1
|
Liu Y, Li T, Shi W. Janus kinase inhibitors and biologics for treatment of livedoid vasculopathy: a systematic review. J DERMATOL TREAT 2025; 36:2451804. [PMID: 39828272 DOI: 10.1080/09546634.2025.2451804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
Purpose: Livedoid vasculopathy (LV) is a chronic microvascular thrombosis disorder with an unclear pathogenesis, potentially involving hypercoagulability and inflammation. This systematic review aims to evaluate the efficacy and safety of Janus kinase (JAK) inhibitors and biologics in the treatment of LV. Materials and methods: A comprehensive search was conducted in PubMed, EMBASE, and the Cochrane Library on June 10, 2024, to identify relevant studies evaluating the use of JAK inhibitors and biologics in LV treatment. Results: A total of 15 articles were included in the review. Among the 41 patients treated with biologics and JAK inhibitors, 36 (87.8%) showed positive clinical responses, including significant improvements in pain relief. TNF-α inhibitors were the most commonly used monotherapy, followed by JAK inhibitors. Adverse events were infrequent, suggesting that these treatments generally have a favorable safety profile. Conclusions: JAK inhibitors and biologics appear to be safe and effective alternatives for managing refractory LV. These findings provide a foundation for future studies to further validate their clinical effectiveness and long-term safety.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Ding X, Ma B, Zhou R, Zhang Y, Zhang Y, Xie X, Wang M, Wu C, Jia J. Baicalin restores dopamine homeostasis in the ADHD model by regulating DAT-VMAT2 transport imbalance through activation of the Nrf2/Keap-1/HO-1 pathway. Free Radic Biol Med 2025; 232:107-127. [PMID: 40023299 DOI: 10.1016/j.freeradbiomed.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
The 'dopamine (DA) deficit' theory is pivotal in understanding the pathogenesis of attention deficit hyperactivity disorder (ADHD). However, the relationship betweeen an imbalance in the dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) the DA deficit remains poorly understood. Using the internationally recognized spontaneously hypertensive rats (SHRs) models, we investigated how a high oxidative stress (OS) state in vivo disrupts DAT-VMAT2 transport balance, a key factor influencing DA homeostasis. Our findings revealed abnormal levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), catalase (CAT), total antioxidant capacity (T-AOC), glutathione (GSH), and tumor necrosis factor-α (TNF-α) in SHRs. Furthermore, the antioxidative stress-related nuclear factor erythroid 2-related factor (Nrf2)/kelch-like ECH-associated protein 1 (Keap-1)/heme oxygenase-1 (HO-1) pathway was inhibited, leading to excessive DAT activation and functional antagonism of VMAT2. Notably, Baicalin (BA) ameliorated these imbalances. Treatment with the VMAT2 inhibitor tetrabenazine (TBZ) exacerbated VMAT2 inhibition in SHRs brains, further activating DAT and restricting Nrf2 nuclear translocation. These results confirmed the strong link between the Nrf2/Keap-1/HO-1 pathway the DAT-VMAT2 imbalance. Moreover, under high OS conditions, the phosphorylation of nuclear factor-κB P65 (NF-κB P65) was triggered, leading to the upregulation of heat shock cognate protein 70 (HSC70). We aslo identified a potential negative feedback mechanism between HSC70 and VMAT2. In summary, our study uncovered a novel mechanism in ADHD pathogenesis, demonstrating that the DA deficits resulted from an imbalance between DAT and VMAT2. Remarkably, BA significantly reduced high levels of OS and inflammation by activating the Nrf2/Keap-1/HO-1 pathway, thereby restoring DAT-VMAT2 transport balance and enhancing DA homeostasis. This discovery provides a solid foundation for further exploration of ADHD pathogenesis and offers new molecular insights for ADHD treatment.
Collapse
Affiliation(s)
- Xueying Ding
- Pediatrics Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450099, China; School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Bingxiang Ma
- Pediatrics Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450099, China; School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Rongyi Zhou
- Pediatrics Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450099, China; School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Yongting Zhang
- Pediatrics Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450099, China; School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Yuyan Zhang
- Pediatrics Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450099, China; School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Xinyue Xie
- Pediatrics Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450099, China; School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Mengfei Wang
- Pediatrics Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450099, China; School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Chenlei Wu
- Pediatrics Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450099, China; School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Jia Jia
- Pediatrics Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450099, China; School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| |
Collapse
|
3
|
Kellum CE, Kelly GC, Pollock JS. Ripple Effects of Early Life Stress on Vascular Health. Hypertension 2025; 82:549-560. [PMID: 39882616 DOI: 10.1161/hypertensionaha.124.17804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The term early life stress encompasses traumatic events occurring before the age of 18 years, such as physical abuse, verbal abuse, household dysfunctions, sexual abuse, childhood neglect, child maltreatment, and adverse childhood experiences. Adverse psychological experiences in early life are linked to enduring effects on mental and physical health in adulthood. In this review, we first describe the effects and potential mechanisms of early life stress on the components of the vasculature. Next, we dive into the impact of early life stress on the vasculature across the lifespan through alterations of the epigenetic landscape. Finally, we consolidate the critical gaps in knowledge for focusing future research including the potential for resilience in combatting the impact of early life stress on vascular health.
Collapse
Affiliation(s)
- Cailin E Kellum
- Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.)
| | - Gillian C Kelly
- Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.)
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.)
| |
Collapse
|
4
|
Cheng HF, Yang QY, Xie YH, Zhang YW, Zhang QX. Houshiheisan modulates the NF-κB/MLCK signaling pathway to protect the endothelial barrier in cerebral small vessel disease. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119502. [PMID: 39956300 DOI: 10.1016/j.jep.2025.119502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/09/2024] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Houshiheisan (HSHS) is a classical prescription remedy for cerebral small vessel disease (CSVD) in traditional Chinese medicine; however, its specific ingredients and mechanisms remain unclear. AIM OF THE STUDY This study sought to elucidate the protective effects of HSHS on spontaneously hypertensive rats (SHR) subjected to unilateral common carotid artery occlusion (UCCAO), referred to as SHR-UCCAO, and to identify potential targets and mechanistic pathways involved in CSVD treatment using serum pharmacochemistry, network pharmacology, and experimental validation. MATERIALS AND METHODS Serum pharmacochemistry was used to identify the components of HSHS. Network and functional enrichment analyses were performed to clarify the targets and biological mechanisms of HSHS. The CB-DOCK2 database was employed for molecular docking of the principal compounds and core target proteins. As predicted by network pharmacological analysis, the potential mechanisms of HSHS against CSVD were experimentally validated in a CSVD rat model and endothelial cells subjected to oxygen-glucose deprivation. RESULTS A total of 50 compounds in serum samples from HSHS were identified as potential active agents. Network pharmacology and molecular docking analyses revealed that HSHS could treat CSVD via multiple components and targets. In animal experiments, HSHS ameliorated systolic and diastolic blood pressure, improved gait disturbance, and reduced the Albumin levels in the affected cortex of CSVD rats. Animal and cell experiments demonstrated that HSHS improved the endothelial barrier injury and upregulated the expression of ZO-1, Occludin, Claudin-5, and VE-Cadherin through regulation of the NF-κB/MLCK pathway. CONCLUSIONS This study indicated that HSHS could protect the endothelial barrier in CSVD by modulating the NF-κB/MLCK signaling pathway.
Collapse
Affiliation(s)
- Hong-Fa Cheng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Qiu-Yue Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Ya-Hui Xie
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Ya-Wen Zhang
- Nankou Hospital, Changping District, Beijing, 102200, China
| | - Qiu-Xia Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
5
|
Zhao J, Li X, Liang C, Yan Y. Can Exercise-Mediated Adipose Browning Provide an Alternative Explanation for the Obesity Paradox? Int J Mol Sci 2025; 26:1790. [PMID: 40076419 PMCID: PMC11898606 DOI: 10.3390/ijms26051790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Overweight patients with cardiovascular disease (CVD) tend to survive longer than normal-weight patients, a phenomenon known as the "obesity paradox". The phenotypic characteristics of adipose distribution in these patients (who survive longer) often reveal a larger proportion of subcutaneous white adipose tissue (scWAT), suggesting that the presence of scWAT is negatively associated with all-cause mortality and that scWAT appears to provide protective benefits in patients facing unhealthy states. Exercise-mediated browning is a crucial aspect of the benign remodeling process of adipose tissue (AT). Reduced accumulation, reduced inflammation, and associated adipokine secretion are directly related to the reduction in CVD mortality. This paper summarized the pathogenetic factors associated with AT accumulation in patients with CVD and analyzed the possible role and pathway of exercise-mediated adipose browning in reducing the risk of CVD and CVD-related mortality. It is suggested that exercise-mediated browning may provide a new perspective on the "obesity paradox"; that is, overweight CVD patients who have more scWAT may gain greater cardiovascular health benefits through exercise.
Collapse
Affiliation(s)
- Jiani Zhao
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
| | - Xuehan Li
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
| | - Chunyu Liang
- School of Physical Education, Guangxi University (GXU), Nanning 530004, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University (BSU), Beijing 100084, China
- Exercise and Physical Fitness, Beijing Sport University (BSU), Beijing 100084, China
| |
Collapse
|
6
|
Taboada-Alquerque M, Olivero-Verbel J. Network Toxicology Analysis Reveals Molecular Mechanisms Associated with Noise Exposure to Multiple Diseases. Toxicol Mech Methods 2025:1-25. [PMID: 39898607 DOI: 10.1080/15376516.2025.2460591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/09/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Noise pollution is recognized as an environmental stressor that affects various biological processes beyond auditory functions, mainly through stress hormones release. This work explored the biological processes, diseases attributable to noise-regulated targets, and the main targets involved in each disease, employing a network toxicology approach. Through various databases and bioinformatics analysis, a total of 577 targets were identified as potential candidates implicated in diseases related to noise exposure, 10 from the GEO database and the rest from other databases. Noise pollution was found to regulate processes such as hormone response, cellular response to cytokines, and circulatory system functions, contributing to the development of the pathological manifestations related to the diseases like hypertension, ischemia, atherosclerosis, and cirrhosis. Hub targets for ischemia included IL-6, CASP3, AKT1, and TNF-α, while NOS3 was related to hypertension, and NOS3, TNF-α, AGT, and IL-1B to atherosclerosis. The targets were found to be linked to vascular regulation and inflammation in cardio- and cerebrovascular diseases. Molecular docking studies indicated stress hormones released by noise exposure regulates these diseases through signaling pathways, without implicating its direct binding to hub targets. The results indicate that individuals with vascular diseases are more vulnerable to the effects of prolonged noise exposure.
Collapse
Affiliation(s)
- Maria Taboada-Alquerque
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| |
Collapse
|
7
|
Manoj H, Gomes SM, Thimmappa PY, Nagareddy PR, Jamora C, Joshi MB. Cytokine signalling in formation of neutrophil extracellular traps: Implications for health and diseases. Cytokine Growth Factor Rev 2025; 81:27-39. [PMID: 39681501 DOI: 10.1016/j.cytogfr.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Neutrophils, as essential component of the innate immune response, form a crucial part in the defence mechanisms through the release of extracellular traps (NETs). These web-like structures, composed of chromatin and antimicrobial proteins, are essential for the entrapment and inactivation of pathogens. However, either constitutive formation or inefficient clearance of NETs leads to adverse effects such as fibrosis, thrombosis, delayed wound healing and tissue damage in multiple diseases associated with sterile inflammation. This dichotomy casts NETs as both protective agents and harmful factors in several diseases such as autoimmune diseases, metabolic syndromes, systemic infections, and malignancies. Besides microbes and their products, variety of stimulants including pro-inflammatory cytokines induce NETs. The complex interactions and cross talk among the pro-inflammatory cytokines including IL-8, IL-6, GM-CSF, TNF-α, IFNs, and IL-1β activate neutrophils to form NETs and also contributes to a vicious circle of inflammatory cascade, leading to increased inflammation, oxidative stress, and thrombotic events. Emerging evidence indicates that the dysregulated cytokine milieus in diseases, such as diabetes mellitus, obesity, atherosclerosis, stroke, rheumatoid arthritis, and systemic lupus erythematosus, potentiate NETs release, thereby promoting disease development. Thus, neutrophils represent both critical effectors and potential therapeutic targets, underscoring their importance in the context of cytokine-mediated therapies for a spectrum of diseases. In the present review, we describe various cytokines and associated signalling pathways activating NETs formation in different human pathologies. Further, the review identifies potential strategies to pharmacologically modulate cytokine pathways to reduce NETs.
Collapse
Affiliation(s)
- Haritha Manoj
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sarah Michael Gomes
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma, OK, USA
| | - Colin Jamora
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh 201314, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
8
|
Li Q, Sheng J, Baruscotti M, Liu Z, Wang Y, Zhao L. Identification of Senkyunolide I as a novel modulator of hepatic steatosis and PPARα signaling in zebrafish and hamster models. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118743. [PMID: 39209000 DOI: 10.1016/j.jep.2024.118743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver-related morbidity and mortality, with hepatic steatosis being the hallmark symptom. Salvia miltiorrhiza Bunge (Smil, Dan-Shen) and Ligusticum striatum DC (Lstr, Chuan-Xiong) are commonly used to treat cardiovascular diseases and have the potential to regulate lipid metabolism. However, whether Smil/Lstr combo can be used to treat NAFLD and the mechanisms underlying its lipid-regulating properties remain unclear. PURPOSE To assess the feasibility and reliability of a short-term high-fat diet (HFD) induced zebrafish model for evaluating hepatic steatosis phenotype and to investigate the liver lipid-lowering effects of Smil/Lstr, as well as its active components. METHODS The phenotypic alterations of liver and multiple other organ systems were examined in the HFD zebrafish model using fluorescence imaging and histochemistry. The liver-specific lipid-lowering effects of Smil/Lstr combo were evaluated endogenously. The active molecules and functional mechanisms were further explored in zebrafish, human hepatocytes, and hamster models. RESULTS In 5-day HFD zebrafish, significant lipid accumulation was detected in the blood vessels and the liver, as evidenced by increased staining with Oil Red O and fluorescent lipid probes. Hepatic hypertrophy was observed in the model, along with macrovesicular steatosis. Smil/Lstr combo administration effectively restored the lipid profile and alleviated hepatic hypertrophy in the HFD zebrafish. In oleic-acid stimulated hepatocytes, Smil/Lstr combo markedly reduced lipid accumulation and cell damage. Subsequently, based on zebrafish phenotypic screening, the natural phthalide senkyunolide I (SEI) was identified as a major molecule mediating the lipid-lowering activities of Smil/Lstr combo in the liver. Moreover, SEI upregulated the expression of the lipid metabolism regulator PPARα and downregulated fatty acid translocase CD36, while a PPARα antagonist sufficiently blocked the regulatory effect of SEI on hepatic steatosis. Finally, the roles of SEI on hepatic lipid accumulation and PPARα signaling were further verified in the hamster model. CONCLUSIONS We proposed a zebrafish-based screening strategy for modulators of hepatic steatosis and discovered the regulatory roles of Smil/Lstr combo and its component SEI on liver lipid accumulation and PPARα signaling, suggesting their potential value as novel candidates for NAFLD treatment.
Collapse
Affiliation(s)
- Qingquan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Sheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mirko Baruscotti
- Department of Biosciences, University of Milano, Milan, 1-20133, Italy
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University Medical School, Hangzhou, 310003, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310020, China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University Medical School, Hangzhou, 310003, China; State Key Laboratory of Chinese Medicine Modernization, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Fraile-Martinez O, García-Montero C, Gomez-Lahoz AM, Sainz F, Bujan J, Barrena-Blázquez S, López-González L, Díaz-Pedrero R, Álvarez-Mon M, García-Honduvilla N, Saez MA, Monserrat J, Ortega MA. Evidence of Inflammatory Network Disruption in Chronic Venous Disease: An Analysis of Circulating Cytokines and Chemokines. Biomedicines 2025; 13:150. [PMID: 39857734 PMCID: PMC11763091 DOI: 10.3390/biomedicines13010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Chronic venous disease (CVD) comprises a set of vascular disorders that affect the venous system with important local and systemic repercussions. A growing body of evidence displays the relationship between suffering from CVD and a marked deregulation of the immune inflammatory system. In this sense, the previous literature has reported some significant changes in the level of various circulating inflammatory parameters in these patients. However, more research is required to detail and deepen this complex relationship. Methods: In this work, we studied, using a multiplex technique, the levels of circulating cytokines and chemokines detectable in the serum of 40 patients with CVD and compared it with 38 healthy controls (HCs). In parallel, we performed Spearman's correlation analysis to explore potential inflammatory networks in CVD. Results: In this study, we measured circulating cytokines and chemokines in CVD patients using a multiplex assay. Results showed increased levels of several pro-inflammatory mediators (IL-1β, IL-2, IL-5, IL-6, IL-7, IL-8, IL-12, IL-17A, IL-23, TNF-α, IFN-γ, fractalkine, ITAC, and GM-CSF) and a decrease in IL-13, with no significant changes in IL-4, IL-10, IL-21, MIP-1α, MIP-1β, or MIP-3α. The Spearman correlation analysis revealed strong, positive correlations among several inflammatory mediators in HC, particularly between TNF-alpha, IL-1β, IL-17A, and IL-23, forming a highly interconnected cytokine network. In contrast, CVD patients showed fewer, weaker, and distinct correlations, with new associations such as IFN-γ with IL-1β and IL-23, suggesting a disrupted inflammatory profile. Conclusions: The distinct inflammatory profile in CVD patients, characterized by altered cytokine and chemokine levels and a less coordinated cytokine network, underscores the reconfiguration of inflammatory pathways in this condition. These findings highlight potential therapeutic targets aimed at restoring immune balance and mitigating chronic inflammation in CVD.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.M.G.-L.); (F.S.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.M.G.-L.); (F.S.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Ana María Gomez-Lahoz
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.M.G.-L.); (F.S.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Felipe Sainz
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.M.G.-L.); (F.S.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Angiology and Vascular Surgery Service, Central University Hospital of Defence—UAH, 28047 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.M.G.-L.); (F.S.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Raul Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.M.G.-L.); (F.S.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.M.G.-L.); (F.S.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.M.G.-L.); (F.S.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcala de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.M.G.-L.); (F.S.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.M.G.-L.); (F.S.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| |
Collapse
|
10
|
Kristiansen MH, Larsen MK, Massarenti L, Skov V, Kjær L, Enevold C, Ostrowski SR, Nielsen CH, Hasselbalch HC, Wienecke T. Thromboinflammation in ischemic cerebrovascular patients with the JAK2V617F mutation. Thromb Res 2025; 245:109236. [PMID: 39652998 DOI: 10.1016/j.thromres.2024.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND The JAK2V617F mutation is a driver of Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) and is also implicated in cardiovascular diseases. Thrombosis in MPN involves JAK2V617F-associated platelet activation and endothelial dysfunction, all potentially influenced by chronic inflammation. Whether the mutation affects thromboinflammatory markers similarly in non-MPN patients remains unclear. METHOD We conducted a study involving 63 ischemic cerebrovascular patients with the JAK2V617F mutation, matched with 63 patients without the mutation. Serum samples were analyzed for 12 thromboinflammatory markers during the acute phase and at three months follow-up. RESULTS Overall, there was no significant difference in thromboinflammatory markers between cases and controls. However, subgroup analysis of patients with a JAK2V617F allele burden ≥1 % (n = 15) showed higher levels of Vascular Cell Adhesion Molecule-1 (VCAM-1) at baseline (p = 0.018), and elevated Interleukin-10 (IL-10) (p = 0.004) and Tumor Necrosis Factor α (TNF-α) (p = 0.018) at follow-up compared to controls. Regression analysis revealed an association between higher JAK2V617F allele burden and increased VCAM-1 at baseline (p < 0.001), and higher VCAM-1 (p = 0.012), IL-10 (p = 0.003), and TNF-α (p = 0.034) at follow-up. CONCLUSION In ischemic cerebrovascular patients, the JAK2V617F mutation is associated with elevated markers of endothelial dysfunction and chronic inflammation. This underscores the role of inflammation in thrombosis driven by the JAK2V617F mutation.
Collapse
Affiliation(s)
- Marie Hvelplund Kristiansen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Neurology, Zealand University Hospital, Roskilde, Denmark.
| | - Morten Kranker Larsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Laura Massarenti
- Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christian Enevold
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hans Carl Hasselbalch
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Troels Wienecke
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
11
|
Dijkshoorn B, Hansildaar R, Vedder D, Soutari N, Rudin A, Nordström D, Gudbjornsson B, Lend K, Uhlig T, Haavardsholm EA, Grondal G, Hetland ML, Heiberg MS, Østergaard M, Hørslev-Petersen K, Lampa J, van Vollenhoven RF, Antovic A, Nurmohamed MT. Impaired coagulation parameters in early RA are restored by effective antirheumatic therapy: a prospective pilot study. RMD Open 2024; 10:e004838. [PMID: 39740931 PMCID: PMC11748942 DOI: 10.1136/rmdopen-2024-004838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/04/2024] [Indexed: 01/02/2025] Open
Abstract
OBJECTIVES To assess the effect of treatment on haemostatic parameters in patients with early rheumatoid arthritis (RA). METHODS Patients with newly diagnosed RA started methotrexate and were randomised to additional conventional treatment, certolizumab pegol, abatacept or tocilizumab. Several biomarkers for haemostasis were analysed including parameters of the two global haemostatic assays-overall haemostatic potential (OHP) and endogenous thrombin potential (ETP), as well as single haemostatic factors-fibrinogen, prothrombin fragment 1+2 (F1+2), D-dimer, thrombin activatable fibrinolysis inhibitor (TAFI) and clot lysis time (CLT) in 24 patients at baseline, 12 and 24 weeks after the start of the treatment. RESULTS At baseline, patients had elevated levels of the following biomarkers compared with reference values: fibrinogen, F1+2, D-dimer and parameters of the two global haemostatic assays, that is, ETP and OHP. After 24 weeks we observed a significant reduction in F1+2 (p<0.01), fibrinogen (p<0.01), D-dimer (p<0.01), OHP (p<0.01), ETP (p<0.01), CLT (p<0.01), TAFI (p<0.01) and an increase of OFP (p<0.01). Tocilizumab treatment resulted in the most significant reduction of global haemostatic assays after 24 weeks, that is, a reduction of OHP 73% (p<0.01) compared with certolizumab pegol arm 32% (p<0.01), abatacept arm 24% (p=0.25) or conventional treatment arm 7% (p=0.66). CONCLUSION Newly diagnosed RA patients have enhanced coagulation activation and impaired fibrinolysis as demonstrated by our results. Effective antirheumatic treatments during the first 24 weeks after diagnosis improved this haemostatic imbalance, with prominent effects of biological drugs and especially tocilizumab, compared with conventional treatment.
Collapse
Affiliation(s)
- Bas Dijkshoorn
- Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | - Romy Hansildaar
- Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | - Daisy Vedder
- Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | - Nida Soutari
- Department of Molecular Medicine and Surgery Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Dan Nordström
- Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Bjorn Gudbjornsson
- Faculty of Medicine, University Hospital of Iceland, Reykjavik, Iceland
- Department of Rheumatology, Centre for Rheumatology Research, Reykjavik, Iceland
| | - Kristina Lend
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam Rheumatology Center, Amsterdam, The Netherlands
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Till Uhlig
- Rheumatology, Diakonhjemmet Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | | | | | - Merete Lund Hetland
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet Glostrup, Glostrup, Denmark
| | | | - Mikkel Østergaard
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Kim Hørslev-Petersen
- Department of Rheumatology, Danish Hospital for Rheumatic Diseases, Sønderborg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Jon Lampa
- Rheumatology Unit, Department of Medicine, Karolinska Institutet/Karolinska University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
12
|
Dernoncourt A, Salle V, Cheloufi M, Kayem G, Mekinian A. [Use of hydroxychloroquine in recurrent immune-mediated obstetric diseases (excluding systemic lupus): Scientific basis and evidence]. Rev Med Interne 2024:S0248-8663(24)01342-0. [PMID: 39732523 DOI: 10.1016/j.revmed.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024]
Abstract
Hydroxychloroquine (HCQ), a synthetic antimalarial, is recognized for its immunomodulatory, anti-inflammatory and vascular-protective effects. In 20-30% of cases of primary obstetrical antiphospholipid syndrome (APS), the combination of antiplatelet aggregation and prophylactic anticoagulation fails to prevent obstetrical complications, a situation referred to as refractory obstetrical APS. This is partly due to the pro-inflammatory effects of antiphospholipid antibodies (aPL) binding to decidual and trophoblastic cells, which compromise embryonic implantation and placentation. Experimental studies in vitro and in mouse models have shown that HCQ can inhibit the detrimental effect of aPLs on trophoblastic invasion, findings corroborated by retrospective observational clinical studies. However, no randomized controlled trial has evaluated the addition of HCQ to conventional therapy for refractory obstetric APS. The hypothesis of allo-immune and/or autoimmune mechanisms involved in cases of recurrent pregnancy loss (RPL) with no identified cause and in chronic intervillositis of unknown etiology (CIUE) has led to the empirical use of HCQ in these indications. However, current evidence does not support its use in unexplained RPL. A few clinical studies of low scientific evidence suggest a benefit of HCQ in CIUE, but further data are needed. Finally, pre-eclampsia (PE) is another pregnancy-related condition at risk of recurrence, and its pathogenesis also seems to involve an imbalance in immune responses. HCQ's antioxidant properties could have a positive effect on endothelial dysfunction, a key component of PE.
Collapse
Affiliation(s)
- Amandine Dernoncourt
- Service de médecine interne et Réseau d'épidémiologie clinique international francophone (RECIF), centre hospitalo-universitaire Amiens-Picardie, université Picardie Jules-Verne, Amiens, France.
| | - Valéry Salle
- Service de médecine interne et Réseau d'épidémiologie clinique international francophone (RECIF), centre hospitalo-universitaire Amiens-Picardie, université Picardie Jules-Verne, Amiens, France
| | - Meryam Cheloufi
- Service de gynécologie obstétrique, hôpital Armand-Trousseau, AP-HP, Sorbonne université, Paris, France
| | - Gilles Kayem
- Service de gynécologie obstétrique, hôpital Armand-Trousseau, AP-HP, Sorbonne université, Paris, France
| | - Arsène Mekinian
- Service de médecine interne et inflammation, département inflammation-immunopathologie-biothérapie (DMU I3), CEREMAIAA, hôpital Saint-Antoine, AP-HP, Sorbonne université, Paris, France
| |
Collapse
|
13
|
de Oliveira AA, Spaans F, Cooke CLM, Davidge ST. Excessive hypercholesterolaemia during pregnancy as a risk factor for endothelial dysfunction in pre-eclampsia. J Physiol 2024. [PMID: 39724497 DOI: 10.1113/jp285943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Pregnancy induces significant changes in the maternal cardiovascular system, and insufficient vascular endothelial adaptations to pregnancy contribute to the development of pregnancy complications such as pre-eclampsia. Pre-eclampsia is not only a major cause of maternal morbidity and mortality, but also a significant risk factor for the development of later-life cardiovascular disease. However, the specific mechanisms underlying the pathophysiology of pre-eclampsia, as well as the mechanisms for an increased susceptibility to cardiovascular disease later in life, are not fully characterized. In this review, we discuss the concept that excessive pregnancy-specific dyslipidaemia, particularly hypercholesterolaemia, is a significant risk factor for the development of pre-eclampsia. We further outline novel potential mechanisms (i.e. oxidized low-density lipoprotein receptor 1 and toll-like receptor 4) underlying endothelial dysfunction induced by excessively high cholesterol levels during pregnancy (in the context of pre-eclampsia), in addition to discussing the overall implications of having had a pregnancy complicated by pre-eclampsia on later-life maternal vascular health. Determining the mechanisms by which excessive, pregnancy-specific dyslipidaemia/hypercholesterolaemia impact maternal endothelial health in pregnancy, and later in life, will create a window of opportunity to diagnose and develop targeted therapy for a susceptible population of women, aiming to ultimately reduce the societal burden of cardiovascular disease.
Collapse
Affiliation(s)
- Amanda A de Oliveira
- Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Floor Spaans
- Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Christy-Lynn M Cooke
- Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Sandra T Davidge
- Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Son WH, Jeong WM, Park IY, Ha MS. Enhancing Inflammatory Factors, Nitric Oxide, and Arterial Stiffness Through Aquatic Walking for Amelioration and Disease Prevention: Targeting in Obese Elderly Women. Mediators Inflamm 2024; 2024:5520987. [PMID: 39742290 PMCID: PMC11685319 DOI: 10.1155/mi/5520987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
In elderly women, hormonal changes lead to elevated body fat content, which results in elevated levels of vascular inflammatory factors, thereby increasing the risk of cardiovascular diseases (CVDs) associated with endothelial dysfunction. Regular physical exercises tend to keep these in check and are protective to the body. Aerobic exercise has been reported to improve CVD in obese elderly women; in this regard, aquatic exercises have been demonstrated to be more efficient in energy metabolism than land-based exercise. This study aimed to examine the effect of aquatic walking exercises on the levels of inflammatory factors, nitric oxide (NO), and brachial-ankle pulse wave velocity (baPWV) in obese elderly women. We measured these in 26 obese elderly women who were randomly assigned to control (n = 12) and aquatic walking exercise (n = 14) groups. After subjecting them to aquatic walking exercises thrice a week for 12 weeks, we specifically found a significant reduction in IL-6 levels and an increase in NO levels in these obese elderly women. This was paralleled with a reduction in the right baPWV (baPWV-R). Together, these results indicate that aquatic walking exercises can help improve vascular inflammatory factors, NO levels, and arterial stiffness.
Collapse
Affiliation(s)
- Woo-Hyeon Son
- Institute of Convergence Bio-Health, Dong-A University, 26 Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| | - Woo-Min Jeong
- Department of Sport and Leisure Studies, Gimcheon University, 214 Daehak-ro, Gimcheon-si, Gyeongsangbuk-do 39528, Republic of Korea
| | - In Young Park
- Undergraduate Liberal Arts College, Tongmyong University, 428 Sinseon-ro, Nam-gu, Busan 48520, Republic of Korea
| | - Min-Seong Ha
- Laboratory of Sports Conditioning: Nutrition Biochemistry and Neuroscience, Department of Sport Science, College of Arts and Sports, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
15
|
Palacios-Valladares JR, Martinez-Jimenez YI, Morillon-Torres V, Rivera-Maya OB, Gómez R, Calderon-Aranda ES. Bisphenol A and Its Emergent Substitutes: State of the Art of the Impact of These Plasticizers on Oxidative Stress and Its Role in Vascular Dysfunction. Antioxidants (Basel) 2024; 13:1468. [PMID: 39765797 PMCID: PMC11673293 DOI: 10.3390/antiox13121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
The "One Health approach" has evidenced the significant impact of xenobiotic exposure to health, and humans are a relevant target for their toxic effects. Bisphenol A (BPA) exerts a ubiquitous exposure source in all ecosystems. Given its endocrine-disrupting and harmful consequences on health, several countries have enforced new regulations to reduce exposure to BPA. Cardiovascular diseases (CVDs) are complex conditions that lead to higher mortality worldwide, where family history, lifestyle, and environmental factors, like BPA exposure, have a remarkable contribution. This chemical compound is the most widely used in plastic and epoxy resin manufacturing and has been associated with effects on human health. Therefore, new-generation bisphenols (NGBs) are replacing BPA use, arguing that they do not harm health. Nonetheless, the knowledge about whether NGBs are secure options is scanty. Although BPA's effects on several organs and systems have been documented, the role of BPA and NGBs in CVDs has yet to be explored. This review's goals are focused on the processes of endothelial activation (EA)-endothelial dysfunction (ED), a cornerstone of CVDs development, bisphenols' (BPs) effects on these processes through oxidant and antioxidant system alteration. Despite the scarce evidence on pro-oxidant effects associated with NGBs, our review demonstrated a comparable harmful effect on BPA. The results from the present review suggest that the biological mechanisms to explain BPs cardiotoxic effects are the oxidant stress ↔ inflammatory response ↔ EA ↔ ED → atherosclerotic plate → coagulation promotion. Other effects contributing to CVD development include altered lipid metabolism, ionic channels, and the activation of different intracellular pathways, which contribute to ED perpetuation in a concerted manner.
Collapse
Affiliation(s)
| | | | | | | | - Rocio Gómez
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.R.P.-V.); (Y.I.M.-J.); (V.M.-T.); (O.B.R.-M.)
| | - Emma S. Calderon-Aranda
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.R.P.-V.); (Y.I.M.-J.); (V.M.-T.); (O.B.R.-M.)
| |
Collapse
|
16
|
Obare LM, Priest S, Ismail A, Mashayekhi M, Zhang X, Stolze LK, Sheng Q, Nthenge K, Vue Z, Neikirk K, Beasley HK, Gabriel C, Temu T, Gianella S, Mallal SA, Koethe JR, Hinton A, Bailin SS, Wanjalla CN. Cytokine and chemokine receptor profiles in adipose tissue vasculature unravel endothelial cell responses in HIV. J Cell Physiol 2024; 239:e31415. [PMID: 39263801 DOI: 10.1002/jcp.31415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Chronic systemic inflammation significantly increases myocardial infarction risk in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis, contributing to cardiovascular disease. We aimed to characterize endothelial cell (EC) chemokines, cytokine, and chemokine receptors of PLWH, hypothesizing that in our cohort, glucose intolerance contributes to their differential expression implicated in endothelial dysfunction. Using single-cell transcriptomic analysis, we phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in subcutaneous adipose tissue of 59 PLWH with and without glucose intolerance. Our results show that arterial and capillary ECs express significantly higher interferon and tumor necrosis factor (TNF) receptors than venous ECs and VSMCs. Venous ECs exhibited more interleukin (IL)1R1 and ACKR1 receptors, and VSMCs showed significant IL6R expression than arterial and capillary ECs. When stratified by group, arterial ECs from PLWH with glucose intolerance expressed significantly higher IL1R1, IL6R, CXCL12, CCL14, and ICAM2 transcripts than arterial ECs from PLWH without diabetes. Of the different vascular cell types studied, arterial ECs as a proportion of all ECs in adipose tissue were positively correlated with plasma fasting blood glucose. In contrast, venous ECs and VSMCs were positively correlated with plasma IL6. To directly assess the effect of plasma from PLWH on endothelial function, we cultured human arterial ECs (HAECs) in plasma-conditioned media from PLWH and performed bulk RNA sequencing. Plasma from PLWH stimulated ECs with the upregulation of genes that enrich for the oxidative phosphorylation and the TNF-α via NFK-β pathways. In conclusion, ECs in PLWH show heterogeneous cytokine and chemokine receptor expression, and arterial ECs were the most influenced by glucose intolerance. Further research must explicate cytokine and chemokine roles in EC dysfunction and identify biomarkers for disease progression and therapeutic response.
Collapse
Affiliation(s)
- Laventa M Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephen Priest
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anas Ismail
- Department of Radiology, National Postgraduate Medical College of Nigeria, Lagos, Nigeria
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiuqi Zhang
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lindsey K Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kisyua Nthenge
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Curtis Gabriel
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tecla Temu
- Division of Pathology, Harvard Medical College, Boston, Massachusetts, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, California, USA
| | - Simon A Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - John R Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Samuel S Bailin
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Celestine N Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Alsereidi FR, Khashim Z, Marzook H, Al-Rawi AM, Salomon T, Almansoori MK, Madkour MM, Hamam AM, Ramadan MM, Peterson QP, Saleh MA. Dapagliflozin mitigates cellular stress and inflammation through PI3K/AKT pathway modulation in cardiomyocytes, aortic endothelial cells, and stem cell-derived β cells. Cardiovasc Diabetol 2024; 23:388. [PMID: 39472869 PMCID: PMC11520772 DOI: 10.1186/s12933-024-02481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Dapagliflozin (DAPA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is well-recognized for its therapeutic benefits in type 2 diabetes (T2D) and cardiovascular diseases. In this comprehensive in vitro study, we investigated DAPA's effects on cardiomyocytes, aortic endothelial cells (AECs), and stem cell-derived beta cells (SC-β), focusing on its impact on hypertrophy, inflammation, and cellular stress. Our results demonstrate that DAPA effectively attenuates isoproterenol (ISO)-induced hypertrophy in cardiomyocytes, reducing cell size and improving cellular structure. Mechanistically, DAPA mitigates reactive oxygen species (ROS) production and inflammation by activating the AKT pathway, which influences downstream markers of fibrosis, hypertrophy, and inflammation. Additionally, DAPA's modulation of SGLT2, the Na+/H + exchanger 1 (NHE1), and glucose transporter (GLUT 1) type 1 highlights its critical role in maintaining cellular ion balance and glucose metabolism, providing insights into its cardioprotective mechanisms. In aortic endothelial cells (AECs), DAPA exhibited notable anti-inflammatory properties by restoring AKT and phosphoinositide 3-kinase (PI3K) expression, enhancing mitogen-activated protein kinase (MAPK) activation, and downregulating inflammatory cytokines at both the gene and protein levels. Furthermore, DAPA alleviated tumor necrosis factor (TNFα)-induced inflammation and stress responses while enhancing endothelial nitric oxide synthase (eNOS) expression, suggesting its potential to preserve vascular function and improve endothelial health. Investigating SC-β cells, we found that DAPA enhances insulin functionality without altering cell identity, indicating potential benefits for diabetes management. DAPA also upregulated MAFA, PI3K, and NRF2 expression, positively influencing β-cell function and stress response. Additionally, it attenuated NLRP3 activation in inflammation and reduced NHE1 and glucose-regulated protein GRP78 expression, offering novel insights into its anti-inflammatory and stress-modulating effects. Overall, our findings elucidate the multifaceted therapeutic potential of DAPA across various cellular models, emphasizing its role in mitigating hypertrophy, inflammation, and cellular stress through the activation of the AKT pathway and other signaling cascades. These mechanisms may not only contribute to enhanced cardiac and endothelial function but also underscore DAPA's potential to address metabolic dysregulation in T2D.
Collapse
Affiliation(s)
- Fatmah R Alsereidi
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Emirates Health Services (EHS), Dubai, United Arab Emirates
| | - Zenith Khashim
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Hezlin Marzook
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ahmed M Al-Rawi
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Tiana Salomon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Mahra K Almansoori
- College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Moustafa M Madkour
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ahmed Mohamed Hamam
- Endocrinology and Metabolism Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Mahmoud M Ramadan
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Cardiology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Quinn P Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mohamed A Saleh
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
18
|
Wojtacha P, Bogdańska-Chomczyk E, Majewski MK, Obremski K, Majewski MS, Kozłowska A. Renal Inflammation, Oxidative Stress, and Metabolic Abnormalities During the Initial Stages of Hypertension in Spontaneously Hypertensive Rats. Cells 2024; 13:1771. [PMID: 39513878 PMCID: PMC11545559 DOI: 10.3390/cells13211771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Hypertension is a major cause of mortality worldwide. The kidneys play a crucial role in regulating blood pressure and fluid volume. The relationship between the kidneys and hypertension is complex, involving factors such as the renin-angiotensin system, oxidative stress, and inflammation. This study aims to assess the levels of inflammatory markers, oxidative stress, and metabolic factors in the kidneys, focusing on their potential role in early renal damage and their association with the development of hypertension. Methods: This study was designed to compare the levels of selected inflammatory markers, e.g., interleukins, tumor necrosis factor-α (TNF-α), transforming growth factor, and serine/threonine-protein (mTOR); oxidative stress markers such as malondialdehyde, sulfhydryl group, and glucose (GLC); and metabolic markers among other enzymes, such as alanine transaminase (ALT), aspartate transaminase (AST), hexokinase II (HK-II), and hypoxia-inducible factor-1α (HIF-1α), as well as creatinine in the kidneys of spontaneously hypertensive rats (SHR/NCrl, n = 12) and Wistar Kyoto rats (WKY/NCrl, n = 12). Both juvenile (5 weeks old) and maturing (10 weeks old) specimens were examined using spectrophotometric methods, e.g., ELISA. Results: Juvenile SHRs exhibited reduced renal levels of all studied cytokines and chemokines, with lower oxidative stress and deficits in the mTOR and HK-II levels compared to the age-matched WKYs. Maturing SHRs showed increased renal levels of interleukin-1β (IL-1β), IL-6, IL-18, and TNF-α, alongside elevated carbonyl stress and increased HIF-1α as opposed to their control peers. The levels of all other studied markers were normalized in these animals, except for ALT (increased), ALP, and GLC (both reduced). Conclusions: This study underscores the significant impact of inflammatory, oxidative stress, and metabolic marker changes on renal function. Juvenile SHRs display lower marker levels, indicating an immature immune response and potential subclinical kidney damage that may contribute to hypertension development. In contrast, mature SHRs exhibit chronic inflammation, oxidative dysregulation, and metabolic disturbances, suggesting cellular damage. These changes create a feedback loop that worsens kidney function and accelerates hypertension progression, highlighting the kidneys' crucial role in both initiating and exacerbating this condition.
Collapse
Affiliation(s)
- Paweł Wojtacha
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury, Warszawska Av, 10-082 Olsztyn, Poland
| | - Ewelina Bogdańska-Chomczyk
- Department of Human Physiology and Pathophysiology, Collegium Medicum, University of Warmia and Mazury, Warszawska Av, 30, 10-082 Olsztyn, Poland; (E.B.-C.); (M.K.M.)
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology and Pathophysiology, Collegium Medicum, University of Warmia and Mazury, Warszawska Av, 30, 10-082 Olsztyn, Poland; (E.B.-C.); (M.K.M.)
| | - Kazimierz Obremski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13/29, 10-718 Olsztyn, Poland;
| | - Michał Stanisław Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury, Warszawska Av, 30, 10-082 Olsztyn, Poland;
| | - Anna Kozłowska
- Department of Human Physiology and Pathophysiology, Collegium Medicum, University of Warmia and Mazury, Warszawska Av, 30, 10-082 Olsztyn, Poland; (E.B.-C.); (M.K.M.)
| |
Collapse
|
19
|
Mad Azli AA, Salamt N, Aminuddin A, Roos NAC, Mokhtar MH, Kumar J, Hamid AA, Ugusman A. The Role of Curcumin in Modulating Vascular Function and Structure during Menopause: A Systematic Review. Biomedicines 2024; 12:2281. [PMID: 39457594 PMCID: PMC11504472 DOI: 10.3390/biomedicines12102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The risk of developing cardiovascular disease (CVD) escalates in women during menopause, which is associated with increased vascular endothelial dysfunction, arterial stiffness, and vascular remodeling. Meanwhile, curcumin has been demonstrated to enhance vascular function and structure in various studies. Therefore, this study systematically reviewed the recent literature regarding the potential role of curcumin in modulating vascular function and structure during menopause. The Ovid MEDLINE, PubMed, Scopus, and Web of Science electronic databases were searched to identify relevant articles. Clinical and preclinical studies involving menopausal women and postmenopausal animal models with outcomes related to vascular function or structure were included. After thorough screening, seven articles were selected for data extraction, comprising three animal studies and four clinical trials. The findings from this review suggested that curcumin has beneficial effects on vascular function and structure during menopause by addressing endothelial function, arterial compliance, hemodynamic parameters, and the formation of atherosclerotic lesions. Therefore, curcumin has the potential to be utilized as a supplement to enhance vascular health in menopausal women. However, larger-scale clinical trials employing gold-standard techniques to evaluate vascular health in menopausal women are necessary to validate the preliminary results obtained from small-scale randomized clinical trials involving curcumin supplementation (INPLASY, INPLASY202430043).
Collapse
Affiliation(s)
- Amanina Athirah Mad Azli
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Norizam Salamt
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Nur Aishah Che Roos
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
20
|
Zakeri Z, Salehi R, Rahbarghazi R, Taghipour YD, Mahkam M, Sokullu E. Electrospun polyhedral oligomeric silsequioxane-poly(carbonate-urea) urethane for fabrication of hemocompatible small-diameter vascular grafts with angiogenesis capacity. Int J Biol Macromol 2024; 277:134064. [PMID: 39048012 DOI: 10.1016/j.ijbiomac.2024.134064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The clinical utility of small-diameter vascular grafts (SDVGs) is limited due to the possibility of thrombosis and intimal hyperplasia. These features can delay the development of a functional endothelial cell (EC) monolayer on the luminal surface of grafts. Therefore, the development and fabrication of vascular grafts (VGs) with comparable extracellular matrix (ECM) functions are mandatory to elicit hemocompatible confluent EC monolayers, and angiogenesis behavior inside the body. To promote the interactions between ECs and the surface of electrospun polyacrylic acid-grafted polyhedral oligomeric silsesquioxane-poly(carbonate-urea)-urethane (PAAc-POSS-PCUU), in this research, the surface of nanofibers was modified by covalently immobilizing extracted soluble proteins from aorta (ESPA) using EDC/NHS chemistry. The ATR-FTIR spectroscopy, WCA, and SEM microscopy confirmed the binding of acrylic acid and soluble vascular proteins on the surface of electrospun fibers. The PAAc-POSS-PCUU nanofibers and engineered biomimetic Pro-PAAc-POSS-PCUU nanofibers exhibited excellent biocompatibility indicated by increased survival rate (p < 0.05). Western blotting revealed the increase of VE-cadherin, Tie-2, vWF, and VEGFR-2 in HUVECs after being plated on PAAc-POSS-PCUU and Pro-PAAc-POSS-PCUU scaffolds, indicating appropriate angiogenesis behavior (p < 0.05). Besides, the antioxidant capacity was induced by the increase of SOD and GPx activity (p < 0.05). Additionally, blood compatibility tests revealed that Pro-PAAc-POSS-PCUU nanofibers accelerate the formation of a single EC layer without hemolysis and platelet adhesion. Taken together, Pro-PAAc-POSS-PCUU nanofibers exhibited excellent blood compatibility, and angiogenesis behavior, making them a promising candidate for clinical applications.
Collapse
Affiliation(s)
- Ziba Zakeri
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unite of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Mahkam
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Emel Sokullu
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey; Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| |
Collapse
|
21
|
Ben-Shabat N, Krasun A, Fisher L, Patt YS, Balassiano Strosberg I, Watad A, Beinart R, Cohen AD, Amital H. Anti-Ro and anti-La seropositivity is associated with increased rates of ischemic heart disease in adults: Results from a large population-based study. Atherosclerosis 2024; 396:117626. [PMID: 39002391 DOI: 10.1016/j.atherosclerosis.2024.117626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND AND AIMS Emerging evidence suggests an arrhythmogenic effect of Anti-Ro/SSA (anti-Ro) and anti-La/SSB (anti-La) antibodies in adults, potentially involving a subclinical intracardiac inflammatory process. Despite the established association between inflammation and ischemic heart disease (IHD), it is noteworthy that as of now no study has delved into the potential link between these antibodies and IHD. This population-based study aimed to examine the association between anti-Ro/La seropositivity and IHD in the general adult population. METHODS We conducted a retrospective study using electronic medical records from the largest health maintenance organization in Israel. Patients with positive serology for either or both anti-Ro and anti-La antibodies were included, along with matched controls. Multivariate logistic regression models were utilized to assess the odds of IHD in seropositive patients compared to controls. RESULTS Among 17,231 seropositive patients and 84,368 controls, the rate of IHD was significantly higher in the seropositive group (9.7 % vs. 8.1 %,OR = 1.23; 95%CI 1.14-1.31; p<0.001). The association was more pronounced in younger patients [<40 years old (OR = 3.36; 95%CI 1.66-6.82; p<0.001), 40-49 years old (OR = 1.85; 95%CI 1.26-2.73; p<0.01), 50-59 years old (OR = 1.87; 95%CI 1.55-2.26; p<0.001), 60-69 years old (OR = 1.26; 95%CI 1.11-1.42; p<0.001), ≥70 years old (OR = 1.11; 95%CI 1.03-1.20; p<0.01)], as well as in patients with fewer traditional cardiovascular risk-factors (none:OR = 1.29; 95 % CI 1.09 to 1.77; p<0.01, 1-2:OR = 1.30; 95 % CI 1.19 to 1.41; p<0.001, ≥3:OR = 1.09; 95 % CI 0.99 to 1.21; p=0.076). CONCLUSIONS Our study demonstrates for the first time a positive association between anti-Ro/La seropositivity and IHD in the general adult population, especially among younger individuals with fewer traditional cardiovascular risk factors.
Collapse
Affiliation(s)
- Niv Ben-Shabat
- Department of Medicine B, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Israel
| | - Anna Krasun
- Department of Geriatric Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - Lior Fisher
- Department of Medicine B, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Israel
| | - Yonatan Shneor Patt
- Department of Medicine B, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Israel
| | | | - Abdulla Watad
- Department of Medicine B, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Israel; Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Roy Beinart
- Faculty of Medicine, Tel-Aviv University, Israel; Heart Institute, Chaim Sheba Medical Center, Tel Hashomer, Israel; Davidai Arrhythmia Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Arnon D Cohen
- Chief Physician's Office, Clalit Health Services, Tel-Aviv, Israel; Siaal Research Center for Family Medicine and Primary Care, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Howard Amital
- Department of Medicine B, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
22
|
Li B, Hu P, Liu K, Xu W, Wang J, Li Q, Chen B, Deng Y, Han C, Sun T, Liu X, Li M, Wang T, Liu J, Lin H, Rao K. MiRNA-100 ameliorates diabetes mellitus-induced erectile dysfunction by modulating autophagy, anti-inflammatory, and antifibrotic effects. Andrology 2024; 12:1280-1293. [PMID: 38227138 DOI: 10.1111/andr.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/12/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Diabetes mellitus-induced erectile dysfunction (DMED) has become a common disease in adult men that can seriously reduce the quality of life of patients, and new therapies are urgently needed. miRNA-100 has many targets and can induce autophagy and reduce fibrosis by inhibiting the mTOR pathway and the TGF-β pathway. However, no research has been conducted with miR-100 in the field of DMED, and the specific mechanism of action is still unclear. OBJECTIVES To ascertain the effects of miR-100 on corpus cavernosum tissue of DMED rats and vascular endothelial cells in a high glucose environment and to elucidate the relevant mechanisms in autophagy, fibrosis and inflammation to find a new approach for the DMED therapy. METHODS Thirty rats were divided into three groups: the control group, the DMED group, and the DMED + miR-100 group. Using intraperitoneal injections of streptozotocin, all rats except the control group were modeled with diabetes mellitus, which was verified using the apomorphine (APO) test. For rats in the DMED + miR-100 group, rno-miR-100-5p agomir (50 nmol/kg, every 2 days, 6 times in total) was injected via the tail vein. After 13 weeks, the erectile function of each rat was assessed using cavernous manometry, and the corpus cavernosum tissue was harvested for subsequent experiments. For cellular experiments, human coronary microartery endothelial cells (HCMEC) were divided into four groups: the control group, the high-glucose (HG, 40 mM) group, the HG + mimic group, and the HG + inhibitor group. The cells were cultured for 6 days and collected for subsequent experiments 2 days after transfection. RESULTS Diabetic modeling impaired the erectile function in rats, and miR-100 reversed this effect. By measuring autophagy-related proteins such as mTOR/Raptor/Beclin1/p62/LC3B, we found that miR-100 could suppress the expression of mTOR and induce autophagy. The analysis of the eNOS/NO/cGMP axis function indicated that impaired endothelial function was improved by miR-100. By evaluating the TGF-β1/CTGF/Smad2/3 and NF-κB/TNF-α pathways, we found that miR-100 could lower the level of inflammation and fibrosis, which contributed to the improvement of the erectile function. Cellular experiments can be used as supporting evidence for these findings. CONCLUSION MiR-100 can improve the erectile function by inhibiting mTOR and thus inducing autophagy, improving the endothelial function through the eNOS/NO/cGMP axis, and exerting antifibrotic and anti-inflammatory effects, which may provide new ideas and directions for the treatment of DMED.
Collapse
Affiliation(s)
- Beining Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinyu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingliang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxuan Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenglin Han
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinqi Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Lin
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
- Department of Urology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ke Rao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Qiang F, Xuan D, Li Z, Chen L, Wang L, Sheng J. Causal association between rheumatoid arthritis and risk of stroke: A Mendelian randomization study. Clin Neurol Neurosurg 2024; 244:108465. [PMID: 39059285 DOI: 10.1016/j.clineuro.2024.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Active rheumatoid arthritis (RA) may damage vascular endothelial cells, thereby increasing the likelihood of adverse cardiovascular events. However, it is not yet clearly established whether RA also increases the risk of adverse cerebrovascular events, particularly stroke. OBJECTIVE This study was designed to evaluate the likelihood of a causal association between RA and stroke. METHOD A two-sample Mendelian randomization (MR) analysis was performed using the inverse variance-weighted (IVW) average, weighted median, and MR-Egger regression methods. The analysis utilized publicly available summary statistics datasets from Genome-wide association studies (GWAS) meta-analyses for RA in individuals of European descent (total n = 484,598; case = 5427, control = 479,171) as the exposure cohort, and from GWAS meta-analyses for "vascular/heart problems diagnosed by doctor: stroke" in individuals included in the UK Biobank (total n = 461,880; case = 7055, control = 454,825, MRC-IEU consortium) as the outcome cohort. RESULTS Eight single-nucleotide polymorphisms with genome-wide significance were selected from the GWASs on RA as the instrumental variables. The results of the MR-Egger and weighted median analyses showed no causal association between RA and stroke (OR = 1.081, 95 % CI [0.943-1.240], P = 0.304) vs. OR = 1.079, 95 % CI [0.988-1.179], P = 0.091), respectively. However, the inverse variance-weighted (IVW) analysis results revealed a causal association between RA and stroke (OR = 1.115, 95 % CI [1.040-1.194], P = 0.002). Cochran's Q test and MR-Egger regression revealed no evidence of heterogeneity and horizontal pleiotropy. CONCLUSION The MR analysis results indicated that rheumatoid arthritis (RA) may be causally associated with an increased risk of stroke.
Collapse
Affiliation(s)
- Fuyong Qiang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, Anhui 241001, China
| | - Dan Xuan
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, Anhui 241001, China
| | - Zhi Li
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, Anhui 241001, China
| | - Lanfang Chen
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, Anhui 241001, China
| | - Li Wang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, Anhui 241001, China
| | - Jun Sheng
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, Anhui 241001, China.
| |
Collapse
|
24
|
Recchia Luciani G, Barilli A, Visigalli R, Dall’Asta V, Rotoli BM. Cytokines from SARS-CoV-2 Spike-Activated Macrophages Hinder Proliferation and Cause Cell Dysfunction in Endothelial Cells. Biomolecules 2024; 14:927. [PMID: 39199315 PMCID: PMC11353037 DOI: 10.3390/biom14080927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Endothelial dysfunction plays a central role in the severity of COVID-19, since the respiratory, thrombotic and myocardial complications of the disease are closely linked to vascular endothelial damage. To address this issue, we evaluate here the effect of conditioned media from spike S1-activated macrophages (CM_S1) on the proliferation of human umbilical endothelial cells (HUVECs), focusing on the specific role of interleukin-1-beta (IL-1β), interleukin-6 (IL-6), interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Results obtained demonstrate that the incubation with CM_S1 for 72 h hinders endothelial cell proliferation and induces signs of cytotoxicity. Comparable results are obtained upon exposure to IFN-γ + TNF-α, which are thus postulated to play a pivotal role in the effects observed. These events are associated with an increase in p21 protein and a decrease in Rb phosphorylation, as well as with the activation of IRF-1 and NF-kB transcription factors. Overall, these findings further sustain the pivotal role of a hypersecretion of inflammatory cytokines as a trigger for endothelial activation and injury in the immune-mediated effects of COVID-19.
Collapse
Affiliation(s)
| | | | | | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.R.L.); (A.B.); (R.V.); (B.M.R.)
| | | |
Collapse
|
25
|
Ning L, Zanella S, Tomov ML, Amoli MS, Jin L, Hwang B, Saadeh M, Chen H, Neelakantan S, Dasi LP, Avazmohammadi R, Mahmoudi M, Bauser‐Heaton HD, Serpooshan V. Targeted Rapamycin Delivery via Magnetic Nanoparticles to Address Stenosis in a 3D Bioprinted in Vitro Model of Pulmonary Veins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400476. [PMID: 38696618 PMCID: PMC11234432 DOI: 10.1002/advs.202400476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Indexed: 05/04/2024]
Abstract
Vascular cell overgrowth and lumen size reduction in pulmonary vein stenosis (PVS) can result in elevated PV pressure, pulmonary hypertension, cardiac failure, and death. Administration of chemotherapies such as rapamycin have shown promise by inhibiting the vascular cell proliferation; yet clinical success is limited due to complications such as restenosis and off-target effects. The lack of in vitro models to recapitulate the complex pathophysiology of PVS has hindered the identification of disease mechanisms and therapies. This study integrated 3D bioprinting, functional nanoparticles, and perfusion bioreactors to develop a novel in vitro model of PVS. Bioprinted bifurcated PV constructs are seeded with endothelial cells (ECs) and perfused, demonstrating the formation of a uniform and viable endothelium. Computational modeling identified the bifurcation point at high risk of EC overgrowth. Application of an external magnetic field enabled targeting of the rapamycin-loaded superparamagnetic iron oxide nanoparticles at the bifurcation site, leading to a significant reduction in EC proliferation with no adverse side effects. These results establish a 3D bioprinted in vitro model to study PV homeostasis and diseases, offering the potential for increased throughput, tunability, and patient specificity, to test new or more effective therapies for PVS and other vascular diseases.
Collapse
Affiliation(s)
- Liqun Ning
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
- Department of Mechanical EngineeringCleveland State UniversityClevelandOH44115USA
| | - Stefano Zanella
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Mehdi Salar Amoli
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Boeun Hwang
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Maher Saadeh
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Huang Chen
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Sunder Neelakantan
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Lakshmi Prasad Dasi
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Reza Avazmohammadi
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- J. Mike Walker ’66 Department of Mechanical EngineeringTexas A&M UniversityCollege StationTX77840USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LandingMI48824USA
| | - Holly D. Bauser‐Heaton
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
- Sibley Heart Center at Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| |
Collapse
|
26
|
Wang Y, Wang E, Anany M, Füllsack S, Huo YH, Dutta S, Ji B, Hoeppner LH, Kilari S, Misra S, Caulfield T, Vander Kooi CW, Wajant H, Mukhopadhyay D. The crosstalk between neuropilin-1 and tumor necrosis factor-α in endothelial cells. Front Cell Dev Biol 2024; 12:1210944. [PMID: 38994453 PMCID: PMC11236538 DOI: 10.3389/fcell.2024.1210944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Tumor necrosis factor-α (TNFα) is a master cytokine which induces expression of chemokines and adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in endothelial cells to initiate the vascular inflammatory response. In this study, we identified neuropilin-1 (NRP1), a co-receptor of several structurally diverse ligands, as a modulator of TNFα-induced inflammatory response of endothelial cells. NRP1 shRNA expression suppressed TNFα-stimulated leukocyte adhesion and expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVECs). Likewise, it reduced TNFα-induced phosphorylation of MAPK p38 but did not significantly affect other TNF-induced signaling pathways, such as the classical NFκB and the AKT pathway. Immunofluorescent staining demonstrated co-localization of NRP1 with the two receptors of TNF, TNFR1 and TNFR2. Co-immunoprecipitation further confirmed that NRP1 was in the same protein complex or membrane compartment as TNFR1 and TNFR2, respectively. Modulation of NRP1 expression, however, neither affected TNFR levels in the cell membrane nor the receptor binding affinities of TNFα. Although a direct interface between NRP1 and TNFα/TNFR1 appeared possible from a protein docking model, a direct interaction was not supported by binding assays in cell-free microplates and cultured cells. Furthermore, TNFα was shown to downregulate NRP1 in a time-dependent manner through TNFR1-NFκB pathway in HUVECs. Taken together, our study reveals a novel reciprocal crosstalk between NRP1 and TNFα in vascular endothelial cells.
Collapse
Affiliation(s)
- Ying Wang
- Department of Cardiovascular Medicine, Rochester, MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Mohamed Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Centre, Giza, Egypt
| | - Simone Füllsack
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Yu Henry Huo
- Department of Cardiovascular Medicine, Rochester, MN, United States
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Baoan Ji
- Department of Cancer Biology, Jacksonville, FL, United States
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | | | - Sanjay Misra
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Thomas Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
27
|
Ribeiro JADS, Gomes G, Aldred A, Desuó IC, Giacomini LA. Chronic Pain and Joint Hypermobility: A Brief Diagnostic Review for Clinicians and the Potential Application of Infrared Thermography in Screening Hypermobile Inflamed Joints. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:225-238. [PMID: 38947102 PMCID: PMC11202108 DOI: 10.59249/wgrs1619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Joint hypermobility syndromes, particularly chronic pain associated with this condition, including Hypermobile Ehlers-Danlos Syndrome (hEDS) and Hypermobility Spectrum Disorders (HSD), present diagnostic challenges due to their multifactorial origins and remain poorly understood from biomechanical and genomic-molecular perspectives. Recent diagnostic guidelines have differentiated hEDS, HSD, and benign joint hypermobility, providing a more objective diagnostic framework. However, incorrect diagnoses and underdiagnoses persist, leading to prolonged journeys for affected individuals. Musculoskeletal manifestations, chronic pain, dysautonomia, and gastrointestinal symptoms illustrate the multifactorial impact of these conditions, affecting both the physical and emotional well-being of affected individuals. Infrared thermography (IRT) emerges as a promising tool for joint assessment, especially in detecting inflammatory processes. Thermal distribution patterns offer valuable insights into joint dysfunctions, although the direct correlation between pain and inflammation remains challenging. The prevalence of neuropathies among hypermobile individuals accentuates the discordance between pain perception and thermographic findings, further complicating diagnosis and management. Despite its potential, the clinical integration of IRT faces challenges, with conflicting evidence hindering its adoption. However, studies demonstrate objective temperature disparities between healthy and diseased joints, especially under dynamic thermography, suggesting its potential utility in clinical practice. Future research focused on refining diagnostic criteria and elucidating the underlying mechanisms of hypermobility syndromes will be essential to improve diagnostic accuracy and enhance patient care in this complex and multidimensional context.
Collapse
Affiliation(s)
- João Alberto de Souza Ribeiro
- Department of Science, Termodiagnose Institute, Centro,
Itu/Sao Paolo, Brazil
- Department of Research & Development, Predikta
Soluções em Pesquisa Ltda, Brazil
| | - Guilherme Gomes
- Department of Research & Development, Predikta
Soluções em Pesquisa Ltda, Brazil
| | - Alexandre Aldred
- Department of Research & Development, Predikta
Soluções em Pesquisa Ltda, Brazil
| | - Ivan Cesar Desuó
- Department of Research & Development, Predikta
Soluções em Pesquisa Ltda, Brazil
| | | |
Collapse
|
28
|
Akther F, Fallahi H, Zhang J, Nguyen NT, Ta HT. Evaluating thrombosis risk and patient-specific treatment strategy using an atherothrombosis-on-chip model. LAB ON A CHIP 2024; 24:2927-2943. [PMID: 38591995 DOI: 10.1039/d4lc00131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Platelets play an essential role in thrombotic processes. Recent studies suggest a direct link between increased plasma glucose, lipids, and inflammatory cytokines with platelet activation and aggregation, resulting in an increased risk of atherothrombotic events in cardiovascular patients. Antiplatelet therapies are commonly used for the primary prevention of atherosclerosis. Transitioning from a population-based strategy to patient-specific care requires a better understanding of the risks and advantages of antiplatelet therapy for individuals. This proof-of-concept study evaluates the potential to assess an individual's risk of forming atherothrombosis using a dual-channel microfluidic model emulating multiple atherogenic factors in vitro, including high glucose, high cholesterol, and inflammatory cytokines along with stenosis vessel geometry. The model shows precise sensitivity toward increased plasma glucose, cholesterol, and tumour necrosis factor-alpha (TNF-α)-treated groups in thrombus formation. An in vivo-like dose-dependent increment in platelet aggregation is observed in different treated groups, benefiting the evaluation of thrombosis risk in the individual condition. Moreover, the model could help decide the effective dosing of aspirin in multi-factorial complexities. In the high glucose-treated group, a 50 μM dose of aspirin could significantly reduce platelet aggregation, while a 100 μM dose of aspirin was required to reduce platelet aggregation in the glucose-TNF-α-treated group, which proves the model's potentiality as a tailored tool for customised therapy.
Collapse
Affiliation(s)
- Fahima Akther
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hedieh Fallahi
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Jun Zhang
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
29
|
Obare LM, Temu T, Mallal SA, Wanjalla CN. Inflammation in HIV and Its Impact on Atherosclerotic Cardiovascular Disease. Circ Res 2024; 134:1515-1545. [PMID: 38781301 PMCID: PMC11122788 DOI: 10.1161/circresaha.124.323891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
People living with HIV have a 1.5- to 2-fold increased risk of developing cardiovascular disease. Despite treatment with highly effective antiretroviral therapy, people living with HIV have chronic inflammation that makes them susceptible to multiple comorbidities. Several factors, including the HIV reservoir, coinfections, clonal hematopoiesis of indeterminate potential (CHIP), microbial translocation, and antiretroviral therapy, may contribute to the chronic state of inflammation. Within the innate immune system, macrophages harbor latent HIV and are among the prominent immune cells present in atheroma during the progression of atherosclerosis. They secrete inflammatory cytokines such as IL (interleukin)-6 and tumor necrosis-α that stimulate the expression of adhesion molecules on the endothelium. This leads to the recruitment of other immune cells, including cluster of differentiation (CD)8+ and CD4+ T cells, also present in early and late atheroma. As such, cells of the innate and adaptive immune systems contribute to both systemic inflammation and vascular inflammation. On a molecular level, HIV-1 primes the NLRP3 (NLR family pyrin domain containing 3) inflammasome, leading to an increased expression of IL-1β, which is important for cardiovascular outcomes. Moreover, activation of TLRs (toll-like receptors) by HIV, gut microbes, and substance abuse further activates the NLRP3 inflammasome pathway. Finally, HIV proteins such as Nef (negative regulatory factor) can inhibit cholesterol efflux in monocytes and macrophages through direct action on the cholesterol transporter ABCA1 (ATP-binding cassette transporter A1), which promotes the formation of foam cells and the progression of atherosclerotic plaque. Here, we summarize the stages of atherosclerosis in the context of HIV, highlighting the effects of HIV, coinfections, and antiretroviral therapy on cells of the innate and adaptive immune system and describe current and future interventions to reduce residual inflammation and improve cardiovascular outcomes among people living with HIV.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| | - Tecla Temu
- Department of Pathology, Harvard Medical School, Boston, MA (T.T.)
| | - Simon A. Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Institute for Immunology and Infectious Diseases, Murdoch University, WA, Western Australia (S.A.M.)
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| |
Collapse
|
30
|
Bogdanova DA, Kolosova ED, Pukhalskaia TV, Levchuk KA, Demidov ON, Belotserkovskaya EV. The Differential Effect of Senolytics on SASP Cytokine Secretion and Regulation of EMT by CAFs. Int J Mol Sci 2024; 25:4031. [PMID: 38612842 PMCID: PMC11012227 DOI: 10.3390/ijms25074031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The tumor microenvironment (TME) plays an essential role in tumor progression and in modulating tumor response to anticancer therapy. Cellular senescence leads to a switch in the cell secretome, characterized by the senescence-associated secretory phenotype (SASP), which may regulate tumorigenesis. Senolytic therapy is considered a novel anticancer strategy that eliminates the deleterious effects of senescent cells in the TME. Here, we show that two different types of senolytic drugs, despite efficiently depleting senescent cells, have opposite effects on cancer-associated fibroblasts (CAFs) and their ability to regulate epithelial-mesenchymal transition (EMT). We found that senolytic drugs, navitoclax and the combination of dasatinib/quercetin, reduced the number of spontaneously senescent and TNF-induced senescent CAFs. Despite the depletion of senescent cells, the combination of dasatinib/quercetin versus navitoclax increased the secretion of the SASP pro-inflammatory cytokine IL-6. This differential effect correlated with the promotion of enhanced migration and EMT in MC38 colorectal cancer cells. Our results demonstrate that some senolytics may have side effects unrelated to their senolytic activity and may promote tumorigenesis. We argue for more careful and extensive studies of the effects of senolytics on various aspects of tumor progression and tumor resistance to therapy before the senolytic strategy is implemented in the clinic.
Collapse
Affiliation(s)
- Daria A. Bogdanova
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Krasndarsky Krai, 354340 Sochi, Russia
- Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | | | - Tamara V. Pukhalskaia
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Krasndarsky Krai, 354340 Sochi, Russia
- Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Ksenia A. Levchuk
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Oleg N. Demidov
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Krasndarsky Krai, 354340 Sochi, Russia
- Institute of Cytology RAS, 194064 St. Petersburg, Russia
- INSERM UMR1231, University of Burgundy, 21078 Dijon, France
| | | |
Collapse
|
31
|
Diego L, Jazmin F, Diana R, German‐Isauro G, Salvador F, Maria‐Elena H. Modulation of TNF-α, interleukin-6, and interleukin-10 by nebivolol-valsartan and nebivolol-lisinopril polytherapy in SHR rats. Pharmacol Res Perspect 2024; 12:e1189. [PMID: 38504425 PMCID: PMC10951418 DOI: 10.1002/prp2.1189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Antihypertensive drug therapies have demonstrated their capacity to modulate the inflammatory processes associated with hypertension, leading to improvements in disease progression. Given the prevalent use of polytherapy in treating most hypertensive patients, comprehending the time-dependent effects of combination treatments on inflammation becomes imperative. In this study, spontaneously hypertensive rats (SHR) were divided into seven groups (n = 6): (i) SHR + vehicle, (ii) SHR + nebivolol, (iii) SHR + valsartan, (iv) SHR + lisinopril, (v) SHR + nebivolol-valsartan, (vi) SHR + nebivolol-lisinopril, and (vii) WKY + vehicle. Blood pressure was measured using the tail-cuff method. Temporal alterations in inflammatory cytokines TNF-α, IL-6, and IL-10 were assessed in serum through ELISA and mRNA expression in aortic tissue via qPCR after 1, 2, and 4 weeks of treatment with nebivolol, lisinopril, valsartan, and their respective combinations. Histological alterations in the aorta were assessed. The findings indicated that combined treatments reduced systolic and diastolic blood pressure in SHR. The nebivolol and lisinopril combination demonstrated a significant decrease in IL-6 serum and mRNA expression at both 1 week and 4 weeks into the treatment. Additionally, TNF-α mRNA expression also showed a reduction with this combination at the same time points. Particularly, nebivolol-valsartan significantly decreased TNF-α serum and mRNA expression after one and four weeks of treatment. Furthermore, an elevation in serum IL-10 levels was observed with both combination treatments starting from the second week onwards. This study provides compelling evidence that concurrent administration of nebivolol with lisinopril or valsartan exerts time-dependent effects, reducing proinflammatory cytokines TNF-α and IL-6 while modifying IL-10 levels in an experimental hypertensive model.
Collapse
Affiliation(s)
- Lezama‐Martinez Diego
- Laboratory of Pharmacology, FES CuautitlanUniversidad Nacional Autonoma de MexicoCuautitlan IzcalliMexicoMexico
| | - Flores‐Monroy Jazmin
- Laboratory of Pharmacology, FES CuautitlanUniversidad Nacional Autonoma de MexicoCuautitlan IzcalliMexicoMexico
| | - Ramirez‐Hernandez Diana
- Laboratory of Pharmacology, FES CuautitlanUniversidad Nacional Autonoma de MexicoCuautitlan IzcalliMexicoMexico
| | | | - Fonseca‐Coronado Salvador
- Laboratory of Pharmacology, FES CuautitlanUniversidad Nacional Autonoma de MexicoCuautitlan IzcalliMexicoMexico
| | - Hernandez‐Campos Maria‐Elena
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de MedicinaInstituto Politecnico NacionalFederal DistrictMexicoMexico
| |
Collapse
|
32
|
Lemini C, Silveyra P, Segovia-Mendoza M. Cardiovascular disrupting effects of bisphenols, phthalates, and parabens related to endothelial dysfunction: Review of toxicological and pharmacological mechanisms. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104407. [PMID: 38428705 DOI: 10.1016/j.etap.2024.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. CVDs are promoted by the accumulation of lipids and immune cells in the endothelial space resulting in endothelial dysfunction. Endothelial cells are important components of the vascular endothelium, that regulate the vascular flow. The imbalance in the production of vasoactive substances results in the loss of vascular homeostasis, leading the endothelial dysfunction. Thus, endothelial dysfunction plays an essential role in the development of atherosclerosis and can be triggered by different cardiovascular risk factors. On the other hand, the 17β-estradiol (E2) hormone has been related to the regulation of vascular tone through different mechanisms. Several compounds can elicit estrogenic actions similar to those of E2. For these reasons, they have been called endocrine-disrupting compounds (EDCs). This review aims to provide up-to-date information about how different EDCs affect endothelial function and their mechanistic roles in the context of CVDs.
Collapse
Affiliation(s)
- Cristina Lemini
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University Bloomington, School of Public Health, Bloomington, IN, USA
| | - Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
33
|
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is an all-encompassing term that describes cognitive impairment due to cerebrovascular origins. With the advancement of imaging and pathological studies, we now understand that VCID is often comorbid with Alzheimer disease. While researchers in the Alzheimer disease field have been working for years to establish and test blood-based biomarkers for Alzheimer disease diagnosis, prognosis, clinical therapy discovery, and early detection, blood-based biomarkers for VCID are in their infancy and also face challenges. VCID is heterogeneous, comprising many different pathological entities (ischemic, or hemorrhagic), and spatial and temporal differences (acute or chronic). This review highlights pathways that are aiding the search for sensitive and specific blood-based cerebrovascular dysfunction markers, describes promising candidates, and explains ongoing initiatives to discover blood-based VCID biomarkers.
Collapse
Affiliation(s)
- Kate E. Foley
- Stark Neurosciences Research Institute, Indiana University, Indianapolis IN, USA
- Department of Neurology, School of Medicine, Indiana University, Indianapolis IN, USA
| | - Donna M. Wilcock
- Stark Neurosciences Research Institute, Indiana University, Indianapolis IN, USA
- Department of Neurology, School of Medicine, Indiana University, Indianapolis IN, USA
| |
Collapse
|
34
|
Yan R, Zhang X, Xu W, Li J, Sun Y, Cui S, Xu R, Li W, Jiao L, Wang T. ROS-Induced Endothelial Dysfunction in the Pathogenesis of Atherosclerosis. Aging Dis 2024; 16:AD.2024.0309. [PMID: 38502586 PMCID: PMC11745424 DOI: 10.14336/ad.2024.0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024] Open
Abstract
Various signaling pathways are regulated by reactive oxygen species (ROS), which are radical oxygen intermediates under normal physiological conditions. However, when the buffering capacity of antioxidant enzymes is exceeded by the accumulation of ROS, oxidative stress, and endothelial cell dysfunction occur, which have been recognized as key contributors to the development of atherosclerosis. In this review, an overview is provided on mechanisms underlying ROS generation in endothelial cells and the involved regulatory pathways. Further, we discuss the ROS induced endothelial cell dysfunction and its relationship with atherosclerosis. Current knowledge on ROS-induced endothelial impairment is presented, characterized by decreased NO bioavailability, intracellular dysfunction and ox-LDL accumulation. Furthermore, biomarkers such as oxidative products of lipid, protein, and nucleotide are discussed as measurements for ROS levels. Novel interventions targeting oxidative stress are listed as potential pharmacotherapies in clinical practice. In conclusion, this review presents a systematic analysis of the mechanisms underlying ROS generation and elucidates how manipulation of these mechanisms can safeguard endothelial cell function.
Collapse
Affiliation(s)
- Ruiyi Yan
- Eight-year Medical Doctor Program, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Jiayao Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Yixin Sun
- First Hospital, Peking University, Beijing, China.
| | - Shengyan Cui
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| |
Collapse
|
35
|
Obare LM, Priest S, Ismael A, Mashayekhi M, Zhang X, Stolze LK, Sheng Q, Vue Z, Neikirk K, Beasley H, Gabriel C, Temu T, Gianella S, Mallal S, Koethe JR, Hinton A, Bailin S, Wanjalla CN. Cytokine and Chemokine Receptor Profiles in Adipose Tissue Vasculature Unravel Endothelial Cell Responses in HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584280. [PMID: 38559150 PMCID: PMC10979923 DOI: 10.1101/2024.03.10.584280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Chronic systemic inflammation contributes to a substantially elevated risk of myocardial infarction in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis that contribute to cardiovascular disease. Our objective was to study the effects of plasma from PLWH on endothelial cell (EC) function, with the hypothesis that cytokines and chemokines are major drivers of EC activation. We first broadly phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in adipose tissue in the subcutaneous adipose tissue of 59 PLWH using single cell transcriptomic analysis. We used CellChat to predict cell-cell interactions between ECs and other cells in the adipose tissue and Spearman correlation to measure the association between ECs and plasma cytokines. Finally, we cultured human arterial ECs (HAECs) in plasma-conditioned media from PLWH and performed bulk sequencing to study the direct effects ex-vivo. We observed that arterial and capillary ECs expressed higher interferon and tumor necrosis factor (TNF) receptors. Venous ECs had more interleukin (IL)-1R1 and ACKR1 receptors, and VSMCs had high significant IL-6R expression. CellChat predicted ligand-receptor interactions between adipose tissue immune cells as senders and capillary ECs as recipients in TNF-TNFRSF1A/B interactions. Chemokines expressed largely by capillary ECs were predicted to bind ACKR1 receptors on venous ECs. Beyond the adipose tissue, the proportion of venous ECs and VSMCs were positively plasma IL-6. In ex-vivo experiments, HAECs cultured with plasma-conditioned media from PLWH expressed transcripts that enriched for the TNF-α and reactive oxidative phosphorylation pathways. In conclusion, ECs demonstrate heterogeneity in cytokine and chemokine receptor expression. Further research is needed to fully elucidate the role of cytokines and chemokines in EC dysfunction and to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen Priest
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anas Ismael
- Department of Radiology, National Postgraduate Medical College of Nigeria, Lagos, Nigeria
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiuqi Zhang
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lindsey K. Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Heather Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Curtis Gabriel
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tecla Temu
- Division of Pathology, Harvard Medical College, Boston, MA, USA
| | - Sara Gianella
- Division of Infectious Diseases, University of California, San Diego, CA, USA
| | - Simon Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - John R. Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Samuel Bailin
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
36
|
Abdelnaby EA, Alhaider AK, Ghoneim IM, Salem NY, Ramadan ES, Farghali HA, Khattab MS, AbdElKader NA, Emam IA. Effect of pyometra on vascularity alterations, oxidative stress, histopathology and inflammatory molecules in feline. Reprod Biol 2024; 24:100855. [PMID: 38262266 DOI: 10.1016/j.repbio.2024.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
This study aimed to investigate blood flow, hemodynamical features by Doppler ultrasound, the oxidative stress biomarkers from serum samples, and histopathology from uterine tissue, in healthy queens and queens with pyometra. Twenty queens were categorized into two groups, according to signs, history, and ultrasound findings, as pyometra and control healthy queens. Doppler ultrasonography, total antioxidant capacity (TAC), malondialdehyde (MDA), albumin, bacteriological isolation, histopathology, and immunohistochemistry of tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa B (NF-κB) P65 were performed. Uterine diameter and thickness increased significantly in the pyometra group compared to control. Uterine peak velocity and flow rate were significantly higher in the control group. The pyometra group showed a significant decrease in albumin, TAC, and a significant increase in MDA. Fibrosis and mononuclear inflammatory cell infiltration were seen in the pyometra samples. The mean area percentage of TNF-α expression in the uteri of the pyometra group was higher. The expression of NF-κB P65 in the uteri in the pyometra group was significantly higher. Doppler ultrasonography can provide valuable information for diagnosing pyometra in queens by elevating the uterine thickness with reducing blood flow rate. Oxidative stress, TNF-α, and NF-κB expression alterations varied between pyometra and control groups.
Collapse
Affiliation(s)
- Elshymaa A Abdelnaby
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Abdulrhman K Alhaider
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Ibrahim M Ghoneim
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Noha Y Salem
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman S Ramadan
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Haithem A Farghali
- Department of Surgery and Anesthesia, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Naglaa A AbdElKader
- Department of Surgery and Anesthesia, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ibrahim A Emam
- Department of Surgery and Anesthesia, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
37
|
Natesh NR, Mogha P, Chen A, Antonia SJ, Varghese S. Differential roles of normal and lung cancer-associated fibroblasts in microvascular network formation. APL Bioeng 2024; 8:016120. [PMID: 38524671 PMCID: PMC10959556 DOI: 10.1063/5.0188238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Perfusable microvascular networks offer promising three-dimensional in vitro models to study normal and compromised vascular tissues as well as phenomena such as cancer cell metastasis. Engineering of these microvascular networks generally involves the use of endothelial cells stabilized by fibroblasts to generate robust and stable vasculature. However, fibroblasts are highly heterogenous and may contribute variably to the microvascular structure. Here, we study the effect of normal and cancer-associated lung fibroblasts on the formation and function of perfusable microvascular networks. We examine the influence of cancer-associated fibroblasts on microvascular networks when cultured in direct (juxtacrine) and indirect (paracrine) contacts with endothelial cells, discovering a generative inhibition of microvasculature in juxtacrine co-cultures and a functional inhibition in paracrine co-cultures. Furthermore, we probed the secreted factors differential between cancer-associated fibroblasts and normal human lung fibroblasts, identifying several cytokines putatively influencing the resulting microvasculature morphology and functionality. These findings suggest the potential contribution of cancer-associated fibroblasts in aberrant microvasculature associated with tumors and the plausible application of such in vitro platforms in identifying new therapeutic targets and/or agents that can prevent formation of aberrant vascular structures.
Collapse
Affiliation(s)
- Naveen R. Natesh
- Department of Biomedical Engineering, Duke University, 203 Research Drive, MSRB1 Room No. 381, Durham, North Carolina 27710, USA
| | - Pankaj Mogha
- Department of Orthopaedic Surgery, Duke University, 200 Trent Drive, Durham, North Carolina 27710, USA
| | - Alan Chen
- Department of Medical Oncology, Duke University, Durham, North Carolina 27710, USA
| | - Scott J. Antonia
- Department of Medical Oncology, Duke University, Durham, North Carolina 27710, USA
| | | |
Collapse
|
38
|
Lutfy RH, Salam SA, Mohammed HS, Shakweer MM, Essawy AE. Photomodulatory effects in the hypothalamus of sleep-deprived young and aged rats. Behav Brain Res 2024; 458:114731. [PMID: 37898350 DOI: 10.1016/j.bbr.2023.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Insufficient sleep is associated with impaired hypothalamic activity and declined attentional performance. In this study, alterations in the hypothalamus of REM sleep-deprived (SD) young and aged rats, and the modulatory effect of near-infrared (NIR) laser were investigated. Forty-eight male Wistar rats (24 young at 2 months and 24 senile at 14 months) were divided into three groups: the control, the SD group subjected to 72 hr of sleep deprivation, and the transcranial-NIR laser-treated (TLT) group subjected to SD for 72 hr and irradiated with 830 nm laser. The hypothalamic levels of oxidative stress, inflammatory biomarkers, antioxidant enzymes, mitochondrial cytochrome C oxidase (CCO), apoptotic markers (BAX, BCL-2), and neuronal survival-associated genes (BDNF, GLP-1) were evaluated. Furthermore, the hypothalamic tissue alterations were analyzed via histological examination. The results revealed that TLT treatment has enhanced the antioxidant status, prevented oxidative insults, suppressed neuroinflammation, regulated CCO activity, reduced apoptotic markers, and tuned the survival genes (BDNF & GLP-1) in hypothalamic tissue of SD young and aged rats. Microscopically, TLT treatment has ameliorated the SD-induced alterations and restored the normal histological features of hypothalamus tissue. Moreover, the obtained data showed that SD and NIR laser therapy are age-dependent. Altogether, our findings emphasize the age-dependent adverse effects of SD on the hypothalamus and suggest the use of low-laser NIR radiation as a potential non-invasive and therapeutic approach against SD-induced adverse effects in young and aged animals.
Collapse
Affiliation(s)
- Radwa H Lutfy
- Zoology Department, Faculty of Science, Alexandria University, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Marwa M Shakweer
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Pathology, Faculty of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
39
|
Dzator JSA, Smith RA, Coupland KG, Howe PRC, Griffiths LR. Associations between Cerebrovascular Function and the Expression of Genes Related to Endothelial Function in Hormonal Migraine. Int J Mol Sci 2024; 25:1694. [PMID: 38338971 PMCID: PMC10855027 DOI: 10.3390/ijms25031694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
There is evidence to suggest that hormonal migraine is associated with altered cerebrovascular function. We aimed to investigate whether the expression of genes related to endothelial function in venous blood (1) might influence cerebrovascular function, (2) differs between hormonal migraineur and non-migraineur women, and (3) changes following resveratrol supplementation. This study utilised data obtained from 87 women (59 hormonal migraineurs and 28 controls) where RNA from venous blood was used to quantify gene expression and transcranial Doppler ultrasound was used to evaluate cerebrovascular function. Spearman's correlation analyses were performed between gene expression, cerebrovascular function, and migraine-related disability. We compared the expression of genes associated with endothelial function between migraineurs and non-migraineurs, and between resveratrol and placebo. The expression of several genes related to endothelial function was associated with alterations in cerebrovascular function. Notably, the expression of CALCA was associated with increased neurovascular coupling capacity (p = 0.013), and both CALCA (p = 0.035) and VEGF (p = 0.014) expression were associated with increased cerebral blood flow velocity in the overall study population. Additionally, VCAM1 expression correlated with decreased pulsatility index (a measure of cerebral arterial stiffness) (p = 0.009) and headache impact test-6 scores (p = 0.007) in the migraineurs. No significant differences in gene expression were observed between migraineurs and controls, or between placebo and resveratrol treatments in migraineurs. Thus, altering the expression of genes related to endothelial function may improve cerebrovascular function and decrease migraine-related disability.
Collapse
Affiliation(s)
- Jemima S. A. Dzator
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia (P.R.C.H.)
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Robert A. Smith
- Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Kirsten G. Coupland
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia (P.R.C.H.)
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Peter R. C. Howe
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia (P.R.C.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Centre for Health Research, University of Southern Queensland, Raceview, QLD 4350, Australia
| | - Lyn R. Griffiths
- Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
40
|
Vieceli Dalla Sega F, Fortini F, Licastro D, Monego SD, Degasperi M, Ascierto A, Marracino L, Severi P, D'Accolti M, Soffritti I, Brambilla M, Camera M, Tremoli E, Contoli M, Spadaro S, Campo G, Ferrari R, Caselli E, Rizzo P. Serum from COVID-19 patients promotes endothelial cell dysfunction through protease-activated receptor 2. Inflamm Res 2024; 73:117-130. [PMID: 38117300 DOI: 10.1007/s00011-023-01823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/06/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Endothelial dysfunction plays a central role in the pathophysiology of COVID-19 and is closely linked to the severity and mortality of the disease. The inflammatory response to SARS-CoV-2 infection can alter the capacity of the endothelium to regulate vascular tone, immune responses, and the balance between anti-thrombotic and pro-thrombotic properties. However, the specific endothelial pathways altered during COVID-19 still need to be fully understood. OBJECTIVE In this study, we sought to identify molecular changes in endothelial cells induced by circulating factors characteristic of COVID-19. METHODS AND RESULTS To this aim, we cultured endothelial cells with sera from patients with COVID-19 or non-COVID-19 pneumonia. Through transcriptomic analysis, we were able to identify a distinctive endothelial phenotype that is induced by sera from COVID-19 patients. We confirmed and expanded this observation in vitro by showing that COVID-19 serum alters functional properties of endothelial cells leading to increased apoptosis, loss of barrier integrity, and hypercoagulability. Furthermore, we demonstrated that these endothelial dysfunctions are mediated by protease-activated receptor 2 (PAR-2), as predicted by transcriptome network analysis validated by in vitro functional assays. CONCLUSION Our findings provide the rationale for further studies to evaluate whether targeting PAR-2 may be a clinically effective strategy to counteract endothelial dysfunction in COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Alessia Ascierto
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Luisa Marracino
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Maria D'Accolti
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, and LTTA, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | - Irene Soffritti
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, and LTTA, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | | | - Marina Camera
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Marco Contoli
- Respiratory Section, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Savino Spadaro
- Intensive Care Unit, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, University of Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elisabetta Caselli
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, and LTTA, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
41
|
Cao Y, Wen H, Leng C, Feng S. MiR-29a mediates the apoptotic effects of TNF-α on endothelial cells through inhibiting PI3K/AKT/BCL-2 axis. J Biochem Mol Toxicol 2024; 38:e23598. [PMID: 38047396 DOI: 10.1002/jbt.23598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Endothelial cell apoptosis driven by inflammation (TNF-α) plays a critical role in the pathogenesis of atherosclerosis, but the exact molecular mechanisms are not clearly elucidated. MicroRNA (miR)-29 families (a/b/c) take important roles in pathophysiological processes of atherosclerosis, also the underlying mechanisms have not been fully clarified. The aims are to explore whether or not miR-29 families mediate the apoptotic effects of TNF-α on endothelial cells and uncover the underlying molecular mechanisms. In this study, MTT assay and flow cytometer analysis were employed respectively to determine the proliferation and apoptosis of human umbilical vascular endothelial cells (HUVECs) under TNF-α exposure. Real-time quantitative PCR and western blot were performed to detect the levels of target RNAs and proteins/their phosphorylation in HUVECs. TNF-α could inhibit HUVEC proliferation and induce HUVEC apoptosis in a positive dose- and time-dependent manner, with a similar way of miR-29a upregulation, but no effects on miR-29b/c. Upregulation of miR-29a with its mimics enhanced the apoptotic effect of TNF-α on HUVECs, but downregulation of miR-29a using anti-miR-29a blocked up its apoptotic effect. MiR-29a inhibited the expression of PI3Kp85α and Bcl-2 and blocked up the signal transduction of PI3K/AKT/Bcl-2 axis to mediate the apoptotic effect of TNF-α on HUVECs. Mediating the inflammation-driven endothelial cell apoptosis is an important biology mechanism by which miR-29a promotes atherosclerosis and its complications. MiR-29a will be a potential diagnostic and therapeutic target for atherosclerotic cardiovascular diseases; it is worthwhile to further study.
Collapse
Affiliation(s)
- Yunchang Cao
- Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| | - Hongbo Wen
- Department of Biochemistry and Molecular Biology, Hengyang Medicine School, University of South China, Hengyang, China
| | - Chaoqun Leng
- Department of Biochemistry and Molecular Biology, Hengyang Medicine School, University of South China, Hengyang, China
| | - Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| |
Collapse
|
42
|
O'Brien MW, Shivgulam ME. Mechanistic, participant, and movement-related factors that contribute to low-flow-mediated constriction. Eur J Appl Physiol 2023; 123:2687-2697. [PMID: 37804365 DOI: 10.1007/s00421-023-05332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Endothelial function is commonly determined via the ultrasound-based flow-mediated dilation (FMD) technique which assesses arterial dilation in response to a hyperemia response following distal cuff occlusion. However, the low-flow-mediated constriction (L-FMC) response during cuff-induced ischemia is often overlooked. L-FMC provides unique information regarding endothelial function, but vascular researchers may be unclear on what this metric adds. Therefore, the objective of this review was to examine the mechanistic determinants and participant-level factors of L-FMC. Existing mechanistic studies have demonstrated that vasoreactivity to low flow may be mediated via non-nitric oxide vasodilators (i.e., endothelial hyperpolarizing factors and/or prostaglandins), inflammatory markers, and enhancement of vasoconstriction via endothelin-1. In general, participant-level factors such as aging and presence of cardiovascular conditions generally are associated with attenuated L-FMC responses. However, the influence of sex on L-FMC is unclear with divergent results between L-FMC in upper versus lower limb vessels. The ability of aerobic exercise to augment L-FMC (i.e., make more negative) is well supported, but there is a major gap in the literature concerning the mechanistic underpinnings of this observation. This review summarizes that while larger L-FMC responses are generally healthy, the impact of interventions to augment/attenuate L-FMC has not included mechanistic measures that would provide insight into non-nitric oxide-based endothelial function. Clarifications to terminology and areas of further inquiry as it relates to the specific pharmacological, individual-level factors, and lifestyle behaviors that impact L-FMC are highlighted. A greater integration of mechanistic work alongside applied lifestyle interventions is required to better understand endothelial cell function to reductions in local blood flow.
Collapse
Affiliation(s)
- Myles W O'Brien
- School of Physiotherapy (Faculty of Health) and Department of Medicine (Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
- Geriatric Medicine Research, Dalhousie University & Nova Scotia Health, Halifax, NS, B3H 4R2, Canada.
| | | |
Collapse
|
43
|
Al Zein M, Zein O, Diab R, Dimachkie L, Sahebkar A, Al-Asmakh M, Kobeissy F, Eid AH. Intermittent fasting favorably modulates adipokines and potentially attenuates atherosclerosis. Biochem Pharmacol 2023; 218:115876. [PMID: 37871879 DOI: 10.1016/j.bcp.2023.115876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Adipose tissue is now recognized as an endocrine organ that secretes bioactive molecules called adipokines. These biomolecules regulate key physiological functions, including insulin sensitivity, energy metabolism, appetite regulation, endothelial function and immunity. Dysregulated secretion of adipokines is intimately associated with obesity, and translates into increased risk of obesity-related cardiovasculo-metabolic diseases. In particular, emerging evidence suggests that adipokine imbalance contributes to the pathogenesis of atherosclerosis. One of the promising diet regimens that is beneficial in the fight against obesity and cardiometabolic disorders is intermittent fasting (IF). Indeed, IF robustly suppresses inflammation, meditates weight loss and mitigates many aspects of the cardiometabolic syndrome. In this paper, we review the main adipokines and their role in atherosclerosis, which remains a major contributor to cardiovascular-associated morbidity and mortality. We further discuss how IF can be employed as an effective management modality for obesity-associated atherosclerosis. By exploring a plethora of the beneficial effects of IF, particularly on inflammatory markers, we present IF as a possible intervention to help prevent atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Omar Zein
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rawan Diab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Lina Dimachkie
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
44
|
Valentini A, Cardillo C, Della Morte D, Tesauro M. The Role of Perivascular Adipose Tissue in the Pathogenesis of Endothelial Dysfunction in Cardiovascular Diseases and Type 2 Diabetes Mellitus. Biomedicines 2023; 11:3006. [PMID: 38002006 PMCID: PMC10669084 DOI: 10.3390/biomedicines11113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2DM) are two of the four major chronic non-communicable diseases (NCDs) representing the leading cause of death worldwide. Several studies demonstrate that endothelial dysfunction (ED) plays a central role in the pathogenesis of these chronic diseases. Although it is well known that systemic chronic inflammation and oxidative stress are primarily involved in the development of ED, recent studies have shown that perivascular adipose tissue (PVAT) is implicated in its pathogenesis, also contributing to the progression of atherosclerosis and to insulin resistance (IR). In this review, we describe the relationship between PVAT and ED, and we also analyse the role of PVAT in the pathogenesis of CVDs and T2DM, further assessing its potential therapeutic target with the aim of restoring normal ED and reducing global cardiovascular risk.
Collapse
Affiliation(s)
- Alessia Valentini
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| | - Carmine Cardillo
- Department of Aging, Policlinico A. Gemelli IRCCS, 00168 Roma, Italy;
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| | - David Della Morte
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| | - Manfredi Tesauro
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| |
Collapse
|
45
|
Tang J, Liu Y, Li M, Wang X, Du A, Gu N, Yang F. Sphingosine-1-Phosphate Receptor Targeted PLGA Nanobubbles for Inflammatory Vascular Endothelial Cell Catching. Adv Healthc Mater 2023; 12:e2301407. [PMID: 37591196 DOI: 10.1002/adhm.202301407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/06/2023] [Indexed: 08/19/2023]
Abstract
Vascular inflammation is an early manifestation and common pathophysiological basis of numerous cardiovascular and cerebrovascular diseases. However, effective surveillance methods are lacking. In this study, sulfur hexafluoride (SF6 )-loaded polylactic acid-co-glycolic acid (PLGA) nanobubbles (NBs) with a surface assembly of cyclodextrin (CD) and sphingosine-1-phosphate (S1P) (S1P@CD-PLGA NBs) are designed. The characterization results show that S1P@CD-PLGA NBs with diameters of ≈200 nm have good stability, biosafety, and ultrasound imaging-enhancement effects. When interacting with inflammatory vascular endothelial cells, S1P molecules encapsulated in cyclodextrin cavities exhibit a rapid, excellent, and stable targeting effect owing to their specific interaction with the highly expressed S1P receptor 1 (S1PR1) on the inflammatory vascular endothelial cells. Particularly, the S1P-S1PR1 interaction further activates the downstream signaling pathway of S1PR1 to reduce the expression of tumor necrosis factor-α (TNF-α) to protect endothelial cells. Furthermore, mouse models of carotid endothelial injuries and mesenteric thrombosis demonstrate that S1P@CD-PLGA NBs have excellent capabilities for in vivo targeting imaging. In summary, this study proposes a new strategy of using S1P to target inflammatory vascular endothelial cells while reducing the expression of TNF-α, which has the potential to be utilized in the targeted surveillance and treatment of vascular inflammatory diseases.
Collapse
Affiliation(s)
- Jian Tang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Mingxi Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, China
| | - Xiao Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Anning Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing, 210093, P. R. China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
46
|
Yin K, Sheng J, Chen J, Gao F, Miao C, Liu D. Protective effect of phosphorylated Athyrium multidentatum (Doll.) Ching polysaccharide on vascular endothelial cells in vitro and in vivo. Chem Biol Drug Des 2023; 102:1213-1230. [PMID: 37550016 DOI: 10.1111/cbdd.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
The purpose of this study was to prepare phosphorylated Athyrium multidentatum (Doll.) Ching polysaccharide (PPS) and investigate its protective effect on vascular endothelial cells (VECs) in vitro and in vivo and the underlying mechanisms. Sodium tripolyphosphate (STPP) and sodium trimetaphosphate (STMP) were used as phosphorylation reagents and PPS was characterized by Fourier transform infrared (FT-IR), 13 C nuclear magnetic resonance (13 C NMR) and 31 P nuclear magnetic resonance (31 P NMR) spectra. Chemical analysis demonstrated that PPS was composed of mannose, glucosamine, rhamnose, glucuronic acid, galacturonic acid, galactosamine, glucose, galactose, xylose, arabinose, and fucose with a molar ratio of 11.36:0.42:4.03:1.12:1.81:0.26:33.25:24.12:6.85:14.46:2.32 and a molecular weight of 28,837 Da. Results from in vitro and in vivo assays revealed that PPS protected human umbilical vein endothelial cells (HUVECs) against H2 O2 -induced oxidative injury and attenuated D-galactose-induced VECs damage in mice. RNA sequencing (RNA-seq) analysis identified 18 differentially expressed genes (DEGs) between D-galactose-treated and PPS-pretreated mice abdominal aorta. A deep analysis of these DEGs disclosed that PPS regulated the expression of genes involved in the functions of vascular endothelium repairment, cell growth and proliferation, cell survival and apoptosis, inflammation, angiogenesis and antioxidant, indicating that these biological processes might play crucial roles in the protective actions of PPS on VECs.
Collapse
Affiliation(s)
- Kaiyue Yin
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Jiwen Sheng
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Jiyu Chen
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Feng Gao
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Changqing Miao
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Dongmei Liu
- Department of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
47
|
Awata WMC, Sousa AH, de Mello MMB, Dourado TMH, Pinheiro LC, Elias-Oliveira J, Rodrigues VF, Carlos D, Castro MM, Tirapelli CR. AT 1 receptors modulate ethanol-induced loss of anticontractile effect of perivascular adipose tissue. Biochem Pharmacol 2023; 217:115840. [PMID: 37783376 DOI: 10.1016/j.bcp.2023.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Ethanol consumption activates renin-angiotensin-aldosterone system (RAAS), which plays a major role in the pro-contractile and hypertensive effects linked to ethanol. We hypothesized that ethanol consumption induces loss of the anticontractile effect of perivascular adipose tissue (PVAT)through RAAS-mediated mechanisms. We examined the contribution of angiotensin II type 1 receptors (AT1R) to ethanol-induced PVAT dysfunction. With this purpose, male Wistar Hannover rats were treated with ethanol 20 % (in volume ratio) and/or losartan (antagonist of AT1R; 10 mg/kg/day, gavage) for 9 weeks. Losartan prevented the increase in blood pressure and the loss of the anticontractile effect of PVAT induced by ethanol consumption. PVAT dysfunction occurred after 3 and 9 weeks of treatment with ethanol in an endothelium-dependent manner. Blockade of AT1R prevented ethanol-induced reduction of adiponectin levels in PVAT from ethanol-treated rats. Functional assays revealed that ethanol impaired the anticontractile effect of PVAT-derived angiotensin (1-7) and endothelial nitric oxide (NO). In conclusion, AT1R are implicated in ethanol-induced loss of the anticontractile effect of PVAT. In PVAT, AT1R activation decreases the production of adiponectin, a PVAT-derived factor that promotes vasorelaxation in an endothelium-dependent manner. In the endothelium, AT1R favors the production of superoxide (O2•-) leading to a reduction in NO bioavailability. These responses impair the vasodilator action induced by PVAT-derived angiotensin (1-7), which occurs via Mas receptors located in endothelial cells. Ethanol-induced PVAT dysfunction favors vascular hypercontractility, a response that could contribute to the hypertensive state associated with ethanol consumption.
Collapse
Affiliation(s)
- Wanessa M C Awata
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Arthur H Sousa
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Marcela M B de Mello
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Thales M H Dourado
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Lucas C Pinheiro
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Jefferson Elias-Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa F Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Daniela Carlos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Michele M Castro
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
48
|
Chang HW, Hsu MJ, Chien LN, Chi NF, Yu MC, Chen HC, Lin YF, Hu CJ. Role of the Autism Risk Gene Shank3 in the Development of Atherosclerosis: Insights from Big Data and Mechanistic Analyses. Cells 2023; 12:2546. [PMID: 37947623 PMCID: PMC10647789 DOI: 10.3390/cells12212546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Increased medical attention is needed as the prevalence of autism spectrum disorder (ASD) rises. Both cardiovascular disorder (CVD) and hyperlipidemia are closely associated with adult ASD. Shank3 plays a key genetic role in ASD. We hypothesized that Shank3 contributes to CVD development in young adults with ASD. In this study, we investigated whether Shank3 facilitates the development of atherosclerosis. Using Gene Set Enrichment Analysis software (Version No.: GSEA-4.0.3), we analyzed the data obtained from Shank3 knockout mice (Gene Expression Omnibus database), a human population-based study cohort (from Taiwan's National Health Insurance Research Database), and a Shank3 knockdown cellular model. Shank3 knockout upregulated the expression of genes of cholesterol homeostasis and fatty acid metabolism but downregulated the expression of genes associated with inflammatory responses. Individuals with autism had higher risks of hyperlipidemia (adjusted hazard ratio (aHR): 1.39; p < 0.001), major adverse cardiac events (aHR: 2.67; p < 0.001), and stroke (aHR: 3.55; p < 0.001) than age- and sex-matched individuals without autism did. Shank3 downregulation suppressed tumor necrosis factor-α-induced fatty acid synthase expression; vascular cell adhesion molecule 1 expression; and downstream signaling pathways involving p38, Jun N-terminal kinase, and nuclear factor-κB. Thus, Shank3 may influence the development of early-onset atherosclerosis and CVD in ASD. Furthermore, regulating Shank3 expression may reduce inflammation-related disorders, such as atherosclerosis, by inhibiting tumor necrosis factor-alpha-mediated inflammatory cascades.
Collapse
Affiliation(s)
- Hsiu-Wen Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Neurology, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan
| | - Ming-Jen Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan (H.-C.C.)
| | - Li-Nien Chien
- Institute of Health and Welfare Policy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Nai-Fang Chi
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei 11267, Taiwan;
| | - Meng-Chieh Yu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan (H.-C.C.)
| | - Hsiu-Chen Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan (H.-C.C.)
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
49
|
Bojalil R, Ruíz-Hernández A, Villanueva-Arias A, Amezcua-Guerra LM, Cásarez-Alvarado S, Hernández-Dueñas AM, Rodríguez-Galicia V, Pavón L, Marquina B, Becerril-Villanueva E, Hernández-Pando R, Márquez-Velasco R. Two murine models of sepsis: immunopathological differences between the sexes-possible role of TGFβ1 in female resistance to endotoxemia. Biol Res 2023; 56:54. [PMID: 37875957 PMCID: PMC10594922 DOI: 10.1186/s40659-023-00469-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Endotoxic shock (ExSh) and cecal ligature and puncture (CLP) are models that induce sepsis. In this work, we investigated early immunologic and histopathologic changes induced by ExSh or CLP models in female and male mice. Remarkable results showed that females supported twice the LD100 of LPS for males, CLP survival and CFU counts were similar between genders, high circulating LPS levels in ExSh mice and low levels of IgM anti-LPS in males. In the serum of ExSh males, TNF and IL-6 increased in the first 6 h, in CLP males at 12 h. In the liver of ExSh mice, TNF increased at 1.5 and 12 h, IL-1 at 6 h. TGFβ1 increased in females throughout the study and at 12 h in males. In CLP mice, IL-6 decreased at 12 h, TGFβ1 increased at 6-12 h in males and at 12 h in females. In the lungs of ExSh males, IL-1β increased at 1.5-6 h and TGFβ1 at 12 h; in females, TNF decrease at 6 h and TGFβ1 increased from 6 h; in CLP females, TNF and IL-1β decreased at 12 h and 1.5 h, respectively, and TGFβ1 increased from 6 h; in males, TGFβ1 increased at 12 h. In the livers of ExSh mice, signs of inflammation were more common in males; in the CLP groups, inflammation was similar but less pronounced. ExSh females had leucocytes with TGFβ1. The lungs of ExSh males showed patches of hyaline membranes and some areas of inflammatory cells, similar but fewer and smaller lesions were seen in male mice with CLP. In ExSh females, injuries were less extent than in males, similar pulmonary lesions were seen in female mice with CLP. ExSh males had lower levels of TGFβ1 than females, and even lower levels were seen in CLP males. We conclude that the ExSh was the most lethal model in males, associated with high levels of free LPS, low IgM anti-LPS, exacerbated inflammation and target organ injury, while females showed early TGFβ1 production in the lungs and less tissue damage. We didn't see any differences between CLP mice.
Collapse
Affiliation(s)
- Rafael Bojalil
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Armando Ruíz-Hernández
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Mexico
| | - Arturo Villanueva-Arias
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis Manuel Amezcua-Guerra
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Sergio Cásarez-Alvarado
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | | | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente, Mexico City, Mexico
| | - Brenda Marquina
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ricardo Márquez-Velasco
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico.
| |
Collapse
|
50
|
Arenas GA, Valenzuela JG, Peñaloza E, Paz AA, Iturriaga R, Saez CG, Krause BJ. Transcriptional Profiling of Human Endothelial Cells Unveils PIEZO1 and Mechanosensitive Gene Regulation by Prooxidant and Inflammatory Inputs. Antioxidants (Basel) 2023; 12:1874. [PMID: 37891953 PMCID: PMC10604317 DOI: 10.3390/antiox12101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/15/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
PIEZO1 is a mechanosensitive cation channel implicated in shear stress-mediated endothelial-dependent vasorelaxation. Since altered shear stress patterns induce a pro-inflammatory endothelial environment, we analyzed transcriptional profiles of human endothelial cells to determine the effect of altered shear stress patterns and subsequent prooxidant and inflammatory conditions on PIEZO1 and mechanosensitive-related genes (MRG). In silico analyses were validated in vitro by assessing PIEZO1 transcript levels in both the umbilical artery (HUAEC) and vein (HUVEC) endothelium. Transcriptional profiling showed that PIEZO1 and some MRG associated with the inflammatory response were upregulated in response to high (15 dyn/cm2) and extremely high shear stress (30 dyn/cm2) in HUVEC. Changes in PIEZO1 and inflammatory MRG were paralleled by p65 but not KLF or YAP1 transcription factors. Similarly, PIEZO1 transcript levels were upregulated by TNF-alpha (TNF-α) in diverse endothelial cell types, and pre-treatment with agents that prevent p65 translocation to the nucleus abolished PIEZO1 induction. ChIP-seq analysis revealed that p65 bonded to the PIEZO1 promoter region, an effect increased by the stimulation with TNF-α. Altogether this data showed that NF-kappa B activation via p65 signaling regulates PIEZO1 expression, providing a new molecular link for prooxidant and inflammatory responses and mechanosensitive pathways in the endothelium.
Collapse
Affiliation(s)
- German A. Arenas
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua 2841959, Chile;
| | - Jose G. Valenzuela
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile (C.G.S.)
| | - Estefanía Peñaloza
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile
| | - Adolfo A. Paz
- Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 7500000, Chile
| | - Rodrigo Iturriaga
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Investigación en Fisiología y Medicina en Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1271155, Chile
| | - Claudia G. Saez
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile (C.G.S.)
| | - Bernardo J. Krause
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile
| |
Collapse
|