1
|
Guérin A, Levasseur C, Herger A, Renggli D, Sotiropoulos AG, Kadler G, Hou X, Schaufelberger M, Meyer C, Wicker T, Bigler L, Ringli C. Histidine limitation alters plant development and influences the TOR network. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1085-1098. [PMID: 39688839 PMCID: PMC11850971 DOI: 10.1093/jxb/erae479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Plant growth depends on growth regulators, nutrient availability, and amino acid levels, all of which influence cell wall formation and cell expansion. Cell wall integrity and structures are surveyed and modified by a complex array of cell wall integrity sensors, including leucine-rich repeat (LRR)-extensins (LRXs) that bind RALF (rapid alkalinization factor) peptides with high affinity and help to compact cell walls. Expressing the Arabidopsis root hair-specific LRX1 without the extensin domain, which anchors the protein to the cell wall (LRX1ΔE14), has a negative effect on root hair development. The mechanism of this negative effect was investigated by a suppressor screen, which led to the identification of a sune (suppressor of dominant-negative LRX1ΔE14) mutant collection. The sune82 mutant was identified as an allele of HISN2, which encodes an enzyme essential for histidine biosynthesis. This mutation leads to reduced accumulation of histidine and an increase in several amino acids, which appears to have an effect on the TOR (target of rapamycin) network, a major controller of eukaryotic cell growth. It also represents an excellent tool to study the effects of reduced histidine levels on plant development, as it is a rare example of a viable partial loss-of-function allele in an essential biosynthetic pathway.
Collapse
Affiliation(s)
- Amandine Guérin
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Caroline Levasseur
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Aline Herger
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Dominik Renggli
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | | | - Gabor Kadler
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Xiaoyu Hou
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Myriam Schaufelberger
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAe, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Laurent Bigler
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Christoph Ringli
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| |
Collapse
|
2
|
Jewaria PK, Aryal B, Begum RA, Wang Y, Sancho-Andrés G, Baba AI, Yu M, Li X, Lin J, Fry SC, Verger S, Russinova E, Jonsson K, Bhalerao RP. Reduced RG-II pectin dimerization disrupts differential growth by attenuating hormonal regulation. SCIENCE ADVANCES 2025; 11:eads0760. [PMID: 39937898 DOI: 10.1126/sciadv.ads0760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/10/2025] [Indexed: 02/14/2025]
Abstract
Defects in cell wall integrity (CWI) profoundly affect plant growth, although, underlying mechanisms are not well understood. We show that in Arabidopsis mur1 mutant, CWI defects from compromising dimerization of RG-II pectin, a key component of cell wall, attenuate the expression of auxin response factors ARF7-ARF19. As a result, polar auxin transport components are misexpressed, disrupting auxin response asymmetry, leading to defective apical hook development. Accordingly, mur1 hook defects are suppressed by enhancing ARF7 expression. In addition, expression of brassinosteroid biosynthesis genes is down-regulated in mur1 mutant, and supplementing brassinosteroid or enhancing brassinosteroid signaling suppresses mur1 hook defects. Intriguingly, brassinosteroid enhances RG-II dimerization, showing hormonal feedback to the cell wall. Our results thus reveal a previously unrecognized link between cell wall defects from reduced RG-II dimerization and growth regulation mediated via modulation of auxin-brassinosteroid pathways in early seedling development.
Collapse
Affiliation(s)
- Pawan Kumar Jewaria
- Department of Forest Genetics and Plant Physiology, SLU, S-901 83 Umeå, Sweden
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bibek Aryal
- Department of Forest Genetics and Plant Physiology, SLU, S-901 83 Umeå, Sweden
| | - Rifat Ara Begum
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Curzon Hall, Dhaka 1000, Bangladesh
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Yaowei Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Abu Imran Baba
- Department of Forest Genetics and Plant Physiology, SLU, S-901 83 Umeå, Sweden
| | - Meng Yu
- College of Life Sciences, Hebei Agriculture University, 071001 Baoding, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Stephane Verger
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå 90187, Sweden
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Kristoffer Jonsson
- RBV, Department of Biological Sciences, University of Montreal, 4101 Sherbrooke East, Montreal, QC H1X 2B2, Canada
| | | |
Collapse
|
3
|
Pietrzyk P, Phan-Udom N, Chutoe C, Pingault L, Roy A, Libault M, Saengwilai PJ, Bucksch A. DIRT/µ: automated extraction of root hair traits using combinatorial optimization. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:285-298. [PMID: 39269014 PMCID: PMC11714758 DOI: 10.1093/jxb/erae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
As with phenotyping of any microscopic appendages, such as cilia or antennae, phenotyping of root hairs has been a challenge due to their complex intersecting arrangements in two-dimensional images and the technical limitations of automated measurements. Digital Imaging of Root Traits at Microscale (DIRT/μ) is a newly developed algorithm that addresses this issue by computationally resolving intersections and extracting individual root hairs from two-dimensional microscopy images. This solution enables automatic and precise trait measurements of individual root hairs. DIRT/μ rigorously defines a set of rules to resolve intersecting root hairs and minimizes a newly designed cost function to combinatorically identify each root hair in the microscopy image. As a result, DIRT/μ accurately measures traits such as root hair length distribution and root hair density, which are impractical for manual assessment. We tested DIRT/μ on three datasets to validate its performance and showcase potential applications. By measuring root hair traits in a fraction of the time manual methods require, DIRT/μ eliminates subjective biases from manual measurements. Automating individual root hair extraction accelerates phenotyping and quantifies trait variability within and among plants, creating new possibilities to characterize root hair function and their underlying genetics.
Collapse
Affiliation(s)
- Peter Pietrzyk
- Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, GA 30602, USA
| | - Neen Phan-Udom
- Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400Thailand
| | - Chartinun Chutoe
- Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400Thailand
| | - Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Ankita Roy
- Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, GA 30602, USA
| | - Marc Libault
- Division of Plant Science and Technology, University of Missouri, 1201 E. Rollins, Columbia, MO 65201, USA
| | | | - Alexander Bucksch
- School of Plant Sciences, The University of Arizona, 1140 E South Campus Dr., Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Drs M, Krupař P, Škrabálková E, Haluška S, Müller K, Potocká A, Brejšková L, Serrano N, Voxeur A, Vernhettes S, Ortmannová J, Caldarescu G, Fendrych M, Potocký M, Žárský V, Pečenková T. Chitosan stimulates root hair callose deposition, endomembrane dynamics, and inhibits root hair growth. PLANT, CELL & ENVIRONMENT 2025; 48:451-469. [PMID: 39267452 PMCID: PMC11615431 DOI: 10.1111/pce.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 09/17/2024]
Abstract
Although angiosperm plants generally react to immunity elicitors like chitin or chitosan by the cell wall callose deposition, this response in particular cell types, especially upon chitosan treatment, is not fully understood. Here we show that the growing root hairs (RHs) of Arabidopsis can respond to a mild (0.001%) chitosan treatment by the callose deposition and by a deceleration of the RH growth. We demonstrate that the glucan synthase-like 5/PMR4 is vital for chitosan-induced callose deposition but not for RH growth inhibition. Upon the higher chitosan concentration (0.01%) treatment, RHs do not deposit callose, while growth inhibition is prominent. To understand the molecular and cellular mechanisms underpinning the responses to two chitosan treatments, we analysed early Ca2+ and defence-related signalling, gene expression, cell wall and RH cellular endomembrane modifications. Chitosan-induced callose deposition is also present in the several other plant species, including functionally analogous and evolutionarily only distantly related RH-like structures such as rhizoids of bryophytes. Our results point to the RH callose deposition as a conserved strategy of soil-anchoring plant cells to cope with mild biotic stress. However, high chitosan concentration prominently disturbs RH intracellular dynamics, tip-localised endomembrane compartments, growth and viability, precluding callose deposition.
Collapse
Affiliation(s)
- Matěj Drs
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Pavel Krupař
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Samuel Haluška
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Karel Müller
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Andrea Potocká
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Lucie Brejšková
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Natalia Serrano
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Aline Voxeur
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin (IJPB)VersaillesFrance
| | - Samantha Vernhettes
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin (IJPB)VersaillesFrance
| | - Jitka Ortmannová
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - George Caldarescu
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| |
Collapse
|
5
|
Liu K, Li X, Wang C, Han Y, Zhu Z, Li B. Genome-wide identification and characterization of the LRX gene family in grapevine (Vitis vinifera L.) and functional characterization of VvLRX7 in plant salt response. BMC Genomics 2024; 25:1155. [PMID: 39614156 DOI: 10.1186/s12864-024-11087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Leucine-rich repeat (LRR) extensins (LRXs), which are cell wall-localized chimeric extensin proteins, are essential for the development of plants and their resistance to stress. Despite the significance of these genes, an extensive genome-wide analysis of the LRX gene family in grapevine (Vitis vinifera L.) is lacking. RESULTS We here detected 14 grapevine LRX genes and classified them into four groups through phylogenetic analysis. Then, their physiological and biochemical properties and gene/protein structures were analyzed. According to synteny analysis, tandem and segmental duplications have appreciably affected the expansion of the grapevine LRX gene family. On investigating tissue-specific expression profiles and cis-regulatory elements, we observed that VvLRXs likely serve as regulators of both the growth of grapevines and their responses to various environmental stresses. Salt stress treatments induced the expression of several VvLRXs, and VvLRX7 expression was the most significantly upregulated. Furthermore, VvLRX7 expression was positively correlated with the salt tolerance of grape rootstocks. VvLRX7 overexpression in Arabidopsis markedly enhanced its salt tolerance. CONCLUSION This study provides a general understanding of the characteristics and evolution of the LRX gene family in grapevine. VvLRX7 may function as a positive regulator of plant's response to salt stress. These findings offer a basis for future studies on the function of grapevine LRXs and their role in improving salt stress tolerance in grapevine.
Collapse
Affiliation(s)
- Kai Liu
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China
| | - Xiujie Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China
| | - Chaoping Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China
| | - Yan Han
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China
| | - Ziguo Zhu
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China
| | - Bo Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China.
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China.
| |
Collapse
|
6
|
Zou Y, Gigli-Bisceglia N, van Zelm E, Kokkinopoulou P, Julkowska MM, Besten M, Nguyen TP, Li H, Lamers J, de Zeeuw T, Dongus JA, Zeng Y, Cheng Y, Koevoets IT, Jørgensen B, Giesbers M, Vroom J, Ketelaar T, Petersen BL, Engelsdorf T, Sprakel J, Zhang Y, Testerink C. Arabinosylation of cell wall extensin is required for the directional response to salinity in roots. THE PLANT CELL 2024; 36:3328-3343. [PMID: 38691576 PMCID: PMC11371136 DOI: 10.1093/plcell/koae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Soil salinity is a major contributor to crop yield losses. To improve our understanding of root responses to salinity, we developed and exploited a real-time salt-induced tilting assay. This assay follows root growth upon both gravitropic and salt challenges, revealing that root bending upon tilting is modulated by Na+ ions, but not by osmotic stress. Next, we measured this salt-specific response in 345 natural Arabidopsis (Arabidopsis thaliana) accessions and discovered a genetic locus, encoding the cell wall-modifying enzyme EXTENSIN ARABINOSE DEFICIENT TRANSFERASE (ExAD) that is associated with root bending in the presence of NaCl (hereafter salt). Extensins are a class of structural cell wall glycoproteins known as hydroxyproline (Hyp)-rich glycoproteins, which are posttranslationally modified by O-glycosylation, mostly involving Hyp-arabinosylation. We show that salt-induced ExAD-dependent Hyp-arabinosylation influences root bending responses and cell wall thickness. Roots of exad1 mutant seedlings, which lack Hyp-arabinosylation of extensin, displayed increased thickness of root epidermal cell walls and greater cell wall porosity. They also showed altered gravitropic root bending in salt conditions and a reduced salt-avoidance response. Our results suggest that extensin modification via Hyp-arabinosylation is a unique salt-specific cellular process required for the directional response of roots exposed to salinity.
Collapse
Affiliation(s)
- Yutao Zou
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Plant Cell Biology, Swammerdam Institute for Life Science, Universiteit van Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, 3508 TB Utrecht, the Netherlands
| | - Eva van Zelm
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Pinelopi Kokkinopoulou
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | | | - Maarten Besten
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - Thu-Phuong Nguyen
- Laboratory of Genetics, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Hongfei Li
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Jasper Lamers
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Thijs de Zeeuw
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Joram A Dongus
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Yuxiao Zeng
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Yu Cheng
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Iko T Koevoets
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Plant Cell Biology, Swammerdam Institute for Life Science, Universiteit van Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Marcel Giesbers
- Wageningen Electron Microscopy Centre, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Jelmer Vroom
- Wageningen Electron Microscopy Centre, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Timo Engelsdorf
- Molecular Plant Physiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- College of Agriculture, South China Agricultural University, 510642 Guangzhou, China
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
7
|
Sede AR, Wengier DL, Borassi C, Ricardi M, Somoza SC, Aguiló R, Estevez JM, Muschietti JP. Arabidopsis pollen prolyl-hydroxylases P4H4/6 are relevant for correct hydroxylation and secretion of LRX11 in pollen tubes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4415-4427. [PMID: 38877792 DOI: 10.1093/jxb/erae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 06/13/2024] [Indexed: 06/16/2024]
Abstract
Major constituents of the plant cell walls are structural proteins that belong to the hydroxyproline-rich glycoprotein (HRGP) family. Leucine-rich repeat extensin (LRX) proteins contain a leucine-rich domain and a C-terminal domain with repetitive Ser-Pro3-5 motifs that are potentially to be O-glycosylated. It has been demonstrated that pollen-specific LRX8-LRX11 from Arabidopsis thaliana are necessary to maintain the integrity of the pollen tube cell wall during polarized growth. In HRGPs, including classical extensins (EXTs), and probably in LRXs, proline residues are converted to hydroxyproline by prolyl-4-hydroxylases (P4Hs), thus defining novel O-glycosylation sites. In this context, we aimed to determine whether hydroxylation and subsequent O-glycosylation of Arabidopsis pollen LRXs are necessary for their proper function and cell wall localization in pollen tubes. We hypothesized that pollen-expressed P4H4 and P4H6 catalyze the hydroxylation of the proline units present in Ser-Pro3-5 motifs of LRX8-LRX11. Here, we show that the p4h4-1 p4h6-1 double mutant exhibits a reduction in pollen germination rates and a slight reduction in pollen tube length. Pollen germination is also inhibited by P4H inhibitors, suggesting that prolyl hydroxylation is required for pollen tube development. Plants expressing pLRX11::LRX11-GFP in the p4h4-1 p4h6-1 background show partial re-localization of LRX11-green fluorescent protein (GFP) from the pollen tube tip apoplast to the cytoplasm. Finally, immunoprecipitation-tandem mass spectrometry analysis revealed a decrease in oxidized prolines (hydroxyprolines) in LRX11-GFP in the p4h4-1 p4h6-1 background compared with lrx11 plants expressing pLRX11::LRX11-GFP. Taken together, these results suggest that P4H4 and P4H6 are required for pollen germination and for proper hydroxylation of LRX11 necessary for its localization in the cell wall of pollen tubes.
Collapse
Affiliation(s)
- Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA, Buenos Aires, Argentina
| | - Diego L Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
| | - Martiniano Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Universidad de Buenos Aires, Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Sofía C Somoza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA, Buenos Aires, Argentina
| | - Rafael Aguiló
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Universidad de Buenos Aires, Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Cs. de la Vida, Universidad Andrés Bello, ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile and ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
8
|
Mohanta TK, Mohanta YK, Kaushik P, Kumar J. Physiology, genomics, and evolutionary aspects of desert plants. J Adv Res 2024; 58:63-78. [PMID: 37160225 PMCID: PMC10982872 DOI: 10.1016/j.jare.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Despite the exposure to arid environmental conditions across the globe ultimately hampering the sustainability of the living organism, few plant species are equipped with several unique genotypic, biochemical, and physiological features to counter such harsh conditions. Physiologically, they have evolved with reduced leaf size, spines, waxy cuticles, thick leaves, succulent hydrenchyma, sclerophyll, chloroembryo, and photosynthesis in nonfoliar and other parts. At the biochemical level, they are evolved to perform efficient photosynthesis through Crassulacean acid metabolism (CAM) and C4 pathways with the formation of oxaloacetic acid (Hatch-Slack pathway) instead of the C3 pathway. Additionally, comparative genomics with existing data provides ample evidence of the xerophytic plants' positive selection to adapt to the arid environment. However, adding more high-throughput sequencing of xerophyte plant species is further required for a comparative genomic study toward trait discovery related to survival. Learning from the mechanism to survive in harsh conditions could pave the way to engineer crops for future sustainable agriculture. AIM OF THE REVIEW The distinct physiology of desert plants allows them to survive in harsh environments. However, the genomic composition also contributes significantly to this and requires great attention. This review emphasizes the physiological and genomic adaptation of desert plants. Other important parameters, such as desert biodiversity and photosynthetic strategy, are also discussed with recent progress in the field. Overall, this review discusses the different features of desert plants, which prepares them for harsh conditions intending to translate knowledge to engineer plant species for sustainable agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW This review comprehensively presents the physiology, molecular mechanism, and genomics of desert plants aimed towards engineering a sustainable crop.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 611, Oman.
| | - Yugal Kishore Mohanta
- Dept. of Applied Biology, University of Science and Technology Meghalaya, Baridua, Meghalaya 793101, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, United States
| |
Collapse
|
9
|
Schoenaers S, Lee HK, Gonneau M, Faucher E, Levasseur T, Akary E, Claeijs N, Moussu S, Broyart C, Balcerowicz D, AbdElgawad H, Bassi A, Damineli DSC, Costa A, Feijó JA, Moreau C, Bonnin E, Cathala B, Santiago J, Höfte H, Vissenberg K. Rapid alkalinization factor 22 has a structural and signalling role in root hair cell wall assembly. NATURE PLANTS 2024; 10:494-511. [PMID: 38467800 PMCID: PMC11494403 DOI: 10.1038/s41477-024-01637-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
Pressurized cells with strong walls make up the hydrostatic skeleton of plants. Assembly and expansion of such stressed walls depend on a family of secreted RAPID ALKALINIZATION FACTOR (RALF) peptides, which bind both a membrane receptor complex and wall-localized LEUCINE-RICH REPEAT EXTENSIN (LRXs) in a mutually exclusive way. Here we show that, in root hairs, the RALF22 peptide has a dual structural and signalling role in cell expansion. Together with LRX1, it directs the compaction of charged pectin polymers at the root hair tip into periodic circumferential rings. Free RALF22 induces the formation of a complex with LORELEI-LIKE-GPI-ANCHORED PROTEIN 1 and FERONIA, triggering adaptive cellular responses. These findings show how a peptide simultaneously functions as a structural component organizing cell wall architecture and as a feedback signalling molecule that regulates this process depending on its interaction partners. This mechanism may also underlie wall assembly and expansion in other plant cell types.
Collapse
Affiliation(s)
- Sébastjen Schoenaers
- Department of Biology, Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
- Institut Jean-Pierre Bourgin, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Hyun Kyung Lee
- Department of Plant Molecular Biology, The Plant Signaling Mechanisms Laboratory, University of Lausanne, Lausanne, Switzerland
| | - Martine Gonneau
- Institut Jean-Pierre Bourgin, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Elvina Faucher
- Institut Jean-Pierre Bourgin, AgroParisTech, Université Paris-Saclay, Versailles, France
| | | | - Elodie Akary
- Institut Jean-Pierre Bourgin, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Naomi Claeijs
- Department of Biology, Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
| | - Steven Moussu
- Department of Plant Molecular Biology, The Plant Signaling Mechanisms Laboratory, University of Lausanne, Lausanne, Switzerland
| | - Caroline Broyart
- Department of Plant Molecular Biology, The Plant Signaling Mechanisms Laboratory, University of Lausanne, Lausanne, Switzerland
| | - Daria Balcerowicz
- Department of Biology, Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
| | - Hamada AbdElgawad
- Department of Biology, Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, Milan, Italy
| | - Daniel Santa Cruz Damineli
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo André, Brazil
| | - Alex Costa
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | | | | | | | - Julia Santiago
- Department of Plant Molecular Biology, The Plant Signaling Mechanisms Laboratory, University of Lausanne, Lausanne, Switzerland.
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, AgroParisTech, Université Paris-Saclay, Versailles, France.
| | - Kris Vissenberg
- Department of Biology, Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium.
- Department of Agriculture, Plant Biochemistry and Biotechnology Lab, Hellenic Mediterranean University, Heraklion, Greece.
| |
Collapse
|
10
|
Gupta S, Guérin A, Herger A, Hou X, Schaufelberger M, Roulard R, Diet A, Roffler S, Lefebvre V, Wicker T, Pelloux J, Ringli C. Growth-inhibiting effects of the unconventional plant APYRASE 7 of Arabidopsis thaliana influences the LRX/RALF/FER growth regulatory module. PLoS Genet 2024; 20:e1011087. [PMID: 38190412 PMCID: PMC10824444 DOI: 10.1371/journal.pgen.1011087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/29/2024] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Plant cell growth involves coordination of numerous processes and signaling cascades among the different cellular compartments to concomitantly enlarge the protoplast and the surrounding cell wall. The cell wall integrity-sensing process involves the extracellular LRX (LRR-Extensin) proteins that bind RALF (Rapid ALkalinization Factor) peptide hormones and, in vegetative tissues, interact with the transmembrane receptor kinase FERONIA (FER). This LRX/RALF/FER signaling module influences cell wall composition and regulates cell growth. The numerous proteins involved in or influenced by this module are beginning to be characterized. In a genetic screen, mutations in Apyrase 7 (APY7) were identified to suppress growth defects observed in lrx1 and fer mutants. APY7 encodes a Golgi-localized NTP-diphosphohydrolase, but opposed to other apyrases of Arabidopsis, APY7 revealed to be a negative regulator of cell growth. APY7 modulates the growth-inhibiting effect of RALF1, influences the cell wall architecture and -composition, and alters the pH of the extracellular matrix, all of which affect cell growth. Together, this study reveals a function of APY7 in cell wall formation and cell growth that is connected to growth processes influenced by the LRX/RALF/FER signaling module.
Collapse
Affiliation(s)
- Shibu Gupta
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Amandine Guérin
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Aline Herger
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Xiaoyu Hou
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Myriam Schaufelberger
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Romain Roulard
- UMR INRAe BioEcoAgro, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Anouck Diet
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Stefan Roffler
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Valérie Lefebvre
- UMR INRAe BioEcoAgro, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Thomas Wicker
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Jérôme Pelloux
- UMR INRAe BioEcoAgro, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Christoph Ringli
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Rodríguez-García DR, Rondón Guerrero YDC, Ferrero L, Rossi AH, Miglietta EA, Aptekmann AA, Marzol E, Martínez Pacheco J, Carignani M, Berdion Gabarain V, Lopez LE, Díaz Dominguez G, Borassi C, Sánchez-Serrano JJ, Xu L, Nadra AD, Rojo E, Ariel F, Estevez JM. Transcription factor NAC1 activates expression of peptidase-encoding AtCEPs in roots to limit root hair growth. PLANT PHYSIOLOGY 2023; 194:81-93. [PMID: 37801618 DOI: 10.1093/plphys/kiad533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Plant genomes encode a unique group of papain-type Cysteine EndoPeptidases (CysEPs) containing a KDEL endoplasmic reticulum (ER) retention signal (KDEL-CysEPs or CEPs). CEPs process the cell-wall scaffolding EXTENSIN (EXT) proteins that regulate de novo cell-wall formation and cell expansion. Since CEPs cleave EXTs and EXT-related proteins, acting as cell-wall-weakening agents, they may play a role in cell elongation. The Arabidopsis (Arabidopsis thaliana) genome encodes 3 CEPs (AtCPE1-AtCEP3). Here, we report that the genes encoding these 3 Arabidopsis CEPs are highly expressed in root-hair (RH) cell files. Single mutants have no evident abnormal RH phenotype, but atcep1-3 atcep3-2 and atcep1-3 atcep2-2 double mutants have longer RHs than wild-type (Wt) plants, suggesting that expression of AtCEPs in root trichoblasts restrains polar elongation of the RH. We provide evidence that the transcription factor NAC1 (petunia NAM and Arabidopsis ATAF1, ATAF2, and CUC2) activates AtCEPs expression in roots to limit RH growth. Chromatin immunoprecipitation indicates that NAC1 binds to the promoter of AtCEP1, AtCEP2, and, to a lower extent, AtCEP3 and may directly regulate their expression. Inducible NAC1 overexpression increases AtCEP1 and AtCEP2 transcript levels in roots and leads to reduced RH growth while the loss of function nac1-2 mutation reduces AtCEP1-AtCEP3 gene expression and enhances RH growth. Likewise, expression of a dominant chimeric NAC1-SRDX repressor construct leads to increased RH length. Finally, we show that RH cell walls in the atcep1-3 atcep3-2 double mutant have reduced levels of EXT deposition, suggesting that the defects in RH elongation are linked to alterations in EXT processing and accumulation. Our results support the involvement of AtCEPs in controlling RH polar growth through EXT processing and insolubilization at the cell wall.
Collapse
Affiliation(s)
- Diana R Rodríguez-García
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | | | - Lucía Ferrero
- CONICET, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Andrés Hugo Rossi
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Esteban A Miglietta
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Ariel A Aptekmann
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Mariana Carignani
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Leonel E Lopez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Gabriela Díaz Dominguez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - José Juan Sánchez-Serrano
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain
| | - Lin Xu
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Alejandro D Nadra
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Enrique Rojo
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain
| | - Federico Ariel
- CONICET, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, 8370146 Santiago, Chile
- ANID-Millennium Institute for Integrative Biology (iBio), 7500000 Santiago, Chile
- ANID-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150 Santiago, Chile
| |
Collapse
|
12
|
Zhang ZW, Fu YF, Yang XY, Yuan M, Zheng XJ, Luo XF, Zhang MY, Xie LB, Shu K, Reinbothe S, Reinbothe C, Wu F, Feng LY, Du JB, Wang CQ, Gao XS, Chen YE, Zhang YY, Li Y, Tao Q, Lan T, Tang XY, Zeng J, Chen GD, Yuan S. Singlet oxygen induces cell wall thickening and stomatal density reducing by transcriptome reprogramming. J Biol Chem 2023; 299:105481. [PMID: 38041932 PMCID: PMC10731243 DOI: 10.1016/j.jbc.2023.105481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Singlet oxygen (1O2) has a very short half-life of 10-5 s; however, it is a strong oxidant that causes growth arrest and necrotic lesions on plants. Its signaling pathway remains largely unknown. The Arabidopsis flu (fluorescent) mutant accumulates a high level of 1O2 and shows drastic changes in nuclear gene expression. Only two plastid proteins, EX1 (executer 1) and EX2 (executer 2), have been identified in the singlet oxygen signaling. Here, we found that the transcription factor abscisic acid insensitive 4 (ABI4) binds the promoters of genes responsive to 1O2-signals. Inactivation of the ABI4 protein in the flu/abi4 double mutant was sufficient to compromise the changes of almost all 1O2-responsive-genes and rescued the lethal phenotype of flu grown under light/dark cycles, similar to the flu/ex1/ex2 triple mutant. In addition to cell death, we reported for the first time that 1O2 also induces cell wall thickening and stomatal development defect. Contrastingly, no apparent growth arrest was observed for the flu mutant under normal light/dim light cycles, but the cell wall thickening (doubled) and stomatal density reduction (by two-thirds) still occurred. These results offer a new idea for breeding stress tolerant plants.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Xin-Yue Yang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Xiao-Jian Zheng
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Xiao-Feng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Meng-Yao Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Lin-Bei Xie
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Fan Wu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Ling-Yang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jun-Bo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chang-Quan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Xue-Song Gao
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yan-Yan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Yang Li
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Xiao-Yan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Guang-Deng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China.
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China.
| |
Collapse
|
13
|
Pacheco JM, Gabarain VB, Lopez LE, Lehuedé TU, Ocaranza D, Estevez JM. Understanding signaling pathways governing the polar development of root hairs in low-temperature, nutrient-deficient environments. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102386. [PMID: 37352652 DOI: 10.1016/j.pbi.2023.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/25/2023]
Abstract
Plants exposed to freezing and above-freezing low temperatures must employ a variety of strategies to minimize fitness loss. There is a considerable knowledge gap regarding how mild low temperatures (around 10 °C) affect plant growth and developmental processes, even though the majority of the molecular mechanisms that plants use to adapt to extremely low temperatures are well understood. Root hairs (RH) have become a useful model system for studying how plants regulate their growth in response to both cell-intrinsic cues and environmental inputs. Here, we'll focus on recent advances in the molecular mechanisms underpinning Arabidopsis thaliana RH growth at mild low temperatures and how these discoveries may influence our understanding of nutrient sensing mechanisms by the roots. This highlights how intricately linked mechanisms are necessary for plant development to take place under specific circumstances and to produce a coherent response, even at the level of a single RH cell.
Collapse
Affiliation(s)
- Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Leonel E Lopez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Tomás Urzúa Lehuedé
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile; ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile; Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| | - Darío Ocaranza
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile; Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile; ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile; Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile.
| |
Collapse
|
14
|
Jiang L, Li R, Yang J, Yao Z, Cao S. Ethylene response factor ERF022 is involved in regulating Arabidopsis root growth. PLANT MOLECULAR BIOLOGY 2023; 113:1-17. [PMID: 37553544 DOI: 10.1007/s11103-023-01373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023]
Abstract
Ethylene response factors (ERFs) are involved in the regulation of plant development processes and stress responses. In this study, we provide evidence for the role of ERF022, a member of the ERF transcription factor group III, in regulating Arabidopsis root growth. We found that ERF022-loss-of-function mutants exhibited increased primary root length and lateral root numbers, and also morphological growth advantages compared to wild-type. Further studies showed that mutants had enhanced cell size in length in the root elongation zones. These results were accompanied by significant increase in the expression of cell elongation and cell wall expansion related genes SAUR10, GASA14, LRX2, XTH19 in mutants. Moreover, ERF022-mediated root growth was associated with the enhanced endogenous auxin and gibberellins levels. Our results suggest that loss-of-function of ERF022 up-regulated the expression of cell elongation and cell wall related genes through auxin and gibberellins signal in the regulation of root growth. Unexpectedly, ERF022 overexpression lines also showed longer primary roots and more lateral roots compared to wild-type, and had longer root apical meristematic zone with increased cell numbers. Overexpression of ERF022 significantly up-regulated cell proliferation, organ growth and auxin biosynthesis genes EXO, HB2, GALK2, LBD26, YUC5, which contribute to enhanced root growth. Altogether, our results provide genetic evidence that ERF022 plays an important role in regulating root growth in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Li Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Ruyin Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Juan Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhicheng Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
15
|
Gandhi A, Oelmüller R. Emerging Roles of Receptor-like Protein Kinases in Plant Response to Abiotic Stresses. Int J Mol Sci 2023; 24:14762. [PMID: 37834209 PMCID: PMC10573068 DOI: 10.3390/ijms241914762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The productivity of plants is hindered by unfavorable conditions. To perceive stress signals and to transduce these signals to intracellular responses, plants rely on membrane-bound receptor-like kinases (RLKs). These play a pivotal role in signaling events governing growth, reproduction, hormone perception, and defense responses against biotic stresses; however, their involvement in abiotic stress responses is poorly documented. Plant RLKs harbor an N-terminal extracellular domain, a transmembrane domain, and a C-terminal intracellular kinase domain. The ectodomains of these RLKs are quite diverse, aiding their responses to various stimuli. We summarize here the sub-classes of RLKs based on their domain structure and discuss the available information on their specific role in abiotic stress adaptation. Furthermore, the current state of knowledge on RLKs and their significance in abiotic stress responses is highlighted in this review, shedding light on their role in influencing plant-environment interactions and opening up possibilities for novel approaches to engineer stress-tolerant crop varieties.
Collapse
Affiliation(s)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany;
| |
Collapse
|
16
|
Montiel J, García-Soto I, James EK, Reid D, Cárdenas L, Napsucialy-Mendivil S, Ferguson S, Dubrovsky JG, Stougaard J. Aromatic amino acid biosynthesis impacts root hair development and symbiotic associations in Lotus japonicus. PLANT PHYSIOLOGY 2023; 193:1508-1526. [PMID: 37427869 PMCID: PMC10517252 DOI: 10.1093/plphys/kiad398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Legume roots can be symbiotically colonized by arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria. In Lotus japonicus, the latter occurs intracellularly by the cognate rhizobial partner Mesorhizobium loti or intercellularly with the Agrobacterium pusense strain IRBG74. Although these symbiotic programs show distinctive cellular and transcriptome signatures, some molecular components are shared. In this study, we demonstrate that 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase 1 (DAHPS1), the first enzyme in the biosynthetic pathway of aromatic amino acids (AAAs), plays a critical role in root hair development and for AM and rhizobial symbioses in Lotus. Two homozygous DAHPS1 mutants (dahps1-1 and dahps1-2) showed drastic alterations in root hair morphology, associated with alterations in cell wall dynamics and a progressive disruption of the actin cytoskeleton. The altered root hair structure was prevented by pharmacological and genetic complementation. dahps1-1 and dahps1-2 showed significant reductions in rhizobial infection (intracellular and intercellular) and nodule organogenesis and a delay in AM colonization. RNAseq analysis of dahps1-2 roots suggested that these phenotypes are associated with downregulation of several cell wall-related genes, and with an attenuated signaling response. Interestingly, the dahps1 mutants showed no detectable pleiotropic effects, suggesting a more selective recruitment of this gene in certain biological processes. This work provides robust evidence linking AAA metabolism to root hair development and successful symbiotic associations.
Collapse
Affiliation(s)
- Jesús Montiel
- Departamento de Genómica Funcional de Eucariotas. Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| | - Ivette García-Soto
- Departamento de Genómica Funcional de Eucariotas. Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Euan K James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Shaun Ferguson
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| |
Collapse
|
17
|
Zeng Q, Song L, Xia M, Zheng Z, Chen Z, Che X, Liu D. Overexpression of AHL proteins enhances root hair production by altering the transcription of RHD6-downstream genes. PLANT DIRECT 2023; 7:e517. [PMID: 37577137 PMCID: PMC10416611 DOI: 10.1002/pld3.517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/20/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023]
Abstract
AT-HOOK MOTIF NUCLEAR LOCALIZED (AHL) proteins occur in all sequenced plant species. They bind to the AT-rich DNA sequences in chromosomes and regulate gene transcription related to diverse biological processes. However, the molecular mechanism underlying how AHL proteins regulate gene transcription is poorly understood. In this research, we used root hair production as a readout to study the function of two Arabidopsis AHL proteins, AHL17, and its closest homolog AHL28. Overexpression of AHL17 or AHL28 greatly enhanced root hair production by increasing the transcription of an array of genes downstream of RHD6. RHD6 is a key transcription factor that regulates root hair development. Mutation of RHD6 completely suppressed the overproduction of root hairs by blocking the transcription of AHL17-activated genes. The overexpression of AHL17 or AHL28, however, neither affected the transcription of RHD6 nor the accumulation of RHD6 protein. These two AHL proteins also did not directly interact with RHD6. Furthermore, we found that three members of the Heat Shock Protein70 family, which have been annotated as the subunits of the plant Mediator complex, could form a complex with both AHL17 and RHD6. Our research might reveal a previously unrecognized mechanism of how AHL proteins regulate gene transcription.
Collapse
Affiliation(s)
- Qike Zeng
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural University at WenjiangChengduChina
| | - Mingzhe Xia
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Zai Zheng
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Ziang Chen
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Ximing Che
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Dong Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
18
|
Li J, Zhang Y, Li Z, Dai H, Luan X, Zhong T, Chen S, Xie XM, Qin G, Zhang XQ, Peng H. OsPEX1, an extensin-like protein, negatively regulates root growth in a gibberellin-mediated manner in rice. PLANT MOLECULAR BIOLOGY 2023; 112:47-59. [PMID: 37097548 DOI: 10.1007/s11103-023-01347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/01/2023] [Indexed: 05/09/2023]
Abstract
Leucine-rich repeat extensins (LRXs) are required for plant growth and development through affecting cell growth and cell wall formation. LRX gene family can be classified into two categories: predominantly vegetative-expressed LRX and reproductive-expressed PEX. In contrast to the tissue specificity of Arabidopsis PEX genes in reproductive organs, rice OsPEX1 is also highly expressed in roots in addition to reproductive tissue. However, whether and how OsPEX1 affects root growth is unclear. Here, we found that overexpression of OsPEX1 retarded root growth by reducing cell elongation likely caused by an increase of lignin deposition, whereas knockdown of OsPEX1 had an opposite effect on root growth, indicating that OsPEX1 negatively regulated root growth in rice. Further investigation uncovered the existence of a feedback loop between OsPEX1 expression level and GA biosynthesis for proper root growth. This was supported by the facts that exogenous GA3 application downregulated transcript levels of OsPEX1 and lignin-related genes and rescued the root developmental defects of the OsPEX1 overexpression mutant, whereas OsPEX1 overexpression reduced GA level and the expression of GA biosynthesis genes. Moreover, OsPEX1 and GA showed antagonistic action on the lignin biosynthesis in root. OsPEX1 overexpression upregulated transcript levels of lignin-related genes, whereas exogenous GA3 application downregulated their expression. Taken together, this study reveals a possible molecular pathway of OsPEX1mediated regulation of root growth through coordinate modulation of lignin deposition via a negative feedback regulation between OsPEX1 expression and GA biosynthesis.
Collapse
Affiliation(s)
- Jieni Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, College of Food Science and Engineering, Foshan University, Foshan, 528000, China
| | - Yuexiong Zhang
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhenyong Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hang Dai
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Luan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tianxiu Zhong
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Shu Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xin-Ming Xie
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Gang Qin
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Xiang-Qian Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, College of Food Science and Engineering, Foshan University, Foshan, 528000, China.
| | - Haifeng Peng
- Guangdong Laboratory for Lingnan Modern Agriculture,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Wu L, Liu X, Zhang MY, Qi KJ, Jiang XT, Yao JL, Zhang SL, Gu C. Self S-RNase inhibits ABF-LRX signaling to arrest pollen tube growth to achieve self-incompatibility in pear. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:595-609. [PMID: 36545801 DOI: 10.1111/tpj.16072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Gametophytic self-incompatibility (GSI) has been widely studied in flowering plants, but studies of the mechanisms underlying pollen tube growth arrest by self S-RNase in GSI species are limited. In the present study, two leucine-rich repeat extensin genes in pear (Pyrus bretschneideri), PbLRXA2.1 and PbLRXA2.2, were identified based on transcriptome and quantitative real-time PCR analyses. The expression levels of these two LRX genes were significantly higher in the pollen grains and pollen tubes of the self-compatible cultivar 'Jinzhui' (harboring a spontaneous bud mutation) than in those of the self-incompatible cultivar 'Yali'. Both PbLRXA2.1 and PbLRXA2.2 stimulated pollen tube growth and attenuated the inhibitory effects of self S-RNase on pollen tube growth by stabilizing the actin cytoskeleton and enhancing cell wall integrity. These results indicate that abnormal expression of PbLRXA2.1 and PbLRXA2.2 is involved in the loss of self-incompatibility in 'Jinzhui'. The PbLRXA2.1 and PbLRXA2.2 promoters were directly bound by the ABRE-binding factor PbABF.D.2. Knockdown of PbABF.D.2 decreased PbLRXA2.1 and PbLRXA2.2 expression and inhibited pollen tube growth. Notably, the expression of PbLRXA2.1, PbLRXA2.2, and PbABF.D.2 was repressed by self S-RNase, suggesting that self S-RNase can arrest pollen tube growth by restricting the PbABF.D.2-PbLRXA2.1/PbLRXA2.2 signal cascade. These results provide novel insight into pollen tube growth arrest by self S-RNase.
Collapse
Affiliation(s)
- Lei Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Liu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming-Yue Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai-Jie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue-Ting Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Shao-Ling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Gu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
20
|
Marzol E, Borassi C, Carignani Sardoy M, Ranocha P, Aptekmann AA, Bringas M, Pennington J, Paez-Valencia J, Martínez Pacheco J, Rodríguez-Garcia DR, Rondón Guerrero YDC, Peralta JM, Fleming M, Mishler-Elmore JW, Mangano S, Blanco-Herrera F, Bedinger PA, Dunand C, Capece L, Nadra AD, Held M, Otegui MS, Estevez JM. Class III Peroxidases PRX01, PRX44, and PRX73 Control Root Hair Growth in Arabidopsis thaliana. Int J Mol Sci 2022; 23:5375. [PMID: 35628189 PMCID: PMC9141322 DOI: 10.3390/ijms23105375] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Root hair cells are important sensors of soil conditions. They grow towards and absorb water-soluble nutrients. This fast and oscillatory growth is mediated by continuous remodeling of the cell wall. Root hair cell walls contain polysaccharides and hydroxyproline-rich glycoproteins, including extensins (EXTs). Class-III peroxidases (PRXs) are secreted into the apoplastic space and are thought to trigger either cell wall loosening or polymerization of cell wall components, such as Tyr-mediated assembly of EXT networks (EXT-PRXs). The precise role of these EXT-PRXs is unknown. Using genetic, biochemical, and modeling approaches, we identified and characterized three root-hair-specific putative EXT-PRXs, PRX01, PRX44, and PRX73. prx01,44,73 triple mutation and PRX44 and PRX73 overexpression had opposite effects on root hair growth, peroxidase activity, and ROS production, with a clear impact on cell wall thickness. We use an EXT fluorescent reporter with contrasting levels of cell wall insolubilization in prx01,44,73 and PRX44-overexpressing background plants. In this study, we propose that PRX01, PRX44, and PRX73 control EXT-mediated cell wall properties during polar expansion of root hair cells.
Collapse
Affiliation(s)
- Eliana Marzol
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Mariana Carignani Sardoy
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 24, Chemin de Borde-Rouge, 31320 Auzeville-Tolosane, France; (P.R.); (C.D.)
| | - Ariel A. Aptekmann
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; (A.A.A.); (A.D.N.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Mauro Bringas
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE-CONICET), Buenos Aires C1428EGA, Argentina; (M.B.); (L.C.)
| | - Janice Pennington
- Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison and Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; (J.P.); (J.P.-V.); (M.S.O.)
| | - Julio Paez-Valencia
- Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison and Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; (J.P.); (J.P.-V.); (M.S.O.)
| | - Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Diana R. Rodríguez-Garcia
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Yossmayer del Carmen Rondón Guerrero
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Juan Manuel Peralta
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Margaret Fleming
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA; (M.F.); (P.A.B.)
| | - John W. Mishler-Elmore
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; (J.W.M.-E.); (M.H.)
| | - Silvina Mangano
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Francisca Blanco-Herrera
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8320000, Chile;
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello Santiago, Santiago 8370146, Chile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio) and Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Patricia A. Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA; (M.F.); (P.A.B.)
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 24, Chemin de Borde-Rouge, 31320 Auzeville-Tolosane, France; (P.R.); (C.D.)
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE-CONICET), Buenos Aires C1428EGA, Argentina; (M.B.); (L.C.)
| | - Alejandro D. Nadra
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; (A.A.A.); (A.D.N.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Michael Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; (J.W.M.-E.); (M.H.)
| | - Marisa S. Otegui
- Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison and Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; (J.P.); (J.P.-V.); (M.S.O.)
- Departments of Botany and Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - José M. Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello Santiago, Santiago 8370146, Chile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio) and Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| |
Collapse
|
21
|
Pacheco JM, Ranocha P, Kasulin L, Fusari CM, Servi L, Aptekmann AA, Gabarain VB, Peralta JM, Borassi C, Marzol E, Rodríguez-Garcia DR, del Carmen Rondón Guerrero Y, Sardoy MC, Ferrero L, Botto JF, Meneses C, Ariel F, Nadra AD, Petrillo E, Dunand C, Estevez JM. Apoplastic class III peroxidases PRX62 and PRX69 promote Arabidopsis root hair growth at low temperature. Nat Commun 2022; 13:1310. [PMID: 35288564 PMCID: PMC8921275 DOI: 10.1038/s41467-022-28833-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractRoot Hairs (RHs) growth is influenced by endogenous and by external environmental signals that coordinately regulate its final cell size. We have recently determined that RH growth was unexpectedly boosted when Arabidopsis thaliana seedlings are cultivated at low temperatures. It was proposed that RH growth plasticity in response to low temperature was linked to a reduced nutrient availability in the media. Here, we explore the molecular basis of this RH growth response by using a Genome Wide Association Study (GWAS) approach using Arabidopsis thaliana natural accessions. We identify the poorly characterized PEROXIDASE 62 (PRX62) and a related protein PRX69 as key proteins under moderate low temperature stress. Strikingly, a cell wall protein extensin (EXT) reporter reveals the effect of peroxidase activity on EXT cell wall association at 10 °C in the RH apical zone. Collectively, our results indicate that PRX62, and to a lesser extent PRX69, are key apoplastic PRXs that modulate ROS-homeostasis and cell wall EXT-insolubilization linked to RH elongation at low temperature.
Collapse
|
22
|
Plant ecological genomics at the limits of life in the Atacama Desert. Proc Natl Acad Sci U S A 2021; 118:2101177118. [PMID: 34725254 DOI: 10.1073/pnas.2101177118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
The Atacama Desert in Chile-hyperarid and with high-ultraviolet irradiance levels-is one of the harshest environments on Earth. Yet, dozens of species grow there, including Atacama-endemic plants. Herein, we establish the Talabre-Lejía transect (TLT) in the Atacama as an unparalleled natural laboratory to study plant adaptation to extreme environmental conditions. We characterized climate, soil, plant, and soil-microbe diversity at 22 sites (every 100 m of altitude) along the TLT over a 10-y period. We quantified drought, nutrient deficiencies, large diurnal temperature oscillations, and pH gradients that define three distinct vegetational belts along the altitudinal cline. We deep-sequenced transcriptomes of 32 dominant plant species spanning the major plant clades, and assessed soil microbes by metabarcoding sequencing. The top-expressed genes in the 32 Atacama species are enriched in stress responses, metabolism, and energy production. Moreover, their root-associated soils are enriched in growth-promoting bacteria, including nitrogen fixers. To identify genes associated with plant adaptation to harsh environments, we compared 32 Atacama species with the 32 closest sequenced species, comprising 70 taxa and 1,686,950 proteins. To perform phylogenomic reconstruction, we concatenated 15,972 ortholog groups into a supermatrix of 8,599,764 amino acids. Using two codon-based methods, we identified 265 candidate positively selected genes (PSGs) in the Atacama plants, 64% of which are located in Pfam domains, supporting their functional relevance. For 59/184 PSGs with an Arabidopsis ortholog, we uncovered functional evidence linking them to plant resilience. As some Atacama plants are closely related to staple crops, these candidate PSGs are a "genetic goldmine" to engineer crop resilience to face climate change.
Collapse
|
23
|
Xue C, Li W, Shen R, Lan P. PERK13 modulates phosphate deficiency-induced root hair elongation in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111060. [PMID: 34620427 DOI: 10.1016/j.plantsci.2021.111060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Phosphate starvation (-Pi)-induced root hair is crucial for enhancing plants' Pi absorption. Proline-rich extensin-like receptor kinase 13 (PERK13) is transcriptionally induced by -Pi and co-expressed with genes associated with root hair growth. However, how PERK13 participates in -Pi-induced root hair growth remains unclear. Here, we found that PERK13 was transcriptionally responsive to Pi, nitrogen, and iron deficiencies. Loss of PERK13 function (perk13) enhanced root hair growth under Pi/nitrogen limitation. Similar phenotype was also observed in transgenic lines overexpressing PERK13 (PERK13ox). Under -Pi, both perk13 and PERK13ox showed prolonged root hair elongation and increased reactive oxygen species (ROS). Deletion analysis showed, in PERK13ox, the extracellular domain was indispensable for PERK13 in -Pi-induced root hair growth. Different transcription profiles were observed under -Pi between perk13 and PERK13ox with the jasmonate zim-domain genes being repressed in perk13 and genes involved in cell wall remodeling being increased in PERK13ox. Taken together, we demonstrated that PERK13 participates in -Pi-induced root hair growth probably via regulating root hair elongation and the generation of ROS. Our study also suggested PERK13 probably being a vital hub coupling the environmental cues and root hair growth, and might play dual roles in -Pi-induced root hair growth via different processes.
Collapse
Affiliation(s)
- Caiwen Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenfeng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Zhu S, Fu Q, Xu F, Zheng H, Yu F. New paradigms in cell adaptation: decades of discoveries on the CrRLK1L receptor kinase signalling network. THE NEW PHYTOLOGIST 2021; 232:1168-1183. [PMID: 34424552 DOI: 10.1111/nph.17683] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 05/15/2023]
Abstract
Receptor-like kinases (RLKs), which constitute the largest receptor family in plants, are essential for perceiving and relaying information about various environmental stimuli. Tremendous progress has been made in the past few decades towards elucidating the mechanisms of action of several RLKs, with emerging paradigms pointing to their roles in cell adaptations. Among these paradigms, Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) proteins and their rapid alkalinization factor (RALF) peptide ligands have attracted much interest. In particular, FERONIA (FER) is a CrRLK1L protein that participates in a wide array of physiological processes associated with RALF signalling, including cell growth and monitoring cell wall integrity, RNA and energy metabolism, and phytohormone and stress responses. Here, we analyse FER in the context of CrRLK1L members and their ligands in multiple species. The FER working model raises many questions about the role of CrRLK1L signalling networks during cell adaptation. For example, how do CrRLK1Ls recognize various RALF peptides from different organisms to initiate specific phosphorylation signal cascades? How do RALF-FER complexes achieve their specific, sometimes opposite, functions in different cell types? Here, we summarize recent major findings and highlight future perspectives in the field of CrRLK1L signalling networks.
Collapse
Affiliation(s)
- Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Qiong Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Heping Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha, 410125, China
| |
Collapse
|
25
|
Mapar M, Chopra D, Stephan L, Schrader A, Sun H, Schneeberger K, Albani M, Coupland G, Hülskamp M. Genetic and Molecular Analysis of Root Hair Development in Arabis alpina. FRONTIERS IN PLANT SCIENCE 2021; 12:767772. [PMID: 34721494 PMCID: PMC8554057 DOI: 10.3389/fpls.2021.767772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Root hair formation in Arabidopsis thaliana is a well-established model system for epidermal patterning and morphogenesis in plants. Over the last decades, many underlying regulatory genes and well-established networks have been identified by thorough genetic and molecular analysis. In this study, we used a forward genetic approach to identify genes involved in root hair development in Arabis alpina, a related crucifer species that diverged from A. thaliana approximately 26-40 million years ago. We found all root hair mutant classes known in A. thaliana and identified orthologous regulatory genes by whole-genome or candidate gene sequencing. Our findings indicate that the gene-phenotype relationships regulating root hair development are largely conserved between A. thaliana and A. alpina. Concordantly, a detailed analysis of one mutant with multiple hairs originating from one cell suggested that a mutation in the SUPERCENTIPEDE1 (SCN1) gene is causal for the phenotype and that AaSCN1 is fully functional in A. thaliana. Interestingly, we also found differences in the regulation of root hair differentiation and morphogenesis between the species, and a subset of root hair mutants could not be explained by mutations in orthologs of known genes from A. thaliana. This analysis provides insight into the conservation and divergence of root hair regulation in the Brassicaceae.
Collapse
Affiliation(s)
- Mona Mapar
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Divykriti Chopra
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Lisa Stephan
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Andrea Schrader
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Hequan Sun
- Faculty of Biology, LMU Munich, Munich, Germany
| | | | - Maria Albani
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Martin Hülskamp
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| |
Collapse
|
26
|
Mishler-Elmore JW, Zhou Y, Sukul A, Oblak M, Tan L, Faik A, Held MA. Extensins: Self-Assembly, Crosslinking, and the Role of Peroxidases. FRONTIERS IN PLANT SCIENCE 2021; 12:664738. [PMID: 34054905 PMCID: PMC8160292 DOI: 10.3389/fpls.2021.664738] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 05/29/2023]
Abstract
The extensin (EXT) network is elaborated by the covalent intermolecular crosslinking of EXT glycoprotein monomers, and its proper assembly is important for numerous aspects of basic wall architecture and cellular defense. In this review, we discuss new advances in the secretion of EXT monomers and the molecular drivers of EXT network self-assembly. Many of the functions of EXTs are conferred through covalent crosslinking into the wall, so we also discuss the different types of known intermolecular crosslinks, the enzymes that are involved, as well as the potential for additional crosslinks that are yet to be identified. EXTs also function in wall architecture independent of crosslinking status, and therefore, we explore the role of non-crosslinking EXTs. As EXT crosslinking is upregulated in response to wounding and pathogen infection, we discuss a potential regulatory mechanism to control covalent crosslinking and its relationship to the subcellular localization of the crosslinking enzymes.
Collapse
Affiliation(s)
| | - Yadi Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
| | - Abhijit Sukul
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
| | - Mercedes Oblak
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Ahmed Faik
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
| | - Michael A. Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States
| |
Collapse
|
27
|
Strasser R, Seifert G, Doblin MS, Johnson KL, Ruprecht C, Pfrengle F, Bacic A, Estevez JM. Cracking the "Sugar Code": A Snapshot of N- and O-Glycosylation Pathways and Functions in Plants Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:640919. [PMID: 33679857 PMCID: PMC7933510 DOI: 10.3389/fpls.2021.640919] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Glycosylation is a fundamental co-translational and/or post-translational modification process where an attachment of sugars onto either proteins or lipids can alter their biological function, subcellular location and modulate the development and physiology of an organism. Glycosylation is not a template driven process and as such produces a vastly larger array of glycan structures through combinatorial use of enzymes and of repeated common scaffolds and as a consequence it provides a huge expansion of both the proteome and lipidome. While the essential role of N- and O-glycan modifications on mammalian glycoproteins is already well documented, we are just starting to decode their biological functions in plants. Although significant advances have been made in plant glycobiology in the last decades, there are still key challenges impeding progress in the field and, as such, holistic modern high throughput approaches may help to address these conceptual gaps. In this snapshot, we present an update of the most common O- and N-glycan structures present on plant glycoproteins as well as (1) the plant glycosyltransferases (GTs) and glycosyl hydrolases (GHs) responsible for their biosynthesis; (2) a summary of microorganism-derived GHs characterized to cleave specific glycosidic linkages; (3) a summary of the available tools ranging from monoclonal antibodies (mAbs), lectins to chemical probes for the detection of specific sugar moieties within these complex macromolecules; (4) selected examples of N- and O-glycoproteins as well as in their related GTs to illustrate the complexity on their mode of action in plant cell growth and stress responses processes, and finally (5) we present the carbohydrate microarray approach that could revolutionize the way in which unknown plant GTs and GHs are identified and their specificities characterized.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg Seifert
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Monika S. Doblin
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Colin Ruprecht
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Fabian Pfrengle
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - José M. Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
28
|
Ye X, Huang HY, Wu FL, Cai LY, Lai NW, Deng CL, Guo JX, Yang LT, Chen LS. Molecular mechanisms for magnesium-deficiency-induced leaf vein lignification, enlargement and cracking in Citrus sinensis revealed by RNA-Seq. TREE PHYSIOLOGY 2021; 41:280-301. [PMID: 33104211 DOI: 10.1093/treephys/tpaa128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Citrus sinensis (L.) Osbeck seedlings were fertigated with nutrient solution containing 2 [magnesium (Mg)-sufficiency] or 0 mM (Mg-deficiency) Mg(NO3)2 for 16 weeks. Thereafter, RNA-Seq was used to investigate Mg-deficiency-responsive genes in the veins of upper and lower leaves in order to understand the molecular mechanisms for Mg-deficiency-induced vein lignification, enlargement and cracking, which appeared only in the lower leaves. In this study, 3065 upregulated and 1220 downregulated, and 1390 upregulated and 375 downregulated genes were identified in Mg-deficiency veins of lower leaves (MDVLL) vs Mg-sufficiency veins of lower leaves (MSVLL) and Mg-deficiency veins of upper leaves (MDVUL) vs Mg-sufficiency veins of upper leaves (MSVUL), respectively. There were 1473 common differentially expressed genes (DEGs) between MDVLL vs MSVLL and MDVUL vs MSVUL, 1463 of which displayed the same expression trend. Magnesium-deficiency-induced lignification, enlargement and cracking in veins of lower leaves might be related to the following factors: (i) numerous transciption factors and genes involved in lignin biosynthesis pathways, regulation of cell cycle and cell wall metabolism were upregulated; and (ii) reactive oxygen species, phytohormone and cell wall integrity signalings were activated. Conjoint analysis of proteome and transcriptome indicated that there were 287 and 56 common elements between DEGs and differentially abundant proteins (DAPs) identified in MDVLL vs MSVLL and MDVUL vs MSVUL, respectively, and that among these common elements, the abundances of 198 and 55 DAPs matched well with the transcript levels of the corresponding DEGs in MDVLL vs MSVLL and MDVUL vs MSVUL, respectively, indicating the existence of concordances between protein and transcript levels.
Collapse
Affiliation(s)
- Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Hui-Yu Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Feng-Lin Wu
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Li-Ya Cai
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Ning-Wei Lai
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Chong-Ling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, 40 Putuo Road, Qixing District, Guilin 541004, China
| | - Jiu-Xin Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
29
|
Abedi T, Castilleux R, Nibbering P, Niittylä T. The Spatio-Temporal Distribution of Cell Wall-Associated Glycoproteins During Wood Formation in Populus. FRONTIERS IN PLANT SCIENCE 2020; 11:611607. [PMID: 33381142 PMCID: PMC7768015 DOI: 10.3389/fpls.2020.611607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/26/2020] [Indexed: 05/31/2023]
Abstract
Plant cell wall associated hydroxyproline-rich glycoproteins (HRGPs) are involved in several aspects of plant growth and development, including wood formation in trees. HRGPs such as arabinogalactan-proteins (AGPs), extensins (EXTs), and proline rich proteins (PRPs) are important for the development and architecture of plant cell walls. Analysis of publicly available gene expression data revealed that many HRGP encoding genes show tight spatio-temporal expression patterns in the developing wood of Populus that are indicative of specific functions during wood formation. Similar results were obtained for the expression of glycosyl transferases putatively involved in HRGP glycosylation. In situ immunolabelling of transverse wood sections using AGP and EXT antibodies revealed the cell type specificity of different epitopes. In mature wood AGP epitopes were located in xylem ray cell walls, whereas EXT epitopes were specifically observed between neighboring xylem vessels, and on the ray cell side of the vessel walls, likely in association with pits. Molecular mass and glycan analysis of AGPs and EXTs in phloem/cambium, developing xylem, and mature xylem revealed clear differences in glycan structures and size between the tissues. Separation of AGPs by agarose gel electrophoresis and staining with β-D-glucosyl Yariv confirmed the presence of different AGP populations in phloem/cambium and xylem. These results reveal the diverse changes in HRGP-related processes that occur during wood formation at the gene expression and HRGP glycan biosynthesis levels, and relate HRGPs and glycosylation processes to the developmental processes of wood formation.
Collapse
|
30
|
Herger A, Dünser K, Kleine-Vehn J, Ringli C. Leucine-Rich Repeat Extensin Proteins and Their Role in Cell Wall Sensing. Curr Biol 2020; 29:R851-R858. [PMID: 31505187 DOI: 10.1016/j.cub.2019.07.039] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Plant cells are surrounded by a cell wall that provides shape and physically limits cell expansion. To sense the environment and status of cell wall structures, plants have evolved cell wall integrity-sensing mechanisms that involve a number of receptors at the plasma membrane. These receptors can bind cell wall components and/or hormones to coordinate processes in the cell wall and the cytoplasm. This review focuses on the role of leucine-rich repeat extensins (LRXs) during cell wall development. LRXs are chimeric proteins that insolubilize in the cell wall and form protein-protein interaction platforms. LRXs bind RALF peptide hormones that modify cell wall expansion and also directly interact with the transmembrane receptor FERONIA, which is involved in cell growth regulation. LRX proteins, therefore, also represent a link between the cell wall and plasma membrane, perceiving extracellular signals and indirectly relaying this information to the cytoplasm.
Collapse
Affiliation(s)
- Aline Herger
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Kai Dünser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Christoph Ringli
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
31
|
Ravindran P, Yong SY, Mohanty B, Kumar PP. An LRR-only protein regulates abscisic acid-mediated abiotic stress responses during Arabidopsis seed germination. PLANT CELL REPORTS 2020; 39:909-920. [PMID: 32277267 DOI: 10.1007/s00299-020-02538-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/30/2020] [Indexed: 05/22/2023]
Abstract
LRRop-1, induced by DOF6 transcription factor, negatively regulates abiotic stress responses during Arabidopsis seed germination. The lrrop-1 mutant has reduced ABA signaling, which is part of the underlying stress-remediation mechanism. The large family of leucine-rich repeat (LRR) proteins plays a role in plant immune responses. Most LRR proteins have multiple functional domains, but a subfamily is known to possess only the LRR domain. The roles of these LRR-only proteins in Arabidopsis remain largely uncharacterized. In the present study, we have identified 44 LRR-only proteins in Arabidopsis and phylogenetically classified them into nine sub-groups. We characterized the function of LRRop-1, belonging to sub-group V. LRRop-1 encodes a predominantly ER-localized LRR domain-containing protein that is highly expressed in seeds and rosette leaves. Promoter motif analysis revealed an enrichment in binding sites for several GA-responsive and stress-responsive transcription factors. The lrrop-1 mutant seeds showed enhanced seed germination on medium containing abscisic acid (ABA), paclobutrazol and NaCl compared to the wild type (WT), demonstrating higher abiotic stress tolerance. Also, the lrrop-1 mutant seeds have lower levels of endogenous ABA, but higher levels of gibberellic acid (GA) and jasmonic acid-Ile (JA-Ile) compared to the WT. Furthermore, lrrop-1 mutant seeds imbibed with ABA exhibited reduced expression of ABA-responsive genes compared to similarly treated WT seeds, suggesting suppressed ABA signaling events in the mutant. Furthermore, chromatin immunoprecipitation (ChIP) data showed that DNA BINDING1 ZINC FINGER6 (DOF6), a negative regulator of seed germination, could directly bind to the LRRop-1 promoter and up-regulate its expression. Thus, our results show that LRRop-1 regulates ABA-mediated abiotic stress responses during Arabidopsis seed germination.
Collapse
Affiliation(s)
- Pratibha Ravindran
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Shi Yin Yong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Bijayalakshmi Mohanty
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
32
|
Herger A, Gupta S, Kadler G, Franck CM, Boisson-Dernier A, Ringli C. Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis. PLoS Genet 2020; 16:e1008847. [PMID: 32559234 PMCID: PMC7357788 DOI: 10.1371/journal.pgen.1008847] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 07/13/2020] [Accepted: 05/11/2020] [Indexed: 02/01/2023] Open
Abstract
Plant cell growth requires the coordinated expansion of the protoplast and the cell wall, which is controlled by an elaborate system of cell wall integrity (CWI) sensors linking the different cellular compartments. LRR-eXtensins (LRXs) are cell wall-attached extracellular regulators of cell wall formation and high-affinity binding sites for RALF (Rapid ALkalinization Factor) peptide hormones that trigger diverse physiological processes related to cell growth. LRXs function in CWI sensing and in the case of LRX4 of Arabidopsis thaliana, this activity was shown to involve interaction with the transmembrane CatharanthusroseusReceptor-Like Kinase1-Like (CrRLK1L) protein FERONIA (FER). Here, we demonstrate that binding of RALF1 and FER is common to most tested LRXs of vegetative tissue, including LRX1, the main LRX protein of root hairs. Consequently, an lrx1-lrx5 quintuple mutant line develops shoot and root phenotypes reminiscent of the fer-4 knock-out mutant. The previously observed membrane-association of LRXs, however, is FER-independent, suggesting that LRXs bind not only FER but also other membrane-localized proteins to establish a physical link between intra- and extracellular compartments. Despite evolutionary diversification of various LRX proteins, overexpression of several chimeric LRX constructs causes cross-complementation of lrx mutants, indicative of comparable functions among members of this protein family. Suppressors of the pollen-growth defects induced by mutations in the CrRLK1Ls ANXUR1/2 also alleviate lrx1 lrx2-induced mutant root hair phenotypes. This suggests functional similarity of LRX-CrRLK1L signaling processes in very different cell types and indicates that LRX proteins are components of conserved processes regulating cell growth. Cell growth in plants requires the coordinated enlargement of the cell and the surrounding cell wall, which is regulated by an elaborate system of cell wall integrity sensors, proteins involved in the exchange of information between the cell and the cell wall. In Arabidopsis thaliana, LRR-extensins (LRXs) are localized in the cell wall and bind RALF peptides, hormones that regulate cell growth-related processes. LRX4 also binds the plasma membrane-localized protein FERONIA (FER), thereby establishing a link between the cell and the cell wall. Here, we show that membrane association of LRX4 is not dependent on FER, suggesting that LRX4 binds other, so far unknown proteins. The LRR domain of several LRXs can bind to FER, consistent with the observation that mutations in multiple LRX genes are required to recapitulate a fer knock-out phenotype. Our results support the notion that LRX-FER interactions are key to proper cell growth.
Collapse
Affiliation(s)
- Aline Herger
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Shibu Gupta
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabor Kadler
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christina Maria Franck
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Biocenter, Botanical Institute, University of Cologne, Cologne, Germany
| | | | - Christoph Ringli
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
33
|
Lucob-Agustin N, Kawai T, Takahashi-Nosaka M, Kano-Nakata M, Wainaina CM, Hasegawa T, Inari-Ikeda M, Sato M, Tsuji H, Yamauchi A, Inukai Y. WEG1, which encodes a cell wall hydroxyproline-rich glycoprotein, is essential for parental root elongation controlling lateral root formation in rice. PHYSIOLOGIA PLANTARUM 2020; 169:214-227. [PMID: 31925781 DOI: 10.1111/ppl.13063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 05/25/2023]
Abstract
Lateral roots (LRs) determine the overall root system architecture, thus enabling plants to efficiently explore their underground environment for water and nutrients. However, the mechanisms regulating LR development are poorly understood in monocotyledonous plants. We characterized a rice mutant, wavy root elongation growth 1 (weg1), that produced higher number of long and thick LRs (L-type LRs) formed from the curvatures of its wavy parental roots caused by asymmetric cell growth in the elongation zone. Consistent with this phenotype, was the expression of the WEG1 gene, which encodes a putative member of the hydroxyproline-rich glycoprotein family that regulates cell wall extensibility, in the root elongation zone. The asymmetric elongation growth in roots is well known to be regulated by auxin, but we found that the distribution of auxin at the apical region of the mutant and the wild-type roots was symmetric suggesting that the wavy root phenotype in rice is independent of auxin. However, the accumulation of auxin at the convex side of the curvatures, the site of L-type LR formation, suggested that auxin likely induced the formation of L-type LRs. This was supported by the need of a high amount of exogenous auxin to induce the formation of L-type LRs. These results suggest that the MNU-induced weg1 mutated gene regulates the auxin-independent parental root elongation that controls the number of likely auxin-induced L-type LRs, thus reflecting its importance in improving rice root architecture.
Collapse
Affiliation(s)
- Nonawin Lucob-Agustin
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Tsubasa Kawai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Misuzu Takahashi-Nosaka
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Mana Kano-Nakata
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Cornelius M Wainaina
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Tomomi Hasegawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Mayuko Inari-Ikeda
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- PREST, JST, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
34
|
Panthapulakkal Narayanan S, Liao P, Taylor PWJ, Lo C, Chye ML. Overexpression of a Monocot Acyl-CoA-Binding Protein Confers Broad-Spectrum Pathogen Protection in a Dicot. Proteomics 2020; 19:e1800368. [PMID: 31054181 DOI: 10.1002/pmic.201800368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/14/2019] [Indexed: 01/17/2023]
Abstract
Plants are continuously infected by various pathogens throughout their lifecycle. Previous studies have reported that the expression of Class III acyl-CoA-binding proteins (ACBPs) such as the Arabidopsis ACBP3 and rice ACBP5 were induced by pathogen infection. Transgenic Arabidopsis AtACBP3-overexpressors (AtACBP3-OEs) displayed enhanced protection against the bacterial biotroph, Pseudomonas syringae, although they became susceptible to the fungal necrotroph Botrytis cinerea. A Class III ACBP from a monocot, rice (Oryza sativa) OsACBP5 was overexpressed in the dicot Arabidopsis. The resultant transgenic Arabidopsis lines conferred resistance not only to the bacterial biotroph P. syringae but to fungal necrotrophs (Rhizoctonia solani, B. cinerea, Alternaria brassicicola) and a hemibiotroph (Colletotrichum siamense). Changes in protein expression in R. solani-infected Arabidopsis OsACBP5-overexpressors (OsACBP5-OEs) were demonstrated using proteomic analysis. Biotic stress-related proteins including cell wall-related proteins such as FASCILIN-LIKE ARABINOGALACTAN-PROTEIN10, LEUCINE-RICH REPEAT EXTENSIN-LIKE PROTEINS, XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE PROTEIN4, and PECTINESTERASE INHIBITOR18; proteins associated with glucosinolate degradation including GDSL-LIKE LIPASE23, EPITHIOSPECIFIER MODIFIER1, MYROSINASE1, MYROSINASE2, and NITRILASE1; as well as a protein involved in jasmonate biosynthesis, ALLENE OXIDE CYCLASE2, were induced in OsACBP5-OEs upon R. solani infection. These results indicated that upregulation of these proteins in OsACBP5-OEs conferred protection against various plant pathogens.
Collapse
Affiliation(s)
| | - Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Paul W J Taylor
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
35
|
Protein Changes in Response to Lead Stress of Lead-Tolerant and Lead-Sensitive Industrial Hemp Using SWATH Technology. Genes (Basel) 2019; 10:genes10050396. [PMID: 31121980 PMCID: PMC6562531 DOI: 10.3390/genes10050396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 11/17/2022] Open
Abstract
Hemp is a Pb-tolerant and Pb-accumulating plant and the study of its tolerance mechanisms could facilitate the breeding of hemp with enhanced Pb tolerance and accumulation. In the present study, we took advantage of sequential window acquisition of all theoretical mass spectra (SWATH) technology to study the difference in proteomics between the leaves of Pb-tolerant seed-type hemp variety Bamahuoma (BM) and the Pb-sensitive fiber-type hemp variety Yunma 1 (Y1) under Pb stress (3 g/kg soil). A total of 63 and 372 proteins differentially expressed under Pb stress relative to control conditions were identified with liquid chromatography electro spray ionization tandem mass spectrometry in BM and Y1, respectively; with each of these proteins being classified into 14 categories. Hemp adapted to Pb stress by: accelerating adenosine triphosphate (ATP) metabolism; enhancing respiration, light absorption and light energy transfer; promoting assimilation of intercellular nitrogen (N) and carbon (C); eliminating reactive oxygen species; regulating stomatal development and closure; improving exchange of water and CO2 in leaves; promoting intercellular transport; preventing aggregation of unfolded proteins; degrading misfolded proteins; and increasing the transmembrane transport of ATP in chloroplasts. Our results provide an important reference protein and gene information for future molecular studies into the resistance and accumulation of Pb in hemp.
Collapse
|
36
|
Ke S, Luan X, Liang J, Hung YH, Hsieh TF, Zhang XQ. Rice OsPEX1, an extensin-like protein, affects lignin biosynthesis and plant growth. PLANT MOLECULAR BIOLOGY 2019; 100:151-161. [PMID: 30840202 DOI: 10.1007/s11103-019-00849-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/23/2019] [Indexed: 05/06/2023]
Abstract
Rice leucine-rich repeat extensin-like protein OsPEX1 mediates the intersection of lignin deposition and plant growth. Lignin, a major structural component of secondary cell wall, is essential for normal plant growth and development. However, the molecular and genetic regulation of lignin biosynthesis is not fully understood in rice. Here we report the identification and characterization of a rice semi-dominant dwarf mutant (pex1) with stiff culm. Molecular and genetic analyses revealed that the pex1 phenotype was caused by ectopic expression of a leucine-rich repeat extension-like gene, OsPEX1. Interestingly, the pex1 mutant showed significantly higher lignin content and increased expression levels of lignin-related genes compared with wild type plants. Conversely, OsPEX1-suppresssed transgenics displayed low lignin content and reduced transcriptional abundance of genes associated with lignin biosynthesis, indicating that the OsPEX1 mediates lignin biosynthesis and/or deposition in rice. When OsPEX1 was ectopically expressed in rice cultivars with tall stature that lacks the allele of semi-dwarf 1, well-known green revolution gene, the resulting transgenic plants displayed reduced height and enhanced lodging resistance. Our study uncovers a causative effect between the expression of OsPEX1 and lignin deposition. Lastly, we demonstrated that modulating OsPEX1 expression could provide a tool for improving rice lodging resistance.
Collapse
Affiliation(s)
- Shanwen Ke
- Guangdong Engineering Research Center of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Luan
- Guangdong Engineering Research Center of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiayan Liang
- Guangdong Engineering Research Center of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Hung Hung
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Tzung-Fu Hsieh
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Xiang-Qian Zhang
- Guangdong Engineering Research Center of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
37
|
Schaufelberger M, Galbier F, Herger A, de Brito Francisco R, Roffler S, Clement G, Diet A, Hörtensteiner S, Wicker T, Ringli C. Mutations in the Arabidopsis ROL17/isopropylmalate synthase 1 locus alter amino acid content, modify the TOR network, and suppress the root hair cell development mutant lrx1. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2313-2323. [PMID: 30753668 PMCID: PMC6463047 DOI: 10.1093/jxb/ery463] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/19/2018] [Indexed: 05/22/2023]
Abstract
The growth and development of organisms must be tightly controlled and adjusted to nutrient availability and metabolic activities. The Target of Rapamycin (TOR) network is a major control mechanism in eukaryotes and influences processes such as translation, mitochondrial activity, production of reactive oxygen species, and the cytoskeleton. In Arabidopsis thaliana, inhibition of the TOR kinase causes changes in cell wall architecture and suppression of phenotypic defects of the cell wall formation mutant lrx1 (leucine-rich repeat extensin 1). The rol17 (repressor of lrx1 17) mutant was identified as a new suppressor of lrx1 that induces also a short root phenotype. The ROL17 locus encodes isopropylmalate synthase 1, a protein involved in leucine biosynthesis. Dependent on growth conditions, mutations in ROL17 do not necessarily alter the level of leucine, but always cause development of the rol17 mutant phenotypes, suggesting that the mutation does not only influence leucine biosynthesis. Changes in the metabolome of rol17 mutants are also found in plants with inhibited TOR kinase activity. Furthermore, rol17 mutants show reduced sensitivity to the TOR kinase inhibitor AZD-8055, indicating a modified TOR network. Together, these data suggest that suppression of lrx1 by rol17 is the result of an alteration of the TOR network.
Collapse
Affiliation(s)
- Myriam Schaufelberger
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Florian Galbier
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Institute of Molecular Plant Biology, Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Aline Herger
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Rita de Brito Francisco
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Stefan Roffler
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Gilles Clement
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Anouck Diet
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris Diderot, INRA, Université Paris Sud, Université d’Evry, Université Paris-Saclay, Rue de Noetzlin, Gif-sur-Yvette, France
| | - Stefan Hörtensteiner
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Christoph Ringli
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Correspondence:
| |
Collapse
|
38
|
Dünser K, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J. Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J 2019; 38:e100353. [PMID: 30850388 PMCID: PMC6443208 DOI: 10.15252/embj.2018100353] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 01/23/2023] Open
Abstract
Cellular elongation requires the defined coordination of intra- and extracellular processes, but the underlying mechanisms are largely unknown. The vacuole is the biggest plant organelle, and its dimensions play a role in defining plant cell expansion rates. Here, we show that the increase in vacuolar occupancy enables cellular elongation with relatively little enlargement of the cytosol in Arabidopsis thaliana We demonstrate that cell wall properties are sensed and impact on the intracellular expansion of the vacuole. Using vacuolar morphology as a quantitative read-out for intracellular growth processes, we reveal that the underlying cell wall sensing mechanism requires interaction of extracellular leucine-rich repeat extensins (LRXs) with the receptor-like kinase FERONIA (FER). Our data suggest that LRXs link plasma membrane-localised FER with the cell wall, allowing this module to jointly sense and convey extracellular signals to the cell. This mechanism coordinates the onset of cell wall acidification and loosening with the increase in vacuolar size.
Collapse
Affiliation(s)
- Kai Dünser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Shibu Gupta
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Aline Herger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Mugurel I Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Christoph Ringli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
39
|
Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:13123-13128. [PMID: 30514814 DOI: 10.1073/pnas.1816991115] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The perception and relay of cell-wall signals are critical for plants to regulate growth and stress responses, but the underlying mechanisms are poorly understood. We found that the cell-wall leucine-rich repeat extensins (LRX) 3/4/5 are critical for plant salt tolerance in Arabidopsis The LRXs physically associate with the RAPID ALKALINIZATION FACTOR (RALF) peptides RALF22/23, which in turn interact with the plasma membrane-localized receptor-like protein kinase FERONIA (FER). The lrx345 triple mutant as well as fer mutant plants display retarded growth and salt hypersensitivity, which are mimicked by overexpression of RALF22/23 Salt stress promotes S1P protease-dependent release of mature RALF22 peptides. Treatment of roots with mature RALF22/23 peptides or salt stress causes the internalization of FER. Our results suggest that the LRXs, RALFs, and FER function as a module to transduce cell-wall signals to regulate plant growth and salt stress tolerance.
Collapse
|
40
|
Castilleux R, Plancot B, Ropitaux M, Carreras A, Leprince J, Boulogne I, Follet-Gueye ML, Popper ZA, Driouich A, Vicré M. Cell wall extensins in root-microbe interactions and root secretions. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4235-4247. [PMID: 29945246 DOI: 10.1093/jxb/ery238] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/18/2018] [Indexed: 05/27/2023]
Abstract
Extensins are cell wall glycoproteins, belonging to the hydroxyproline-rich glycoprotein (HRGP) family, which are involved in many biological functions, including plant growth and defence. Several reviews have described the involvement of HRGPs in plant immunity but little focus has been given specifically to cell wall extensins. Yet, a large set of recently published data indicates that extensins play an important role in plant protection, especially in root-microbe interactions. Here, we summarise the current knowledge on this topic and discuss the importance of extensins in root defence. We first provide an overview of the distribution of extensin epitopes recognised by different monoclonal antibodies among plants and discuss the relevance of some of these epitopes as markers of the root defence response. We also highlight the implication of extensins in different types of plant interactions elicited by either pathogenic or beneficial micro-organisms. We then present and discuss the specific importance of extensins in root secretions, as these glycoproteins are not only found in the cell walls but are also released into the root mucilage. Finally, we propose a model to illustrate the impact of cell wall extensin on root secretions.
Collapse
Affiliation(s)
- Romain Castilleux
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Barbara Plancot
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Marc Ropitaux
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Alexis Carreras
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Jérôme Leprince
- INSERM U1239, Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université, Rouen, France
| | - Isabelle Boulogne
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Marie-Laure Follet-Gueye
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Zoë A Popper
- Botany and Plant Science and The Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Azeddine Driouich
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Maïté Vicré
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| |
Collapse
|
41
|
Marzol E, Borassi C, Bringas M, Sede A, Rodríguez Garcia DR, Capece L, Estevez JM. Filling the Gaps to Solve the Extensin Puzzle. MOLECULAR PLANT 2018; 11:645-658. [PMID: 29530817 DOI: 10.1016/j.molp.2018.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/28/2018] [Accepted: 03/04/2018] [Indexed: 05/20/2023]
Abstract
Extensins (EXTs) are highly repetitive plant O-glycoproteins that require several post-translational modifications (PTMs) to become functional in plant cell walls. First, they are hydroxylated on contiguous proline residues; then they are O-glycosylated on hydroxyproline and serine. After secretion into the apoplast, O-glycosylated EXTs form a tridimensional network organized by inter- and intra-Tyr linkages. Recent studies have made significant progress in the identification of the enzymatic machinery required to process EXTs, which includes prolyl 4-hydroxylases, glycosyltransferases, papain-type cysteine endopeptidases, and peroxidases. EXTs are abundant in plant tissues and are particularly important in rapidly expanding root hairs and pollen tubes, which grow in a polar manner. Small changes in EXT PTMs affect fast-growing cells, although the molecular mechanisms underlying this regulation are unknown. In this review, we highlight recent advances in our understanding of EXT modifications throughout the secretory pathway, EXT assembly in cell walls, and possible sensing mechanisms involving the Catharanthus roseus cell surface sensor receptor-like kinases located at the interface between the apoplast and the cytoplasmic side of the plasma membrane.
Collapse
Affiliation(s)
- Eliana Marzol
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
| | - Mauro Bringas
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE-CONICET), Buenos Aires, CP C1428EGA, Argentina
| | - Ana Sede
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Diana Rosa Rodríguez Garcia
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE-CONICET), Buenos Aires, CP C1428EGA, Argentina
| | - Jose M Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina.
| |
Collapse
|
42
|
Sede AR, Borassi C, Wengier DL, Mecchia MA, Estevez JM, Muschietti JP. Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth. FEBS Lett 2018; 592:233-243. [PMID: 29265366 DOI: 10.1002/1873-3468.12947] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/22/2017] [Accepted: 11/06/2017] [Indexed: 11/07/2022]
Abstract
Proper cell wall assembly is crucial during pollen tube growth. Leucine-rich repeat extensins (LRXs) are extracellular glycoproteins which belong to the hydroxyproline-rich glycoprotein (HRGP) family. They contain a conserved N-terminal leucine-rich repeat (LRR) domain and a highly variable C-terminal extensin domain. Here, we characterized four LRX proteins (LRX8 through LRX11) from pollen of Arabidopsis thaliana. To investigate the role of LRX8-LRX11 in pollen germination and pollen tube growth, multiple T-DNA lrx mutants were obtained. The lrx mutants display abnormal pollen tubes with an irregular deposition of callose and pectin. They also show serious alterations in pollen germination and segregation ratio. Our results suggest that LRXs are involved in ensuring proper cell wall assembly during pollen tube growth.
Collapse
Affiliation(s)
- Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, IFIByNE-CONICET, Universidad de Buenos Aires, Argentina
| | - Diego L Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Martín A Mecchia
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - José M Estevez
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, IFIByNE-CONICET, Universidad de Buenos Aires, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
43
|
Cho HT. An ancient transcriptional regulatory module for tip growth has been conserved throughout the vascular plant lineage. PLANT SIGNALING & BEHAVIOR 2017; 12:e1294300. [PMID: 28277973 PMCID: PMC5399900 DOI: 10.1080/15592324.2017.1294300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
The root hair development of vascular plants can be divided into 2 major processes, fate determination and hair morphogenesis, and the latter should be governed by the former so as to express the morphogenetic toolkits in a root hair-specific manner. Vascular plants, depending on taxa, show different fate-determining mechanisms for hair cell/non-hair cell fates, which leads to a question whether the downstream mophogenetic regulatory module is diverged accordingly to the upstream fate determiners or not. Our study demonstrates that the module of a transcription factor and a root hair-specific cis-element (RHE) for root hair-specific expression of morphogenetic toolkit genes is conserved in spite of different fate-determing mechanisms.
Collapse
Affiliation(s)
- Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
44
|
Wang H, Lan P, Shen RF. Integration of transcriptomic and proteomic analysis towards understanding the systems biology of root hairs. Proteomics 2016; 16:877-93. [PMID: 26749523 DOI: 10.1002/pmic.201500265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 11/11/2022]
Abstract
Plants and other multicellular organisms consist of many types of specialized cells. Systems-wide exploration of large-scale information from singe cell level is essential to understand how cell works. Root hairs, tubular-shaped outgrowths from root epidermal cells, play important roles in the acquisition of nutrients and water, in the interaction with microbe, and in plant anchorage, and represent an ideal model to study the biology of a single cell type. Single cell sampling combined with omics approaches has been applied to study plant root hairs. This review emphasizes the integration of omics approaches towards understanding the systems biology of root hairs, unraveling the common and plant species-specific properties of root hairs, as well as the concordance of protein and transcript abundance. Understanding plant root hair biology by mining the integrated omics data will provide a way to know how a single cell differentiates, elongates, and functions, which might help molecularly modify crops for developing sustainable agriculture practices.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| |
Collapse
|
45
|
Liao Y, Hu C, Zhang X, Cao X, Xu Z, Gao X, Li L, Zhu J, Chen R. Isolation of a novel leucine-rich repeat receptor-like kinase (OsLRR2) gene from rice and analysis of its relation to abiotic stress responses. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1242377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Yongrong Liao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Changqiong Hu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuewei Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xufeng Cao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhengjun Xu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoling Gao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lihua Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jianqing Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Rongjun Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
46
|
Fang Y, Mei H, Zhou B, Xiao X, Yang M, Huang Y, Long X, Hu S, Tang C. De novo Transcriptome Analysis Reveals Distinct Defense Mechanisms by Young and Mature Leaves of Hevea brasiliensis (Para Rubber Tree). Sci Rep 2016; 6:33151. [PMID: 27619402 PMCID: PMC5020607 DOI: 10.1038/srep33151] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/22/2016] [Indexed: 12/04/2022] Open
Abstract
Along with changes in morphology in the course of maturation, leaves of Hevea brasiliensis become more resistant to leaf diseases, including the South American Leaf Blight (SALB), a devastating fungal disease of this economically important tree species. To understand the underlying mechanisms of this defense, and to identify the candidate genes involved, we sequenced the Hevea leaf transcriptome at four developmental stages (I to IV) by Illumina sequencing. A total of 62.6 million high-quality reads were generated, and assembled into 98,796 unique transcripts. We identified 3,905 differentially expressed genes implicated in leaf development, 67.8% (2,651) of which were during the transition to leaf maturation. The genes involved in cyanogenic metabolism, lignin and anthocyanin biosynthesis were noteworthy for their distinct patterns of expression between developing leaves (stages I to III) and mature leaves (stage IV), and the correlation with the change in resistance to SALB and the Oidium/Colletotrichum leaf fall. The results provide a first profile of the molecular events that relate to the dynamics of leaf morphology and defense strategies during Hevea leaf development. This dataset is beneficial to devising strategies to engineer resistance to leaf diseases as well as other in-depth studies in Hevea tree.
Collapse
Affiliation(s)
- Yongjun Fang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, Hainan, China
| | - Hailiang Mei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binhui Zhou
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, Hainan, China
| | - Xiaohu Xiao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, Hainan, China
| | - Meng Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yacheng Huang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, Hainan, China
| | - Xiangyu Long
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, Hainan, China
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chaorong Tang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, Hainan, China
| |
Collapse
|
47
|
Kim DW, Jeon SJ, Hwang SM, Hong JC, Bahk JD. The C3H-type zinc finger protein GDS1/C3H42 is a nuclear-speckle-localized protein that is essential for normal growth and development in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:141-153. [PMID: 27457991 DOI: 10.1016/j.plantsci.2016.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 05/27/2023]
Abstract
Eukaryotic C3H-type zinc finger proteins (Znfs) comprise a large family of regulatory proteins involved in many aspects of plant stress response, growth and development. However, compared to mammalian, only a few plant Znfs have been functionally characterized. Here, T-DNA inserted gds1 (growth, development and splicing 1) mutant, displayed abnormal growth throughout the lifecycle owing to the reduction of cell size and number. Inverse PCR analysis revealed that the abnormal growth was caused by the disruption of At3g47120, which encodes a C3H42 protein belonging to the C-X7-C-X5-C-X3-H class of the Znf family. GDS1 was ubiquitously transcribed, but shows high levels of expression in young seedling and unexpanded new leaves. In gds1, the transcripts of many growth- and development-related genes were down-regulated, and the auxin response was dramatically reduced. A fluorescence-based assay revealed that the GDS1 protein was localized to the nucleus, prominently in the speckle compartments. Its arginine/serine dipeptide-rich-like (RS-like) domain was essential for nuclear localization. In addition, the SR1, SRm102 and U1-70K components of the U1 spliceosome interacted with GDS1 in the nuclear speckle compartments. Taken together, these suggest that GDS1, a nuclear-speckle-associated Znf, might play a significant role in splicing during plant growth and development.
Collapse
Affiliation(s)
- Dae Won Kim
- Division of Applied Life Science (BK21Plus), PMBBRC, Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Su Jeong Jeon
- Division of Applied Life Science (BK21Plus), PMBBRC, Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sung Min Hwang
- Division of Applied Life Science (BK21Plus), PMBBRC, Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jong Chan Hong
- Division of Applied Life Science (BK21Plus), PMBBRC, Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jeong Dong Bahk
- Division of Applied Life Science (BK21Plus), PMBBRC, Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
48
|
Song L, Yu H, Dong J, Che X, Jiao Y, Liu D. The Molecular Mechanism of Ethylene-Mediated Root Hair Development Induced by Phosphate Starvation. PLoS Genet 2016; 12:e1006194. [PMID: 27427911 PMCID: PMC4948871 DOI: 10.1371/journal.pgen.1006194] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/23/2016] [Indexed: 11/18/2022] Open
Abstract
Enhanced root hair production, which increases the root surface area for nutrient uptake, is a typical adaptive response of plants to phosphate (Pi) starvation. Although previous studies have shown that ethylene plays an important role in root hair development induced by Pi starvation, the underlying molecular mechanism is not understood. In this work, we characterized an Arabidopsis mutant, hps5, that displays constitutive ethylene responses and increased sensitivity to Pi starvation due to a mutation in the ethylene receptor ERS1. hps5 accumulates high levels of EIN3 protein, a key transcription factor involved in the ethylene signaling pathway, under both Pi sufficiency and deficiency. Pi starvation also increases the accumulation of EIN3 protein. Combined molecular, genetic, and genomic analyses identified a group of genes that affect root hair development by regulating cell wall modifications. The expression of these genes is induced by Pi starvation and is enhanced in the EIN3-overexpressing line. In contrast, the induction of these genes by Pi starvation is suppressed in ein3 and ein3eil1 mutants. EIN3 protein can directly bind to the promoter of these genes, some of which are also the immediate targets of RSL4, a key transcription factor that regulates root hair development. Based on these results, we propose that under normal growth conditions, the level of ethylene is low in root cells; a group of key transcription factors, including RSL4 and its homologs, trigger the transcription of their target genes to promote root hair development; Pi starvation increases the levels of the protein EIN3, which directly binds to the promoters of the genes targeted by RSL4 and its homologs and further increase their transcription, resulting in the enhanced production of root hairs. This model not only explains how ethylene mediates root hair responses to Pi starvation, but may provide a general mechanism for how ethylene regulates root hair development under both stress and non-stress conditions.
Collapse
Affiliation(s)
- Li Song
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haopeng Yu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinsong Dong
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ximing Che
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dong Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
49
|
Hwang Y, Lee H, Lee YS, Cho HT. Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2007-22. [PMID: 26884603 PMCID: PMC4783376 DOI: 10.1093/jxb/erw031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant cell growth is restricted by the cell wall, and cell wall dynamics act as signals for the cytoplasmic and nuclear events of cell growth. Among various receptor kinases, ROOT HAIR SPECIFIC 10 (RHS10) belongs to a poorly known receptor kinase subfamily with a proline-rich extracellular domain. Here, we report that RHS10 defines the root hair length of Arabidopsis thaliana by negatively regulating hair growth. RHS10 modulates the duration of root hair growth rather than the growth rate. As poplar and rice RHS10 orthologs also showed a root hair-inhibitory function, this receptor kinase-mediated function appears to be conserved in angiosperms. RHS10 showed a strong association with the cell wall, most probably through its extracellular proline-rich domain (ECD). Deletion analysis of the ECD demonstrated that a minimal extracellular part, which includes a few proline residues, is required for RHS10-mediated root hair inhibition. RHS10 suppressed the accumulation of reactive oxygen species (ROS) in the root, which are necessary for root hair growth. A yeast two-hybrid screening identified an RNase (RNS2) as a putative downstream target of RHS10. Accordingly, RHS10 overexpression decreased and RHS10 loss increased RNA levels in the hair-growing root region. Our results suggest that RHS10 mediates cell wall-associated signals to maintain proper root hair length, at least in part by regulating RNA catabolism and ROS accumulation.
Collapse
Affiliation(s)
- Youra Hwang
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hyodong Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Young-Sook Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
50
|
Borassi C, Sede AR, Mecchia MA, Salgado Salter JD, Marzol E, Muschietti JP, Estevez JM. An update on cell surface proteins containing extensin-motifs. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:477-87. [PMID: 26475923 DOI: 10.1093/jxb/erv455] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge.
Collapse
Affiliation(s)
- Cecilia Borassi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Martin A Mecchia
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Juan D Salgado Salter
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina. Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina.
| | - Jose M Estevez
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina.
| |
Collapse
|