1
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023; 11:2488. [PMID: 37760929 PMCID: PMC10526226 DOI: 10.3390/biomedicines11092488] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria play a vital role in maintaining cellular energy homeostasis, regulating apoptosis, and controlling redox signaling. Dysfunction of mitochondria has been implicated in the pathogenesis of various brain diseases, including neurodegenerative disorders, stroke, and psychiatric illnesses. This review paper provides a comprehensive overview of the intricate relationship between mitochondria and brain disease, focusing on the underlying pathological mechanisms and exploring potential therapeutic opportunities. The review covers key topics such as mitochondrial DNA mutations, impaired oxidative phosphorylation, mitochondrial dynamics, calcium dysregulation, and reactive oxygen species generation in the context of brain disease. Additionally, it discusses emerging strategies targeting mitochondrial dysfunction, including mitochondrial protective agents, metabolic modulators, and gene therapy approaches. By critically analysing the existing literature and recent advancements, this review aims to enhance our understanding of the multifaceted role of mitochondria in brain disease and shed light on novel therapeutic interventions.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
3
|
Mitochondrial Dysfunction and Oxidative Stress in Hereditary Ectopic Calcification Diseases. Int J Mol Sci 2022; 23:ijms232315288. [PMID: 36499615 PMCID: PMC9738718 DOI: 10.3390/ijms232315288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Ectopic calcification (EC) is characterized by an abnormal deposition of calcium phosphate crystals in soft tissues such as blood vessels, skin, and brain parenchyma. EC contributes to significant morbidity and mortality and is considered a major health problem for which no effective treatments currently exist. In recent years, growing emphasis has been placed on the role of mitochondrial dysfunction and oxidative stress in the pathogenesis of EC. Impaired mitochondrial respiration and increased levels of reactive oxygen species can be directly linked to key molecular pathways involved in EC such as adenosine triphosphate homeostasis, DNA damage signaling, and apoptosis. While EC is mainly encountered in common diseases such as diabetes mellitus and chronic kidney disease, studies in rare hereditary EC disorders such as pseudoxanthoma elasticum or Hutchinson-Gilford progeria syndrome have been instrumental in identifying the precise etiopathogenetic mechanisms leading to EC. In this narrative review, we describe the current state of the art regarding the role of mitochondrial dysfunction and oxidative stress in hereditary EC diseases. In-depth knowledge of aberrant mitochondrial metabolism and its local and systemic consequences will benefit the research into novel therapies for both rare and common EC disorders.
Collapse
|
4
|
Rodent Models of Audiogenic Epilepsy: Genetic Aspects, Advantages, Current Problems and Perspectives. Biomedicines 2022; 10:biomedicines10112934. [PMID: 36428502 PMCID: PMC9687921 DOI: 10.3390/biomedicines10112934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology.
Collapse
|
5
|
Chagas Disease Megaesophagus Patients Carrying Variant MRPS18B P260A Display Nitro-Oxidative Stress and Mitochondrial Dysfunction in Response to IFN-γ Stimulus. Biomedicines 2022; 10:biomedicines10092215. [PMID: 36140315 PMCID: PMC9496350 DOI: 10.3390/biomedicines10092215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, affects 8 million people, and around 1/3 develop chronic cardiac (CCC) or digestive disease (megaesophagus/megacolon), while the majority remain asymptomatic, in the indeterminate form of Chagas disease (ASY). Most CCC cases in families with multiple Chagas disease patients carry damaging mutations in mitochondrial genes. We searched for exonic mutations associated to chagasic megaesophagus (CME) in genes essential to mitochondrial processes. We performed whole exome sequencing of 13 CME and 45 ASY patients. We found the damaging variant MRPS18B 688C > G P230A, in five out of the 13 CME patients (one of them being homozygous; 38.4%), while the variant appeared in one out of 45 ASY patients (2.2%). We analyzed the interferon (IFN)-γ-induced nitro-oxidative stress and mitochondrial function of EBV-transformed lymphoblastoid cell lines. We found the CME carriers of the mutation displayed increased levels of nitrite and nitrated proteins; in addition, the homozygous (G/G) CME patient also showed increased mitochondrial superoxide and reduced levels of ATP production. The results suggest that pathogenic mitochondrial mutations may contribute to cytokine-induced nitro-oxidative stress and mitochondrial dysfunction. We hypothesize that, in mutation carriers, IFN-γ produced in the esophageal myenteric plexus might cause nitro-oxidative stress and mitochondrial dysfunction in neurons, contributing to megaesophagus.
Collapse
|
6
|
He WJ, Li C, Huang Z, Geng S, Rao VS, Kelly TN, Hamm LL, Grams ME, Arking DE, Appel LJ, Rebholz CM. Association of Mitochondrial DNA Copy Number with Risk of Progression of Kidney Disease. Clin J Am Soc Nephrol 2022; 17:966-975. [PMID: 35777833 PMCID: PMC9269623 DOI: 10.2215/cjn.15551121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVES Mitochondrial DNA copy number is a biomarker of mitochondrial function, which has been hypothesized to contribute to pathogenesis of CKD through podocyte injury, tubular epithelial cell damage, and endothelial dysfunction. The prospective association of mitochondrial DNA copy number with CKD progression has not been previously evaluated. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Chronic Renal Insufficiency Cohort study participants had serum levels of mitochondrial DNA copy number calculated from probe intensities of mitochondrial single nucleotide polymorphisms genotyped on the Illumina HumanOmni 1-Quad Array. CKD progression was defined as kidney failure or halving of eGFR from baseline. Cox proportional hazards models were used to calculate hazard ratios for mitochondrial DNA copy number and risk of CKD progression. RESULTS Among 2943 participants, mean age was 58 years, 45% were women, and 48% self-identified as Black. There were 1077 patients who experienced CKD progression over a median follow-up of 6.5 years. The incidence rate of CKD progression was highest for those in the lowest tertile of mitochondrial DNA copy number (tertile 1, 58.1; tertile 2, 50.8; tertile 3, 46.3 per 1000 person-years). Risk for CKD progression was higher for participants with lower levels of mitochondrial DNA copy number after adjustment for established risk factors (for tertile 1 versus 3, hazard ratio, 1.28 [95% confidence interval, 1.10 to 1.50]; for tertile 2 versus 3, hazard ratio, 0.99 [95% confidence interval, 0.85 to 1.16]; trend P=0.002). Similar results were seen among those with albuminuria (for tertile 1 versus 3, hazard ratio, 1.24; 95% confidence interval, 1.05 to 1.47), but there were no statistically significant associations among individuals without albuminuria (for tertile 1 versus 3, hazard ratio, 1.04; 95% confidence interval, 0.70 to 1.53; interaction P<0.001). CONCLUSIONS These findings suggest lower mitochondrial DNA copy number is associated with higher risk of CKD progression, independent of established risk factors among patients with CKD.
Collapse
Affiliation(s)
- William J. He
- Boston University School of Medicine, Boston, Massachusetts
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Siyi Geng
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Varun S. Rao
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Tanika N. Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - L. Lee Hamm
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Morgan E. Grams
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Dan E. Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University, Baltimore, Maryland
| | - Lawrence J. Appel
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Casey M. Rebholz
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
7
|
Novosel D, Brajković V, Simčič M, Zorc M, Svara T, Cakanic KB, Jungić A, Logar B, Cubric-Curik V, Dovc P, Curik I. The Consequences of Mitochondrial T10432C Mutation in Cika Cattle: A “Potential” Model for Leber’s Hereditary Optic Neuropathy. Int J Mol Sci 2022; 23:ijms23116335. [PMID: 35683014 PMCID: PMC9181260 DOI: 10.3390/ijms23116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/04/2022] Open
Abstract
While mitogenome mutations leading to pathological manifestations are rare, more than 200 such mutations have been described in humans. In contrast, pathogenic mitogenome mutations are rare in domestic animals and have not been described at all in cattle. In the small local Slovenian cattle breed Cika, we identified (next-generation sequencing) two cows with the T10432C mitogenome mutation in the ND4L gene, which corresponds to the human T10663C mutation known to cause Leber’s hereditary optic neuropathy (LHON). Pedigree analysis revealed that the cows in which the mutation was identified belong to two different maternal lineages with 217 individual cows born between 1997 and 2020. The identified mutation and its maternal inheritance were confirmed by Sanger sequencing across multiple generations, whereas no single analysis revealed evidence of heteroplasmy. A closer clinical examination of one cow with the T10432C mutation revealed exophthalmos, whereas histopathological examination revealed retinal ablations, subretinal oedema, and haemorrhage. The results of these analyses confirm the presence of mitochondrial mutation T10432C with homoplasmic maternal inheritance as well as clinical and histopathological signs similar to LHON in humans. Live animals with the mutation could be used as a suitable animal model that can improve our understanding of the pathogenesis of LHON and other mitochondriopathies.
Collapse
Affiliation(s)
- Dinko Novosel
- Department of Pathology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (V.B.); (V.C.-C.)
- Correspondence: (D.N.); (I.C.); Tel.: +385-91-5179431 (D.N.); +385-98-474406 (I.C.)
| | - Vladimir Brajković
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (V.B.); (V.C.-C.)
| | - Mojca Simčič
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.S.); (M.Z.); (P.D.)
| | - Minja Zorc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.S.); (M.Z.); (P.D.)
| | - Tanja Svara
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | | | - Andreja Jungić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Betka Logar
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia;
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (V.B.); (V.C.-C.)
| | - Peter Dovc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.S.); (M.Z.); (P.D.)
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (V.B.); (V.C.-C.)
- Correspondence: (D.N.); (I.C.); Tel.: +385-91-5179431 (D.N.); +385-98-474406 (I.C.)
| |
Collapse
|
8
|
Sumathipala D, Strømme P, Fattahi Z, Lüders T, Sheng Y, Kahrizi K, Einarsen IH, Sloan JL, Najmabadi H, van den Heuvel L, Wevers RA, Guerrero-Castillo S, Mørkrid L, Valayannopoulos V, Backe PH, Venditti CP, van Karnebeek CD, Nilsen H, Frengen E, Misceo D. ZBTB11 dysfunction: spectrum of brain abnormalities, biochemical signature and cellular consequences. Brain 2022; 145:2602-2616. [PMID: 35104841 PMCID: PMC9337812 DOI: 10.1093/brain/awac034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Bi-allelic pathogenic variants in ZBTB11 have been associated with intellectual developmental disorder, autosomal recessive 69 (MRT69; OMIM 618383). We report five patients from three families with novel, bi-allelic variants in ZBTB11. We have expanded the clinical phenotype of MRT69, documenting varied severity of atrophy affecting different brain regions and described combined malonic and methylmalonic aciduria as a biochemical manifestation. As ZBTB11 encodes for a transcriptional regulator, we performeded chromatin immunoprecipitation-sequencing targeting ZBTB11 in fibroblasts from patients and controls. Chromatin immunoprecipitation-sequencing revealed binding of wild-type ZBTB11 to promoters in 238 genes, among which genes encoding proteins involved in mitochondrial functions and RNA processing are over-represented. Mutated ZBTB11 showed reduced binding to 61 of the targeted genes, indicating that the variants act as loss of function. Most of these genes are related to mitochondrial functions. Transcriptome analysis of the patient fibroblasts revealed dysregulation of mitochondrial functions. In addition, we uncovered that reduced binding of the mutated ZBTB11 to ACSF3 leads to decreased ACSF3 transcript level, explaining combined malonic and methylmalonic aciduria. Collectively, these results expand the clinical spectrum of ZBTB11-related neurological disease and give insight into the pathophysiology in which the dysfunctional ZBTB11 affect mitochondrial functions and RNA processing contributing to the neurological and biochemical phenotypes.
Collapse
Affiliation(s)
| | | | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Torben Lüders
- Department of Clinical Molecular Biology, Section of Clinical Molecular Biology (EpiGen), University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ingunn Holm Einarsen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jennifer L Sloan
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Lambert van den Heuvel
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands,United for Metabolic Disease—UMD, The Netherlands
| | - Sergio Guerrero-Castillo
- University Children’s Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lars Mørkrid
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Paul Hoff Backe
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Charles P Venditti
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Clara D van Karnebeek
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands,United for Metabolic Disease—UMD, The Netherlands,Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Section of Clinical Molecular Biology (EpiGen), University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | | | - Doriana Misceo
- Correspondence to: Doriana Misceo Department of Medical Genetics Oslo University Hospital and University of Oslo Postboks 4956 Nydalen, 0424 Oslo, Norway E-mail:
| |
Collapse
|
9
|
Mitochondrial DNA alterations in the domestic dog (Canis lupus familiaris) and their association with development of diseases: a review. Mitochondrion 2022; 63:72-84. [DOI: 10.1016/j.mito.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/06/2022]
|
10
|
Che F, Zhao J, Zhao Y, Wang Z, Zhang L, Yang Y. A Novel Heterozygous Pathogenic Variation in CYCS Gene Cause Autosomal Dominant Non-Syndromic Thrombocytopenia 4 in a Large Chinese Family. Front Genet 2022; 12:783455. [PMID: 35126455 PMCID: PMC8811603 DOI: 10.3389/fgene.2021.783455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Aim: To determine the etiology of a Chinese family with thrombocytopenia by analyzing the clinical features and genetic variation. Methods: Clinical profiles and genomic DNA extracts of the family members were collected for the study. Whole exome sequencing and Sanger sequencing was used to detect the associated genetic variation and verify the family co-segregation respectively. Bioinformatics analysis assessed the pathogenicity of missense mutations. Results: The study reported a 3-generation pedigree including eight family members with thrombocytopenia. The platelet counts of the patients were varied, ranging from 38 to 110 × 109/L (reference range: 150–450 x 109/L). The mean volumes and morphology of the sampled platelet were both normal. The bleeding abnormality and mitochondriopathy were not observed in all the patients. Clinical signs of thrombocytopenia were mild. A novel heterozygous missense variant c.79C > T (p.His27Tyr) was identified in CYCS gene associated with autosomal dominant thrombocytopenia. Conclusion: We report the first large family with autosomal dominant non-syndromic thrombocytopenia 4 in a Chinese family, a novel heterozygous missense variant c.79C > T (p.His27Tyr) was identified. The whole exome sequencing is an efficient tool for screening the variants specifically associated with the disease. The finding enriches the mutation spectrum of CYCS gene and laid a foundation for future studies on the correlation between genotype and phenotype.
Collapse
Affiliation(s)
- Fengyu Che
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Jiangang Zhao
- Department of Neonatology, Xi’an Children’s Hospital, Xi’an, China
| | - Yujuan Zhao
- Department of Neonatology, Xi’an Children’s Hospital, Xi’an, China
| | - Zhi Wang
- Department of Neonatology, Xi’an Children’s Hospital, Xi’an, China
| | - Liyu Zhang
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Ying Yang
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
- *Correspondence: Ying Yang,
| |
Collapse
|
11
|
Riquin E, Barth M, Le Nerzé T, Pasquini N, Prouteau C, Colin E, Amati Bonneau P, Procaccio V, Van Bogaert P, Duverger P, Bonneau D, Roy A. Neuropsychological Features of Children and Adolescents With Mitochondrial Disorders: A Descriptive Case Series. Front Psychiatry 2022; 13:864445. [PMID: 35463509 PMCID: PMC9021957 DOI: 10.3389/fpsyt.2022.864445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Mitochondrial disorders (MD) are metabolic diseases related to genetic mutations in mitochondrial DNA and nuclear DNA that cause dysfunction of the mitochondrial respiratory chain. Cognitive impairment and psychiatric symptoms are frequently associated with MD in the adult population. The aim of this study is to describe the neuropsychological profile in children and adolescents with MD. METHODS We prospectively recruited a sample of 12 children and adolescents between February 2019 and February 2020 in the Reference Center for Mitochondrial Disorders of Angers (France). Participants and their parents completed an anamnestic form describing socio-demographic data and completed the WISC-V (Wechsler Intelligence Scale for Children, 5th edition) and the Parent and Teacher forms of the BRIEF (Behavior Rating Inventory of Executive Function). RESULTS In our sample, the mean IQ (Intellectual Quotient) score was 87.3 ± 25.3. The score ranged from 52 to 120. Concerning executive functions, a significant global clinical complaint was found for parents (six times more than normal) and to a lesser extent, for teachers (among 3 to 4 times more). Levels of intelligence and executive functioning were globally linked in our cohort but dissociation remains a possibility. CONCLUSION The results of this study show that MD can be associated to neuropsychological disorders in children and adolescents, especially regarding the intelligence quotient and the executive function. Our study also highlights the need for regular neuropsychological assessments in individuals with MD and developing brains, such as children and adolescents.
Collapse
Affiliation(s)
- Elise Riquin
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France.,Univ Angers, Université de Nantes, LPPL, SFR Confluences, Angers, France.,Univ Angers, [CHU Angers], INSERM, CNRS, MITOVASC, SFR ICAT, Angers, France
| | - Magalie Barth
- Department of Genetics, National Reference Center for Mitochondrial Disorders, University Hospital of Angers, Angers, France
| | - Thomas Le Nerzé
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France
| | - Natwin Pasquini
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France
| | - Clement Prouteau
- Department of Genetics, National Reference Center for Mitochondrial Disorders, University Hospital of Angers, Angers, France
| | - Estelle Colin
- Univ Angers, [CHU Angers], INSERM, CNRS, MITOVASC, SFR ICAT, Angers, France.,Department of Genetics, National Reference Center for Mitochondrial Disorders, University Hospital of Angers, Angers, France
| | - Patrizia Amati Bonneau
- Department of Genetics, National Reference Center for Mitochondrial Disorders, University Hospital of Angers, Angers, France
| | - Vincent Procaccio
- Department of Genetics, National Reference Center for Mitochondrial Disorders, University Hospital of Angers, Angers, France
| | - Patrick Van Bogaert
- Department of Pediatric Neurology, University Hospital of Angers, Angers, France
| | - Philippe Duverger
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France.,Univ Angers, Université de Nantes, LPPL, SFR Confluences, Angers, France
| | - Dominique Bonneau
- Univ Angers, [CHU Angers], INSERM, CNRS, MITOVASC, SFR ICAT, Angers, France.,Department of Genetics, National Reference Center for Mitochondrial Disorders, University Hospital of Angers, Angers, France
| | - Arnaud Roy
- Univ Angers, Université de Nantes, LPPL, SFR Confluences, Angers, France.,Reference Center for Learning Disabilities, University Hospital of Nantes, Nantes, France
| |
Collapse
|
12
|
Riquin E, Le Nerzé T, Pasquini N, Barth M, Prouteau C, Colin E, Amati Bonneau P, Procaccio V, Van Bogaert P, Duverger P, Bonneau D, Roy A. Psychiatric Symptoms of Children and Adolescents With Mitochondrial Disorders: A Descriptive Case Series. Front Psychiatry 2021; 12:685532. [PMID: 34354612 PMCID: PMC8329032 DOI: 10.3389/fpsyt.2021.685532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Mitochondrial disorders (MD) are a group of clinically heterogeneous genetic disorders resulting from dysfunction of the mitochondrial respiratory chain. Cognitive impairment is a common feature in adults with MD and psychiatric symptoms are associated with MD in up to 70% of the adult population. The aim of this study is to describe the psychiatric profile in children and adolescents with MD by focusing on the description of psychiatric symptoms. Methods: A cohort of 12 children and adolescents was prospectively recruited between February 2019 and February 2020 in the Reference Center for Mitochondrial Disorders of Angers (France). Participants and their parents completed an anamnestic form to provide socio-demographic data and completed the Global Assessment of Functioning scale, the Brief Psychiatric Rating Scale, the Child Depression Inventory, the Revised Children's Manifest Anxiety Scale, and the Conner's Rating Scale to evaluate the inattention/hyperactivity symptoms as well as the Quality of Life scale. Results: Four children (33.3%) were diagnosed with depressive symptoms. With regarding to anxiety, 6 children (50%) reported anxiety issues during the psychiatric interview and 3 children (25%) were suffering from anxiety according to the RCMAS scale. Compared to other children with chronic illnesses, the individuals in our cohort reported a lower overall quality of life score and lower scores in physical and social subscales. Conclusion: Our study shows that MD can lead to psychiatric disorders in children and adolescents, in particular anxiety and depression, as well as poor quality of life. This highlights the need for regular psychiatric assessments in individuals with developing brains, such as children and adolescents. We do not, however, have data regarding the neuropsychological profile of this population.
Collapse
Affiliation(s)
- Elise Riquin
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France
- University Angers, [CHU Angers], LPPL EA4638, Angers, France
- University Angers, [CHU Angers], INSERM, CNRS, MITOVASC, SFR ICAT, Angers, France
| | - Thomas Le Nerzé
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France
| | - Natwin Pasquini
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France
| | - Magalie Barth
- Department of Genetics and National Reference Center for Mitochondrial Disorders, University Hospital of Angers, Angers, France
| | - Clément Prouteau
- Department of Genetics and National Reference Center for Mitochondrial Disorders, University Hospital of Angers, Angers, France
| | - Estelle Colin
- University Angers, [CHU Angers], INSERM, CNRS, MITOVASC, SFR ICAT, Angers, France
- Department of Genetics and National Reference Center for Mitochondrial Disorders, University Hospital of Angers, Angers, France
| | - Patrizia Amati Bonneau
- Department of Genetics and National Reference Center for Mitochondrial Disorders, University Hospital of Angers, Angers, France
| | - Vincent Procaccio
- Department of Genetics and National Reference Center for Mitochondrial Disorders, University Hospital of Angers, Angers, France
| | - Patrick Van Bogaert
- Department of Pediatric Neurology, University Hospital of Angers, Angers, France
| | - Philippe Duverger
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France
- University Angers, [CHU Angers], LPPL EA4638, Angers, France
| | - Dominique Bonneau
- University Angers, [CHU Angers], INSERM, CNRS, MITOVASC, SFR ICAT, Angers, France
- Department of Genetics and National Reference Center for Mitochondrial Disorders, University Hospital of Angers, Angers, France
| | - Arnaud Roy
- University Angers, [CHU Angers], LPPL EA4638, Angers, France
- Reference Center for Learning Disabilities, University Hospital of Nantes, Nantes, France
| |
Collapse
|
13
|
Forst AL, Reichold M, Kleta R, Warth R. Distinct Mitochondrial Pathologies Caused by Mutations of the Proximal Tubular Enzymes EHHADH and GATM. Front Physiol 2021; 12:715485. [PMID: 34349672 PMCID: PMC8326905 DOI: 10.3389/fphys.2021.715485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
The mitochondria of the proximal tubule are essential for providing energy in this nephron segment, whose ATP generation is almost exclusively oxygen dependent. In addition, mitochondria are involved in a variety of metabolic processes and complex signaling networks. Proximal tubular mitochondrial dysfunction can therefore affect renal function in very different ways. Two autosomal dominantly inherited forms of renal Fanconi syndrome illustrate how multifaceted mitochondrial pathology can be: Mutation of EHHADH, an enzyme in fatty acid metabolism, results in decreased ATP synthesis and a consecutive transport defect. In contrast, mutations of GATM, an enzyme in the creatine biosynthetic pathway, leave ATP synthesis unaffected but do lead to mitochondrial protein aggregates, inflammasome activation, and renal fibrosis with progressive renal failure. In this review article, the distinct pathophysiological mechanisms of these two diseases are presented, which are examples of the spectrum of proximal tubular mitochondrial diseases.
Collapse
Affiliation(s)
- Anna-Lena Forst
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Markus Reichold
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Robert Kleta
- Centre for Nephrology, University College London, London, United Kingdom
| | - Richard Warth
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Liskova A, Samec M, Koklesova L, Kudela E, Kubatka P, Golubnitschaja O. Mitochondriopathies as a Clue to Systemic Disorders-Analytical Tools and Mitigating Measures in Context of Predictive, Preventive, and Personalized (3P) Medicine. Int J Mol Sci 2021; 22:ijms22042007. [PMID: 33670490 PMCID: PMC7922866 DOI: 10.3390/ijms22042007] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial respiratory chain is the main site of reactive oxygen species (ROS) production in the cell. Although mitochondria possess a powerful antioxidant system, an excess of ROS cannot be completely neutralized and cumulative oxidative damage may lead to decreasing mitochondrial efficiency in energy production, as well as an increasing ROS excess, which is known to cause a critical imbalance in antioxidant/oxidant mechanisms and a "vicious circle" in mitochondrial injury. Due to insufficient energy production, chronic exposure to ROS overproduction consequently leads to the oxidative damage of life-important biomolecules, including nucleic acids, proteins, lipids, and amino acids, among others. Different forms of mitochondrial dysfunction (mitochondriopathies) may affect the brain, heart, peripheral nervous and endocrine systems, eyes, ears, gut, and kidney, among other organs. Consequently, mitochondriopathies have been proposed as an attractive diagnostic target to be investigated in any patient with unexplained progressive multisystem disorder. This review article highlights the pathomechanisms of mitochondriopathies, details advanced analytical tools, and suggests predictive approaches, targeted prevention and personalization of medical services as instrumental for the overall management of mitochondriopathy-related cascading pathologies.
Collapse
Affiliation(s)
- Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
- Correspondence: (P.K.); (O.G.)
| | - Olga Golubnitschaja
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
- Correspondence: (P.K.); (O.G.)
| |
Collapse
|
15
|
Grillo AS, Bitto A, Kaeberlein M. The NDUFS4 Knockout Mouse: A Dual Threat Model of Childhood Mitochondrial Disease and Normative Aging. Methods Mol Biol 2021; 2277:143-155. [PMID: 34080150 DOI: 10.1007/978-1-0716-1270-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mice missing the Complex I subunit NADH:Ubiquinone Oxidoreductase Fe-S Protein 4 (NDUFS4) of the electron transport chain are a leading model of the severe mitochondrial disease Leigh syndrome. These mice have enabled a better understanding of mitochondrial dysfunction in human disease, as well as in the discovery of interventions that can potentially suppress mitochondrial disease manifestations. In addition, increasing evidence suggests significant overlap between interventions that increase survival in NDUFS4 knockout mice and that extend life span during normative aging. This chapter discusses the practical aspects of handling and studying these mice, which can be challenging due to their severe disease phenotype. Common procedures such as breeding, genotyping, weaning, or treating these transgenic mice are also discussed.
Collapse
Affiliation(s)
- Anthony S Grillo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alessandro Bitto
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Kreimendahl S, Rassow J. The Mitochondrial Outer Membrane Protein Tom70-Mediator in Protein Traffic, Membrane Contact Sites and Innate Immunity. Int J Mol Sci 2020; 21:E7262. [PMID: 33019591 PMCID: PMC7583919 DOI: 10.3390/ijms21197262] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023] Open
Abstract
Tom70 is a versatile adaptor protein of 70 kDa anchored in the outer membrane of mitochondria in metazoa, fungi and amoeba. The tertiary structure was resolved for the Tom70 of yeast, showing 26 α-helices, most of them participating in the formation of 11 tetratricopeptide repeat (TPR) motifs. Tom70 serves as a docking site for cytosolic chaperone proteins and co-chaperones and is thereby involved in the uptake of newly synthesized chaperone-bound proteins in mitochondrial biogenesis. In yeast, Tom70 additionally mediates ER-mitochondria contacts via binding to sterol transporter Lam6/Ltc1. In mammalian cells, TOM70 promotes endoplasmic reticulum (ER) to mitochondria Ca2+ transfer by association with the inositol-1,4,5-triphosphate receptor type 3 (IP3R3). TOM70 is specifically targeted by the Bcl-2-related protein MCL-1 that acts as an anti-apoptotic protein in macrophages infected by intracellular pathogens, but also in many cancer cells. By participating in the recruitment of PINK1 and the E3 ubiquitin ligase Parkin, TOM70 can be implicated in the development of Parkinson's disease. TOM70 acts as receptor of the mitochondrial antiviral-signaling protein (MAVS) and thereby participates in the corresponding system of innate immunity against viral infections. The protein encoded by Orf9b in the genome of SARS-CoV-2 binds to TOM70, probably compromising the synthesis of type I interferons.
Collapse
Affiliation(s)
| | - Joachim Rassow
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany;
| |
Collapse
|
17
|
Antón Z, Mullally G, Ford HC, van der Kamp MW, Szczelkun MD, Lane JD. Mitochondrial import, health and mtDNA copy number variability seen when using type II and type V CRISPR effectors. J Cell Sci 2020; 133:jcs.248468. [PMID: 32843580 DOI: 10.1242/jcs.248468] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Current methodologies for targeting the mitochondrial genome for research and/or therapy development in mitochondrial diseases are restricted by practical limitations and technical inflexibility. A molecular toolbox for CRISPR-mediated mitochondrial genome editing is desirable, as this could enable targeting of mtDNA haplotypes using the precision and tuneability of CRISPR enzymes. Such 'MitoCRISPR' systems described to date lack reproducibility and independent corroboration. We have explored the requirements for MitoCRISPR in human cells by CRISPR nuclease engineering, including the use of alternative mitochondrial protein targeting sequences and smaller paralogues, and the application of guide (g)RNA modifications for mitochondrial import. We demonstrate varied mitochondrial targeting efficiencies and effects on mitochondrial dynamics/function of different CRISPR nucleases, with Lachnospiraceae bacterium ND2006 (Lb) Cas12a being better targeted and tolerated than Cas9 variants. We also provide evidence of Cas9 gRNA association with mitochondria in HeLa cells and isolated yeast mitochondria, even in the absence of a targeting RNA aptamer. Our data link mitochondrial-targeted LbCas12a/crRNA with increased mtDNA copy number dependent upon DNA binding and cleavage activity. We discuss reproducibility issues and the future steps necessary for MitoCRISPR.
Collapse
Affiliation(s)
- Zuriñe Antón
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Grace Mullally
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Holly C Ford
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Marc W van der Kamp
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK.,Centre for Computational Chemistry, School of Chemistry, Faculty of Science, University of Bristol, Bristol BS8 1TD, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK .,BrisSynBio, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK
| | - Jon D Lane
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK .,BrisSynBio, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
18
|
Mensch A, Zierz S. Cellular Stress in the Pathogenesis of Muscular Disorders-From Cause to Consequence. Int J Mol Sci 2020; 21:ijms21165830. [PMID: 32823799 PMCID: PMC7461575 DOI: 10.3390/ijms21165830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular stress has been considered a relevant pathogenetic factor in a variety of human diseases. Due to its primary functions by means of contractility, metabolism, and protein synthesis, the muscle cell is faced with continuous changes of cellular homeostasis that require rapid and coordinated adaptive mechanisms. Hence, a prone susceptibility to cellular stress in muscle is immanent. However, studies focusing on the cellular stress response in muscular disorders are limited. While in recent years there have been emerging indications regarding a relevant role of cellular stress in the pathophysiology of several muscular disorders, the underlying mechanisms are to a great extent incompletely understood. This review aimed to summarize the available evidence regarding a deregulation of the cellular stress response in individual muscle diseases. Potential mechanisms, as well as involved pathways are critically discussed, and respective disease models are addressed. Furthermore, relevant therapeutic approaches that aim to abrogate defects of cellular stress response in muscular disorders are outlined.
Collapse
|
19
|
Karabatsiakis A, Schönfeldt-Lecuona C. Depression, mitochondrial bioenergetics, and electroconvulsive therapy: a new approach towards personalized medicine in psychiatric treatment - a short review and current perspective. Transl Psychiatry 2020; 10:226. [PMID: 32647150 PMCID: PMC7347855 DOI: 10.1038/s41398-020-00901-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 11/09/2022] Open
Abstract
Major depressive disorder (MDD) is a globally occurring phenomenon and developed into a severe socio-economic challenge. Despite decades of research, the underlying pathophysiological processes of MDD remain incompletely resolved. Like other mental disorders, MDD is hypothesized to mainly affect the central nervous system (CNS). An increasing body of research indicates MDD to also change somatic functioning, which impairs the physiological performance of the whole organism. As a consequence, a paradigm shift seems reasonable towards a systemic view of how MDD affects the body. The same applies to treatment strategies, which mainly focus on the CNS. One new approach highlights changes in the bioenergetic supply and intracellular network dynamics of mitochondria for the pathophysiological understanding of MDD. Mitochondria, organelles of mostly all eukaryotic cells, use carbon compounds to provide biochemical energy in terms of adenosine triphosphate (ATP). ATP is the bioenergetic currency and the main driver for enzymatic activity in all cells and tissues. Clinical symptoms of MDD including fatigue, difficulties concentrating, and lack of motivation were reported to be associated with impaired mitochondrial ATP production and changes in the density of the mitochondrial network. Additionally, the severity of these symptoms correlates negatively with mitochondrial functioning. Psychotherapy, antidepressant medication, and electroconvulsive therapy (ECT), a method used to treat severe and treatment-resistant forms of MDD, achieve robust antidepressant effects. The biological mechanisms beyond the treatment response to antidepressant strategies are partially understood. Here, mitochondrial functioning is discussed as a promising new biomarker for diagnosis and treatment effects in MDD.
Collapse
Affiliation(s)
| | - Carlos Schönfeldt-Lecuona
- Clinic for Psychiatry and Psychotherapy III, Ulm University Clinic, Ulm, Baden-Wuerttemberg, Germany
| |
Collapse
|
20
|
Hong CM, Na JH, Park S, Lee YM. Clinical Characteristics of Early-Onset and Late-Onset Leigh Syndrome. Front Neurol 2020; 11:267. [PMID: 32351444 PMCID: PMC7174756 DOI: 10.3389/fneur.2020.00267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/20/2020] [Indexed: 01/30/2023] Open
Abstract
Background: Leigh syndrome (LS) is the most common pediatric mitochondrial diseases caused by MRC defect. LS patients typically have onset age before 2 years old and have various clinical features. The purpose of this study was to evaluate the various characteristics between the group that were early onset and late onset patients. Methods: The medical records of this study used records between 2006 and 2017 (N = 110). Clinical characteristics, diagnostic evaluations, and neuro image studying of LS were reviewed in our study. We statistically analyzed data from patients diagnosed with LS at our hospital by using subgroup analysis was performed to divide patients according to the onset age. Results: Among the patients, 89 patients (80.9%) had the onset age before 2 years old, and 21 patents (19.1%) had onset age after 2 years old. In subgroup analysis first clinical presentation age, diagnosis age and several onset symptoms in the clinical characteristics were statistically significant. Early onset age group showed delayed development and late onset age group showed motor weakness and ataxia. However, Diagnostics evaluation and MRI findings showed no significant differences. The clinical status monitored during the last visit showed statistically significant differences in the clinical severity. In the early onset age group clinical status was more severe than late onset age group. Conclusions: Although the onset of Leigh syndrome is known to be under 2 years, there are many late onset cases were existed more than expected. Early onset LS patients have poor prognosis compare with late onset LS patients. Therefore, the specific phenotype according to the age of onset should be well-observed. Onset of LS is important in predicting clinical severity or prognosis, and it is necessary to provide individualized treatment or follow-up protocols for each patient.
Collapse
Affiliation(s)
- Chan-Mi Hong
- Departments of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Hoon Na
- Departments of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Soyoung Park
- Department of Pediatrics, Soon Chun Hyang University Hospital and College of Medicine, Soonchunhyang University, Bucheon-si, South Korea
| | - Young-Mock Lee
- Departments of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Abstract
The progressive myoclonic epilepsies (PMEs) represent a rare but devastating group of syndromes characterized by epileptic myoclonus, typically action-induced seizures, neurological regression, medically refractory epilepsy, and a variety of other signs and symptoms depending on the specific syndrome. Most of the PMEs begin in children who are developing as expected, with the onset of the disorder heralded by myoclonic and other seizure types. The conditions are considerably heterogenous, but medical intractability to epilepsy, particularly myoclonic seizures, is a core feature. With the increasing use of molecular genetic techniques, mutations and their abnormal protein products are being delineated, providing a basis for disease-based therapy. However, genetic and enzyme replacement or substrate removal are in the nascent stage, and the primary therapy is through antiepileptic drugs. Epilepsy in children with progressive myoclonic seizures is notoriously difficult to treat. The disorder is rare, so few double-blinded, placebo-controlled trials have been conducted in PME, and drugs are chosen based on small open-label trials or extrapolation of data from drug trials of other syndromes with myoclonic seizures. This review discusses the major PME syndromes and their neurogenetic basis, pathophysiological underpinning, electroencephalographic features, and currently available treatments.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont College of Medicine, Stafford Hall, 118C, Burlington, VT, 05405, USA.
| |
Collapse
|
22
|
Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, Monsalve M, Ramos AM, Sanchez-Niño MD, Ruiz-Ortega M, Ortiz A, Sanz AB. The Role of PGC-1α and Mitochondrial Biogenesis in Kidney Diseases. Biomolecules 2020; 10:biom10020347. [PMID: 32102312 PMCID: PMC7072614 DOI: 10.3390/biom10020347] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the fastest growing causes of death worldwide, emphasizing the need to develop novel therapeutic approaches. CKD predisposes to acute kidney injury (AKI) and AKI favors CKD progression. Mitochondrial derangements are common features of both AKI and CKD and mitochondria-targeting therapies are under study as nephroprotective agents. PGC-1α is a master regulator of mitochondrial biogenesis and an attractive therapeutic target. Low PGC-1α levels and decreased transcription of its gene targets have been observed in both preclinical AKI (nephrotoxic, endotoxemia, and ischemia-reperfusion) and in experimental and human CKD, most notably diabetic nephropathy. In mice, PGC-1α deficiency was associated with subclinical CKD and predisposition to AKI while PGC-1α overexpression in tubular cells protected from AKI of diverse causes. Several therapeutic strategies may increase kidney PGC-1α activity and have been successfully tested in animal models. These include AMP-activated protein kinase (AMPK) activators, phosphodiesterase (PDE) inhibitors, and anti-TWEAK antibodies. In conclusion, low PGC-1α activity appears to be a common feature of AKI and CKD and recent characterization of nephroprotective approaches that increase PGC-1α activity may pave the way for nephroprotective strategies potentially effective in both AKI and CKD.
Collapse
Affiliation(s)
- Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Diego Martin-Sanchez
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Julio Manuel Martinez-Moreno
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain;
| | - Adrian Mario Ramos
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Marta Ruiz-Ortega
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
- School of Medicine, UAM, 28029 Madrid, Spain
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
- School of Medicine, UAM, 28029 Madrid, Spain
- IRSIN, 28040 Madrid, Spain
| | - Ana Belen Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91-550-48-00
| |
Collapse
|
23
|
Braganza A, Annarapu GK, Shiva S. Blood-based bioenergetics: An emerging translational and clinical tool. Mol Aspects Med 2020; 71:100835. [PMID: 31864667 PMCID: PMC7031032 DOI: 10.1016/j.mam.2019.100835] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
Accumulating studies demonstrate that mitochondrial genetics and function are central to determining the susceptibility to, and prognosis of numerous diseases across all organ systems. Despite this recognition, mitochondrial function remains poorly characterized in humans primarily due to the invasiveness of obtaining viable tissue for mitochondrial studies. Recent studies have begun to test the hypothesis that circulating blood cells, which can be obtained by minimally invasive methodology, can be utilized as a biomarker of systemic bioenergetic function in human populations. Here we present the available methodologies for assessing blood cell bioenergetics and review studies that have applied these techniques to healthy and disease populations. We focus on the validation of this methodology in healthy subjects, as well as studies testing whether blood cell bioenergetics are altered in disease, correlate with clinical parameters, and compare with other methodology for assessing human mitochondrial function. Finally, we present the challenges and goals for the development of this emerging approach into a tool for translational research and personalized medicine.
Collapse
Affiliation(s)
- Andrea Braganza
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Gowtham K Annarapu
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine (C3M), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Riquin E, Duverger P, Cariou C, Barth M, Prouteau C, Van Bogaert P, Bonneau D, Roy A. Neuropsychological and Psychiatric Features of Children and Adolescents Affected With Mitochondrial Diseases: A Systematic Review. Front Psychiatry 2020; 11:747. [PMID: 32848925 PMCID: PMC7399331 DOI: 10.3389/fpsyt.2020.00747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Mitochondrial diseases (MDs) are a group of clinically heterogeneous genetic disorders that arise as the result of dysfunctional mitochondria. Only few medical articles deal with neuropsychological or psychiatric aspects of MDs. AIM The present article aims to provide a systematic review of neuropsychological and psychiatric aspects of MDs. METHODS In order to identify all studies dealing with psychiatric and neuropsychological aspects of MDs in children and adolescents, we performed a search in the medical literature between April 2009 and April 2019 using PubMed, Cochrane, and Web of Science and we defined inclusion and exclusion criteria. RESULTS We found only seven studies that satisfy the inclusion requirements and criteria. The main psychiatric aspects reported in MDs were depressive and behavioral disorders. With regard to the neuropsychological aspects of MDs, developmental analyses showed an overall deterioration and developmental delay. INTERPRETATION Children and adolescents with MDs may present psychiatric symptoms and neuropsychological impairment. A more systematic investigation of psychiatric and neuropsychological features of MDs is needed to foster a better understanding of the phenotype of these diseases and their links with the genotype, which may have significant implications for the developmental trajectories of patients.
Collapse
Affiliation(s)
- Elise Riquin
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France.,Mitovasc Unit, UMR CNRS 6015-INSERM 1083, Angers, France.,Laboratory of Psychology, LPPL EA4638, University of Angers, Angers, France
| | - Philippe Duverger
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France.,Laboratory of Psychology, LPPL EA4638, University of Angers, Angers, France
| | - Cindy Cariou
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France
| | - Magalie Barth
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Clément Prouteau
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Patrick Van Bogaert
- Department of Pediatric Neurology, Angers University Hospital, Angers, France
| | - Dominique Bonneau
- Mitovasc Unit, UMR CNRS 6015-INSERM 1083, Angers, France.,Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Arnaud Roy
- Laboratory of Psychology, LPPL EA4638, University of Angers, Angers, France.,Reference Center for Learning Disabilities, Nantes University Hospital, Nantes, France
| |
Collapse
|
25
|
Shah SI, Paine JG, Perez C, Ullah G. Mitochondrial fragmentation and network architecture in degenerative diseases. PLoS One 2019; 14:e0223014. [PMID: 31557225 PMCID: PMC6762132 DOI: 10.1371/journal.pone.0223014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Fragmentation of mitochondrial network has been implicated in many neurodegenerative, renal, and metabolic diseases. However, a quantitative measure of the microscopic parameters resulting in the impaired balance between fission and fusion of mitochondria and consequently the fragmented networks in a wide range of pathological conditions does not exist. Here we present a comprehensive analysis of mitochondrial networks in cells with Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), optic neuropathy (OPA), diabetes/cancer, acute kidney injury, Ca2+ overload, and Down Syndrome (DS) pathologies that indicates significant network fragmentation in all these conditions. Furthermore, we found key differences in the way the microscopic rates of fission and fusion are affected in different conditions. The observed fragmentation in cells with AD, HD, DS, kidney injury, Ca2+ overload, and diabetes/cancer pathologies results from the imbalance between the fission and fusion through lateral interactions, whereas that in OPA, PD, and ALS results from impaired balance between fission and fusion arising from longitudinal interactions of mitochondria. Such microscopic difference leads to major disparities in the fine structure and topology of the network that could have significant implications for the way fragmentation affects various cell functions in different diseases.
Collapse
Affiliation(s)
- Syed I. Shah
- Department of Physics, University of South Florida, Tampa, FL, United States of America
| | - Johanna G. Paine
- Department of Physics, University of South Florida, Tampa, FL, United States of America
| | - Carlos Perez
- Department of Physics, University of South Florida, Tampa, FL, United States of America
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL, United States of America
| |
Collapse
|
26
|
Multiomic Signature of Glaucoma Predisposition in Flammer Syndrome Affected Individuals – Innovative Predictive, Preventive and Personalised Strategies in Disease Management. FLAMMER SYNDROME 2019. [DOI: 10.1007/978-3-030-13550-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Igumnova V, Veidemane L, Vīksna A, Capligina V, Zole E, Ranka R. The prevalence of mitochondrial mutations associated with aminoglycoside-induced deafness in ethnic Latvian population: the appraisal of the evidence. J Hum Genet 2018; 64:199-206. [PMID: 30523288 DOI: 10.1038/s10038-018-0544-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 11/09/2022]
Abstract
Aminoglycosides are potent antibiotics which are used to treat severe gram-negative infections, neonatal sepsis, and multidrug-resistant tuberculosis. Ototoxicity is a well-known side effect of aminoglycosides, and a rapid, profound, and irreversible hearing loss can occur in predisposed individuals. MT-RNR1 gene encoding the mitochondrial ribosomal 12S subunit is a hot spot for aminoglycoside-induced hearing loss mutations, however, a variability in the nature and frequency of genetic changes in different populations exists. The objective of this study was to analyze MT-RNR1 gene mutations in a Baltic-speaking Latvian population, and to estimate the prevalence of such genetic changes in the population-specific mitochondrial haplogroups. In the cohort of 191 ethnic non-related Latvians, the presence of two deafness-associated mutations, m.1555A>G and m.827A>G, three potentially pathogenic variations, m.961insC(n), m.961T>G and m.951G>A, and one unknown substitution, m961T>A was detected, and the aggregate frequency of all variants was 7.3%. All genetic changes were detected in samples belonged to the haplogroups H, U, T, and J. The presence of several aminoglycoside ototoxicity-related MT-RNR1 gene mutations in Baltic-speaking Latvian population indicates the necessity to include ototoxicity-related mutation analysis in the future studies in order to determine the feasibility of DNA screening for patients before administration of aminoglycoside therapy.
Collapse
Affiliation(s)
- Viktorija Igumnova
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, LV-1067, Latvia.,Department of Pharmaceutical Chemistry, Rīga Stradinš University, Dzirciema Str. 16, Riga, LV-1007, Latvia
| | - Lauma Veidemane
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, LV-1067, Latvia
| | - Anda Vīksna
- Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Stopiņi region, Upeslejas, LV-2118, Latvia
| | - Valentina Capligina
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, LV-1067, Latvia
| | - Egija Zole
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, LV-1067, Latvia
| | - Renate Ranka
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, LV-1067, Latvia. .,Department of Pharmaceutical Chemistry, Rīga Stradinš University, Dzirciema Str. 16, Riga, LV-1007, Latvia.
| |
Collapse
|
28
|
Lee SJ, Na JH, Han J, Lee YM. Ophthalmoplegia in Mitochondrial Disease. Yonsei Med J 2018; 59:1190-1196. [PMID: 30450853 PMCID: PMC6240566 DOI: 10.3349/ymj.2018.59.10.1190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To evaluate the classification, diagnosis, and natural course of ophthalmoplegia associated with mitochondrial disease. MATERIALS AND METHODS Among 372 patients with mitochondrial disease who visited our hospital between January 2006 and January 2016, 21 patients with ophthalmoplegia were retrospectively identified. Inclusion criteria included onset before 20 years of age, pigmentary retinopathy, and cardiac involvement. The 16 patients who were finally included in the study were divided into three groups according to disease type: Kearns-Sayre syndrome (KSS), KSS-like, and chronic progressive external ophthalmoplegia (CPEO). RESULTS The prevalences of clinical findings were as follows: ptosis and retinopathy, both over 80%; myopathy, including extraocular muscles, 75%; lactic acidosis, 71%; and elevated levels of serum creatine kinase, 47%. Half of the patients had normal magnetic resonance imaging findings. A biochemical enzyme assay revealed mitochondrial respiratory chain complex I defect as the most common (50%). The prevalence of abnormal muscle findings in light or electron microscopic examinations was 50% each, while that of large-scale mitochondrial DNA (mtDNA) deletions in a gene study was 25%. We compared the KSS and KSS-like groups with the CPEO patient group, which showed pigmentary retinopathy (p<0.001), cardiac conduction disease (p=0.013), and large-scale mtDNA deletions (p=0.038). KSS and KSS-like groups also had gastrointestinal tract disorders such as abnormal gastrointestinal motility (p=0.013) unlike the CPEO group. CONCLUSION Patients with KSS had gastrointestinal symptoms, which may indicate another aspect of systemic involvement. The presence of large-scale mtDNA deletions was an objective diagnostic factor for KSS and a gene study may be helpful for evaluating patients with KSS.
Collapse
Affiliation(s)
- Sang Jun Lee
- Department of Pediatrics, Gangnam Severance Hospital, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hoon Na
- Department of Pediatrics, Gangnam Severance Hospital, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jinu Han
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Mock Lee
- Department of Pediatrics, Gangnam Severance Hospital, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
29
|
Khasawneh R, Alsokhni H, Alzghoul B, Momani A, Abualsheikh N, Kamal N, Qatawneh M. A Novel Mitochondrial DNA Deletion in Patient with Pearson Syndrome. Med Arch 2018; 72:148-150. [PMID: 29736106 PMCID: PMC5911175 DOI: 10.5455/medarh.2018.72.148-150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction Arteriovenous Pearson syndrome is a very rare multisystemic mitochondrial disease characterized by sideroblastic anemia and exocrine pancreatic insufficiency. It is usually fatal in infancy. Case report We reported a four-month-old infant presented with fever and pancytopenia. Bone marrow examination showed hypoplastic changes and sideroblastic features. Molecular Study showed a novel hetroplasmic mitochondrial deletions (m. 10760 -m. 15889+) in multiple genes (ND4,ND5,ND6, CYTB). In our patient the pathogenic mutation was 5.1 kb heteroplasmic deletions in multiple genes that are important and crucial for intact oxidative phosphorylation pathway and ATP production in the mitochondrial DNA. This mutation was not reported in literature including the mitomap.org website (which was last edited on Nov 30, 2017 and accessed on Jan 13, 2018).
Collapse
Affiliation(s)
- Rame Khasawneh
- Department of Pathology, King Hussein Medical Center, Amman, Jordan
| | - Hala Alsokhni
- Department of Pathology, King Hussein Medical Center, Amman, Jordan
| | - Bayan Alzghoul
- Department of Pathology, King Hussein Medical Center, Amman, Jordan
| | - Asim Momani
- Department of Pathology, King Hussein Medical Center, Amman, Jordan
| | | | - Nazmi Kamal
- Department of Pathology, King Hussein Medical Center, Amman, Jordan
| | - Mousa Qatawneh
- Pediatric Hematology/Oncology Department, King Hussein Medical Center, Amman, Jordan
| |
Collapse
|
30
|
Baek JH, Gomez IG, Wada Y, Roach A, Mahad D, Duffield JS. Deletion of the Mitochondrial Complex-IV Cofactor Heme A:Farnesyltransferase Causes Focal Segmental Glomerulosclerosis and Interferon Response. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2745-2762. [PMID: 30268775 DOI: 10.1016/j.ajpath.2018.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 01/31/2023]
Abstract
Mutations in mitochondrial DNA as well as nuclear-encoded mitochondrial proteins have been reported to cause tubulointerstitial kidney diseases and focal segmental glomerulosclerosis (FSGS). Recently, genes and pathways affecting mitochondrial turnover and permeability have been implicated in adult-onset FSGS. Furthermore, dysfunctioning mitochondria may be capable of engaging intracellular innate immune-sensing pathways. To determine the impact of mitochondrial dysfunction in FSGS and secondary innate immune responses, we generated Cre/loxP transgenic mice to generate a loss-of-function deletion mutation of the complex IV assembly cofactor heme A:farnesyltransferase (COX10) restricted to cells of the developing nephrons. These mice develop severe, early-onset FSGS with innate immune activation and die prematurely with kidney failure. Mutant kidneys showed loss of glomerular and tubular epithelial function, epithelial apoptosis, and, in addition, a marked interferon response. In vitro modeling of Cox10 deletion in primary kidney epithelium compromises oxygen consumption, ATP generation, and induces oxidative stress. In addition, loss of Cox10 triggers a selective interferon response, which may be caused by the leak of mitochondrial DNA into the cytosol activating the intracellular DNA sensor, stimulator of interferon genes. This new animal model provides a mechanism to study mitochondrial dysfunction in vivo and demonstrates a direct link between mitochondrial dysfunction and intracellular innate immune response.
Collapse
Affiliation(s)
- Jea-Hyun Baek
- Research and Development, Biogen Inc., Cambridge, Massachusetts.
| | - Ivan G Gomez
- Research and Development, Biogen Inc., Cambridge, Massachusetts; Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington
| | - Yukihiro Wada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Allie Roach
- Research and Development, Biogen Inc., Cambridge, Massachusetts; Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington
| | - Don Mahad
- Centre for Clinical Brain Sciences, Anne Rowling Regenerative Neurology Clinic and Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeremy S Duffield
- Research and Development, Biogen Inc., Cambridge, Massachusetts; Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
31
|
Ren C, Liu J, Zhou J, Liang H, Zhu Y, Wang Q, Leng Y, Zhang Z, Yuan Y, Wang Z, Yin Y. Lipidomic profiling of plasma samples from patients with mitochondrial disease. Biochem Biophys Res Commun 2018; 500:124-131. [PMID: 29627572 DOI: 10.1016/j.bbrc.2018.03.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
Mitochondrial disease (MD) is a rare mitochondrial respiratory chain disorder with a high mortality and extremely challenging to treat. Although genomic, transcriptomic, and proteomic analyses have been performed to investigate the pathogenesis of MD, the role of metabolomics in MD, particularly of lipidomics remains unclear. This study was undertaken to identify potential lipid biomarkers of MD. An untargeted lipidomic approach was used to compare the plasma lipid metabolites in 20 MD patients and 20 controls through Liquid Chromatography coupled to Mass Spectrometry. Volcano plot analysis was performed to identify the different metabolites. Receiver operating characteristic (ROC) curves were constructed and the area under the ROC curves (AUC) was calculated to determine the potentially sensitive and specific biomarkers. A total of 41 lipids were significantly different in MD patients and controls. ROC curve analysis showed the top 5 AUC values of lipids (phosphatidylinositols 38:6, lysoPC 20:0, 19:0, 18:0, 17:0) are more than 0.99. Multivariate ROC curve based exploratory analysis showed the AUC of combination of top 5 lipids is 1, indicating they may be potentially sensitive and specific biomarkers for MD. We propose combination of these lipid species may be more valuable in predicting the development and progression of MD, and this will have important implications for the diagnosis and treatment of MD.
Collapse
Affiliation(s)
- Caixia Ren
- Departments of Human Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Jia Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Juntuo Zhou
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hui Liang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yizhang Zhu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qingqing Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yinglin Leng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Zhe Zhang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Beijing 100191, China.
| |
Collapse
|
32
|
Abstract
Impaired mitochondrial energy metabolism contributes to a wide range of pathologic conditions, including neurodegenerative diseases. Mitochondrial apoptosis-inducing factor (AIF) is required for the correct maintenance of mitochondrial electron transport chain. An emerging body of clinical evidence indicates that several mutations in the AIFM1 gene are causally linked to severe forms of mitochondrial disorders. Here we investigate the consequence of WAH-1/AIF deficiency in the survival of the nematode Caenorhabditis elegans. Moreover, we assess the survival of C. elegans strains expressing a disease-associated WAH-1/AIF variant. We demonstrate that wah-1 downregulation compromises the function of the oxidative phosphorylation system and reduces C. elegans lifespan. Notably, the loss of respiratory subunits induces a nuclear-encoded mitochondrial stress response independently of an evident increase of oxidative stress. Overall, our data pinpoint an evolutionarily conserved role of WAH-1/AIF in the maintenance of proper mitochondrial activity.
Collapse
|
33
|
Geschwind MD, Murray K. Differential diagnosis with other rapid progressive dementias in human prion diseases. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:371-397. [PMID: 29887146 DOI: 10.1016/b978-0-444-63945-5.00020-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Prion diseases are unique in medicine as in humans they occur in sporadic, genetic, and acquired forms. The most common human prion disease is sporadic Creutzfeldt-Jakob disease (CJD), which commonly presents as a rapidly progressive dementia (RPD) with behavioral, cerebellar, extrapyramidal, and some pyramidal features, with the median survival from symptom onset to death of just a few months. Because human prion diseases, as well as other RPDs, are relatively rare, they can be difficult to diagnose, as most clinicians have seen few, if any, cases. Not only can prion diseases mimic many other conditions that present as RPD, but some of those conditions can present similarly to prion disease. In this article, the authors discuss the different etiologic categories of conditions that often present as RPD and also present RPDs that had been misdiagnosed clinically as CJD. Etiologic categories of conditions are presented in order of the mnemonic used for remembering the various categories of RPDs: VITAMINS-D, for vascular, infectious, toxic-metabolic, autoimmune, mitochondrial/metastases, iatrogenic, neurodegenerative, system/seizures/sarcoid, and demyelinating. When relevant, clinical, imaging, or other features of an RPD that overlap with those of CJD are presented.
Collapse
Affiliation(s)
- Michael D Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States.
| | - Katy Murray
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
34
|
Mezuki S, Fukuda K, Matsushita T, Fukushima Y, Matsuo R, Goto YI, Yasukawa T, Uchiumi T, Kang D, Kitazono T, Ago T. Isolated and repeated stroke-like episodes in a middle-aged man with a mitochondrial ND3 T10158C mutation: a case report. BMC Neurol 2017; 17:217. [PMID: 29237403 PMCID: PMC5729248 DOI: 10.1186/s12883-017-1001-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/05/2017] [Indexed: 12/31/2022] Open
Abstract
Background Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, is the most common phenotype of mitochondrial disease. It often develops in childhood or adolescence, usually before the age of 40, in a maternally-inherited manner. Mutations in mitochondrial DNA (mtDNA) are frequently responsible for MELAS. Case presentation A 55-year-old man, who had no family or past history of mitochondrial disorders, suddenly developed bilateral visual field constriction and repeated stroke-like episodes. He ultimately presented with cortical blindness, recurrent epilepsy and severe cognitive impairment approximately 6 months after the first episode. Genetic analysis of biopsied biceps brachii muscle, but not of peripheral white blood cells, revealed a T10158C mutation in the mtDNA-encoded gene of NADH dehydrogenase subunit 3 (ND3), which has previously been thought to be associated with severe or fatal mitochondrial disorders that develop during the neonatal period or in infancy. Conclusion A T10158C mutation in the ND3 gene can cause atypical adult-onset stroke-like episodes in a sporadic manner.
Collapse
Affiliation(s)
- Satomi Mezuki
- Stroke Center, St. Mary's Hospital, 422 Tsubukuhonmachi, Kurume, 830-8543, Japan. .,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kenji Fukuda
- Stroke Center, St. Mary's Hospital, 422 Tsubukuhonmachi, Kurume, 830-8543, Japan
| | - Tomonaga Matsushita
- Stroke Center, St. Mary's Hospital, 422 Tsubukuhonmachi, Kurume, 830-8543, Japan
| | - Yoshihisa Fukushima
- Stroke Center, St. Mary's Hospital, 422 Tsubukuhonmachi, Kurume, 830-8543, Japan
| | - Ryu Matsuo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan
| | - Takehiro Yasukawa
- Department of Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Dongchon Kang
- Department of Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
35
|
Eirin A, Lerman A, Lerman LO. The Emerging Role of Mitochondrial Targeting in Kidney Disease. Handb Exp Pharmacol 2017; 240:229-250. [PMID: 27316914 DOI: 10.1007/164_2016_6] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Renal disease affects millions of people worldwide, imposing an enormous financial burden for health-care systems. Recent evidence suggests that mitochondria play an important role in the pathogenesis of different forms of renal disease, including genetic defects, acute kidney injury, chronic kidney disease, aging, renal tumors, and transplant nephropathy. Renal mitochondrial abnormalities and dysfunction affect several cellular pathways, leading to increased oxidative stress, apoptosis, microvascular loss, and fibrosis, all of which compromise renal function. Over recent years, compounds that specifically target mitochondria have emerged as promising therapeutic options for patients with renal disease. Although the most compelling evidence is based on preclinical studies, several compounds are currently being tested in clinical trials. This chapter provides an overview of the involvement of mitochondrial dysfunction in renal disease and summarizes the current knowledge on mitochondria-targeted strategies to attenuate renal disease.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. .,Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
36
|
Mun JY, Jung MK, Kim SH, Eom S, Han SS, Lee YM. Ultrastructural Changes in Skeletal Muscle of Infants with Mitochondrial Respiratory Chain Complex I Defects. J Clin Neurol 2017; 13:359-365. [PMID: 28884981 PMCID: PMC5653623 DOI: 10.3988/jcn.2017.13.4.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022] Open
Abstract
Background and Purpose The pathogenesis of mitochondrial disease (MD) involves the disruption of cellular energy metabolism, which results from defects in the mitochondrial respiratory chain complex (MRC). We investigated whether infants with MRC I defects showed ultrastructural changes in skeletal muscle. Methods Twelve infants were enrolled in this study. They were initially evaluated for unexplained neurodegenerative symptoms, myopathies, or other progressive multiorgan involvement, and underwent muscle biopsies when MD was suspected. Muscle tissue samples were subjected to biochemical enzyme assays and observation by transmission electron microscopy. We compared and analyzed the ultrastructure of skeletal muscle tissues obtained from patients with and without MRC I defects. Results Biochemical enzyme assays confirmed the presence of MRC I defects in 7 of the 12 patients. Larger mitochondria, lipid droplets, and fused structures between the outer mitochondrial membrane and lipid droplets were observed in the skeletal muscles of patients with MRC I defects. Conclusions Mitochondrial functional defects in MRC I disrupt certain activities related to adenosine triphosphate synthesis that produce changes in the skeletal muscle. The ultrastructural changes observed in the infants in this study might serve as unique markers for the detection of MD.
Collapse
Affiliation(s)
- Ji Young Mun
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam, Korea
| | - Min Kyo Jung
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Soyong Eom
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Sik Han
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Young Mock Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
37
|
In Reply: Death in Pediatric Mitochondrial Disorders. Pediatr Neurol 2017; 73:e3. [PMID: 28583703 DOI: 10.1016/j.pediatrneurol.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Nishihara H, Omoto M, Takao M, Higuchi Y, Koga M, Kawai M, Kawano H, Ikeda E, Takashima H, Kanda T. Autopsy case of the C12orf65 mutation in a patient with signs of mitochondrial dysfunction. NEUROLOGY-GENETICS 2017; 3:e171. [PMID: 28804760 PMCID: PMC5532748 DOI: 10.1212/nxg.0000000000000171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/08/2017] [Indexed: 11/16/2022]
Abstract
Objective: To describe the autopsy case of a patient with a homozygous 2-base deletion, c171_172delGA (p.N58fs), in the C12orf65 gene. Methods: We described the clinical history, neuroimaging data, neuropathology, and genetic analysis of the patients with C12orf65 mutations. Results: The patient was a Japanese woman with a history of delayed psychomotor development, primary amenorrhea, and gait disturbance in her 20s. She was hospitalized because of respiratory failure at the age of 60. Pectus excavatum, long fingers and toes, and pes cavus were revealed by physical examination. Her IQ score was 44. Neurologic examination revealed ophthalmoplegia, optic atrophy, dysphagia, distal dominant muscle weakness and atrophy, hyperreflexia at patellar tendon reflex, hyporeflexia at Achilles tendon reflex, and extensor plantar reflexes. At age 60, she died of pneumonia. Lactate levels were elevated in the patient's serum and CSF. T2-weighted brain MRI showed symmetrical hyperintense brainstem lesions. At autopsy, axial sections exposed symmetrical cyst formation with brownish lesions in the upper spinal cord, ventral medulla, pons, dorsal midbrain, and medial hypothalamus. Microscopic analysis of these areas demonstrated mild gliosis with rarefaction. Cell bodies in the choroid plexuses were eosinophilic and swollen. Electron microscopic examination revealed that these cells contained numerous abnormal mitochondria. Whole-exome sequencing revealed the 2-base deletion in C12orf65. Conclusions: We report an autopsy case of the C12orf65 mutation, and findings suggest that mitochondrial dysfunction may underlie the unique clinical presentations.
Collapse
Affiliation(s)
- Hideaki Nishihara
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Masatoshi Omoto
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Masaki Takao
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Yujiro Higuchi
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Michiaki Koga
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Motoharu Kawai
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Hiroo Kawano
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Eiji Ikeda
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Hiroshi Takashima
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| |
Collapse
|
39
|
Eom S, Lee YM. Preliminary Study of Neurodevelopmental Outcomes and Parenting Stress in Pediatric Mitochondrial Disease. Pediatr Neurol 2017; 71:43-49.e1. [PMID: 28476522 DOI: 10.1016/j.pediatrneurol.2017.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/18/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Little is known regarding the neuropsychological profiles of pediatric patients with mitochondrial diseases or their parents, information that is crucial for improving the quality of life (QOL) for both patients and parents. We aimed to delineate neurodevelopment and psychological comorbidity in children with mitochondrial diseases in the preliminary investigation of adequate intervention methods, better prognoses, and improved QOL for both patients and parents. METHODS Seventy children diagnosed with mitochondrial diseases were neuropsychologically evaluated. Neurocognitive (development, intelligence) and psychological (behavior, daily living function, maternal depression, parenting stress) functions were analyzed. Clinical variables, including the first symptom, epileptic classification, organ involvement, lactic acidosis, brain magnetic resonance imaging findings, muscle pathology, biochemical enzyme assay results, and syndromic diagnosis of mitochondrial diseases, were also reviewed. RESULTS Prediagnostic assessments indicated that cognitive and psychomotor developments were significantly delayed. Group mean full scale intelligence quotient (IQ) scores indicated mild levels of intellectual disability, borderline levels of verbal IQ impairment, and mild levels of intellectual disability on performance IQ. Many children exhibited clinically significant levels of behavioral problems, whereas mothers of children with mitochondrial diseases exhibited significant increases in parenting stress relative to mothers of healthy children. Furthermore, 65% of mothers exhibited significant levels of depression. Early onset of the first symptoms, diffuse brain atrophy, and drug-resistant epilepsy negatively influenced neurodevelopmental and adaptive functions. CONCLUSION Better understanding of the functional levels and profiles of neurodevelopment and psychological comorbidity in children with mitochondrial diseases in the prediagnostic period is essential for adequate support and QOL of children with mitochondrial diseases and their parents.
Collapse
Affiliation(s)
- Soyong Eom
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Mock Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Eom S, Lee YM. Long-term Developmental Trends of Pediatric Mitochondrial Diseases: The Five Stages of Developmental Decline. Front Neurol 2017; 8:208. [PMID: 28567029 PMCID: PMC5434102 DOI: 10.3389/fneur.2017.00208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/27/2017] [Indexed: 01/30/2023] Open
Abstract
Mitochondrial diseases (MDs) are a heterogeneous group of progressive multisystem disorders caused by impaired mitochondrial function. This study aimed to evaluate the clinical course and long-term development of 53 pediatric patients with MDs. Developmental function was evaluated at nine time points (two pre-diagnosis, one at diagnosis, and six post-diagnosis), with the developmental quotient (DQ) from the Korean infant and child development test (KICDT) assessing a child’s developmental age (rather than chronological age). Additionally, disease-related clinical variables were reviewed, and clinical progress was determined through observation. Subgroup analyses by epilepsy severity, syndromic diagnosis, diffuse brain atrophy, and clinical rating were performed. The pre- and post-diagnosis results were compared by the paired t-test and Bonferroni correction. The pre-diagnostic, diagnostic, and post-diagnostic evaluations were compared using repeated measures ANOVA. Patients with diffuse brain atrophy at the first pre-diagnostic and second post-diagnostic evaluations showed lower DQs. Compared with patients with a mildly or severely deteriorating clinical course, those with an improving or static clinical course presented higher DQs at the pre-diagnostic and diagnostic evaluations. The age at onset of the first symptom correlated positively with the DQ post-diagnosis. Follow-up revealed consistent patterns of significant developmental deterioration during the lead time to diagnosis, with no significant decline post-diagnosis. The DQ is a feasible predictor and a measure of long-term functional development in children with MD. Early initiation of treatment may minimize developmental regression.
Collapse
Affiliation(s)
- Soyong Eom
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea (Republic of)
| | - Young-Mock Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (Republic of)
| |
Collapse
|
41
|
Grosso S, Carluccio MA, Cardaioli E, Cerase A, Malandrini A, Romano C, Federico A, Dotti MT. Complex I deficiency related to T10158C mutation ND3 gene: A further definition of the clinical spectrum. Brain Dev 2017; 39:261-265. [PMID: 27742419 DOI: 10.1016/j.braindev.2016.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 08/27/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Complex I deficiency is the most common energy generation disorder which may clinically present at any age with a wide spectrum of symptoms and signs. The T10158C mutation ND3 gene is rare and occurs in patients showing an early rapid neurological deterioration invariably leading to death after a few months. CASE PRESENTATION We report a 9year-old boy with a mtDNA T10158C mutation showing a mild MELAS-like phenotype and brain MRI features congruent with both MELAS and Leigh syndrome. Epilepsia partialis continua also occurred in the clinical course and related to a mild cortical atrophy of the left perisylvian area. DISCUSSION The present case confirms that the clinical spectrum of Complex I deficiency related to T10158C mutation ND3 gene is wider than previously described. Our observation further suggests that testing mutation in the MT-ND3 gene should be included in the diagnostic work-up of patients presenting with epilepsia partialis continua accompanied by suspicion of mitochondrial disorder.
Collapse
Affiliation(s)
- Salvatore Grosso
- Clinical Pediatrics - Pediatric Neurology Section - Department of Molecular Medicine and Development - University of Siena, Italy.
| | | | - Elena Cardaioli
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Italy
| | - Alfonso Cerase
- Unit NINT Neuroimaging and Neurointervention, Department of Neurological and Sensorial Sciences, University of Siena, Italy
| | - Alessandro Malandrini
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Italy
| | - Chiara Romano
- Clinical Pediatrics - Pediatric Neurology Section - Department of Molecular Medicine and Development - University of Siena, Italy
| | - Antonio Federico
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Italy
| | - Maria Teresa Dotti
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Italy
| |
Collapse
|
42
|
Eom S, Lee HN, Lee S, Kang HC, Lee JS, Kim HD, Lee YM. Cause of Death in Children With Mitochondrial Diseases. Pediatr Neurol 2017; 66:82-88. [PMID: 27843091 DOI: 10.1016/j.pediatrneurol.2016.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND We investigated the clinical characteristics that represent risk factors for death in pediatric patients with mitochondrial diseases. METHODS The medical records of mitochondrial disease pediatric patients attended between 2006 and 2015 (n = 221) were reviewed for clinical characteristics, diagnosis, hospitalization, follow-up, survival, and cause of death. RESULTS The global mortality rate in the cohort was 14% (average age at death, six years). By syndromic diagnosis, the mortality rates were as follows: Leigh syndrome, 17% (15 of 88); mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes, 50% (two of four); and nonspecific mitochondrial disease, 11% (14 of 129). Data regarding 31 patients (17 males) were included in the analysis of cause of death. The age at symptom onset, lead time to diagnosis, duration of illness, and duration of life were 1.8 ± 2.0, 1.7 ± 1.5, 4.3 ± 2.7, and 6.1 ± 2.9 years, respectively. The most common causes of death were sepsis, pneumonia, disseminated intravascular coagulation, and sudden unexpected death (55%, 42%, 29%, and 29%, respectively). Early death (age six years or younger) was associated with lesions in the thalamus, number of organs involved, and Leigh syndrome. CONCLUSIONS Careful monitoring of the medical condition and early intervention are key to improving survival in pediatric patients with mitochondrial disease.
Collapse
Affiliation(s)
- Soyong Eom
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ha Neul Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sunho Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Heung Dong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Mock Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW This article presents a practical and informative approach to the evaluation of a patient with a rapidly progressive dementia (RPD). RECENT FINDINGS Prion diseases are the prototypical causes of RPD, but reversible causes of RPD might mimic prion disease and should always be considered in a differential diagnosis. Aside from prion diseases, the most common causes of RPD are atypical presentations of other neurodegenerative disorders, curable disorders including autoimmune encephalopathies, as well as some infections, and neoplasms. Numerous recent case reports suggest dural arterial venous fistulas sometimes cause RPDs. SUMMARY RPDs, in which patients typically develop dementia over weeks to months, require an alternative differential than the slowly progressive dementias that occur over a few years. Because of their rapid decline, patients with RPDs necessitate urgent evaluation and often require an extensive workup, typically with multiple tests being sent or performed concurrently. Jakob-Creutzfeldt disease, perhaps the prototypical RPD, is often the first diagnosis many neurologists consider when treating a patient with rapid cognitive decline. Many conditions other than prion disease, however, including numerous reversible or curable conditions, can present as an RPD. This chapter discusses some of the major etiologies for RPDs and offers an algorithm for diagnosis.
Collapse
|
44
|
Fogle KJ, Hertzler JI, Shon JH, Palladino MJ. The ATP-sensitive K channel is seizure protective and required for effective dietary therapy in a model of mitochondrial encephalomyopathy. J Neurogenet 2016; 30:247-258. [PMID: 27868454 DOI: 10.1080/01677063.2016.1252765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Effective therapies are lacking for mitochondrial encephalomyopathies (MEs). MEs are devastating diseases that predominantly affect the energy-demanding tissues of the nervous system and muscle, causing symptoms such as seizures, cardiomyopathy, and neuro- and muscular degeneration. Even common anti-epileptic drugs which are frequently successful in ameliorating seizures in other diseases tend to have a lower success rate in ME, highlighting the need for novel drug targets, especially those that may couple metabolic sensitivity to neuronal excitability. Furthermore, alternative epilepsy therapies such as dietary modification are gaining in clinical popularity but have not been thoroughly studied in ME. Using the Drosophila ATP61 model of ME, we have studied dietary therapy throughout disease progression and found that it is highly effective against the seizures of ME, especially a high fat/ketogenic diet, and that the benefits are dependent upon a functional KATP channel complex. Further experiments with KATP show that it is seizure-protective in this model, and that pharmacological promotion of its open state also ameliorates seizures. These studies represent important steps forward in the development of novel therapies for a class of diseases that is notoriously difficult to treat, and lay the foundation for mechanistic studies of currently existing therapies in the context of metabolic disease.
Collapse
Affiliation(s)
- Keri J Fogle
- a Department of Pharmacology & Chemical Biology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,b Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - J Ian Hertzler
- a Department of Pharmacology & Chemical Biology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,b Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Joy H Shon
- a Department of Pharmacology & Chemical Biology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,b Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Michael J Palladino
- a Department of Pharmacology & Chemical Biology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,b Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| |
Collapse
|
45
|
Wen S, Niedzwiecka K, Zhao W, Xu S, Liang S, Zhu X, Xie H, Tribouillard-Tanvier D, Giraud MF, Zeng C, Dautant A, Kucharczyk R, Liu Z, di Rago JP, Chen H. Identification of G8969>A in mitochondrial ATP6 gene that severely compromises ATP synthase function in a patient with IgA nephropathy. Sci Rep 2016; 6:36313. [PMID: 27812026 PMCID: PMC5095641 DOI: 10.1038/srep36313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/13/2016] [Indexed: 12/04/2022] Open
Abstract
Here we elucidated the pathogenesis of a 14-year-old Chinese female who initially developed an isolated nephropathy followed by a complex clinical presentation with brain and muscle problems, which indicated that the disease process was possibly due to a mitochondrial dysfunction. Careful evaluation of renal biopsy samples revealed a decreased staining of cells induced by COX and NADH dehydrogenase activities, and a strong fragmentation of the mitochondrial network. These anomalies were due to the presence of a mutation in the mitochondrial ATP6 gene, G8969>A. This mutation leads to replacement of a highly conserved serine residue at position 148 of the a-subunit of ATP synthase. Increasing the mutation load in cybrid cell lines was paralleled by the appearance of abnormal mitochondrial morphologies, diminished respiration and enhanced production of reactive oxygen species. An equivalent of the G8969>A mutation in yeast had dramatic consequences on ATP synthase, with a block in proton translocation. The mutation was particularly abundant (89%) in the kidney compared to blood and urine, which is likely the reason why this organ was affected first. Based on these findings, we suggest that nephrologists should pay more attention to the possibility of a mitochondrial dysfunction when evaluating patients suffering from kidney problems.
Collapse
Affiliation(s)
- Shuzhen Wen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Weiwei Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shutian Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shaoshan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Honglang Xie
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Déborah Tribouillard-Tanvier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France.,INSERM, Institut de Biochimie et Génétique Cellulaires, F-33077 Bordeaux, France
| | - Marie-France Giraud
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Alain Dautant
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jean-Paul di Rago
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Huimei Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
46
|
Bersano A, Markus HS, Quaglini S, Arbustini E, Lanfranconi S, Micieli G, Boncoraglio GB, Taroni F, Gellera C, Baratta S, Penco S, Mosca L, Grasso M, Carrera P, Ferrari M, Cereda C, Grieco G, Corti S, Ronchi D, Bassi MT, Obici L, Parati EA, Pezzini A, De Lodovici ML, Verrengia EP, Bono G, Mazucchelli F, Zarcone D, Calloni MV, Perrone P, Bordo BM, Colombo A, Padovani A, Cavallini A, Beretta S, Ferrarese C, Motto C, Agostoni E, Molini G, Sasanelli F, Corato M, Marcheselli S, Sessa M, Comi G, Checcarelli N, Guidotti M, Uccellini D, Capitani E, Tancredi L, Arnaboldi M, Incorvaia B, Tadeo CS, Fusi L, Grampa G, Merlini G, Trobia N, Comi GP, Braga M, Vitali P, Baron P, Grond-Ginsbach C, Candelise L. Clinical Pregenetic Screening for Stroke Monogenic Diseases. Stroke 2016; 47:1702-9. [DOI: 10.1161/strokeaha.115.012281] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Anna Bersano
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Hugh Stephen Markus
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Silvana Quaglini
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Eloisa Arbustini
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Silvia Lanfranconi
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Giuseppe Micieli
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Giorgio B. Boncoraglio
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Franco Taroni
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Cinzia Gellera
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Silvia Baratta
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Silvana Penco
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Lorena Mosca
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Maurizia Grasso
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Paola Carrera
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Maurizio Ferrari
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Cristina Cereda
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Gaetano Grieco
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Stefania Corti
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Dario Ronchi
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Maria Teresa Bassi
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Laura Obici
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Eugenio A. Parati
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Alessando Pezzini
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Maria Luisa De Lodovici
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Elena P. Verrengia
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Giorgio Bono
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Francesca Mazucchelli
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Davide Zarcone
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Maria Vittoria Calloni
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Patrizia Perrone
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Bianca Maria Bordo
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Antonio Colombo
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Alessandro Padovani
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Anna Cavallini
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Simone Beretta
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Carlo Ferrarese
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Cristina Motto
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Elio Agostoni
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Graziella Molini
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Francesco Sasanelli
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Manuel Corato
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Simona Marcheselli
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Maria Sessa
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Giancarlo Comi
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Nicoletta Checcarelli
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Mario Guidotti
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Davide Uccellini
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Erminio Capitani
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Lucia Tancredi
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Marco Arnaboldi
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Barbara Incorvaia
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Carlo Sebastiano Tadeo
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Laura Fusi
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Giampiero Grampa
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Giampaolo Merlini
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Nadia Trobia
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Giacomo Pietro Comi
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Massimiliano Braga
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Paolo Vitali
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Pierluigi Baron
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Caspar Grond-Ginsbach
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| | - Livia Candelise
- From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of
| |
Collapse
|
47
|
Pedraza-Chaverri J, Sánchez-Lozada LG, Osorio-Alonso H, Tapia E, Scholze A. New Pathogenic Concepts and Therapeutic Approaches to Oxidative Stress in Chronic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6043601. [PMID: 27429711 PMCID: PMC4939360 DOI: 10.1155/2016/6043601] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 12/24/2022]
Abstract
In chronic kidney disease inflammatory processes and stimulation of immune cells result in overproduction of free radicals. In combination with a reduced antioxidant capacity this causes oxidative stress. This review focuses on current pathogenic concepts of oxidative stress for the decline of kidney function and development of cardiovascular complications. We discuss the impact of mitochondrial alterations and dysfunction, a pathogenic role for hyperuricemia, and disturbances of vitamin D metabolism and signal transduction. Recent antioxidant therapy options including the use of vitamin D and pharmacologic therapies for hyperuricemia are discussed. Finally, we review some new therapy options in diabetic nephropathy including antidiabetic agents (noninsulin dependent), plant antioxidants, and food components as alternative antioxidant therapies.
Collapse
Affiliation(s)
| | - Laura G. Sánchez-Lozada
- Laboratory of Renal Physiopathology, INC Ignacio Chávez, 14080 Mexico City, DF, Mexico
- Department of Nephrology, INC Ignacio Chávez, 14080 Mexico City, DF, Mexico
| | - Horacio Osorio-Alonso
- Laboratory of Renal Physiopathology, INC Ignacio Chávez, 14080 Mexico City, DF, Mexico
- Department of Nephrology, INC Ignacio Chávez, 14080 Mexico City, DF, Mexico
| | - Edilia Tapia
- Laboratory of Renal Physiopathology, INC Ignacio Chávez, 14080 Mexico City, DF, Mexico
- Department of Nephrology, INC Ignacio Chávez, 14080 Mexico City, DF, Mexico
| | - Alexandra Scholze
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
48
|
Navein AE, Cooke EJ, Davies JR, Smith TG, Wells LHM, Ohazama A, Healy C, Sharpe PT, Evans SL, Evans BAJ, Votruba M, Wells T. Disrupted mitochondrial function in the Opa3L122P mouse model for Costeff Syndrome impairs skeletal integrity. Hum Mol Genet 2016; 25:2404-2416. [PMID: 27106103 PMCID: PMC5181626 DOI: 10.1093/hmg/ddw107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction connects metabolic disturbance with numerous pathologies, but the significance of mitochondrial activity in bone remains unclear. We have, therefore, characterized the skeletal phenotype in the Opa3L122P mouse model for Costeff syndrome, in which a missense mutation of the mitochondrial membrane protein, Opa3, impairs mitochondrial activity resulting in visual and metabolic dysfunction. Although widely expressed in the developing normal mouse head, Opa3 expression was restricted after E14.5 to the retina, brain, teeth and mandibular bone. Opa3 was also expressed in adult tibiae, including at the trabecular surfaces and in cortical osteocytes, epiphyseal chondrocytes, marrow adipocytes and mesenchymal stem cell rosettes. Opa3L122P mice displayed craniofacial abnormalities, including undergrowth of the lower mandible, accompanied in some individuals by cranial asymmetry and incisor malocclusion. Opa3L122P mice showed an 8-fold elevation in tibial marrow adiposity, due largely to increased adipogenesis. In addition, femoral length and cortical diameter and wall thickness were reduced, the weakening of the calcified tissue and the geometric component of strength reducing overall cortical strength in Opa3L122P mice by 65%. In lumbar vertebrae reduced vertebral body area and wall thickness were accompanied by a proportionate reduction in marrow adiposity. Although the total biomechanical strength of lumbar vertebrae was reduced by 35%, the strength of the calcified tissue (σmax) was proportionate to a 38% increase in trabecular number. Thus, mitochondrial function is important for the development and maintenance of skeletal integrity, impaired bone growth and strength, particularly in limb bones, representing a significant new feature of the Costeff syndrome phenotype.
Collapse
Affiliation(s)
- Alice E Navein
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Esther J Cooke
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Jennifer R Davies
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4LU, UK
| | - Terence G Smith
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4LU, UK
| | - Lois H M Wells
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.,Caerleon Comprehensive School, Caerleon, Newport NP18 1NF, UK
| | - Atsushi Ohazama
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Christopher Healy
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Paul T Sharpe
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Sam L Evans
- School of Engineering, Cardiff University, The Parade, Cardiff CF24 3AA, UK
| | - Bronwen A J Evans
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4LU, UK.,Cardiff Eye Unit, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Timothy Wells
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
49
|
Maglioni S, Ventura N. C. elegans as a model organism for human mitochondrial associated disorders. Mitochondrion 2016; 30:117-25. [PMID: 26906059 DOI: 10.1016/j.mito.2016.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 12/16/2022]
Abstract
Mitochondria are small cytoplasmic organelles whose most important function is to provide the energy required by our cells and organism to live. To maintain an adequate mitochondrial homeostasis cells possess numerous mitochondrial quality controls and protective compensatory pathways, which can be activated to cope with a certain degree of mitochondrial dysfunction. However, when the mitochondrial damage is too severe and these defensive mechanisms are not anymore sufficient to deal with it, pathological signs arise. In the past few decades numerous genetic disorders ascribed to severe mitochondrial defects have been recognized with variable onset and symptomatology ranging from neuromuscular degeneration to cancer syndromes. Unfortunately, to date, only symptomatic and no curative therapies exist for most of these devastating, life-threatening disorders. Model organisms, and especially the nematode Caenorhabditis elegans, with its sequenced and highly conserved genome, and a simple but well-characterized nervous system, have enormously contributed in the past years to gain insight into the pathogenesis and treatment of different diseases. Here, we will summarize some of the advantages offered by the nematode system to model neurodegenerative diseases associated with mitochondrial electron transport chain defects and screen for therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Maglioni
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Natascia Ventura
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty of the Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany; IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| |
Collapse
|
50
|
Sarto-Jackson I, Tomaska L. How to bake a brain: yeast as a model neuron. Curr Genet 2016; 62:347-70. [PMID: 26782173 DOI: 10.1007/s00294-015-0554-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Abstract
More than 30 years ago Dan Koshland published an inspirational essay presenting the bacterium as a model neuron (Koshland, Trends Neurosci 6:133-137, 1983). In the article he argued that there are several similarities between neurons and bacterial cells in "how signals are processed within a cell or how this processing machinery can be modified to produce plasticity". He then explored the bacterial chemosensory system to emphasize its attributes that are analogous to information processing in neurons. In this review, we wish to expand Koshland's original idea by adding the yeast cell to the list of useful models of a neuron. The fact that yeasts and neurons are specialized versions of the eukaryotic cell sharing all principal components sets the stage for a grand evolutionary tinkering where these components are employed in qualitatively different tasks, but following analogous molecular logic. By way of example, we argue that evolutionarily conserved key components involved in polarization processes (from budding or mating in Saccharomyces cervisiae to neurite outgrowth or spinogenesis in neurons) are shared between yeast and neurons. This orthologous conservation of modules makes S. cervisiae an excellent model organism to investigate neurobiological questions. We substantiate this claim by providing examples of yeast models used for studying neurological diseases.
Collapse
Affiliation(s)
- Isabella Sarto-Jackson
- Konrad Lorenz Institute for Evolution and Cognition Research, Martinstraße 12, 3400, Klosterneuburg, Austria.
| | - Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B-1, Ilkovicova 6, 842 15, Bratislava, Slovak Republic.
| |
Collapse
|