1
|
Patel J, Vazquez T, Chin F, Keyes E, Yan D, Diaz D, Grinnell M, Sharma M, Li Y, Feng R, Sprow G, Dan J, Werth VP. Multidimensional immune profiling of cutaneous lupus erythematosus in vivo stratified by patient responses to antimalarials. Arthritis Rheumatol 2022; 74:1687-1698. [PMID: 35583812 DOI: 10.1002/art.42235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The pathogenesis of cutaneous lupus erythematous (CLE) is multifactorial and CLE is difficult to treat due to heterogeneity of inflammatory processes between patients. Antimalarials such as hydroxychloroquine (HCQ) and quinacrine (QC) have long been first-line systemic therapy; however, many patients do not respond and require systemic immunosuppressants with undesirable side effects. Given the complexity and unpredictable responses in CLE, we sought to identify the immunologic landscape of CLE patients stratified by subsequent treatment outcomes to identify potential biomarkers of inducible response. METHOD We performed imaging mass cytometry with 48 treatment-naïve skin biopsies of HCQ responders, QC responders, and non-responders (NR) to analyze multiple immune cell types and inflammatory markers in their native environment in CLE skin. Patients were stratified according to their subsequent response to antimalarials to identify baseline immunophenotypes which may predict response to therapy. RESULTS HCQ responders demonstrated increased CD4 T cells compared to QC. NR had decreased Tregs compared to QC and increased central memory T cells compared to HCQ. QC responders expressed increased phosphorylated (p) STING and IFNκ compared to HCQ. pSTING and IFNκ localized to conventional dendritic cells and positively correlated on a tissue and cellular level. Neighborhood analysis revealed decreased regulatory cell interactions in NR patients. Hierarchical clustering revealed NR groups separated based on pSTAT2/3/4/5, pIRF3, Granzyme B, pJAK2, IL4, IL17, and IFNγ. CONCLUSION These findings demonstrate differential immune compositions between CLE patients, guiding the future for precision-based medicine and treatment response.
Collapse
Affiliation(s)
- Jay Patel
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Vazquez
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104
| | - Felix Chin
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Keyes
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daisy Yan
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - DeAnna Diaz
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Madison Grinnell
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meena Sharma
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yubin Li
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rui Feng
- Department of Biostatistics and Epidemiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grant Sprow
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Josh Dan
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Paul SS, Biswas G. Repurposed Antiviral Drugs for the Treatment of COVID-19: Syntheses, Mechanism of Infection and Clinical Trials. Mini Rev Med Chem 2021; 21:1123-1143. [PMID: 33355053 DOI: 10.2174/1389557521666201222145842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/22/2022]
Abstract
COVID-19 is a public health emergency of international concern. Although considerable knowledge has been acquired with time about the viral mechanism of infection and mode of replication, yet no specific drugs or vaccines have been discovered against SARS-CoV-2 to date. There are few small molecule antiviral drugs like Remdesivir and Favipiravir, which have shown promising results in different advanced stages of clinical trials. Chloroquinine, Hydroxychloroquine, and Lopinavir- Ritonavir combination, although initially were hypothesized to be effective against SARSCoV- 2, are now discontinued from the solidarity clinical trials. This review provides a brief description of their chemical syntheses along with their mode of action, and clinical trial results available on Google and in different peer-reviewed journals till 24th October 2020.
Collapse
Affiliation(s)
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Panchanan Nagar, Cooch Behar 736101, India
| |
Collapse
|
3
|
Das S, Ramachandran AK, Birangal SR, Akbar S, Ahmed B, Joseph A. The controversial therapeutic journey of chloroquine and hydroxychloroquine in the battle against SARS-CoV-2: A comprehensive review. MEDICINE IN DRUG DISCOVERY 2021; 10:100085. [PMID: 33846702 PMCID: PMC8026171 DOI: 10.1016/j.medidd.2021.100085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/09/2021] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Recently, the pandemic outbreak of a novel coronavirus, officially termed as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), indicated by a pulmonary infection in humans, has become one of the most significant challenges for public health. In the current fight against coronavirus disease-2019, the medical and health authorities across the world focused on quick diagnosis and isolation of patients; meanwhile, researchers worldwide are exploring the possibility of developing vaccines and novel therapeutic options to combat this deadly disease. Recently, based on various small clinical observations, uncontrolled case studies and previously reported antiviral activity against SARS-CoV-1 chloroquine (CQ) and hydroxychloroquine (HCQ) have attracted exceptional consideration as possible therapeutic agents against SARS-CoV-2. However, there are reports on little to no effect of CQ or HCQ against SARS-CoV-2, and many reports have raised concerns about their cardiac toxicity. Here, in this review, we examine the chemistry, molecular mechanism, and pharmacology, including the current scenario and future prospects of CQ or HCQ in the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Manipal McGill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Anu Kunnath Ramachandran
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Saleem Akbar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Bahar Ahmed
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
4
|
Younis NK, Zareef RO, Al Hassan SN, Bitar F, Eid AH, Arabi M. Hydroxychloroquine in COVID-19 Patients: Pros and Cons. Front Pharmacol 2020; 11:597985. [PMID: 33364965 PMCID: PMC7751757 DOI: 10.3389/fphar.2020.597985] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023] Open
Abstract
The pandemic of COVID-19, caused by SARS-CoV-2, has recently overwhelmed medical centers and paralyzed economies. The unparalleled public distress caused by this pandemic mandated an urgent quest for an effective approach to manage or treat this disease. Due to their well-established anti-infectious and anti-inflammatory properties, quinine derivatives have been sought as potential therapies for COVID-19. Indeed, these molecules were originally employed in the treatment and prophylaxis of malaria, and later in the management of various autoimmune rheumatic and dermatologic diseases. Initially, some promising results for the use of hydroxychloroquine (HCQ) in treating COVID-19 patients were reported by a few in vitro and in vivo studies. However, current evidence is not yet sufficiently solid to warrant its use as a therapy for this disease. Additionally, the therapeutic effects of HCQ are not without many side effects, which range from mild gastrointestinal effects to life-threatening cardiovascular and neurological effects. In this review, we explore the controversy associated with the repurposing of HCQ to manage or treat COVID-19, and we discuss the cellular and molecular mechanisms of action of HCQ.
Collapse
Affiliation(s)
- Nour K Younis
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rana O Zareef
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sally N Al Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fadi Bitar
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Pediatric Department, Division of Pediatric Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mariam Arabi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Pediatric Department, Division of Pediatric Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
5
|
Uzunova K, Filipova E, Pavlova V, Vekov T. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed Pharmacother 2020; 131:110668. [PMID: 32861965 PMCID: PMC7444940 DOI: 10.1016/j.biopha.2020.110668] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a kind of viral pneumonia with an unusual outbreak in Wuhan, China, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There is currently no licensed antiviral treatment available to prevent human CoV infection. The widespread clinical use and existing knowledge on antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine in the treatment of previous epidemic diseases, namely, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), may be helpful in the combat with novel SARS-CoV-2 infection. Recent clinical evidence didn't confirm the beneficial role of lopinavir/ritonavir and chloroquine/hydroxychloroquine for COVID-19 patients and their use was reassessed. We provide an overview of the current evidence into the mechanisms of action of these available drugs which are repurposed for treatment of the new virus. Available data identifies remdesivir as an adenosine analogue that can target the RNA-dependent RNA polymerase and block viral RNA synthesis. It has been a promising antiviral drug against a wide array of RNA viruses. 3CLpro is a major CoV protease that cleaves the large replicase polyproteins during viral replication and can be targeted by the protease inhibitor lopinavir/ritonavir but the clinical effects are controversial. Chloroquine/Hydroxychloroquine could impair the replication of SARSCoV-2 by multiple mechanisms and their immunomodulatory properties could ameliorate clinical manifestations that are mediated by immune reactions of the host although its beneficial effects are under question and need to be proven at the clinical level. Existing in vitro and in vivo evidence delineate the molecular mechanisms of these drugs in CoV-infected cells. Numerous studies demonstrated the ability of remdesivir to inhibit SARS-CoV-2 replication but future research would be needed to understand the exact mode of action of lopinavir/ritonavir and chloroquine/hydroxychloroquine in SARS-CoV-2 infected cells and to use this knowledge in the treatment of the current COVID-19.
Collapse
Affiliation(s)
- Katya Uzunova
- Tchaikapharma High Quality Medicines Inc., Science Department, 1 G.M. Dimitrov Blvd, 1172, Sofia, Bulgaria.
| | - Elena Filipova
- Tchaikapharma High Quality Medicines Inc., Science Department, 1 G.M. Dimitrov Blvd, 1172, Sofia, Bulgaria.
| | - Velichka Pavlova
- Tchaikapharma High Quality Medicines Inc., Science Department, 1 G.M. Dimitrov Blvd, 1172, Sofia, Bulgaria.
| | - Toni Vekov
- Medical University, Dean of Faculty of Pharmacy, 1 Sv. Kliment Ohriski Str., 5800, Pleven, Bulgaria.
| |
Collapse
|
6
|
Elucidating the Pivotal Immunomodulatory and Anti-Inflammatory Potentials of Chloroquine and Hydroxychloroquine. J Immunol Res 2020; 2020:4582612. [PMID: 33062720 PMCID: PMC7533005 DOI: 10.1155/2020/4582612] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are derivatives of 4-aminoquinoline compounds with over 60 years of safe clinical usage. CQ and HCQ are able to inhibit the production of cytokines such as interleukin- (IL-) 1, IL-2, IL-6, IL-17, and IL-22. Also, CQ and HCQ inhibit the production of interferon- (IFN-) α and IFN-γ and/or tumor necrotizing factor- (TNF-) α. Furthermore, CQ blocks the production of prostaglandins (PGs) in the intact cell by inhibiting substrate accessibility of arachidonic acid necessary for the production of PGs. Moreover, CQ affects the stability between T-helper cell (Th) 1 and Th2 cytokine secretion by augmenting IL-10 production in peripheral blood mononuclear cells (PBMCs). Additionally, CQ is capable of blocking lipopolysaccharide- (LPS-) triggered stimulation of extracellular signal-modulated extracellular signal-regulated kinases 1/2 in human PBMCs. HCQ at clinical levels effectively blocks CpG-triggered class-switched memory B-cells from differentiating into plasmablasts as well as producing IgG. Also, HCQ inhibits cytokine generation from all the B-cell subsets. IgM memory B-cells exhibits the utmost cytokine production. Nevertheless, CQ triggers the production of reactive oxygen species. A rare, but serious, side effect of CQ or HCQ in nondiabetic patients is hypoglycaemia. Thus, in critically ill patients, CQ and HCQ are most likely to deplete all the energy stores of the body leaving the patient very weak and sicker. We advocate that, during clinical usage of CQ and HCQ in critically ill patients, it is very essential to strengthen the CQ or HCQ with glucose infusion. CQ and HCQ are thus potential inhibitors of the COVID-19 cytokine storm.
Collapse
|
7
|
Chen X, Geiger JD. Janus sword actions of chloroquine and hydroxychloroquine against COVID-19. Cell Signal 2020; 73:109706. [PMID: 32629149 PMCID: PMC7333634 DOI: 10.1016/j.cellsig.2020.109706] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Chloroquine (CQ) and its analogue hydroxychloroquine (HCQ) have been thrust into our everyday vernacular because some believe, based on very limited basic and clinical data, that they might be helpful in preventing and/or lessening the severity of the pandemic coronavirus disease 2019 (COVID-19). However, lacking is a temperance in enthusiasm for their possible use as well as sufficient perspective on their effects and side-effects. CQ and HCQ have well-known properties of being diprotic weak bases that preferentially accumulate in acidic organelles (endolysosomes and Golgi apparatus) and neutralize luminal pH of acidic organelles. These primary actions of CQ and HCQ are responsible for their anti-malarial effects; malaria parasites rely on acidic digestive vacuoles for survival. Similarly, de-acidification of endolysosomes and Golgi by CQ and HCQ may block severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) integration into host cells because SARS-CoV-2 may require an acidic environment for its entry and for its ability to bud and infect bystander cells. Further, de-acidification of endolysosomes and Golgi may underly the immunosuppressive effects of these two drugs. However, modern cell biology studies have shown clearly that de-acidification results in profound changes in the structure, function and cellular positioning of endolysosomes and Golgi, in signaling between these organelles and other subcellular organelles, and in fundamental cellular functions. Thus, studying the possible therapeutic effects of CQ and HCQ against COVID-19 must occur concurrent with studies of the extent to which these drugs affect organellar and cell biology. When comprehensively examined, a better understanding of the Janus sword actions of these and other drugs might yield better decisions and better outcomes.
Collapse
Affiliation(s)
- Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America.
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| |
Collapse
|
8
|
Kalra RS, Tomar D, Meena AS, Kandimalla R. SARS-CoV-2, ACE2, and Hydroxychloroquine: Cardiovascular Complications, Therapeutics, and Clinical Readouts in the Current Settings. Pathogens 2020; 9:E546. [PMID: 32645974 PMCID: PMC7400328 DOI: 10.3390/pathogens9070546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 01/08/2023] Open
Abstract
The rapidly evolving coronavirus disease 2019 (COVID-19, caused by severe acute respiratory syndrome coronavirus 2- SARS-CoV-2), has greatly burdened the global healthcare system and led it into crisis in several countries. Lack of targeted therapeutics led to the idea of repurposing broad-spectrum drugs for viral intervention. In vitro analyses of hydroxychloroquine (HCQ)'s anecdotal benefits prompted its widespread clinical repurposing globally. Reports of emerging cardiovascular complications due to its clinical prescription are revealing the crucial role of angiotensin-converting enzyme 2 (ACE2), which serves as a target receptor for SARS-CoV-2. In the present settings, a clear understanding of these targets, their functional aspects and physiological impact on cardiovascular function are critical. In an up-to-date format, we shed light on HCQ's anecdotal function in stalling SARS-CoV-2 replication and immunomodulatory activities. While starting with the crucial role of ACE2, we here discuss the impact of HCQ on systemic cardiovascular function, its associated risks, and the scope of HCQ-based regimes in current clinical settings. Citing the extent of HCQ efficacy, the key considerations and recommendations for the use of HCQ in clinics are further discussed. Taken together, this review provides crucial insights into the role of ACE2 in SARS-CoV-2-led cardiovascular activity, and concurrently assesses the efficacy of HCQ in contemporary clinical settings.
Collapse
Affiliation(s)
- Rajkumar Singh Kalra
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba 305 8565, Japan
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Avtar Singh Meena
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Uppal Road, Hyderabad 500 007, Telangana State, India;
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India;
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana State, India
| |
Collapse
|
9
|
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020; 55:105938. [PMID: 32171740 PMCID: PMC7118659 DOI: 10.1016/j.ijantimicag.2020.105938] [Citation(s) in RCA: 662] [Impact Index Per Article: 165.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Recently, a novel coronavirus (2019-nCoV), officially known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China. Despite drastic containment measures, the spread of this virus is ongoing. SARS-CoV-2 is the aetiological agent of coronavirus disease 2019 (COVID-19) characterised by pulmonary infection in humans. The efforts of international health authorities have since focused on rapid diagnosis and isolation of patients as well as the search for therapies able to counter the most severe effects of the disease. In the absence of a known efficient therapy and because of the situation of a public-health emergency, it made sense to investigate the possible effect of chloroquine/hydroxychloroquine against SARS-CoV-2 since this molecule was previously described as a potent inhibitor of most coronaviruses, including SARS-CoV-1. Preliminary trials of chloroquine repurposing in the treatment of COVID-19 in China have been encouraging, leading to several new trials. Here we discuss the possible mechanisms of chloroquine interference with the SARS-CoV-2 replication cycle.
Collapse
Affiliation(s)
- Christian A Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; CNRS, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France.
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Colson
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
10
|
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020. [PMID: 32171740 DOI: 10.1016/j.ijantimicag.2020.105938.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Recently, a novel coronavirus (2019-nCoV), officially known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China. Despite drastic containment measures, the spread of this virus is ongoing. SARS-CoV-2 is the aetiological agent of coronavirus disease 2019 (COVID-19) characterised by pulmonary infection in humans. The efforts of international health authorities have since focused on rapid diagnosis and isolation of patients as well as the search for therapies able to counter the most severe effects of the disease. In the absence of a known efficient therapy and because of the situation of a public-health emergency, it made sense to investigate the possible effect of chloroquine/hydroxychloroquine against SARS-CoV-2 since this molecule was previously described as a potent inhibitor of most coronaviruses, including SARS-CoV-1. Preliminary trials of chloroquine repurposing in the treatment of COVID-19 in China have been encouraging, leading to several new trials. Here we discuss the possible mechanisms of chloroquine interference with the SARS-CoV-2 replication cycle.
Collapse
Affiliation(s)
- Christian A Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; CNRS, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France.
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Colson
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
11
|
Gochuico BR, Ziegler SG, Ten NS, Balanda NJ, Mason CE, Zumbo P, Evans CA, Van Waes C, Gahl WA, Malicdan MCV. A comprehensive, multidisciplinary, precision medicine approach to discover effective therapy for an undiagnosed, progressive, fibroinflammatory disease. Transl Res 2020; 215:31-40. [PMID: 31520587 PMCID: PMC6939610 DOI: 10.1016/j.trsl.2019.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 11/21/2022]
Abstract
Precision medicine has generated diagnoses for many patients with challenging undiagnosed disorders. Some individuals remain without a diagnosis despite comprehensive testing, and this impedes their treatment. This report addresses the role of personalized medicine in identifying effective therapy for an undiagnosed disease. A 22-year-old woman presented with chronic severe recurrent trismus, facial pain, progressive multicentric inflammatory and fibrotic masses, and high C-reactive protein. Sites of disease included the pterygomaxillary region, masseter muscles, mandible, lung, pericardium, intrabdominal cavity, and retroperitoneum. A diagnosis was not established after an extensive assessment, including multiple biopsies. The patient was subsequently evaluated under the Undiagnosed Diseases Program at the National Institutes of Health. Large scale genotyping, proteomic studies, and in vitro and gene expression analyses of fibroblasts obtained from a major disease locus were performed. Germline genetic testing did not identify strong candidate genes; proteomic studies of the patient's serum and bronchoalveolar lavage fluid and gene expression analyses of her cells were consistent with dysregulation of the tumor necrosis factor-alpha pathway. The patient's cultured fibroblasts were incubated with selected drugs, and cell proliferation was inhibited by hydroxychloroquine. Treatment of the patient with hydroxychloroquine conferred prolonged beneficial clinical effects, including stabilization of trismus and reduction of corticosteroid dose, C-reactive protein, and size of masses. This case represents an example of precision medicine applied to discover effective treatments for individuals with enigmatic undiagnosed disorders.
Collapse
Affiliation(s)
- Bernadette R Gochuico
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.
| | - Shira G Ziegler
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland; Department of Genetics and Pediatrics, Johns Hopkins University School of Medicine, Bloomberg Children's Center, Baltimore, Maryland
| | - Nicholas S Ten
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - Nicholas J Balanda
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York; The World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Colleen A Evans
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - Carter Van Waes
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesda, Maryland
| | - William A Gahl
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - May C V Malicdan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Cumming BM, Goldring JPD. Monocyte phagocytosis of malaria β-haematin in the presence of artemisinin, amodiaquine, chloroquine, doxycycline, primaquine, pyrimethamine and quinine. Exp Parasitol 2018; 197:93-102. [PMID: 30562480 DOI: 10.1016/j.exppara.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 11/07/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
Abstract
The intraerythrocytic malaria parasite digests haemoglobin to provide amino acids for metabolism and releases toxic haem that is sequestered into haemozoin, a non-toxic, insoluble, crystalline pigment. Following erythrocyte rupture, haemozoin is released into circulation and phagocytosed by monocytes. Phagocytosed haemozoin and antimalarial drugs have both been reported to modulate monocyte functions. This study determined the effects of therapeutic concentrations of seven antimalarial drugs; amodiaquine, artemisinin, chloroquine, doxycycline, primaquine, pyrimethamine and quinine, on the phagocytosis of β-haematin (synthetic haemozoin) by two monocytic cell lines, J774A.1 and U937, and human peripheral blood mononuclear cells. A novel spectrophotometric method based on the absorbance (O.D 400 nm) of alkali/SDS treated monocytes containing β-haematin was developed to complement counting phagocytosis with microscopy. The method has potential use for the large scale screening of monocyte phagocytic activity. Artemisinin, quinine, primaquine and pyrimethamine activated β-haematin phagocytosis by 12% or more, whereas amodiaquine, chloroquine and doxycyline inhibited β-haematin phagocytosis. In contrast, antimalarial drugs had minimal inhibitory effects on the phagocytosis of latex beads with only quinine resulting in more than 20% inhibition. Antimalarial drugs appear to alter monocyte phagocytic activity which has implications for the treatment, pathogenicity and adjunct therapies for malaria.
Collapse
Affiliation(s)
- Bridgette M Cumming
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa
| | - J P Dean Goldring
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
13
|
Alam K, Pahwa S, Wang X, Zhang P, Ding K, Abuznait AH, Li L, Yue W. Downregulation of Organic Anion Transporting Polypeptide (OATP) 1B1 Transport Function by Lysosomotropic Drug Chloroquine: Implication in OATP-Mediated Drug-Drug Interactions. Mol Pharm 2016; 13:839-51. [PMID: 26750564 PMCID: PMC4970216 DOI: 10.1021/acs.molpharmaceut.5b00763] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organic anion transporting polypeptide (OATP) 1B1 mediates the hepatic uptake of many drugs including lipid-lowering statins. Decreased OATP1B1 transport activity is often associated with increased systemic exposure of statins and statin-induced myopathy. Antimalarial drug chloroquine (CQ) is also used for long-term treatment of rheumatoid arthritis and systemic lupus erythematosus. CQ is lysosomotropic and inhibits protein degradation in lysosomes. The current studies were designed to determine the effects of CQ on OATP1B1 protein degradation, OATP1B1-mediated transport in OATP1B1-overexpressing cell line, and statin uptake in human sandwich-cultured hepatocytes (SCH). Treatment with lysosome inhibitor CQ increased OATP1B1 total protein levels in HEK293-OATP1B1 cells and in human SCH as determined by OATP1B1 immunoblot. In HEK293-FLAG-tagged OATP1B1 stable cell line, co-immunofluorescence staining indicated that intracellular FLAG-OATP1B1 is colocalized with lysosomal associated membrane glycoprotein (LAMP)-2, a marker protein of late endosome/lysosome. Enlarged LAMP-2-positive vacuoles with FLAG-OATP1B1 protein retained inside were readily detected in CQ-treated cells, consistent with blocking lysosomal degradation of OATP1B1 by CQ. In HEK293-OATP1B1 cells, without pre-incubation, CQ concentrations up to 100 μM did not affect OATP1B1-mediated [(3)H]E217G accumulation. However, pre-incubation with CQ at clinically relevant concentration(s) significantly decreased [(3)H]E217G and [(3)H]pitavastatin accumulation in HEK293-OATP1B1 cells and [(3)H]pitavastatin accumulation in human SCH. CQ pretreatment (25 μM, 2 h) resulted in ∼1.9-fold decrease in Vmax without affecting Km of OATP1B1-mediated [(3)H]E217G transport in HEK293-OATP1B1 cells. Pretreatment with monensin and bafilomycin A1, which also have lysosome inhibition activity, significantly decreased OATP1B1-mediated transport in HEK293-OATP1B1 cells. Pharmacoepidemiologic studies using data from the U.S. Food and Drug Administration Adverse Event Reporting System indicated that CQ plus pitavastatin, rosuvastatin, and pravastatin, which are minimally metabolized by the cytochrome P450 enzymes, led to higher myopathy risk than these statins alone. In summary, the present studies report novel findings that lysosome is involved in degradation of OATP1B1 protein and that pre-incubation with lysosomotropic drug CQ downregulates OATP1B1 transport activity. Our in vitro data in combination with pharmacoepidemiologic studies support that CQ has potential to cause OATP-mediated drug-drug interactions.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Sonia Pahwa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Xueying Wang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Pengyue Zhang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, United States
| | - Alaa H. Abuznait
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Lang Li
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| |
Collapse
|
14
|
Farias KJS, Machado PRL, de Almeida Junior RF, de Aquino AA, da Fonseca BAL. Chloroquine interferes with dengue-2 virus replication in U937 cells. Microbiol Immunol 2015; 58:318-26. [PMID: 24773578 PMCID: PMC7168487 DOI: 10.1111/1348-0421.12154] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/05/2014] [Accepted: 04/14/2014] [Indexed: 11/28/2022]
Abstract
The objective of this study was to investigate the use of chloroquine (CLQ) as an antiviral agent against dengue. Chloroquine, an amine acidotropic drug known to affect intracellular exocytic pathways by increasing endosomal pH, was used in the in vitro treatment of U937 cells infected with dengue virus type 2 (DENV‐2). Viral replication was assessed by quantification of virus produced through detection of copy numbers of DENV‐2 RNA, plaque assay and indirect immunofluorescence. qRT‐PCR and plaque assays were used to quantify the DENV‐2 load in infected U937 cells after CLQ treatment. It was found that a dose of 50 μg/mL of CLQ was not toxic to the cells and resulted in significantly less virus production in infected U937 cells than occurred in untreated cells. In the present work, CLQ was effective against DENV‐2 replication in U937 cells, and also caused a statistically significant reduction in expression of proinflammatory cytokines. The present study indicates that CLQ may be used to reduce viral yield in U937 cells.
Collapse
Affiliation(s)
- Kleber Juvenal Silva Farias
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil; Program of Graduate Studies of Applied Microbiology and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil; Virology Research Center, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
15
|
Abstract
The 4-aminoquinolines are weak bases that are completely absorbed from the gastrointestinal tract, sequestered in peripheral tissues, metabolized in the liver to pharmacologically active by-products, and excreted via the kidneys and the feces. The parent drugs and metabolites are excreted with a half-life of elimination of approximately 40 days. However, slow release from sequestered stores of the drugs means that after discontinuation, they continue to be released into the plasma for years. Correct dosing is based on the ideal body weight of the patient, which depends on height. The 4AQs diminish autoimmunity without compromising immunity to infections.
Collapse
Affiliation(s)
- David J. Browning
- grid.490463.cCharlotte Eye Ear Nose & Throat Associates, Charlotte, NC USA
| |
Collapse
|
16
|
Chafin CB, Regna NL, Hammond SE, Reilly CM. Cellular and urinary microRNA alterations in NZB/W mice with hydroxychloroquine or prednisone treatment. Int Immunopharmacol 2013; 17:894-906. [PMID: 24121037 DOI: 10.1016/j.intimp.2013.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/06/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Determining alterations to disease-associated miRNAs induced by specific therapeutics may allow the use of tailored therapy in lupus. We determined miRNA alterations in female NZB/W lupus mice treated with hydroxychloroquine (HCQ) or prednisone (PRED) for 12 weeks beginning at 24 weeks-of-age. B cell, PBMC, and urinary miR-let-7a expression were decreased with HCQ or PRED treatment. HCQ or PRED treatment reduced miR-21 expression in mesangial cells, T cells, pDCs, PBMCs, and the urine. MiR-146a expression was reduced in mesangial cells with HCQ treatment and in pDCs with HCQ or PRED treatment. PRED treatment increased miR-155 expression in mesangial, B, and T cells and PBMCs yet decreased miR-155 expression in pDCs and the urine. In vitro studies confirmed that HCQ or PRED's anti-inflammatory actions are dependent on their ability to inhibit miRNA expression. Our studies indicate that lupus therapeutics may work, in part, by altering the expression of disease-associated miRNAs.
Collapse
Affiliation(s)
- Cristen B Chafin
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States.
| | | | | | | |
Collapse
|
17
|
Chloroquine: modes of action of an undervalued drug. Immunol Lett 2013; 153:50-7. [PMID: 23891850 DOI: 10.1016/j.imlet.2013.07.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 12/30/2022]
Abstract
For more than two decades, chloroquine (CQ) was largely and deliberately used as first choice drug for malaria treatment. However, worldwide increasing cases of resistant strains of Plasmodium have hampered its use. Nevertheless, CQ has recently been tested as adjunct therapy in several inflammatory situations, such as rheumatoid arthritis and transplantation procedures, presenting intriguing and promising results. In this review, we discuss recent findings and CQ mechanisms of action vis-à-vis its use as a broad adjunct therapy.
Collapse
|
18
|
Silva JCD, Mariz HA, Rocha LFD, Oliveira PSSD, Dantas AT, Duarte ALBP, Pitta IDR, Galdino SL, Pitta MGDR. Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. Clinics (Sao Paulo) 2013; 68:766-71. [PMID: 23778483 PMCID: PMC3674253 DOI: 10.6061/clinics/2013(06)07] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/08/2013] [Accepted: 02/13/2013] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Hydroxychloroquine is an antimalarial agent that has been used in systemic lupus erythematosus and rheumatoid arthritis treatment for many years. Recently, novel mechanisms of action have been proposed, thereby broadening the therapeutic perspective of this medication. The purpose of this study was to evaluate the immunomodulatory activity of hydroxychloroquine in T helper 17 (Th17) cytokines in healthy individuals and patients. METHODS Eighteen female patients with systemic lupus erythematosus (mean age 39.0±12.9 years) and 13 female patients with rheumatoid arthritis (mean age 51.5±7.7 years) were recruited from Universidade Federal de Pernambuco-Brazil. The patients were included after fulfilling four classification criteria for systemic lupus erythematosus or rheumatoid arthritis from the American College of Rheumatology. After being stimulated with phorbol 12-myristate 13-acetate and ionomycin in the absence or presence of different concentrations of hydroxychloroquine, the interleukin 6, 17 and 22 levels were quantified with an enzyme-linked immunosorbent assay in culture supernatants of peripheral blood mononuclear cells from healthy individuals and patients. RESULTS We demonstrated that in peripheral blood mononuclear cells from healthy volunteers and in systemic lupus erythematosus and rheumatoid arthritis patients, there was a significant reduction in the IL-6, IL-17 and IL-22 supernatant levels after adding hydroxychloroquine. CONCLUSIONS Our in vitro results demonstrated that hydroxychloroquine inhibits IL-6, IL-17 and IL-22 production and contributes to a better understanding of the mechanism of action of this medication.
Collapse
Affiliation(s)
- Juliana Cruz da Silva
- Universidade Federal de Pernambuco, Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Recife/PE, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lezmi S, Rokh N, Saint-Macary G, Pino M, Sallez V, Thevenard F, Roome N, Rosolen S. Chloroquine causes similar electroretinogram modifications, neuronal phospholipidosis and marked impairment of synaptic vesicle transport in albino and pigmented rats. Toxicology 2013; 308:50-9. [PMID: 23567313 DOI: 10.1016/j.tox.2013.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/28/2013] [Accepted: 03/25/2013] [Indexed: 01/07/2023]
Abstract
Retinal toxicity of chloroquine has been known for several years, but the mechanism(s) of toxicity remain controversial; some author support the idea that the binding of chloroquine to melanin pigments in the retinal pigmented epithelium (RPE) play a major toxic role by concentrating the drug in the eye. In our study, 12 albinos Sprague-Dawley (SD) and 12 pigmented Brown Norway (BN) rats were treated orally for 3 months with chloroquine to compare functional and pathological findings. On Flash electroretinograms (ERG) performed in scotopic conditions, similar and progressive (time-dependent) delayed onset and decreased amplitudes of oscillatory potentials (from Day 71) and b-waves (on Day 92) were identified in both BN and SD rats. In both strains, identical morphological changes consisted of neuronal phospholipidosis associated with UV auto-fluorescence without evidence of retinal degeneration and gliosis; the RPE did not show any morphological lesions or autofluorescence. IHC analyses demonstrated a decrease in GABA expression in the inner nuclear layer. In addition, a marked accumulation of synaptic vesicles coupled with a marked disruption of neurofilaments in the optic nerve fibers was identified. In conclusion, ERG observations were very similar to those described in humans. Comparable ERG modifications, histopathology and immunohistochemistry findings were observed in the retina of both rat strains suggesting that melanin pigment is unlikely involved. chloroquine-induced impairment of synaptic vesicle transport, likely related to disruption of neurofilaments was identified and non-previously reported. This new mechanism of toxicity may also be responsible for the burry vision described in humans chronically treated with chloroquine.
Collapse
Affiliation(s)
- Stéphane Lezmi
- Covance (Foremely Sanofi R&D), Toxicology Services, 2-8 route de Rouen, ZI de Limay Porcheville, 78440 Porcheville, France.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
El-Far M, Isabelle C, Chomont N, Bourbonnière M, Fonseca S, Ancuta P, Peretz Y, Chouikh Y, Halwani R, Schwartz O, Madrenas J, Freeman GJ, Routy JP, Haddad EK, Sékaly RP. Down-regulation of CTLA-4 by HIV-1 Nef protein. PLoS One 2013; 8:e54295. [PMID: 23372701 PMCID: PMC3553160 DOI: 10.1371/journal.pone.0054295] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022] Open
Abstract
HIV-1 Nef protein down-regulates several cell surface receptors through its interference with the cell sorting and trafficking machinery. Here we demonstrate for the first time the ability of Nef to down-regulate cell surface expression of the negative immune modulator CTLA-4. Down-regulation of CTLA-4 required the Nef motifs DD175, EE155 and LL165, all known to be involved in vesicle trafficking. Disruption of the lysosomal functions by pH-neutralizing agents prevented CTLA-4 down-regulation by Nef, demonstrating the implication of the endosomal/lysosomal compartments in this process. Confocal microscopy experiments visualized the co-localization between Nef and CTLA-4 in the early and recycling endosomes but not at the cell surface. Overall, our results provide a novel mechanism by which HIV-1 Nef interferes with the surface expression of the negative regulator of T cell activation CTLA-4. Down-regulation of CTLA-4 may contribute to the mechanisms by which HIV-1 sustains T cell activation, a critical step in viral replication and dissemination.
Collapse
Affiliation(s)
- Mohamed El-Far
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Catherine Isabelle
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
- Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Martin Bourbonnière
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Simone Fonseca
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
- Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
| | - Yoav Peretz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Younes Chouikh
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Rabih Halwani
- Prince Naif Center for Immunology Research and Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Olivier Schwartz
- Virus and Immunity Group, Department of Virology, Institut Pasteur, Paris, France
| | - Joaquín Madrenas
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Gordon J. Freeman
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, McGill University, Montréal, Canada
| | - Elias K. Haddad
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
- Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Rafick-Pierre Sékaly
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
- Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
- * E-mail:
| |
Collapse
|
21
|
Bratland E, Hellesen A, Husebye ES. Induction of CXCL10 chemokine in adrenocortical cells by stimulation through toll-like receptor 3. Mol Cell Endocrinol 2013; 365:75-83. [PMID: 22989785 DOI: 10.1016/j.mce.2012.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 12/01/2022]
Abstract
Addison's disease is a prototypic organ-specific autoimmune disease affecting the adrenal cortex. The CXC chemokine ligand 10 (CXCL10) is expressed early in viral infections, and is produced by primary adrenocortical cells stimulated by certain cytokines. CXCL10 is also elevated in the serum of Addison's disease patients. We therefore investigated if the viral RNA substitute polyinosine-polycytidylic acid (poly (I:C)) could influence the cytokine induced production of CXCL10 by adrenocortical cells. We found that poly (I:C) could induce CXCL10 in NCI-H295R adrenocortical carcinoma cells, either alone or synergistically along with cytokines interferon-γ and tumor necrosis factor-α. This effect was found to be mediated by toll-like receptor 3 and both nuclear factor κB (NFκB) and signal transducer and activator of transcription-1 (STAT1), but not type I interferons, seemed to be involved. We propose that the combination of environmental and endogenous factors presented here, could contribute to the multifactorial pathogenesis of autoimmune Addison's disease.
Collapse
Affiliation(s)
- Eirik Bratland
- Section for Endocrinology, Institute of Medicine, University of Bergen, N-5020 Bergen, Norway.
| | | | | |
Collapse
|
22
|
A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis 2010; 4:e785. [PMID: 20706626 PMCID: PMC2919376 DOI: 10.1371/journal.pntd.0000785] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/10/2010] [Indexed: 11/19/2022] Open
Abstract
Background There is currently no licensed antiviral drug for treatment of dengue. Chloroquine (CQ) inhibits the replication of dengue virus (DENV) in vitro. Methods and Findings A double-blind, randomized, placebo-controlled trial of CQ in 307 adults hospitalized for suspected DENV infection was conducted at the Hospital for Tropical Diseases (Ho Chi Minh City, Vietnam) between May 2007 and July 2008. Patients with illness histories of 72 hours or less were randomized to a 3-day course of CQ (n = 153) or placebo (n = 154). Laboratory-confirmation of DENV infection was made in 257 (84%) patients. The primary endpoints were time to resolution of DENV viraemia and time to resolution of DENV NS1 antigenaemia. In patients treated with CQ there was a trend toward a longer duration of DENV viraemia (hazard ratio (HR) = 0.80, 95% CI 0.62–1.05), but we did not find any difference for the time to resolution of NS1 antigenaemia (HR = 1.07, 95% CI 0.76–1.51). Interestingly, CQ was associated with a significant reduction in fever clearance time in the intention-to-treat population (HR = 1.37, 95% CI 1.08–1.74) but not in the per-protocol population. There was also a trend towards a lower incidence of dengue hemorrhagic fever (odds ratio = 0.60, PP 95% CI 0.34–1.04) in patients treated with CQ. Differences in levels of T cell activation or pro- or anti-inflammatory plasma cytokine concentrations between CQ- and placebo-treated patients did not explain the trend towards less dengue hemorrhagic fever in the CQ arm. CQ was associated with significantly more adverse events, primarily vomiting. Conclusions CQ does not reduce the durations of viraemia and NS1 antigenaemia in dengue patients. Further trials, with appropriate endpoints, would be required to determine if CQ treatment has any clinical benefit in dengue. Trial Registration Current Controlled Trials number ISRCTN38002730. There is no available drug or vaccine against dengue, an acute viral disease that affects ∼50 million people annually in tropical and sub-tropical countries. Chloroquine (CQ), a cheap and well-tolerated drug, inhibits the growth of dengue viruses in the laboratory with concentrations achievable in the body. To measure the antiviral efficacy of CQ in dengue, we conducted a study involving 307 adults with suspected dengue. Patients received a 3-day oral dosage of placebo or CQ early in their illness. Unfortunately, we did not see an effect of CQ on the duration of viral infection. We did, however, observe that CQ had a modest anti-fever effect. In patients treated with CQ, we observed a trend towards a lower incidence of dengue hemorrhagic fever, a severe form of dengue. We did not find any differences in the immune response that can explain this trend. We also found more adverse events, primarily vomiting, with CQ. This trial provides valuable new information on how to perform trials of antiviral drugs for dengue.
Collapse
|
23
|
Abrantes P, Dimopoulos G, Grosso AR, do Rosário VE, Silveira H. Chloroquine mediated modulation of Anopheles gambiae gene expression. PLoS One 2008; 3:e2587. [PMID: 18596975 PMCID: PMC2432468 DOI: 10.1371/journal.pone.0002587] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 05/20/2008] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Plasmodium development in the mosquito is crucial for malaria transmission and depends on the parasite's interaction with a variety of cell types and specific mosquito factors that have both positive and negative effects on infection. Whereas the defensive response of the mosquito contributes to a decrease in parasite numbers during these stages, some components of the blood meal are known to favor infection, potentiating the risk of increased transmission. The presence of the antimalarial drug chloroquine in the mosquito's blood meal has been associated with an increase in Plasmodium infectivity for the mosquito, which is possibly caused by chloroquine interfering with the capacity of the mosquito to defend against the infection. METHODOLOGY/PRINCIPAL FINDINGS In this study, we report a detailed survey of the Anopheles gambiae genes that are differentially regulated by the presence of chloroquine in the blood meal, using an A. gambiae cDNA microarray. The effect of chloroquine on transcript abundance was evaluated separately for non-infected and Plasmodium berghei-infected mosquitoes. Chloroquine was found to affect the abundance of transcripts that encode proteins involved in a variety of processes, including immunity, apoptosis, cytoskeleton and the response to oxidative stress. This pattern of differential gene expression may explain the weakened mosquito defense response which accounts for the increased infectivity observed in chloroquine-treated mosquitoes. CONCLUSIONS/SIGNIFICANCE The results of the present study suggest that chloroquine can interfere with several putative mosquito mechanisms of defense against Plasmodium at the level of gene expression and highlight the need for a better understanding of the impacts of antimalarial agents on parasite transmission.
Collapse
Affiliation(s)
- Patrícia Abrantes
- Centro de Malária e Outras Doenças Tropicais-LA/ UEI de Malária, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
24
|
Silveira H, Ramos S, Abrantes P, Lopes LF, do Rosario VE, Abrahamsen MS. Effect of chloroquine on gene expression of Plasmodium yoelii nigeriensis during its sporogonic development in the mosquito vector. Malar J 2007; 6:84. [PMID: 17605769 PMCID: PMC1940257 DOI: 10.1186/1475-2875-6-84] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 07/02/2007] [Indexed: 12/04/2022] Open
Abstract
Background The anti-malarial chloroquine can modulate the outcome of infection during the Plasmodium sporogonic development, interfering with Plasmodium gene expression and subsequently, with transmission. The present study sets to identify Plasmodium genes that might be regulated by chloroquine in the mosquito vector. Methods Differential display RT-PCR (DDRT-PCR) was used to identify genes expressed during the sporogonic cycle that are regulated by exposure to chloroquine. Anopheles stephensi mosquitoes were fed on Plasmodium yoelii nigeriensis-infected mice. Three days post-infection, mosquitoes were fed a non-infectious blood meal from mice treated orally with 50 mg/kg chloroquine. Two differentially expressed Plasmodium transcripts (Pyn_chl091 and Pyn_chl055) were further characterized by DNA sequencing and real-time PCR analysis. Results Both transcripts were represented in Plasmodium EST databases, but displayed no homology with any known genes. Pyn_chl091 was upregulated by day 18 post infection when the mosquito had a second blood meal. However, when the effect of chloroquine on that transcript was investigated during the erythrocytic cycle, no significant differences were observed. Although slightly upregulated by chloroquine exposure the expression of Pyn_chl055 was more affected by development, increasing towards the end of the sporogonic cycle. Transcript abundance of Pyn_chl055 was reduced when erythrocytic stages were treated with chloroquine. Conclusion Chloroquine increased parasite load in mosquito salivary glands and interferes with the expression of at least two Plasmodium genes. The transcripts identified contain putative signal peptides and transmembrane domains suggesting that these proteins, due to their location, are targets of chloroquine (not as an antimalarial) probably through cell trafficking and recycling.
Collapse
Affiliation(s)
- Henrique Silveira
- Centro de Malária e Outras Doenças Tropicais, UEI Malária, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal
| | - Susana Ramos
- Centro de Malária e Outras Doenças Tropicais, UEI Malária, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal
| | - Patrícia Abrantes
- Centro de Malária e Outras Doenças Tropicais, UEI Malária, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal
| | - Luís Filipe Lopes
- Centro de Malária e Outras Doenças Tropicais, UEI Malária, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal
| | - Virgílio E do Rosario
- Centro de Malária e Outras Doenças Tropicais, UEI Malária, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal
| | | |
Collapse
|
25
|
Jang CH, Choi JH, Byun MS, Jue DM. Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology (Oxford) 2006; 45:703-10. [PMID: 16418198 DOI: 10.1093/rheumatology/kei282] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES TNF-alpha, IL-1 and IL-6 are known to have primary roles in the pathogenesis of rheumatoid arthritis and other inflammatory diseases. The anti-rheumatic drug chloroquine has been shown to inhibit TNF-alpha, IL-1 and IL-6 production from mononuclear phagocytes. We examined the underlying mechanisms involved in the chloroquine-induced inhibition of cytokine production. METHODS Human peripheral blood mononuclear cells and monocytes/macrophages and monocytic U-937 and THP-1 cells were stimulated with lipopolysaccharide, and TNF-alpha, IL-1beta and IL-6 production was measured by ELISA. Levels of mRNA were measured by northern blotting and reverse transcription-polymerase chain reaction. Synthesis of 26-kDa TNF-alpha precursor was measured by metabolic labelling and immunoprecipitation analysis. Transcription rate was determined by nuclear run-on assay. RESULTS TNF-alpha release from the cells was inhibited by chloroquine, whereas the steady-state level of TNF-alpha mRNA and synthesis of 26-kDa TNF-alpha precursor were not changed by chloroquine. In contrast, chloroquine-induced inhibition of IL-1beta and IL-6 release was accompanied by a decrease in their steady-state mRNA levels. The transcription rates of the IL-1beta and IL-6 genes were not changed by chloroquine, whereas the stability of IL-1beta and IL-6 mRNA was decreased by chloroquine. Weak-base amines such as methylamine and ammonium chloride had no effect on the production of TNF-alpha, whereas they partially blocked the production of IL-1beta and IL-6. CONCLUSIONS Our results indicate that chloroquine-mediated inhibition of TNF-alpha, IL-1beta and IL-6 synthesis occurs through different modes in lipopolysaccharide-stimulated human monocytes/macrophages: it blocks the conversion of cell-associated TNF-alpha precursor to mature soluble protein, whereas it reduces the levels of IL-1beta and IL-6 mRNA, at least in part, by decreasing their stability and by a pH-dependent mechanism.
Collapse
Affiliation(s)
- C-H Jang
- Department of Biochemistry, College of Medicine, Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea
| | | | | | | |
Collapse
|
26
|
Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today's diseases? THE LANCET. INFECTIOUS DISEASES 2003; 3:722-7. [PMID: 14592603 PMCID: PMC7128816 DOI: 10.1016/s1473-3099(03)00806-5] [Citation(s) in RCA: 811] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chloroquine is a 9-aminoquinoline known since 1934. Apart from its well-known antimalarial effects, the drug has interesting biochemical properties that might be applied against some viral infections. Chloroquine exerts direct antiviral effects, inhibiting pH-dependent steps of the replication of several viruses including members of the flaviviruses, retroviruses, and coronaviruses. Its best-studied effects are those against HIV replication, which are being tested in clinical trials. Moreover, chloroquine has immunomodulatory effects, suppressing the production/release of tumour necrosis factor α and interleukin 6, which mediate the inflammatory complications of several viral diseases. We review the available information on the effects of chloroquine on viral infections, raising the question of whether this old drug may experience a revival in the clinical management of viral diseases such as AIDS and severe acute respiratory syndrome, which afflict mankind in the era of globalisation.
Collapse
Affiliation(s)
- Andrea Savarino
- Department of Infectious Diseases, Università Cattolica del Sacro Cuore, Rome, Italy.
| | | | | | | | | |
Collapse
|
27
|
Abstract
The introduction of TNF- alpha -inhibiting biologicals has been a major therapeutic breakthrough in rheumatoid arthritis therapy. Against a background of conventional disease-modifying antirheumatic drug experience, this review focuses on present experiences and possible future developments. TNF inhibition results in profound improvement in the majority of rheumatoid arthritis patients, but non-response and adverse effects need attention. Adalimumab is being filed for approval. Other monoclonal antibodies or receptor constructs are in late development. Small molecule inhibitors of TNF production or signalling are a hot topic. One emerging target is nuclear factor kappa B and selective inhibition has proved effective in animal models of arthritis. Synovial proliferation in rheumatoid arthritis is characterised by diminished apoptosis of fibroblasts, whereas bone marrow precursor cells undergo accelerated apoptosis in active rheumatoid arthritis. Both abnormalities are seemingly ameliorated by TNF inhibition. Anti-apoptotic strategies will soon go into development for control of unresponsive rheumatoid arthritis.
Collapse
Affiliation(s)
- Frank A Wollheim
- Department of Rheumatology, Lund University Hospital, SE221 85 Lund, Sweden.
| |
Collapse
|