1
|
Hetemäki I, Arstila TP, Kekäläinen E. Helios-Illuminating the way for lymphocyte self-control. Immunology 2024. [PMID: 39354708 DOI: 10.1111/imm.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024] Open
Abstract
Transcription factor Helios, encoded by the IKZF2 gene, has an important role in regulatory T cells by stabilizing their suppressive phenotype. While Helios is prominently expressed in regulatory T cells, its expression extends beyond to include effector T cells, follicular regulatory T cells, B cells, and innate-like lymphocyte populations. Recent characterizations of patients with inborn error of immunity due to damaging IKZF2 variants coupled with translational research on lymphocytes from healthy individuals, have increased our understanding on Helios' multifaceted role in controlling the human adaptive immune system. A less studied role for Helios beyond the stabilizing of regulatory T cells has emerged in directing effector T cell maturation. In the absence of functional Helios, effector T cells acquire more inflammatory phenotype and are prone to senescence. Loss of Helios expression disrupts the regulation of the germinal centre reaction, often resulting in either hypogammaglobulinemia or B cell autoimmunity. This review summarizes findings from studies in both mice and men offering a comprehensive understanding of the impact of the transcription factor Helios on the adaptive immune system.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - T Petteri Arstila
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
2
|
Østergaard A, Boer JM, van Leeuwen FN, Pieters R, Den Boer ML. IKZF1 in acute lymphoblastic leukemia: the rise before the fall? Leuk Lymphoma 2024:1-11. [PMID: 39210599 DOI: 10.1080/10428194.2024.2396046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children and adolescents and in recent decades, the survival rates have risen to >90% in children largely due the introduction of risk adapted therapy. Therefore, knowledge of factors influencing risk of relapse is important. The transcription factor IKAROS is a regulator of lymphocyte development and alterations of its coding gene, IKZF1, are frequent in ALL and are associated with higher relapse risk. This concise review will discuss the normal function of IKAROS together with the effect of gene alterations in ALL such as relieved energy restriction and altered response to anti-leukemic drugs. Besides the biology, the clinical impact of gene alterations in the different subtypes of ALL will be discussed. Finally, possibilities for treating ALL with IKZF1 alterations will be considered including novel therapies like cell signaling inhibitors and immunotherapy.
Collapse
Affiliation(s)
- Anna Østergaard
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | |
Collapse
|
3
|
Li M. IKZF2 Degradation: It's Time to Take into Account it When Designing Cereblon-Based PROTACs. Chembiochem 2024; 25:e202400365. [PMID: 38802326 DOI: 10.1002/cbic.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Proteolysis-targeting chimera (PROTAC) has become a very important means of protein degradation and a new way of disease treatment. In particular, PROTACs constructed with ligands for E3 ligase cereblon account for more than 90 % of the PROTACs currently in clinical research. Notably, CRBN ligands themselves are a class of molecular glue compounds capable of degrading neo-substrate proteins. Compared to the target proteins degradation, the degradation of neo-substrates, especially IKZF2, has not received enough attention. Therefore, this review summarizes the currently published IKZF2 degraders derived from articles and patents, which are conducive to the design of PROTACs with desired IKZF2 degradation from the perspective of medicinal chemistry.
Collapse
Affiliation(s)
- Minglei Li
- Chemical Biology Center, School of Pharmaceutical Sciences & Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- School of Pharmaceutical Sciences & Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| |
Collapse
|
4
|
Rojo-Tolosa S, Sánchez-Martínez JA, Caballero-Vázquez A, Pineda-Lancheros LE, González-Gutiérrez MV, Pérez-Ramírez C, Jiménez-Morales A, Morales-García C. SingleNucleotide Polymorphisms as Biomarkers of Mepolizumab and Benralizumab Treatment Response in Severe Eosinophilic Asthma. Int J Mol Sci 2024; 25:8139. [PMID: 39125709 PMCID: PMC11311889 DOI: 10.3390/ijms25158139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The most promising treatment options for severe uncontrolled asthma (SUA) have emerged in recent years with the development of monoclonal antibodies for blocking selective targets responsible for the underlying inflammation, such as mepolizumab and benralizumab. However, there is variability in treatment response that is not fully controlled. The variability of the response to mepolizumab and benralizumab could be influenced by single-nucleotide polymorphisms (SNPs), and it would be useful to detect these and use them as predictive biomarkers of response. We conducted a retrospective observational cohort study of 72 Caucasian patients recruited from a tertiary hospital with severe uncontrolled eosinophilic asthma treated with mepolizumab and benralizumab. Polymorphisms in the IL5 (rs4143832, rs17690122), RAD50 (rs11739623, rs4705959), IL1RL1 (rs1420101, rs17026974, rs1921622), GATA2 (rs4857855), IKZF2 (rs12619285), FCGR2A (rs1801274), FCGR2B (rs3219018, rs1050501), FCGR3A (rs10127939, rs396991), FCER1A (rs2251746, rs2427837), FCER1B (rs1441586, rs573790, rs569108), and ZNF415 (rs1054485) genes were analyzed by real-time polymerase chain reaction (PCR) using Taqman probes. The response was analyzed after 12 months of treatment. In patients under mepolizumab treatment, a treatment response defined as a reduction in exacerbations was associated with ZNF415 rs1054485-T (p = 0.042; OR = 5.33; 95% CI = 1.06-30.02), treatment response defined as a reduction in oral corticosteroids use was associated with the number of exacerbations in the previous year (p = 0.029; OR = 3.89; 95% CI = 1.24-14.92), and treatment response defined as improvement in lung function was associated with the age at the beginning of biological therapy (p = 0.002; OR = 1.10; 95% CI = 1.04-1.18), FCER1B rs569108-AA (p < 0.001; OR = 171.06; 95% CI = 12.94-6264.11), and FCER1A rs2427837-A (p = 0.021; OR = 8.61; 95% CI = 1.71-76.62). On the other hand, in patients under benralizumab treatment, treatment response, defined as a reduction in exacerbations, was associated with ZNF415 rs1054485-T (p = 0.073; OR = 1.3 × 108; 95% CI = 1.8 × 10-19-NA), FCER1B rs569108-AA (p = 0.050; OR = 11.51; 95% CI = 1.19-269.78), allergies (p = 0.045; OR = 4.02; 95% CI = 1.05-16.74), and sex (p = 0.028; OR = 4.78; 95% CI = 1.22-20.63); and treatment response defined as improvement in lung function was associated with polyposis (p = 0.027; OR = 9.16; 95% CI = 1.58-91.4), IKZF2 rs12619285-AA (p = 0.019; OR = 9.1; 95% CI = 1.7-75.78), IL5 rs4143832-T (p = 0.017; OR = 11.1; 95% CI = 1.9-112.17), and FCER1B rs1441586-C (p = 0.045; OR = 7.81; 95% CI = 1.16-73.45). The results of this study show the potential influence of the studied polymorphisms on the response to mepolizumab and benralizumab and the clinical benefit that could be obtained by defining predictive biomarkers of treatment response.
Collapse
Affiliation(s)
- Susana Rojo-Tolosa
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - José Antonio Sánchez-Martínez
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| | - Alberto Caballero-Vázquez
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| | - Laura Elena Pineda-Lancheros
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
- Department of Pharmacy, Faculty of Sciences, National University of Colombia, Bogota Campus, Cra. 30 No. 45-03, Bogotá 11001, Colombia
| | - María Victoria González-Gutiérrez
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| | - Cristina Pérez-Ramírez
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain;
| | - Alberto Jiménez-Morales
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - Concepción Morales-García
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| |
Collapse
|
5
|
Garcia-Solorio J, Núñez-Enriquez JC, Jiménez-Olivares M, Flores-Lujano J, Flores-Espino F, Molina-Garay C, Cervera A, Casique-Aguirre D, Peñaloza-Gonzalez JG, Baños-Lara MDR, García-Soto Á, Galván-Díaz CA, Olaya-Vargas A, Aguilar HF, Mata-Rocha M, Garrido-Hernández MÁ, Solís-Poblano JC, Luna-Silva NC, Cano-Cuapio LS, Aristil-Chery PM, Herrera-Quezada F, Carrillo-Sanchez K, Muñoz-Rivas A, Flores-Lagunes LL, Mendoza-Caamal EC, Villegas-Torres BE, González-Osnaya V, Jiménez-Hernández E, Torres-Nava JR, Martín-Trejo JA, Gutiérrez-Rivera MDL, Espinosa-Elizondo RM, Merino-Pasaye LE, Pérez-Saldívar ML, Jiménez-Morales S, Curiel-Quesada E, Rosas-Vargas H, Mejía-Arangure JM, Alaez-Verson C. IKZF1plus is a frequent biomarker of adverse prognosis in Mexican pediatric patients with B-acute lymphoblastic leukemia. Front Oncol 2024; 14:1337954. [PMID: 38634053 PMCID: PMC11022689 DOI: 10.3389/fonc.2024.1337954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Background Recurrent genetic alterations contributing to leukemogenesis have been identified in pediatric B-cell Acute Lymphoblastic Leukemia (B-ALL), and some are useful for refining classification, prognosis, and treatment selection. IKZF1plus is a complex biomarker associated with a poor prognosis. It is characterized by IKZF1 deletion coexisting with PAX5, CDKN2A/2B, or PAR1 region deletions. The mutational spectrum and clinical impact of these alterations have scarcely been explored in Mexican pediatric patients with B-ALL. Here, we report the frequency of the IKZF1plus profile and the mutational spectrum of IKZF1, PAX5, CDKN2A/2B, and ERG genes and evaluate their impact on overall survival (OS) in a group of patients with B-ALL. Methods A total of 206 pediatric patients with de novo B-ALL were included. DNA was obtained from bone marrow samples at diagnosis before treatment initiation. A custom-designed next-generation sequencing panel was used for mutational analysis. Kaplan-Meier analysis was used for OS estimation. Results We identified the IKZF1plus profile in 21.8% of patients, which was higher than that previously reported in other studies. A significantly older age (p=0.04), a trend toward high-risk stratification (p=0.06), and a decrease in 5-year Overall Survival (OS) (p=0.009) were observed, although heterogeneous treatment protocols in our cohort would have impacted OS. A mutation frequency higher than that reported was found for IKZF1 (35.9%) and CDKN2A/2B (35.9%) but lower for PAX5 (26.6%). IKZF1MUT group was older at diagnosis (p=0.0002), and most of them were classified as high-risk (73.8%, p=0.02), while patients with CDKN2A/2BMUT had a higher leukocyte count (p=0.01) and a tendency toward a higher percentage of blasts (98.6%, >50% blasts, p=0.05) than the non-mutated patients. A decrease in OS was found in IKZF1MUT and CDKN2A/2BMUT patients, but the significance was lost after IKZF1plus was removed. Discussion Our findings demonstrated that Mexican patients with B-ALL have a higher prevalence of genetic markers associated with poor outcomes. Incorporating genomic methodologies into the diagnostic process, a significant unmet need in low- and mid-income countries, will allow a comprehensive identification of relevant alterations, improving disease classification, treatment selection, and the general outcome.
Collapse
Affiliation(s)
- Joaquin Garcia-Solorio
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Juan Carlos Núñez-Enriquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Medica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Marco Jiménez-Olivares
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Medica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Fernanda Flores-Espino
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Carolina Molina-Garay
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Alejandra Cervera
- Subdirección de Genómica Poblacional, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City, Mexico
| | - Diana Casique-Aguirre
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Delegación Puebla, Puebla, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City, Mexico
| | | | - Ma. Del Rocío Baños-Lara
- Centro de Investigación Oncológica Una Nueva Esperanza, Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Ángel García-Soto
- Hospital General Centro Médico La Raza, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Alberto Olaya-Vargas
- Departamento de Oncologia, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Hilario Flores Aguilar
- Departamento de Inmunogenetica, Instituto de Diagnostico y Referencia Epidemiologicos (InDRE), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, CMN Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Juan Carlos Solís-Poblano
- Servicio de Oncohematología Pediátrica, Instituto Mexicano del Seguro (IMSS) Unidad Médica de Alta Especialidad (UMAE) Centro Médico Nacional (CMN) Hospital de Especialidades Dr. Manuel Ávila Camacho, Puebla, Mexico
| | - Nuria Citlalli Luna-Silva
- Servicio de Hemato-Oncología Pediátrica, Hospital de la Niñez Oaxaqueña "Dr. Guillermo Zárate Mijangos", Secretaria de Salud y Servicios de Salud Oaxaca (SSO), Oaxaca, Mexico
| | | | - Pierre Mitchel Aristil-Chery
- Instituto de Seguridad y Servicios Sociales de los Trabajadores al Servicio de los Poderes del Estado (ISSSTE) de Puebla, Departamento de Enseñanza e Investigació, Puebla, Mexico
| | - Fernando Herrera-Quezada
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Medica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Karol Carrillo-Sanchez
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Anallely Muñoz-Rivas
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | | | | | | | - Vincent González-Osnaya
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Oncología, Hospital Pediátrico Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Mexico City, Mexico
| | - María de Lourdes Gutiérrez-Rivera
- Servicio de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Mexico City, Mexico
| | | | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - María Luisa Pérez-Saldívar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Medica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Medicina de Precisión, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Everardo Curiel-Quesada
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional (IPN), Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, CMN Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Juan Manuel Mejía-Arangure
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Carmen Alaez-Verson
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
6
|
Rodrigues de Oliveira B, Iansavitchous J, Rysan H, Wang WC, Sams MP, Knight D, Xu LS, Jeong J, Qu TP, Zorzi AP, DeKoter RP. IKZF3/Aiolos H195Y mutation identified in a mouse model of B cell leukemia results in altered DNA binding and altered STAT5-dependent gene expression. Gene 2024; 900:148131. [PMID: 38216003 DOI: 10.1016/j.gene.2024.148131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Precursor B cell acute lymphoblastic leukemia (Pre-B-ALL) arises from developing B cells and frequently involves mutations in genes encoding transcription factors. In this study, we investigated the function of mutations in the transcription factor IKZF3 (Aiolos), R137* and H195Y, discovered in a mouse model of pre-B-ALL. R137* IKZF3 mutation resulted in a truncated protein, while electrophoretic mobility shift assay showed that H195Y IKZF3 mutation resulted in a protein with altered DNA binding. 38B9 pre-B cell lines were generated expressing WT and H195Y IKZF3 proteins. Anti-IKZF3 ChIP-seq showed that H195Y IKZF3 interacted with a larger number of sites that were different than WT IKZF3. Treatment with interleukin-7 induced changes in gene expression in 38B9 cells expressing WT IKZF3, but did not induce any changes in gene expression in cells expressing H195Y IKZF3. Anti-STAT5 ChIP-seq showed that expression of H195Y IKZF3 resulted in redistribution of STAT5 binding sites in the genome. H195Y IKZF3 binding sites overlapped with a subset of STAT5 binding sites, including in the promoter of the Cish gene. These findings suggest that H195Y mutation of IKZF3 results in altered DNA binding specificity and altered binding of STAT5 to target genes.
Collapse
Affiliation(s)
- Bruno Rodrigues de Oliveira
- Department of Microbiology & Immunology and the Center for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - James Iansavitchous
- Department of Microbiology & Immunology and the Center for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Heidi Rysan
- Department of Microbiology & Immunology and the Center for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Wei Cen Wang
- Department of Microbiology & Immunology and the Center for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Mia P Sams
- Department of Microbiology & Immunology and the Center for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Devon Knight
- Department of Microbiology & Immunology and the Center for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Li S Xu
- Department of Microbiology & Immunology and the Center for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Jeewoo Jeong
- Department of Microbiology & Immunology and the Center for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Thomas P Qu
- Department of Microbiology & Immunology and the Center for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Alexandra P Zorzi
- Department of Paediatrics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Rodney P DeKoter
- Department of Microbiology & Immunology and the Center for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada.
| |
Collapse
|
7
|
Vittori C, Faia C, Wyczechowska D, Trauth A, Plaisance-Bonstaff K, Meyaski-Schluter M, Reiss K, Peruzzi F. IKAROS expression drives the aberrant metabolic phenotype of macrophages in chronic HIV infection. Clin Immunol 2024; 260:109915. [PMID: 38286172 PMCID: PMC10922842 DOI: 10.1016/j.clim.2024.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
The increased risk for acquiring secondary illnesses in people living with HIV (PLWH) has been associated with immune dysfunction. We have previously found that circulating monocytes from PLWH display a trained phenotype. Here, we evaluated the metabolic profile of these cells and found increased mitochondrial respiration and glycolysis of monocyte-derived macrophages (MDMs) from PLWH. We additionally found that cART shifted the energy metabolism of MDMs from controls toward increased utilization of mitochondrial respiration. Importantly, both downregulation of IKAROS expression and inhibition of the mTOR pathway reversed the metabolic profile of MDMs from PLWH and cART-treated control-MDMs. Altogether, this study reveals a very specific metabolic adaptation of MDMs from PLWH, which involves an IKAROS/mTOR-dependent increase of mitochondrial respiration and glycolysis. We propose that this metabolic adaptation decreases the ability of these cells to respond to environmental cues by "locking" PLWH monocytes in a pro-inflammatory and activated phenotype.
Collapse
Affiliation(s)
- Cecilia Vittori
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Celeste Faia
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Dorota Wyczechowska
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Amber Trauth
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Karlie Plaisance-Bonstaff
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Mary Meyaski-Schluter
- Clinical and Translational Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Krzysztof Reiss
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Francesca Peruzzi
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA; Louisiana State University Health Sciences Center, Department of Medicine, Louisiana Cancer Research Center; New Orleans, LA 70112, USA.
| |
Collapse
|
8
|
Barakat S, Ezen E, Devecioğlu İ, Gezen M, Piepoli S, Erman B. Dimerization choice and alternative functions of ZBTB transcription factors. FEBS J 2024; 291:237-255. [PMID: 37450366 DOI: 10.1111/febs.16905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Zinc Finger DNA-binding domain-containing proteins are the most populous family among eukaryotic transcription factors. Among these, members of the BTB domain-containing ZBTB sub-family are mostly known for their transcriptional repressive functions. In this Viewpoint article, we explore molecular mechanisms that potentially diversify the function of ZBTB proteins based on their homo and heterodimerization, alternative splicing and post-translational modifications. We describe how the BTB domain is as much a scaffold for the assembly of co-repressors, as a domain that regulates protein stability. We highlight another mechanism that regulates ZBTB protein stability: phosphorylation in the zinc finger domain. We explore the non-transcriptional, structural roles of ZBTB proteins and highlight novel findings that describe the ability of ZBTB proteins to associate with poly adenosine ribose in the nucleus during the DNA damage response. Herein, we discuss the contribution of BTB domain scaffolds to the formation of transcriptional repressive complexes, to chromosome compartmentalization and their non-transcriptional, purely structural functions in the nucleus.
Collapse
Affiliation(s)
- Sarah Barakat
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Ege Ezen
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - İzem Devecioğlu
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Melike Gezen
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
9
|
Affar M, Bottardi S, Quansah N, Lemarié M, Ramón AC, Affar EB, Milot E. IKAROS: from chromatin organization to transcriptional elongation control. Cell Death Differ 2023:10.1038/s41418-023-01212-2. [PMID: 37620540 DOI: 10.1038/s41418-023-01212-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
IKAROS is a master regulator of cell fate determination in lymphoid and other hematopoietic cells. This transcription factor orchestrates the association of epigenetic regulators with chromatin, ensuring the expression pattern of target genes in a developmental and lineage-specific manner. Disruption of IKAROS function has been associated with the development of acute lymphocytic leukemia, lymphoma, chronic myeloid leukemia and immune disorders. Paradoxically, while IKAROS has been shown to be a tumor suppressor, it has also been identified as a key therapeutic target in the treatment of various forms of hematological malignancies, including multiple myeloma. Indeed, targeted proteolysis of IKAROS is associated with decreased proliferation and increased death of malignant cells. Although the molecular mechanisms have not been elucidated, the expression levels of IKAROS are variable during hematopoiesis and could therefore be a key determinant in explaining how its absence can have seemingly opposite effects. Mechanistically, IKAROS collaborates with a variety of proteins and complexes controlling chromatin organization at gene regulatory regions, including the Nucleosome Remodeling and Deacetylase complex, and may facilitate transcriptional repression or activation of specific genes. Several transcriptional regulatory functions of IKAROS have been proposed. An emerging mechanism of action involves the ability of IKAROS to promote gene repression or activation through its interaction with the RNA polymerase II machinery, which influences pausing and productive transcription at specific genes. This control appears to be influenced by IKAROS expression levels and isoform production. In here, we summarize the current state of knowledge about the biological roles and mechanisms by which IKAROS regulates gene expression. We highlight the dynamic regulation of this factor by post-translational modifications. Finally, potential avenues to explain how IKAROS destruction may be favorable in the treatment of certain hematological malignancies are also explored.
Collapse
Affiliation(s)
- Malik Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Maud Lemarié
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Ailyn C Ramón
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - El Bachir Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| | - Eric Milot
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| |
Collapse
|
10
|
Afzal S, Ramzan K, Ullah S, Jamal A, Basit S, AlKattan KM, Waqar AB. Association between 17q21 variants and asthma predisposition in Pashtun population from Pakistan. J Asthma 2023; 60:63-75. [PMID: 34982638 DOI: 10.1080/02770903.2021.2025391] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Asthma is a heterogeneous and genetically complex respiratory disease, and more than 300 million people are affected worldwide. In this study, frequencies of four SNPs (rs3816470, rs7216389, rs8067378, rs12603332) in chromosome 17q21 region were analyzed and their relationship with the asthma susceptibility, in the Pashtun population of Khyber Pakhtunkhwa province (KPK) of Pakistan were investigated. METHODS DNA samples from 500 subjects (asthma cases/controls) were genotyped by Sanger sequencing. Chi-square tests, logistic regression analysis, linkage disequilibrium, and haplotype analysis techniques were applied to study the association of the SNPs with asthma. RESULTS Genetic models, including recessive, dominant, co-dominant, over-dominant, and additive, were tested. The frequencies of alleles T/T at rs3816470 (OR = 1.91; 95%CI = 1.15-3.18; p = .011*) and rs7216389 (OR = 2.14; 95%CI = 1.21-3.79; p = .0076*), A/A at rs 8067378 (OR = 1.89; 95%CI = 1.17-3.06; p = .0081*), C/C at rs12603332 (OR = 1.97; 95%CI = 1.18-3.27; p = .008*), under recessive models, respectively, were significantly (p-values < .0125) associated with asthma susceptibility. The frequencies of T/T genotype in rs3816470 (OR = 6.01; 95%CI = 2.48-14.60; p = .000147*), and rs7216389 (OR = 5.05; 95%CI = 1.79-14.21; p = .003296*), and C/C at rs12603332 (OR = 2.64; 95%CI = 1.11-6.32; p = .019063*), were significantly (p-values < .0125) associated with asthma susceptibility in Pashtun women by stratified analysis based on age and gender. Similarly, three unique haplotypes were found associated with disease development and protective effect in female and male subjects. Linkage disequilibrium analysis presented a strong linkage (≥80%) between SNP variants and predicted their co-inheritance in the studied population. CONCLUSION The 17q21 variants (rs3816470, rs7216389, rs12603332) were found significantly (p-values < .0125) associated with asthma predisposition in the Pashtun population of KPK exclusively in the female asthmatic cases. Supplemental data for this article can be accessed.
Collapse
Affiliation(s)
- Sibtain Afzal
- Department of Medical Laboratory Sciences, Faculty of Allied & Health Sciences, Imperial College of Business Studies, Lahore, Pakistan.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Sajjad Ullah
- Department of Medical Laboratory Sciences, Faculty of Allied & Health Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Arshad Jamal
- Department of Medical Laboratory Sciences, Faculty of Allied & Health Sciences, Imperial College of Business Studies, Lahore, Pakistan.,Biology Department, College of Science, University of Hail, Kingdom of Saudi Arabia
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Madinah Al-Munawarah, Saudi Arabia
| | | | - Ahmed Bilal Waqar
- Department of Medical Laboratory Sciences, Faculty of Allied & Health Sciences, Imperial College of Business Studies, Lahore, Pakistan.,University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| |
Collapse
|
11
|
Wang Z, Waldman MF, Basavanhally TJ, Jacobs AR, Lopez G, Perichon RY, Ma JJ, Mackenzie EM, Healy JB, Wang Y, Hersey SA. Autoimmune gene expression profiling of fingerstick whole blood in Chronic Fatigue Syndrome. J Transl Med 2022; 20:486. [PMID: 36284352 PMCID: PMC9592873 DOI: 10.1186/s12967-022-03682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/01/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating condition that can lead to severe impairment of physical, psychological, cognitive, social, and occupational functions. The cause of ME/CFS remains incompletely understood. There is no clinical diagnostic test for ME/CFS. Although many therapies have been used off-label to manage symptoms of ME/CFS, there are limited, if any, specific therapies or cure for ME/CFS. In this study, we investigated the expression of genes specific to key immune functions, and viral infection status in ME/CFS patients with an aim of identifying biomarkers for characterization and/or treatment of the disease. METHODS In 2021, one-hundred and sixty-six (166) patients diagnosed with ME/CFS and 83 healthy controls in the US participated in this study via a social media-based application (app). The patients and heathy volunteers consented to the study and provided self-collected finger-stick blood and first morning void urine samples from home. RNA from the fingerstick blood was tested using DxTerity's 51-gene autoimmune RNA expression panel (AIP). In addition, DNA from the same fingerstick blood sample was extracted to detect viral load of 4 known ME/CFS associated viruses (HHV6, HHV7, CMV and EBV) using a real-time PCR method. RESULTS Among the 166 ME/CFS participants in the study, approximately half (49%) of the ME/CFS patients reported being house-bound or bedridden due to severe symptoms of the disease. From the AIP testing, ME/CFS patients with severe, bedridden conditions displayed significant increases in gene expression of IKZF2, IKZF3, HSPA8, BACH2, ABCE1 and CD3D, as compared to patients with mild to moderate disease conditions. These six aforementioned genes were further upregulated in the 22 bedridden participants who suffer not only from ME/CFS but also from other autoimmune diseases. These genes are involved in T cell, B cell and autoimmunity functions. Furthermore, IKZF3 (Aiolos) and IKZF2 (Helios), and BACH2 have been implicated in other autoimmune diseases such as systemic lupus erythematosus (SLE) and Rheumatoid Arthritis (RA). Among the 240 participants tested with the viral assays, 9 samples showed positive results (including 1 EBV positive and 8 HHV6 positives). CONCLUSIONS Our study indicates that gene expression biomarkers may be used in identifying or differentiating subsets of ME/CFS patients having different levels of disease severity. These gene targets may also represent opportunities for new therapeutic modalities for the treatment of ME/CFS. The use of social media engaged patient recruitment and at-home sample collection represents a novel approach for conducting clinical research which saves cost, time and eliminates travel for office visits.
Collapse
Affiliation(s)
- Zheng Wang
- Bristol Myers Squibb, Princeton, NJ 08540 USA
| | | | | | | | | | | | | | | | | | - Yixin Wang
- Bristol Myers Squibb, Princeton, NJ 08540 USA
| | | |
Collapse
|
12
|
Yang LK, Lin CX, Li SH, Liang JJ, Xiao LL, Xie GH, Liu HW, Liao X. Novel IKZF3 transcriptomic signature correlates with positive outcomes of skin cutaneous melanoma: A pan-cancer analysis. Front Genet 2022; 13:1036402. [PMID: 36353107 PMCID: PMC9638148 DOI: 10.3389/fgene.2022.1036402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
To investigate the potential relationship between Ikaros family genes and skin cutaneous melanoma (SKCM), we undertook a pan-cancer analysis of the transcriptional signature and clinical data of melanoma through multiple databases. First, 10,327 transcriptomic samples from different cancers were included to determine the overall characteristics and clinical prognoses associated with Ikaros gene expression across cancer types. Second, differentially expressed genes analysis, prognostic evaluation, and gene set enrichment analysis were employed to investigate the role of Ikaros (IKZF) genes in SKCM. Third, we evaluated the relationship between Ikaros family genes and SKCM immune infiltrates and verified the findings using the GEO single-cell sequencing dataset. The results show that Ikaros genes were widely expressed among different cancer types with independently similar patterns as follows: 1. IKZF1 and IKZF3, and 2. IKZF2 and IKZF4–5. IKZF2 and IKZF5 were downregulated in the primary tumor, and IKZF1–3 expression decreased significantly as the T-stage or metastasis increased in SKCM. Moreover, high IKZF1–3 expression was associated with better overall survival, disease-specific survival, and progression-free interval. IKZF3 is an independent prognostic factor of SKCM. Among Ikaros genes, the expression of IKZF1 and IKZF3 positively correlated with the infiltration level of CD4+ T cells and CD8+ T cells, B cells, and Tregs in SKCM and negatively correlated with the infiltration level of M0 and M1 macrophages. Moreover, single-cell sequencing data analysis revealed that IKZF1 and IKZF3 were mainly expressed by immune cells. Correlation analysis shows the immune factors and drug responses associated with IKZF3 expression. In conclusion, the present study is the first, to our knowledge, to identify a pan-cancer genomic signature of the Ikaros gene family among different cancers. Expression of these family members, particularly high levels of IKZF3, indicate positive immunological status and beneficial clinical outcomes of SKCM. IKZF3 may therefore serve as potential targets for immunotherapy of melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xuan Liao
- *Correspondence: Hong-Wei Liu, ; Xuan Liao,
| |
Collapse
|
13
|
Sattarzadeh Bardsiri M, Zehtab S, Karami N, Farsinejad A, Ehsan M, Fatemi A. Association of IKZF1 and CDKN2A gene polymorphisms with childhood acute lymphoblastic leukemia: a high-resolution melting analysis. BMC Med Genomics 2022; 15:171. [PMID: 35932035 PMCID: PMC9354342 DOI: 10.1186/s12920-022-01325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Acute lymphoblastic leukemia is the most prevailing pediatric hematologic malignancy, and various factors such as environmental exposures and genetic variation affect ALL susceptibility and patients outcome. According to genome-wide association studies, several single nucleotide polymorphisms (SNPs) in IKZF1 (rs4132601) and CDKN2A (rs3731249 and rs3731217) genes are associated with ALL susceptibility. Hereupon, this study aimed to discover the association between these SNPs and the risk of childhood ALL among a sample of the Iranian population.
Methods A total of fifty children with ALL were included in this case–control study, along with an additional fifty healthy children, matched for age and gender. High-resolution melting (HRM) analysis was employed to genotyping rs4132601, rs3731249, and rs3731217.
Results In the patient group, the CT genotype and T allele frequency of rs3731249 were significantly greater than controls (p = 0.01 and p = 0.005, respectively). Moreover, the positive association of CT and dominant model (CT + TT) genotypes and T allele at rs3731249 with the risk of ALL was confirmed (OR = 9.56, OR = 10.76 and OR = 11.00, respectively). There was no significant relation between rs4132601 (IKZF1), rs3731217 (CDKN2A), and childhood ALL. Conclusion The present study indicates that CT genotype and T allele at rs3731249 (CDKN2A) can significantly increase the risk of ALL among children.
Collapse
Affiliation(s)
- Mahla Sattarzadeh Bardsiri
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahrzad Zehtab
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Najibe Karami
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinejad
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Ehsan
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Fatemi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran. .,Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
| |
Collapse
|
14
|
Zhang J, Xu XJ, Liu L, Song H, Shen H, Xu W, Zhao F, Liang J, Liao C, Wang Y, Xia T, Cao S, Tang Y, Qin J, Shen D. Clinical and Genetic Characteristics of IKZF1 Mutation in Chinese Children With B-Cell Acute Lymphoblastic Leukemia. Front Genet 2022; 13:822832. [PMID: 35419036 PMCID: PMC9000999 DOI: 10.3389/fgene.2022.822832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignancy associated with altered lymphoid precursor hyperplasia and accompanied with different genetic mutations. Few studies have been reported on the association between gene mutations and clinical features of IKZF1 mutation in children with B-cell ALL (B-ALL). We investigated clinical and genetic characteristics in 200 newly diagnosed pediatric B-ALL through multiplex ligation-dependent probe amplification (MLPA) and targeted next-generation sequencing (NGS) method. We found that IKZF1 mutations, including large segment deletions, small insertions or deletions (InDels) and single nucleotide variations (SNVs), were detected in 22 patients with a positive mutation rate of 11.0%. IKZF1 mutation was significantly associated with higher WBC count (19.38 × 109/L vs. 5.80 × 109/L, p = 0.002). Compared with IKZF1 wild-type cases, a higher frequency of IL7R gene mutation was discovered in IKZF1 mutant cases (9.1% vs. 0.0%, p = 0.012). Patients with IKZF1 mutation were less sensitive to glucocorticoid induction than patients without IKZF1 mutation (63.6% vs. 9.0%, p < 0.001). On the 15th day of induction, minimal residual disease (MRD) > 10−3 level were higher in IKZF1 mutant patients than wild-type patients (45.5% vs. 22.3%, p = 0.018). In conclusion, our study reveals the association between genetic mutations and clinical features in Chinese children with B-ALL, which might contribute to molecular classification, risk stratification and prognosis evaluation, and provide new ideas for targeted therapy in ALL.
Collapse
Affiliation(s)
- Jingying Zhang
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiao-Jun Xu
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Lixia Liu
- Acornmed Biotechnology Co., Ltd., Tianjin, China
| | - Hua Song
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Heping Shen
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Weiqun Xu
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Fenying Zhao
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Juan Liang
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Chan Liao
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Wang
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Tian Xia
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd., Tianjin, China
| | - Yongmin Tang
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiayue Qin
- Acornmed Biotechnology Co., Ltd., Tianjin, China
| | - Diying Shen
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
15
|
Zhang M, Qi T, Yang L, Kolarich D, Heisterkamp N. Multi-Faceted Effects of ST6Gal1 Expression on Precursor B-Lineage Acute Lymphoblastic Leukemia. Front Oncol 2022; 12:828041. [PMID: 35371997 PMCID: PMC8967368 DOI: 10.3389/fonc.2022.828041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
Normal early human B-cell development from lymphoid progenitors in the bone marrow depends on instructions from elements in that microenvironment that include stromal cells and factors secreted by these cells including the extracellular matrix. Glycosylation is thought to play a key role in such interactions. The sialyltransferase ST6Gal1, with high expression in specific hematopoietic cell types, is the only enzyme thought to catalyze the terminal addition of sialic acids in an α2-6-linkage to galactose on N-glycans in such cells. Expression of ST6Gal1 increases as B cells undergo normal B-lineage differentiation. B-cell precursor acute lymphoblastic leukemias (BCP-ALLs) with differentiation arrest at various stages of early B-cell development have widely different expression levels of ST6GAL1 at diagnosis, with high ST6Gal1 in some but not in other relapses. We analyzed the consequences of increasing ST6Gal1 expression in a diagnosis sample using lentiviral transduction. NSG mice transplanted with these BCP-ALL cells were monitored for survival. Compared to mice transplanted with leukemia cells expressing original ST6Gal1 levels, increased ST6Gal1 expression was associated with significantly reduced survival. A cohort of mice was also treated for 7 weeks with vincristine chemotherapy to induce remission and then allowed to relapse. Upon vincristine discontinuation, relapse was detected in both groups, but mice transplanted with ST6Gal1 overexpressing BCP-ALL cells had an increased leukemia burden and shorter survival than controls. The BCP-ALL cells with higher ST6Gal1 were more resistant to long-term vincristine treatment in an ex vivo tissue co-culture model with OP9 bone marrow stromal cells. Gene expression analysis using RNA-seq showed a surprisingly large number of genes with significantly differential expression, of which approximately 60% increased mRNAs, in the ST6Gal1 overexpressing BCP-ALL cells. Pathways significantly downregulated included those involved in immune cell migration. However, ST6Gal1 knockdown cells also showed increased insensitivity to chemotherapy. Our combined results point to a context-dependent effect of ST6Gal1 expression on BCP-ALL cells, which is discussed within the framework of its activity as an enzyme with many N-linked glycoprotein substrates.
Collapse
Affiliation(s)
- Mingfeng Zhang
- Department of Systems Biology, Beckman Research Institute City of Hope, Duarte, CA, United States
| | - Tong Qi
- Department of Systems Biology, Beckman Research Institute City of Hope, Duarte, CA, United States
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute City of Hope, Duarte, CA, United States
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.,Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics, Griffith University, Gold Coast, QLD, Australia
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Duarte, CA, United States
| |
Collapse
|
16
|
Dai M, Radhakrishnan S, Li R, Tan R, Yan K, Fan G, Liu M. Targeted Protein Degradation: An Important Tool for Drug Discovery for "Undruggable" Tumor Transcription Factors. Technol Cancer Res Treat 2022; 21:15330338221095950. [PMID: 35466792 PMCID: PMC9047787 DOI: 10.1177/15330338221095950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Conventional small-molecule drugs (SMDs) are compounds characterized by low
molecular weight, high cell permeability, and high selectivity. In clinical
translation, SMDs are regarded as good candidates for oral drug formulation. SMD
inhibitors play an important role in cancer treatment; however, resistance and
low effectiveness have been major bottlenecks in clinical application.
Generally, only 20% of cell proteins can potentially be targeted and have been
developed as SMDs; thus, some types of tumor targets are considered
“undruggable.” Among these are transcription factors (TFs), an important class
of proteins that regulate the occurrence, formation, and development of tumors.
It is difficult for SMDs and macromolecular drugs to identify bioactive sites in
TFs and hence for use as pharmacological inhibitors in targeting TF proteins.
For this reason, technologies that enable targeted protein degradation, such as
proteolysis-targeting chimera or molecular glues, could serve as a potential
tool to solve these conundrums.
Collapse
Affiliation(s)
- Mengyuan Dai
- Department of Gynecological Oncology, 89674Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sridhar Radhakrishnan
- Cancer Science Institute of Singapore, 37580National University of Singapore, Singapore, Singapore
| | - Rui Li
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, 598782Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Kuo Yan
- Institute of Cell and Neurobiology, Charité Medical University, Berlin, Germany
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,477382The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Miao Liu
- Department of Pathology, 1861Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Sitapara R, Lam TT, Gandjeva A, Tuder RM, Zisman LS. Phosphoproteomic analysis of lung tissue from patients with pulmonary arterial hypertension. Pulm Circ 2021; 11:20458940211031109. [PMID: 34966541 PMCID: PMC8711668 DOI: 10.1177/20458940211031109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 06/18/2021] [Indexed: 11/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disorder associated with high
morbidity and mortality despite currently available treatments. We compared the
phosphoproteome of lung tissue from subjects with idiopathic PAH (iPAH) obtained
at the time of lung transplant with control lung tissue. The mass
spectrometry-based analysis found 60,428 phosphopeptide features from which 6622
proteins were identified. Within the subset of identified proteins there were
1234 phosphopeptides with q < 0.05, many of which are
involved in immune regulation, angiogenesis, and cell proliferation. Most
notably there was a marked relative increase in phosphorylated (S378) IKZF3
(Aiolos), a zinc finger transcription factor that plays a key role in lymphocyte
regulation. In vitro phosphorylation assays indicated that GSK3 alpha and/or
GSK3 beta could phosphorylate IKZF3 at S378. Western blot analysis demonstrated
increased pIKZF3 in iPAH lungs compared to controls. Immunohistochemistry
demonstrated phosphorylated IKZF3 in lymphocytes surrounding severely
hypertrophied pulmonary arterioles. In situ hybrization showed gene expression
in lymphocyte aggregates in PAH samples. A BCL2 reporter assay showed that IKZF3
increased BCL2 promoter activity and demonstrated the potential role of
phosphorylation of IKZF3 in the regulation of BCL mediated transcription. Kinase
network analysis demonstrated potentially important regulatory roles of casein
kinase 2, cyclin-dependent kinase 1 (CDK1), mitogen-associated protein kinases
(MAPKs), and protein kinases (PRKs) in iPAH. Bioinformatic analysis demonstrated
enrichment of RhoGTPase signaling and the potential importance of cGMP-dependent
protein kinase 1 (PRKG). In conclusion, this unbiased phosphoproteomic analysis
demonstrated several novel targets regulated by kinase networks in iPAH, and
reinforced the potential role of immune regulation in the pathogenesis of iPAH.
The identified up- and down-regulated phosphoproteins have potential to serve as
biomarkers for PAH and to provide new insights for therapeutic strategies.
Collapse
Affiliation(s)
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, Yale University, New Haven, CT, USA.,MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA
| | - Aneta Gandjeva
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lawrence S Zisman
- Rensselaer Center for Translational Research Inc., Troy, NY, USA.,Pulmokine Inc., Troy, NY, USA
| |
Collapse
|
18
|
Hetemäki I, Kaustio M, Kinnunen M, Heikkilä N, Keskitalo S, Nowlan K, Miettinen S, Sarkkinen J, Glumoff V, Andersson N, Kettunen K, Vanhanen R, Nurmi K, Eklund KK, Dunkel J, Mäyränpää MI, Schlums H, Arstila TP, Kisand K, Bryceson YT, Peterson P, Otava U, Syrjänen J, Saarela J, Varjosalo M, Kekäläinen E. Loss-of-function mutation in IKZF2 leads to immunodeficiency with dysregulated germinal center reactions and reduction of MAIT cells. Sci Immunol 2021; 6:eabe3454. [PMID: 34826260 DOI: 10.1126/sciimmunol.abe3454] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Iivo Hetemäki
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Meri Kaustio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Matias Kinnunen
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Nelli Heikkilä
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kirsten Nowlan
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Simo Miettinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joona Sarkkinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Virpi Glumoff
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Noora Andersson
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kaisa Kettunen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Clinical Genetics and HUSLAB Laboratory of Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Reetta Vanhanen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katariina Nurmi
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari K Eklund
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Orton Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland
| | - Johannes Dunkel
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heinrich Schlums
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - T Petteri Arstila
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ulla Otava
- Infectious Disease Unit, Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Jaana Syrjänen
- Infectious Disease Unit, Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Clinical Genetics and HUSLAB Laboratory of Genetics, Helsinki University Hospital, Helsinki, Finland.,Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
19
|
Ai X, Song Z, Jian H, Zhou Z, Chen Z, Yu Y, Li Z, Lu S. Pyrotinib combined with thalidomide in advanced non-small-cell lung cancer patients harboring HER2 exon 20 insertions (PRIDE): protocol of an open-label, single-arm phase II trial. BMC Cancer 2021; 21:1033. [PMID: 34530760 PMCID: PMC8444597 DOI: 10.1186/s12885-021-08759-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Standard therapy for human epidermal growth factor receptor 2 (HER2)-mutant non-small-cell lung cancer (NSCLC) is lacking. The clinical benefits with pan-HER inhibitors (afatinib, neratinib, and dacomitinib), anti-HER2 antibody drug conjugate (ADC) trastuzumab emtansine, and an emerging irreversible tyrosine kinase inhibitor (TKI) poziotinib were modest. Another new ADC trastuzumab deruxtecan showed encouraging outcomes, but only phase I study was completed. Pyrotinib, another emerging irreversible epidermal growth factor receptor (EGFR)/HER2 dual TKI, has been approved in HER2-positive breast cancer in 2018 in China. It has shown promising antitumor activity against HER2-mutant NSCLC in phase II trials, but pyrotinib-related diarrhea remains an issue. The antiangiogenic and immunomodulatory drug thalidomide is a cereblon-based molecular glue that can induce the degradation of the IKAROS family transcription factors IKZF1 and IKZF3. The use of thalidomide can also decrease gastrointestinal toxicity induced by anti-cancer therapy. METHODS This is an open-label, single-arm phase II trial. A total of 39 advanced NSCLC patients with HER2 exon 20 insertions and ≤ 2 lines of prior chemotherapy will be recruited, including treatment-naïve patients who refuse chemotherapy. Patients are allowed to have prior therapy with immune checkpoint inhibitors and/or antiangiogenic agents. Those who have prior HER2-targeting therapy or other gene alterations with available targeted drugs are excluded. Eligible patients will receive oral pyrotinib 400 mg once daily and oral thalidomide 200 mg once daily until disease progression or intolerable toxicity. The primary endpoint is objective response rate. DISCUSSION The addition of thalidomide to pyrotinib is expected to increase the clinical benefit in advanced NSCLC patients with HER2 exon 20 insertions, and reduce the incidence of pyrotinib-related diarrhea. We believe thalidomide is the stone that can hit two birds. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04382300 . Registered on May 11, 2020.
Collapse
Affiliation(s)
- Xinghao Ai
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 West Huaihai Road, Shanghai, 200030, China
| | - Zhengbo Song
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No.1 East Banshan Road, Hangzhou, 310022, Zhejiang, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No.150 Fucheng Road, Hangzhou, 310000, Zhejiang, China
| | - Hong Jian
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 West Huaihai Road, Shanghai, 200030, China
| | - Zhen Zhou
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 West Huaihai Road, Shanghai, 200030, China
| | - Zhiwei Chen
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 West Huaihai Road, Shanghai, 200030, China
| | - Yongfeng Yu
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 West Huaihai Road, Shanghai, 200030, China
| | - Ziming Li
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 West Huaihai Road, Shanghai, 200030, China
| | - Shun Lu
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 West Huaihai Road, Shanghai, 200030, China.
| |
Collapse
|
20
|
Abbiati RA, Pourdehnad M, Carrancio S, Pierce DW, Kasibhatla S, McConnell M, Trotter MWB, Loos R, Santini CC, Ratushny AV. Quantitative Systems Pharmacology Modeling of Avadomide-Induced Neutropenia Enables Virtual Clinical Dose and Schedule Finding Studies. AAPS J 2021; 23:103. [PMID: 34453265 PMCID: PMC8397660 DOI: 10.1208/s12248-021-00623-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023] Open
Abstract
Avadomide is a cereblon E3 ligase modulator and a potent antitumor and immunomodulatory agent. Avadomide trials are challenged by neutropenia as a major adverse event and a dose-limiting toxicity. Intermittent dosing schedules supported by preclinical data provide a strategy to reduce frequency and severity of neutropenia; however, the identification of optimal dosing schedules remains a clinical challenge. Quantitative systems pharmacology (QSP) modeling offers opportunities for virtual screening of efficacy and toxicity levels produced by alternative dose and schedule regimens, thereby supporting decision-making in translational drug development. We formulated a QSP model to capture the mechanism of avadomide-induced neutropenia, which involves cereblon-mediated degradation of transcription factor Ikaros, resulting in a maturation block of the neutrophil lineage. The neutropenia model was integrated with avadomide-specific pharmacokinetic and pharmacodynamic models to capture dose-dependent effects. Additionally, we generated a disease-specific virtual patient population to represent the variability in patient characteristics and response to treatment observed for a diffuse large B-cell lymphoma trial cohort. Model utility was demonstrated by simulating the avadomide effect in the virtual population for various dosing schedules and determining the incidence of high-grade neutropenia, its duration, and the probability of recovery to low-grade neutropenia.
Collapse
Affiliation(s)
- Roberto A Abbiati
- Bristol Myers Squibb, Center for Innovation and Translational Research Europe (CITRE), Seville, Spain.
| | | | | | | | | | | | - Matthew W B Trotter
- Bristol Myers Squibb, Center for Innovation and Translational Research Europe (CITRE), Seville, Spain
| | - Remco Loos
- Bristol Myers Squibb, Center for Innovation and Translational Research Europe (CITRE), Seville, Spain
| | - Cristina C Santini
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | |
Collapse
|
21
|
T-ALL can evolve to oncogene independence. Leukemia 2021; 35:2205-2219. [PMID: 33483615 DOI: 10.1038/s41375-021-01120-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/09/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023]
Abstract
The majority of cases of T-cell acute lymphoblastic leukemia (T-ALL) contain chromosomal abnormalities that drive overexpression of oncogenic transcription factors. However, whether these initiating oncogenes are required for leukemia maintenance is poorly understood. To address this, we developed a tetracycline-regulated mouse model of T-ALL driven by the oncogenic transcription factor Lmo2. This revealed that whilst thymus-resident pre-Leukemic Stem Cells (pre-LSCs) required continuous Lmo2 expression, the majority of leukemias relapsed despite Lmo2 withdrawal. Relapse was associated with a mature phenotype and frequent mutation or loss of tumor suppressor genes including Ikzf1 (Ikaros), with targeted deletion Ikzf1 being sufficient to transform Lmo2-dependent leukemias to Lmo2-independence. Moreover, we found that the related transcription factor TAL1 was dispensable in several human T-ALL cell lines that contain SIL-TAL1 chromosomal deletions driving its overexpression, indicating that evolution to oncogene independence can also occur in human T-ALL. Together these results indicate an evolution of oncogene addiction in murine and human T-ALL and show that loss of Ikaros is a mechanism that can promote self-renewal of T-ALL lymphoblasts in the absence of an initiating oncogenic transcription factor.
Collapse
|
22
|
Barghout SH. Targeted Protein Degradation: An Emerging Therapeutic Strategy in Cancer. Anticancer Agents Med Chem 2021; 21:214-230. [PMID: 32275492 DOI: 10.2174/1871520620666200410082652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/20/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
Drug discovery in the scope of cancer therapy has been focused on conventional agents that nonselectively induce DNA damage or selectively inhibit the activity of key oncogenic molecules without affecting their protein levels. An emerging therapeutic strategy that garnered attention in recent years is the induction of Targeted Protein Degradation (TPD) of cellular targets by hijacking the intracellular proteolysis machinery. This novel approach offers several advantages over conventional inhibitors and introduces a paradigm shift in several pharmacological aspects of drug therapy. While TPD has been found to be the major mode of action of clinically approved anticancer agents such as fulvestrant and thalidomide, recent years have witnessed systematic endeavors to expand the repertoire of proteins amenable to therapeutic ablation by TPD. Such endeavors have led to three major classes of agents that induce protein degradation, including molecular glues, Proteolysis Targeting Chimeras (PROTACs) and Hydrophobic Tag (HyT)-based degraders. Here, we briefly highlight agents in these classes and key advances made in the field with a focus on clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
23
|
Frkatovic A, Zaytseva OO, Klaric L. Genetic Regulation of Immunoglobulin G Glycosylation. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:259-287. [PMID: 34687013 DOI: 10.1007/978-3-030-76912-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Defining the genetic components that control glycosylation of the human immunoglobulin G (IgG) is an ongoing effort, which has so far been addressed by means of heritability, linkage and genome-wide association studies (GWAS). Unlike the synthesis of proteins, N-glycosylation biosynthesis is not a template-driven process, but rather a complex process regulated by both genetic and environmental factors. Current heritability studies have shown that while up to 75% of the variation in levels of some IgG glycan traits can be explained by genetics, some glycan traits are completely defined by environmental influences. Advances in both high-throughput genotyping and glycan quantification methods have enabled genome-wide association studies that are increasingly used to estimate associations of millions of single-nucleotide polymorphisms and glycosylation traits. Using this method, 18 genomic regions have so far been robustly associated with IgG N-glycosylation, discovering associations with genes encoding glycosyltransferases, but also transcription factors, co-factors, membrane transporters and other genes with no apparent role in IgG glycosylation. Further computational analyses have shown that IgG glycosylation is likely to be regulated through the expression of glycosyltransferases, but have also for the first time suggested which transcription factors are involved in the process. Moreover, it was also shown that IgG glycosylation and inflammatory diseases share common underlying causal genetic variants, suggesting that studying genetic regulation of IgG glycosylation helps not only to better understand this complex process but can also contribute to understanding why glycans are changed in disease. However, further studies are needed to unravel whether changes in IgG glycosylation are causing these diseases or the changes in the glycome are caused by the disease.
Collapse
Affiliation(s)
- Azra Frkatovic
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Olga O Zaytseva
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Lucija Klaric
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
24
|
Janus Kinase Mutations in Mice Lacking PU.1 and Spi-B Drive B Cell Leukemia through Reactive Oxygen Species-Induced DNA Damage. Mol Cell Biol 2020; 40:MCB.00189-20. [PMID: 32631903 DOI: 10.1128/mcb.00189-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022] Open
Abstract
Precursor B cell acute lymphoblastic leukemia (B-ALL) is caused by genetic lesions in developing B cells that function as drivers for the accumulation of additional mutations in an evolutionary selection process. We investigated secondary drivers of leukemogenesis in a mouse model of B-ALL driven by PU.1/Spi-B deletion (Mb1-CreΔPB). Whole-exome-sequencing analysis revealed recurrent mutations in Jak3 (encoding Janus kinase 3), Jak1, and Ikzf3 (encoding Aiolos). Mutations with a high variant-allele frequency (VAF) were dominated by C→T transition mutations that were compatible with activation-induced cytidine deaminase, whereas the majority of mutations, with a low VAF, were dominated by C→A transversions associated with 8-oxoguanine DNA damage caused by reactive oxygen species (ROS). The Janus kinase (JAK) inhibitor ruxolitinib delayed leukemia onset, reduced ROS and ROS-induced gene expression signatures, and altered ROS-induced mutational signatures. These results reveal that JAK mutations can alter the course of leukemia clonal evolution through ROS-induced DNA damage.
Collapse
|
25
|
IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker? Blood 2020; 135:252-260. [PMID: 31821407 DOI: 10.1182/blood.2019000813] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022] Open
Abstract
Improved personalized adjustment of primary therapy to the perceived risk of relapse by using new prognostic markers for treatment stratification may be beneficial to patients with acute lymphoblastic leukemia (ALL). Here, we review the advances that have shed light on the role of IKZF1 aberration as prognostic factor in pediatric ALL and summarize emerging concepts in this field. Continued research on the interplay of disease biology with exposure and response to treatment will be key to further improve treatment strategies.
Collapse
|
26
|
Transcriptional Regulation of Natural Killer Cell Development and Functions. Cancers (Basel) 2020; 12:cancers12061591. [PMID: 32560225 PMCID: PMC7352776 DOI: 10.3390/cancers12061591] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are the major lymphocyte subset of the innate immune system. Their ability to mediate anti-tumor cytotoxicity and produce cytokines is well-established. However, the molecular mechanisms associated with the development of human or murine NK cells are not fully understood. Knowledge is being gained about the environmental cues, the receptors that sense the cues, signaling pathways, and the transcriptional programs responsible for the development of NK cells. Specifically, a complex network of transcription factors (TFs) following microenvironmental stimuli coordinate the development and maturation of NK cells. Multiple TFs are involved in the development of NK cells in a stage-specific manner. In this review, we summarize the recent advances in the understandings of TFs involved in the regulation of NK cell development, maturation, and effector function, in the aspects of their mechanisms, potential targets, and functions.
Collapse
|
27
|
Lightman SM, Utley A, Lee KP. Survival of Long-Lived Plasma Cells (LLPC): Piecing Together the Puzzle. Front Immunol 2019; 10:965. [PMID: 31130955 PMCID: PMC6510054 DOI: 10.3389/fimmu.2019.00965] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Durable humoral immunity is dependent upon the generation of antigen-specific antibody titers, produced by non-proliferating bone marrow resident long-lived plasma cells (LLPC). Longevity is the hallmark of LLPC, but why and how they survive and function for years after antigen exposure is only beginning to be understood. LLPC are not intrinsically long-lived; they require continuous signals from the LLPC niche to survive. Signals unique to LLPC survival (vs. PC survival in general) most notably include those that upregulate the anti-apoptotic factor Mcl-1 and activation of the CD28 receptor expressed on LLPC. Other potential factors include expression of BCMA, upregulation of the transcription factor ZBTB20, and upregulation of the enzyme ENPP1. Metabolic fitness is another key component of LLPC longevity, facilitating the diversion of glucose to generate pyruvate during times of stress to facilitate long term survival. A third major component of LLPC survival is the microenvironment/LLPC niche itself. Cellular partners such as stromal cells, dendritic cells, and T regulatory cells establish a niche for LLPC and drive survival signaling by expressing ligands such as CD80/CD86 for CD28 and producing soluble and stromal factors that contribute to LLPC longevity. These findings have led to the current paradigm wherein both intrinsic and extrinsic mechanisms are required for the survival of LLPC. Here we outline this diverse network of signals and highlight the mechanisms thought to regulate and promote the survival of LLPC. Understanding this network of signals has direct implications in increasing our basic understanding of plasma cell biology, but also in vaccine and therapeutic drug development to address the pathologies that can arise from this subset.
Collapse
Affiliation(s)
- Shivana M Lightman
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Adam Utley
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
28
|
Visekruna A, Hartmann S, Sillke YR, Glauben R, Fischer F, Raifer H, Mollenkopf H, Bertrams W, Schmeck B, Klein M, Pagenstecher A, Lohoff M, Jacob R, Pabst O, Bland PW, Luu M, Romero R, Siegmund B, Rajalingam K, Steinhoff U. Intestinal development and homeostasis require activation and apoptosis of diet-reactive T cells. J Clin Invest 2019; 129:1972-1983. [PMID: 30939122 DOI: 10.1172/jci98929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/19/2019] [Indexed: 12/30/2022] Open
Abstract
The impact of food antigens on intestinal homeostasis and immune function is poorly understood. Here, we explored the impact of dietary antigens on the phenotype and fate of intestinal T cells. Physiological uptake of dietary proteins generated a highly activated CD44+Helios+CD4+ T cell population predominantly in Peyer patches. These cells are distinct from regulatory T cells and develop independently of the microbiota. Alimentation with a protein-free, elemental diet led to an atrophic small intestine with low numbers of activated T cells, including Tfh cells and decreased amounts of intestinal IgA and IL-10. Food-activated CD44+Helios+CD4+ T cells in the Peyer patches are controlled by the immune checkpoint molecule PD-1. Blocking the PD-1 pathway rescued these T cells from apoptosis and triggered proinflammatory cytokine production, which in IL-10-deficient mice was associated with intestinal inflammation. In support of these findings, our study of patients with Crohn's disease revealed significantly reduced frequencies of apoptotic CD4+ T cells in Peyer patches as compared with healthy controls. These results suggest that apoptosis of diet-activated T cells is a hallmark of the healthy intestine.
Collapse
Affiliation(s)
- Alexander Visekruna
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University of Marburg, Germany
| | - Sabrina Hartmann
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University of Marburg, Germany
| | - Yasmina Rodriguez Sillke
- Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany
| | - Rainer Glauben
- Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany
| | - Florence Fischer
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University of Marburg, Germany
| | - Hartmann Raifer
- Flow Cytometry Core Facility, Philipps University Marburg, Germany
| | - Hans Mollenkopf
- Max Planck Institute for Infection Biology, Core Facility Microarray/Genomics, Berlin, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps University Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps University Marburg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center, Mainz, Germany
| | - Axel Pagenstecher
- Department of Neuropathology, Philipps University of Marburg, Germany
| | - Michael Lohoff
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University of Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Paul William Bland
- Department of Microbiology & Immunology, Gothenburg University, Gothenburg, Sweden
| | - Maik Luu
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University of Marburg, Germany
| | - Rossana Romero
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University of Marburg, Germany
| | - Britta Siegmund
- Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany
| | | | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University of Marburg, Germany
| |
Collapse
|
29
|
Chapoval SP, Hritzo M, Qi X, Tamagnone L, Golding A, Keegan AD. Semaphorin 4A Stabilizes Human Regulatory T Cell Phenotype via Plexin B1. Immunohorizons 2019; 3:71-87. [PMID: 31236543 PMCID: PMC6590919 DOI: 10.4049/immunohorizons.1800026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We previously reported that neuroimmune semaphorin (Sema) 4A regulates the severity of experimental allergic asthma and increases regulatory T (Treg) cell numbers in vivo; however, the mechanisms of Sema4A action remain unknown. It was also reported that Sema4A controls murine Treg cell function and survival acting through neuropilin 1 (NRP-1) receptor. To clarify Sema4A action on human T cells, we employed T cell lines (HuT78 and HuT102), human PBMCs, and CD4+ T cells in phenotypic and functional assays. We found that HuT78 demonstrated a T effector-like phenotype (CD4+CD25lowFoxp3-), whereas HuT102 expressed a Treg-like phenotype (CD4+CD25hi Foxp3+). Neither cell line expressed NRP-1. HuT102 cells expressed Sema4A counter receptor Plexin B1, whereas HuT78 cells were Sema4A+. All human peripheral blood CD4+ T cells, including Treg cells, expressed PlexinB1 and lacked both NRP-1 and -2. However, NRP-1 and Sema4A were detected on CD3negativeCD4intermediate human monocytes. Culture of HuT cells with soluble Sema4A led to an upregulation of CD25 and Foxp3 markers on HuT102 cells. Addition of Sema4A increased the relative numbers of CD4+CD25+Foxp3+ cells in PBMCs and CD4+ T cells, which were NRP-1negative but PlexinB1+, suggesting the role of this receptor in Treg cell stability. The inclusion of anti-PlexinB1 blocking Ab in cultures before recombinant Sema4A addition significantly decreased Treg cell numbers as compared with cultures with recombinant Sema4A alone. Sema4A was as effective as TGF-β in inducible Treg cell induction from CD4+CD25depleted cells but did not enhance Treg cell suppressive activity in vitro. These results suggest strategies for the development of new Sema4A-based therapeutic measures to combat allergic inflammatory diseases. ImmunoHorizons, 2019, 3: 71-87.
Collapse
Affiliation(s)
- Svetlana P Chapoval
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Molly Hritzo
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xiulan Qi
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Luca Tamagnone
- Candiolo Cancer Institute, Piedmont Foundation for Cancer Research, Institute of Hospitalization and Scientific Care, University of Torino Medical School, Turin, Italy 10060; and
| | - Amit Golding
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Veterans Affairs Maryland Health Care System, Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Achsah D Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201;
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Veterans Affairs Maryland Health Care System, Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| |
Collapse
|
30
|
Park SM, Cho H, Thornton AM, Barlowe TS, Chou T, Chhangawala S, Fairchild L, Taggart J, Chow A, Schurer A, Gruet A, Witkin MD, Kim JH, Shevach EM, Krivtsov A, Armstrong SA, Leslie C, Kharas MG. IKZF2 Drives Leukemia Stem Cell Self-Renewal and Inhibits Myeloid Differentiation. Cell Stem Cell 2019; 24:153-165.e7. [PMID: 30472158 PMCID: PMC6602096 DOI: 10.1016/j.stem.2018.10.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/06/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023]
Abstract
Leukemias exhibit a dysregulated developmental program mediated through both genetic and epigenetic mechanisms. Although IKZF2 is expressed in hematopoietic stem cells (HSCs), we found that it is dispensable for mouse and human HSC function. In contrast to its role as a tumor suppressor in hypodiploid B-acute lymphoblastic leukemia, we found that IKZF2 is required for myeloid leukemia. IKZF2 is highly expressed in leukemic stem cells (LSCs), and its deficiency results in defective LSC function. IKZF2 depletion in acute myeloid leukemia (AML) cells reduced colony formation, increased differentiation and apoptosis, and delayed leukemogenesis. Gene expression, chromatin accessibility, and direct IKZF2 binding in MLL-AF9 LSCs demonstrate that IKZF2 regulates a HOXA9 self-renewal gene expression program and inhibits a C/EBP-driven differentiation program. Ectopic HOXA9 expression and CEBPE depletion rescued the effects of IKZF2 depletion. Thus, our study shows that IKZF2 regulates the AML LSC program and provides a rationale to therapeutically target IKZF2 in myeloid leukemia.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Self Renewal
- Chromatin/genetics
- Chromatin/metabolism
- DNA-Binding Proteins/physiology
- Female
- Gene Expression Regulation, Leukemic
- Hematopoiesis
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Leukemia, Experimental/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Sun-Mi Park
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hyunwoo Cho
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Angela M Thornton
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Trevor S Barlowe
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy Chou
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sagar Chhangawala
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lauren Fairchild
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James Taggart
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arthur Chow
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandria Schurer
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antoine Gruet
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Witkin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ethan M Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Andrei Krivtsov
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Christina Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael G Kharas
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
31
|
Rasco DW, Papadopoulos KP, Pourdehnad M, Gandhi AK, Hagner PR, Li Y, Wei X, Chopra R, Hege K, DiMartino J, Shih K. A First-in-Human Study of Novel Cereblon Modulator Avadomide (CC-122) in Advanced Malignancies. Clin Cancer Res 2019; 25:90-98. [PMID: 30201761 DOI: 10.1158/1078-0432.ccr-18-1203] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/06/2018] [Accepted: 09/05/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Avadomide is a novel, small-molecule therapeutic agent that modulates cereblon E3 ligase activity and exhibits potent antitumor and immunomodulatory activities. This first-in-human phase I study (NCT01421524) evaluated the safety and clinical activity of avadomide in patients with advanced solid tumors, non-Hodgkin lymphoma (NHL), and multiple myeloma. PATIENTS AND METHODS Thirty-four patients were treated with avadomide in 7 dose-escalation cohorts using a 3 + 3 design (0.5-3.5 mg, 28-day continuous dosing cycles). The primary objectives were to determine the dose-limiting toxicity (DLT), nontolerated dose (NTD), maximum tolerated dose (MTD), recommended phase II dose, and pharmacokinetics of avadomide. The secondary objective was to determine preliminary avadomide efficacy. Exploratory objectives included evaluation of pharmacodynamic effects of avadomide. RESULTS DLTs were reported in 2 patients, and grade ≥3 treatment-emergent adverse events (TEAEs) occurred in 14 patients (41%). The most common TEAEs (≥15%) were fatigue, neutropenia, and diarrhea. The NTD and MTD were 3.5 and 3.0 mg, respectively. Of 5 patients with NHL, 1 achieved a complete response, and 2 had partial responses. Although no objective responses were observed in patients with solid tumors, 5 of 6 patients with brain cancer experienced nonprogression of ≥6 months. A dose-dependent relationship between Aiolos degradation in peripheral B and T cells occurred within 5 hours of the first dose of avadomide administered, starting at 0.5 mg. CONCLUSIONS Avadomide monotherapy demonstrated acceptable safety and favorable pharmacokinetics in patients with solid tumors, NHL, and multiple myeloma. In addition, 3 objective responses were observed in NHL.
Collapse
Affiliation(s)
- Drew W Rasco
- South Texas Accelerated Research Therapeutics, San Antonio, Texas.
| | | | | | | | | | - Yan Li
- Celgene Corporation, Summit, New Jersey
| | - Xin Wei
- Celgene Corporation, Berkeley Heights, New Jersey
| | - Rajesh Chopra
- Division of Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
| | | | | | - Kent Shih
- Sarah Cannon Research Institute, Tennessee Oncology, Nashville, Tennessee
| |
Collapse
|
32
|
Oh KS, Gottschalk RA, Lounsbury NW, Sun J, Dorrington MG, Baek S, Sun G, Wang Z, Krauss KS, Milner JD, Dutta B, Hager GL, Sung MH, Fraser IDC. Dual Roles for Ikaros in Regulation of Macrophage Chromatin State and Inflammatory Gene Expression. THE JOURNAL OF IMMUNOLOGY 2018; 201:757-771. [PMID: 29898962 DOI: 10.4049/jimmunol.1800158] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022]
Abstract
Macrophage activation by bacterial LPS leads to induction of a complex inflammatory gene program dependent on numerous transcription factor families. The transcription factor Ikaros has been shown to play a critical role in lymphoid cell development and differentiation; however, its function in myeloid cells and innate immune responses is less appreciated. Using comprehensive genomic analysis of Ikaros-dependent transcription, DNA binding, and chromatin accessibility, we describe unexpected dual repressor and activator functions for Ikaros in the LPS response of murine macrophages. Consistent with the described function of Ikaros as transcriptional repressor, Ikzf1-/- macrophages showed enhanced induction for select responses. In contrast, we observed a dramatic defect in expression of many delayed LPS response genes, and chromatin immunoprecipitation sequencing analyses support a key role for Ikaros in sustained NF-κB chromatin binding. Decreased Ikaros expression in Ikzf1+/- mice and human cells dampens these Ikaros-enhanced inflammatory responses, highlighting the importance of quantitative control of Ikaros protein level for its activator function. In the absence of Ikaros, a constitutively open chromatin state was coincident with dysregulation of LPS-induced chromatin remodeling, gene expression, and cytokine responses. Together, our data suggest a central role for Ikaros in coordinating the complex macrophage transcriptional program in response to pathogen challenge.
Collapse
Affiliation(s)
- Kyu-Seon Oh
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Rachel A Gottschalk
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nicolas W Lounsbury
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jing Sun
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Michael G Dorrington
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Guangping Sun
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ze Wang
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kathleen S Krauss
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Bhaskar Dutta
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Iain D C Fraser
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
33
|
Wandler A, Shannon K. Mechanistic and Preclinical Insights from Mouse Models of Hematologic Cancer Characterized by Hyperactive Ras. Cold Spring Harb Perspect Med 2018; 8:a031526. [PMID: 28778967 PMCID: PMC5880163 DOI: 10.1101/cshperspect.a031526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RAS genes are mutated in 5%-40% of a spectrum of myeloid and lymphoid cancers with NRAS affected 2-3 times more often than KRAS Genomic analysis indicates that RAS mutations generally occur as secondary events in leukemogenesis, but are integral to the disease phenotype. The tractable nature of the hematopoietic system has facilitated generating accurate mouse models of hematologic malignancies characterized by hyperactive Ras signaling. These strains provide robust platforms for addressing how oncogenic Ras expression perturbs proliferation, differentiation, and self-renewal programs in stem and progenitor cell populations, for testing potential therapies, and for investigating mechanisms of drug response and resistance. This review summarizes recent insights from key studies in mouse models of hematologic cancer that are broadly relevant for understanding Ras biology and for ongoing efforts to implement rational therapeutic strategies for cancers with oncogenic RAS mutations.
Collapse
Affiliation(s)
- Anica Wandler
- Department of Pediatrics, Helen Diller Family Cancer Research Building, University of California, San Francisco, San Francisco, California 94158-9001
| | - Kevin Shannon
- Department of Pediatrics, Helen Diller Family Cancer Research Building, University of California, San Francisco, San Francisco, California 94158-9001
- Comprehensive Cancer Center, Helen Diller Family Cancer Research Building, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
34
|
Vshyukova V, Valochnik A, Meleshko A. Expression of aberrantly spliced oncogenic Ikaros isoforms coupled with clonal IKZF1 deletions and chimeric oncogenes in acute lymphoblastic leukemia. Blood Cells Mol Dis 2018; 71:29-38. [PMID: 29496375 DOI: 10.1016/j.bcmd.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Volha Vshyukova
- Belarusian Research Center for Pediatric Oncology, Haematology and Immunology, 223053, Frunzenskaya str., 43, Minsk Region, Belarus.
| | - Alena Valochnik
- Belarusian Research Center for Pediatric Oncology, Haematology and Immunology, 223053, Frunzenskaya str., 43, Minsk Region, Belarus
| | - Alexander Meleshko
- Belarusian Research Center for Pediatric Oncology, Haematology and Immunology, 223053, Frunzenskaya str., 43, Minsk Region, Belarus
| |
Collapse
|
35
|
Lin X, Zou X, Wang Z, Fang Q, Chen S, Huang J, Zhe N, Yu M, Zhang Y, Wang J. Targeting of heme oxygenase-1 attenuates the negative impact of Ikaros isoform 6 in adult BCR-ABL1-positive B-ALL. Oncotarget 2018; 7:53679-53701. [PMID: 27447561 PMCID: PMC5288214 DOI: 10.18632/oncotarget.10725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 06/07/2016] [Indexed: 12/26/2022] Open
Abstract
The correlation between Heme oxygenase-1 (HO-1) and dominant-negative Ikaros isoform 6 (IK6) is unclear. Firstly, we detected that IK6 existed in 20 of 42 (47.6%) adult BCR-ABL1-positive B-lineage acute lymphoblastic leukemia (BCR-ABL1-positive B-ALL) by using reverse transcribed polymerase chain reaction (PCR) and nucleotide sequencing. IK6-positive patients had an unfavorable outcome compared with IK6-negative ones. Further study showed that the level of HO-1 expression was higher in IK6-positive patients' samples than that in IK6-negative ones. And there was a strong correlation between the expression of IK6 and HO-1. The growth of primary CD34+ leukemic cells derived from our IK6-positive patients' pool was prohibited by silencing HO-1, further promoting their apoptosis. Furthermore, primary CD34+ leukemic cells derived from IK6-positive patients shown poor responses to imatinib in comparison with wild-type (IK1) patients, suggesting that the expression of IK6 resisted to imatinib in adult BCR-ABL1-positive B-ALL. Importantly, inhibition of HO-1 also increased their sensitivity to tyrosine kinase inhibitors (TKIs). Finally, we found that IK6 activated downstream STAT5, and HO-1 was one of the downstream target genes of STAT5. In conclusion, HO-1 is an essential survival factor in BCR-ABL1-positive B-ALL with IK6, and targeting HO-1 can attenuate the negative impact of IK6.
Collapse
Affiliation(s)
- Xiaojing Lin
- Clinical Medicine, Guizhou Medical University, Guiyang 550004, China.,Department of Hematology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xingli Zou
- Department of Hematology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Ziming Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Qin Fang
- Department of Pharmacy, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Shuya Chen
- Clinical Medicine, Guizhou Medical University, Guiyang 550004, China.,Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Jun Huang
- Clinical Medicine, Guizhou Medical University, Guiyang 550004, China.,Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Nana Zhe
- Clinical Medicine, Guizhou Medical University, Guiyang 550004, China.,Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Meisheng Yu
- Clinical Medicine, Guizhou Medical University, Guiyang 550004, China.,Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Yaming Zhang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Jishi Wang
- Clinical Medicine, Guizhou Medical University, Guiyang 550004, China.,Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| |
Collapse
|
36
|
Das S, Miller M, Broide DH. Chromosome 17q21 Genes ORMDL3 and GSDMB in Asthma and Immune Diseases. Adv Immunol 2017; 135:1-52. [PMID: 28826527 DOI: 10.1016/bs.ai.2017.06.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromosome 17q21 contains a cluster of genes including ORMDL3 and GSDMB, which have been highly linked to asthma in genome-wide association studies. ORMDL3 is localized to the endoplasmic reticulum and regulates downstream pathways including sphingolipids, metalloproteases, remodeling genes, and chemokines. ORMDL3 inhibits serine palmitoyl-CoA transferase, the rate-limiting enzyme for sphingolipid biosynthesis. In addition, ORMDL3 activates the ATF6α branch of the unfolded protein response which regulates SERCA2b and IL-6, pathways of potential importance to asthma. The SNP-linking chromosome 17q21 to asthma is associated with increased ORMDL3 and GSDMB expression. Mice expressing either increased levels of human ORMDL3, or human GSDMB, have an asthma phenotype characterized by increased airway responsiveness and increased airway remodeling (increased smooth muscle and fibrosis) in the absence of airway inflammation. GSDMB regulates expression of 5-LO and TGF-β1 which are known pathways involved in the pathogenesis of asthma. GSDMB is one of four members of the GSDM family (GSDMA, GSDMB, GSDMC, and GSDMD). GSDMD (located on chromosome 8q24 and not linked to asthma) has emerged as a key mediator of pyroptosis. GSDMD is a key component of the NLPR3 inflammasome and is required for its activation. GSDMD undergoes proteolytic cleavage by caspase-1 to release its N-terminal fragment, which in turn mediates pyroptosis and IL-1β secretion. Chromosome 17q21 has not only been linked to asthma but also to type 1 diabetes, inflammatory bowel disease, and primary biliary cirrhosis suggesting that future insights into the biology of genes located in this region will increase our understanding of these diseases.
Collapse
Affiliation(s)
- Sudipta Das
- University of California, San Diego, CA, United States
| | - Marina Miller
- University of California, San Diego, CA, United States
| | | |
Collapse
|
37
|
Zhang X, Rastogi P, Shah B, Zhang L. B lymphoblastic leukemia/lymphoma: new insights into genetics, molecular aberrations, subclassification and targeted therapy. Oncotarget 2017; 8:66728-66741. [PMID: 29029550 PMCID: PMC5630450 DOI: 10.18632/oncotarget.19271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/07/2017] [Indexed: 12/18/2022] Open
Abstract
B lymphoblastic leukemia/lymphoma (B-ALL) is a clonal hematopoietic stem cell neoplasm derived from B-cell progenitors, which mostly occurs in children and adolescents and is regarded as one of top leading causes of death related to malignancies in this population. Despite the majority of patients with B-ALL have fairly good response to conventional chemotherapeutic interventions followed by hematopoietic stem cell transplant for the last decades, a subpopulation of patients show chemo-resistance and a high relapse rate. Adult B-ALL exhibits similar clinical course but worse prognosis in comparison to younger individuals. Ample evidences have shown that the clinical behavior, response rate and clinical outcome of B-ALL rely largely on its genetic and molecular profiles, such as the presence of BCR-ABL1 fusion gene which is an independent negative prognostic predictor. New B-ALL subtypes have been recognized with recurrent genetic abnormalities, including B-ALL with intrachromosomal amplification of chromosome 21 (iAMP21), B-ALL with translocations involving tyrosine kinases or cytokine receptors (“BCR-ABL1-like ALL”). Genome-wide genetic profiling studies on B-ALL have extended our understanding of genomic landscape of B-ALL, and genetic mutations involved in various key pathways have been illustrated. These include CRLF2 and PAX5 alterations, TP53, CREBBP and ERG mutations, characteristic genetic aberrations in BCR-ABL1-like B-ALL and others. The review further provides new insights into clinical implication of the genetic aberrations in regard to targeted therapy development.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Prerna Rastogi
- Department of Pathology, University of Iowa College of Medicine, Iowa City, Iowa, USA
| | - Bijal Shah
- Department of Hematological Malignancies, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ling Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
38
|
Wheeler MA, Rothhammer V, Quintana FJ. Control of immune-mediated pathology via the aryl hydrocarbon receptor. J Biol Chem 2017; 292:12383-12389. [PMID: 28615443 DOI: 10.1074/jbc.r116.767723] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genetic and environmental factors contribute to the development of immune-mediated diseases. Although numerous genetic factors contributing to autoimmunity have been identified in recent years, our knowledge on environmental factors contributing to the pathogenesis of autoimmune diseases and the mechanisms involved is still limited. In this context, the diet, microbiome, geographical location, as well as environmental pollutants have been shown to modulate autoimmune disease development. These environmental factors interact with cellular components of the immune system in distinct and defined ways and can influence immune responses at the transcriptional and protein level. Moreover, endogenous metabolites generated from basic cellular processes such as glycolysis and oxidative phosphorylation also contribute to the shaping of the immune response. In this minireview, we highlight recent progress in our understanding of the modulation of the immune response by the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor whose activity is regulated by small molecules provided by diet, commensal flora, environmental pollutants, and metabolism. We focus on the role of AhR in integrating signals from the diet and the intestinal flora to modulate ongoing inflammation in the central nervous system, and we also discuss the potential therapeutic value of AhR agonists for multiple sclerosis and other autoimmune diseases.
Collapse
Affiliation(s)
- Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.
| |
Collapse
|
39
|
Heidari N, Abroun S, Bertacchini J, Vosoughi T, Rahim F, Saki N. Significance of Inactivated Genes in Leukemia: Pathogenesis and Prognosis. CELL JOURNAL 2017; 19:9-26. [PMID: 28580304 PMCID: PMC5448318 DOI: 10.22074/cellj.2017.4908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/14/2017] [Indexed: 11/04/2022]
Abstract
Epigenetic and genetic alterations are two mechanisms participating in leukemia, which can inactivate genes involved in leukemia pathogenesis or progression. The purpose of this review was to introduce various inactivated genes and evaluate their possible role in leukemia pathogenesis and prognosis. By searching the mesh words "Gene, Silencing AND Leukemia" in PubMed website, relevant English articles dealt with human subjects as of 2000 were included in this study. Gene inactivation in leukemia is largely mediated by promoter's hypermethylation of gene involving in cellular functions such as cell cycle, apoptosis, and gene transcription. Inactivated genes, such as ASPP1, TP53, IKZF1 and P15, may correlate with poor prognosis in acute lymphoid leukemia (ALL), chronic lymphoid leukemia (CLL), chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML), respectively. Gene inactivation may play a considerable role in leukemia pathogenesis and prognosis, which can be considered as complementary diagnostic tests to differentiate different leukemia types, determine leukemia prognosis, and also detect response to therapy. In general, this review showed some genes inactivated only in leukemia (with differences between B-ALL, T-ALL, CLL, AML and CML). These differences could be of interest as an additional tool to better categorize leukemia types. Furthermore; based on inactivated genes, a diverse classification of Leukemias could represent a powerful method to address a targeted therapy of the patients, in order to minimize side effects of conventional therapies and to enhance new drug strategies.
Collapse
Affiliation(s)
- Nazanin Heidari
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jessika Bertacchini
- Signal Transduction Unit, Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Tina Vosoughi
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
40
|
Transcription Factor Networks derived from Breast Cancer Stem Cells control the immune response in the Basal subtype. Sci Rep 2017; 7:2851. [PMID: 28588211 PMCID: PMC5460106 DOI: 10.1038/s41598-017-02761-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/18/2017] [Indexed: 11/08/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide and metastatic dissemination is the principal factor related to death by this disease. Breast cancer stem cells (bCSC) are thought to be responsible for metastasis and chemoresistance. In this study, based on whole transcriptome analysis from putative bCSC and reverse engineering of transcription control networks, we identified two networks associated with this phenotype. One controlled by SNAI2, TWIST1, BNC2, PRRX1 and TBX5 drives a mesenchymal or CSC-like phenotype. The second network is controlled by the SCML4, ZNF831, SP140 and IKZF3 transcription factors which correspond to immune response modulators. Immune response network expression is correlated with pathological response to chemotherapy, and in the Basal subtype is related to better recurrence-free survival. In patient-derived xenografts, the expression of these networks in patient tumours is predictive of engraftment success. Our findings point out a potential molecular mechanism underlying the balance between immune surveillance and EMT activation in breast cancer. This molecular mechanism may be useful to the development of new target therapies.
Collapse
|
41
|
Martín-Ibáñez R, Pardo M, Giralt A, Miguez A, Guardia I, Marion-Poll L, Herranz C, Esgleas M, Garcia-Díaz Barriga G, Edel MJ, Vicario-Abejón C, Alberch J, Girault JA, Chan S, Kastner P, Canals JM. Helios expression coordinates the development of a subset of striatopallidal medium spiny neurons. Development 2017; 144:1566-1577. [PMID: 28289129 PMCID: PMC5399659 DOI: 10.1242/dev.138248] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 03/03/2017] [Indexed: 12/25/2022]
Abstract
Here, we unravel the mechanism of action of the Ikaros family zinc finger protein Helios (He) during the development of striatal medium spiny neurons (MSNs). He regulates the second wave of striatal neurogenesis involved in the generation of striatopallidal neurons, which express dopamine 2 receptor and enkephalin. To exert this effect, He is expressed in neural progenitor cells (NPCs) keeping them in the G1/G0 phase of the cell cycle. Thus, a lack of He results in an increase of S-phase entry and S-phase length of NPCs, which in turn impairs striatal neurogenesis and produces an accumulation of the number of cycling NPCs in the germinal zone (GZ), which end up dying at postnatal stages. Therefore, He−/− mice show a reduction in the number of dorso-medial striatal MSNs in the adult that produces deficits in motor skills acquisition. In addition, overexpression of He in NPCs induces misexpression of DARPP-32 when transplanted in mouse striatum. These findings demonstrate that He is involved in the correct development of a subset of striatopallidal MSNs and reveal new cellular mechanisms for neuronal development. Summary: The transcription factor Helios regulates G1-S transition to promote neuronal differentiation of a striatopallidal neuronal subpopulation involved in motor skill acquisition.
Collapse
Affiliation(s)
- Raquel Martín-Ibáñez
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Research and Development Unit, Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Mónica Pardo
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain
| | - Albert Giralt
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Pathophysiology of Neurodegenerative Diseases Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Andrés Miguez
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain
| | - Inés Guardia
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain
| | - Lucile Marion-Poll
- Inserm UMR-S839; Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Institut du Fer à Moulin, 75005 Paris, France
| | - Cristina Herranz
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Research and Development Unit, Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Miriam Esgleas
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain
| | - Gerardo Garcia-Díaz Barriga
- Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Pathophysiology of Neurodegenerative Diseases Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Michael J Edel
- Control of Pluripotency Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain.,Victor Chang Cardiac Research Institute, Sydney, New South Wales, 2010 Australia.,School of Medicine and Pharmacology, Anatomy, Physiology and Human Biology, CCTRM, University of Western Australia, Western Australia, 6009 Australia
| | - Carlos Vicario-Abejón
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| | - Jordi Alberch
- Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain
| | - Jean-Antoine Girault
- Inserm UMR-S839; Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Institut du Fer à Moulin, 75005 Paris, France
| | - Susan Chan
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain
| | - Philippe Kastner
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, 67400 Illkirch-Graffenstaden, France.,Faculté de Médecine, Université de Strasbourg, 67081 Strasbourg, France
| | - Josep M Canals
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain .,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Research and Development Unit, Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
42
|
Apigenin: Selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer. PLoS One 2017; 12:e0170197. [PMID: 28152014 PMCID: PMC5289423 DOI: 10.1371/journal.pone.0170197] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/02/2017] [Indexed: 11/19/2022] Open
Abstract
Pancreatic cancer (PC) evades immune destruction by favoring the development of regulatory T cells (Tregs) that inhibit effector T cells. The transcription factor Ikaros is critical for lymphocyte development, especially T cells. We have previously shown that downregulation of Ikaros occurs as a result of its protein degradation by the ubiquitin-proteasome system in our Panc02 tumor-bearing (TB) mouse model. Mechanistically, we observed a deregulation in the balance between Casein Kinase II (CK2) and protein phosphatase 1 (PP1), which suggested that increased CK2 activity is responsible for regulating Ikaros’ stability in our model. We also showed that this loss of Ikaros expression is associated with a significant decrease in CD4+ and CD8+ T cell percentages but increased CD4+CD25+ Tregs in TB mice. In this study, we evaluated the effects of the dietary flavonoid apigenin (API), on Ikaros expression and T cell immune responses. Treatment of splenocytes from naïve mice with (API) stabilized Ikaros expression and prevented Ikaros downregulation in the presence of murine Panc02 cells in vitro, similar to the proteasome inhibitor MG132. In vivo treatment of TB mice with apigenin (TB-API) improved survival, reduced tumor weights and prevented splenomegaly. API treatment also restored protein expression of some Ikaros isoforms, which may be attributed to its moderate inhibition of CK2 activity from splenocytes of TB-API mice. This partial restoration of Ikaros expression was accompanied by a significant increase in CD4+ and CD8+ T cell percentages and a reduction in Treg percentages in TB-API mice. In addition, CD8+ T cells from TB-API mice produced more IFN-γ and their splenocytes were better able to prime allogeneic CD8+ T cell responses compared to TB mice. These results provide further evidence that Ikaros is regulated by CK2 in our pancreatic cancer model. More importantly, our findings suggest that API may be a possible therapeutic agent for stabilizing Ikaros expression and function to maintain T cell homeostasis in murine PC.
Collapse
|
43
|
Zhao S, Liu W, Li Y, Liu P, Li S, Dou D, Wang Y, Yang R, Xiang R, Liu F. Alternative Splice Variants Modulates Dominant-Negative Function of Helios in T-Cell Leukemia. PLoS One 2016; 11:e0163328. [PMID: 27681508 PMCID: PMC5040427 DOI: 10.1371/journal.pone.0163328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022] Open
Abstract
The molecular defects which lead to multistep incidences of human T-cell leukemia have yet to be identified. The DNA-binding protein Helios (known as IKZF2), a member of the Ikaros family of Krüppel-like zinc-finger proteins, functions pivotally in T-cell differentiation and activation. In this study, we identify three novel short Helios splice variants which are T-cell leukemic specific, and demonstrate their dominant-negative function. We then test the cellular localization of distinct Helios isoforms, as well as their capability to form heterodimer with Ikaros, and the association with complexes comprising histone deacetylase (HDAC). In addition, the ectopic expression of T-cell leukemic Helios isoforms interferes with T-cell proliferation and apoptosis. The gene expression profiling and pathway analysis indicated the enrichment of signaling pathways essential for gene expression, translation, cell cycle checkpoint, and response to DNA damage stimulus. These data indicate the molecular function of Helios to be involved in the leukemogenesis and phenotype of T-cell leukemia, and also reveal Helios deregulation as a novel marker for T-cell leukemia.
Collapse
Affiliation(s)
- Shaorong Zhao
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Wei Liu
- Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300308, China
| | - Yinghui Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Pengjiang Liu
- Department of Hematology, First-Central Hospital, Tianjin 300060, China
| | - Shufang Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Daolei Dou
- State Key Laboratory of Medical Chemical Biology, Tianjin 300070, China
| | - Yue Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin 300071, China
- * E-mail: (FL); (RX)
| | - Feifei Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
- * E-mail: (FL); (RX)
| |
Collapse
|
44
|
Chen WM, Wu CS, Liu JL, Yeh CM, Tseng L, Huang HC, Chang PJ, Wu SF. Expression of Helios in gastric tumor cells predicts better survival in gastric cancer patients. J Cancer Res Clin Oncol 2016; 142:2375-82. [PMID: 27576507 DOI: 10.1007/s00432-016-2223-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/20/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE Helios belongs to Ikaros family, which plays an important role in the cell-fate decision and control cell proliferation; abnormal expressions in leukemia are associated with poor prognosis. In this study, we investigated the Helios expression between Helicobacter pylori infection and prognosis in gastric cancer patients. METHODS A total of 67 gastric cancer patients who received partial or full gastrectomies were enrolled. Helios expression by immunohistochemistry and mRNA was investigated with the clinical stage, Helicobacter pylori infection, CD4 expression, FoxP3 expression and prognosis. RESULTS From the immunohistochemistry stain, we found that the Helios was expressed in both cancer cell and tumor-infiltrated lymphocytes. The high expression of Helios in gastric tumor cells had a better median overall survival rate in gastric cancer patients (50.7 ± 3.2 vs. 34.1 ± 4.9 months; P = 0.015), Helicobacter pylori-infected patients (51.1 ± 3.5 vs. 30.4 ± 5.1 months; P = 0.007) and advanced gastric cancer patients (42.1 ± 5.5 vs. 23.2 ± 4.8 months; P = 0.043). From multivariate analysis, the Helios expression in gastric tumor cells was an independent factor to predict better survival in all gastric cancers (HR = 2.78; 95 % confidence interval [CI], 1.09-7.09; P = 0.032) and advanced gastric cancer patients (HR = 2.85; 95 % confidence interval [CI], 1.00-8.13; P = 0.03). CONCLUSIONS Higher expression of Helios in gastric tumor cells predicts better survival in gastric cancer patients, especially for Helicobacter pylori-infected and advanced-stage gastric cancer patients.
Collapse
Affiliation(s)
- Wei-Ming Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Shyong Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Lan Liu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Pathology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chia-Ming Yeh
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, No.168, University Rd., Min-Hsiung, Chia-Yi, 62247, Taiwan, Republic of China
| | - Libby Tseng
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, No.168, University Rd., Min-Hsiung, Chia-Yi, 62247, Taiwan, Republic of China
| | - Hao-Chun Huang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Fen Wu
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, No.168, University Rd., Min-Hsiung, Chia-Yi, 62247, Taiwan, Republic of China.
| |
Collapse
|
45
|
Lopes BA, Meyer C, Barbosa TC, zur Stadt U, Horstmann M, Venn NC, Heatley S, White DL, Sutton R, Pombo-de-Oliveira MS, Marschalek R, Emerenciano M. COBL is a novel hotspot for IKZF1 deletions in childhood acute lymphoblastic leukemia. Oncotarget 2016; 7:53064-53073. [PMID: 27419633 PMCID: PMC5288169 DOI: 10.18632/oncotarget.10590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022] Open
Abstract
IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in childhood B-cell precursor acute lymphoblastic leukemia. Because of its clinical importance, we previously mapped breakpoints of intragenic deletions and developed a multiplex PCR assay to detect recurrent intragenic ΔIKZF1. Since the multiplex PCR was not able to detect complete deletions (IKZF1 Δ1-8), which account for ~30% of all ΔIKZF1, we aimed at investigating the genomic scenery of IKZF1 Δ1-8. Six samples of cases with IKZF1 Δ1-8 were analyzed by microarray assay, which identified monosomy 7, isochromosome 7q, and large interstitial deletions presenting breakpoints within COBL gene. Then, we established a multiplex ligation-probe amplification (MLPA) assay and screened copy number alterations within chromosome 7 in 43 diagnostic samples with IKZF1 Δ1-8. Our results revealed that monosomy and large interstitial deletions within chromosome 7 are the main causes of IKZF1 Δ1-8. Detailed analysis using long distance inverse PCR showed that six patients (16%) had large interstitial deletions starting within intronic regions of COBL at diagnosis, which is ~611 Kb downstream of IKZF1, suggesting that COBL is a hotspot for ΔIKZF1. We also investigated a series of 25 intragenic deletions (Δ2-8, Δ3-8 or Δ4-8) and 24 relapsed samples, and found one IKZF1-COBL tail-to-tail fusion, thus supporting that COBL is a novel hotspot for ΔIKZF1. Finally, using RIC score methodology, we show that breakpoint sequences of IKZF1 Δ1-8 are not analog to RAG-recognition sites, suggesting a different mechanism of error promotion than that suggested for intragenic ΔIKZF1.
Collapse
Affiliation(s)
- Bruno Almeida Lopes
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Claus Meyer
- Diagnostic Center of Acute Leukemia/Institute of Pharmaceutical Biology/ZAFES, Goethe-University of Frankfurt, Biocenter, Germany
| | - Thayana Conceição Barbosa
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Udo zur Stadt
- Center for Diagnostics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Martin Horstmann
- Center for Diagnostics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola C. Venn
- Children's Cancer Institute, Lowy Cancer Research Centre UNSW, Sydney, New South Wales, Australia
| | - Susan Heatley
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Deborah L. White
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Rosemary Sutton
- Children's Cancer Institute, Lowy Cancer Research Centre UNSW, Sydney, New South Wales, Australia
| | - Maria S. Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Rolf Marschalek
- Diagnostic Center of Acute Leukemia/Institute of Pharmaceutical Biology/ZAFES, Goethe-University of Frankfurt, Biocenter, Germany
| | - Mariana Emerenciano
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
46
|
Changing of IKZF1 genotype during Philadelphia-negative precursor-B acute lymphoblastic leukemia progression: a short clinical report. Leuk Res Rep 2016; 6:15-9. [PMID: 27489764 PMCID: PMC4962816 DOI: 10.1016/j.lrr.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/19/2016] [Indexed: 11/30/2022] Open
Abstract
The case demonstrated a rare event of clonal heterogeneity by IKZF1 gene status in BCRABL1- ALL. IKZF1 deletions are secondary events in ALL caused by clonal evolution during the treatment. It's prognostic significance could be more crucial in BCR-ABL- rather than in BCR-ABL + ALL. IKZF1 gene alterations may be determined and proved at the genome, expression and protein level. IKZF1 deletions are suitable for MRD detection but not stable compared to Ig/TCR rearrangement.
Collapse
|
47
|
He L, Gao S, Zhu Z, Chen S, Gu H. Ikaros expression sensitizes leukemic cells to the chemotherapeutic drug doxorubicin. Oncol Lett 2016; 12:1178-1182. [PMID: 27446415 DOI: 10.3892/ol.2016.4680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/17/2016] [Indexed: 11/06/2022] Open
Abstract
Ikaros is an important transcription factor involved in the development and differentiation of hematopoietic cells. However, its role in the treatment of hematopoietic malignancies such as leukemia is less well understood. In the present study, it was observed by data mining of the Oncomine database that high expression levels of full-length Ikaros (IK1) is correlated with increased sensitivity of cancer cells to treatments with chemotherapeutic drugs, including doxorubicin (DOX). To examine the functional significance of this observation, the expression of IK1 in a leukemia cell line was altered, and the response of leukemic cells to DOX treatment was analyzed. It was observed that overexpression of IK1 could enhance DOX-induced apoptosis, while knockdown of IK1 attenuated DOX-induced apoptosis in leukemic cells. Further experiments demonstrated that IK1 sensitized leukemic cells to DOX-induced apoptosis, probably through upregulation of caspase-9. These data suggest that high expression levels of IK1 may be a potential biomarker to predict responses of leukemia patients to treatment with chemotherapy.
Collapse
Affiliation(s)
- Licai He
- Department of Biochemistry and Molecular Biology, School of Laboratory Medical and Life Science, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, Zhejiang 325035, P.R. China
| | - Shenmeng Gao
- Department of Internal Medicine, Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhenfeng Zhu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medical and Life Science, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, Zhejiang 325035, P.R. China
| | - Shang Chen
- Department of Biochemistry and Molecular Biology, School of Laboratory Medical and Life Science, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, Zhejiang 325035, P.R. China
| | - Haihua Gu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medical and Life Science, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, Zhejiang 325035, P.R. China; Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
48
|
Fang J, Liu X, Bolanos L, Barker B, Rigolino C, Cortelezzi A, Oliva EN, Cuzzola M, Grimes HL, Fontanillo C, Komurov K, MacBeth K, Starczynowski DT. A calcium- and calpain-dependent pathway determines the response to lenalidomide in myelodysplastic syndromes. Nat Med 2016; 22:727-34. [PMID: 27294874 PMCID: PMC5507589 DOI: 10.1038/nm.4127] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/13/2016] [Indexed: 12/15/2022]
Abstract
Despite the high response rates of individuals with myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)) to treatment with lenalidomide (LEN) and the recent identification of cereblon (CRBN) as the molecular target of LEN, the cellular mechanism by which LEN eliminates MDS clones remains elusive. Here we performed an RNA interference screen to delineate gene regulatory networks that mediate LEN responsiveness in an MDS cell line, MDSL. We identified GPR68, which encodes a G-protein-coupled receptor that has been implicated in calcium metabolism, as the top candidate gene for modulating sensitivity to LEN. LEN induced GPR68 expression via IKAROS family zinc finger 1 (IKZF1), resulting in increased cytosolic calcium levels and activation of a calcium-dependent calpain, CAPN1, which were requisite steps for induction of apoptosis in MDS cells and in acute myeloid leukemia (AML) cells. In contrast, deletion of GPR68 or inhibition of calcium and calpain activation suppressed LEN-induced cytotoxicity. Moreover, expression of calpastatin (CAST), an endogenous CAPN1 inhibitor that is encoded by a gene (CAST) deleted in del(5q) MDS, correlated with LEN responsiveness in patients with del(5q) MDS. Depletion of CAST restored responsiveness of LEN-resistant non-del(5q) MDS cells and AML cells, providing an explanation for the superior responses of patients with del(5q) MDS to LEN treatment. Our study describes a cellular mechanism by which LEN, acting through CRBN and IKZF1, has cytotoxic effects in MDS and AML that depend on a calcium- and calpain-dependent pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Apoptosis/drug effects
- Apoptosis/genetics
- Calcium/metabolism
- Calcium-Binding Proteins/genetics
- Calpain/drug effects
- Calpain/genetics
- Calpain/metabolism
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Regulatory Networks
- Humans
- Ikaros Transcription Factor/drug effects
- Ikaros Transcription Factor/genetics
- Ikaros Transcription Factor/metabolism
- Immunologic Factors/pharmacology
- Lenalidomide
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Peptide Hydrolases/metabolism
- RNA Interference
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Thalidomide/analogs & derivatives
- Thalidomide/pharmacology
- Ubiquitin-Protein Ligases
Collapse
Affiliation(s)
- Jing Fang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Xiaona Liu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Lyndsey Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Brenden Barker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Carmela Rigolino
- Bone Marrow Transplant Unit, Azienda Ospedaliera Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Agostino Cortelezzi
- Department of Hematology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Esther N Oliva
- Hematology Unit, Azienda Ospedaliera Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Maria Cuzzola
- Bone Marrow Transplant Unit, Azienda Ospedaliera Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - H Leighton Grimes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | | | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Kyle MacBeth
- Celgene Corporation, San Francisco, California, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
49
|
Rate of CRL4(CRBN) substrate Ikaros and Aiolos degradation underlies differential activity of lenalidomide and pomalidomide in multiple myeloma cells by regulation of c-Myc and IRF4. Blood Cancer J 2015; 5:e354. [PMID: 26430725 PMCID: PMC4635186 DOI: 10.1038/bcj.2015.66] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/09/2015] [Indexed: 12/14/2022] Open
Abstract
Recent discoveries suggest that the critical events leading to the anti-proliferative activity of the IMiD immunomodulatory agents lenalidomide and pomalidomide in multiple myeloma (MM) cells are initiated by Cereblon-dependent ubiquitination and proteasomal degradation of substrate proteins Ikaros (IKZF1) and Aiolos (IKZF3). By performing kinetic analyses, we found that the downregulation or proteasomal degradation of Ikaros and Aiolos led to specific and sequential downregulation of c-Myc followed by IRF4 and subsequent growth inhibition and apoptosis. Notably, to ensure growth inhibition and cell death, sustained downregulation of Ikaros and Aiolos, c-Myc or IRF4 expression was required. In addition, we found that the half-maximal rate, rather than the final extent of Ikaros and Aiolos degradation, correlated to the relative efficacy of growth inhibition by lenalidomide or pomalidomide. Finally, we observed that all four transcription factors were elevated in primary MM samples compared with normal plasma cells. Taken together, our results suggest a functional link between Ikaros and Aiolos, and the pathological dysregulation of c-Myc and IRF4, and provide a new mechanistic understanding of the relative efficacy of lenalidomide and pomalidomide based on the kinetics of substrate degradation and downregulation of their downstream targets.
Collapse
|
50
|
Takatori H, Kawashima H, Matsuki A, Meguro K, Tanaka S, Iwamoto T, Sanayama Y, Nishikawa N, Tamachi T, Ikeda K, Suto A, Suzuki K, Kagami SI, Hirose K, Kubo M, Hori S, Nakajima H. Helios Enhances Treg Cell Function in Cooperation With FoxP3. Arthritis Rheumatol 2015; 67:1491-502. [PMID: 25733061 DOI: 10.1002/art.39091] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 02/24/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Helios+FoxP3+CD4+ (Helios+) Treg cells are believed to be involved in the regulation of various autoimmune diseases; however, the regulatory mechanisms underlying the development of Helios+ Treg cells remain uncertain. This study was undertaken to elucidate the regulatory mechanisms of Helios expression in CD4+ T cells and its roles in transforming growth factor β (TGFβ)-induced Treg cell function. METHODS We examined the expression of Helios in CD4+ T cells in patients with rheumatoid arthritis by DNA microarray analysis before and after treatment with biologic agents. We also examined the effect of interleukin-6 (IL-6) and TGFβ on Helios expression in CD4+ T cells in humans and mice. The effect of forced expression of Helios on murine induced Treg cell function was also examined. The role of FoxP3 in the induction and function of Helios was assessed by using CD4+ T cells from FoxP3-deficient scurfy mice. RESULTS Tocilizumab, but not tumor necrosis factor (TNF) inhibitors or abatacept, increased Helios expression in CD4+ T cells in patients with a good response. IL-6 inhibited the TGFβ-induced development of Helios+ induced Treg cells in both humans and mice. Both cell-intrinsic FoxP3 expression and TGFβ signaling were required for Helios induction in murine induced Treg cells. The forced expression of Helios enhanced the expression of various Treg cell-related molecules and the suppressive function in murine induced Treg cells. Helios-mediated enhancement of the suppressive function of induced Treg cells was obvious in FoxP3-sufficient CD4+ T cells but not in FoxP3-deficient CD4+ T cells. CONCLUSION Our findings indicate that Helios enhances induced Treg cell function in cooperation with FoxP3.
Collapse
Affiliation(s)
| | | | - Ayako Matsuki
- Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Shigeru Tanaka
- Chiba University Graduate School of Medicine, Chiba, Japan
| | - Taro Iwamoto
- Chiba University Graduate School of Medicine, Chiba, Japan
| | | | | | | | - Kei Ikeda
- Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akira Suto
- Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kotaro Suzuki
- Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Koichi Hirose
- Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masato Kubo
- Tokyo University of Science, Noda Campus, Chiba, Japan
| | | | | |
Collapse
|