1
|
Tan X, Neslund EM, Fentis K, Ding ZM. Fluorocitrate inhibition of astrocytes reduces nicotine self-administration and alters extracellular levels of glutamate and dopamine within the nucleus accumbens in male wistar rats. Neuropharmacology 2024; 255:110001. [PMID: 38750804 PMCID: PMC11156530 DOI: 10.1016/j.neuropharm.2024.110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Emerging evidence suggests an important role of astrocytes in mediating behavioral and molecular effects of commonly misused drugs. Passive exposure to nicotine alters molecular, morphological, and functional properties of astrocytes. However, a potential involvement of astrocytes in nicotine reinforcement remains largely unexplored. The overall hypothesis tested in the current study is that astrocytes play a critical role in nicotine reinforcement. Protein levels of the astrocyte marker glial fibrillary acidic protein (GFAP) were examined in key mesocorticolimbic regions following chronic nicotine intravenous self-administration. Fluorocitrate, a metabolic inhibitor of astrocytes, was tested for its effects on behaviors related to nicotine reinforcement and relapse. Effects of fluorocitrate on extracellular neurotransmitter levels, including glutamate, GABA, and dopamine, were determined with microdialysis. Chronic nicotine intravenous self-administration increased GFAP expression in the nucleus accumbens core (NACcr), but not other key mesocorticolimbic regions, compared to saline intravenous self-administration. Both intra-ventricular and intra-NACcr microinjection of fluorocitrate decreased nicotine self-administration. Intra-NACcr fluorocitrate microinjection also inhibited cue-induced reinstatement of nicotine seeking. Local perfusion of fluorocitrate decreased extracellular glutamate levels, elevated extracellular dopamine levels, but did not alter extracellular GABA levels in the NACcr. Fluorocitrate did not alter basal locomotor activity. These results indicate that nicotine reinforcement upregulates the astrocyte marker GFAP expression in the NACcr, metabolic inhibition of astrocytes attenuates nicotine reinforcement and relapse, and metabolic inhibition of astrocytes disrupts extracellular dopamine and glutamate transmission. Overall, these findings suggest that astrocytes play an important role in nicotine reinforcement and relapse, potentially through regulation of extracellular glutamate and dopamine neurotransmission.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Elizabeth M Neslund
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Khawla Fentis
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Zheng-Ming Ding
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
2
|
Falsetti L, Viticchi G, Zaccone V, Guerrieri E, Moroncini G, Luzzi S, Silvestrini M. Shared Molecular Mechanisms among Alzheimer’s Disease, Neurovascular Unit Dysfunction and Vascular Risk Factors: A Narrative Review. Biomedicines 2022; 10:biomedicines10020439. [PMID: 35203654 PMCID: PMC8962428 DOI: 10.3390/biomedicines10020439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/27/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia, affecting 24 million individuals. Clinical and epidemiological studies have found several links between vascular risk factors (VRF), neurovascular unit dysfunction (NVUd), blood-brain barrier breakdown (BBBb) and AD onset and progression in adulthood, suggesting a pathogenetic continuum between AD and vascular dementia. Shared pathways between AD, VRF, and NVUd/BBB have also been found at the molecular level, underlining the strength of this association. The present paper reviewed the literature describing commonly shared molecular pathways between adult-onset AD, VRF, and NVUd/BBBb. Current evidence suggests that VRF and NVUd/BBBb are involved in AD neurovascular and neurodegenerative pathology and share several molecular pathways. This is strongly supportive of the hypothesis that the presence of VRF can at least facilitate AD onset and progression through several mechanisms, including NVUd/BBBb. Moreover, vascular disease and several comorbidities may have a cumulative effect on VRF and worsen the clinical manifestations of AD. Early detection and correction of VRF and vascular disease by improving NVUd/BBBd could be a potential target to reduce the overall incidence and delay cognitive impairment in AD.
Collapse
Affiliation(s)
- Lorenzo Falsetti
- Internal and Subintensive Medicine Department, Azienda Ospedaliero-Universitaria “Ospedali Riuniti” di Ancona, 60100 Ancona, Italy;
- Correspondence: ; Tel.: +39-071-596-5269
| | - Giovanna Viticchi
- Neurologic Clinic, Marche Polytechnic University, 60126 Ancona, Italy; (G.V.); (S.L.); (M.S.)
| | - Vincenzo Zaccone
- Internal and Subintensive Medicine Department, Azienda Ospedaliero-Universitaria “Ospedali Riuniti” di Ancona, 60100 Ancona, Italy;
| | - Emanuele Guerrieri
- Emergency Medicine Residency Program, Università Politecnica delle Marche, 60121 Ancona, Italy;
| | | | - Simona Luzzi
- Neurologic Clinic, Marche Polytechnic University, 60126 Ancona, Italy; (G.V.); (S.L.); (M.S.)
| | - Mauro Silvestrini
- Neurologic Clinic, Marche Polytechnic University, 60126 Ancona, Italy; (G.V.); (S.L.); (M.S.)
| |
Collapse
|
3
|
Li ZL, Gou CY, Wang WH, Li Y, Cui Y, Duan JJ, Chen Y. A novel effect of PDLIM5 in α7 nicotinic acetylcholine receptor upregulation and surface expression. Cell Mol Life Sci 2022; 79:64. [PMID: 35013841 PMCID: PMC11072317 DOI: 10.1007/s00018-021-04115-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widespread throughout the central nervous system. Signaling through nAChRs contributes to numerous higher-order functions, including memory and cognition, as well as abnormalities such as nicotine addiction and neurodegenerative disorders. Although recent studies indicate that the PDZ-containing proteins comprising PSD-95 family co-localize with nicotinic acetylcholine receptors and mediate downstream signaling in the neurons, the mechanisms by which α7nAChRs are regulated remain unclear. Here, we show that the PDZ-LIM domain family protein PDLIM5 binds to α7nAChRs and plays a role in nicotine-induced α7nAChRs upregulation and surface expression. We find that chronic exposure to 1 μM nicotine upregulated α7, β2-contained nAChRs and PDLIM5 in cultured hippocampal neurons, and the upregulation of α7nAChRs and PDLIM5 is increased more on the cell membrane than the cytoplasm. Interestingly, in primary hippocampal neurons, α7nAChRs and β2nAChRs display distinct patterns of expression, with α7nAChRs colocalized more with PDLIM5. Furthermore, PDLIM5 interacts with α7nAChRs, but not β2nAChRs in native brain neurons. Knocking down of PDLIM5 in SH-SY5Y abolishes nicotine-induced upregulation of α7nAChRs. In primary hippocampal neurons, using shRNA against PDLIM5 decreased both surface clustering of α7nAChRs and α7nAChRs-mediated currents. Proteomics analysis and isothermal titration calorimetry (ITC) results show that PDLIM5 interacts with α7nAChRs through the PDZ domain, and the interaction between PDLIM5 and α7nAChRs can be promoted by nicotine. Collectively, our data suggest a novel cellular role of PDLIM5 in the regulation of α7nAChRs, which may be relevant to plastic changes in the nervous system.
Collapse
Affiliation(s)
- Zi-Lin Li
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Chen-Yu Gou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzho, 510080, Guangdong, People's Republic of China
| | - Wen-Hui Wang
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yuan Li
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzho, 510080, Guangdong, People's Republic of China
| | - Yu Cui
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Jing-Jing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzho, 510080, Guangdong, People's Republic of China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Yuan Chen
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
He F, Li T, Lin J, Li F, Zhai Y, Zhang T, Gu X, Zhao G. Passive Smoking Exposure in Living Environments Reduces Cognitive Function: A Prospective Cohort Study in Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041402. [PMID: 32098188 PMCID: PMC7068506 DOI: 10.3390/ijerph17041402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 01/29/2023]
Abstract
There is currently no consensus regarding the effects of passive smoking exposure on cognitive function in older adults. We evaluated 7000 permanent residents from six regions within Zhejiang Province, China, aged ≥60 years, without cognitive impairment at baseline and during follow-up examinations for two years. The Chinese version of the Mini-Mental State Examination was used to assess the participants’ cognitive function. Multivariate regression analyses were carried out to calculate the adjusted relative risks (RRs) as measures of the association between passive smoking exposure and cognitive impairment after adjusting for potential confounders. The results showed an association between passive smoking exposure in the living environment and increased risk of cognitive impairment (RR: 1.16; 95% confidence interval (CI): 1.01–1.35). No dose–response relationship between the cumulative dose of passive smoking exposure (days) and cognitive impairment was observed. The results of stratified analyses suggested a harmful effect of passive smoking exposure on cognitive function in non-smokers (RR: 1.24; 95% CI: 1.06–1.46), but not in smokers (RR: 1.11; 95% CI: 0.71–1.92). Therefore, passive smoking exposure increased the risk of cognitive impairment in older adults, especially non-smokers. More effective measures to restrict smoking in the living environment should be developed and implemented.
Collapse
Affiliation(s)
- Fan He
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China;
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.L.); (F.L.); (Y.Z.); (T.Z.); (X.G.)
| | - Tian Li
- Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA;
| | - Junfen Lin
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.L.); (F.L.); (Y.Z.); (T.Z.); (X.G.)
| | - Fudong Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.L.); (F.L.); (Y.Z.); (T.Z.); (X.G.)
| | - Yujia Zhai
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.L.); (F.L.); (Y.Z.); (T.Z.); (X.G.)
| | - Tao Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.L.); (F.L.); (Y.Z.); (T.Z.); (X.G.)
| | - Xue Gu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.L.); (F.L.); (Y.Z.); (T.Z.); (X.G.)
| | - Genming Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China;
- Correspondence: ; Tel.: +86-021-54237334
| |
Collapse
|
5
|
Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: From astrocytopathy to astrogliosis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:126-146. [PMID: 28989099 PMCID: PMC5889368 DOI: 10.1016/j.pnpbp.2017.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Abstract
Complex roles for astrocytes in health and disease continue to emerge, highlighting this class of cells as integral to function and dysfunction of the nervous system. In particular, escalating evidence strongly implicates a range of changes in astrocyte structure and function associated with neuropsychiatric diseases including major depressive disorder, schizophrenia, and addiction. These changes can range from astrocytopathy, degeneration, and loss of function, to astrogliosis and hypertrophy, and can be either adaptive or maladaptive. Evidence from the literature indicates a myriad of changes observed in astrocytes from both human postmortem studies as well as preclinical animal models, including changes in expression of glial fibrillary protein, as well as changes in astrocyte morphology and astrocyte-mediated regulation of synaptic function. In this review, we seek to provide a comprehensive assessment of these findings and consequently evidence for common themes regarding adaptations in astrocytes associated with neuropsychiatric disease. While results are mixed across conditions and models, general findings indicate decreased astrocyte cellular features and gene expression in depression, chronic stress and anxiety, but increased inflammation in schizophrenia. Changes also vary widely in response to different drugs of abuse, with evidence reflective of features of astrocytopathy to astrogliosis, varying across drug classes, route of administration and length of withdrawal.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kati L Healey
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States..
| |
Collapse
|
6
|
Abreu-Villaça Y, Manhães AC, Krahe TE, Filgueiras CC, Ribeiro-Carvalho A. Tobacco and alcohol use during adolescence: Interactive mechanisms in animal models. Biochem Pharmacol 2017; 144:1-17. [DOI: 10.1016/j.bcp.2017.06.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022]
|
7
|
Dutra‐Tavares AC, Silva JO, Nunes‐Freitas AL, Guimarães VM, Araújo UC, Conceição EP, Moura EG, Lisboa PC, Filgueiras CC, Manhães AC, Abreu‐Villaça Y, Ribeiro‐Carvalho A. Maternal undernutrition during lactation alters nicotine reward and DOPAC/dopamine ratio in cerebral cortex in adolescent mice, but does not affect nicotine‐induced nAChRs upregulation. Int J Dev Neurosci 2017; 65:45-53. [DOI: 10.1016/j.ijdevneu.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ana C. Dutra‐Tavares
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Juliana O. Silva
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - André L. Nunes‐Freitas
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Vinícius M.S. Guimarães
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Ulisses C. Araújo
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Ellen P.S. Conceição
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Egberto G. Moura
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Patrícia C. Lisboa
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Cláudio C. Filgueiras
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Alex C. Manhães
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Yael Abreu‐Villaça
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Anderson Ribeiro‐Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de JaneiroRua Dr. Francisco Portela 1470 – PatronatoSão GonçaloRJ24435‐005Brazil
| |
Collapse
|
8
|
Evaluation of the Nicotinic Acetylcholine Receptor-Associated Proteome at Baseline and Following Nicotine Exposure in Human and Mouse Cortex. eNeuro 2016; 3:eN-NWR-0166-16. [PMID: 27559543 PMCID: PMC4985585 DOI: 10.1523/eneuro.0166-16.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) support the initiation and maintenance of smoking, but the long-term changes occurring in the protein complex as a result of smoking and the nicotine in tobacco are not known. Human studies and animal models have also demonstrated that increasing cholinergic tone increases behaviors related to depression, suggesting that the nAChR-associated proteome could be altered in individuals with mood disorders. We therefore immunopurified nAChRs and associated proteins for quantitative proteomic assessment of changes in protein–protein interactions of high-affinity nAChRs containing the β2 subunit (β2*-nAChRs) from either cortex of mice treated with saline or nicotine, or postmortem human temporal cortex tissue from tobacco-exposed and nonexposed individuals, with a further comparison of diagnosed mood disorder to control subjects. We observed significant effects of nicotine exposure on the β2*-nAChR-associated proteome in human and mouse cortex, particularly in the abundance of the nAChR subunits themselves, as well as putative interacting proteins that make up core components of neuronal excitability (Na/K ATPase subunits), presynaptic neurotransmitter release (syntaxins, SNAP25, synaptotagmin), and a member of a known nAChR protein chaperone family (14-3-3ζ). These findings identify candidate-signaling proteins that could mediate changes in cholinergic signaling via nicotine or tobacco use. Further analysis of identified proteins will determine whether these interactions are essential for primary function of nAChRs at presynaptic terminals. The identification of differences in the nAChR-associated proteome and downstream signaling in subjects with various mood disorders may also identify novel etiological mechanisms and reveal new treatment targets.
Collapse
|
9
|
Eggert M, Winterer G, Wanischeck M, Hoda JC, Bertrand D, Steinlein O. The nicotinic acetylcholine receptor alpha 4 subunit contains a functionally relevant SNP Haplotype. BMC Genet 2015; 16:46. [PMID: 25934188 PMCID: PMC4417232 DOI: 10.1186/s12863-015-0204-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-coding single nucleotide polymorphisms within the nicotinic acetylcholine receptor alpha 4 subunit gene (CHRNA4) are robustly associated with various neurological and behavioral phenotypes including schizophrenia, cognition and smoking. The most commonly associated polymorphisms are located in exon 5 and segregate as part of a haplotype. So far it is unknown if this haplotype is indeed functional, or if the observed associations are an indirect effect caused by linkage disequilibrium with not yet identified adjacent functional variants. We therefore analyzed the functional relevance of the exon 5 haplotype alleles. RESULTS Using voltage clamp experiments we were able to show that the CHRNA4 haplotype alleles differ with respect to their functional effects on receptor sensitivity including reversal of receptor sensitivity between low and high acetylcholine concentrations. The results indicate that underlying mechanisms might include differences in codon usage bias and changes in mRNA stability. CONCLUSIONS Our data demonstrate that the complementary alleles of the CHRNA4 exon 5 haplotype are functionally relevant, and might therefore be causative for the above mentioned associations.
Collapse
Affiliation(s)
- Marlene Eggert
- Marlene Eggert, Institute of Human Genetics, Ludwig-Maximilians-University Hospital, 80336, Munich, Germany.
| | - Georg Winterer
- Georg Winterer, Experimental and Clinical Research Center (ECRC), Charité - University Medicine Berlin, Berlin, Germany.
| | - Mario Wanischeck
- Mario Wanischeck, Institute of Human Genetics, Ludwig-Maximilians-University Hospital, 80336, Munich, Germany.
| | - Jean-Charles Hoda
- Jean-Charles Hoda, SwissCheckUp SA, 1400, Yverdon-Les-Bains, Switzerland.
| | - Daniel Bertrand
- Daniel Bertrand, HiQScreen, 1222, Vésenaz, Geneva, Switzerland.
| | - Ortrud Steinlein
- Ortrud K Steinlein, Institute of Human Genetics, Ludwig-Maximilians-University Hospital, 80336, Munich, Germany.
| |
Collapse
|
10
|
Manzella F, Maloney SE, Taylor GT. Smoking in schizophrenic patients: A critique of the self-medication hypothesis. World J Psychiatry 2015; 5:35-46. [PMID: 25815253 PMCID: PMC4369547 DOI: 10.5498/wjp.v5.i1.35] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/27/2014] [Accepted: 01/12/2015] [Indexed: 02/05/2023] Open
Abstract
A common remark among laypeople, and notably also among mental health workers, is that individuals with mental illnesses use drugs as self-medication to allay clinical symptoms and the side effects of drug treatments. Roots of the self-medication concept in psychiatry date back at least to the 1980s. Observations that rates of smokers in schizophrenic patients are multiple times the rates for regular smoking in the general population, as well as those with other disorders, proved particularly tempting for a self-medication explanation. Additional evidence came from experiments with animal models exposed to nicotine and the identification of neurobiological mechanisms suggesting self-medication with smoking is a plausible idea. More recently, results from studies comparing smoking and non-smoking schizophrenic patients have led to the questioning of the self-medication hypothesis. Closer examination of the literature points to the possibility that smoking is less beneficial on schizophrenic symptomology than generally assumed while clearly increasing the risk of cancer and other smoking-related diseases responsible for early mortality. It is a good time to examine the evidence for the self-medication concept as it relates to smoking. Our approach is to focus on data addressing direct or implied predictions of the hypothesis in schizophrenic smokers.
Collapse
|
11
|
Egleton RD, Abbruscato T. Drug abuse and the neurovascular unit. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:451-80. [PMID: 25307226 DOI: 10.1016/bs.apha.2014.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Drug abuse continues to create a major international epidemic affecting society. A great majority of past drug abuse research has focused mostly on the mechanisms of addiction and the specific effects of substance use disorders on brain circuits and pathways that modulate reward, motivation, craving, and decision making. Few studies have focused on the neurobiology of acute and chronic substance abuse as it relates to the neurovascular unit (brain endothelial cell, neuron, astrocyte, microglia, and pericyte). Increasing research indicates that all cellular components of the neurovascular unit play a pivotal role in both the process of addiction and how drug abuse affects the brain response to diseases. This review will focus on the specific effects of opioids, amphetamines, alcohol, and nicotine on the neurovascular unit and its role in addiction and adaption to brain diseases. Elucidation of the role of the neurovascular unit on the neurobiology associated with drug addiction will help to facilitate the development of better therapeutic approaches for drug-dependent individuals.
Collapse
Affiliation(s)
- Richard D Egleton
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA.
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
| |
Collapse
|
12
|
Chang SL, Connaghan KP, Wei Y, Li MD. NeuroHIV and use of addictive substances. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:403-40. [PMID: 25175871 DOI: 10.1016/b978-0-12-801284-0.00013-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past three decades, substance abuse has been identified as a key comorbidity of human immunodeficiency virus-1 (HIV-1) infection. Many studies have found that the use and abuse of addictive substances hastens the progression of HIV-1 infection and HIV-associated neurocognitive disorders. Advances in highly active antiretroviral therapy (HAART) in the mid-1990s have been successful in limiting the HIV-1 viral load and maintaining a relatively healthy immune response, allowing the life expectancy of patients infected with HIV to approach that of the general population. However, even with HAART, HIV-1 viral proteins are still expressed and eradication of the virus, particularly in the brain, the key reservoir organ, does not occur. In the post-HAART era, the clinical challenge in the treatment of HIV infection is inflammation of the central nervous system (CNS) and its subsequent neurological disorders. To date, various explicit and implicit connections have been identified between the neuronal circuitry involved in immune responses and brain regions affected by and implicated in substance abuse. This chapter discusses past and current medical uses of prototypical substances of abuse, including morphine, alcohol, cocaine, methamphetamine, marijuana, and nicotine, and the evidence that systemic infections, particularly HIV-1 infection, cause neurological dysfunction as a result of inflammation in the CNS, which can increase the risk of substance abuse.
Collapse
Affiliation(s)
- Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, USA; Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA.
| | - Kaitlyn P Connaghan
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, USA
| | - Yufeng Wei
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, USA
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
13
|
Individual predictors of the subjective effects of intravenous cocaine. Psychiatry Res 2013; 208:245-51. [PMID: 23768613 PMCID: PMC3747034 DOI: 10.1016/j.psychres.2013.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 03/30/2013] [Accepted: 05/22/2013] [Indexed: 11/20/2022]
Abstract
The subjective and reinforcing effects of addictive substances can vary greatly between individuals. This study compared the relative contributions of baseline drug use, craving, stressful life events, and social factors in determining the subjective effects of cocaine in individual participants. Twelve veterans meeting criteria for cocaine dependence were evaluated in a laboratory setting. Self-report of the subjective effects of intravenous cocaine was recorded following single- and double-blind, placebo-controlled injections. Increased positive subjective effects of cocaine, including drug-induced 'good' effects and the value of intravenous injections, were most strongly correlated with greater family and social dysfunction measured through the Addiction Severity Index (ASI). Social dysfunction was the strongest predictor of cocaine-induced euphoria, accounting for approximately one-half of its variability. Participants who were dissatisfied with their current marital status reported almost no 'bad' effects of cocaine but instead reported increased drug-induced 'high', euphoria, and injection value. Although further research is required to determine the generalizability of this association, our findings are parallel to recent preclinical results showing that social interaction can attenuate psychostimulant reward. Effects of substance abuse treatment that rely on improved social function may be mediated through changes in the brain's reinforcement system that modify the rewarding effects of cocaine.
Collapse
|
14
|
Dau A, Komal P, Truong M, Morris G, Evans G, Nashmi R. RIC-3 differentially modulates α4β2 and α7 nicotinic receptor assembly, expression, and nicotine-induced receptor upregulation. BMC Neurosci 2013; 14:47. [PMID: 23586521 PMCID: PMC3637639 DOI: 10.1186/1471-2202-14-47] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 04/03/2013] [Indexed: 12/04/2022] Open
Abstract
Background Recent work has shown that the chaperone resistant to inhibitors of acetylcholinesterase (RIC-3) is critical for the folding, maturation and functional expression of a variety of neuronal nicotinic acetylcholine receptors. α7 nicotinic receptors can only assemble and functionally express in select lines of cells, provided that RIC-3 is present. In contrast, α4β2 nicotinic receptors can functionally express in many cell lines even without the presence of RIC-3. Depending on the cell line, RIC-3 has differential effects on α4β2 receptor function – enhancement in mammalian cells but inhibition in Xenopus oocytes. Other differences between the two receptor types include nicotine-induced upregulation. When expressed in cell lines, α4β2 receptors readily and robustly upregulate with chronic nicotine exposure. However, α7 nicotinic receptors appear more resistant and require higher concentrations of nicotine to induce upregulation. Could the coexpression of RIC-3 modulate the extent of nicotine-induced upregulation not only for α7 receptors but also α4β2 receptors? We compared and contrasted the effects of RIC-3 on assembly, trafficking, protein expression and nicotine-induced upregulation on both α7 and α4β2 receptors using fluorescent protein tagged nicotinic receptors and Förster resonance energy transfer (FRET) microscopy imaging. Results RIC-3 increases assembly and cell surface trafficking of α7 receptors but does not alter α7 protein expression in transfected HEK293T cells. In contrast, RIC-3 does not affect assembly of α4β2 receptors but increases α4 and β2 subunit protein expression. Acute nicotine (30 min exposure) was sufficient to upregulate FRET between α4 and β2 subunits. Surprisingly, when RIC-3 was coexpressed with α4β2 receptors nicotine-induced upregulation was prevented. α7 receptors did not upregulate with acute nicotine in the presence or absence of RIC-3. Conclusions These results provide interesting novel data that RIC-3 differentially regulates assembly and expression of different nicotinic receptor subunits. These results also show that nicotine-mediated upregulation of α4β2 receptors can be dynamically regulated by the presence of the chaperone, RIC-3. This could explain a novel mechanism why high affinity α4β2 receptors are upregulated in specific neuronal subtypes in the brain and not others.
Collapse
|
15
|
Metaxas A, Al-Hasani R, Farshim P, Tubby K, Berwick A, Ledent C, Hourani S, Kitchen I, Bailey A. Genetic deletion of the adenosine A(2A) receptor prevents nicotine-induced upregulation of α7, but not α4β2* nicotinic acetylcholine receptor binding in the brain. Neuropharmacology 2013; 71:228-36. [PMID: 23583933 DOI: 10.1016/j.neuropharm.2013.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/11/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
Considerable evidence indicates that adenosine A(2A) receptors (A(2A)Rs) modulate cholinergic neurotransmission, nicotinic acetylcholine receptor (nAChR) function, and nicotine-induced behavioural effects. To explore the interaction between A(2A) and nAChRs, we examined if the complete genetic deletion of adenosine A(2A)Rs in mice induces compensatory alterations in the binding of different nAChR subtypes, and whether the long-term effects of nicotine on nAChR regulation are altered in the absence of the A(2A)R gene. Quantitative autoradiography was used to measure cytisine-sensitive [¹²⁵I]epibatidine and [¹²⁵I]α-bungarotoxin binding to α4β2* and α7 nAChRs, respectively, in brain sections of drug-naïve (n = 6) or nicotine treated (n = 5-7), wild-type and adenosine A(2A)R knockout mice. Saline or nicotine (7.8 mg/kg/day; free-base weight) were administered to male CD1 mice via subcutaneous osmotic minipumps for a period of 14 days. Blood plasma levels of nicotine and cotinine were measured at the end of treatment. There were no compensatory developmental alterations in nAChR subtype distribution or density in drug-naïve A(2A)R knockout mice. In nicotine treated wild-type mice, both α4β2* and α7 nAChR binding sites were increased compared with saline treated controls. The genetic ablation of adenosine A(2A)Rs prevented nicotine-induced upregulation of α7 nAChRs, without affecting α4β2* receptor upregulation. This selective effect was observed at plasma levels of nicotine that were within the range reported for smokers (10-50 ng ml⁻¹). Our data highlight the involvement of adenosine A(2A)Rs in the mechanisms of nicotine-induced α7 nAChR upregulation, and identify A(2A)Rs as novel pharmacological targets for modulating the long-term effects of nicotine on α7 receptors.
Collapse
Affiliation(s)
- Athanasios Metaxas
- Sleep, Chronobiology & Addiction Group, Department of Biochemistry & Physiology, Faculty of Health and Medical Sciences, Institute of Health & Medical Sciences, University of Surrey, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Blutstein T, Castello MA, Viechweg SS, Hadjimarkou MM, McQuail JA, Holder M, Thompson LP, Mong JA. Differential responses of hippocampal neurons and astrocytes to nicotine and hypoxia in the fetal guinea pig. Neurotox Res 2012. [PMID: 23192463 DOI: 10.1007/s12640-012-9363-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In utero exposure to cigarette smoke has severe consequences for the developing fetus, including increased risk of birth complications and behavioral and learning disabilities later in life. Evidence from animal models suggests that the cognitive deficits may be a consequence of in utero nicotine exposure in the brain during critical developmental periods. However, maternal smoking exposes the fetus to not only nicotine but also a hypoxic intrauterine environment. Thus, both nicotine and hypoxia are capable of initiating cellular cascades, leading to long-term changes in synaptic patterning that have the potential to affect cognitive functions. This study investigates the combined effect of in utero exposure to nicotine and hypoxia on neuronal and glial elements in the hippocampal CA1 field. Fetal guinea pigs were exposed in utero to normoxic or hypoxic conditions in the presence or absence of nicotine. Hypoxia increased the protein levels of matrix metalloproteinase-9 (MMP-9) and synaptophysin and decreased the neural density as measured by NeuN immunoreactivity (ir). Nicotine exposure had no effect on these neuronal parameters but dramatically increased the density of astrocytes immunopositive for glial fibrillary acidic protein (GFAP). Further investigation into the effects of in utero nicotine exposure revealed that both GFAP-ir and NeuN-ir in the CA1 field were significantly reduced in adulthood. Taken together, our data suggest that prenatal exposure to nicotine and hypoxia not only alters synaptic patterning acutely during fetal development, but that nicotine also has long-term consequences that are observed well into adulthood. Moreover, these effects most likely take place through distinct mechanisms.
Collapse
Affiliation(s)
- Tamara Blutstein
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Orsitto G, Turi V, Venezia A, Fulvio F, Manca C. Relation of secondhand smoking to mild cognitive impairment in older inpatients. ScientificWorldJournal 2012; 2012:726948. [PMID: 22666146 PMCID: PMC3361321 DOI: 10.1100/2012/726948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 11/30/2011] [Indexed: 11/17/2022] Open
Abstract
Up to now, controversy still exists regarding the role of secondhand smoking (SHS) in developing cognitive impairment. This study aimed to evaluate the prevalence of SHS in hospitalized older patients with cognitive deficit, particularly in those with mild cognitive impairment (MCI). Smoking history was classified into four groups: never smokers, former-active smokers/no SHS, active smokers, and secondhand smokers, and cognitive function into three levels: normal cognition (C), MCI, and dementia. A total of 933 older subjects with diagnoses of MCI (n = 98), dementia (n = 124), or C (n = 711) were enrolled in this cross-sectional study. As expected, patients with dementia had significantly higher frequency of former-active smokers than cognitively normal. Moreover, patients with MCI showed a significantly higher frequency of active and secondhand smokers than patients with dementia or C. A smoking history is very frequent in older patients with dementia. Patients with MCI had even higher rate of exposure to active or secondhand smoking.
Collapse
Affiliation(s)
- Giuseppe Orsitto
- Geriatric Unit, "Paradiso" Hospital, Azienda Sanitaria Locale Bari, 70023 Gioia del Colle, Italy.
| | | | | | | | | |
Collapse
|
18
|
Liu J, Cohen RA, Gongvatana A, Sheinkopf SJ, Lester BM. Impact of prenatal exposure to cocaine and tobacco on diffusion tensor imaging and sensation seeking in adolescents. J Pediatr 2011; 159:771-5. [PMID: 21723565 PMCID: PMC3420810 DOI: 10.1016/j.jpeds.2011.05.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/24/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To study white matter integrity with diffusion tensor imaging in adolescents with prenatal cocaine exposure, tobacco exposure, or both. STUDY DESIGN Subjects included 20 adolescents with prenatal cocaine exposure (15 with tobacco exposure) and 20 non-cocaine-exposed subjects (8 with tobacco exposure). Diffusion tensor imaging measures were assessed in 5 subregions of the corpus callosum. The Sensation Seeking Scale for Children was administered to evaluate behavioral inhibition. RESULTS No significant differences were found between the cocaine-exposed and non-cocaine-exposed groups in each subregion of the corpus callosum on measures of fractional anisotropy (FA) and mean diffusivity, although the cocaine-exposed group showed a trend (P = .06) toward higher FA in projections to the supplementary motor area and premotor cortex. Prenatal tobacco exposure was associated with decreased FA in the supplementary motor area and premotor cortex projections after adjustment for relevant co-variates (P = .03). Decreased FA was related to more sensation seeking in the adolescents who were prenatally exposed to tobacco. CONCLUSION Prenatal tobacco exposure could affect white matter integrity, which is related to sensation seeking in adolescents. Developmental neurotoxins might have differential influences on white matter maturation in adolescence.
Collapse
Affiliation(s)
- Jie Liu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
19
|
Positive and negative effects of alcohol and nicotine and their interactions: a mechanistic review. Neurotox Res 2011; 21:57-69. [PMID: 21932109 DOI: 10.1007/s12640-011-9275-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 08/14/2011] [Accepted: 08/31/2011] [Indexed: 12/30/2022]
Abstract
Nicotine and alcohol are two of the most commonly abused legal substances. Heavy use of one drug can often lead to, or is predictive of, heavy use of the other drug in adolescents and adults. Heavy drinking and smoking alone are of significant health hazard. The combination of the two, however, can result in synergistic adverse effects particularly in incidences of various cancers (e.g., esophagus). Although detrimental consequences of smoking are well established, nicotine by itself might possess positive and even therapeutic potential. Similarly, alcohol at low or moderated doses may confer beneficial health effects. These opposing findings have generated considerable interest in how these drugs act. Here we will briefly review the negative impact of drinking-smoking co-morbidity followed by factors that appear to contribute to the high rate of co-use of alcohol and nicotine. Our main focus will be on what research is telling us about the central actions and interactions of these drugs, and what has been elucidated about the mechanisms of their positive and negative effects. We will conclude by making suggestions for future research in this area.
Collapse
|
20
|
Mazzone P, Tierney W, Hossain M, Puvenna V, Janigro D, Cucullo L. Pathophysiological impact of cigarette smoke exposure on the cerebrovascular system with a focus on the blood-brain barrier: expanding the awareness of smoking toxicity in an underappreciated area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:4111-26. [PMID: 21317997 PMCID: PMC3037043 DOI: 10.3390/ijerph7124111] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 02/08/2023]
Abstract
Recent evidence has indicated that active and passive cigarette smoking are associated, in a dose-dependent manner, with dysfunction of normal endothelial physiology. Tobacco smoke (TS) may predispose individuals to atherogenic and thrombotic problems, significantly increasing the risk for ischemic manifestations such as acute coronary syndrome and stroke. Despite the strong evidence for an association between smoking and vascular impairment, the impact of TS exposure on the blood-brain barrier (BBB) has only been marginally addressed. This is a major problem given that the BBB is crucial in the maintenance of brain homeostasis. Recent data have also shown that chronic smokers have a higher incidence of small vessel ischemic disease (SVID), a pathological condition characterized by leaky brain microvessels and loss of BBB integrity. In the brain TS increases the risk of silent cerebral infarction (SCI) and stroke owing to the pro-coagulant and atherogenic effects of smoking. In this article we provide a detailed review and analysis of current knowledge of the pathophysiology of tobacco smoke toxicity at the cerebrovascular levels. We also discuss the potential toxicity of recently marketed “potential-reduced exposure products”.
Collapse
Affiliation(s)
- Peter Mazzone
- Department of Pulmonary Medicine, Cleveland Clinic Lerner College of Medicine, E 100 St, Cleveland, OH 44106, USA; E-Mail: (P.M.)
| | - William Tierney
- Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA; E-Mail: (W.T.)
| | - Mohammed Hossain
- Cerebrovascular Research, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195 USA; E-Mails: (M.H.); (D.J.); (V.P.)
- Department of Cell Biology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Vikram Puvenna
- Cerebrovascular Research, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195 USA; E-Mails: (M.H.); (D.J.); (V.P.)
- Department of Cell Biology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Damir Janigro
- Cerebrovascular Research, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195 USA; E-Mails: (M.H.); (D.J.); (V.P.)
- Department of Cell Biology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, E 100 St, Cleveland, OH 441065, USA
| | - Luca Cucullo
- Cerebrovascular Research, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195 USA; E-Mails: (M.H.); (D.J.); (V.P.)
- Department of Cell Biology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-216-445-0562; Fax: +1-216-445-1466
| |
Collapse
|
21
|
Paulson JR, Yang T, Selvaraj PK, Mdzinarishvili A, Van der Schyf CJ, Klein J, Bickel U, Abbruscato TJ. Nicotine exacerbates brain edema during in vitro and in vivo focal ischemic conditions. J Pharmacol Exp Ther 2010; 332:371-9. [PMID: 19889792 PMCID: PMC2812118 DOI: 10.1124/jpet.109.157776] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 11/03/2009] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that nicotine, the addictive component of tobacco products, alters the blood-brain barrier (BBB) Na(+),K(+),2Cl(-) cotransporter (NKCC) during in vitro hypoxia-aglycemia exposure. Attenuation of abluminal NKCC suggests that accumulation of ions in the brain extracellular fluid would result in an increase of fluid or cytotoxic edema in the brain during hypoxia-aglycemia or stroke conditions. To further investigate whether nicotine products have the potential to worsen stroke outcome by increasing edema formation, two separate models to mimic stroke conditions were utilized to decipher the effects of short-term and long-term administrations of nicotine products on brain edema following stroke. Oxygen glucose deprivation (OGD) was studied in rat hippocampal slices with short-term or long-term exposure to nicotine and cigarette smoke constituents. During short-term exposure, the presence of nicotine at a concentration mimicking heavy smokers increased water content of hippocampal slices during OGD. Furthermore, long-term 1-week administration of nicotine increased water content in hippocampal slices that could be attenuated with nicotine acetylcholine receptor (nAChR) antagonists, suggesting nicotine increase edema during OGD via nAChRs. A second model of focal ischemia, middle cerebral artery occlusion, showed an increase of infarct size during short-term exposure to nicotine and an increase of edema during both short-term and long-term administration of nicotine, compared with saline controls. These findings support the paradigm that nicotine products not only increase the incidence of stroke but also have the potential to worsen stroke outcome by increased edema formation.
Collapse
Affiliation(s)
- Jennifer R Paulson
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gender differences and the role of estrogen in cognitive enhancements with nicotine in rats. Pharmacol Biochem Behav 2010; 95:139-45. [PMID: 20074585 DOI: 10.1016/j.pbb.2009.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/16/2009] [Accepted: 12/22/2009] [Indexed: 12/29/2022]
Abstract
Research has reported that nicotine can increase accuracy, response times and rates of learning with evidence of different effects on males and females. The goal of our research was to study further sex differences by examining the role played by estrogen in the effects of nicotine on learning and memory in female rats. In experiment 1, 48 male and female rats were administered 0.3 mg or 0.7 mg/kg bwt of nicotine (nic) or vehicle only (veh) and tested in a visual spatial orientation (VSO) paradigm designed to maximize the benefits of nicotine on spatial working memory. Females exposed to 0.3 mg nic performed superior to all other groups of both genders. In experiment 2, ovariectomized females (N=40) were exposed to 30 microg estradiol/kg bwt (E2), 3 mg nicotine/kg bwt, a combination of both E2 and nic, or veh, and tested as in experiment 1. The rankings of scores in the VSO task by group were E2+nic>nic alone>E2 alone>veh. The E2+nic combination group also demonstrated the highest rate of acquisition. Collectively, the findings suggest that estrogen can synergize the ability of chronic nicotine to enhance acetylcholine-hippocampal interactions underlying performance in the VSO paradigm.
Collapse
|
23
|
Dome P, Lazary J, Kalapos MP, Rihmer Z. Smoking, nicotine and neuropsychiatric disorders. Neurosci Biobehav Rev 2009; 34:295-342. [PMID: 19665479 DOI: 10.1016/j.neubiorev.2009.07.013] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/23/2009] [Accepted: 07/30/2009] [Indexed: 12/20/2022]
Abstract
Tobacco smoking is an extremely addictive and harmful form of nicotine (NIC) consumption, but unfortunately also the most prevalent. Although disproportionately high frequencies of smoking and its health consequences among psychiatric patients are widely known, the neurobiological background of this epidemiological association is still obscure. The diverse neuroactive effects of NIC and some other major tobacco smoke constituents in the central nervous system may underlie this association. This present paper summarizes the pharmacology of NIC and its receptors (nAChR) based on a systematic review of the literature. The role of the brain's reward system(s) in NIC addiction and the results of functional and structural neuroimaging studies on smoking-related states and behaviors (i.e. dependence, craving, withdrawal) are also discussed. In addition, the epidemiological, neurobiological, and genetic aspects of smoking in several specific neuropsychiatric disorders are reviewed and the clinical relevance of smoking in these disease states addressed.
Collapse
Affiliation(s)
- Peter Dome
- Department of Clinical and Theoretical Mental Health, Kutvolgyi Clinical Center, Semmelweis University, Faculty of Medicine, Kutvolgyi ut 4, 1125 Budapest, Hungary.
| | | | | | | |
Collapse
|
24
|
Abstract
Nicotine achieves its psychopharmacological effects by interacting with nicotinic acetylcholine receptors (nAChRs) in the brain. There are numerous subtypes of nAChR that differ in their properties, including their sensitivity to nicotine, permeability to calcium and propensity to desensitise. The nAChRs are differentially localised to different brain regions and are found on presynaptic terminals as well as in somatodendritic regions of neurones. Through their permeability to cations, these ion channel proteins can influence both neuronal excitability and cell signalling mechanisms, and these various responses can contribute to the development or maintenance of dependence. However, many questions and uncertainties remain in our understanding of these events and their relevance to tobacco addiction. In this chapter, we briefly overview the fundamental characteristics of nAChRs that are germane to nicotine's effects and then consider the cellular responses to acute and chronic nicotine, with particular emphasis on dopamine systems because they have been the most widely studied in the context of nicotine dependence. Where appropriate, methodological aspects are critically reviewed.
Collapse
Affiliation(s)
- Jacques Barik
- Department of Biology & Biochemistry, University of Bath, Bath, UK
| | | |
Collapse
|
25
|
Peters R, Poulter R, Warner J, Beckett N, Burch L, Bulpitt C. Smoking, dementia and cognitive decline in the elderly, a systematic review. BMC Geriatr 2008; 8:36. [PMID: 19105840 PMCID: PMC2642819 DOI: 10.1186/1471-2318-8-36] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 12/23/2008] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Nicotine may aid reaction time, learning and memory, but smoking increases cardiovascular risk. Cardiovascular risk factors have been linked to increased risk of dementia. A previous meta-analysis found that current smokers were at higher risk of subsequent dementia, Alzheimer's disease, vascular dementia and cognitive decline. METHODS In order to update and examine this further a systematic review and meta-analysis was carried out using different search and inclusion criteria, database selection and more recent publications. Both reviews were restricted to those aged 65 and over. RESULTS The review reported here found a significantly increased risk of Alzheimer's disease with current smoking and a likely but not significantly increased risk of vascular dementia, dementia unspecified and cognitive decline. Neither review found clear relationships with former smoking. CONCLUSION Current smoking increases risk of Alzheimer's disease and may increase risk of other dementias. This reinforces need for smoking cessation, particularly aged 65 and over. Nicotine alone needs further investigation.
Collapse
Affiliation(s)
- Ruth Peters
- Experimental Medicine and Toxicology Imperial College Faculty of Medicine, Hammersmith campus Du Cane Road, London, W12 0NN, UK
| | - Ruth Poulter
- Experimental Medicine and Toxicology Imperial College Faculty of Medicine, Hammersmith campus Du Cane Road, London, W12 0NN, UK
| | - James Warner
- St Charles Hospital Exmoor Street, London, W10 6DZ, UK
| | - Nigel Beckett
- Experimental Medicine and Toxicology Imperial College Faculty of Medicine, Hammersmith campus Du Cane Road, London, W12 0NN, UK
| | - Lisa Burch
- Experimental Medicine and Toxicology Imperial College Faculty of Medicine, Hammersmith campus Du Cane Road, London, W12 0NN, UK
| | - Chris Bulpitt
- Experimental Medicine and Toxicology Imperial College Faculty of Medicine, Hammersmith campus Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
26
|
Gahring LC, Rogers SW. Nicotinic acetylcholine receptor expression in the hippocampus of 27 mouse strains reveals novel inhibitory circuitry. Hippocampus 2008; 18:737-49. [PMID: 18446824 DOI: 10.1002/hipo.20430] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mouse strains are well-characterized to exhibit differences in their physiological and behavioral responses to nicotine. This report examines the expression of the high-affinity nicotine binding receptor subunit, neuronal nicotinic receptor subunit alpha 4 (nAChR alpha 4), in the dorsal hippocampus of 27 inbred mouse strains. Multiple differences among mouse strains in the cellular expression of nAChR alpha 4 between subregions of the hippocampal field are evident. Differences that we describe in the expression of nAChR alpha 4 suggest mouse strains of diverse genetic origin could exhibit significant variation in how this receptor contributes to modulating intrahippocampal circuitry. These findings define a genetic frame-work in which the strain-specific responses to nicotine include underlying contributions by the varied anatomical context in which nAChRs are expressed.
Collapse
Affiliation(s)
- Lorise C Gahring
- Salt Lake City VA-Geriatrics Research, Education and Clinical Center, University of Utah, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
27
|
Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA. Receptor-mediated tobacco toxicity: acceleration of sequential expression of alpha5 and alpha7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke. FASEB J 2008; 22:1356-68. [PMID: 18450646 DOI: 10.1096/fj.07-9965.com] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tobacco products and nicotine alter the cell cycle and lead to squamatization of oral keratinocytes (KCs) and squamous cell carcinoma. Activation of nicotinic acetylcholine receptors (nAChRs) elicits Ca(2+) influx that varies in magnitude between different nAChR subtypes. Normal differentiation of KCs is associated with sequential expression of the nAChR subtypes with increasing Ca(2+) permeability, such as alpha5-containing alpha3 nAChR and alpha7 nAChR. Exposure to environmental tobacco smoke (ETS) or an equivalent concentration of nicotine accelerated by severalfold the alpha5 and alpha7 expression in KCs, which could be abolished by mecamylamine and alpha-bungarotoxin with different efficacies, suggesting the following sequence of autoregulation of the expression of nAChR subtypes: alpha3(beta2/beta4) > alpha3(beta2/beta4)alpha5 > alpha7 > alpha7. This conjecture was corroborated by results of quantitative assays of subunit mRNA and protein levels, using nAChR-specific pharmacologic antagonists and small interfering RNAs. The genomic effects of ETS and nicotine involved the transcription factor GATA-2 that showed a multifold increase in quantity and activity in exposed KCs. Using protein kinase inhibitors and dominant negative and constitutively active constructs, we characterized the principal signaling cascades mediating a switch in the nAChR subtype. Cumulative results indicated that the alpha3(beta2/beta4) to alpha3(beta2/beta4)alpha5 nAChR transition predominantly involved protein kinase C, alpha3(beta2/beta4)alpha5 to alpha7 nAChR transition-Ca(2+)/calmodulin-dependent protein kinase II and p38 MAPK, and alpha7 self-up-regulation-the p38 MAPK/Akt pathway, and JAK-2. These results provide a mechanistic insight into the genomic effects of ETS and nicotine on KCs and characterize signaling pathways mediating autoregulation of stepwise overexpression of nAChR subtypes with increasing Ca(2+) permeability in exposed cells. These observations have salient clinical implications, because a switch in the nAChR subunit composition can bring about a corresponding switch in receptor function, leading to profound pathobiologic effects observed in KCs exposed to tobacco products.
Collapse
Affiliation(s)
- Juan Arredondo
- Department of Dermatology, University of California, Irvine, C340 Medical Sciences I, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
28
|
Egleton RD, Brown KC, Dasgupta P. Nicotinic acetylcholine receptors in cancer: multiple roles in proliferation and inhibition of apoptosis. Trends Pharmacol Sci 2008; 29:151-8. [PMID: 18262664 DOI: 10.1016/j.tips.2007.12.006] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 12/11/2007] [Accepted: 12/17/2007] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) constitute a heterogeneous family of ion channels that mediate fast synaptic transmission in neurons. They have also been found on non-neuronal cells such as bronchial epithelium and keratinocytes, underscoring the idea that they have functions well beyond neurotransmission. Components of cigarette smoke, including nicotine and NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone], are agonists of nAChRs. Given the association of tobacco use with several diseases, the non-neuronal nAChR signaling pathway has considerable implications for cancer and cardiovascular disease. Recent studies have shown that alpha7 is the main nAChR subunit that mediates the proliferative effects of nicotine in cancer cells. As a result, alpha7 nAChR might be a valuable molecular target for therapy of cancers such as lung cancer and mesothelioma. Future studies involving the design of nAChR antagonists with improved selectivity might identify novel strategies for the treatment of tobacco-related cancers. Here we review the cellular roles of non-neuronal nAChRs, including regulation of cell proliferation, angiogenesis, apoptosis, migration, invasion and secretion.
Collapse
Affiliation(s)
- Richard D Egleton
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, 1 John Marshall Drive, Huntington, WV 25755, USA
| | | | | |
Collapse
|
29
|
Duncan JR, Randall LL, Belliveau RA, Trachtenberg FL, Randall B, Habbe D, Mandell F, Welty TK, Iyasu S, Kinney HC. The effect of maternal smoking and drinking during pregnancy upon (3)H-nicotine receptor brainstem binding in infants dying of the sudden infant death syndrome: initial observations in a high risk population. Brain Pathol 2007; 18:21-31. [PMID: 17924983 DOI: 10.1111/j.1750-3639.2007.00093.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The high rate of the sudden infant death syndrome (SIDS) in American Indians in the Northern Plains (3.5/1000) may reflect the high incidence of cigarette smoking and alcohol consumption during pregnancy. Nicotine, a neurotoxic component of cigarettes, and alcohol adversely affect nicotinic receptor binding and subsequent cholinergic development in animals. We measured (3)H-nicotine receptor binding in 16 brainstem nuclei in American Indian SIDS (n = 27) and controls (n = 6). In five nuclei related to cardiorespiratory control, (3)H-nicotinic binding decreased with increasing number of drinks (P < 0.03). There were no differences in binding in SIDS compared with controls, except upon stratification of prenatal exposures. In three mesopontine nuclei critical for arousal there were reductions (P < 0.04) in binding in controls exposed to cigarette smoke compared with controls without exposure; there was no difference between SIDS cases with or without exposure. This study suggests that maternal smoking and alcohol affects (3)H-nicotinic binding in the infant brainstem irrespective of the cause of death. It also suggests that SIDS cases are unable to respond to maternal smoking with the "normal" reduction seen in controls. Future studies are needed to establish the role of adverse prenatal exposures in altered brainstem neurochemistry in SIDS.
Collapse
Affiliation(s)
- Jhodie R Duncan
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bartzokis G. Acetylcholinesterase inhibitors may improve myelin integrity. Biol Psychiatry 2007; 62:294-301. [PMID: 17070782 DOI: 10.1016/j.biopsych.2006.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 07/28/2006] [Accepted: 08/21/2006] [Indexed: 12/27/2022]
Abstract
Recent clinical trials have revealed that cholinergic treatments are efficacious in a wide spectrum of neuropsychiatric disorders that span the entire human lifespan and include disorders without cholinergic deficits. Furthermore, some clinical and epidemiological data suggest that cholinergic treatments have disease modifying/preventive effects. It is proposed that these observations can be usefully understood in a myelin-centered model of the human brain. The model proposes that the human brain's extensive myelination is the central evolutionary change that defines our uniqueness as a species and our unique vulnerability to highly prevalent neuropsychiatric disorders. Within the framework of this model the clinical, biochemical, and epidemiologic data can be reinterpreted to suggest that nonsynaptic effects of cholinergic treatments on the process of myelination and myelin repair contributes to their mechanism of action and especially to their disease modifying/preventive effects. The ability to test the model in human populations with safe and noninvasive imaging technologies makes it possible to undertake novel clinical trial efforts directed at primary prevention of some of the most prevalent and devastating of human disorders.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Neurology, The Laboratory of Neuroimaging in the Division of Brain Mapping, The David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1769, USA.
| |
Collapse
|
31
|
Shin EJ, Chae JS, Jung ME, Bing G, Ko KH, Kim WK, Wie MB, Cheon MA, Nah SY, Kim HC. Repeated intracerebroventricular infusion of nicotine prevents kainate-induced neurotoxicity by activating the α7 nicotinic acetylcholine receptor. Epilepsy Res 2007; 73:292-8. [PMID: 17174071 DOI: 10.1016/j.eplepsyres.2006.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 11/10/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
We examined whether (-)-nicotine infusion can affect kainic acid (KA)-induced neurotoxicity in rats. Although treatment with a single nicotine infusion (0.5 or 1.0 microg/side, i.c.v.) failed to attenuate KA-induced neurotoxicity, repeated nicotine infusions (1.0 microg/side/day for 10 days) attenuated the seizures, the severe loss of cells in hippocampal regions CA1 and CA3, the increase in activator protein (AP)-1 DNA binding activity, and mortality after KA administration. alpha-Bungarotoxin and mecamylamine blocked the neuroprotective effects of nicotine. These results suggest that repeated nicotine treatment provides alpha7 nicotinic acetylcholine receptor-mediated neuroprotection against KA toxicity.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gutala R, Wang J, Hwang YY, Haq R, Li MD. Nicotine modulates expression of amyloid precursor protein and amyloid precursor-like protein 2 in mouse brain and in SH-SY5Y neuroblastoma cells. Brain Res 2006; 1093:12-9. [PMID: 16707114 DOI: 10.1016/j.brainres.2006.03.100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 03/13/2006] [Accepted: 03/22/2006] [Indexed: 12/22/2022]
Abstract
Epidemiological studies indicate that tobacco smoking can be protective against neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The objective of the present study was to examine the changes in gene expression induced by chronic oral nicotine administration (100 mug/ml in 2% saccharin for 14 days), with special emphasis on amyloid precursor protein (APP) and its homologue, amyloid precursor-like protein 2 (APLP2), in different brain regions of C57BL/6 mice using a pathway-focused microarray. Our results revealed that nicotine stimulated mRNA expression of APP in the amygdala (64%; P = 0.003) and hippocampus (32%; P = 0.034) and of APLP2 in the amygdala (39%; P = 0.002). These results were verified by quantitative real-time RT-PCR except that expression of APLP2 was also significantly upregulated by nicotine in the hippocampus. In addition, in vitro nicotine treatment of SH-SY5Y neuroblastoma cells resulted in a significant increase in expression of APP protein, soluble APP, and APLP2, whereas co-treatment with mecamylamine (an antagonist of nicotinic acetylcholine receptors) attenuated the stimulating effect of nicotine on APP and APLP2 expression. These findings suggest that nicotine treatment facilitates the increase in the expression of mRNA and protein of the APP and APLP2 genes in rat brain and SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- Ramana Gutala
- Department of Psychiatric Medicine, Section of Neurobiology, University of Virginia, 1670 Discovery Drive, Suite 110, Charlottesville, VA 22911, USA
| | | | | | | | | |
Collapse
|
33
|
Hansson E. Could chronic pain and spread of pain sensation be induced and maintained by glial activation? Acta Physiol (Oxf) 2006; 187:321-7. [PMID: 16734769 DOI: 10.1111/j.1748-1716.2006.01568.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An injury often starts with acute physiological pain, which becomes inflammatory or neuropathic, and may sometimes become chronic. It has been proposed recently that activated glial cells, astrocytes and microglia within the central nervous system could maintain the pain sensation even after the original injury or inflammation has healed, and convert it into chronic by altering neuronal excitability. Glial cell activation has also been proposed to be involved in the phenomenon of spread of pain sensation ipsilaterally or to the contralateral side (i.e. mirror image pain). Substance P and calcitonin gene-related peptide, released due to an inflammatory process, interact with the endothelial cells of the blood-spinal cord and blood-brain barriers. The barriers open partially and substances may influence adjacent glial cells. Such substances are also released from neurones carrying the 'pain message' all the way from the injury to the cerebral cortex. Pro-inflammatory cytokines may be released from the microglial cells, and astroglial Ca2+-transients or oscillations may spread within the astroglial networks. One theory is that Ca2+-oscillations could facilitate the formation of new synapses. These new synapses could establish neuronal contacts for maintaining and spreading the pain sensation. If this theory holds true, it is possible that Ca2+ waves, production of cytokines and growth factors could be modified by selective anti-inflammatory drugs to achieve a balance in the activities of the different intercellular and intracellular processes. This paper reviews current knowledge about glial mechanisms underlying the phenomena of chronic pain and spread of the pain sensation.
Collapse
Affiliation(s)
- E Hansson
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.
| |
Collapse
|
34
|
Liu JJ, Mohila CA, Gong Y, Govindarajan N, Onn SP. Chronic nicotine exposure during adolescence differentially influences calcium-binding proteins in rat anterior cingulate cortex. Eur J Neurosci 2006; 22:2462-74. [PMID: 16307589 DOI: 10.1111/j.1460-9568.2005.04423.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have recently shown that chronic amphetamine exposure selectively up-regulates parvalbumin (PV) calcium-binding proteins in the anterior cingulate cortex (ACC). In this study, we evaluated the effects of chronic nicotine (NIC) exposure on PV, calbindin D28k (CB) and calretinin (CR) calcium-binding protein immunostaining in ACC GABAergic interneurons. Chronic NIC exposure for 3 weeks in adolescent rats, either via drinking water (the oral group) or by twice daily subcutaneous injections (the injection group), resulted in the expression of high levels of CR proteins in the ACC but not in the parietal cortex. Larger increases in the density of CR-immunoreactive (ir) neurons were noted in the NIC-injected rats at 0-day withdrawal (45% increase) compared with the oral group (26% increase). The larger increases in CR-ir neuron density in the NIC-injected rats were also reflected by prominent CR-ir processes across cortical layers. The density of PV-ir neurons was also increased (37%) at 0-day withdrawal but only in the oral NIC group and no changes in CB-ir neuron density were observed in either NIC group. Combined dual-immunofluorescence and confocal microscopy revealed that somatodendritic alpha4 nicotinic acetylcholine receptors colocalized with cortical neurons stained positively for CR, PV or CB. These results suggest that CR- and/or PV-ir-containing GABA interneurons may be involved in channeling the effects of NIC in the ACC, which is closely associated with the ventral basal ganglia circuit that is linked to brain reward function.
Collapse
Affiliation(s)
- Jen-Jane Liu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
35
|
McCallum SE, Parameswaran N, Bordia T, Fan H, Tyndale RF, Langston JW, McIntosh JM, Quik M. Increases in alpha4* but not alpha3*/alpha6* nicotinic receptor sites and function in the primate striatum following chronic oral nicotine treatment. J Neurochem 2006; 96:1028-41. [PMID: 16412091 DOI: 10.1111/j.1471-4159.2005.03646.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Knowledge of the effects of chronic nicotine is critical considering its widespread use in tobacco products and smoking cessation therapies. Although nicotine is well known to up-regulate alpha4* nAChR sites and function in the cortex, its actions in the striatum are uncertain because of the presence of multiple subtypes with potentially opposing effects. We therefore investigated the effect of long-term nicotine treatment on nAChR sites and function in the primate striatum, which offers the advantage of similar proportions of alpha3*/alpha6* and alpha4* nAChRs. Nicotine was given in drinking water, which resembles smoking in its intermittent but chronic delivery. Plasma nicotine and cotinine levels were similar to smokers. Chronic nicotine treatment (> 6 months) enhanced alpha4* nAChR-evoked [(3)H]dopamine release in striatal subregions, with an overall pattern of increase throughout the striatum when normalized to uptake. This increase correlated with elevated striatal alpha4* nAChRs. Under the same conditions, striatal alpha3*/alpha6* nAChR sites and function were decreased or unchanged. These divergent actions of chronic nicotine treatment on alpha4* versus alpha6* nAChRs, as well as effects on dopamine uptake, allow for a complex control of striatal activity to maintain dopaminergic function. Such knowledge is important for understanding nicotine dependence and the consequences of nicotine administration for the treatment of neurological disorders.
Collapse
|
36
|
Bertrand D. The possible contribution of neuronal nicotinic acetylcholine receptors in depression. DIALOGUES IN CLINICAL NEUROSCIENCE 2005. [PMID: 16156379 PMCID: PMC3181734 DOI: 10.31887/dcns.2005.7.3/dbertrand] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although tobacco use and smoking were introduced long ago, it was only recently that the nicotine contained in the tobacco leaves was recognized as an addictive substance acting on the central nervous system (CNS). However, even prior to this recognition, several studies have reported an association between smoking and psychiatric disorders. One of the many observations was that smoking cessation is accompanied by a marked increase in the probability of major depression. In parallel with the discovery of the neuronal nicotinic acetylcholine receptors and their extensive expression in the CNS, this association sheds new light on the influence of cholinergic transmission in depression. In this article, we examine the various modes of action of nicotine in the CNS and discuss the mechanisms by which this alkaloid can prevent or precipitate mood disorders, and the possibility of discovering new therapeutic avenues for the treatment of depression.
Collapse
Affiliation(s)
- Daniel Bertrand
- Department of Neuroscience, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
37
|
Court JA, Johnson M, Religa D, Keverne J, Kalaria R, Jaros E, McKeith IG, Perry R, Naslund J, Perry EK. Attenuation of Abeta deposition in the entorhinal cortex of normal elderly individuals associated with tobacco smoking. Neuropathol Appl Neurobiol 2005; 31:522-35. [PMID: 16150123 DOI: 10.1111/j.1365-2990.2005.00674.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Investigating correlates of tobacco smoking provides the only currently available opportunity of examining effects of long-term exposure of nicotinic receptors on a specific nicotinic agonist in human. Alzheimer-type pathology (Abeta and abnormally phosphorylated tau assessed on the basis of AT8 immunoreactivity) together with vascular markers has been compared in age-matched groups of normal elderly smokers and non-smokers in the entorhinal cortex, an area of noted age-related pathology. The density of total Abeta and diffuse Abeta immunoreactivity, together with formic acid-extractable Abeta42 but not Abeta40, was reduced in smokers (n = 10-18) compared with non-smokers (n = 10-20) (P < 0.05). There was also a reduced percentage of cortical and leptomeningeal vessels with associated Abeta immunoreactivity in smokers (n = 13) compared with non-smokers (n = 14) (P < 0.005 and 0.05, respectively). There was a significant inverse correlation between formic acid-extractable Abeta42 and pack years (n = 34, r = -0.389, P = 0.025), with a similar trend for total Abeta immunoreactivity which did not reach statistical significance (n = 30, r = -0.323, P = 0.082). In contrast, there were no significant group differences for vascular markers (collagen IV, alpha-actin or glucose transporter 1), AT8 immunoreactivity or phosphate-buffered saline-soluble Abeta peptides, and no significant associations with gender for any of the measured parameters. These findings are consistent with previously reported reductions in histologically assessed amyloid plaques in aged human brain associated with tobacco use and dramatic lessening of Abeta deposits in APPsw mice after nicotine treatment. Development of nicotinic drugs to protect against beta-amyloidosis as one of the principal pathological hallmarks of brain ageing and Alzheimer's disease is indicated.
Collapse
Affiliation(s)
- J A Court
- MRC Building, Newcastle General Hospital, Westgate Road, Newcastle upon Tyne, NE4 6BE, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gahring LC, Days EL, Kaasch T, González de Mendoza M, Owen L, Persiyanov K, Rogers SW. Pro-inflammatory cytokines modify neuronal nicotinic acetylcholine receptor assembly. J Neuroimmunol 2005; 166:88-101. [PMID: 16024094 DOI: 10.1016/j.jneuroim.2005.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 05/23/2005] [Indexed: 11/25/2022]
Abstract
We have examined the impact of the inflammatory cytokines interleukin-1 beta (IL-1beta) and tumor necrosis factor alpha (TNFalpha) on assembly of nAChRs from subunit mixtures of nAChRalpha4, beta2 and beta4 transiently transfected into 293 cells. In control transfections approximately 55% of alpha4 associated preferentially with beta4, but less than 15% complexed with beta2 and the remainder was associated with both beta subunits. These relative ratios were modified by pro-inflammatory cytokines. IL-1beta strongly enhanced alpha4/beta2 association and decreased alpha4/beta4, whereas TNFalpha promoted mixed alpha4/beta2/beta4 interactions. These results show that the emerging rules governing assembly of nAChRs are subject to modification by the pro-inflammatory cytokine environment.
Collapse
Affiliation(s)
- Lorise C Gahring
- Salt Lake City VA-Geriatrics Research, Education and Clinical Center, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Ray MA, Graham AJ, Lee M, Perry RH, Court JA, Perry EK. Neuronal nicotinic acetylcholine receptor subunits in autism: an immunohistochemical investigation in the thalamus. Neurobiol Dis 2005; 19:366-77. [PMID: 16023579 DOI: 10.1016/j.nbd.2005.01.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 12/08/2004] [Accepted: 01/12/2005] [Indexed: 10/25/2022] Open
Abstract
The cholinergic system has been implicated in the development of autism on the basis of neuronal nicotinic acetylcholine receptor (nAChR) losses in cerebral and cerebellar cortex. In the present study, the first to explore nAChRs in the thalamus in autism, alpha4, alpha7 and beta2 nAChR subunit expression in thalamic nuclei of adult individuals with autism (n=3) and age-matched control cases (n=3) was investigated using immunochemical methods. Loss of alpha7- and beta2- (but not alpha4-) immunoreactive neurons occurred in the paraventricular nucleus (PV) and nucleus reuniens in autism. Preliminary results indicated glutamic acid decarboxylase immunoreactivity occurred at a low level in PV, co-expressed with alpha7 in normal and autistic cases and was not reduced in autism. This suggested loss of neuronal alpha7 in autism is not caused by loss of GABAergic neurons. These findings indicate nicotinic abnormalities that occur in the thalamus in autism which may contribute to sensory or attentional deficits.
Collapse
Affiliation(s)
- M A Ray
- Institute for Ageing and Health, University of Newcastle upon Tyne, MRC Building, Newcastle General Hospital, Westgate Road, Newcastle upon Tyne, NE4 6BE, UK.
| | | | | | | | | | | |
Collapse
|
40
|
Nuutinen S, Ahtee L, Tuominen RK. Time and brain region specific up-regulation of low affinity neuronal nicotinic receptors during chronic nicotine administration in mice. Eur J Pharmacol 2005; 515:83-9. [PMID: 15894304 DOI: 10.1016/j.ejphar.2005.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 01/18/2005] [Accepted: 02/02/2005] [Indexed: 10/25/2022]
Abstract
We studied the effects of chronic oral nicotine on brain low affinity nicotine binding sites. Mice received nicotine in the drinking water for 4 or 7 weeks. Receptor binding was measured at 24 or 48 h after cessation of nicotine administration with [3H]methyllycaconitine, an antagonist in alpha7 and alpha3/alpha6beta2beta3* nicotinic receptors in striatum, midbrain, hippocampus and cortex. Chronic nicotine for 4 weeks resulted in a significant increase in the [3H]methyllycaconitine binding in the striatum and cortex, whereas after 7 weeks the increase in binding could be found in the hippocampus but not in the other brain areas studied. For comparison, high affinity nicotine binding sites (mostly alpha4beta2) were measured with [3H]epibatidine after 7-week chronic nicotine treatment. [3H]Epibatidine binding sites were increased in the hippocampus, midbrain and cortex, but not in the striatum. The up-regulation of [3H]methyllycaconitine binding was significant at 24 h but that of [3H]epibatidine binding sites was not observed until at 48 h after cessation of chronic nicotine. These results suggest that up-regulation of low affinity nicotine binding sites does occur during chronic nicotine administration. Furthermore, the low affinity and high affinity binding differ clearly as regards regions and duration suggesting that different nicotinic receptors respond differently to nicotine administration.
Collapse
Affiliation(s)
- Saara Nuutinen
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), University of Helsinki, FIN-00014, Finland
| | | | | |
Collapse
|