1
|
Qian D, Chai Y, Li W, Cui B, Lin S, Wang Z, Wang C, Qu LQ, Gong D. Structural insight into the Arabidopsis vacuolar anion channel ALMT9 shows clade specificity. Cell Rep 2024; 43:114731. [PMID: 39269901 DOI: 10.1016/j.celrep.2024.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/26/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The Arabidopsis thaliana aluminum-activated malate transporter 9 (AtALMT9) functions as a vacuolar chloride channel that regulates the stomatal aperture. Here, we present the cryoelectron microscopy (cryo-EM) structures of AtALMT9 in three distinct states. AtALMT9 forms a dimer, and the pore is lined with four positively charged rings. The apo-AtALMT9 state shows a putative endogenous citrate obstructing the pore, where two W120 constriction residues enclose a gate with a pore radius of approximately 1.8 Å, representing an open state. Interestingly, channel closure is solely controlled by W120. Compared to wild-type plants, the W120A mutant exhibits more sensitivity to drought stress and is unable to restore the visual phenotype on leaves upon water recovery, reflecting persistent stomatal opening. Furthermore, notable variations are noted in channel gating and substrate recognition of Glycine max ALMT12, AtALMT9, and AtALMT1. In summary, our investigation enhances comprehension of the interplay between structure and function within the ALMT family.
Collapse
Affiliation(s)
- Dandan Qian
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
| | - Yaru Chai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiping Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Bin Cui
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shaoquan Lin
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 581055, China
| | - Zhibin Wang
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 581055, China
| | - Chongyuan Wang
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 581055, China.
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Deshun Gong
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Seregin IV, Kozhevnikova AD. The Role of Low-Molecular-Weight Organic Acids in Metal Homeostasis in Plants. Int J Mol Sci 2024; 25:9542. [PMID: 39273488 PMCID: PMC11394999 DOI: 10.3390/ijms25179542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Low-molecular-weight organic acids (LMWOAs) are essential O-containing metal-binding ligands involved in maintaining metal homeostasis, various metabolic processes, and plant responses to biotic and abiotic stress. Malate, citrate, and oxalate play a crucial role in metal detoxification and transport throughout the plant. This review provides a comparative analysis of the accumulation of LMWOAs in excluders, which store metals mainly in roots, and hyperaccumulators, which accumulate metals mainly in shoots. Modern concepts of the mechanisms of LMWOA secretion by the roots of excluders and hyperaccumulators are summarized, and the formation of various metal complexes with LMWOAs in the vacuole and conducting tissues, playing an important role in the mechanisms of metal detoxification and transport, is discussed. Molecular mechanisms of transport of LMWOAs and their complexes with metals across cell membranes are reviewed. It is discussed whether different endogenous levels of LMWOAs in plants determine their metal tolerance. While playing an important role in maintaining metal homeostasis, LMWOAs apparently make a minor contribution to the mechanisms of metal hyperaccumulation, which is associated mainly with root exudates increasing metal bioavailability and enhanced xylem loading of LMWOAs. The studies of metal-binding compounds may also contribute to the development of approaches used in biofortification, phytoremediation, and phytomining.
Collapse
Affiliation(s)
- Ilya V Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st., 35, Moscow 127276, Russia
| | - Anna D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st., 35, Moscow 127276, Russia
| |
Collapse
|
3
|
He Y, Peng J, Jia N, Wang X, Ma J, Wang H, Zhang C, Wang E, Hu D, Wang Z. Up-regulation of growth-related gene expression in tobacco by volatile compounds released by Bacillus velezensis WSW007. Sci Rep 2024; 14:18087. [PMID: 39103433 PMCID: PMC11300851 DOI: 10.1038/s41598-024-68274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
In order to investigate the mechanism of plant growth promoting (PGP) effects of strain Bacillus velezensis WSW007, its PGP traits and production of volatile organic compounds (VOCs) were tested. The effects of VOCs produced by strain WSW007 on plant growth were observed by co-culturing this strain with tobacco seedlings in I-plates. Meanwhile, the effects of VOCs on tobacco gene expression were analysed by a transcriptome analysis and VOCs were identified by solid phase micro extraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS) analysis. As results, strains WSW007 produced acetic acid and siderophore, and could solubilize phosphate; while it also significantly increased the fresh weight of tobacco seedlings via production of VOCs. In transcriptome analysis, plants co-cultured with strain WSW007 presented the highest up-regulated expression for the genes involved in plant growth and development processes, implying that the bacterial VOCs played a role as regulator of plant gene expression. Conclusively, the up-regulation in expression of growth- and development-related genes via VOCs production is an important PGP mechanism in strain B. velezensis WSW007.
Collapse
Affiliation(s)
- Yuxi He
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Jieli Peng
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Nan Jia
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xu Wang
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Jia Ma
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Hao Wang
- College of Life Science, Northeast Agricultural University, Harbin City, Heilongjiang Province, China
| | - Cuimian Zhang
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11340, Mexico City, Mexico
| | - Dong Hu
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China.
| | - Zhanwu Wang
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Zhou M, Huang C, Lin J, Yuan Y, Lin L, Zhou J, Li Z. γ-Aminobutyric acid (GABA) priming alleviates acid-aluminum toxicity to roots of creeping bentgrass via enhancements in antioxidant defense and organic metabolites remodeling. PLANTA 2024; 260:33. [PMID: 38896325 DOI: 10.1007/s00425-024-04461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
MAIN CONCLUSION γ-Aminobutyric acid alleviates acid-aluminum toxicity to roots associated with enhanced antioxidant metabolism as well as accumulation and transportation of citric and malic acids. Aluminum (Al) toxicity has become the main limiting factor for crop growth and development in acidic soils and is further being aggravated worldwide due to continuous industrial pollution. The current study was designed to examine effects of GABA priming on alleviating acid-Al toxicity in terms of root growth, antioxidant defense, citrate and malate metabolisms, and extensive metabolites remodeling in roots under acidic conditions. Thirty-seven-day-old creeping bentgrass (Agrostis stolonifera) plants were used as test materials. Roots priming with or without 0.5 mM GABA for 3 days were cultivated in standard nutrient solution for 15 days as control or subjected to nutrient solution containing 5 mM AlCl3·6H2O for 15 days as acid-Al stress treatment. Roots were sampled for determinations of root characteristics, physiological and biochemical parameters, and metabolomics. GABA priming significantly alleviated acid-Al-induced root growth inhibition and oxidative damage, despite it promoted the accumulation of Al in roots. Analysis of metabolomics showed that GABA priming significantly increased accumulations of organic acids, amino acids, carbohydrates, and other metabolites in roots under acid-Al stress. In addition, GABA priming also significantly up-regulated key genes related to accumulation and transportation of malic and citric acids in roots under acid-Al stress. GABA-regulated metabolites participated in tricarboxylic acid cycle, GABA shunt, antioxidant defense system, and lipid metabolism, which played positive roles in reactive oxygen species scavenging, energy conversion, osmotic adjustment, and Al ion chelation in roots.
Collapse
Affiliation(s)
- Min Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Cheng Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Junnan Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Yan Yuan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Long Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Jianzhen Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China.
| |
Collapse
|
5
|
Liu M, Cao B, Wei JW, Gong B. Redesigning a S-nitrosylated pyruvate-dependent GABA transaminase 1 to generate high-malate and saline-alkali-tolerant tomato. THE NEW PHYTOLOGIST 2024; 242:2148-2162. [PMID: 38501546 DOI: 10.1111/nph.19693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Although saline-alkali stress can improve tomato quality, the detailed molecular processes that balance stress tolerance and quality are not well-understood. Our research links nitric oxide (NO) and γ-aminobutyric acid (GABA) with the control of root malate exudation and fruit malate storage, mediated by aluminium-activated malate transporter 9/14 (SlALMT9/14). By modifying a specific S-nitrosylated site on pyruvate-dependent GABA transaminase 1 (SlGABA-TP1), we have found a way to enhance both plant's saline-alkali tolerance and fruit quality. Under saline-alkali stress, NO levels vary in tomato roots and fruits. High NO in roots leads to S-nitrosylation of SlGABA-TP1/2/3 at Cys316/258/316, reducing their activity and increasing GABA. This GABA then reduces malate exudation from roots and affects saline-alkali tolerance by interacting with SlALMT14. In fruits, a moderate NO level boosts SlGABA-TP1 expression and GABA breakdown, easing GABA's block on SlALMT9 and increasing malate storage. Mutants of SlGABA-TP1C316S that do not undergo S-nitrosylation maintain high activity, supporting malate movement in both roots and fruits under stress. This study suggests targeting SlGABA-TP1Cys316 in tomato breeding could significantly improve plant's saline-alkali tolerance and fruit quality, offering a promising strategy for agricultural development.
Collapse
Affiliation(s)
- Minghui Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jin-Wei Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
6
|
Guan Q, Kong W, Tan B, Zhu W, Akter T, Li J, Tian J, Chen S. Multiomics unravels potential molecular switches in the C 3 to CAM transition of Mesembryanthemum crystallinum. J Proteomics 2024; 299:105145. [PMID: 38431086 DOI: 10.1016/j.jprot.2024.105145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Mesembryanthemum crystallinum (common ice plant), a facultative CAM plant, shifts from C3 to CAM photosynthesis under salt stress, enhancing water use efficiency. Here we used transcriptomics, proteomics, and targeted metabolomics to profile molecular changes during the diel cycle of C3 to CAM transition. The results confirmed expected changes associated with CAM photosynthesis, starch biosynthesis and degradation, and glycolysis/gluconeogenesis. Importantly, they yielded new discoveries: 1) Transcripts displayed greater circadian regulation than proteins. 2) Oxidative phosphorylation and inositol methylation may play important roles in initiating the transition. 3) V-type H+-ATPases showed consistent transcriptional regulation, aiding in vacuolar malate uptake. 4) A protein phosphatase 2C, a major component in the ABA signaling pathway, may trigger the C3 to CAM transition. Our work highlights the potential molecular switches in the C3 to CAM transition, including the potential role of ABA signaling. SIGNIFICANCE: The common ice plant is a model facultative CAM plant, and under stress conditions it can shift from C3 to CAM photosynthesis within a three-day period. However, knowledge about the molecular changes during the transition and the molecular switches enabling the transition is lacking. Multi-omic analyses not only revealed the molecular changes during the transition, but also highlighted the importance of ABA signaling, inositol methylation, V-type H+-ATPase in initiating the shift. The findings may explain physiological changes and nocturnal stomatal opening, and inform future synthetic biology effort in improving crop water use efficiency and stress resilience.
Collapse
Affiliation(s)
- Qijie Guan
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Wenwen Kong
- College of Life Sciences, Northeast Agricultural University, Harbin 150040, China
| | - Bowen Tan
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Wei Zhu
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310002, China
| | - Tahmina Akter
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150040, China
| | - Jingkui Tian
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310002, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA.
| |
Collapse
|
7
|
Lin L, Wu X, Deng X, Lin Z, Liu C, Zhang J, He T, Yi Y, Liu H, Wang Y, Sun W, Xu Z. Mechanisms of low cadmium accumulation in crops: A comprehensive overview from rhizosphere soil to edible parts. ENVIRONMENTAL RESEARCH 2024; 245:118054. [PMID: 38157968 DOI: 10.1016/j.envres.2023.118054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal often found in soil and agricultural products. Due to its high mobility, Cd poses a significant health risk when absorbed by crops, a crucial component of the human diet. This absorption primarily occurs through roots and leaves, leading to Cd accumulation in edible parts of the plant. Our research aimed to understand the mechanisms behind the reduced Cd accumulation in certain crop cultivars through an extensive review of the literature. Crops employ various strategies to limit Cd influx from the soil, including rhizosphere microbial fixation and altering root cell metabolism. Additional mechanisms include membrane efflux, specific transport, chelation, and detoxification, facilitated by metalloproteins such as the natural resistance-associated macrophage protein (Nramp) family, heavy metal P-type ATPases (HMA), zinc-iron permease (ZIP), and ATP-binding cassette (ABC) transporters. This paper synthesizes differences in Cd accumulation among plant varieties, presents methods for identifying cultivars with low Cd accumulation, and explores the unique molecular biology of Cd accumulation. Overall, this review provides a comprehensive resource for managing agricultural lands with lower contamination levels and supports the development of crops engineered to accumulate minimal amounts of Cd.
Collapse
Affiliation(s)
- Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zheng Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Chunguang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
| | - Jiexiang Zhang
- GRG Metrology& Test Group Co., Ltd., Guangzhou, 510656, China
| | - Tao He
- College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Yunqiang Yi
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
8
|
de Almeida NM, de Almeida AAF, de Almeida Santos N, Mora-Ocampo IY, Pirovani CP. Leaf proteomic profiles in cacao scion-rootstock combinations tolerant and intolerant to cadmium toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107987. [PMID: 37722279 DOI: 10.1016/j.plaphy.2023.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Cd contamination in cacao beans is one of the major problems faced by cocoa producing countries in Latin America. Cacao scion-rootstock combinations influence the Cd accumulation in the shoot of the plant. The objective of this work was to carry out a comparative analysis between cacao scion rootstock combinations (CCN 51/BN 34, CCN 51/PS 13.19, CCN 51/PH 16 and CCN 51/CCN 51), contrasting for tolerance to cadmium (Cd) toxicity, by means of leaf proteomic profiles, in order to elucidate molecular mechanisms involved in tolerance to Cd toxicity. Cacao scion-rootstock combinations were grown in soil with 150 mg Cd kg-1 soil, together with the control treatment. Leaf samples were collected 96 h after treatments were applied. There were alterations in the leaf proteome of the cacao scion-rootstock combinations, whose molecular responses to Cd toxicity varied depending on the combination. Leaf proteomic analyzes provided important information regarding the molecular mechanisms involved in the tolerance and intolerance of cacao scion-rootstock combinations to Cd toxicity. Enzymatic and non-enzymatic antioxidant systems, efficient for eliminating ROS, especially the expressions of APX and SOD, in addition to the increase in the abundance of metalloproteins, such as ferredoxins, rubredoxin, ALMT, Trx-1 and ABC-transporter were key mechanisms used in the Cd detoxification in cacao scion-rootstock combinations tolerant to Cd toxicity. Carboxylic acid metabolism, glucose activation and signal transduction were also important processes in the responses of cacao scion-rootstock combinations to Cd toxicity. The results confirmed CCN 51/BN 34 as a cacao scion-rootstock combination efficient in tolerance to Cd toxicity.
Collapse
Affiliation(s)
- Nicolle Moreira de Almeida
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Alex-Alan Furtado de Almeida
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Nayara de Almeida Santos
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Irma Yuliana Mora-Ocampo
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| |
Collapse
|
9
|
Casolo V, Zancani M, Pellegrini E, Filippi A, Gargiulo S, Konnerup D, Morandini P, Pedersen O. Restricted O 2 consumption in pea roots induced by hexanoic acid is linked to depletion of Krebs cycle substrates. PHYSIOLOGIA PLANTARUM 2023; 175:e14024. [PMID: 37882315 DOI: 10.1111/ppl.14024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/08/2023] [Indexed: 10/27/2023]
Abstract
Plant roots are exposed to hypoxia in waterlogged soils, and they are further challenged by specific phytotoxins produced by microorganisms in such conditions. One such toxin is hexanoic acid (HxA), which, at toxic levels, causes a strong decline in root O2 consumption. However, the mechanism underlying this process is still unknown. We treated pea (Pisum sativum L.) roots with 20 mM HxA at pH 5.0 and 6.0 for a short time (1 h) and measured leakage of key electrolytes such as metal cations, malate, citrate and nonstructural carbohydrates (NSC). After treatment, mitochondria were isolated to assess their functionality evaluated as electrical potential and O2 consumption rate. HxA treatment resulted in root tissue extrusion of K+ , malate, citrate and NSC, but only the leakage of the organic acids and NSC increased at pH 5.0, concomitantly with the inhibition of O2 consumption. The activity of mitochondria isolated from treated roots was almost unaffected, showing just a slight decrease in oxygen consumption after treatment at pH 5.0. Similar results were obtained by treating the pea roots with another organic acid with a short carbon chain, that is, butyric acid. Based on these results, we propose a model in which HxA, in its undissociated form prevalent at acidic pH, stimulates the efflux of citrate, malate and NSC, which would, in turn, cause starvation of mitochondrial respiratory substrates of the Krebs cycle and a consequent decline in O2 consumption. Cation extrusion would be a compensatory mechanism in order to restore plasma membrane potential.
Collapse
Affiliation(s)
- Valentino Casolo
- Plant Biology Laboratory, Department of Agrifood, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Marco Zancani
- Plant Biology Laboratory, Department of Agrifood, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Elisa Pellegrini
- Plant Biology Laboratory, Department of Agrifood, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Antonio Filippi
- Plant Biology Laboratory, Department of Agrifood, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Sara Gargiulo
- Plant Biology Laboratory, Department of Agrifood, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Dennis Konnerup
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milan, Milano, Italy
| | - Ole Pedersen
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
10
|
Pakzad R, Fatehi F, Kalantar M, Maleki M. Proteomics approach to investigating osmotic stress effects on pistachio. FRONTIERS IN PLANT SCIENCE 2023; 13:1041649. [PMID: 36762186 PMCID: PMC9907329 DOI: 10.3389/fpls.2022.1041649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Osmotic stress can occur due to some stresses such as salinity and drought, threatening plant survival. To investigate the mechanism governing the pistachio response to this stress, the biochemical alterations and protein profile of PEG-treated plants was monitored. Also, we selected two differentially abundant proteins to validate via Real-Time PCR. Biochemical results displayed that in treated plants, proline and phenolic content was elevated, photosynthetic pigments except carotenoid decreased and MDA concentration were not altered. Our findings identified a number of proteins using 2DE-MS, involved in mitigating osmotic stress in pistachio. A total of 180 protein spots were identified, of which 25 spots were altered in response to osmotic stress. Four spots that had photosynthetic activities were down-regulated, and the remaining spots were up-regulated. The biological functional analysis of protein spots exhibited that most of them are associated with the photosynthesis and metabolism (36%) followed by stress response (24%). Results of Real-Time PCR indicated that two of the representative genes illustrated a positive correlation among transcript level and protein expression and had a similar trend in regulation of gene and protein. Osmotic stress set changes in the proteins associated with photosynthesis and stress tolerance, proteins associated with the cell wall, changes in the expression of proteins involved in DNA and RNA processing occur. Findings of this research will introduce possible proteins and pathways that contribute to osmotic stress and can be considered for improving osmotic tolerance in pistachio.
Collapse
Affiliation(s)
- Rambod Pakzad
- Department of Plant Breeding, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Foad Fatehi
- Department of Agriculture, Payame Noor University (PNU), Tehran, Iran
| | - Mansour Kalantar
- Department of Plant Breeding, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
11
|
Saleem A, Roldán-Ruiz I, Aper J, Muylle H. Genetic control of tolerance to drought stress in soybean. BMC PLANT BIOLOGY 2022; 22:615. [PMID: 36575367 PMCID: PMC9795773 DOI: 10.1186/s12870-022-03996-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Drought stress limits the production of soybean [Glycine max (L.) Merr.], which is the most grown high-value legume crop worldwide. Breeding for drought tolerance is a difficult endeavor and understanding the genetic basis of drought tolerance in soybean is therefore crucial for harnessing the genomic regions involved in the tolerance mechanisms. A genome-wide association study (GWAS) analysis was applied in a soybean germplasm collection (the EUCLEG collection) of 359 accessions relevant for breeding in Europe, to identify genomic regions and candidate genes involved in the response to short duration and long duration drought stress (SDS and LDS respectively) in soybean. RESULTS The phenotypic response to drought was stronger in the long duration drought (LDS) than in the short duration drought (SDS) experiment. Over the four traits considered (canopy wilting, leaf senescence, maximum absolute growth rate and maximum plant height) the variation was in the range of 8.4-25.2% in the SDS, and 14.7-29.7% in the LDS experiments. The GWAS analysis identified a total of 17 and 22 significant marker-trait associations for four traits in the SDS and LDS experiments, respectively. In the genomic regions delimited by these markers we identified a total of 12 and 16 genes with putative functions that are of particular relevance for drought stress responses including stomatal movement, root formation, photosynthesis, ABA signaling, cellular protection and cellular repair mechanisms. Some of these genomic regions co-localized with previously known QTLs for drought tolerance traits including water use efficiency, chlorophyll content and photosynthesis. CONCLUSION Our results indicate that the mechanism of slow wilting in the SDS might be associated with the characteristics of the root system, whereas in the LDS, slow wilting could be due to low stomatal conductance and transpiration rates enabling a high WUE. Drought-induced leaf senescence was found to be associated to ABA and ROS responses. The QTLs related to WUE contributed to growth rate and canopy height maintenance under drought stress. Co-localization of several previously known QTLs for multiple agronomic traits with the SNPs identified in this study, highlights the importance of the identified genomic regions for the improvement of agronomic performance in addition to drought tolerance in the EUCLEG collection.
Collapse
Affiliation(s)
- Aamir Saleem
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Isabel Roldán-Ruiz
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Jonas Aper
- Protealis, Technologiepark-Zwijnaarde, Ghent, Belgium
| | - Hilde Muylle
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium.
| |
Collapse
|
12
|
Du M, Zhang P, Wang G, Zhang X, Zhang W, Yang H, Bao Z, Ma F. H 2 S improves salt-stress recovery via organic acid turn-over in apple seedlings. PLANT, CELL & ENVIRONMENT 2022; 45:2923-2942. [PMID: 35906186 DOI: 10.1111/pce.14410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Signalling roles of hydrogen sulphide (H2 S) in stress biology are widely reported but not sufficiently established to urge its use in agronomic practice. Our lack of quantitative understanding of the metabolic rewiring in H2 S signalling makes it difficult to elucidate its functions in stress tolerance on the biochemical level. Here, Malus hupehensis Rehd. var. pingyiensis seedlings were first treated with salt stress for 2 weeks and then treated with four different concentrations of NaHS. Through vigorous investigations, including phenotypic analysis, 13 C transient labelling and targeted metabolic and transcriptomic analysis, for the first time in the seedlings of a woody fruit crop, we found out that H2 S recycles fixed carbons through glycolysis and tricarboxylic acid cycle to inhibit the futile accumulation of carbohydrates, to maintain an efficient CO2 assimilation, to keep a balanced starch metabolism, to produce sufficient H2 O2 , to maintain malate/γ-aminobutyric acid homeostasis via an H2 O2 -induced anion channel (aluminium-activated malate transporter) and eventually to improve salt-stress recovery. Our results systematically demonstrate the vital roles of central carbon metabolism in H2 S signalling and clarify the mode of action of H2 S in apple seedlings. We conclude that H2 S signalling interacts with central carbon metabolism in a bottom-up manner to recover plant growth after salt stress.
Collapse
Affiliation(s)
- Minghui Du
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Peng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Ge Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xinyi Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weiwei Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Hongqiang Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Zhilong Bao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Fangfang Ma
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
13
|
The Formation of Hollow Trait in Cucumber (Cucumis sativus L.) Fruit Is Controlled by CsALMT2. Int J Mol Sci 2022; 23:ijms23116173. [PMID: 35682858 PMCID: PMC9181463 DOI: 10.3390/ijms23116173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 12/04/2022] Open
Abstract
The hollow trait is crucial for commercial quality of cucumber (Cucumis sativus L.) fruit, and its molecular regulatory mechanism is poorly understood due to its environmental sensitivity. In the previous research, we obtained the hollow and the non-hollow materials of ecotype cucumbers of South China, which were not easily affected by the external environment through a systematic breeding method. In this study, first, we proposed to use the percentage of the hollow area as the criterion to compare the hollow characteristics between two materials, and to analyze the formation mechanism of early hollow trait from the perspective of cytology. The results showed that the hollow trait occurred in the early stage of fruit development, and formed with the opening of carpel ventral zipped bi-cell layer, which formed rapidly from 2 to 4 days, and then slowed to a constant rate from 14 to 16 days. Meanwhile, the different genetic populations were constructed using these materials, and fine mapping was performed by bulked segregant analysis (BSA) and kompetitive allele specific PCR (KASP) method. The Csa1G630860 (CsALMT2), encoding protein ALMT2, was determined as a candidate gene for regulating the hollow trait in fruit. Furthermore, the expression profile of CsALMT2 was analyzed by qRT-PCR and fluorescence in situ hybridization. The expression of CsALMT2 had obvious tissue specificity, and it was abundantly expressed in the ovule development zone inside the fruit. In the hollow material of cucumber fruit, the expression of CsALMT2 was significantly downregulated. The subcellular localization in tobacco leaves indicated that CsALMT2 was distributed on the plasma membrane. In conclusion, in this study, for the first time, we found the regulatory gene of hollow trait in cucumber fruit, which laid the foundation for subsequent research on the molecular mechanism of hollow trait formation in cucumber fruit, and made it possible to apply this gene in cucumber breeding.
Collapse
|
14
|
Liu S, Liu X, Gou B, Wang D, Liu C, Sun J, Yin X, Grierson D, Li S, Chen K. The Interaction Between CitMYB52 and CitbHLH2 Negatively Regulates Citrate Accumulation by Activating CitALMT in Citrus Fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:848869. [PMID: 35386675 PMCID: PMC8978962 DOI: 10.3389/fpls.2022.848869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Citric acid plays significant roles in numerous physiological processes in plants, including carbon metabolism, signal transduction, and tolerance to environmental stress. For fruits, it has a major effect on fruit organoleptic quality by directly influencing consumer taste. Citric acid in citrus is mainly regulated by the balance between synthesis, degradation, and vacuolar storage. The genetic and molecular regulations of citric acid synthesis and degradation have been comprehensively elucidated. However, the transporters for citric acid in fruits are less well understood. Here, an aluminum-activated malate transporter, CitALMT, was characterized. Transient overexpression and stable transformation of CitALMT significantly reduced citrate concentration in citrus fruits and transgenic callus. Correspondingly, transient RNA interference-induced silencing of CitALMT and increased citrate significantly, indicating that CitALMT plays an important role in regulating citrate concentration in citrus fruits. In addition, dual-luciferase assays indicated that CitMYB52 and CitbHLH2 could trans-activate the promoter of CitALMT. EMSA analysis showed that CitbHLH2 could physically interact with the E-box motif in the CitALMT promoter. Bimolecular fluorescence complementation assays, yeast two-hybrid, coimmunoprecipitation and transient overexpression, and RNAi assay indicated that the interaction between CitMYB52 and CitbHLH2 could synergistically trans-activate CitALMT to negatively regulate citrate accumulation.
Collapse
Affiliation(s)
- Shengchao Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Xincheng Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Bangrui Gou
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | | | - Chunrong Liu
- Quzhou Academy of Agricultural Science, Quzhou, China
| | - Jun Sun
- Zhejiang Agricultural Technology Extension Center, Hangzhou, China
| | - Xueren Yin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Donald Grierson
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Structural basis of ALMT1-mediated aluminum resistance in Arabidopsis. Cell Res 2022; 32:89-98. [PMID: 34799726 PMCID: PMC8724285 DOI: 10.1038/s41422-021-00587-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
The plant aluminum (Al)-activated malate transporter ALMT1 mediates the efflux of malate to chelate the Al in acidic soils and underlies the plant Al resistance. Here we present cryo-electron microscopy (cryo-EM) structures of Arabidopsis thaliana ALMT1 (AtALMT1) in the apo, malate-bound, and Al-bound states at neutral and/or acidic pH at up to 3.0 Å resolution. The AtALMT1 dimer assembles an anion channel and each subunit contains six transmembrane helices (TMs) and six cytosolic α-helices. Two pairs of Arg residues are located in the center of the channel pore and contribute to malate recognition. Al binds at the extracellular side of AtALMT1 and induces conformational changes of the TM1-2 loop and the TM5-6 loop, resulting in the opening of the extracellular gate. These structures, along with electrophysiological measurements, molecular dynamic simulations, and mutagenesis study in Arabidopsis, elucidate the structural basis for Al-activated malate transport by ALMT1.
Collapse
|
16
|
Kaspal M, Kanapaddalagamage MH, Ramesh SA. Emerging Roles of γ Aminobutyric Acid (GABA) Gated Channels in Plant Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10102178. [PMID: 34685991 PMCID: PMC8540008 DOI: 10.3390/plants10102178] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 05/06/2023]
Abstract
The signaling role for γ-Aminobutyric acid (GABA) has been documented in animals for over seven decades. However, a signaling role for GABA in plants is just beginning to emerge with the discovery of putative GABA binding site/s and GABA regulation of anion channels. In this review, we explore the role of GABA in plant growth and development under abiotic stress, its interactions with other signaling molecules and the probability that there are other anion channels with important roles in stress tolerance that are gated by GABA.
Collapse
|
17
|
Mariz-Ponte N, Dias CM, Silva AMS, Santos C, Silva S. Low levels of TiO 2-nanoparticles interact antagonistically with Al and Pb alleviating their toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:1-10. [PMID: 34315106 DOI: 10.1016/j.plaphy.2021.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The contamination and bioavailability of deleterious metals in arable soils significantly limits crop development and yield. Aiming at mitigating Pb- and Al-induced phytotoxicity, this work explores the use of P25 titanium dioxide nanoparticles (nTiO2) in soil amendments. For that, Lactuca sativa L. plants were germinated and grown in the presence of 10 ppm Pb or 50 ppm Al, combined or not with 5 ppm nTiO2. Growth parameters, as well as endpoints of the redox state [cell relative membrane permeability (RMP), thiobarbituric acid reactive substances content, total phenolic content and photosynthesis (sugars and pigments levels, chlorophyll a fluorescence and gas exchange), were evaluated. Concerning Al, nTiO2 treatment alleviated the impairments induced in germination rate, seedling length, water content, RMP, stomatal conductance (gs), intercellular CO2 (Ci), and net CO2 assimilation rate (PN). It increased anthocyanins contents and effective efficiency of photosystem II (ΦPSII). In Pb-exposed plants, nTiO2 amendment mitigated the effects in RMP, PN, gs, and Ci. It also increased the pigment contents and the transpiration rate (E) comparatively to the control without nTiO2. These results clearly highlight the high potential of low doses of nTiO2 in alleviating metal phytotoxicity, particularly the one of Pb. Additionally, further research should explore the use of these nanoparticles in agricultural soil amendments.
Collapse
Affiliation(s)
- Nuno Mariz-Ponte
- Department of Biology, Faculty of Sciences, LAQV-REQUIMTE, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| | - Celeste M Dias
- Department of Life Sciences & CFE, Faculty of Sciences and Technologies, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Artur M S Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, LAQV-REQUIMTE, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
18
|
Angulo-Bejarano PI, Puente-Rivera J, Cruz-Ortega R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. PLANTS (BASEL, SWITZERLAND) 2021; 10:635. [PMID: 33801570 PMCID: PMC8066251 DOI: 10.3390/plants10040635] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Worldwide, the effects of metal and metalloid toxicity are increasing, mainly due to anthropogenic causes. Soil contamination ranks among the most important factors, since it affects crop yield, and the metals/metalloids can enter the food chain and undergo biomagnification, having concomitant effects on human health and alterations to the environment. Plants have developed complex mechanisms to overcome these biotic and abiotic stresses during evolution. Metals and metalloids exert several effects on plants generated by elements such as Zn, Cu, Al, Pb, Cd, and As, among others. The main strategies involve hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Recent studies in the omics era have increased knowledge on the plant genome and transcriptome plasticity to defend against these stimuli. The aim of the present review is to summarize relevant findings on the mechanisms by which plants take up, accumulate, transport, tolerate, and respond to this metal/metalloid stress. We also address some of the potential applications of biotechnology to improve plant tolerance or increase accumulation.
Collapse
Affiliation(s)
- Paola I. Angulo-Bejarano
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
- School of Engineering and Sciences, Centre of Bioengineering, Tecnologico de Monterrey, Queretaro 21620, Mexico
| | - Jonathan Puente-Rivera
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| |
Collapse
|
19
|
Gazara RK, Khan S, Iqrar S, Ashrafi K, Abdin MZ. Comparative transcriptome profiling of rice colonized with beneficial endophyte, Piriformospora indica, under high salinity environment. Mol Biol Rep 2020; 47:7655-7673. [PMID: 32979167 DOI: 10.1007/s11033-020-05839-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023]
Abstract
The salinity stress tolerance in plants has been studied enormously, reflecting its agronomic relevance. Despite the extensive research, limited success has been achieved in relation to the plant tolerance mechanism. The beneficial interaction between Piriformospora indica and rice could essentially improve the performance of the plant during salt stress. In this study, the transcriptomic data between P. indica treated and untreated rice roots were compared under control and salt stress conditions. Overall, 661 salt-responsive differentially expressed genes (DEGs) were detected with 161 up- and 500 down-regulated genes in all comparison groups. Gene ontology analyses indicated the DEGs were mainly enriched in "auxin-activated signaling pathway", "water channel activity", "integral component of plasma membrane", "stress responses", and "metabolic processes". Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the DEGs were primarily related to "Zeatin biosynthesis", "Fatty acid elongation", "Carotenoid biosynthesis", and "Biosynthesis of secondary metabolites". Particularly, genes related to cell wall modifying enzymes (e.g. invertase/pectin methylesterase inhibitor protein and arabinogalactans), phytohormones (e.g. Auxin-responsive Aux/IAA gene family, ent-kaurene synthase, and 12-oxophytodienoate reductase) and receptor-like kinases (e.g. AGC kinase and receptor protein kinase) were induced in P. indica colonized rice under salt stress condition. The differential expression of these genes implies that the coordination between hormonal crosstalk, signaling, and cell wall dynamics contributes to the higher growth and tolerance in P. indica-inoculated rice. Our results offer a valuable resource for future functional studies on salt-responsive genes that should improve the resilience and adaptation of rice against salt stress.
Collapse
Affiliation(s)
- Rajesh K Gazara
- Centro de Bioiências e Biotecnologia, Universidade Estadual do Norte Fluminense "Darcy Ribeiro" University, Campos dos goytacazes, Rio de Janeiro, Brazil
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shazia Khan
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Sadia Iqrar
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Kudsiya Ashrafi
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Malik Z Abdin
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
20
|
Wang Z, Liu L, Su H, Guo L, Zhang J, Li Y, Xu J, Zhang X, Guo YD, Zhang N. Jasmonate and aluminum crosstalk in tomato: Identification and expression analysis of WRKYs and ALMTs during JA/Al-regulated root growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:409-418. [PMID: 32650255 DOI: 10.1016/j.plaphy.2020.06.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 05/19/2023]
Abstract
The WRKY transcription factors (TFs) are involved in aluminum (Al) stress and jasmonic acid (JA)-regulated resistance responses. WRKYs act as regulators of Al-activated malate transporter (ALMT) proteins (anion channels) by directly binding to their promoters and altering malate efflux, thereby regulating Al ion toxicity in plant roots. JA enhances Al-induced root growth inhibition in Arabidopsis. However, the relationship between WRKY and ALMT genes and their involvement in JA-mediated root growth inhibition during Al stress in tomato remain unknown. Here, we demonstrate a similar phenomenon that JA enhances Al-induced root growth inhibition in tomato (Solanum lycopersicum). By analyzing RNA-seq data and tissue-specific expression data from public databases, we selected 17 WRKY and 6 ALMT family genes to identify the genes participated in this process. The promoters of many of the selected genes contained MeJA responsive element, G-box (target site of MYC2, a core TF of JA signaling), and W-box (target site for WRKY). Quantitative real-time PCR was performed to evaluate the expression levels of selected WRKY and ALMT genes under AlCl3 and Methyl jasmonate (MeJA) treatment. SlMYC2-VIGS seedlings and jasmonic acid-insensitive1 (jai1) mutant were also employed to analyze the expression patterns of selected genes. We find that SlALMT3 is responsible for the crosstalk regulatory mechanism between Al and JA in root growth inhibition, and 6 SlWRKYs may act as the upstream regulators of SlALMT3 in this crosstalk response. This study is initial and informative in exploring the crosstalk regulatory mechanism between JA and Al in tomato.
Collapse
Affiliation(s)
- Zhirong Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lun Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hui Su
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Luqin Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yafei Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiayi Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xichun Zhang
- College of Plant Science & Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Long S, Yan F, Yang L, Sun Z, Wei S. Responses of Manila Grass (Zoysia matrella) to chilling stress: From transcriptomics to physiology. PLoS One 2020; 15:e0235972. [PMID: 32687533 PMCID: PMC7371177 DOI: 10.1371/journal.pone.0235972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
Manila grass (Zoysia matrella), a warm-season turfgrass, usually wilts and browns by late autumn because of low temperature. To elucidate the molecular mechanisms regarding Manila grass responses to cold stress, we performed transcriptome sequencing of leaves exposed to 4°C for 0 (CK), 2h (2h_CT) and 72h (72h_CT) by Illumina technology. Approximately 250 million paired-end reads were obtained and de novo assembled into 82,605 unigenes. A total of 34,879 unigenes were annotated by comparing their sequence to public protein databases. At the 2h- and 72h-cold time points, 324 and 5,851 differentially expressed genes (DEGs) were identified, respectively. Gene ontology (GO) and metabolism pathway (KEGG) enrichment analyses of DEGs indicated that auxin, gibberellins, ethylene and calcium took part in the cold signal transduction in the early period. And in the late cold period, electron transport activities, photosynthetic machinery and activity, carbohydrate and nitrogen metabolism, redox equilibrium and hormone metabolism were disturbed. Low temperature stress triggered high light, drought and oxidative stress. At the physiological level, cold stress induced a decrease in water content, an increase in levels of total soluble sugar, free proline and MDA, and changes in bioactive gibberellins levels, which supported the changes in gene expression. The results provided a large set of sequence data of Manila grass as well as molecular mechanisms of the grass in response to cold stress. This information will be helpful for future study of molecular breeding and turf management.
Collapse
Affiliation(s)
- Sixin Long
- College of Life & Environmental Science, Minzu University of China, Beijing, PR China
| | - Fengying Yan
- College of Life & Environmental Science, Minzu University of China, Beijing, PR China
| | - Lin Yang
- College of Life & Environmental Science, Minzu University of China, Beijing, PR China
| | - Zhenyuan Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- * E-mail: (ZS); (SW)
| | - Shanjun Wei
- College of Life & Environmental Science, Minzu University of China, Beijing, PR China
- * E-mail: (ZS); (SW)
| |
Collapse
|
22
|
Zhou Y, Neuhäuser B, Neumann G, Ludewig U. LaALMT1 mediates malate release from phosphorus-deficient white lupin root tips and metal root to shoot translocation. PLANT, CELL & ENVIRONMENT 2020; 43:1691-1706. [PMID: 32239684 DOI: 10.1111/pce.13762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 05/29/2023]
Abstract
Under phosphorus (P) deficiency, Lupinus albus (white lupin) releases large amounts of organic acid anions from specialized root structures, so-called cluster or proteoid roots, to mobilize and acquire sparingly soluble phosphates from a restricted soil volume. The molecular mechanisms underlying this release and its regulation are, however, poorly understood. Here, we identified a gene belonging to the aluminium (Al)-activated malate transporter (ALMT) family that specifically contributes to malate, but not citrate release. This gene, LaALMT1, was most prominently expressed in the root apices under P deficiency, including those of cluster roots and was also detected in the root stele. Contrary to several ALMT homologs in other species, the expression was not stimulated, but moderately repressed by Al. Aluminium-independent malate currents were recorded from the plasma membrane localized LaALMT1 expressed in Xenopus oocytes. In composite lupins with transgenic roots, LaALMT1 was efficiently mutated by CRISPR-Cas9, leading to diminished malate efflux and lower xylem sap malate concentrations. When grown in an alkaline P-deficient soil, mutant shoot phosphate concentrations were similar, but iron and potassium concentrations were diminished in old leaves, suggesting a role for ALMT1 in metal root to shoot translocation, a function that was also supported by growth in hydroponics.
Collapse
Affiliation(s)
- Yaping Zhou
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Günter Neumann
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
23
|
Li C, Dougherty L, Coluccio AE, Meng D, El-Sharkawy I, Borejsza-Wysocka E, Liang D, Piñeros MA, Xu K, Cheng L. Apple ALMT9 Requires a Conserved C-Terminal Domain for Malate Transport Underlying Fruit Acidity. PLANT PHYSIOLOGY 2020; 182:992-1006. [PMID: 31772076 PMCID: PMC6997694 DOI: 10.1104/pp.19.01300] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/18/2019] [Indexed: 05/20/2023]
Abstract
Malate accumulation in the vacuole largely determines apple (Malus domestica) fruit acidity, and low fruit acidity is strongly associated with truncation of Ma1, an ortholog of ALUMINUM-ACTIVATED MALATE TRANSPORTER9 (ALMT9) in Arabidopsis (Arabidopsis thaliana). A mutation at base 1,455 in the open reading frame of Ma1 leads to a premature stop codon that truncates the protein by 84 amino acids at its C-terminal end. Here, we report that both the full-length protein, Ma1, and its naturally occurring truncated protein, ma1, localize to the tonoplast; when expressed in Xenopus laevis oocytes and Nicotiana benthamiana cells, Ma1 mediates a malate-dependent inward-rectifying current, whereas the ma1-mediated transmembrane current is much weaker, indicating that ma1 has significantly lower malate transport activity than Ma1. RNA interference suppression of Ma1 expression in 'McIntosh' apple leaves, 'Empire' apple fruit, and 'Orin' apple calli results in a significant decrease in malate level. Genotyping and phenotyping of 186 apple accessions from a diverse genetic background of 17 Malus species combined with the functional analyses described above indicate that Ma1 plays a key role in determining fruit acidity and that the truncation of Ma1 to ma1 is genetically responsible for low fruit acidity in apple. Furthermore, we identified a C-terminal domain conserved in all tonoplast-localized ALMTs essential for Ma1 function; protein truncations into this conserved domain significantly lower Ma1 transport activity. We conclude that the truncation of Ma1 to ma1 reduces its malate transport function by removing a conserved C-terminal domain, leading to low fruit acidity in apple.
Collapse
Affiliation(s)
- Chunlong Li
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Laura Dougherty
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, New York 14456
| | - Alison E Coluccio
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Dong Meng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Islam El-Sharkawy
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, New York 14456
| | - Ewa Borejsza-Wysocka
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, New York 14456
| | - Dong Liang
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, New York 14456
| | - Miguel A Piñeros
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, New York 14456
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| |
Collapse
|
24
|
Genome-Wide Identification of Aluminum-Activated Malate Transporter (ALMT) Gene Family in Rubber Trees (Hevea brasiliensis) Highlights Their Involvement in Aluminum Detoxification. FORESTS 2020. [DOI: 10.3390/f11020142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rubber tree (Hevea brasiliensis) is a widely cultivated crop in tropical acidic soil that is tolerant to high concentration of aluminum and the aluminum-activated malate transporter (ALMT) plays an important role in plant aluminum detoxification. However, the effects of ALMT on rubber tree aluminum tolerance, growth performance, and latex production are unclear. In this study, 17 HbALMT genes were identified from the genome of rubber trees. The physiological and biochemical characteristics, phylogenetic relationships, gene structures, conserved motifs, cis-elements of promoter, and expression patterns of the identified HbALMT genes were studied. Phylogenetic relationships indicated that these genes were divided into four clusters and genes in the same cluster have similar gene structures and conserved motifs. The promoters of HbALMT genes contain many cis-elements associated with biotic stress and abiotic stress. Quantitative real-time PCR analysis revealed HbALMTs showed various expression patterns in different tissues, indicating the functional diversity of HbALMT genes in different tissues of rubber trees. Transcriptome analysis and qRT-PCR assay showed that most of the HbALMT genes responded to aluminum stress, and among the 17 HbALMTs, HbALMT1, HbALMT2, HbALMT13, and HbALMT15 displayed higher expression levels in roots after two or five days of Al treatments, indicating their potential involvement in aluminum detoxification. Taken together, this study laid a foundation for further understanding the molecular evolution of the ALMT genes and their involvement in rubber tree aluminum adaption.
Collapse
|
25
|
Identification of Arabis alpina genomic regions associated with climatic variables along an elevation gradient through whole genome scan. Genomics 2019; 112:729-735. [PMID: 31085222 DOI: 10.1016/j.ygeno.2019.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 01/23/2023]
Abstract
We performed a pooled whole-genome sequencing on samples of the alpine plant Arabis alpina, harvested in ten populations along an elevation gradient in the French Alps. A large dataset of genetic variations was produced as single nucleotide polymorphisms (SNPs). A combined genome scan approach enabled detecting genomic regions associated with a synthetic environmental variable characterizing the climate at each sampling location. Positive loci detected by two methods were retained and belong to 19 regions in the Arabis alpina genome. The most significant region harbors an ortholog of the AtNAC062 gene, encoding a membrane-bound transcription factor described as linking the cold response and pathogen resistance that may confer protection to plants under extended snow coverage at high elevations. Other genes involved in the stress response or in flowering regulation were also detected. Altogether, our results indicated that Arabis alpina represent a suitable model for studying genomic adaptation in alpine perennial plants.
Collapse
|
26
|
Luu K, Rajagopalan N, Ching JCH, Loewen MC, Loewen ME. The malate-activated ALMT12 anion channel in the grass Brachypodium distachyon is co-activated by Ca 2+/calmodulin. J Biol Chem 2019; 294:6142-6156. [PMID: 30770467 PMCID: PMC6463695 DOI: 10.1074/jbc.ra118.005301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
In plants, strict regulation of stomatal pores is critical for modulation of CO2 fixation and transpiration. Under certain abiotic and biotic stressors, pore closure is initiated through anionic flux, with calcium (Ca2+) playing a central role. The aluminum-activated malate transporter 12 (ALMT12) is a malate-activated, voltage-dependent member of the aluminum-activated malate transporter family that has been implicated in anionic flux from guard cells controlling the stomatal aperture. Herein, we report the characterization of the regulatory mechanisms mediating channel activities of an ALMT from the grass Brachypodium distachyon (BdALMT12) that has the highest sequence identity to Arabidopsis thaliana ALMT12. Electrophysiological studies in a heterologous cell system confirmed that this channel is malate- and voltage-dependent. However, this was shown to be true only in the presence of Ca2+ Although a general kinase inhibitor increased the current density of BdALMT12, a calmodulin (CaM) inhibitor reduced the Ca2+-dependent channel activation. We investigated the physiological relevance of the CaM-based regulation in planta, where stomatal closure, induced by exogenous Ca2+ ionophore and malate, was shown to be inhibited by exogenous application of a CaM inhibitor. Subsequent analyses revealed that the double substitutions R335A/R338A and R335A/K342A, within a predicted BdALMT12 CaM-binding domain (CBD), also decreased the channels' ability to activate. Using isothermal titration calorimetry and CBD-mimetic peptides, as well as CaM-agarose affinity pulldown of full-length recombinant BdALMT12, we confirmed the physical interaction between the CBD and CaM. Together, these findings support a co-regulatory mechanism of BdALMT12 activation by malate, and Ca2+/CaM, emphasizing that a complex regulatory network modulates BdALMT12 activity.
Collapse
Affiliation(s)
- Khanh Luu
- From the Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 1B8
| | | | - John C H Ching
- From the Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 1B8
| | - Michele C Loewen
- the National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9; the National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada; the Department of Biomedical and Molecular Sciences, Queens University, Kingston, Ontario K7L 0N6, Canada.
| | - Matthew E Loewen
- From the Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 1B8
| |
Collapse
|
27
|
Saito S, Uozumi N. Guard Cell Membrane Anion Transport Systems and Their Regulatory Components: An Elaborate Mechanism Controlling Stress-Induced Stomatal Closure. PLANTS 2019; 8:plants8010009. [PMID: 30609843 PMCID: PMC6359458 DOI: 10.3390/plants8010009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/19/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023]
Abstract
When plants are exposed to drastic environmental changes such as drought, salt or bacterial invasion, rapid stomatal movement confers tolerance to these stresses. This process involves a variety of guard cell expressed ion channels and their complex regulation network. Inward K+ channels mainly function in stomatal opening. On the other hand, guard cell anion channels play a crucial role in the closing of stomata, which is vital in terms of preventing water loss and bacterial entrance. Massive progress has been made on the research of these anion channels in the last decade. In this review, we focus on the function and regulation of Arabidopsis guard cell anion channels. Starting from SLAC1, a main contributor of stomatal closure, members of SLAHs (SLAC1 homologues), AtNRTs (Nitrate transporters), AtALMTs (Aluminum-activated malate transporters), ABC transporters, AtCLCs (Chloride channels), DTXs (Detoxification efflux carriers), SULTRs (Sulfate transporters), and their regulator components are reviewed. These membrane transport systems are the keys to maintaining cellular ion homeostasis against fluctuating external circumstances.
Collapse
Affiliation(s)
- Shunya Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
| |
Collapse
|
28
|
Pereira JF, Ryan PR. The role of transposable elements in the evolution of aluminium resistance in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:41-54. [PMID: 30325439 DOI: 10.1093/jxb/ery357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/02/2018] [Indexed: 05/20/2023]
Abstract
Aluminium (Al) toxicity can severely reduce root growth and consequently affect plant development and yield. A mechanism by which many species resist the toxic effects of Al relies on the efflux of organic anions (OAs) from the root apices via OA transporters. Several of the genes encoding these OA transporters contain transposable elements (TEs) in the coding sequences or in flanking regions. Some of the TE-induced mutations impact Al resistance by modifying the level and/or location of gene expression so that OA efflux from the roots is increased. The importance of genomic modifications for improving the adaptation of plants to acid soils has been raised previously, but the growing number of examples linking TEs with these changes requires highlighting. Here, we review the role of TEs in creating genetic modifications that enhance the adaptation of plants to acid soils by increasing the release of OAs from the root apices. We argue that TEs have been an important source of beneficial mutations that have co-opted OA transporter proteins with other functions to perform this role. These changes have occurred relatively recently in the evolution of many species and likely facilitated their expansion into regions with acidic soils.
Collapse
Affiliation(s)
| | - Peter R Ryan
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
29
|
Rahman MA, Lee SH, Ji HC, Kabir AH, Jones CS, Lee KW. Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities. Int J Mol Sci 2018; 19:E3073. [PMID: 30297682 PMCID: PMC6213855 DOI: 10.3390/ijms19103073] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 01/24/2023] Open
Abstract
Aluminum (Al) toxicity is one of the major limitations that inhibit plant growth and development in acidic soils. In acidic soils (pH < 5.0), phototoxic-aluminum (Al3+) rapidly inhibits root growth, and subsequently affects water and nutrient uptake in plants. This review updates the existing knowledge concerning the role of mineral nutrition for alleviating Al toxicity in plants to acid soils. Here, we explored phosphorus (P) is more beneficial in plants under P-deficient, and Al toxic conditions. Exogenous P addition increased root respiration, plant growth, chlorophyll content, and dry matter yield. Calcium (Ca) amendment (liming) is effective for correcting soil acidity, and for alleviating Al toxicity. Magnesium (Mg) is able to prevent Al migration through the cytosolic plasma membrane in root tips. Sulfur (S) is recognized as a versatile element that alleviates several metals toxicity including Al. Moreover, silicon (Si), and other components such as industrial byproducts, hormones, organic acids, polyamines, biofertilizers, and biochars played promising roles for mitigating Al toxicity in plants. Furthermore, this review provides a comprehensive understanding of several new methods and low-cost effective strategies relevant to the exogenous application of mineral nutrition on Al toxicity mitigation. This information would be effective for further improvement of crop plants in acid soils.
Collapse
Affiliation(s)
- Md Atikur Rahman
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| | - Sang-Hoon Lee
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| | - Hee Chung Ji
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| | - Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Chris Stephen Jones
- Feed and Forage Biosciences, International Livestock Research Institute, P.O. Box 5689, Addis Ababa, Ethiopia.
| | - Ki-Won Lee
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| |
Collapse
|
30
|
Podlešáková K, Ugena L, Spíchal L, Doležal K, De Diego N. Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. N Biotechnol 2018; 48:53-65. [PMID: 30048769 DOI: 10.1016/j.nbt.2018.07.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 06/20/2018] [Accepted: 07/21/2018] [Indexed: 11/16/2022]
Abstract
In plants, γ-aminobutyric acid (GABA) accumulates rapidly in response to environmental stress and variations in its endogenous concentration have been shown to affect plant growth. Exogenous application of GABA has also conferred higher stress tolerance by modulating the expression of genes involved in plant signalling, transcriptional regulation, hormone biosynthesis, reactive oxygen species production and polyamine metabolism. Plant hormones play critical roles in adaptation of plants to adverse environmental conditions through a sophisticated crosstalk among them. Several studies have provided evidence for the relationships between GABA, polyamines and hormones such as abscisic acid, cytokinins, auxins, gibberellins and ethylene, among others, focussing on the effect that one specific group of compounds exerts over the metabolic and signalling pathways of others. In this review, we bring together information obtained from plants exposed to several stress conditions and discuss the possible links among these different groups of molecules. The analysis supports the view that highly conserved pathways connect primary and secondary metabolism, with an overlap of regulatory functions related to stress responses and tolerance among phytohormones, amino acids and polyamines.
Collapse
Affiliation(s)
- Kateřina Podlešáková
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
| |
Collapse
|
31
|
Ramesh SA, Kamran M, Sullivan W, Chirkova L, Okamoto M, Degryse F, McLaughlin M, Gilliham M, Tyerman SD. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport. THE PLANT CELL 2018; 30:1147-1164. [PMID: 29618628 PMCID: PMC6002190 DOI: 10.1105/tpc.17.00864] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/27/2018] [Accepted: 04/02/2018] [Indexed: 05/02/2023]
Abstract
Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABAA receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA]i) in both wheat (Triticum aestivum) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA]i because TaALMT1 facilitates GABA efflux but GABA does not complex Al3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14C-GABA uptake into TaALMT1-expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1F213C) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA]i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status.
Collapse
Affiliation(s)
- Sunita A Ramesh
- ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Muhammad Kamran
- ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Wendy Sullivan
- ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Larissa Chirkova
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Department of Plant Science, Waite Research Institute, School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Mamoru Okamoto
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Department of Plant Science, Waite Research Institute, School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Fien Degryse
- Fertilizer Technology Research Centre, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Michael McLaughlin
- Fertilizer Technology Research Centre, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| |
Collapse
|
32
|
Bina XR, Howard MF, Taylor-Mulneix DL, Ante VM, Kunkle DE, Bina JE. The Vibrio cholerae RND efflux systems impact virulence factor production and adaptive responses via periplasmic sensor proteins. PLoS Pathog 2018; 14:e1006804. [PMID: 29304169 PMCID: PMC5773229 DOI: 10.1371/journal.ppat.1006804] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/18/2018] [Accepted: 12/11/2017] [Indexed: 12/18/2022] Open
Abstract
Resistance-nodulation-division (RND) efflux systems are ubiquitous transporters in Gram-negative bacteria that are essential for antibiotic resistance. The RND efflux systems also contribute to diverse phenotypes independent of antimicrobial resistance, but the mechanism by which they affect most of these phenotypes is unclear. This is the case in Vibrio cholerae where the RND systems function in antimicrobial resistance and virulence factor production. Herein, we investigated the linkage between RND efflux and V. cholerae virulence. RNA sequencing revealed that the loss of RND efflux affected the activation state of periplasmic sensing systems including the virulence regulator ToxR. Activation of ToxR in an RND null mutant resulted in ToxR-dependent transcription of the LysR-family regulator leuO. Increased leuO transcription resulted in the repression of the ToxR virulence regulon and attenuated virulence factor production. Consistent with this, leuO deletion restored virulence factor production in an RND-null mutant, but not its ability to colonize infant mice; suggesting that RND efflux was epistatic to virulence factor production for colonization. The periplasmic sensing domain of ToxR was required for the induction of leuO transcription in the RND null mutant, suggesting that ToxR responded to metabolites that accumulated in the periplasm. Our results suggest that ToxR represses virulence factor production in response to metabolites that are normally effluxed from the cell by the RND transporters. We propose that impaired RND efflux results in periplasmic metabolite accumulation, which then activates periplasmic sensors including ToxR and two-component regulatory systems to initiate the expression of adaptive responses.
Collapse
Affiliation(s)
- X. Renee Bina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Mondraya F. Howard
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Dawn L. Taylor-Mulneix
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Vanessa M. Ante
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Dillon E. Kunkle
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - James E. Bina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
33
|
Grillet L, Schmidt W. The multiple facets of root iron reduction. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5021-5027. [PMID: 29036459 DOI: 10.1093/jxb/erx320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The biological significance of iron (Fe) is based on its propensity to oscillate between the ferric and ferrous forms, a transition that also affects its phyto-availability in soils. With the exception of grasses, Fe3+ is unavailable to plants. Most angiosperms employ a reduction-based Fe uptake mechanism, which relies on enzymatic reduction of ferric iron as an obligatory, rate-limiting step prior to uptake. This system functions optimally in acidic soils. Calcicole plants are, however, exposed to environments that are alkaline and/or have suboptimal availability of phosphorous, conditions under which the enzymatic reduction mechanism ceases to work effectively. We propose that auxiliary, non-enzymatic Fe reduction can be of critical importance for conferring fitness to plants thriving in alkaline soils with low bioavailability of Fe and/or phosphorus.
Collapse
Affiliation(s)
- Louis Grillet
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
34
|
Sharma A, Wai CM, Ming R, Yu Q. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis. Genome Biol Evol 2017; 9:2170-2190. [PMID: 28922793 PMCID: PMC5737478 DOI: 10.1093/gbe/evx161] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/22/2022] Open
Abstract
Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots.
Collapse
Affiliation(s)
- Anupma Sharma
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas
| | - Ching Man Wai
- Department of Plant Biology, University of Illinois at Urbana-Champaign
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Qingyi Yu
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
- Department of Plant Pathology and Microbiology, Texas A&M University
| |
Collapse
|