates oxidative damage by catalyzing the conversion of hydrogen peroxide into water. Beyond its antioxidant function, GPX3 is vital in regulating metabolism, modulating cell growth, inducing apoptosis and facilitating signal transduction. It also serves as a significant tumor suppressor in various cancers. Recent studies have revealed aberrant expression of GPX3 in several non-neoplastic diseases, associating it with multiple pathological processes. This review synthesizes the current understanding of GPX3 expression and regulation, highlighting its extensive roles in noncancerous diseases. Additionally, this paper evaluates the potential of GPX3 as a diagnostic biomarker and explores emerging therapeutic strategies targeting this enzyme, offering potential avenues for future clinical treatment of non-neoplastic conditions.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Haihan Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
8
|
Li F, Chang Y, Wang Z, Wang Z, Zhao Q, Han X, Xu Z, Yu C, Liu Y, Chang S, Li H, Hu S, Li Y, Tang T. Antioxidant insights: investigating the protective role of oxidative balance in inflammatory bowel disease. Front Endocrinol (Lausanne) 2024; 15:1386142. [PMID: 38883598 PMCID: PMC11176441 DOI: 10.3389/fendo.2024.1386142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Background Limited studies have investigated the relationship between systemic oxidative stress and inflammatory bowel disease (IBD). The purpose of this study was to explore the relationship between oxidative balance score (OBS) and IBD. Methods We included 175,808 participants from the UK Biobank database from 2006 to 2010. OBS scores were calculated based on 22 lifestyle and dietary factors. Multiple variable Cox proportional regression models, as well as gender stratification and subgroup analysis, were utilized to investigate the relationship between OBS and IBD. Results There is a significant negative correlation between OBS and the occurrence of IBD, ulcerative colitis (UC), and Crohn's disease (CD). Additionally, OBS is significantly negatively correlated with intestinal obstruction in CD patients. Gender stratified analysis suggest a significant correlation between OBS and CD in female patients, particularly pronounced in those under 60 years old. Sensitivity analysis indicates a significant negative correlation between lifestyle-related OBS and diet-related OBS with the occurrence of CD in females, diet-related OBS is negatively correlated with CD in males. Conclusion OBS showed a significant negative correlation with IBD, especially in female CD patients. This study underscores the importance of antioxidant diet and lifestyle, which may provide a greater advantage for female CD patients.
Collapse
Affiliation(s)
- Fan Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Zhaodi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Zhi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Qi Zhao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Xiaoping Han
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Zifeng Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Chanjiao Yu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Yue Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Shiyu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Hongyan Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Sileng Hu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| |
Collapse
|
9
|
Liu Y, Fernandes I, Mateus N, Oliveira H, Han F. The Role of Anthocyanins in Alleviating Intestinal Diseases: A Mini Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5491-5502. [PMID: 38446808 DOI: 10.1021/acs.jafc.3c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Anthocyanins are phytonutrients with physiological activity belonging to the flavonoid family whose transport and absorption in the human body follow specific pathways. In the upper gastrointestinal tract, anthocyanins are rarely absorbed intact by active transporters, with most reaching the colon, where bacteria convert them into metabolites. There is mounting evidence that anthocyanins can be used for prevention and treatment of intestinal diseases, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and colorectal cancer (CRC), through the protective function on the intestinal epithelial barrier, immunomodulation, antioxidants, and gut microbiota metabolism. Dietary anthocyanins are summarized in this comprehensive review with respect to their classification and structure as well as their absorption and transport mechanisms within the gastrointestinal tract. Additionally, the review delves into the role and mechanism of anthocyanins in treating common intestinal diseases. These insights will deepen our understanding of the potential benefits of natural anthocyanins for intestinal disorders.
Collapse
Affiliation(s)
- Yang Liu
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Iva Fernandes
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto 4169-007 Porto, Portugal
| | - Nuno Mateus
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto 4169-007 Porto, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto 4169-007 Porto, Portugal
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling 712100, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China
- Heyang Experimental Demonstration Station, Northwest A&F University, Weinan 715300, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yongning 750104, China
| |
Collapse
|
10
|
Almuqbil RM. Brucine Entrapped Titanium Oxide Nanoparticle for Anticancer Treatment: An In Vitro Study. Adv Pharmacol Pharm Sci 2024; 2024:4646855. [PMID: 38529192 PMCID: PMC10963080 DOI: 10.1155/2024/4646855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/04/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
Backgroundand Objective. The public's health has been seriously threatened by cervical cancer during recent times. In terms of newly diagnosed cases worldwide, it ranks as the ninth most prevalent malignancy. Multiple investigations have proven that nanoparticles can effectively combat cancer due to their small dimensions and extensive surface area. In the meantime, bioactive compounds which are biocompatible are being loaded onto nanoparticles to promote cancer therapy. The current study investigates the anticancerous potential of Brucine-entrapped titanium oxide nanoparticles (TiO2 NPs) in cervical cancer cell line (HeLa). Materials and Methods. The physiochemical, structural, and morphological aspects of Brucine-entrapped TiO2 NPs were evaluated by UV-visible spectrophotometer, Fourier transform-infrared spectroscopy (FT-IR), dynamic light scattering (DLS), scanning electron microscopy (SEM), and energy dispersive X-ray (EDAX). The cytotoxic effect against the HeLa cell line was assessed using a tetrazolium-based colorimetric assay (MTT), a trypan blue exclusion (TBE) assay, phase contrast microscopic analysis, and a fluorescence assay including ROS and DAPI staining. Furthermore, estimation of antioxidant markers includes catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD). Results. The UV spectrum at 266 nm revealed the formation of TiO NPs. The FT-IR peaks confirmed the effective entrapment of brucine with TiO2 NPs. The average size (100.0 nm) of Brucine-entrapped TiO2 NPs was revealed in DLS analysis. The micrograph of the SEM revealed the formation of ellipsoidal to tetragonal-shaped NPs. The Ti, O, and C signals were observed in EDAX. In MTT assay, Brucine-entrapped TiO2 NPs showed inhibition of cell proliferation in a dose-wise manner and IC50 was noticed at the concentration of 30 µg/mL. The percentage of viable cells gradually reduced in the trypan blue exclusion assay. The phase contrast microscopic analysis of Brucine-entrapped TiO2 NP-treated cells showed cell shrinkage, cell wall deterioration, and cell blebbing. The intracellular ROS level was increased in a dose-wise manner when compared to control cells in ROS staining. The condensed nuclei and apoptotic cells were increased in treated cells, as noted in DAPI staining. In treated cells, the antioxidant markers such as CAT, GSH, and SOD levels were substantially lower compared to the control cells. Conclusion. The synthesized Brucine entrapped TiO2 NPs exhibited remarkable anticancer activity against the HeLa cell line.
Collapse
Affiliation(s)
- Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
11
|
Singh S. Antioxidant nanozymes as next-generation therapeutics to free radical-mediated inflammatory diseases: A comprehensive review. Int J Biol Macromol 2024; 260:129374. [PMID: 38242389 DOI: 10.1016/j.ijbiomac.2024.129374] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Recent developments in exploring the biological enzyme mimicking properties in nanozymes have opened a separate avenue, which provides a suitable alternative to the natural antioxidants and enzymes. Due to high and tunable catalytic activity, low cost of synthesis, easy surface modification, and good biocompatibility, nanozymes have garnered significant research interest globally. Several inorganic nanomaterials have been investigated to exhibit catalytic activities of some of the key natural enzymes, including superoxide dismutase (SOD), catalase, glutathione peroxidase, peroxidase, and oxidase, etc. These nanozymes are used for diverse biomedical applications including therapeutics, imaging, and biosensing in various cells/tissues and animal models. In particular, inflammation-related diseases are closely associated with reactive oxygen and reactive nitrogen species, and therefore effective antioxidants could be excellent therapeutics due to their free radical scavenging ability. Although biological enzymes and other artificial antioxidants could perform well in scavenging the reactive oxygen and nitrogen species, however, suffer from several drawbacks such as the requirement of strict physiological conditions for enzymatic activity, limited stability in the environment beyond their optimum pH and temperature, and high cost of synthesis, purification, and storage make then unattractive for broad-spectrum applications. Therefore, this review systematically and comprehensively presents the free radical-mediated evolution of various inflammatory diseases (inflammatory bowel disease, mammary gland fibrosis, and inflammation, acute injury of the liver and kidney, mammary fibrosis, and cerebral ischemic stroke reperfusion) and their mitigation by various antioxidant nanozymes in the biological system. The mechanism of free radical scavenging by antioxidant nanozymes under in vitro and in vivo experimental models and catalytic efficiency comparison with corresponding natural enzymes has also been presented.
Collapse
Affiliation(s)
- Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India.
| |
Collapse
|
12
|
de Espindola JS, Ferreira Taccóla M, da Silva VSN, Dos Santos LD, Rossini BC, Mendonça BC, Pacheco MTB, Galland F. Digestion-resistant whey peptides promote antioxidant effect on Caco-2 cells. Food Res Int 2023; 173:113291. [PMID: 37803604 DOI: 10.1016/j.foodres.2023.113291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 10/08/2023]
Abstract
Enteric endothelial cells are the first structure to come in contact with digested food and may suffer oxidative damage by innumerous exogenous factors. Although peptides derived from whey digestion have presented antioxidant potential, little is known regarding antioxidant pathways activation in Caco-2 cell line model. Hence, we evaluated the ability to form whey peptides resistant to simulated gastrointestinal digestive processes, with potential antioxidant activity on gastrointestinal cells and associated with sequence structure and activity. Using the INFOGEST method of simulated static digestion, we achieved 35.2% proteolysis, with formation of peptides of low molecular mass (<600 Da) evaluated by FPLC. The digestion-resistant peptides showed a high proportion of hydrophobic and acidic amino acids, but with average surface hydrophobicity. We identified 24 peptide sequences, mainly originated from β-lactoglobulin, that exhibit various bioactivities. Structurally, the sequenced peptides predominantly contained the amino acids lysine and valine in the N-terminal region, and tyrosine in the C-terminal region, which are known to exhibit antioxidant properties. The antioxidant activity of the peptide digests was on average twice as potent as that of the protein isolates for the same concentration, as evaluated by ABTS, DPPH and ORAC. Evaluation of biological activity in Caco-2 intestinal cells, stimulated with hydrogen peroxide, showed that they attenuated the production of reactive oxygen species and prevented GSH reduction and SOD activity increase. Caco-2 cells were not responsive to nitric oxide secretion. This study suggests that whey peptides formed during gastric digestion exhibit biological antioxidant activity, without the need for previously hydrolysis with exogenous enzymes for supplement application. The study's primary contribution was demonstrating the antioxidant activity of whey peptides in maintaining the gastrointestinal epithelial cells, potentially preventing oxidative stress that affects the digestive system.
Collapse
Affiliation(s)
- Juliana Santos de Espindola
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Milena Ferreira Taccóla
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Vera Sônia Nunes da Silva
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | | | - Bruno Cesar Rossini
- Institute of Biotechnology, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil.
| | - Bruna Cavecci Mendonça
- Institute of Biotechnology, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil.
| | - Maria Teresa Bertoldo Pacheco
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Fabiana Galland
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| |
Collapse
|
13
|
Moulder R, Välikangas T, Hirvonen MK, Suomi T, Brorsson CA, Lietzén N, Bruggraber SFA, Overbergh L, Dunger DB, Peakman M, Chmura PJ, Brunak S, Schulte AM, Mathieu C, Knip M, Elo LL, Lahesmaa R. Targeted serum proteomics of longitudinal samples from newly diagnosed youth with type 1 diabetes distinguishes markers of disease and C-peptide trajectory. Diabetologia 2023; 66:1983-1996. [PMID: 37537394 PMCID: PMC10542287 DOI: 10.1007/s00125-023-05974-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/06/2023] [Indexed: 08/05/2023]
Abstract
AIMS/HYPOTHESIS There is a growing need for markers that could help indicate the decline in beta cell function and recognise the need and efficacy of intervention in type 1 diabetes. Measurements of suitably selected serum markers could potentially provide a non-invasive and easily applicable solution to this challenge. Accordingly, we evaluated a broad panel of proteins previously associated with type 1 diabetes in serum from newly diagnosed individuals during the first year from diagnosis. To uncover associations with beta cell function, comparisons were made between these targeted proteomics measurements and changes in fasting C-peptide levels. To further distinguish proteins linked with the disease status, comparisons were made with measurements of the protein targets in age- and sex-matched autoantibody-negative unaffected family members (UFMs). METHODS Selected reaction monitoring (SRM) mass spectrometry analyses of serum, targeting 85 type 1 diabetes-associated proteins, were made. Sera from individuals diagnosed under 18 years (n=86) were drawn within 6 weeks of diagnosis and at 3, 6 and 12 months afterwards (288 samples in total). The SRM data were compared with fasting C-peptide/glucose data, which was interpreted as a measure of beta cell function. The protein data were further compared with cross-sectional SRM measurements from UFMs (n=194). RESULTS Eleven proteins had statistically significant associations with fasting C-peptide/glucose. Of these, apolipoprotein L1 and glutathione peroxidase 3 (GPX3) displayed the strongest positive and inverse associations, respectively. Changes in GPX3 levels during the first year after diagnosis indicated future fasting C-peptide/glucose levels. In addition, differences in the levels of 13 proteins were observed between the individuals with type 1 diabetes and the matched UFMs. These included GPX3, transthyretin, prothrombin, apolipoprotein C1 and members of the IGF family. CONCLUSIONS/INTERPRETATION The association of several targeted proteins with fasting C-peptide/glucose levels in the first year after diagnosis suggests their connection with the underlying changes accompanying alterations in beta cell function in type 1 diabetes. Moreover, the direction of change in GPX3 during the first year was indicative of subsequent fasting C-peptide/glucose levels, and supports further investigation of this and other serum protein measurements in future studies of beta cell function in type 1 diabetes.
Collapse
Affiliation(s)
- Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - M Karoliina Hirvonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Caroline A Brorsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niina Lietzén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Lut Overbergh
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Boston, MA, USA
| | - Piotr J Chmura
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Soren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Chantal Mathieu
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Mikael Knip
- Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
14
|
Sahoo DK, Heilmann RM, Paital B, Patel A, Yadav VK, Wong D, Jergens AE. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front Endocrinol (Lausanne) 2023; 14:1217165. [PMID: 37701897 PMCID: PMC10493311 DOI: 10.3389/fendo.2023.1217165] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing gastrointestinal (GI) disorder characterized by intestinal inflammation. The etiology of IBD is multifactorial and results from a complex interplay between mucosal immunity, environmental factors, and host genetics. Future therapeutics for GI disorders, including IBD, that are driven by oxidative stress require a greater understanding of the cellular and molecular mechanisms mediated by reactive oxygen species (ROS). In the GI tract, oxidative stressors include infections and pro-inflammatory responses, which boost ROS generation by promoting the production of pro-inflammatory cytokines. Nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) represent two important signaling pathways in intestinal immune cells that regulate numerous physiological processes, including anti-inflammatory and antioxidant activities. Natural antioxidant compounds exhibit ROS scavenging and increase antioxidant defense capacity to inhibit pro-oxidative enzymes, which may be useful in IBD treatment. In this review, we discuss various polyphenolic substances (such as resveratrol, curcumin, quercetin, green tea flavonoids, caffeic acid phenethyl ester, luteolin, xanthohumol, genistein, alpinetin, proanthocyanidins, anthocyanins, silymarin), phenolic compounds including thymol, alkaloids such as berberine, storage polysaccharides such as tamarind xyloglucan, and other phytochemicals represented by isothiocyanate sulforaphane and food/spices (such as ginger, flaxseed oil), as well as antioxidant hormones like melatonin that target cellular signaling pathways to reduce intestinal inflammation occurring with IBD.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Romy M. Heilmann
- Department for Small Animals, Veterinary Teaching Hospital, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
15
|
Luo J, Su L, He X, Du Y, Xu N, Wu R, Zhu Y, Wang T, Shao R, Unverzagt FW, Hake AM, Jin Y, Gao S. Blood Selenium and Serum Glutathione Peroxidase Levels Were Associated with Serum β-Amyloid in Older Adults. Biol Trace Elem Res 2023; 201:3679-3687. [PMID: 36370334 DOI: 10.1007/s12011-022-03480-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Studies have established the association between blood β-amyloid (Aβ) levels and Alzheimer's disease, but population-based studies concerning the association between selenium (Se) and Aβ levels in blood samples are very limited. Therefore, we explored the association in an elderly population with Se status and serum Aβ measures. METHODS A cross-sectional study on 469 elderly individuals from four rural counties with diverse soil Se levels was carried out. Fasting blood Se, serum selenoprotein P (SELENOP), and glutathione peroxidase (GPX), serum Aβ42, and Aβ40 were measured. Quantile regression models were used to determine the associations of blood Se, serum GPX, and SELENOP with Aβ levels. RESULTS Significant negative associations were observed between blood Se and serum Aβ42 and Aβ40 levels at all percentiles (P < 0.05). The associations were generally stronger at higher Aβ42 and Aβ40 percentiles than lower Aβ42 and Aβ40 percentiles. Blood Se was positively associated with serum Aβ42/Aβ40 ratio at 25th, 50th, and 75th percentiles. Significant positive associations were observed between serum GPX and Aβ42 and Aβ40 levels at all percentiles (P < 0.05). The positive associations were generally stronger at higher Aβ42 and Aβ40 percentiles than at lower percentiles. Serum GPX was negatively associated with Aβ42/Aβ40 ratio at 25th, 50th, 75th, and 95th percentiles. No associations with serum SELENOP and Aβ levels were observed. CONCLUSIONS Our results suggest that higher Se levels are associated with lower serum Aβ42 and Aβ40 levels and with higher Aβ42/Aβ40 ratio, and the results are specific for different selenoproteins.
Collapse
Affiliation(s)
- Jiao Luo
- CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, China
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Liqin Su
- CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, China.
| | - Xiaohong He
- Tujia and Miao Autonomous Prefecture Center for Disease Control and Prevention, Enshi, 445000, China
| | - Yegang Du
- Academy of Metrology & Quality Inspection, Shenzhen, 518000, China
| | - Ning Xu
- CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, China
| | - Rangpeng Wu
- Tujia and Miao Autonomous Prefecture Center for Disease Control and Prevention, Enshi, 445000, China
| | - Yunfeng Zhu
- Tujia and Miao Autonomous Prefecture Center for Disease Control and Prevention, Enshi, 445000, China
| | - Ting Wang
- CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, China
| | - Ranqi Shao
- CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, China
| | - Frederick W Unverzagt
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ann M Hake
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yinlong Jin
- CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, China
| | - Sujuan Gao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202-2872, USA
| |
Collapse
|
16
|
Rehman S, Gora AH, Abdelhafiz Y, Dias J, Pierre R, Meynen K, Fernandes JMO, Sørensen M, Brugman S, Kiron V. Potential of algae-derived alginate oligosaccharides and β-glucan to counter inflammation in adult zebrafish intestine. Front Immunol 2023; 14:1183701. [PMID: 37275890 PMCID: PMC10235609 DOI: 10.3389/fimmu.2023.1183701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/18/2023] [Indexed: 06/07/2023] Open
Abstract
Alginate oligosaccharides (AOS) are natural bioactive compounds with anti-inflammatory properties. We performed a feeding trial employing a zebrafish (Danio rerio) model of soybean-induced intestinal inflammation. Five groups of fish were fed different diets: a control (CT) diet, a soybean meal (SBM) diet, a soybean meal+β-glucan (BG) diet and 2 soybean meal+AOS diets (alginate products differing in the content of low molecular weight fractions - AL, with 31% < 3kDa and AH, with 3% < 3kDa). We analyzed the intestinal transcriptomic and plasma metabolomic profiles of the study groups. In addition, we assessed the expression of inflammatory marker genes and histological alterations in the intestine. Dietary algal β-(1, 3)-glucan and AOS were able to bring the expression of certain inflammatory genes altered by dietary SBM to a level similar to that in the control group. Intestinal transcriptomic analysis indicated that dietary SBM changed the expression of genes linked to inflammation, endoplasmic reticulum, reproduction and cell motility. The AL diet suppressed the expression of genes related to complement activation, inflammatory and humoral response, which can likely have an inflammation alleviation effect. On the other hand, the AH diet reduced the expression of genes, causing an enrichment of negative regulation of immune system process. The BG diet suppressed several immune genes linked to the endopeptidase activity and proteolysis. The plasma metabolomic profile further revealed that dietary SBM can alter inflammation-linked metabolites such as itaconic acid, taurochenodeoxycholic acid and enriched the arginine biosynthesis pathway. The diet AL helped in elevating one of the short chain fatty acids, namely 2-hydroxybutyric acid while the BG diet increased the abundance of a vitamin, pantothenic acid. Histological evaluation revealed the advantage of the AL diet: it increased the goblet cell number and length of villi of the intestinal mucosa. Overall, our results indicate that dietary AOS with an appropriate amount of < 3kDa can stall the inflammatory responses in zebrafish.
Collapse
Affiliation(s)
- Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Adnan H. Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Ronan Pierre
- CEVA (Centre d’Etude et de Valorisation des Algues), Pleubian, France
| | - Koen Meynen
- Kemin Aquascience, Division of Kemin Europa N.V., Herentals, Belgium
| | | | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Sylvia Brugman
- Animal Sciences Group, Host Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
17
|
Zhao T, Wang H, Liu Z, Liu Y, Li B, Huang X. Recent Perspective of Lactobacillus in Reducing Oxidative Stress to Prevent Disease. Antioxidants (Basel) 2023; 12:antiox12030769. [PMID: 36979017 PMCID: PMC10044891 DOI: 10.3390/antiox12030769] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
During oxidative stress, an important factor in the development of many diseases, cellular oxidative and antioxidant activities are imbalanced due to various internal and external factors such as inflammation or diet. The administration of probiotic Lactobacillus strains has been shown to confer a range of antibacterial, anti-inflammatory, antioxidant, and immunomodulatory effects in the host. This review focuses on the potential role of oxidative stress in inflammatory bowel diseases (IBD), cancer, and liver-related diseases in the context of preventive and therapeutic effects associated with Lactobacillus. This article reviews studies in cell lines and animal models as well as some clinical population reports that suggest that Lactobacillus could alleviate basic symptoms and related abnormal indicators of IBD, cancers, and liver damage, and covers evidence supporting a role for the Nrf2, NF-κB, and MAPK signaling pathways in the effects of Lactobacillus in alleviating inflammation, oxidative stress, aberrant cell proliferation, and apoptosis. This review also discusses the unmet needs and future directions in probiotic Lactobacillus research including more extensive mechanistic analyses and more clinical trials for Lactobacillus-based treatments.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Haoran Wang
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yang Liu
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| |
Collapse
|
18
|
Li M, Liu J, Shi L, Zhou C, Zou M, Fu D, Yuan Y, Yao C, Zhang L, Qin S, Liu M, Cheng Q, Wang Z, Wang L. Gold nanoparticles-embedded ceria with enhanced antioxidant activities for treating inflammatory bowel disease. Bioact Mater 2023; 25:95-106. [PMID: 36789001 PMCID: PMC9900456 DOI: 10.1016/j.bioactmat.2023.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
The excessive reactive oxygen species (ROS) is a hallmark associated with the initiation and progression of inflammatory bowel disease (IBD), which execrably form a vicious cycle of ROS and inflammation to continually promote disease progression. Here, the gold nanoparticles-embedded ceria nanoparticles (Au/CeO2) with enhanced antioxidant activities are designed to block this cycle reaction for treating IBD by scavenging overproduced ROS. The Au/CeO2 with core-shell and porous structure exhibits significantly higher enzymatic catalytic activities compared with commercial ceria nanoparticles, likely due to the effective exposure of catalytic sites, higher content of Ce (III) and oxygen vacancy, and accelerated reduction from Ce (IV) to Ce (III). Being coated with negatively-charged hyaluronic acid, the Au/CeO2@HA facilitates accumulation in inflamed colon tissues via oral administration, reduces pro-inflammatory cytokines, and effectively alleviates colon injury in colitis mice. Overall, the Au/CeO2@HA with good biocompatibility is a promising nano-therapeutic for treating IBD.
Collapse
Affiliation(s)
- Mingyi Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Cheng Zhou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Meizhen Zou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Daan Fu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China
| | - Ye Yuan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China
| | - Chundong Yao
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Lifang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sumei Qin
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Miaodeng Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Qian Cheng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China,Corresponding author. Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China,Corresponding author. Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
19
|
Iborra M, Moret I, Busó E, García-Giménez JL, Ricart E, Gisbert JP, Cabré E, Esteve M, Márquez-Mosquera L, García-Planella E, Guardiola J, Pallardó FV, Serena C, Algaba-Chueca F, Domenech E, Nos P, Beltrán B. The Genetic Diversity and Dysfunctionality of Catalase Associated with a Worse Outcome in Crohn's Disease. Int J Mol Sci 2022; 23:ijms232415881. [PMID: 36555526 PMCID: PMC9785615 DOI: 10.3390/ijms232415881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic gut inflammation in Crohn’s disease (CD) is associated with an increase in oxidative stress and an imbalance of antioxidant enzymes. We have previously shown that catalase (CAT) activity is permanently inhibited by CD. The purpose of the study was to determine whether there is any relationship between the single nucleotide polymorphisms (SNPs) in the CAT enzyme and the potential risk of CD associated with high levels of oxidative stress. Additionally, we used protein and regulation analyses to determine what causes long-term CAT inhibition in peripheral white mononuclear cells (PWMCs) in both active and inactive CD. We first used a retrospective cohort of 598 patients with CD and 625 age-matched healthy controls (ENEIDA registry) for the genotype analysis. A second human cohort was used to study the functional and regulatory mechanisms of CAT in CD. We isolated PWMCs from CD patients at the onset of the disease (naïve CD patients). In the genotype-association SNP analysis, the CAT SNPs rs1001179, rs475043, and rs525938 showed a significant association with CD (p < 0.001). Smoking CD patients with the CAT SNP rs475043 A/G genotype had significantly more often penetrating disease (p = 0.009). The gene expression and protein levels of CAT were permanently reduced in the active and inactive CD patients. The inhibition of CAT activity in the PWMCs of the CD patients was related to a low concentration of CAT protein caused by the downregulation of CAT-gene transcription. Our study suggests an association between CAT SNPs and the risk of CD that may explain permanent CAT inhibition in CD patients together with low CAT gene and protein expression.
Collapse
Affiliation(s)
- Marisa Iborra
- Gastroenterology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Correspondence:
| | - Inés Moret
- Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Enrique Busó
- Central Unit for Research in Medicine (UCIM), Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- INCLIVA Biomedical Research Institute, Spanish Institute of Health Carlos III, Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Center for Biomedical Research Network on Rare Diseases (CIBERER), 46010 Valencia, Spain
| | - Elena Ricart
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clìnic de Barcelona, CIBEREHD, IDIBAPS, 08036 Barcelona, Spain
| | - Javier P. Gisbert
- Gastroenterology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), CIBEREHD, 28006 Madrid, Spain
| | - Eduard Cabré
- Gastroenterology Department, Hospital Germans Trias i Pujol, CIBEREHD, 08916 Badalona, Spain
| | - Maria Esteve
- Gastroenterology Department, Hospital Universitari Mutua de Terrassa, CIBEREHD, 08221 Barcelona, Spain
| | - Lucía Márquez-Mosquera
- Servei de Digestiu, Hospital del Mar, Barcelona, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Esther García-Planella
- Gastroenterology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Jordi Guardiola
- Gastroenterology Department, Hospital Universitari de Bellvitge, Hospital de Llobregat-Barcelona, 08901 Barcelona, Spain
| | - Federico V. Pallardó
- INCLIVA Biomedical Research Institute, Spanish Institute of Health Carlos III, Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Center for Biomedical Research Network on Rare Diseases (CIBERER), 46010 Valencia, Spain
| | - Carolina Serena
- Institut d’Investigació Sanitària Pere Virgili, Hospital Universitari Joan XXIII, 43007 Tarragona, Spain
| | | | - Eugeni Domenech
- Gastroenterology Department, Hospital Germans Trias i Pujol, CIBEREHD, 08916 Badalona, Spain
| | - Pilar Nos
- Gastroenterology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
| | - Belén Beltrán
- Hospital Vithas Virgen del Consuelo, 46007 Valencia, Spain
| |
Collapse
|
20
|
Ji Y, Yang Y, Sun S, Dai Z, Ren F, Wu Z. Insights into diet-associated oxidative pathomechanisms in inflammatory bowel disease and protective effects of functional amino acids. Nutr Rev 2022; 81:95-113. [PMID: 35703919 DOI: 10.1093/nutrit/nuac039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There has been a substantial rise in the incidence and prevalence of clinical patients presenting with inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis. Accumulating evidence has corroborated the view that dietary factors (particularly diets with high levels of saturated fat or sugar) are involved in the development and progression of IBD, which is predominately associated with changes in the composition of the gut microbiota and an increase in the generation of reactive oxygen species. Notably, the ecological imbalance of the gut microbiome exacerbates oxidative stress and inflammatory responses, leading to perturbations of the intestinal redox balance and immunity, as well as mucosal integrity. Recent findings have revealed that functional amino acids, including L-glutamine, glycine, L-arginine, L-histidine, L-tryptophan, and hydroxyproline, are effectively implicated in the maintenance of intestinal redox and immune homeostasis. These amino acids and their metabolites have oxygen free-radical scavenging and inflammation-relieving properties, and they participate in modulation of the microbial community and the metabolites in the gut. The principal focus of this article is a review of recent advances in the oxidative pathomechanisms of IBD development and progression in relation to dietary factors, with a particular emphasis on the redox and signal transduction mechanisms of host cells in response to unbalanced diets and enterobacteria. In addition, an update on current understanding of the protective effects of functional amino acids against IBD, together with the underlying mechanisms for this protection, have been provided.
Collapse
Affiliation(s)
- Yun Ji
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ying Yang
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, ChinaChina
| | - Fazheng Ren
- are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Yuan S, Li Y, Li J, Xue JC, Wang Q, Hou XT, Meng H, Nan JX, Zhang QG. Traditional Chinese Medicine and Natural Products: Potential Approaches for Inflammatory Bowel Disease. Front Pharmacol 2022; 13:892790. [PMID: 35873579 PMCID: PMC9301246 DOI: 10.3389/fphar.2022.892790] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a rare, recurrent, and intractable inflammation obstruction of the stomach tract, usually accompanied by inflammation of cell proliferation and inflammation of the colon and carries a particular cause of inflammation. The clinical use of drugs in western countries affects IBD treatment, but various adverse effects and high prices limit their application. For these reasons, Traditional Chinese Medicine (TCM) is more advantageous in treating IBD. This paper reviews the mechanism and research status of TCM and natural products in IBD treatment by analyzing the relevant literature to provide a scientific and theoretical basis for IBD treatment.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Jia-Chen Xue
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Chronic Disease Research Center, Medical College, Dalian University, Dalian, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| |
Collapse
|
22
|
Grodner B, Napiórkowska M, Pisklak DM. Catalase Inhibition by Aminoalkanol Derivatives with Potential Anti-Cancer Activity-In Vitro and In Silico Studies Using Capillary Electrophoresis Method. Int J Mol Sci 2022; 23:7123. [PMID: 35806131 PMCID: PMC9266750 DOI: 10.3390/ijms23137123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, the investigation of type and inhibitory strength of catalase by two pairs of aminoalkanol derivatives (1,7 diEthyl- and 1,7-diMethyl-8,9-diphenyl-4-azatricyclo (5.2.1.02.6) dec-8-ene- 3,5,10-trione) has been presented. The obtained results allowed for the determination of all kinetic parameters (Km, Vmax, slope angles of Lineweaver-Burk plots, Ki and IC50) on the basis of which it was shown that all four aminoalkanol derivatives are competitive inhibitors of catalase. However, the strength of action of each of them depends on the type of substituents present in the main structure of the molecule. Subtle differences in the potency of individual derivatives were possible to detect thanks to the developed, sensitive method of capillary electrophoresis, which allowed simultaneous monitoring of the mutual changes in the concentrations of substrates and products of the reaction catalyzed by the enzyme. Detailed values of kinetic parameters showed that all derivatives are weak inhibitors of catalase, which in this case is a big advantage because each inhibition of catalase activity is associated with a greater amount of accumulated, harmful reactive oxygen species. The results of docking studies also show the convergence of the binding energies values of individual inhibitors with all kinetic parameters of the investigated catalase inhibition and thus additionally confirm the weak inhibitory strength of all four aminoalkanol derivatives.
Collapse
Affiliation(s)
- Błażej Grodner
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| | - Mariola Napiórkowska
- Department of Biochemistry, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland;
| | - Dariusz Maciej Pisklak
- Department of Physical Chemistry, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland;
| |
Collapse
|
23
|
Kim MJ, Jeon JH. Recent Advances in Understanding Nrf2 Agonism and Its Potential Clinical Application to Metabolic and Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms23052846. [PMID: 35269986 PMCID: PMC8910922 DOI: 10.3390/ijms23052846] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a major component of cell damage and cell fat, and as such, it occupies a central position in the pathogenesis of metabolic disease. Nuclear factor-erythroid-derived 2-related factor 2 (Nrf2), a key transcription factor that coordinates expression of genes encoding antioxidant and detoxifying enzymes, is regulated primarily by Kelch-like ECH-associated protein 1 (Keap1). However, involvement of the Keap1–Nrf2 pathway in tissue and organism homeostasis goes far beyond protection from cellular stress. In this review, we focus on evidence for Nrf2 pathway dysfunction during development of several metabolic/inflammatory disorders, including diabetes and diabetic complications, obesity, inflammatory bowel disease, and autoimmune diseases. We also review the beneficial role of current molecular Nrf2 agonists and summarize their use in ongoing clinical trials. We conclude that Nrf2 is a promising target for regulation of numerous diseases associated with oxidative stress and inflammation. However, more studies are needed to explore the role of Nrf2 in the pathogenesis of metabolic/inflammatory diseases and to review safety implications before therapeutic use in clinical practice.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Endocrinology in Internal Medicine, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Correspondence: ; Tel.: +82-(53)-200-3182; Fax: +82-(53)-200-3155
| |
Collapse
|
24
|
Ezeji JC, Sarikonda DK, Hopperton A, Erkkila HL, Cohen DE, Martinez SP, Cominelli F, Kuwahara T, Dichosa AEK, Good CE, Jacobs MR, Khoretonenko M, Veloo A, Rodriguez-Palacios A. Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes 2022; 13:1922241. [PMID: 34196581 PMCID: PMC8253142 DOI: 10.1080/19490976.2021.1922241] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Parabacteroides distasonis is the type strain for the genus Parabacteroides, a group of gram-negative anaerobic bacteria that commonly colonize the gastrointestinal tract of numerous species. First isolated in the 1930s from a clinical specimen as Bacteroides distasonis, the strain was re-classified to form the new genus Parabacteroides in 2006. Currently, the genus consists of 15 species, 10 of which are listed as 'validly named' (P. acidifaciens, P. chartae, P. chinchillae, P. chongii, P. distasonis, P. faecis, P. goldsteinii, P. gordonii, P. johnsonii, and P. merdae) and 5 'not validly named' (P. bouchesdurhonensis, P. massiliensis, P. pacaensis, P. provencensis, and P. timonensis) by the List of Prokaryotic names with Standing in Nomenclature. The Parabacteroides genus has been associated with reports of both beneficial and pathogenic effects in human health. Herein, we review the literature on the history, ecology, diseases, antimicrobial resistance, and genetics of this bacterium, illustrating the effects of P. distasonis on human and animal health.
Collapse
Affiliation(s)
- Jessica C. Ezeji
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daven K. Sarikonda
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Austin Hopperton
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Hailey L. Erkkila
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daniel E. Cohen
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Fabio Cominelli
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA,Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, United States
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Armand E. K. Dichosa
- B-10 Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Caryn E. Good
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Michael R. Jacobs
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - Alida Veloo
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander Rodriguez-Palacios
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, United States,University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA,CONTACT Alexander Rodriguez-Palacios Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
25
|
Sotona O, Peterová E, Örhalmi J, Dušek T, Mrkvicová A, Knoblochová V, Lochman P, Malý O, Páral J, Bureš J. Gene Expression of Antioxidant Enzymes in the Resected Intestine in Crohn's Disease. ACTA MEDICA (HRADEC KRÁLOVÉ) 2021; 64:153-157. [PMID: 34779380 DOI: 10.14712/18059694.2021.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The inflammatory process in Crohn's disease (CD) is closely associated with the formation of reactive oxygen species. Antioxidant enzymes can play an important role in the outcome of CD and may influence postoperative recurrence in these patients. The aim of our study was to evaluate gene expression of intracellular antioxidant enzymes in surgically resected intestinal specimens of patients with CD, both in macroscopically normal and in inflamed tissue. METHODS A total of 28 patients referred for elective bowel resection were enrolled in the study. Full-thickness small intestinal specimens were investigated. Gene expression of antioxidant enzymes - superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GSR) - was evaluated both in macroscopically normal and inflamed samples. RESULTS There were significantly lower levels of SOD1 mRNA (p = 0.007) and GSR mRNA (p = 0.027) in inflamed tissue compared to macroscopically normal areas. No significant differences were found between affected and non-affected intestinal segments in mRNA for SOD2, SOD3 and GPX. CONCLUSIONS Our pilot data clearly showed that the gene expression of major antioxidant enzymes is not a uniform mechanism in the pathogenesis of Crohn's disease. Topically decreased gene expression of SOD1 and GSR might facilitate the segmental tissue injury caused by reactive oxygen species.
Collapse
Affiliation(s)
- Otakar Sotona
- Department of Field Surgery, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic. .,Department of Surgery, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic.
| | - Eva Peterová
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Július Örhalmi
- Department of Surgery, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Tomáš Dušek
- Department of Field Surgery, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic.,Department of Surgery, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Alena Mrkvicová
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Veronika Knoblochová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Petr Lochman
- Department of Field Surgery, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic.,Department of Surgery, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Ondřej Malý
- Department of Field Surgery, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic.,Department of Surgery, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Jiří Páral
- Department of Field Surgery, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic.,Department of Surgery, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Jan Bureš
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| |
Collapse
|
26
|
Lei L, Zhang J, Decker EA, Zhang G. Roles of Lipid Peroxidation-Derived Electrophiles in Pathogenesis of Colonic Inflammation and Colon Cancer. Front Cell Dev Biol 2021; 9:665591. [PMID: 34079800 PMCID: PMC8165272 DOI: 10.3389/fcell.2021.665591] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022] Open
Abstract
Redox stress is a common feature of gut disorders such as colonic inflammation (inflammatory bowel disease or IBD) and colorectal cancer (CRC). This leads to increased colonic formation of lipid-derived electrophiles (LDEs) such as 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), trans, trans-2,4-decadienal (tt-DDE), and epoxyketooctadecenoic acid (EKODE). Recent research by us and others support that treatment with LDEs increases the severity of colitis and exacerbates the development of colon tumorigenesis in vitro and in vivo, supporting a critical role of these compounds in the pathogenesis of IBD and CRC. In this review, we will discuss the effects and mechanisms of LDEs on development of IBD and CRC and lifestyle factors, which could potentially affect tissue levels of LDEs to regulate IBD and CRC development.
Collapse
Affiliation(s)
- Lei Lei
- School of Medicine, Northwest University, Xi'an, China.,Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Eric A Decker
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, United States.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
27
|
Yang X, Mao Z, Huang Y, Yan H, Yan Q, Hong J, Fan J, Yao J. Reductively modified albumin attenuates DSS-Induced mouse colitis through rebalancing systemic redox state. Redox Biol 2021; 41:101881. [PMID: 33601276 PMCID: PMC7897995 DOI: 10.1016/j.redox.2021.101881] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 01/22/2021] [Indexed: 01/16/2023] Open
Abstract
Albumin (Alb) is the most abundant plasma protein with multiple biological functions, including antioxidative property through its thiol activity. Given that inflammatory bowel disease is associated with a decreased level of Alb and an increased level of Alb oxidation, we asked whether Alb could have a therapeutic effect on colitis. Here we tested this possibility. Bovine serum albumin (BSA) was reductively modified with dithiothreitol (DTT) and administrated via gavage or intraperitoneal injection. Dextran sulfate sodium (DSS)-induced mice colitis was associated with massive oxidative stress, as indicated by the elevated sulfenic acid formation in blood, colon tissues, and feces. Treatment of mice with the reductively modified albumin (r-Alb) attenuated the oxidative stress and reduced local inflammation and tissue injury. These effects of r-Alb were only partially achieved by unmodified Alb and wholly lost after blocking the -SH groups with maleimide. In cultured colon epithelial cells, r-Alb prevented DSS- and H2O2-induced ROS elevation and barrier dysfunction, preceded by inhibition of sulfenic acid formation and P38 activation. Further analysis revealed that Alb was susceptible to H2O2-induced oxidation, and it detoxified H2O2 in a -SH group-dependent way. Moreover, Alb reacted with GSH/GSSG via thiol-disulfide exchange and reciprocally regulated the availability of -SH groups. Collectively, our study shows that r-Alb effectively attenuates DSS colitis via -SH group-mediated antioxidative action. Given that the oxidative stress underlies many life-threatening diseases, r-Alb, functioning as a potent antioxidant, could have a wide range of applications.
Collapse
Affiliation(s)
- Xiawen Yang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Zhimin Mao
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yanru Huang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Haizhao Yan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Qiaojing Yan
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jingru Hong
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jian Yao
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.
| |
Collapse
|
28
|
Tavassolifar MJ, Changaei M, Salehi Z, Ghasemi F, Javidan M, Nicknam MH, Pourmand MR. Redox imbalance in Crohn's disease patients is modulated by Azathioprine. Redox Rep 2021; 26:80-84. [PMID: 33882797 PMCID: PMC8079067 DOI: 10.1080/13510002.2021.1915665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Crohn's disease (CD) is a chronic inflammatory disease without a specific cause. Inflammation in these patients can disturb the oxidants/antioxidants balance and results in oxidative stress that plays a destructive role. This study aimed to evaluate the gene expression of sod1, sod2, cat, nrf2 and gp91phox in CD patients before and after Azathioprine (Aza) consumption. Method Peripheral bloodmononuclear cells (PBMCs) were separated from CD patients (n= 15, mean age = 33.6 ± 1.8) before and after treatment with Aza and healthy controls (n= 15, mean age = 31.5 ± 1.2). The expression levels of sod1, sod2, cat, nrf2 and gp91phox were measured in byusing real-time qRT-PCR technique. Result The expression levels of gp91phox (P-value < 0.001), cat (P-value < 0.05), sod1 (P-value < 0.001), nrf2 (P-value < 0.001) were significantly increased compared to control group. Following treatment with Aza, the decreased expression levels of gp91phox (P-value < 0.05), cat (P-value < 0.05), sod1(P-value < 0.001) and nrf2 (P-value < 0.001) were observed in CD patients. Conclusion Overall, our results showed that prescription of Azathioprine can lead to the altered expression of redox system-related genes in patients with CD.
Collapse
Affiliation(s)
| | - Mostafa Changaei
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghasemi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Moslem Javidan
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
YOLDAŞ İLKTAÇ H, KIZILTAN G, OZANSOY M, KILIÇ Ü, ÖZMEN TOĞAY S, KESKİN İ, ÖZDEMİR EM, GÜNAL MY. The Effect of Probiotic and Omega-3 Supplements on Total Oxidant and Total Antioxidant Levels in Experimental Colitis. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.865058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Salami AT, Okotie GE, Echendu PN, Akpamu U, Olaleye SB. Potassium bromate (KBrO 3) modulates oxidative stress and inflammatory biomarkers in sodium hydroxide (NaOH) - induced Crohn's colitis in Wistar rats. Can J Physiol Pharmacol 2021; 99:989-999. [PMID: 33848442 DOI: 10.1139/cjpp-2020-0678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Potassium bromate (KBrO3) present in consumed ozonised water was recently documented to exacerbate experimental gastric ulcer. Information, however, is vague as regards its effects in the colon where water reabsorption occurs. In this study, we observed the possible effects of KBrO3 on oxidative stress and inflammatory biomarkers in sodium hydroxide (NaOH) - induced Crohn's colitis (CC). Wistar rats (180-200 g) were divided into six groups (n = 10): (i) control; (ii) untreated CC (induced by 1.4% NaOH; intra-rectal administration); and (iii-vi) CC treated with vitamin E, KBrO3, vitamin E+KBrO3, and sulphazalazine, respectively, for 7 days. Body weight and stool score were monitored daily. By day 3 and 7, excised colon was evaluated for ulcer scores and biochemical and histological analysis. Blood samples collected on days 3 and 7 were assayed for haematological indices using standard methods. Data were subjected to analysis of variance (ANOVA) and p ≤ 0.05 considered significant. Platelet/lymphocyte ratio, colonic ulcer score, malondialdehyde, and mast cells were significantly decreased while colonic sulfhydryl, and Ca2+- and Na+/K+-ATPase activities were increased following KBrO3 treatment compared with untreated CC. These findings suggest that KBrO3 may mitigate against NaOH-induced CC via inhibiting mast cell population and oxidative and inflammatory content but stimulating colonic sulfhydryl and Ca2+- and Na+/K+-ATPase activities.
Collapse
Affiliation(s)
- Adeola Temitope Salami
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Gloria Enevwo Okotie
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Precious Nekachi Echendu
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Uwaifoh Akpamu
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Samuel Babafemi Olaleye
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
31
|
Tanir Basaranoglu S, Cekic S, Kirhan E, Dirican M, Kilic SS. Oxidative stress in common variable immunodeficiency. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211002411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Common variable immunodeficiency (CVID) is a heterogenous group of immunologic disorders of unknown etiology. Alterations of the normal cellular balance due to an increase in reactive oxygen species and/or decrease in antioxidant defense may lead to increased oxidative stress. We aimed to evaluate the levels of oxidative stress biomarkers in patients with CVID who had different presentations. We investigated the serum catalase (CAT), erythrocyte superoxide dismutase (SOD), erythrocyte reduced glutathione as antioxidants and serum malondialdehyde levels as lipid peroxidation marker in patients with CVID in Uludag University Hospital Department of Pediatric Allergy and Immunology’s outpatient clinics. In the analysis, there were 21 patients and 27 matched healthy controls. The median levels of CAT in patients with CVID was significantly lower than in healthy controls ( p = 0.04). Among the patients with CVID, 19% had autoimmune disease, one had Sjögren’s syndrome, one had autoimmune alopecia, one had juvenile rheumatoid arthritis, and one had chronic inflammatory demyelinating polyneuropathy. Patients with autoimmune complications had significantly lower CAT levels compared to the ones without autoimmune diseases ( p = 0.03). The patients without non-infectious complications (NICs) had lower SOD levels than the patients with NICs ( p = 0.05). The analysis of oxidative stress markers in the patients with CVID suggested a series of abnormalities in the anti-oxidant system. The clinical syndrome associations may be a useful tool for future studies to set prediction markers for the prognosis of patients with CVID.
Collapse
Affiliation(s)
| | - Sukru Cekic
- Department of Pediatric Allergy and Clinical Immunology, Bursa Uludag University Hospital, Bursa, Turkey
| | - Emine Kirhan
- Department of Medical Biochemistry, Bursa Uludag University Hospital, Bursa, Turkey
| | - Melahat Dirican
- Department of Medical Biochemistry, Bursa Uludag University Hospital, Bursa, Turkey
| | - Sara S. Kilic
- Department of Pediatric Allergy and Clinical Immunology, Bursa Uludag University Hospital, Bursa, Turkey
| |
Collapse
|
32
|
Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants (Basel) 2021; 10:201. [PMID: 33573222 PMCID: PMC7910878 DOI: 10.3390/antiox10020201] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of many diseases. The imbalance between the production of reactive oxygen species (ROS) and the antioxidant systems has been extensively studied in pulmonary, neurodegenerative cardiovascular disorders; however, its contribution is still debated in gastrointestinal disorders. Evidence suggests that oxidative stress affects gastrointestinal motility in obesity, and post-infectious disorders by favoring the smooth muscle phenotypic switch toward a synthetic phenotype. The aim of this review is to gain insight into the role played by oxidative stress in gastrointestinal pathologies (GIT), and the involvement of ROS in the signaling underlying the muscular alterations of the gastrointestinal tract (GIT). In addition, potential therapeutic strategies based on the use of antioxidants for the treatment of inflammatory gastrointestinal diseases are reviewed and discussed. Although substantial progress has been made in identifying new techniques capable of assessing the presence of oxidative stress in humans, the biochemical-molecular mechanisms underlying GIT mucosal disorders are not yet well defined. Therefore, further studies are needed to clarify the mechanisms through which oxidative stress-related signaling can contribute to the alteration of the GIT mucosa in order to devise effective preventive and curative therapeutic strategies.
Collapse
Affiliation(s)
- Rosa Vona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Martina Cappelletti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
33
|
Oxidative Stress in the Pathogenesis of Crohn's Disease and the Interconnection with Immunological Response, Microbiota, External Environmental Factors, and Epigenetics. Antioxidants (Basel) 2021; 10:antiox10010064. [PMID: 33430227 PMCID: PMC7825667 DOI: 10.3390/antiox10010064] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial disorder in which external and environmental factors have a large influence on its onset and development, especially in genetically susceptible individuals. Crohn’s disease (CD), one of the two types of IBD, is characterized by transmural inflammation, which is most frequently located in the region of the terminal ileum. Oxidative stress, caused by an overabundance of reactive oxygen species, is present locally and systemically in patients with CD and appears to be associated with the well-described imbalanced immune response and dysbiosis in the disease. Oxidative stress could also underlie some of the environmental risk factors proposed for CD. Although the exact etiopathology of CD remains unknown, the key role of oxidative stress in the pathogenesis of CD is extensively recognized. Epigenetics can provide a link between environmental factors and genetics, and numerous epigenetic changes associated with certain environmental risk factors, microbiota, and inflammation are reported in CD. Further attention needs to be focused on whether these epigenetic changes also have a primary role in the pathogenesis of CD, along with oxidative stress.
Collapse
|
34
|
Design of Catalase Monolithic Tablets for Intestinal Targeted Delivery. Pharmaceutics 2021; 13:pharmaceutics13010069. [PMID: 33430270 PMCID: PMC7825700 DOI: 10.3390/pharmaceutics13010069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 01/29/2023] Open
Abstract
Several studies confirmed a correlation between elevated hydrogen peroxide (H2O2) levels in patients with intestinal bowel diseases (IBD) and the negative effects caused by its presence. The objective of this study was to explore the potential use of catalase (CAT) to diminish the level of H2O2 and its deleterious action on intestinal mucosa. Oral dosage forms of a CAT bioactive agent targeted to the intestines were designed and tested in various simulated gastric and intestinal media. Monolithic tablets (30% loading) were prepared using commercial CarboxyMethylCellulose (CMC) or synthesized CarboxyMethylStarch (CMS) and TriMethylAmineCarboxyMethylStarch (TMACMS) as matrix-forming excipients. For starch derivatives, the presence of the ionic groups (carboxymethyl and trimethylamine) was validated by spectral analysis. In vitro studies have shown that tablets formulated with TMACMS and 30% CAT resisted the acidity of the simulated gastric fluid and gradually released the enzyme into the simulated intestinal fluid. The investigation of the CAT release mechanism revealed the role of anionic and cationic groups of polymeric excipients and their involvement in the modulation of the CAT dissolution profile. The proposed drug delivery system can be considered an efficient solution to target CAT release in the intestine and contribute to the reduction of H2O2 associated with intestinal inflammation.
Collapse
|
35
|
Wang Y, Chen Y, Zhang X, Lu Y, Chen H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104248] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
36
|
Nguma E, Tominaga Y, Yamashita S, Otoki Y, Yamamoto A, Nakagawa K, Miyazawa T, Kinoshita M. Dietary PlsEtn Ameliorates Colon Mucosa Inflammatory Stress and ACF in DMH-Induced Colon Carcinogenesis Mice: Protective Role of Vinyl Ether Linkage. Lipids 2020; 56:167-180. [PMID: 32989804 DOI: 10.1002/lipd.12283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
Ethanolamine plasmalogen (PlsEtn), a sub-class of ethanolamine glycerophospholipids (EtnGpl), is a universal phospholipid in mammalian membranes. Several researchers are interested in the relationship between colon carcinogenesis and colon PlsEtn levels. Here, we evaluated the functional role of dietary purified EtnGpl from the ascidian muscle (87.3 mol% PlsEtn in EtnGpl) and porcine liver (7.2 mol% PlsEtn in EtnGpl) in 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci (ACF) in vivo, and elucidated the possible underlying mechanisms behind it. Dietary EtnGpl-suppressed DMH-induced aberrant crypt with one foci (AC1) and total ACF formation (P < 0.05). ACF suppression by dietary ascidian muscle EtnGpl was higher compared with dietary porcine liver EtnGpl. Additionally, dietary EtnGpl decreased DMH-induced oxidative damage, overproduction of TNF-α, and expression of apoptosis-related proteins in the colon mucosa. The effect of dietary ascidian muscle EtnGpl showed superiority compared with dietary porcine liver EtnGpl. Our results demonstrate the mechanisms by which dietary PlsEtn suppress ACF formation and apoptosis. Dietary PlsEtn attained this suppression by reducing colon inflammation and oxidative stress hence a reduction in DMH-induced intestinal impairment. These findings provide new insights about the functional role of dietary PlsEtn during colon carcinogenesis.
Collapse
Affiliation(s)
- Ephantus Nguma
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Yuki Tominaga
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Yurika Otoki
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-0845, Japan
| | - Ayaka Yamamoto
- Yaizu Suisankagaku Industry Co., Ltd., Shizuoka, 425-8570, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-0845, Japan
| | - Teruo Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8579, Japan
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| |
Collapse
|
37
|
Antioxidant Effects of Turmeric Extract in Rectal Suppositories of Original Composition in Experimental Crohn's Disease. Bull Exp Biol Med 2020; 169:342-346. [PMID: 32737720 DOI: 10.1007/s10517-020-04883-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Indexed: 10/23/2022]
Abstract
We studied the effect of turmeric extract in the composition of rectal suppositories on the level of LPO products and oxidative modification of proteins in the colon mucosa of Wistar rats with experimental Crohn's disease modeled by rectal administration of trinitrobenzenesulfonic acid. The suppositories containing turmeric extract were administered 12 h after disease induction. On days 3, 5, and 7 of the experiment, clinical parameters of the disease were scored using disease activity scale (DAI) and the concentration of LPO products and intensity of oxidative modification of proteins were measured by the extraction-spectrofluorimetric method. Administration turmeric extract in rectal suppositories reduced the severity of clinical symptoms, the level of LPO products (mostly in the isopropanol phase of the lipid extract), and the total content of products of oxidative modification of proteins. Moreover, correlations between DAI and concentration of LPO products in the colon were found.
Collapse
|
38
|
Higa LH, Schilrreff P, Briski AM, Jerez HE, de Farias MA, Villares Portugal R, Romero EL, Morilla MJ. Bacterioruberin from Haloarchaea plus dexamethasone in ultra-small macrophage-targeted nanoparticles as potential intestinal repairing agent. Colloids Surf B Biointerfaces 2020; 191:110961. [PMID: 32208325 DOI: 10.1016/j.colsurfb.2020.110961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022]
Abstract
Oral administration of antioxidant and anti-inflammatory drugs have the potential to improve the current therapy of inflammatory bowel disease. Success of oral treatments, however, depends on the capacity of drugs to remain structurally stable along the gastrointestinal tract, and on the feasibility of accessing the target cells. Delivering anti-inflammatory and antioxidant drugs to macrophages using targeted nanoparticles, could make treatments more efficient. In this work structural features and in vitro activity of macrophage-targeted nanostructured archaeolipid carriers (NAC) containing the high antioxidant dipolar C50 carotenoid bacterioruberin (BR) plus dexamethasone (Dex): NAC-Dex, are described. Ultra-small (66 nm), -32 mV ζ potential, 1200 μg Dex /ml NAC-Dex, consisted of a compritol and BR core, covered by a shell of sn 2,3 ether linked archaeolipids and Tween 80 (2: 2: 1.2: 3 % w/w) were obtained. NAC-Dex were extensively captured by macrophages and Caco-2 cells and displayed high anti-inflammatory and antioxidant activities on a gut inflammation model made of Caco-2 cells and lipopolysaccharide stimulated THP-1 derived macrophages reducing 65 % and 55 % TNF-α and IL-8 release, respectively and 60 % reactive oxygen species production. NAC-Dex also reversed the morphological changes induced by inflammation and increased the transepithelial electrical resistance, partly reconstituting the barrier function. Activity of BR and Dex in NAC-Dex was partially protected after simulated gastrointestinal digestion, improving the chances of BR-Dex joint activity. Results suggest that oral NAC-Dex deserve further exploration as intestinal barrier repairing agent.
Collapse
Affiliation(s)
- Leticia Herminia Higa
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Priscila Schilrreff
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Andrés Martín Briski
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Horacio Emanuel Jerez
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Marcelo Alexandre de Farias
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Rodrigo Villares Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Maria Jose Morilla
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina.
| |
Collapse
|
39
|
Moret-Tatay I, Cerrillo E, Sáez-González E, Hervás D, Iborra M, Sandoval J, Busó E, Tortosa L, Nos P, Beltrán B. Identification of Epigenetic Methylation Signatures With Clinical Value in Crohn's Disease. Clin Transl Gastroenterol 2019; 10:e00083. [PMID: 31663908 PMCID: PMC6919449 DOI: 10.14309/ctg.0000000000000083] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION DNA methylation is an epigenetic mechanism that regulates gene expression and represents an important link between genotype, environment, and disease. It is a reversible and inheritable mechanism that could offer treatment targets. We aimed to assess the methylation changes on specific genes previously associated with Crohn's disease (CD) and to study their possible associations with the pathology. METHODS We included 103 participants and grouped them into 2 cohorts (a first [n = 31] and a second validation [n = 72] cohort), with active CD (aCD) and inactive CD (iCD) and healthy participants (CTR). DNA was obtained from the peripheral blood and analyzed by the Agena platform. The selected genes were catalase (CAT), α-defensin 5 (DEFA5), FasR, FasL, tumor necrosis factor (TNF), TNFRSF1A, TNFRSF1B, PPA2, ABCB1, NOD2, PPARγ, and PKCζ. We used the elastic net algorithm and R software. RESULTS We studied 240 CpGs. Sixteen CpGs showed differential methylation profiles among aCD, iCD, and CTR. We selected for validation those with the greatest differences: DEFA5 CpG_11; CpG_13; CAT CpG_31.32; TNF CpG_4, CpG_12; and ABCB1 CpG_21. Our results validated the genes DEFA5 (methylation gain) and TNF (methylation loss) with P values < 0.001. In both cases, the methylation level was maintained and did not change with CD activity (aCD vs iCD). The subanalysis comparison between aCD and iCD showed significant differential methylation profiles in other CpGs: TNF, FAS, ABCB1, CAT, and TNFRS1BF genes. DISCUSSION The methylation status of DEFA5 and TNF genes provides a signature biomarker that characterizes patients with CD and supports the possible implication of the environment and the immune system in CD pathogenesis.
Collapse
Affiliation(s)
- Inés Moret-Tatay
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD]), Madrid, Spain
| | - Elena Cerrillo
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| | - Esteban Sáez-González
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| | - David Hervás
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| | - Marisa Iborra
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD]), Madrid, Spain
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Enrique Busó
- Central Unit for Research in Medicine (UCIM),University of Valencia, Valencia, Spain
| | - Luis Tortosa
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD]), Madrid, Spain
| | - Pilar Nos
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD]), Madrid, Spain
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| | - Belén Beltrán
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD]), Madrid, Spain
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| |
Collapse
|
40
|
Schilrreff P, Simioni YR, Jerez HE, Caimi AT, de Farias MA, Villares Portugal R, Romero EL, Morilla MJ. Superoxide dismutase in nanoarchaeosomes for targeted delivery to inflammatory macrophages. Colloids Surf B Biointerfaces 2019; 179:479-487. [DOI: 10.1016/j.colsurfb.2019.03.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
|
41
|
Association between C-262T genetic polymorphism at the promoter region of the catalase gene (CAT) and the risk of inflammatory bowel diseases: Evidence from meta-analysis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2018.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Wang Y, Wang W, Yang H, Shao D, Zhao X, Zhang G. Intraperitoneal injection of 4-hydroxynonenal (4-HNE), a lipid peroxidation product, exacerbates colonic inflammation through activation of Toll-like receptor 4 signaling. Free Radic Biol Med 2019; 131:237-242. [PMID: 30503401 DOI: 10.1016/j.freeradbiomed.2018.11.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/12/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022]
Abstract
Human and animal studies have shown that the colonic concentrations of lipid peroxidation products, such as 4-hydroxynonenal (4-HNE), are elevated in inflammatory bowel disease (IBD). However, the actions and mechanisms of these compounds on the development of IBD are unknown. Here, we show that a systemic treatment of low-dose 4-HNE exacerbates dextran sulfate sodium (DSS)-induced IBD in C57BL/6 mice, suggesting its pro-IBD actions in vivo. Treatment with 4-HNE suppressed colonic expressions of tight-junction protein occludin, impaired intestinal barrier function, enhanced translocation of lipopolysaccharide (LPS) and bacterial products from the gut into systemic circulation, leading to increased activation of Toll-like receptor 4 (TLR4) signaling in vivo. Furthermore, 4-HNE failed to promote DSS-induced IBD in Tlr4-/- mice, supporting that TLR4 signaling contributes to the pro-IBD effects of 4-HNE. Together, these results suggest that 4-HNE exacerbates the progression of IBD through activation of TLR4 signaling, and therefore could contribute to the pathogenesis of IBD.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Life Science, Northwest University, Xi'an, Shaanxi, China; Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Weicang Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Haixia Yang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Derek Shao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Xinfeng Zhao
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
43
|
Gao B, Chi L, Tu P, Gao N, Lu K. The Carbamate Aldicarb Altered the Gut Microbiome, Metabolome, and Lipidome of C57BL/6J Mice. Chem Res Toxicol 2019; 32:67-79. [PMID: 30406643 DOI: 10.1021/acs.chemrestox.8b00179] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The gut microbiome is highly involved in numerous aspects of host physiology, from energy harvest to stress response, and can confer many benefits to the host. The gut microbiome development could be affected by genetic and environmental factors, including pesticides. The carbamate insecticide aldicarb has been extensively used in agriculture, which raises serious public health concerns. However, the impact of aldicarb on the gut microbiome, host metabolome, and lipidome has not been well studied yet. Herein, we use multiomics approaches, including16S rRNA sequencing, shotgun metagenomics sequencing, metabolomics, and lipidomics, to elucidate aldicarb-induced toxicity in the gut microbiome and the host metabolic homeostasis. We demonstrated that aldicarb perturbed the gut microbiome development trajectory, enhanced gut bacterial pathogenicity, altered complex lipid profile, and induced oxidative stress, protein degradation, and DNA damage. The brain metabolism was also disturbed by the aldicarb exposure. These findings may provide a novel understanding of the toxicity of carbamate insecticides.
Collapse
Affiliation(s)
- Bei Gao
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States.,NIH West Coast Metabolomics Center , University of California , Davis , California 95616 , United States
| | - Liang Chi
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Nan Gao
- National Engineering Research Center for Biotechnology, School of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Kun Lu
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
44
|
Papada E, Forbes A, Amerikanou C, Torović L, Kalogeropoulos N, Tzavara C, Triantafillidis JK, Kaliora AC. Antioxidative Efficacy of a Pistacia Lentiscus Supplement and Its Effect on the Plasma Amino Acid Profile in Inflammatory Bowel Disease: A Randomised, Double-Blind, Placebo-Controlled Trial. Nutrients 2018; 10:E1779. [PMID: 30453494 PMCID: PMC6267573 DOI: 10.3390/nu10111779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is present in patients with Inflammatory Bowel Disease (IBD), and natural supplements with antioxidant properties have been investigated as a non-pharmacological approach. The objective of the present study was to assess the effects of a natural Pistacia lentiscus (PL) supplement on oxidative stress biomarkers and to characterise the plasma-free amino acid (AA) profiles of patients with active IBD (Crohn's disease (CD) N = 40, ulcerative colitis (UC) N = 20). The activity was determined according to 5 ≤ Harvey Bradshaw Index ≤ 16 or 2 ≤ Partial Mayo Score ≤ 6. This is a randomised, double-blind, placebo-controlled clinical trial. IBD patients (N = 60) were randomly allocated to PL (2.8 g/day) or to placebo for 3 months being under no treatment (N = 21) or under stable medical treatment (mesalamine N = 24, azathioprine N = 14, and corticosteroids N = 23) that was either single medication (N = 22) or combined medication (N = 17). Plasma oxidised, low-density lipoprotein (oxLDL), total serum oxidisability, and serum uric acid were evaluated at baseline and follow-up. OxLDL/LDL and oxLDL/High-Density Lipoprotein (HDL) ratios were calculated. The plasma-free AA profile was determined by applying a gas chromatography/mass spectrometry analysis. oxLDL (p = 0.031), oxLDL/HDL (p = 0.020), and oxLDL/LDL (p = 0.005) decreased significantly in the intervention group. The mean change differed significantly in CD between groups for oxLDL/LDL (p = 0.01), and, in the total sample, both oxLDL/LDL (p = 0.015) and oxLDL/HDL (p = 0.044) differed significantly. Several changes were reported in AA levels. PL ameliorated a decrease in plasma-free AAs seen in patients with UC taking placebo. In conclusion, this intervention resulted in favourable changes in oxidative stress biomarkers in active IBD.
Collapse
Affiliation(s)
- Efstathia Papada
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece.
| | - Alastair Forbes
- Norwich Medical School, University of East Anglia, Bob Champion Building, James Watson Road, Norwich NR4 7UQ, UK.
| | - Charalampia Amerikanou
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece.
| | - Ljilja Torović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Nick Kalogeropoulos
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece.
| | - Chara Tzavara
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece.
| | | | - Andriana C Kaliora
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece.
| |
Collapse
|
45
|
Liang N, Kitts DD. Amelioration of Oxidative Stress in Caco-2 Cells Treated with Pro-inflammatory Proteins by Chlorogenic Acid Isomers via Activation of the Nrf2-Keap1-ARE-Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11008-11017. [PMID: 30259744 DOI: 10.1021/acs.jafc.8b03983] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the potential effects of chlorogenic acid (CGA) isomers on the intestinal epithelium is important because coffee intake exposes consumers to the six major CGA isomers: 3-caffeoylquinic acid (3-CQA), 4-caffeoylquinic acid (4-CQA), 5-caffeoylquinic acid (5-CQA), 3,4-dicaffeoylquinic acid (3,4-diCQA), 3,5-dicaffeoylquinic acid (3,5-diCQA), and 4,5-dicaffeoylquinic acid (4,5-diCQA). The present study determined the relative effects of CGA isomers on the antioxidant status of inflamed Caco-2 intestinal cells by investigating the oxidative-stress-responsive pathway and nuclear-factor-erythroid-derived-2-like 2 (Nrf2) signaling. Differentiated Caco-2 cells were challenged with the inflammatory mediators PMA and IFNγ, as a model of intestinal inflammation in vitro. Significant redox ( p < 0.05) responses to these mediators were assessed by indirect measurement of induced generation of reactive oxygen species (ROS), as well as the expression of reduced (GSH) and oxidized (GSSG) glutathione. This translated to a 40% reduction in the GSH/GSSG ratio. We found that responses in these parameters were associated with increased Nrf2 activation ( p < 0.05). ROS generation and increased IL-8 secretion were found in challenged cells, indicating an association between induced oxidation and inflammatory status. Oxidative stress was ameliorated by CGA isomers, which scavenged intracellular ROS, increased GSH, and activated Nrf2 signaling. diCQA isomers were relatively more effective at reducing IL-8 ( p < 0.05). The observed increase in Nrf2 signaling led to upregulated expression of some Nrf2 target genes ( GPX2, KEAP1, and NFE2L2) in Caco-2 cells and activated the Nrf2-Keap1-ARE-signaling pathway. These findings indicate that CGA isomers present in coffee have bioactivity toward alleviating oxidative stress associated with intestinal inflammation.
Collapse
Affiliation(s)
- Ningjian Liang
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems , The University of British Columbia , 2205 East Mall , Vancouver , British Columbia V6T 1Z4 , Canada
| | - David D Kitts
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems , The University of British Columbia , 2205 East Mall , Vancouver , British Columbia V6T 1Z4 , Canada
| |
Collapse
|
46
|
Guan G, Lan S. Implications of Antioxidant Systems in Inflammatory Bowel Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1290179. [PMID: 29854724 PMCID: PMC5966678 DOI: 10.1155/2018/1290179] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 01/16/2023]
Abstract
The global incidence of inflammatory bowel disease (IBD), a group of chronic gastrointestinal disorders, has been rising. The preponderance of evidence demonstrates that oxidative stress (OS) performs a critical function in the onset of IBD and the manner of its development. The purpose of this review is to outline the generation of reactive oxygen species and antioxidant defense mechanisms in the gastrointestinal tract and the role played by OS in marking the onset and development of IBD. Furthermore, the review demonstrates the various ways through which OS is related to genetic susceptibility and the mucosal immune response. The experimental results suggest that certain therapeutic regimens for IBD could have a favorable impact by scavenging free radicals, reducing cytokine and prooxidative enzyme concentrations, and improving the antioxidative capabilities of cells. However, antioxidative activity characterized by a high level of specificity may be fundamental for the development of clinical therapies and for relapsing IBD patients. Therefore, additional research is required to clarify the ways through which OS is related to the pathogenesis and progression of IBD.
Collapse
Affiliation(s)
- Guiping Guan
- College of Bioscience and Biotechnology and College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shile Lan
- College of Bioscience and Biotechnology and College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
47
|
Yanaka A. Role of NRF2 in protection of the gastrointestinal tract against oxidative stress. J Clin Biochem Nutr 2018; 63:18-25. [PMID: 30087539 PMCID: PMC6064821 DOI: 10.3164/jcbn.17-139] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/21/2018] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal tract is exposed to a variety of noxious factors, such as Helicobacter pylori, nonsteroidal anti-inflammatory drugs, gastric acid, ischemia-reperfusion, and mental stresses. Theses stressors generate free radicals within gastrointestinal tissues, causing organ injury and functional disturbance. Although the gastrointestinal tract can withstand such oxidative stresses to some extent by enhancing its antioxidant system via nuclear factor erythroid 2-related factor 2-Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1-mediated pathways, acute or chronic exposure to oxidative stress can cause several gastrointestinal tract disorders, such as inflammation, ulcers, cancers, and various functional disturbances. Recent studies have demonstrated that some natural compounds and drugs can upregulate the nuclear factor erythroid 2-related factor 2-mediated antioxidant system, ameliorating or preventing these disorders. Although these compounds may be useful as chemopreventive agents, sufficient evidence for their clinical efficacy has not yet been provided. In addition, it is important to note that excessive nuclear factor erythroid 2-related factor 2 stimulation can be harmful to human health, especially from the standpoint of tumor biology.
Collapse
Affiliation(s)
- Akinori Yanaka
- Hitachi Medical Education and Research Center, University of Tsukuba Hospital, Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| |
Collapse
|
48
|
Regulation of JAK2/STAT3 and NF-κB signal transduction pathways; Veronica polita alleviates dextran sulfate sodium-induced murine colitis. Biomed Pharmacother 2018; 100:296-303. [PMID: 29448206 DOI: 10.1016/j.biopha.2018.01.168] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/18/2018] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
Ulcerative colitis (UC) is a major inflammatory bowel disease (IBD) has become a worldwide emergent disease. Veronica polita (VP) is a medicinal herb that has strong antioxidant and anti-inflammatory properties. In the present study, we studied the protective effect of VP on dextran sulfate sodium (DSS)-induced experimental colitis in mice. Phytochemical screening of VP extract demonstrated the presence of high total phenolic and flavonoid contents. Compared with the DSS group, VP significantly reduced clinical symptoms with less weight loss, bloody stool, shortening of the colon, and the severity of colitis was considerably inhibited as evidenced by the reduced disease activity index (DAI) and degree of histological damage in the colon and spleen. Also, treatment with VP considerably decreased the nitric oxide (NO) and malondialdehyde (MDA) level. VP remarkably downregulated the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), inducible nitric oxide synthetase (iNOS) and cyclooxygenase-2 (COX-2) in the colon tissue. Likewise, activation of the signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappa B (NF-κB) was effectively blocked by VP. Taken together, these results demonstrate that VP has an ameliorative effect on colonic inflammation mediated by modulation of oxidative stress and inflammatory mediators by suppressing the JAK2/STAT3 and NF-κB signaling pathways.
Collapse
|
49
|
Rigoni A, Poulsom R, Jeffery R, Mehta S, Lewis A, Yau C, Giannoulatou E, Feakins R, Lindsay JO, Colombo MP, Silver A. Separation of Dual Oxidase 2 and Lactoperoxidase Expression in Intestinal Crypts and Species Differences May Limit Hydrogen Peroxide Scavenging During Mucosal Healing in Mice and Humans. Inflamm Bowel Dis 2017; 24:136-148. [PMID: 29272487 DOI: 10.1093/ibd/izx024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND DUOX2 and DUOXA2 form the predominant H2O2-producing system in human colorectal mucosa. Inflammation, hypoxia, and 5-aminosalicylic acid increase H2O2 production, supporting innate defense and mucosal healing. Thiocyanate reacts with H2O2 in the presence of lactoperoxidase (LPO) to form hypothiocyanate (OSCN-), which acts as a biocide and H2O2 scavenging system to reduce damage during inflammation. We aimed to discover the organization of Duox2, Duoxa2, and Lpo expression in colonic crypts of Lieberkühn (intestinal glands) of mice and how distributions respond to dextran sodium sulfate (DSS)-induced colitis and subsequent mucosal regeneration. METHODS We studied tissue from DSS-exposed mice and human biopsies using in situ hybridization, reverse transcription quantitative polymerase chain reaction, and cDNA microarray analysis. RESULTS Duox2 mRNA expression was mostly in the upper crypt quintile while Duoxa2 was more apically focused. Most Lpo mRNA was in the basal quintile, where stem cells reside. Duox2 and Duoxa2 mRNA were increased during the induction and resolution of DSS colitis, while Lpo expression did not increase during the acute phase. Patterns of Lpo expression differed from Duox2 in normal, inflamed, and regenerative mouse crypts (P < 0.001). We found no evidence of LPO expression in the human gut. CONCLUSIONS The spatial and temporal separation of H2O2-consuming and -producing enzymes enables a thiocyanate- H2O2 "scavenging" system in murine intestinal crypts to protect the stem/proliferative zones from DNA damage, while still supporting higher H2O2 concentrations apically to aid mucosal healing. The absence of LPO expression in the human gut suggests an alternative mechanism or less protection from DNA damage during H2O2-driven mucosal healing.
Collapse
Affiliation(s)
- Alice Rigoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Richard Poulsom
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rosemary Jeffery
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shameer Mehta
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amy Lewis
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christopher Yau
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Roger Feakins
- Department of Histopathology, The Royal London Hospital, London, UK
| | - James O Lindsay
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
50
|
Barrett KE, McCole DF. Hydrogen peroxide scavenger, catalase, alleviates ion transport dysfunction in murine colitis. Clin Exp Pharmacol Physiol 2017; 43:1097-1106. [PMID: 27543846 DOI: 10.1111/1440-1681.12646] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/11/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide (H2 O2 ) contribute to epithelial damage and ion transport dysfunction (key events in inflammatory diarrhoea) in inflammatory bowel disease (IBD). The aim of this study was to identify if H2 O2 mediates suppression of colonic ion transport function in the murine dextran sulfate sodium (DSS) colitis model by using the H2 O2 degrading enzyme, catalase. Colitis was induced by administering DSS (4%) in drinking water for 5 days followed by 3 days on normal H2 O. Mice were administered either pegylated catalase or saline at day -1, 0 and +1 of DSS treatment. Ion transport responses to the Ca2+ -dependent agonist, carbachol (CCh), or the cAMP-dependent agonist, forskolin, were measured across distal colonic mucosa mounted in Ussing chambers. Parameters of DSS-induced inflammation (loss in body weight, decreased colon length, altered stool consistency), were only partially alleviated by catalase while histology was only minimally improved. However, catalase significantly reversed the DSS-induced reduction in baseline ion transport as well as colonic Isc responses to CCh. However, ion transport responses to forskolin were not significantly restored. Catalase also reduced activation of ERK MAP kinase in the setting of colitis, and increased expression of the Na+ -K+ -2Cl- cotransporter, NKCC1, consistent with restoration of ion transport function. Ex vivo treatment of inflamed colonic mucosae with catalase also partially restored ion transport function. Therefore, catalase partially prevents, and rescues, the loss of ion transport properties in DSS colitis even in the setting of unresolved tissue inflammation. These findings indicate a prominent role for ROS in ion transport dysfunction in colitis and may suggest novel strategies for the treatment of inflammatory diarrhoea.
Collapse
Affiliation(s)
- Kim E Barrett
- Division of Gastroenterology, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|