1
|
Sarathi R, Sarumathy S, Durai Mavalavan VM. EVOLUTION OF METFORMIN IN BREAST CANCER THERAPY IN LAST TWO DECADES: A REVIEW. Exp Oncol 2024; 46:185-191. [PMID: 39704463 DOI: 10.15407/exp-oncology.2024.03.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Indexed: 12/21/2024]
Abstract
Among women, breast cancer is one of the most prevalent cancers. The disease has a complex etiology, with multiple biological pathways contributing to its development. As insulin signaling has mitogenic effects, glucose is a necessary cellular metabolic substrate, and the growth and metastasis of breast cancer are closely related to cellular glucose metabolism. Anti-diabetic medications have drawn increased attention as a potential treatment for breast cancer. Metformin lowers cancer incidence and death rates in patients with type 2 diabetes, according to epidemiologic studies. Preclinical studies conducted in vivo and in vitro offer fascinating new insights into the cellular mechanisms underlying metformin oncostatic action. We present an overview of the mechanisms of anticancer effects of metformin and discuss its potential function as an adjuvant in the treatment of breast cancer.
Collapse
Affiliation(s)
- R Sarathi
- Department of Pharmacy Practice, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - S Sarumathy
- Department of Pharmacy Practice, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - V M Durai Mavalavan
- Department of Medical Oncology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| |
Collapse
|
2
|
Anand S, Patel TN. Integrating the metabolic and molecular circuits in diabetes, obesity and cancer: a comprehensive review. Discov Oncol 2024; 15:779. [PMID: 39692821 DOI: 10.1007/s12672-024-01662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
The progressive globalization of sedentary lifestyles and diets rich in lipids and processed foods has caused two major public health hazards-diabetes and obesity. The strong interlink between obesity and type 2 diabetes mellitus and their combined burden encompass them into a single term 'Diabesity'. They have also been tagged as the drivers for the onset of cancer. The clinical association between diabetes, obesity, and several types of human cancer demands an assessment of vital junctions correlating the three. This review focuses on revisiting the molecular axis linking diabetes and obesity to cancer through pathways that get imbalanced owing to metabolic upheaval. We also attempt to describe the functional disruptions of DNA repair mechanisms due to overwhelming oxidative DNA damage caused by diabesity. Genomic instability, a known cancer hallmark results when DNA repair does not work optimally, and as will be inferred from this review the obtruded metabolic homeostasis in diabetes and obesity creates a favorable microenvironment supporting metabolic reprogramming and enabling malignancies. Altered molecular and hormonal landscapes in these two morbidities provide a novel connection between metabolomics and oncogenesis. Understanding various aspects of the tumorigenic process in diabesity-induced cancers might help in the discovery of new biomarkers and prompt targeted therapeutic interventions.
Collapse
Affiliation(s)
- Shrikirti Anand
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Trupti N Patel
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Huang CC, Hsu RF, Chen WM, Shia BC, Wu SY, Huang CC. Metformin lowers risk of hearing loss and mortality in type 2 diabetes. Diabetes Obes Metab 2024. [PMID: 39690329 DOI: 10.1111/dom.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
AIMS To assess the association between metformin use and the risk of sudden sensorineural hearing loss (SSNHL) in patients with Type 2 diabetes (T2D), a population at elevated risk for SSNHL. MATERIALS AND METHODS This cohort study utilized data from Taiwan's National Health Insurance Research Database, following T2D patients from 2008 to 202 database's baseline. Metformin use was defined as achieving ≥80% of the medication possession ratio (MPR) and ≥28 cumulative defined daily doses (cDDD) within three months. The control group included patients with ≥80% MPR from other antidiabetic agents, ensuring active treatment comparability. Propensity score matching was applied to balance covariates, while competing risk models accounted for mortality. Hazard ratios (HRs), incidence rates (IRs), and incidence rate ratios (IRRs) were calculated. RESULTS Metformin users demonstrated a lower SSNHL incidence (IR: 11.48 per 10,000 person-years) compared to non-users (IR: 15.66 per 10,000 person-years), with an IRR of 0.73 (95% CI: 0.66-0.82; p < 0.0001). Adjusted HRs indicated a 27% reduction in SSNHL risk (HR: 0.73; 95% CI: 0.66-0.82). Higher cumulative doses (Q4: HR 0.36; 95% CI: 0.29-0.46) and daily doses ≥1 DDD (HR: 0.78; 95% CI: 0.69-0.87) were linked to further risk reductions. Metformin use was also associated with lower overall mortality. CONCLUSIONS Metformin use is associated with a dose-dependent reduction in SSNHL risk and lower mortality in T2D patients. The rigorous definitions of metformin exposure and an actively treated comparator group emphasize these findings, suggesting metformin's potential role in SSNHL prevention and improved survival.
Collapse
Affiliation(s)
- Chun-Chih Huang
- Department of Otorhinolaryngology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Rui-Fong Hsu
- Department of Emergency Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Ben-Chang Shia
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chi Huang
- Department of Otorhinolaryngology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| |
Collapse
|
4
|
Samant V, Prabhu A. Exercise, exerkines and exercise mimetic drugs: Molecular mechanisms and therapeutics. Life Sci 2024; 359:123225. [PMID: 39522716 DOI: 10.1016/j.lfs.2024.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Chronic diseases linked with sedentary lifestyles and poor dietary habits are increasingly common in modern society. Exercise is widely acknowledged to have a plethora of health benefits, including its role in primary prevention of various chronic conditions like type 2 diabetes mellitus, obesity, cardiovascular disease, and several musculoskeletal as well as degenerative disorders. Regular physical activity induces numerous physiological adaptations that contribute to these positive effects, primarily observed in skeletal muscle but also impacting other tissues. There is a growing interest among researchers in developing pharmaceutical interventions that mimic the beneficial effects of exercise for therapeutic applications. Exercise mimetic medications have the potential to be helpful aids in enhancing functional outcomes for patients with metabolic dysfunction, neuromuscular and musculoskeletal disorders. Some of the potential targets for exercise mimetics include pathways involved in metabolism, mitochondrial function, inflammation, and tissue regeneration. The present review aims to provide an exhaustive overview of the current understanding of exercise physiology, the role of exerkines and biomolecular pathways, and the potential applications of exercise mimetic drugs for the treatment of several diseases.
Collapse
Affiliation(s)
- Vedant Samant
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
5
|
Ding Y, Jing W, Kang Z, Yang Z. Exploring the role and application of mitochondria in radiation therapy. Biochim Biophys Acta Mol Basis Dis 2024:167623. [PMID: 39674289 DOI: 10.1016/j.bbadis.2024.167623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Mitochondria are pivotal in cellular energy metabolism, the oxidative stress response and apoptosis. Recent research has focused on harnessing their functions to enhance the efficacy of radiation therapy (RT). This review focuses on the critical functions and applications of mitochondria in radiation therapy, including the targeting of mitochondrial metabolism and the modulation of mitochondria-mediated cell death and immune responses. While these strategies have demonstrated considerable potential in preclinical studies to improve radiotherapy outcomes, challenges remain, such as optimizing drug delivery systems, ensuring safety and overcoming resistance to therapy.
Collapse
Affiliation(s)
- Yi Ding
- Shandong University, Jinan 250000, China
| | - Wang Jing
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Zhichao Kang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Zhe Yang
- Shandong University, Jinan 250000, China.
| |
Collapse
|
6
|
He J, Luo Y, Ding Y, Zhu L. Metformin Inhibits the Progression of Pancreatic Cancer Through Regulating miR-378a-3p/VEGFA/RGC-32 Axis. Cancer Med 2024; 13:e70446. [PMID: 39606802 PMCID: PMC11602749 DOI: 10.1002/cam4.70446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a major contributor to global cancer-related mortality. While the inhibitory effect of metformin (Met) on PC has been reported, the underlying mechanism remains elusive. METHODS We established BxPC-3 cell models with miR-378a-3p and VEGFA knockdown. The expression of miR-378a-3p, VEGFA, and RGC-32 in PC and normal tissues was analyzed using GEPIA, TCGA databases. Cell proliferation, invasion, migration, and apoptosis were assessed through CCK8, Transwell, wound healing, and flow cytometry. RESULTS Significantly lower expression of miR-378a-3p was observed in PC tissues and cells. Knockdown of miR-378a-3p reversed the impact of Met on cell viability in PANC-1 and BxPC3. VEGFA emerged as a potential regulator in PC and a downstream target of miR-378a-3p. The interaction between VEGFA and RGC-32 played a crucial role in PC regulation. Knockdown of VEGFA substantially reversed the impact of miR-378a-3p inhibitor on tumor growth and the epithelial-mesenchymal transition (EMT) process. Moreover, knockdown of VEGFA effectively countered the influence of miR-378a-3p inhibitor on cell viability and the EMT process in BxPC3 cells. CONCLUSIONS Met exerted inhibitory effects on PC through the miR-378a-3p/VEGFA/RGC-32 pathway. Strategies targeting the miR-378a-3p/VEGFA/RGC-32 axis represent a novel avenue for the prevention and treatment of PC.
Collapse
Affiliation(s)
- Jinli He
- Department of GastroenterologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Yixing Luo
- Department of GastroenterologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Ying Ding
- Department of Medical CosmetologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Liang Zhu
- Department of GastroenterologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
| |
Collapse
|
7
|
Zhang WL, Zhang LJ, Liang P, Fang HL, Wang XL, Liu YJ, Deng HF. Metformin Protects Against Acute Kidney Injury Induced by Lipopolysaccharide via Up-Regulating the MCPIP1/SIRT1 Pathway. Biochem Genet 2024; 62:4591-4602. [PMID: 38345758 DOI: 10.1007/s10528-024-10692-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/07/2024] [Indexed: 11/29/2024]
Abstract
In the present study, we aimed to explore the effect and underlying mechanism of metformin on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). A total of 24 BALB/C mice were randomly divided into four groups: control group, LPS group and metformin group (50 or 100 mg/kg). The histological changes and cell apoptosis in kidney tissues were detected by hematoxylin-eosin staining and terminal-deoxynucleotidyl transferase-mediated nick end labeling assay, respectively. Enzyme-linked immunosorbent assay was applied to determine serum levels of blood urea nitrogen (BUN), kidney injury molecule-1 (Kim-1), creatinine (Cre), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). Western blotting analysis were carried out to confirm the expressions of monocyte chemotactic protein-inducible protein 1 (MCPIP1), silent information regulator sirtuin 1 (SIRT1), and NF-κB p65 (acetyl K310). Compared with the control group, the mice in LPS group had glomerular capillary dilatation, renal interstitial edema, tubular cell damage and apoptosis. The serum levels of BUN, KIM-1, Cre, TNF-α, and IL-1β in LPS group were significantly higher than those in control group. Moreover, LPS also elevated the expressions of MCPIP1 and NF-κB p65 (acetyl K310) but decreased the expression of SIRT1 in kidney tissues. However, metformin distinctly decreased LPS-induced renal dysfunction, the serum levels of BUN, KIM-1, Cre, TNF-α, and IL-1β. In addition, metformin markedly increased the expressions of MCPIP1 and SIRT1 but decreased the expression of NF-κB p65 (acetyl K310) in kidney tissues. Metformin prevented LPS-induced AKI by up-regulating the MCPIP1/SIRT1 signaling pathway and subsequently inhibiting NF-κB-mediated inflammation response.
Collapse
Affiliation(s)
- Wen-Long Zhang
- The First Clinical Hospital, Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
- Department of Medical Administration, the First People's Hospital of Chenzhou, Chenzhou, 423000, Hunan, People's Republic of China
| | - Long-Jun Zhang
- School of Basic Medical Science, Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Piao Liang
- School of Basic Medical Science, Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Hui-Long Fang
- School of Basic Medical Science, Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Xiao-Li Wang
- Department of Pathology, Medical College of Jishou University, Jishou, 416000, Hunan, People's Republic of China
| | - Yan-Juan Liu
- Institute of Emergency Medicine, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, People's Republic of China
| | - Hua-Fei Deng
- School of Basic Medical Science, Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Hu YZ, Chen Z, Zhou MH, Zhao ZY, Wang XY, Huang J, Li XT, Zeng JN. Global and regional genetic association analysis of ulcerative colitis and type 2 diabetes mellitus and causal validation analysis of two-sample two-way Mendelian randomization. Front Immunol 2024; 15:1375915. [PMID: 39650653 PMCID: PMC11621067 DOI: 10.3389/fimmu.2024.1375915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Background Clinical co-occurrence of UC (Ulcerative Colitis) and T2DM (Type 2 Diabetes Mellitus) is observed. The aim of this study is to investigate the potential causal relationship between Ulcerative Colitis (UC) and Type 2 Diabetes Mellitus (T2DM) using LDSC and LAVA analysis, followed by genetic verification through TSMR, providing insights for clinical prevention and treatment. Methods Genetic loci closely related to T2DM were extracted as instrumental variables from the GWAS database, with UC as the outcome variable, involving European populations. The UC data included 27,432 samples and 8,050,003 SNPs, while the T2DM data comprised 406,831 samples and 11,914,699 SNPs. LDSC and LAVA were used for quantifying genetic correlation at both global (genome-wide) and local (genomic regions) levels. MR analysis was conducted using IVW, MR-Egger regression, Weighted median, and Weighted mode, assessing the causal relationship between UC and diabetes with OR values and 95% CI. Heterogeneity and pleiotropy were tested using Egger-intercept, MR-PRESSO, and sensitivity analysis through the "leave-one-out" method and Cochran Q test. Subsequently, a reverse MR operation was conducted using UC as the exposure data and T2DM as the outcome data for validation. Results Univariable and bivariable LDSC calculated the genetic correlation and potential sample overlap between T2DM and UC, resulting in rg = -0.0518, se = 0.0562, P = 0.3569 with no significant genetic association found for paired traits. LAVA analysis identified 9 regions with local genetic correlation, with 6negative and 3 positive associations, indicating a negative correlation between T2DM and UC. MR analysis, with T2DM as the exposure and UC as the outcome, involved 34 SNPs as instrumental variables. The OR values and 95% CI from IVW, MR-Egger, Weighted median, and Weighted mode were 0.917 (0.848~0.992), 0.949 (0.800~1.125), 0.881 (0.779~0.996), 0.834(0.723~0.962) respectively, with IVW P-value < 0.05, suggesting a negative causal relationship between T2DM and UC. MR-Egger regression showed an intercept of -0.004 with a standard error of 0.009, P = 0.666, and MR-PRESSO Global Test P-value > 0.05, indicating no pleiotropy and no outliers detected. Heterogeneity tests showed no heterogeneity, and the "leave-one-out" sensitivity analysis results were stable. With UC as the exposure and T2DM as the outcome, 32 SNPs were detected, but no clear causal association was found. Conclusion There is a causal relationship between T2DM and UC, where T2DM reduces the risk of UC, while no significant causal relationship was observed from UC to T2DM.
Collapse
Affiliation(s)
- Yan-zhi Hu
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhe Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-han Zhou
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhen-yu Zhao
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-yan Wang
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jun Huang
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xin-tian Li
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Juan-ni Zeng
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
9
|
Azócar-Gallardo J, Ojeda-Aravena A, Báez-San Martín E, Herrera-Valenzuela T, Tuesta M, González-Rojas L, Calvo-Rico B, García-García JM. Effect of a Concurrent Training Program with and Without Metformin Treatment on Metabolic Markers and Cardiorespiratory Fitness in Individuals with Insulin Resistance: A Retrospective Analysis. Biomolecules 2024; 14:1470. [PMID: 39595646 PMCID: PMC11592327 DOI: 10.3390/biom14111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus is a metabolic disorder characterized by insulin resistance (IR), which is prevalent worldwide and has significant adverse health effects. Metformin is commonly prescribed as a pharmacological treatment. Physical exercise is also recognized as an effective regulator of glycemia, independent of metformin. However, the effects of inter-day concurrent training (CT)-which includes both endurance and resistance exercises-combined with metformin treatment on metabolic markers and cardiorespiratory fitness in individuals with IR remain controversial. OBJECTIVE This study aimed to analyze the effects of a 12-week inter-day CT program on metabolic markers and cardiorespiratory fitness in overweight/obese individuals with IR, both with and without metformin treatment. Additionally, inter-individual responses to CT were examined. MATERIALS AND METHODS Data from the 2022-2023 Obesity Center database were retrospectively analyzed. According to the eligibility criteria, 20 overweight/obese individuals diagnosed with IR participated in a 12-week CT program (three weekly sessions: two endurance and one resistance exercise session). Participants were divided into three groups: the exercise group (E-G: n = 7, 32.86 ± 8.32 years, 85.2 ± 19.67 kg), the exercise-metformin group (E-MG: n = 6, 34.83 ± 12.91 years, 88.13 ± 12.66 kg), and the metformin-only control group (M-G: n = 7, 34.43 ± 13.96 years, 94.23 ± 13.93 kg). The M-G did not perform physical exercise during the 12 weeks but continued pharmacological treatment. Body composition, metabolic markers, and cardiorespiratory fitness were assessed before and after the 12-week CT program. RESULTS A group-by-time interaction was observed for fasting insulin (F2,17 = 34.059, p < 0.001, η2p = 0.88), the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) (F2,17 = 35.597, p < 0.001, η2p = 0.80), and maximal fat oxidation (MFO) (F2,17 = 4.541, p = 0.026, η2p = 0.348) following the CT program. The maximal oxygen uptake (VO2max) showed significant improvements in the E-G (F = 4.888, p = 0.041, ∆+13.3%). Additionally, the percentage of fat mass (%FM) and body mass (BM) were significantly reduced across all groups (F = 125.244, p < 0.001 and F = 91.130, p < 0.001, respectively). The BM decreased by ∆-9.43% in the E-G (five responders, Rs), ∆+9.21% in the EM-G (5 Rs), and ∆+5.15% in the M-G (3 Rs). The %FM was reduced in the E-G by ∆-22.52% (seven Rs). Fasting insulin and the HOMA-IR significantly improved in both the E-G and EM-G, with fasting insulin showing a ∆-82.1% reduction in the E-G (five Rs) and a ∆-85% reduction in the EM-G (six Rs). Similarly, the HOMA-IR improved by ∆+82.6% in the E-G (three Rs) and by ∆+84.6% in the EM-G (six Rs). CONCLUSIONS The 12-week inter-day concurrent training program, whether combined with metformin or not, was similarly effective in improving metabolic markers in patients with insulin resistance as metformin treatment alone. Both exercise groups demonstrated a significant reduction in insulin sensitivity and an increase in maximal fat oxidation. Meanwhile, exclusive pharmacological treatment with metformin markedly decreased cardiorespiratory fitness, and consequently, fat oxidation.
Collapse
Affiliation(s)
- Jairo Azócar-Gallardo
- Facultad de Ciencias del Deporte, Universidad de Castilla-La Mancha (UCLM), 45071 Toledo, Spain; (B.C.-R.); (J.M.G.-G.)
- Programa de Investigación en Deporte, Sociedad y Buen Vivir (DSBv), Universidad de Los Lagos, Osorno 5290000, Chile
- Departamento de Ciencias de la Actividad Física, Universidad de Los Lagos, Osorno 5290000, Chile
| | | | - Eduardo Báez-San Martín
- Carrera de Entrenador Deportivo, Escuela de Educación, Universidad Viña del Mar, Viña del Mar 2580022, Chile;
- Laboratorio de Evaluación y Prescripción de Ejercicio, Facultad de Ciencias de la Actividad Física y del Deporte, Universidad de Playa Ancha, Valparaíso 2340000, Chile
| | - Tomás Herrera-Valenzuela
- School of Physical Activity, Sports and Health Sciences, Faculty of Medical Sciences, Universidad de Santiago, Santiago 7591538, Chile;
| | - Marcelo Tuesta
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile;
- Laboratory of Sports Sciences, Sports Medicine Centre Sports MD, Viña del Mar 2580022, Chile
| | - Luis González-Rojas
- Centro Tratamiento de la Obesidad, Pontificia Universidad Católica de Chile, Santiago 8320165, Chile;
| | - Bibiana Calvo-Rico
- Facultad de Ciencias del Deporte, Universidad de Castilla-La Mancha (UCLM), 45071 Toledo, Spain; (B.C.-R.); (J.M.G.-G.)
| | - José Manuel García-García
- Facultad de Ciencias del Deporte, Universidad de Castilla-La Mancha (UCLM), 45071 Toledo, Spain; (B.C.-R.); (J.M.G.-G.)
| |
Collapse
|
10
|
Bessar H, Arebi N, El-Sayed M, Elkholy B. Combined micro-needling with topical metformin versus micro-needling with topical placebo in the treatment of melasma: a concurrent split-face study. Arch Dermatol Res 2024; 317:13. [PMID: 39537947 DOI: 10.1007/s00403-024-03449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Melasma is an acquired dysfunction of melanogenesis, that poses a major therapeutic challenge and tends to recur after therapy. Several combination therapies are being tested nowadays for the treatment of melasma, with promising results. Metformin, an anti-diabetic medication, seems to inhibit melanogenesis by different mechanisms. In addition, there has been a long-term improvement in melasma after microneedle therapy. To evaluate the potential therapeutic role of topical metformin combined with micro-needling for the treatment of melasma. Eighteen patients with melasma received treatment in split-face manner, right side with micro-needling and topical metformin, while the left side was treated with micro-needling and topical placebo for four sessions at 2-week intervals. Hemi-mMASI score was used for the final evaluation of results. The variability pattern in Hemi-mMASI score between both sides revealed significant reduction in the right side (micro-needling + metformin), as compared to the left side (micro-needling + placebo) (2.39 ± 1.42 vs 4.72 ± 1.27, p = 0.001). The effectiveness of topical metformin in the management of melasma could be significantly improved by pretreatment with micro-needling as a combined therapy, without any apparent side effects.
Collapse
Affiliation(s)
- Hagar Bessar
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt.
| | - N Arebi
- Department of Dermatology and Venereology, Gharyan University, Gharyan, Libya, Egypt
| | - M El-Sayed
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - B Elkholy
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| |
Collapse
|
11
|
Zhang Z, Yao L. Drug risks associated with sarcopenia: a real-world and GWAS study. BMC Pharmacol Toxicol 2024; 25:84. [PMID: 39511635 PMCID: PMC11542392 DOI: 10.1186/s40360-024-00813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Drug-induced sarcopenia has not received adequate attention. Meanwhile, there is growing recognition of the importance of effective pharmacovigilance in evaluating the benefits and risks of medications. AIMS The primary aim of this study is to investigate the potential association between drug use and sarcopenia through an analysis of adverse event reports from the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) and to evaluate the genetic factors contributing to drug-induced sarcopenia using summary-data-based Mendelian randomization (SMR). METHODS We obtained reports of adverse drug reactions from FAERS. Primary outcomes included sarcopenia and potential sarcopenia. We calculated the Proportional reporting ratio (PRR) to assess the risk of specific adverse events associated with various drugs, applying chi-square tests for statistical significance. Additionally, we used SMR based on Genome-wide association study (GWAS) to evaluate the potential associations between drug target genes of some significant medications and sarcopenia outcomes. The outcome data for sarcopenia included metrics as hand grip strength and appendicular lean mass (ALM). RESULTS A total of 55 drugs were identified as inducing potential sarcopenia, and 3 drugs were identified as inducing sarcopenia. The top 5 drugs causing a potential risk of sarcopenia were levofloxacin (PRR = 9.96, χ2 = 1057), pregabalin (PRR = 7.20, χ2 = 1023), atorvastatin (PRR = 4.68, χ2 = 903), duloxetine (PRR = 4.76, χ2 = 527) and venlafaxine (PRR = 5.56, χ2 = 504), and the 3 drugs that had been proved to induced sarcopenia included metformin (PRR = 7.41, χ2 = 58), aspirin (PRR = 5.93, χ2 = 35), and acetaminophen (PRR = 4.73, χ2 = 25). We identified electron-transfer flavoprotein dehydrogenase (ETFDH) and protein Kinase AMP-Activated Non-Catalytic Subunit Beta 1 (PRKAB1) as the primary drug target genes for metformin, while Prostaglandin-endoperoxide Synthase 1 (PTGS1) and Prostaglandin-endoperoxide Synthase 2 (PTGS2) were considered the primary action target genes for aspirin and acetaminophen according to DrugBank database. SMR showed that the expression abundance of ETFDH was negatively correlated with right hand grip strength (blood: OR = 1.01, p-value = 1.27e-02; muscle: OR = 1.01, p-value = 1.42e-02) and negatively correlated with appendicular lean mass (blood: OR = 1.03, p-value = 7.73e-08; muscle: OR = 1.03, p-value = 1.67e-07). CONCLUSIONS We find that metformin, aspirin, and acetaminophen are specifically noted for their potential to induce sarcopenia based on the analyses conducted. We perform signal mining for drug-associated sarcopenia events based on real-world data and provides certain guidance for the safe use of medications to prevent sarcopenia.
Collapse
Affiliation(s)
- Zhaoliang Zhang
- The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, China
| | - Liehui Yao
- The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, China.
| |
Collapse
|
12
|
Katlan B. Methylene Blue in Metformin Intoxication: Not Just Rescue But Also Initial Treatment. Pediatr Emerg Care 2024; 40:818-821. [PMID: 38471766 DOI: 10.1097/pec.0000000000003152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
ABSTRACT Metformin (MTF) is a widely used oral antidiabetic medication. Regardless the reason, high doses of MTF cause lactic acidosis as a result of its effects on mitochondrial ATP production and no-mediated vascular smooth muscle relaxation. Metformin-associated lactic acidosis can be life-threatening despite all treatments. Methylene blue (MB) has the potential to reverse the toxic effects of MTF through its effects on both the mitochondrial respiratory chain and nitric oxide production. The use of MB in MTF intoxication has only been reported in a limited number of cases. Herein, we present a 16-year-old female patient who attempted suicide by ingesting high doses of MTF. Supportive treatments, such as vasopressor, inotropic treatments, and sodium bicarbonate, were started in the patient who developed fluid-resistant hypotension after pediatric intensive care unit admission. Because of rising lactate levels, Continuous renal replacement therapy (CRRT) was started immediately. Despite all treatments, hypotension and hyperlactatemia persisted; MB was given as a rescue therapy. Noticeable hemodynamic improvement was observed within 30 minutes of initiating MB infusion, allowing a gradual decrease in the doses of inotropic infusions within the first hour of therapy. Patient's cardiovascular support was discontinued on the second day, and she was discharged on the fifth day. We speculate that, considering the mechanisms of MTF toxicity and the mechanisms of action of MB, it is suggested that early administration of MB, not only as a rescue treatment but as the initial approach to MTF poisoning in combination with other treatments, may result in improved outcomes.
Collapse
Affiliation(s)
- Banu Katlan
- From the Departmant of Intensive Care Medicine, Mersin City Training and Research Center, Mersini Turkey
| |
Collapse
|
13
|
Azzam AY, Nassar M, Al Zomia AS, Elswedy A, Morsy MM, Mohamed AA, Elamin O, Elsayed OS, Azab MA, Essibayi MA, Wu J, Dmytirw AA, Altschul DJ. Safety and Efficacy of Metformin for Idiopathic Intracranial Hypertension. A U.S-Based Real-World Data Retrospective Multicenter Cohort Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.01.24312907. [PMID: 39410963 PMCID: PMC11475866 DOI: 10.1101/2024.09.01.24312907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Introduction Idiopathic intracranial hypertension (IIH) remains a challenging condition to manage, with limited therapeutic options. This study investigated the potential of metformin as a novel treatment for IIH, exploring its effects on disease outcomes and safety profile. Methods We conducted a retrospective cohort study using the TriNetX database, analyzing data from 2009 to August 2024. Patients diagnosed with IIH were included, with exclusions for other causes of elevated intracranial pressure and pre-existing diabetes. Propensity score matching was employed to balance cohorts according to age, sex, race, ethnicity, Hemoglobin A1C, and baseline body mass index (BMI) at the time of metformin initiation. Outcomes were assessed at various follow-up points up to 24 months. Results Our study initially comprised 1,268 patients in the metformin group and 49,262 in the control group, with notable disparities in several parameters. Post-matching, both cohorts were refined to 1,267 patients each after matching with metformin group. Metformin-treated patients showed significantly lower risks of papilledema, headache, and refractory IIH status at all follow-up points (p<0.0001). The metformin group also had reduced rates of therapeutic spinal punctures and acetazolamide continuation. BMI reductions were more pronounced in the metformin group, with significant differences observed from 6 months onward (p<0.0001). Notably, metformin's beneficial effects persisted independently of BMI changes. The safety profile of metformin was favorable, with no significant differences in adverse events compared to the control group which did not receive metformin during the study timeframe. Conclusions Our study provides evidence for metformin's potential as a disease-modifying therapeutic approach in IIH, demonstrating improvements across multiple outcomes. The benefits appear to extend beyond weight loss, suggesting complex mechanisms of action. These findings warrant further investigation through prospective clinical trials to establish metformin's role in IIH management and explore its underlying therapeutic mechanisms.
Collapse
Affiliation(s)
- Ahmed Y. Azzam
- Montefiore-Einstein Cerebrovascular Research Lab, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mahmoud Nassar
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, New York, USA
| | | | - Adam Elswedy
- Faculty of Medicine, October 6 University, Giza, Egypt
| | | | | | - Osman Elamin
- Department of Neurosurgery, Jordan Hospital, Amman, Jordan
| | | | - Mohammed A. Azab
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Muhammed Amir Essibayi
- Montefiore-Einstein Cerebrovascular Research Lab, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurological Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jin Wu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam A. Dmytirw
- Neuroendovascular Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Neurovascular Centre, Divisions of Therapeutic Neuroradiology & Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - David J. Altschul
- Montefiore-Einstein Cerebrovascular Research Lab, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurological Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
14
|
Sahu P, Camarillo IG, Dettin M, Zamuner A, Teresa Conconi M, Barozzi M, Giri P, Sundararajan R, Sieni E. Electroporation enhances cell death in 3D scaffold-based MDA-MB-231 cells treated with metformin. Bioelectrochemistry 2024; 159:108734. [PMID: 38762949 DOI: 10.1016/j.bioelechem.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer lacks estrogen, progesterone, and HER2 receptors and hence, is therapeutically challenging. Towards this, we studied an alternate therapy by repurposing metformin (FDA-approved type-2 diabetic drug with anticancer properties) in a 3D-scaffold culture, with electrical pulses. 3D cell culture was used to simulate the tumor microenvironment more closely and MDA-MB-231, human TNBC cells, treated with both 5 mM metformin (Met) and 8 electrical pulses at 2500 V/cm, 10 µs (EP1) and 800 V/cm, 100 µs (EP2) at 1 Hz were studied in 3D and 2D. They were characterized using cell viability, reactive oxygen species (ROS), glucose uptake, and lactate production assays at 24 h. Cell viability, as low as 20 % was obtained with EP1 + 5 mM Met. They exhibited 1.65-fold lower cell viability than 2D with EP1 + 5 mM Met. ROS levels indicated a 2-fold increase in oxidative stress for EP1 + 5 mM Met, while the glucose uptake was limited to only 9 %. No significant change in the lactate production indicated glycolytic arrest and a non-conducive environment for MDA-MB-231 growth. Our results indicate that 3D cell culture, with a more realistic tumor environment that enhances cell death using metformin and electrical pulses could be a promising approach for TNBC therapeutic intervention studies.
Collapse
Affiliation(s)
- Praveen Sahu
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Ignacio G Camarillo
- Deptartment of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Padova 35122, Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, Padova 35122, Italy; Department of Civil, Environmental, and Architectural Engineering, University of Padova, Italy
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Marco Barozzi
- Department of Theoretical and Applied Sciences, University of Insubria, Varese 21100, Italy
| | - Pragatheiswar Giri
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Raji Sundararajan
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Elisabetta Sieni
- Department of Theoretical and Applied Sciences, University of Insubria, Varese 21100, Italy.
| |
Collapse
|
15
|
Vázquez-Ibarra KC, Sánchez López JY, Pineda Razo TD, Cruz Lozano JR, Ortiz-Tamayo BG, Palafox-Mariscal LA, González Arreola RM, González-García JR, Ortiz-Lazareno PC. Metformin in combination with chemotherapy increases apoptosis in gastric cancer cells and counteracts senescence induced by chemotherapy. Oncol Lett 2024; 28:457. [PMID: 39114572 PMCID: PMC11304395 DOI: 10.3892/ol.2024.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer death in the world, and there is a demand for new therapeutic agents to treat GC. Metformin has been demonstrated to be an antineoplastic agent in some types of cancer; however, it has not been sufficiently valued in treating GC because the effect of metformin in combination with chemotherapy regimens has not yet been evaluated. The present study aimed to evaluate the mechanisms underlying cell death induced by metformin alone or when combined with chemotherapy. The cytogenetic characteristics of the NCI-N87 cell line were determined by fluorescence in situ hybridization (FISH). To determine viability, the cells were treated with metformin, epirubicin, cisplatin, docetaxel and 5-fluorouracil (individually and at different concentrations). Subsequently, the cells were treated with metformin alone, and in combination with the chemotherapeutic drugs and the epirubicin + cisplatin + 5-fluorouracil, docetaxel + cisplatin + 5-fluorouracil, and cisplatin + 5-fluorouracil regimens. Cell viability, proliferation and mitochondrial membrane potential (ΔΨm) were analyzed by spectrophotometry. Apoptosis, caspase activity and cell cycle progression were assessed by flow cytometry. Finally, light microscopy was used to evaluate senescence and clonogenicity. The results revealed that metformin, alone and when combined with chemotherapy, increased the proportion of apoptotic cells, promoted the loss of ΔΨm, and induced apoptosis through caspase activity in GC cells. Moreover, metformin decreased cell proliferation. In addition, metformin alone did not induce senescence and it counteracted the effects of chemotherapy-induced senescence in GC cells. Additionally, metformin, alone and when combined with chemotherapy, decreased the clonogenic capacity of NCI-N87 GC cells. In conclusion, metformin may increase the effects of chemotherapy on NCI-N87 cell death and could represent an option to improve the treatment of GC.
Collapse
Affiliation(s)
- Katia Carolina Vázquez-Ibarra
- Department of Molecular Biology and Genomics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Josefina Yoaly Sánchez López
- Genetic Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco, 44340, Mexico
| | - Tomás Daniel Pineda Razo
- Medical Oncology Service, Western National Medical Center, Mexican Social Security Institute, Guadalajara, Jalisco 44329, Mexico
| | - José Roberto Cruz Lozano
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Brenda Guadalupe Ortiz-Tamayo
- Division of Biological and Environmental Sciences, University Center of Biological and Agricultural Sciences, University of Guadalajara, Guadalajara, Jalisco 44600, Mexico
| | - Luis Arturo Palafox-Mariscal
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Rosa María González Arreola
- Department of Molecular Biology and Genomics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Juan Ramón González-García
- Genetic Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco, 44340, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
16
|
Moore LG, Lorca RA, Gumina DL, Wesolowski SR, Reisz JA, Cioffi-Ragan D, Houck JA, Banerji S, Euser AG, D'Alessandro A, Hobbins JC, Julian CG. Maternal AMPK pathway activation with uterine artery blood flow and fetal growth maintenance during hypoxia. Am J Physiol Heart Circ Physiol 2024; 327:H778-H792. [PMID: 39028630 PMCID: PMC11482288 DOI: 10.1152/ajpheart.00193.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
High-altitude (HA) hypoxia lowers uterine artery (UtA) blood flow during pregnancy and birth weight. Adenosine monophosphate kinase (AMPK) activation has selective, uteroplacental vasodilator effects that lessen hypoxia-associated birth weight reductions. In this study, we determined the relationship between AMPK-pathway gene expression and metabolites in the maternal circulation during HA pregnancy as well as with the maintenance of UtA blood flow and birth weight at HA. Residents at HA (2,793 m) versus low altitude (LA; 1,640 m) had smaller UtA diameters at weeks 20 and 34, lower UtA blood flow at week 20, and lower birth weight babies. At week 34, women residing at HA versus women residing at LA had decreased expression of upstream and downstream AMPK-pathway genes. Expression of the α1-AMPK catalytic subunit, PRKAA1, correlated positively with UtA diameter and blood flow at weeks 20 (HA) and 34 (LA). Downstream AMPK-pathway gene expression positively correlated with week 20 fetal biometry at both altitudes and with UtA diameter and birth weight at LA. Reduced gene expression of AMPK activators and downstream targets in women residing at HA versus women residing at LA, together with positive correlations between PRKAA1 gene expression, UtA diameter, and blood flow suggest that greater sensitivity to AMPK activation at midgestation at HA may help offset later depressant effects of hypoxia on fetal growth.NEW & NOTEWORTHY Fetal growth restriction (FGR) is increased and uterine artery (UtA) blood flow is lower at high altitudes (HA) but not all HA pregnancies have FGR. Here we show that greater UtA diameter and blood flow at week 20 are positively correlated with higher expression of the gene encoding the α1-catalytic subunit of AMP protein kinase, PRKAA1, suggesting that increased AMPK activation may help to prevent the detrimental effects of chronic hypoxia on fetal growth.
Collapse
Affiliation(s)
- Lorna G Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Ramón A Lorca
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Diane L Gumina
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- The University of Colorado John C. Hobbins Perinatal Center, Denver, Colorado, United States
| | - Stephanie R Wesolowski
- Division of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Darleen Cioffi-Ragan
- The University of Colorado John C. Hobbins Perinatal Center, Denver, Colorado, United States
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Julie A Houck
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sarah Banerji
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Anna G Euser
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - John C Hobbins
- The University of Colorado John C. Hobbins Perinatal Center, Denver, Colorado, United States
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Colleen G Julian
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
17
|
Cheng Y, Zhao M, Zhu C, Tang X, Wang W, Tang H, Zheng X, Zhu Z, Sheng Y, Wang Z, Zhou F, Gao J. Proteomic Analysis Reveals Oxidative Phosphorylation and JAK-STAT Pathways Mediated Pathogenesis of Pemphigus Vulgaris. Exp Dermatol 2024; 33:e15184. [PMID: 39373252 DOI: 10.1111/exd.15184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
Pemphigus vulgaris (PV) stands as a rare autoimmune bullous disease, while the precise underlying mechanism remains incompletely elucidated. High-throughput proteomic methodologies, such as LC-MS/MS, have facilitated the quantification and characterisation of proteomes from clinical skin samples, enhancing our comprehension of PV pathogenesis. The objective of this study is to elucidate the signalling mechanisms underlying PV through proteomic analysis. Proteins and cell suspension were extracted from skin biopsies obtained from both PV patients and healthy volunteers and subsequently analysed using LC-MS/MS and scRNA-seq. Cultured keratinocytes were treated with PV serum, followed by an assessment of protein expression levels using immunofluorescence and western blotting. A total of 880, 605, and 586 differentially expressed proteins (DEPs) were identified between the lesion vs. control, non-lesion vs. control, and lesion vs. non-lesion groups, respectively. The oxidative phosphorylation (OXPHOS) pathway showed activation in PV. Keratinocytes are the major cell population in the epidermis and highly expressed ATP5PF, ATP6V1G1, COX6B1, COX6A1, and NDUFA9. In the cellular model, there was a notable increase in the expression levels of OXPHOS-related proteins (V-ATP5A, III-UQCRC2, II-SDHB, I-NDUFB8), along with STAT1, p-STAT1, and p-JAK1. Furthermore, both the OXPHOS inhibitor metformin and the JAK1 inhibitor tofacitinib demonstrated therapeutic effects on PV serum-induced cell separation, attenuating cell detachment. Metformin notably reduced the expression of V-ATP5A, III-UQCRC2, II-SDHB, I-NDUFB8, p-STAT1, p-JAK1, whereas tofacitinib decreased the expression of p-STAT1 and p-JAK1, with minimal impact on the expression of V-ATP5A, III-UQCRC2, II-SDHB, and I-NDUFB8. Our results indicate a potential involvement of the OXPHOS and JAK-STAT1 pathways in the pathogenesis of PV.
Collapse
Affiliation(s)
- Yuqi Cheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Mingming Zhao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - CaiHong Zhu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Xianfa Tang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Wenjun Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Huayang Tang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Xiaodong Zheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Zhengwei Zhu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Yujun Sheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Zaixing Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Jinping Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
18
|
Berkel C. Inducers and Inhibitors of Pyroptotic Death of Granulosa Cells in Models of Premature Ovarian Insufficiency and Polycystic Ovary Syndrome. Reprod Sci 2024; 31:2972-2992. [PMID: 39026050 PMCID: PMC11438836 DOI: 10.1007/s43032-024-01643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Granulosa cells (GCs), the largest cell population and primary source of steroid hormones in the ovary, are the important somatic ovarian components. They have critical roles in folliculogenesis by supporting oocyte, facilitating its growth, and providing a microenvironment suitable for follicular development and oocyte maturation, thus having essential functions in maintaining female fertility and in reproductive health in general. Pyroptotic death of GCs and associated inflammation have been implicated in the pathogenesis of several reproductive disorders in females including Premature Ovarian Insufficiency (POI) and Polycystic Ovary Syndrome (PCOS). Here, I reviewed factors, either intrinsic or extrinsic, that induce or inhibit pyroptosis in GCs in various models of these disorders, both in vitro and in vivo, and also covered associated molecular mechanisms. Most of these studied factors influence NLRP3 inflammasome- and GSDMD (Gasdermin D)-mediated pyroptosis in GCs, compared to other inflammasomes and gasdermins (GSDMs). I conclude that a more complete mechanistic understanding of these factors in terms of GC pyroptosis is required to be able to develop novel strategies targeting inflammatory cell death in the ovary.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Türkiye.
| |
Collapse
|
19
|
Yang J, Zhuang C, Lin Y, Yu Y, Zhou C, Zhang C, Zhu Z, Qian C, Zhou Y, Zheng W, Zhao Y, Jin C, Wu Z. Orientin promotes diabetic wounds healing by suppressing ferroptosis via activation of the Nrf2/GPX4 pathway. Food Sci Nutr 2024; 12:7461-7480. [PMID: 39479645 PMCID: PMC11521705 DOI: 10.1002/fsn3.4360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 11/02/2024] Open
Abstract
Diabetic patients often experience delayed wound healing due to impaired functioning of human umbilical vein endothelial cells (HUVECs) under high glucose (HG) conditions. This is because HG conditions trigger uncontrolled lipid peroxidation, leading to iron-dependent ferroptosis, which is caused by glucolipotoxicity. However, natural flavonoid compound Orientin (Ori) possesses anti-inflammatory bioactive properties and is a promising treatment for a range of diseases. The current study aimed to investigate the function and mechanism of Ori in HG-mediated ferroptosis. A diabetic wound model was established in mice by intraperitoneal injection of streptozotocin (STZ), and HUVECs were cultured under HG to create an in vitro diabetic environment. The results demonstrated that Ori inhibited HG-mediated ferroptosis, reducing levels of malondialdehyde (MDA), lipid peroxidation, and mitochondrial reactive oxygen species (mtROS), while increasing decreased levels of malondialdehyde, lipid peroxidation, and mitochondrial reactive oxygen species, as well as increased levels of glutathione (GSH). Ori treatment also improved the wound expression of glutathione peroxidase 4 (GPX4) and angiogenesis markers, reversing the delayed wound healing caused by diabetes mellitus (DM). Additional investigations into the mechanism revealed that Ori may stimulate the nuclear factor-erythroid 2-related factor 2 (Nrf2)/GPX4 signaling pathway. Silencing Nrf2 in HG-cultured HUVECs negated the beneficial impact mediated by Ori. By stimulating the Nrf2/GPX4 signaling pathway, Ori may expedite diabetic wound healing by decreasing ferroptosis.
Collapse
Affiliation(s)
- Jia‐yi Yang
- Department of GynaecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Third Peoples Hospital of Ouhai DistrictWenzhouZhejiangChina
| | - Chen Zhuang
- Alberta Institute, Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Yu‐zhe Lin
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Yi‐tian Yu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The First School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Chen‐cheng Zhou
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Chao‐yang Zhang
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zi‐teng Zhu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Cheng‐jie Qian
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Yi‐nan Zhou
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wen‐hao Zheng
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Yu Zhao
- Department of GynaecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Chen Jin
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Zong‐yi Wu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| |
Collapse
|
20
|
Datta S, Pasham S, Inavolu S, Boini KM, Koka S. Role of Gut Microbial Metabolites in Cardiovascular Diseases-Current Insights and the Road Ahead. Int J Mol Sci 2024; 25:10208. [PMID: 39337693 PMCID: PMC11432476 DOI: 10.3390/ijms251810208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature morbidity and mortality globally. The identification of novel risk factors contributing to CVD onset and progression has enabled an improved understanding of CVD pathophysiology. In addition to the conventional risk factors like high blood pressure, diabetes, obesity and smoking, the role of gut microbiome and intestinal microbe-derived metabolites in maintaining cardiovascular health has gained recent attention in the field of CVD pathophysiology. The human gastrointestinal tract caters to a highly diverse spectrum of microbes recognized as the gut microbiota, which are central to several physiologically significant cascades such as metabolism, nutrient absorption, and energy balance. The manipulation of the gut microbial subtleties potentially contributes to CVD, inflammation, neurodegeneration, obesity, and diabetic onset. The existing paradigm of studies suggests that the disruption of the gut microbial dynamics contributes towards CVD incidence. However, the exact mechanistic understanding of such a correlation from a signaling perspective remains elusive. This review has focused upon an in-depth characterization of gut microbial metabolites and their role in varied pathophysiological conditions, and highlights the potential molecular and signaling mechanisms governing the gut microbial metabolites in CVDs. In addition, it summarizes the existing courses of therapy in modulating the gut microbiome and its metabolites, limitations and scientific gaps in our current understanding, as well as future directions of studies involving the modulation of the gut microbiome and its metabolites, which can be undertaken to develop CVD-associated treatment options. Clarity in the understanding of the molecular interaction(s) and associations governing the gut microbiome and CVD shall potentially enable the development of novel druggable targets to ameliorate CVD in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sriram Inavolu
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| |
Collapse
|
21
|
Romeo P, D’Anna R, Corrado F. Myoinositol and Metformin in the Prevention of Gestational Diabetes in High-Risk Patients: A Narrative Review. J Clin Med 2024; 13:5387. [PMID: 39336874 PMCID: PMC11432226 DOI: 10.3390/jcm13185387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Our hypothesis is that myoinositol and metformin in pregnant women with high-risk factors for glucose intolerance would reduce insulin resistance and consequently lower the incidence of gestational diabetes mellitus (GDM), a metabolic disorder of pregnancy characterized by maternal hyperglycemia due to deficient response to physiological insulin resistance, which may have a negative impact on perinatal outcome and long-term sequelae. In recent years, this pathology has become increasingly important given the global obesity epidemic and the delay in becoming pregnant, especially in industrialized countries. For this reason, the attempt to prevent, rather than cure, gestational diabetes is particularly important. In addition to lifestyle changes (especially diet and doing more exercise), myoinositol and metformin are the most promising factors at the moment, although not all RCTs published so far agree on their real effectiveness. A review of the articles published so far allows us to assume, albeit with some distinctions, that they can play a positive role.
Collapse
Affiliation(s)
| | | | - Francesco Corrado
- Obstetrics and Gynecology Unit, Department of Human Pathology, University of Messina (Italy), Via Consolare Valeria, 1, 98125 Messina, Italy; (P.R.)
| |
Collapse
|
22
|
Takemori S, Morisada T, Osaka M, Watanabe M, Tajima A, Tanigaki S, Kobayashi Y. Assessing the antitumor effects of metformin on ovarian clear cell carcinoma. Hum Cell 2024; 37:1462-1474. [PMID: 39115639 DOI: 10.1007/s13577-024-01116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Developing novel therapies that outperform the existing chemotherapeutic treatments is required for treatment-resistant ovarian clear cell carcinoma. We investigated the antitumor effect of metformin on ovarian clear cell carcinoma, enhancement of the antitumor effect by its combination with chemotherapy, and its molecular regulatory mechanism. First, we evaluated the viability of ovarian clear cell carcinoma lines using the water-soluble tetrazolium-1 assay and found that metformin suppressed cell viability. Cell viability was significantly suppressed by co-treatment with cisplatin and metformin. In contrast, co-treatment with paclitaxel and metformin showed no significant difference in viability compared with the group without metformin. Western blot analysis showed increased phosphorylation of AMP-activated protein kinase in some cell lines and suppressed phosphorylation of the mammalian target of rapamycin in a particular cell line. Flow cytometry analysis revealed a significant increase in the rate of apoptosis in the metformin-treated group and rate of cell cycle arrest at the G2/M phase in a particular cell line. These results indicated that metformin may be effective against cultured ovarian clear cell carcinoma cells, particularly in combination with cisplatin.
Collapse
Affiliation(s)
- Satoshi Takemori
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Tohru Morisada
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Makoto Osaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Momoe Watanabe
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Atsushi Tajima
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Shinji Tanigaki
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Yoichi Kobayashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| |
Collapse
|
23
|
Suresh A, Balakrishnan A, Ramaswamy V, Natesan S. Analytical method development and validation for simultaneous estimation of Bempedoic acid and Ezetimibe in pure and its pharmaceutical dosage form by RP-HPLC. Biomed Chromatogr 2024; 38:e5938. [PMID: 38922950 DOI: 10.1002/bmc.5938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/17/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
A simple, accurate and precise method was developed for the simultaneous estimation of the bempedoic acid and ezetimibe in pure and tablet dosage form. The developed method was validated as per International Conference on Harmonization guidelines. The chromatographic separation was achieved isocratically on a Waters- C18, 250 × 4.6 mm, 5 μm column. Mobile phase containing K2HPO4-methanol in the ratio 60:40 in buffer at pH 4.3 was pumped through column at a flow rate of 1.0 ml/min. The temperature was maintained at 25°C. The optimized wavelength selected was 242 nm. The separation of bempedoic acid and ezetimibe showed retention times of 3.090 and 4.268 min respectively. The RSD values of the bempedoic acid and ezetimibe were 0.34 and 0.08 respectively. The accuracy of method was determined at three levels (50,100 and 150%). The percentage recovery was obtained as 100.0 and 100.0% for bempedoic acid and ezetimibe, respectively. The limits of determination and quantitation obtained from regression equations of bempedoic acid and ezetimibe were 1.065, 3.550 and 0.203, 0.677, respectively. The regression equation of bempedoic acid is y = 20,795x + 24,168, and it is y = 6,885.7x + 11,000 for ezetimibe. The retention times were decreased and the run time was decreased, so that the method developed is simple and economical that can be adopted for regular quality control tests in industry.
Collapse
Affiliation(s)
- Aakash Suresh
- Department of Pharmaceutical Analysis, JKKMMRFs-Annai JKK Sampoorani Ammal College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Namakkal, Tamil Nadu, India
| | - Anbarasi Balakrishnan
- Department of Pharmaceutical Analysis, JKKMMRFs-Annai JKK Sampoorani Ammal College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Namakkal, Tamil Nadu, India
| | - Vijayamirtharaj Ramaswamy
- Department of Pharmaceutical Analysis, JKKMMRFs-Annai JKK Sampoorani Ammal College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Namakkal, Tamil Nadu, India
| | - Senthilkumar Natesan
- Department of Pharmaceutical Analysis, JKKMMRFs-Annai JKK Sampoorani Ammal College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Namakkal, Tamil Nadu, India
| |
Collapse
|
24
|
Hajimohammadebrahim-Ketabforoush M, Zali A, Shahmohammadi M, Hamidieh AA. Metformin and its potential influence on cell fate decision between apoptosis and senescence in cancer, with a special emphasis on glioblastoma. Front Oncol 2024; 14:1455492. [PMID: 39267853 PMCID: PMC11390356 DOI: 10.3389/fonc.2024.1455492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Despite reaching enormous achievements in therapeutic approaches worldwide, GBM still remains the most incurable malignancy among various cancers. It emphasizes the necessity of adjuvant therapies from the perspectives of both patients and healthcare providers. Therefore, most emerging studies have focused on various complementary and adjuvant therapies. Among them, metabolic therapy has received special attention, and metformin has been considered as a treatment in various types of cancer, including GBM. It is clearly evident that reaching efficient approaches without a comprehensive evaluation of the key mechanisms is not possible. Among the studied mechanisms, one of the more challenging ones is the effect of metformin on apoptosis and senescence. Moreover, metformin is well known as an insulin sensitizer. However, if insulin signaling is facilitated in the tumor microenvironment, it may result in tumor growth. Therefore, to partially resolve some paradoxical issues, we conducted a narrative review of related studies to address the following questions as comprehensively as possible: 1) Does the improvement of cellular insulin function resulting from metformin have detrimental or beneficial effects on GBM cells? 2) If these effects are detrimental to GBM cells, which is more important: apoptosis or senescence? 3) What determines the cellular decision between apoptosis and senescence?
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Toppila M, Ranta-Aho S, Kaarniranta K, Hytti M, Kauppinen A. Metformin Alleviates Inflammation and Induces Mitophagy in Human Retinal Pigment Epithelium Cells Suffering from Mitochondrial Damage. Cells 2024; 13:1433. [PMID: 39273005 PMCID: PMC11394619 DOI: 10.3390/cells13171433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondrial malfunction, excessive production of reactive oxygen species (ROS), deficient autophagy/mitophagy, and chronic inflammation are hallmarks of age-related macular degeneration (AMD). Metformin has been shown to activate mitophagy, alleviate inflammation, and lower the odds of developing AMD. Here, we explored the ability of metformin to activate mitophagy and alleviate inflammation in retinal pigment epithelium (RPE) cells. Human ARPE-19 cells were pre-treated with metformin for 1 h prior to exposure to antimycin A (10 µM), which induced mitochondrial damage. Cell viability, ROS production, and inflammatory cytokine production were measured, while autophagy/mitophagy proteins were studied using Western blotting and immunocytochemistry. Metformin pre-treatment reduced the levels of proinflammatory cytokines IL-6 and IL-8 to 42% and 65% compared to ARPE-19 cells exposed to antimycin A alone. Metformin reduced the accumulation of the autophagy substrate SQSTM1/p62 (43.9%) and the levels of LC3 I and II (51.6% and 48.6%, respectively) after antimycin A exposure. Metformin also increased the colocalization of LC3 with TOM20 1.5-fold, suggesting active mitophagy. Antimycin A exposure increased the production of mitochondrial ROS (226%), which was reduced by the metformin pre-treatment (84.5%). Collectively, metformin showed anti-inflammatory and antioxidative potential with mitophagy induction in human RPE cells suffering from mitochondrial damage.
Collapse
Affiliation(s)
- Maija Toppila
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Sofia Ranta-Aho
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
26
|
Sirtori CR, Castiglione S, Pavanello C. METFORMIN: FROM DIABETES TO CANCER TO PROLONGATION OF LIFE. Pharmacol Res 2024; 208:107367. [PMID: 39191336 DOI: 10.1016/j.phrs.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The metformin molecule dates back to over a century, but its clinical use started in the '50s. Since then, its use in diabetics has grown constantly, with over 150 million users today. The therapeutic profile also expanded, with improved understanding of novel mechanisms. Metformin has a major activity on insulin resistance, by acting on the insulin receptors and mitochondria, most likely by activation of the adenosine monophosphate-activated kinase. These and associated mechanisms lead to significant lipid lowering and body weight loss. An anti-cancer action has come up in recent years, with mechanisms partly dependent on the mitochondrial activity and also on phosphatidylinositol 3-kinase resistance occurring in some malignant tumors. The potential of metformin to raise life-length is the object of large ongoing studies and of several basic and clinical investigations. The present review article will attempt to investigate the basic mechanisms behind these diverse activities and the potential clinical benefits. Metformin may act on transcriptional activity by histone modification, DNA methylation and miRNAs. An activity on age-associated inflammation (inflammaging) may occur via activation of the nuclear factor erythroid 2 related factor and changes in gut microbiota. A senolytic activity, leading to reduction of cells with the senescent associated secretory phenotype, may be crucial in lifespan prolongation as well as in ancillary properties in age-associated diseases, such as Parkinson's disease. Telomere prolongation may be related to the activity on mitochondrial respiratory factor 1 and on peroxisome gamma proliferator coactivator 1-alpha. Very recent observations on the potential to act on the most severe neurological disorders, such as amyotrophic lateral sclerosis and frontotemporal dementia, have raised considerable hope.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Sofia Castiglione
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Pavanello
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
27
|
Pi M, Agarwal R, Smith MD, Smith JC, Quarles LD. GPRC6A is a Potential Therapeutic Target for Metformin Regulation of Glucose Homeostasis in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608635. [PMID: 39229180 PMCID: PMC11370357 DOI: 10.1101/2024.08.19.608635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Understanding the mechanism of metformin actions in treating type 2 diabetes is limited by an incomplete knowledge of the specific protein targets mediating its metabolic effects. Metformin has structural similarities to L-Arginine (2-amino-5-guanidinopentanoic acid), which is a ligand for GPRC6A, a Family C G-protein coupled receptor that regulates energy metabolism. Ligand activation of GPRC6A results in lowering of blood glucose and other metabolic changes resembling the therapeutic effect of metformin. In the current study, we tested if metformin activates GPRC6A. We used Alphafold2 to develop a structural model for L-Arginine (L-Arg) binding to the extracellu-lar bilobed venus flytrap domain (VFT) of GPRC6A. We found that metformin docked to the site in the VFT that overlaps the binding site for L-Arg. Metformin resulted in a dose-dependent stimulation of GPRC6A activity in HEK-293 cells transfected with full-length wild-type GPRC6A but not in untransfected control cells. In addition, metformin failed to activate an alternatively spliced GPRC6A isoform lacking the putative binding site in the VFT. More specifically, mutation of the predicted metformin key binding residues Glu170 and Asp303 in the GPRC6A VFT resulted in loss of metformin receptor activation in vitro. The in vivo role of GPRC6A in mediating the effects of metformin was tested in Gprc6a-/- mice. Administration of therapeutic doses of metformin lowered blood glucose levels following a glucose tolerance test in wild-type but not Gprc6a-/- mice. Finally, we EN300, created by adding a carboxymethyl group from L-Arg to the biguanide backbone of metformin. EN300 showed dose-dependent stimulation of GPRC6A activity in vitro with greater potency than L-Arginine, but less than metformin. Thus, we suggest that GPRC6A is a potential molecular target for metformin which may be used to understand the therapeutic actions of metformin and develop novel small molecules to treat T2D.
Collapse
Affiliation(s)
- Min Pi
- Departments of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Rupesh Agarwal
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, Tennessee 37830
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Micholas Dean Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, Tennessee 37830
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Jeremy C. Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, Tennessee 37830
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - L. Darryl Quarles
- Departments of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
- Oak Ridge Therapeutic Discovery, LLC, Memphis, Tennessee 38137
| |
Collapse
|
28
|
Nizamani M, Zaheer Uddin M, Nagdev C, Ahmed N, Raza A. Comparative efficacy of metformin combined with cabergoline versus metformin alone in patients with PCOS and hyperprolactinemia: A systematic review and meta-analysis of randomized controlled trials. Eur J Obstet Gynecol Reprod Biol 2024; 299:289-295. [PMID: 38945085 DOI: 10.1016/j.ejogrb.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Isntroduction. Polycystic ovary syndrome (PCOS) is a multifaceted endocrine-gynecological condition affecting a substantial number of women during their reproductive years. Metformin (MET) has been shown to improve ovarian function in PCOS-related conditions, while cabergoline is recognized for its powerful and sustained ability to reduce prolactin levels. This study investigates the potential impact of combining cabergoline with metformin while comparing it with metformin alone in the treatment of PCOS alongside hyperprolactinemia. METHOD To gather data, we searched PubMed, Google Scholar, ScienceDirect, and Cochrane Central. Eligible studies were randomized controlled trials involving patients with PCOS and hyperprolactinemia. Outcome measures included changes in the levels of prolactin, testosterone, DHEAS, BMI and menstrual irregularities. RevMan version 5.4 was used to analyze outcomes. RESULT This study incorporated three Randomized Controlled Trials (RCTs) involving 405 participants in total. Patients receiving a combination of metformin and cabergoline experienced significant reductions in prolactin and testosterone levels (p= <0.0001 and p=<0.0001, respectively). Conversely, alterations in DHEAS levels and BMI did not reach statistical significance (p = 0.19 and p = 0.71, respectively). Notably, women solely prescribed metformin exhibited significantly higher rates of menstrual irregularities compared to those receiving both metformin and cabergoline (p=<0.0001). CONCLUSION Our analysis underscores the synergistic effect achieved by pairing metformin and cabergoline in patients with PCOS and hyperprolactinemia. However, we encountered only a restricted number of studies meeting our criteria. It is imperative to consistently assess the combined effects of metformin and cabergoline to gain deeper insights into their effectiveness in addressing PCOS and hyperprolactinemia.
Collapse
Affiliation(s)
| | | | | | | | - Alisha Raza
- Multan Medical and Dental College, Multan, Pakistan
| |
Collapse
|
29
|
Al Zoubi MS, Al Kreasha R, Aqel S, Saeed A, Al-Qudimat AR, Al-Zoubi RM. Vitamin B 12 deficiency in diabetic patients treated with metformin: A narrative review. Ir J Med Sci 2024; 193:1827-1835. [PMID: 38381379 PMCID: PMC11294377 DOI: 10.1007/s11845-024-03634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Metformin is the most prescribed oral hypoglycemic drug and is considered by many health practitioners as the first-line treatment for non-insulin-dependent diabetes mellitus (T2DM). It is used either as a monotherapy or adjuvant to other anti-hyperglycemic agents. Most of its side effects are usually mild and self-limiting. However, several studies have shown an association between the use of metformin and low vitamin B12 levels in diabetic patients. The current review aimed to provide a literature review of the current published reports on the association, the possible mechanisms, and the related individualized risk factors that might lead to this incidence. The most accepted mechanism of the effect of metformin on vitamin B12 level is related to the absorption process where metformin antagonism of the calcium cation and interference with the calcium-dependent IF-vitamin B12 complex binding to the ileal cubilin receptor. In addition, many risk factors have been associated with the impact of metformin on vitamin B12 levels in diabetic patients such as dose and duration where longer durations showed a greater prevalence of developing vitamin B12 deficiency. Male patients showed lower levels of vitamin B12 compared to females. Black race showed a lower prevalence of vitamin B12 deficiency in metformin-treated patients. Moreover, chronic diseases including T2DM, hyperlipidemia, coronary artery disease, polycystic ovary disease (PCOD), obesity, and metformin therapy were significantly associated with increased risk of vitamin B12 deficiency.
Collapse
Affiliation(s)
- Mazhar Salim Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Rasha Al Kreasha
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Sarah Aqel
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Ahmad Saeed
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Ahmad R Al-Qudimat
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, 3050, Doha, Qatar
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, 3050, Doha, Qatar.
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha, 2713, Qatar.
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan.
| |
Collapse
|
30
|
Lee IY, Wang TC, Kuo YJ, Shih WT, Yang PR, Hsu CM, Lin YS, Kuo RS, Wu CY. Astragalus Polysaccharides and Metformin May Have Synergistic Effects on the Apoptosis and Ferroptosis of Lung Adenocarcinoma A549 Cells. Curr Issues Mol Biol 2024; 46:7782-7794. [PMID: 39194678 DOI: 10.3390/cimb46080461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Astragalus polysaccharides (APSs), the compounds extracted from the common herb Astragalus membranaceus, have been extensively studied for their antitumor properties. In this study, we investigated the effect of APS on lung adenocarcinoma A549 cells. The effects of APS and the anti-diabetic drug metformin on apoptosis and ferroptosis were compared. Furthermore, the combination treatment of APS and metformin was also investigated. We found that APS not only reduced the growth of lung cancer cells but also had a synergistic effect with metformin on A549 cells. The study results showed that it may be promising to use APS and metformin as a combination therapy for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- I-Yun Lee
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Chung Wang
- Department of Neurosurgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yu-Jen Kuo
- Department of Neurosurgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Wei-Tai Shih
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pei-Rung Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Cancer Center, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Institute of Molecular Biology, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Ren-Shyang Kuo
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
31
|
Pliszka M, Szablewski L. Associations between Diabetes Mellitus and Selected Cancers. Int J Mol Sci 2024; 25:7476. [PMID: 39000583 PMCID: PMC11242587 DOI: 10.3390/ijms25137476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer is one of the major causes of mortality and is the second leading cause of death. Diabetes mellitus is a serious and growing problem worldwide, and its prevalence continues to grow; it is the 12th leading cause of death. An association between diabetes mellitus and cancer has been suggested for more than 100 years. Diabetes is a common disease diagnosed among patients with cancer, and evidence indicates that approximately 8-18% of patients with cancer have diabetes, with investigations suggesting an association between diabetes and some particular cancers, increasing the risk for developing cancers such as pancreatic, liver, colon, breast, stomach, and a few others. Breast and colorectal cancers have increased from 20% to 30% and there is a 97% increased risk of intrahepatic cholangiocarcinoma or endometrial cancer. On the other hand, a number of cancers and cancer therapies increase the risk of diabetes mellitus. Complications due to diabetes in patients with cancer may influence the choice of cancer therapy. Unfortunately, the mechanisms of the associations between diabetes mellitus and cancer are still unknown. The aim of this review is to summarize the association of diabetes mellitus with selected cancers and update the evidence on the underlying mechanisms of this association.
Collapse
Affiliation(s)
- Monika Pliszka
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| |
Collapse
|
32
|
Yang X, Tian S, Min Z, Garbarino E, Ma J, Jia J, Tang H, Li L. AMPK restricts HHV-6A replication by inhibiting glycolysis and mTOR signaling. Virology 2024; 595:110080. [PMID: 38631099 DOI: 10.1016/j.virol.2024.110080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor regulating metabolic homeostasis. In this study, we investigated the role of AMPK in response to human herpesvirus 6A (HHV-6A) infection. We show that HHV-6A infection significantly downregulates the active phosphorylated state of AMPK in infected T cells. Pharmacological activation of AMPK highly attenuated HHV-6A propagation. Mechanistically, we found that the activation of AMPK by AICAR blocked HHV-6-induced glycolysis by inhibiting glucose metabolism and lactate secretion, as well as decreasing expressions of key glucose transporters and glycolytic enzymes. In addition, mTOR signaling has been inactivated in HHV-6A infected T cells by AICAR treatment. We also showed that HHV-6A infection of human umbilical cord blood mononuclear cells (CBMCs) reduced AMPK activity whereas the activation of AMPK by metformin drastically reduced HHV-6A DNA replication and virions production. Taken together, this study demonstrates that AMPK is a promising antiviral therapeutic target against HHV-6A infection.
Collapse
Affiliation(s)
- Xiaodi Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Siyu Tian
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zhujiang Min
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Emanuela Garbarino
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jingjing Ma
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Junli Jia
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huamin Tang
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Lingyun Li
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
33
|
Protic D, Hagerman R. State-of-the-art therapies for fragile X syndrome. Dev Med Child Neurol 2024; 66:863-871. [PMID: 38385885 PMCID: PMC11144093 DOI: 10.1111/dmcn.15885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a full mutation (> 200 CGG repeats) in the FMR1 gene. FXS is the leading cause of inherited intellectual disabilities and the most commonly known genetic cause of autism spectrum disorder. Children with FXS experience behavioral and sleep problems, anxiety, inattention, learning difficulties, and speech and language delays. There are no approved medications for FXS; however, there are several interventions and treatments aimed at managing the symptoms and improving the quality of life of individuals with FXS. A combination of non-pharmacological therapies and pharmacotherapy is currently the most effective treatment for FXS. Currently, several targeted treatments, such as metformin, sertraline, and cannabidiol, can be used by clinicians to treat FXS. Gene therapy is rapidly developing and holds potential as a prospective treatment option. Soon its efficacy and safety in patients with FXS will be demonstrated. WHAT THIS PAPER ADDS: Targeted treatment of fragile X syndrome (FXS) is the best current therapeutic approach. Gene therapy holds potential as a prospective treatment for FXS in the future.
Collapse
Affiliation(s)
- Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine University of Belgrade, Belgrade, Serbia
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, Belgrade, Serbia
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, CA, USA
- Department of Pediatrics, University of California, Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
34
|
Roy S, Ghosh A, Majie A, Karmakar V, Das S, Dinda SC, Bose A, Gorain B. Terpenoids as potential phytoconstituent in the treatment of diabetes: From preclinical to clinical advancement. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155638. [PMID: 38728916 DOI: 10.1016/j.phymed.2024.155638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/21/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Diabetes mellitus, a hyperglycemic condition associated with multitudinous organ dysfunction, is a hallmark of the metabolic disorder. This life-threatening condition affects millions of individuals globally, harming them financially, physically and psychologically in the course of therapy. PURPOSES The course therapy for illnesses has undergone ground-breaking transformations due to recent technical advances and insights. Alternatively, the administration of hyperglycemia-reducing agents results in several complications, including severe cardiovascular disease, kidney failure, hepatic problems, and several dermatological conditions. Consideration of alternate diabetic therapy having minimal side effects or no adverse reactions has been driven by such problems. STUDY DESIGN An extensive literature study was conducted in authoritative scientific databases such as PubMed, Scopus, and Web of Science to identify the studies elucidating the bioactivities of terpenoids in diabetic conditions. METHODS Keywords including 'terpenoids', 'monoterpenes', 'diterpenes', 'sesquiterpenes', 'diabetes', 'diabetes mellitus', 'clinical trials', 'preclinical studies', and 'increased blood glucose' were used to identify the relevant research articles. The exclusion criteria, such as English language, duplication, open access, abstract only, and studies not involving preclinical and clinical research, were set. Based on these criteria, 937 relevant articles were selected for further evaluation. RESULTS Triterpenes can serve as therapeutic agents for diabetic retinopathy, peripheral neuropathy, and kidney dysfunction by inhibiting several pathways linked to hyperglycemia and its complications. Therefore, it is essential to draw special attention to these compounds' therapeutic effectiveness and provide scientific professionals with novel data. CONCLUSION This study addressed recent progress in research focussing on mechanisms of terpenoid, its by-products, physiological actions, and therapeutic applications, particularly in diabetic and associated disorders.
Collapse
Affiliation(s)
- Sukanta Roy
- School of Pharmacy, The Neotia University, Diamond Harbour Rd, Sarisha, West Bengal, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sourav Das
- School of Pharmacy, The Neotia University, Diamond Harbour Rd, Sarisha, West Bengal, India
| | - Subas Chandra Dinda
- School of Pharmacy, The Neotia University, Diamond Harbour Rd, Sarisha, West Bengal, India
| | - Anirbandeep Bose
- School of Medical Science, Adamas University, Barbaria, Jagannathpur, Kolkata, India.
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
35
|
Eke Z, Orgul D, Varan G, Erdoğar N. In vitro and ex vivo evaluation of chitosan gel containing metformin-loaded polymeric nanoparticles for topical treatment of melanoma. Drug Dev Ind Pharm 2024; 50:593-604. [PMID: 38916971 DOI: 10.1080/03639045.2024.2372290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE The purpose of this study was to prepare and evaluate chitosan (CS) gel containing metformin hydrochloride (MET)-loaded polycaprolactone (PCL) nanoparticles (NPs) for topical treatment of melanoma. SIGNIFICANCE Topical administration of MET-PCL NPs-CS gel improves penetration of drug, decreases side effects, and increases efficacy of treatment. METHODS MET-PCL NPs were prepared by double emulsion method. Particle size, charge, encapsulation efficiency (EE), release, and morphology were evaluated. MET-PCL NPs-CS gel formulation was characterized in terms of organoleptic properties, pH, gelling time, viscosity, spreadability, release, and morphology. Cytotoxicity was performed on B16F10 cells. Ex vivo permeability was done with pig skin. RESULTS The size, charge, and EE were found to be 180 ± 10 nm, -11.4 mV, and 93%. SEM images showed that NPs were spherical and smooth. An initial burst release followed by a slower release was observed. MET-PCL NPs-CS gel was found to be transparent. The pH was 4.9 ± 0.05. The gelation time was 1.6 ± 0.2 min. The viscosity results confirm pseudoplastic behavior of gel. The spreadability by % area was 392 ± 6.4 cm. The images showed that gelling network of CS gel was composed of suspended NPs. The viscosity was between 554 and 3503 cP. MET-PCL NPs-CS gel showed prolonged release up to 72 h. On B16F10 cells, gel showed higher cytotoxicity compared to MET solution. MET-PCL NPs-CS gel had twofold higher permeability in pig skin compared with MET-CS gel. CONCLUSION Topical administration of MET-PCL NPs-CS gel into the skin resulted in improved dermal penetration and this promising approach may be of value in effective treatment of melanoma and other skin cancers.
Collapse
Affiliation(s)
- Ziyneti Eke
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Dilara Orgul
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Selçuk University, Konya, Turkey
| | - Gamze Varan
- Department of Vaccine Technology, Hacettepe University Vaccine Institute, Ankara, Turkey
| | - Nazlı Erdoğar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
36
|
Sellani TA, Tomaz SL, Gonçalves JM, Lima A, de Amat Herbozo CC, Silva GN, Gambero M, Longo-Maugéri IM, Simon KA, Monteiro HP, Rodrigues EG. Macrophages, IL-10, and nitric oxide increase, induced by hyperglycemic conditions, impact the development of murine melanoma B16F10-Nex2. Nitric Oxide 2024; 148:1-12. [PMID: 38636582 DOI: 10.1016/j.niox.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Epidemiological studies show a strong correlation between diabetes and the increased risk of developing different cancers, including melanoma. In the present study, we investigated the impact of a streptozotocin (STZ)-induced hyperglycemic environment on B16F10-Nex2 murine melanoma development. Hyperglycemic male C57Bl/6 mice showed increased subcutaneous tumor development, partially inhibited by metformin. Tumors showed increased infiltrating macrophages, and augmented IL-10 and nitric oxide (NO) concentrations. In vivo neutralization of IL-10, NO synthase inhibition, and depletion of macrophages reduced tumor development. STZ-treated TLR4 KO animals showed delayed tumor development; the transfer of hyperglycemic C57Bl/6 macrophages to TLR4 KO reversed this effect. Increased concentrations of IL-10 present in tumor homogenates of hyperglycemic mice induced a higher number of pre-angiogenic structures in vitro, and B16F10-Nex2 cells incubated with different glucose concentrations in vitro produced increased levels of IL-10. In summary, our findings show that a hyperglycemic environment stimulates murine melanoma B16F10-Nex2 primary tumor growth, and this effect is dependent on tumor cell stimulation, increased numbers of macrophages, and augmented IL-10 and NO concentrations. These findings show the involvement of tumor cells and other components of the tumor microenvironment in the development of subcutaneous melanoma under hyperglycemic conditions, defining novel targets for melanoma control in diabetic patients.
Collapse
Affiliation(s)
- Tarciso A Sellani
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; Oncology Medical Science Liaison at GSK, Brazil
| | - Samanta L Tomaz
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jéssica M Gonçalves
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Adriana Lima
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carolina C de Amat Herbozo
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabrielli N Silva
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mônica Gambero
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ieda M Longo-Maugéri
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Karin A Simon
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Hugo P Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy - CTCMol, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Elaine G Rodrigues
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
37
|
Haxhiraj M, White K, Terry C. The Role of Fenugreek in the Management of Type 2 Diabetes. Int J Mol Sci 2024; 25:6987. [PMID: 39000103 PMCID: PMC11240913 DOI: 10.3390/ijms25136987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
The number of people diagnosed with type 2 diabetes is on the increase worldwide. Of growing concern, the prevalence of type 2 diabetes in children and youths is increasing rapidly and mirrors the increasing burden of childhood obesity. There are many risk factors associated with the condition; some are due to lifestyle, but many are beyond our control, such as genetics. There is an urgent need to develop better therapeutics for the prevention and management of this complex condition since current medications often cause unwanted side effects, and poorly managed diabetes can result in the onset of related comorbidities. Naturally derived compounds have gained momentum for preventing and managing several complex conditions, including type 2 diabetes. Here, we provide an update on the benefits and limitations of fenugreek and its components as a therapeutic for type 2 diabetes, including its bioavailability and interaction with the microbiome.
Collapse
Affiliation(s)
- Melina Haxhiraj
- Diabetes Interest Group, The Centre for Health and Life Sciences Research, London Metropolitan University, London N7 8DB, UK
| | - Kenneth White
- Diabetes Interest Group, The Centre for Health and Life Sciences Research, London Metropolitan University, London N7 8DB, UK
| | - Cassandra Terry
- Diabetes Interest Group, The Centre for Health and Life Sciences Research, London Metropolitan University, London N7 8DB, UK
| |
Collapse
|
38
|
Akbari A, Nemati M, Lighvan ZM, Khanamiri FN, Rezaie J, Rasmi Y. Synthesis of metformin-derived fluorescent quantum dots: uptake, cytotoxicity, and inhibition in human breast cancer cells through autophagy pathway. J Biol Eng 2024; 18:38. [PMID: 38915025 PMCID: PMC11197241 DOI: 10.1186/s13036-024-00433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Breast cancer remains a challenge for physicians. Metformin, an antidiabetic drug, show promising anticancer properties against cancers. An emerging quantum dot (QD) material improves therapeutic agents' anticancer and imaging properties. QD are nano-sized particles with extreme application in nanotechnology captured by cells and accumulated inside cells, suggesting bioimaging and effective anticancer outcomes. In this study, a simple one-pot hydrothermal method was used to synthesize fluorescent metformin-derived carbon dots (M-CDs) and then investigated the cytotoxic effects and imaging features on two human breast cancer cell lines including, MCF-7 and MDA-MB-231 cells. RESULTS Results showed that M-CDs profoundly decreased the viability of both cancer cells. IC50 values showed that M-CDs were more cytotoxic than metformin either 24-48 h post-treatment. Cancer cells uptake M-CDs successfully, which causes morphological changes in cells and increased levels of intracellular ROS. The number of Oil Red O-positive cells and the expression of caspase-3 protein were increased in M-CDs treated cells. Authophagic factors including, AMPK, mTOR, and P62 were down-regulated, while p-AMPK, Becline-1, LC3 I, and LC3 II were up-regulated in M-CDs treated cells. Finally, M-CDs caused a decrease in the wound healing rate of cells. CONCLUSIONS For the first, M-CDs were synthesized by simple one-pot hydrothermal treatment without further purification. M-CDs inhibited both breast cancer cells through modulating autophagy signalling.
Collapse
Affiliation(s)
- Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, P.O. BoX: 1138, Shafa St, Ershad Blvd, Urmia, 57147, Iran
| | - Mohadeseh Nemati
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zohreh Mehri Lighvan
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran
| | - Fereshteh Nazari Khanamiri
- Solid Tumor Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, P.O. BoX: 1138, Shafa St, Ershad Blvd, Urmia, 57147, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, P.O. BoX: 1138, Shafa St, Ershad Blvd, Urmia, 57147, Iran.
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
39
|
Lucca C, Ferrari E, Shubassi G, Ajazi A, Choudhary R, Bruhn C, Matafora V, Bachi A, Foiani M. Sch9 S6K controls DNA repair and DNA damage response efficiency in aging cells. Cell Rep 2024; 43:114281. [PMID: 38805395 DOI: 10.1016/j.celrep.2024.114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Survival from UV-induced DNA lesions relies on nucleotide excision repair (NER) and the Mec1ATR DNA damage response (DDR). We study DDR and NER in aging cells and find that old cells struggle to repair DNA and activate Mec1ATR. We employ pharmacological and genetic approaches to rescue DDR and NER during aging. Conditions activating Snf1AMPK rescue DDR functionality, but not NER, while inhibition of the TORC1-Sch9S6K axis restores NER and enhances DDR by tuning PP2A activity, specifically in aging cells. Age-related repair deficiency depends on Snf1AMPK-mediated phosphorylation of Sch9S6K on Ser160 and Ser163. PP2A activity in old cells is detrimental for DDR and influences NER by modulating Snf1AMPK and Sch9S6K. Hence, the DDR and repair pathways in aging cells are influenced by the metabolic tuning of opposing AMPK and TORC1 networks and by PP2A activity. Specific Sch9S6K phospho-isoforms control DDR and NER efficiency, specifically during aging.
Collapse
Affiliation(s)
- Chiara Lucca
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Elisa Ferrari
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| | - Ghadeer Shubassi
- AtomVie Global Radiopharma Inc., 1280 Main Street W NRB-A316, Hamilton, ON L8S-4K1, Canada
| | - Arta Ajazi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Ramveer Choudhary
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Christopher Bruhn
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Vittoria Matafora
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Angela Bachi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Marco Foiani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Istituto di Genetica Molecolare, CNR, Pavia, Italy.
| |
Collapse
|
40
|
Sarkar A, Fanous KI, Marei I, Ding H, Ladjimi M, MacDonald R, Hollenberg MD, Anderson TJ, Hill MA, Triggle CR. Repurposing Metformin for the Treatment of Atrial Fibrillation: Current Insights. Vasc Health Risk Manag 2024; 20:255-288. [PMID: 38919471 PMCID: PMC11198029 DOI: 10.2147/vhrm.s391808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Metformin is an orally effective anti-hyperglycemic drug that despite being introduced over 60 years ago is still utilized by an estimated 120 to 150 million people worldwide for the treatment of type 2 diabetes (T2D). Metformin is used off-label for the treatment of polycystic ovary syndrome (PCOS) and for pre-diabetes and weight loss. Metformin is a safe, inexpensive drug with side effects mostly limited to gastrointestinal issues. Prospective clinical data from the United Kingdom Prospective Diabetes Study (UKPDS), completed in 1998, demonstrated that metformin not only has excellent therapeutic efficacy as an anti-diabetes drug but also that good glycemic control reduced the risk of micro- and macro-vascular complications, especially in obese patients and thereby reduced the risk of diabetes-associated cardiovascular disease (CVD). Based on a long history of clinical use and an excellent safety record metformin has been investigated to be repurposed for numerous other diseases including as an anti-aging agent, Alzheimer's disease and other dementias, cancer, COVID-19 and also atrial fibrillation (AF). AF is the most frequently diagnosed cardiac arrythmia and its prevalence is increasing globally as the population ages. The argument for repurposing metformin for AF is based on a combination of retrospective clinical data and in vivo and in vitro pre-clinical laboratory studies. In this review, we critically evaluate the evidence that metformin has cardioprotective actions and assess whether the clinical and pre-clinical evidence support the use of metformin to reduce the risk and treat AF.
Collapse
Affiliation(s)
- Aparajita Sarkar
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kareem Imad Fanous
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Hong Ding
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Moncef Ladjimi
- Department of Biochemistry & Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Ross MacDonald
- Health Sciences Library, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Todd J Anderson
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center & Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Chris R Triggle
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| |
Collapse
|
41
|
El-Tanani M, Rabbani SA, Aljabali AA, Matalka II, El-Tanani Y, Rizzo M, Tambuwala MM. The Complex Connection between Obesity and Cancer: Signaling Pathways and Therapeutic Implications. Nutr Cancer 2024; 76:683-706. [PMID: 38847479 DOI: 10.1080/01635581.2024.2361964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 08/02/2024]
Abstract
Obesity has emerged as an important global health challenge, significantly influencing the incidence and progression of various cancers. This comprehensive review elucidates the complex relationship between obesity and oncogenesis, focusing particularly on the role of dysregulated signaling pathways as central mediators of this association. We delve into the contributions of obesity-induced alterations in key signaling cascades, including PI3K/AKT/mTOR, JAK/STAT, NF-κB, and Wnt/β-catenin to carcinogenesis. These alterations facilitate unchecked cellular proliferation, chronic inflammation and apoptosis resistance. Epidemiological evidence links obesity with increased cancer susceptibility and adverse prognostic outcomes, with pronounced risks for specific cancers such as breast, colorectal, endometrial and hepatic malignancies. This review synthesizes data from both animal and clinical studies to underscore the pivotal role of disrupted signaling pathways in shaping innovative therapeutic strategies. We highlight the critical importance of lifestyle modifications in obesity management and cancer risk mitigation, stressing the benefits of dietary changes, physical activity, and behavioral interventions. Moreover, we examine targeted pharmacological strategies addressing aberrant pathways in obesity-related tumors and discuss the integration of cutting-edge treatments, including immunotherapy and precision medicine, into clinical practice.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Syed Arman Rabbani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Yahia El-Tanani
- Medical School, St George's University of London, Tooting, London
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, UK
| |
Collapse
|
42
|
Xu JX, Zhu QL, Bi YM, Peng YC. New evidence: Metformin unsuitable as routine adjuvant for breast cancer: a drug-target mendelian randomization analysis. BMC Cancer 2024; 24:691. [PMID: 38844880 PMCID: PMC11155042 DOI: 10.1186/s12885-024-12453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
PURPOSE The potential efficacy of metformin in breast cancer (BC) has been hotly discussed but never conclusive. This genetics-based study aimed to evaluate the relationships between metformin targets and BC risk. METHODS Metformin targets from DrugBank and genome-wide association study (GWAS) data from IEU OpenGWAS and FinnGen were used to investigate the breast cancer (BC)-metformin causal link with various Mendelian Randomization (MR) methods (e.g., inverse-variance-weighting). The genetic association between type 2 diabetes (T2D) and the drug target of metformin was also analyzed as a positive control. Sensitivity and pleiotropic tests ensured reliability. RESULTS The primary targets of metformin are PRKAB1, ETFDH and GPD1L. We found a causal association between PRKAB1 and T2D (odds ratio [OR] 0.959, P = 0.002), but no causal relationship was observed between metformin targets and overall BC risk (PRKAB1: OR 0.990, P = 0.530; ETFDH: OR 0.986, P = 0.592; GPD1L: OR 1.002, P = 0.806). A noteworthy causal relationship was observed between ETFDH and estrogen receptor (ER)-positive BC (OR 0.867, P = 0.018), and between GPD1L and human epidermal growth factor receptor 2 (HER2)-negative BC (OR 0.966, P = 0.040). Other group analyses did not yield positive results. CONCLUSION The star target of metformin, PRKAB1, does not exhibit a substantial causal association with the risk of BC. Conversely, metformin, acting as an inhibitor of ETFDH and GPD1L, may potentially elevate the likelihood of developing ER-positive BC and HER2-negative BC. Consequently, it is not advisable to employ metformin as a standard supplementary therapy for BC patients without T2D.
Collapse
Affiliation(s)
- Jing-Xuan Xu
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China
| | - Qi-Long Zhu
- Pharmacy Department, The Ninth People's Hospital of Chongqing, Chongqing, 400015, China
| | - Yu-Miao Bi
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Yu-Chong Peng
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
43
|
El-Damanawi R, Stanley IK, Staatz C, Pascoe EM, Craig JC, Johnson DW, Mallett AJ, Hawley CM, Milanzi E, Hiemstra TF, Viecelli AK. Metformin for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev 2024; 6:CD013414. [PMID: 38837240 PMCID: PMC11152183 DOI: 10.1002/14651858.cd013414.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Metformin has been used in the management of diabetes for decades. It is an effective, low-cost intervention with a well-established safety profile. Emerging evidence suggests that metformin targets a number of pathways that lead to chronic kidney damage, and long-term use may, therefore, slow the rate of kidney function decline and chronic kidney disease (CKD) progression. OBJECTIVES To evaluate the effect of metformin therapy on kidney function decline in patients with CKD with or without diabetes mellitus and assess the safety and dose tolerability in this population. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 19 July 2023 with assistance from an Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA We included randomised controlled trials (RCTs) that reported kidney-related outcomes with a minimum duration of 12 months delivery of the metformin intervention and whose eligibility criteria included adult participants with either i) a diagnosis of CKD of any aetiology and/or ii) those with a diagnosis of diabetes mellitus. Comparisons included placebo, no intervention, non-pharmacological interventions, other antidiabetic medications or any other active control. Studies that included patients on any modality of kidney replacement therapy were excluded. DATA COLLECTION AND ANALYSIS Two authors independently carried out data extraction using a standard data extraction form. The methodological quality of the included studies was assessed using the Cochrane risk of bias tool. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) and 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS This review included 11 studies reporting on 8449 randomised participants. Studies were conducted in patient populations with Autosomal Dominant Polycystic Kidney Disease (ADPKD) (four studies) or diabetes mellitus (seven studies). Six studies compared metformin with no active control, four studies compared metformin with active controls (rosiglitazone, glyburide, pioglitazone, or glipizide), and one study included treatment arms that randomised to either metformin, diet and lifestyle modifications, or other antidiabetic therapies. The risk of bias in included studies varied; two studies were abstract-only publications and were judged to have a high risk of bias in most domains. Other included publications were judged to have a low risk of bias in most domains. Across comparisons, GRADE evaluations for most outcomes were judged as low or very low certainty, except for those relating to side effects, tolerance, and withdrawals, which were judged as moderate certainty. The evidence suggests that compared to placebo, metformin may result in i) a slightly smaller decline in kidney function (3 studies, 505 participants: MD 1.92 mL/min, 95% CI 0.33 to 3.51; I2 = 0%; low certainty), ii) very uncertain effects on the incidence of kidney failure (1 study, 753 participants: RR 1.20, 95% CI 0.17 to 8.49), iii) little or no effect on death (3 studies, 865 participants: RR 1.00, 95% CI 0.76 to 1.32; I2 = 0%; moderate certainty), iv) little or no effect on the incidence of serious adverse events (3 studies, 576 participants: RR 1.15, 95% CI 0.76 to 1.72; I2 = 0%; moderate certainty), and v) likely higher incidence of intolerance leading to study withdrawal than placebo (4 studies, 646 participants: RR 2.19, 95% CI 1.46 to 3.27; I2 = 0%; moderate certainty). The certainty of the evidence for proteinuria was very uncertain. Compared to other active controls (rosiglitazone, glyburide, pioglitazone, or glipizide), metformin i) demonstrated very uncertain effects on kidney function decline, ii) may result in little or no difference in death (3 studies, 5608 participants: RR 0.95 95% CI 0.63 to 1.43; I2 = 0%; low certainty), iii) probably results in little or no difference in intolerance leading to study withdrawal (3 studies, 5593 participants: RR 0.92, 95% CI, 0.79 to 1.08; I2 = 0%; moderate certainty), iv) probably results in little or no difference in the incidence of serious adverse events (2 studies, 5545 participants: RR 1.16, 95% CI 0.79 to 1.71; I2 = 0%; moderate certainty), and v) may increase the urinary albumin-creatinine ratio (2 studies, 3836 participants: MD 14.61, 95% CI 8.17 to 21.05; I2 = 0%; low certainty). No studies reported the incidence of kidney failure. AUTHORS' CONCLUSIONS This review highlights the lack of RCTs reporting on the effects of metformin on kidney function, particularly in patients with CKD. Future research in this field requires adequately powered RCTs comparing metformin to placebo or standard care in those with CKD. Seven ongoing studies were identified in this review, and future updates, including their findings, may further inform the results of this review.
Collapse
Affiliation(s)
| | | | - Christine Staatz
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Elaine M Pascoe
- Centre for Health Services Research, The University of Queensland, Brisbane, Australia
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - David W Johnson
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
- Translational Research Institute, Brisbane, Australia
| | - Andrew J Mallett
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
- Department of Renal Medicine, Townsville Hospital & Health Service, Townsville, Australia
| | - Carmel M Hawley
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
- Translational Research Institute, Brisbane, Australia
| | - Elasma Milanzi
- School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Thomas F Hiemstra
- Cambridge Clinical Trials Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrea K Viecelli
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
| |
Collapse
|
44
|
Klinaki E, Ogrodnik M. In the land of not-unhappiness: On the state-of-the-art of targeting aging and age-related diseases by biomedical research. Mech Ageing Dev 2024; 219:111929. [PMID: 38561164 DOI: 10.1016/j.mad.2024.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The concept of the Land of Not-Unhappiness refers to the potential achievement of eliminating the pathologies of the aging process. To inform of how close we are to settling in the land, we summarize and review the achievements of research on anti-aging interventions over the last hundred years with a specific focus on strategies that slow down metabolism, compensate for aging-related losses, and target a broad range of age-related diseases. We critically evaluate the existing interventions labeled as "anti-aging," such as calorie restriction, exercise, stem cell administration, and senolytics, to provide a down-to-earth evaluation of their current applicability in counteracting aging. Throughout the text, we have maintained a light tone to make it accessible to non-experts in biogerontology, and provide a broad overview for those considering conducting studies, research, or seeking to understand the scientific basis of anti-aging medicine.
Collapse
Affiliation(s)
- Eirini Klinaki
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna 1200, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna 1200, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna 1200, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna 1200, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
45
|
Salim EI, Elsebakhy S, Hessien M. Repurposing of atorvastatin and metformin denotes their individual and combined antiproliferative effects in non-small cell lung cancer. Fundam Clin Pharmacol 2024; 38:550-560. [PMID: 38258539 DOI: 10.1111/fcp.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Due to the limited success in the treatment of lung adenocarcinomas, new treatment protocols are urgently needed to increase the curability rate and the survival of lung cancer patients. OBJECTIVES Although statins, like atorvastatin (Ator), and metformin (Met) are widely accepted as hypolipidemic and hypoglycemic drugs, respectively, there are many predictions about their enhancing antitumor effect when they are combined with traditional chemotherapeutics. METHODS The individual and combined antiproliferative potential of Ator and Met was tested by MTT-assay in non-small cell lung cancer (NSCLC) A549 cell line, compared to the corresponding effect of Gemcitabine (Gem) with implication on the mechanisms of action. RESULTS Initially, both drugs demonstrated concentration-dependent cytotoxicity in A549 cells. Also, their combination index (CI) indicated their synergistic effect at equi-IC50 concentration (CI = 0.00984). Moreover, Ator and/or Met-treated cells revealed disrupted patterns of SOD, CAT, GSH, MDA, and TAC, developed apoptosis, and larger fractions of the cell population were arrested in G0/G1 phase, particularly in cells dually-treated both Ator and Met. These observations were accompanied by downregulation in the expression of iNOS, HO-1, and the angiogenic marker VEGF, meanwhile, an altered expression of MAPK and AMPK was observed. CONCLUSION Conclusively, these data suggest that repurposing of Ator and Met demonstrates their individual and combined antiproliferative effect in non-small cell lung cancer and they may adopt a similar mechanism of action.
Collapse
Affiliation(s)
- Elsayed I Salim
- Zoology Department, Research Lab. of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta, Egypt
| | - Safaa Elsebakhy
- Molecular Cell Biology Unit, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
46
|
Beyazcicek O, Beyazcicek E, Kubur UB, Gok A. Effect of the Combination of Exercise and Metformin on Osteocalcin, Insülin, Interleukin-6, Glucose Levels, and Body Weights in Rats. Niger J Clin Pract 2024; 27:766-773. [PMID: 38943302 DOI: 10.4103/njcp.njcp_884_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/28/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Exercise or exercise capacity is a vital physiological function. It is known that certain cytokines support muscle function during exercise and, as a result, increase exercise capacity. AIMS In this study, the effect of metformin administered in combination with exercise on osteocalcin (OCN), insulin, and interleukin-6 (IL-6) levels in rats was investigated. METHODS Forty-two male Wistar rats were used in this study. The animals were randomly divided into six groups: control (CONT), only exercise (EXE), metformin_100 mg/kg (Met100), metformin_200 mg/kg (Met200), metformin_100 mg/kg+exercise (Met100+EXE), and metformin_200 mg/kg+exercise (Met200+EXE). A 10-week intervention was conducted, excluding exercise training. During the experiment, the groups receiving metformin application (100 or 200 mg/kg) were administered with metformin. At the end of the study, serum samples were collected from the rats to determine the levels of osteocalcin, insulin, and IL-6 using the enzyme-linked immunosorbent assay method. In addition, glucose levels and body weights were evaluated. GraphPad Prism was used for the analyses. RESULTS The OCN and insulin levels of the Met100+EXE and Met200+EXE groups were found to be higher compared to the CONT, Met100, and Met200 groups (P < 0.05). The IL-6 level of the EXE group was determined to be higher than that of the CONT, Met100, and Met200 groups (P < 0.01). It was observed that both exercise and the individual or combined application of metformin resulted in lower blood glucose levels compared to the CONT group. The mean body weight of the EXE group was higher than that of the other groups. CONCLUSION The combined application of metformin and exercise has increased osteocalcin and insulin levels compared to metformin application alone.
Collapse
Affiliation(s)
- O Beyazcicek
- Department of Physiology, Medicine School, Duzce University, Duzce, Turkey
| | | | | | | |
Collapse
|
47
|
Mondal S, Saha S, Sur D. Immuno-metabolic reprogramming of T cell: a new frontier for pharmacotherapy of Rheumatoid arthritis. Immunopharmacol Immunotoxicol 2024; 46:330-340. [PMID: 38478467 DOI: 10.1080/08923973.2024.2330636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune condition characterized by ongoing inflammation primarily affecting the synovial joint. This inflammation typically arises from an increase in immune cells such as neutrophils, macrophages, and T cells (TC). TC is recognized as a major player in RA pathogenesis. The involvement of HLA-DRB1 and PTPN-2 among RA patients confirms the TC involvement in RA. Metabolism of TC is maintained by various other factors like cytokines, mitochondrial proteins & other metabolites. Different TC subtypes utilize different metabolic pathways like glycolysis, oxidative phosphorylation and fatty acid oxidation for their activation from naive TC (T0). Although all subsets of TC are not deleterious for synovium, some subsets of TC are involved in joint repair using their anti-inflammatory properties. Hence artificially reprogramming of TC subset by interfering with their metabolic status poised a hope in future to design new molecules against RA.
Collapse
Affiliation(s)
- Sourav Mondal
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| | - Sarthak Saha
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| |
Collapse
|
48
|
Jang HN, Moon SJ, Jung JH, Han KD, Rhee EJ, Lee WY. Impact of Antidiabetic Drugs on Clinical Outcomes of COVID-19: A Nationwide Population-Based Study. Endocrinol Metab (Seoul) 2024; 39:479-488. [PMID: 38282452 PMCID: PMC11220209 DOI: 10.3803/enm.2023.1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGRUOUND Inconsistent results have been reported regarding the association between the use of antidiabetic drugs and the clinical outcomes of coronavirus disease 2019 (COVID-19). This study aimed to investigate the effect of antidiabetic drugs on COVID-19 outcomes in patients with diabetes using data from the National Health Insurance Service (NHIS) in South Korea. METHODS We analyzed the NHIS data of patients aged ≥20 years who tested positive for COVID-19 and were taking antidiabetic drugs between December 2019 and June 2020. Multiple logistic regression analysis was performed to analyze the clinical outcomes of COVID-19 based on the use of antidiabetic drugs. RESULTS A total of 556 patients taking antidiabetic drugs tested positive for COVID-19, including 271 male (48.7%), most of whom were in their sixties. Of all patients, 433 (77.9%) were hospitalized, 119 (21.4%) received oxygen treatment, 87 (15.6%) were admitted to the intensive care unit, 31 (5.6%) required mechanical ventilation, and 61 (11.0%) died. Metformin was significantly associated with the lower risks of mechanical ventilation (odds ratio [OR], 0.281; 95% confidence interval [CI], 0.109 to 0.720; P=0.008), and death (OR, 0.395; 95% CI, 0.182 to 0.854; P=0.018). Dipeptidylpeptidase-4 inhibitor (DPP-4i) were significantly associated with the lower risks of oxygen treatment (OR, 0.565; 95% CI, 0.356 to 0.895; P=0.015) and death (OR, 0.454; 95% CI, 0.217 to 0.949; P=0.036). Sulfonylurea was significantly associated with the higher risk of mechanical ventilation (OR, 2.579; 95% CI, 1.004 to 6.626; P=0.049). CONCLUSION In patients with diabetes and COVID-19, metformin exhibited reduced risks of mechanical ventilation and death, DPP- 4i was linked with lower risks of oxygen treatment and death, while sulfonylurea was related to the increased risk of mechanical ventilation.
Collapse
Affiliation(s)
- Han Na Jang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Internal Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jin Hyung Jung
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Internal Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Internal Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
49
|
Zamanian MY, Golmohammadi M, Yumashev A, Hjazi A, Toama MA, AbdRabou MA, Gehlot A, Alwaily ER, Shirsalimi N, Yadav PK, Moriasi G. Effects of metformin on cancers in experimental and clinical studies: Focusing on autophagy and AMPK/mTOR signaling pathways. Cell Biochem Funct 2024; 42:e4071. [PMID: 38863255 DOI: 10.1002/cbf.4071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
Metformin (MET) is a preferred drug for the treatment of type 2 diabetes mellitus. Recent studies show that apart from its blood glucose-lowering effects, it also inhibits the development of various tumours, by inducing autophagy. Various studies have confirmed the inhibitory effects of MET on cancer cell lines' propagation, migration, and invasion. The objective of the study was to comprehensively review the potential of MET as an anticancer agent, particularly focusing on its ability to induce autophagy and inhibit the development and progression of various tumors. The study aimed to explore the inhibitory effects of MET on cancer cell proliferation, migration, and invasion, and its impact on key signaling pathways such as adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and PI3K. This review noted that MET exerts its anticancer effects by regulating key signalling pathways such as phosphoinositide 3-kinase (PI3K), LC3-I and LC3-II, Beclin-1, p53, and the autophagy-related gene (ATG), inhibiting the mTOR protein, downregulating the expression of p62/SQSTM1, and blockage of the cell cycle at the G0/G1. Moreover, MET can stimulate autophagy through pathways associated with the 5' AMPK, thereby inhibiting he development and progression of various human cancers, including hepatocellular carcinoma, prostate cancer, pancreatic cancer, osteosarcoma, myeloma, and non-small cell lung cancer. In summary, this detailed review provides a framework for further investigations that may appraise the autophagy-induced anticancer potential of MET and its repurposing for cancer treatment.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mariam Alaa Toama
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Anita Gehlot
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Niyousha Shirsalimi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pankaj Kumar Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Gervason Moriasi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
50
|
Rottura M, Drago SFA, Gianguzzo VM, Molonia A, Pallio G, Scoglio R, Marino S, Alibrandi A, Imbalzano E, Squadrito F, Irrera N, Arcoraci V. Chronic kidney disease progression in diabetic patients: Real world data in general practice. Heliyon 2024; 10:e30787. [PMID: 38765038 PMCID: PMC11096917 DOI: 10.1016/j.heliyon.2024.e30787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
Aims the aim of the study was to analyze glomerular filtration ratio (GFR) changes in diabetic patients assisted by General Practitioners (GPs) evaluating the risk factors related to glomerular function. Methods patients with diabetes with at least three recorded values of creatinine were recruited in the study and GFR values were estimated. The quarterly percentage change in GFR for each patient was estimated. Nephrotoxic drugs were identified, and glucose-lowering drugs use was described. Linear regression analyses were performed to identify eGFR changes predictors. Results a total of 545 patients with diabetes were selected. According to the last eGFR values 64 (11.7 %) patients were classified in G1 stage, 277 (50,8 %) in G2, 175 (32.1 %) in G3a, 25 (4.6 %) in G3b and only 4 (0.7 %) in G4. Patients treated with at least one glucose-lowering drugs were 479 (87.9 %), most of them with biguanides (67.0 %). At least one nephrotoxic drug prescription was recorded in 524 (96.1 %) patients; proton pump inhibitors (74.7 %) and NSAIDs (71.6 %) were the most prescription classes. Heart failure, diabetes duration and preserved GFR values were related to reduced eGFR values. Conclusions patients with diabetes should be more carefully observed regardless of kidney risk factors and GFR values in clinical practice.
Collapse
Affiliation(s)
- Michelangelo Rottura
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Selene Francesca Anna Drago
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Viviana Maria Gianguzzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonino Molonia
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Giovanni Pallio
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | | | - Angela Alibrandi
- Department of Economics Section of Statistical and Mathematical Sciences, University of Messina, Via dei Verdi, 98122, Messina, Italy
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Audit & Research Messina Primary Care Group
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125, Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
- Italian Society of General Practice (SIMG), Messina, Italy
- Department of Economics Section of Statistical and Mathematical Sciences, University of Messina, Via dei Verdi, 98122, Messina, Italy
| |
Collapse
|