1
|
Zheng A, Schmid S. A review of the neural basis underlying the acoustic startle response with a focus on recent developments in mammals. Neurosci Biobehav Rev 2023; 148:105129. [PMID: 36914078 DOI: 10.1016/j.neubiorev.2023.105129] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
The startle response consists of whole-body muscle contractions, eye-blink, accelerated heart rate, and freezing in response to a strong, sudden stimulus. It is evolutionarily preserved and can be observed in any animal that can perceive sensory signals, indicating the important protective function of startle. Startle response measurements and its alterations have become a valuable tool for exploring sensorimotor processes and sensory gating, especially in the context of pathologies of psychiatric disorders. The last reviews on the neural substrates underlying acoustic startle were published around 20 years ago. Advancements in methods and techniques have since allowed new insights into acoustic startle mechanisms. This review is focused on the neural circuitry that drives the primary acoustic startle response in mammals. However, there have also been very successful efforts to identify the acoustic startle pathway in other vertebrates and invertebrates in the past decades, so at the end we briefly summarize these studies and comment on the similarities and differences between species.
Collapse
Affiliation(s)
- Alice Zheng
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada.
| |
Collapse
|
2
|
Zheng A, Scott KE, Schormans AL, Mann R, Allman BL, Schmid S. Differences in Startle and Prepulse Inhibition in Contactin-associated Protein-like 2 Knock-out Rats are Associated with Sex-specific Alterations in Brainstem Neural Activity. Neuroscience 2023; 513:96-110. [PMID: 36708798 DOI: 10.1016/j.neuroscience.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
The contactin-associated protein-like 2 (CNTNAP2) gene encodes for the CASPR2 protein, which plays an essential role in neurodevelopment. Mutations in CNTNAP2 are associated with neurodevelopmental disorders, including autism spectrum disorder and schizophrenia. Rats with a loss of function mutation in the Cntnap2 gene show increased acoustic startle response (ASR) and decreased prepulse inhibition (PPI). The neural basis of this altered auditory processing in Cntnap2 knock-out rats is currently unknown. Auditory brainstem recordings previously revealed no differences between the genotypes. The next step is to investigate brainstem structures outside of the primary auditory pathway that mediate ASR and PPI, which are the pontine reticular nucleus (PnC) and pedunculopontine tegmentum (PPTg), respectively. Multi-unit responses from the PnC and PPTg in vivo of the same rats revealed sex-specific effects of loss of CASPR2 expression on PnC activity, but no effects on PPTg activity. Female Cntnap2-/- rats showed considerably increased PnC firing rates compared with female wildtypes, whereas the difference between the genotypes was modest in male rats. In contrast, for both females and males we found meager differences between the genotypes for PPTg firing rates and inhibition of PnC firing rates, indicating that altered firing rates of these brainstem structures are not responsible for decreased PPI in Cntnap2-/- rats. We conclude that the auditory processing changes seen in Cntnap2-/- rats are associated with, but cannot be fully explained by, differences in PnC firing rates, and that a loss of function mutation in the Cntnap2 gene has differential effects depending on sex.
Collapse
Affiliation(s)
- Alice Zheng
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Kaela E Scott
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Ashley L Schormans
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Rajkamalpreet Mann
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Brian L Allman
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Susanne Schmid
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada.
| |
Collapse
|
3
|
Santistevan NJ, Nelson JC, Ortiz EA, Miller AH, Kenj Halabi D, Sippl ZA, Granato M, Grinblat Y. cacna2d3, a voltage-gated calcium channel subunit, functions in vertebrate habituation learning and the startle sensitivity threshold. PLoS One 2022; 17:e0270903. [PMID: 35834485 PMCID: PMC9282658 DOI: 10.1371/journal.pone.0270903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The ability to filter sensory information into relevant versus irrelevant stimuli is a fundamental, conserved property of the central nervous system and is accomplished in part through habituation learning. Synaptic plasticity that underlies habituation learning has been described at the cellular level, yet the genetic regulators of this plasticity remain poorly understood, as do circuits that mediate sensory filtering. METHODS To identify genes critical for plasticity, a forward genetic screen for zebrafish genes that mediate habituation learning was performed, which identified a mutant allele, doryp177, that caused reduced habituation of the acoustic startle response. In this study, we combine whole-genome sequencing with behavioral analyses to characterize and identify the gene affected in doryp177 mutants. RESULTS Whole-genome sequencing identified the calcium voltage-gated channel auxiliary subunit alpha-2/delta-3 (cacna2d3) as a candidate gene affected in doryp177 mutants. Behavioral characterization of larvae homozygous for two additional, independently derived mutant alleles of cacna2d3, together with failure of these alleles to complement doryp177, confirmed a critical role for cacna2d3 in habituation learning. Notably, detailed analyses of the acoustic response in mutant larvae also revealed increased startle sensitivity to acoustic stimuli, suggesting a broader role for cacna2d3 in controlling innate response thresholds to acoustic stimuli. CONCLUSIONS Taken together, our data demonstrate a critical role for cacna2d3 in sensory filtering, a process that is disrupted in human CNS disorders, e.g. ADHD, schizophrenia, and autism.
Collapse
Affiliation(s)
- Nicholas J. Santistevan
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Elelbin A. Ortiz
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andrew H. Miller
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- Neuroscience Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Dima Kenj Halabi
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Zoë A. Sippl
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail: (MG); (YG)
| | - Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (MG); (YG)
| |
Collapse
|
4
|
Kim YH, Schrode KM, Engel J, Vicencio-Jimenez S, Rodriguez G, Lee HK, Lauer AM. Auditory Behavior in Adult-Blinded Mice. J Assoc Res Otolaryngol 2022; 23:225-239. [PMID: 35084628 PMCID: PMC8964904 DOI: 10.1007/s10162-022-00835-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022] Open
Abstract
Cross-modal plasticity occurs when the function of remaining senses is enhanced following deprivation or loss of a sensory modality. Auditory neural responses are enhanced in the auditory cortex, including increased sensitivity and frequency selectivity, following short-term visual deprivation in adult mice (Petrus et al. Neuron 81:664-673, 2014). Whether or not these visual deprivation-induced neural changes translate into improved auditory perception and performance remains unclear. As an initial investigation of the effects of adult visual deprivation on auditory behaviors, CBA/CaJ mice underwent binocular enucleation at 3-4 weeks old and were tested on a battery of learned behavioral tasks, acoustic startle response (ASR), and prepulse inhibition (PPI) tests beginning at least 2 weeks after the enucleation procedure. Auditory brain stem responses (ABRs) were also measured to screen for potential effects of visual deprivation on non-behavioral hearing function. Control and enucleated mice showed similar tone detection sensitivity and frequency discrimination in a conditioned lick suppression test. Both groups showed normal reactivity to sound as measured by ASR in a quiet background. However, when startle-eliciting stimuli were presented in noise, enucleated mice showed decreased ASR amplitude relative to controls. Control and enucleated mice displayed no significant differences in ASR habituation, PPI tests, or ABR thresholds, or wave morphology. Our findings suggest that while adult-onset visual deprivation induces cross-modal plasticity at the synaptic and circuit levels, it does not substantially influence simple auditory behavioral performance.
Collapse
Affiliation(s)
- Ye-Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Katrina M Schrode
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - James Engel
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sergio Vicencio-Jimenez
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Gabriela Rodriguez
- Cell, Molecular, Developmental Biology, and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, USA
| | - Hey-Kyoung Lee
- Cell, Molecular, Developmental Biology, and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.,Zanvyl-Krieger Mind/Brain Institute and Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Möhrle D, Wang W, Whitehead SN, Schmid S. GABA B Receptor Agonist R-Baclofen Reverses Altered Auditory Reactivity and Filtering in the Cntnap2 Knock-Out Rat. Front Integr Neurosci 2021; 15:710593. [PMID: 34489651 PMCID: PMC8417788 DOI: 10.3389/fnint.2021.710593] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
Altered sensory information processing, and auditory processing, in particular, is a common impairment in individuals with autism spectrum disorder (ASD). One prominent hypothesis for the etiology of ASD is an imbalance between neuronal excitation and inhibition. The selective GABAB receptor agonist R-Baclofen has been shown previously to improve social deficits and repetitive behaviors in several mouse models for neurodevelopmental disorders including ASD, and its formulation Arbaclofen has been shown to ameliorate social avoidance symptoms in some individuals with ASD. The present study investigated whether R-Baclofen can remediate ASD-related altered sensory processing reliant on excitation/inhibition imbalance in the auditory brainstem. To assess a possible excitation/inhibition imbalance in the startle-mediating brainstem underlying ASD-like auditory-evoked behaviors, we detected and quantified brain amino acid levels in the nucleus reticularis pontis caudalis (PnC) of rats with a homozygous loss-of-function mutation in the ASD-linked gene Contactin-associated protein-like 2 (Cntnap2) and their wildtype (WT) littermates using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS). Abnormal behavioral read-outs of brainstem auditory signaling in Cntnap2 KO rats were accompanied by increased levels of GABA, glutamate, and glutamine in the PnC. We then compared the effect of R-Baclofen on behavioral read-outs of brainstem auditory signaling in Cntnap2 KO and WT rats. Auditory reactivity, sensory filtering, and sensorimotor gating were tested in form of acoustic startle response input-output functions, short-term habituation, and prepulse inhibition before and after acute administration of R-Baclofen (0.75, 1.5, and 3 mg/kg). Systemic R-Baclofen treatment improved disruptions in sensory filtering in Cntnap2 KO rats and suppressed exaggerated auditory startle responses, in particular to moderately loud sounds. Lower ASR thresholds in Cntnap2 KO rats were increased in a dose-dependent fashion, with the two higher doses bringing thresholds close to controls, whereas shorter ASR peak latencies at the threshold were further exacerbated. Impaired prepulse inhibition increased across various acoustic prepulse conditions after administration of R-Baclofen in Cntnap2 KO rats, whereas R-Baclofen did not affect prepulse inhibition in WT rats. Our findings suggest that GABAB receptor agonists may be useful for pharmacologically targeting multiple aspects of sensory processing disruptions involving neuronal excitation/inhibition imbalances in ASD.
Collapse
Affiliation(s)
- Dorit Möhrle
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Wenxuan Wang
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Kryszkowski W, Boczek T. The G Protein-Coupled Glutamate Receptors as Novel Molecular Targets in Schizophrenia Treatment-A Narrative Review. J Clin Med 2021; 10:jcm10071475. [PMID: 33918323 PMCID: PMC8038150 DOI: 10.3390/jcm10071475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/02/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology.
Collapse
Affiliation(s)
- Waldemar Kryszkowski
- General Psychiatric Ward, Babinski Memorial Hospital in Lodz, 91229 Lodz, Poland;
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 92215 Lodz, Poland
- Correspondence:
| |
Collapse
|
7
|
Bátora D, Zsigmond Á, Lőrincz IZ, Szegvári G, Varga M, Málnási-Csizmadia A. Subcellular Dissection of a Simple Neural Circuit: Functional Domains of the Mauthner-Cell During Habituation. Front Neural Circuits 2021; 15:648487. [PMID: 33828462 PMCID: PMC8019725 DOI: 10.3389/fncir.2021.648487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Sensorimotor integration is a pivotal feature of the nervous system for ensuring a coordinated motor response to external stimuli. In essence, such neural circuits can optimize behavioral performance based on the saliency of environmental cues. In zebrafish, habituation of the acoustic startle response (ASR) is a simple behavior integrated into the startle command neurons, called the Mauthner cells. Whereas the essential neuronal components that regulate the startle response have been identified, the principles of how this regulation is integrated at the subcellular regions of the Mauthner cell, which in turn modulate the performance of the behavior, is still not well understood. Here, we reveal mechanistically distinct dynamics of excitatory inputs converging onto the lateral dendrite (LD) and axon initial segment (AIS) of the Mauthner cell by in vivo imaging glutamate release using iGluSnFR, an ultrafast glutamate sensing fluorescent reporter. We find that modulation of glutamate release is dependent on NMDA receptor activity exclusively at the AIS, which is responsible for setting the sensitivity of the startle reflex and inducing a depression of synaptic activity during habituation. In contrast, glutamate-release at the LD is not regulated by NMDA receptors and serves as a baseline component of Mauthner cell activation. Finally, using in vivo calcium imaging at the feed-forward interneuron population component of the startle circuit, we reveal that these cells indeed play pivotal roles in both setting the startle threshold and habituation by modulating the AIS of the Mauthner cell. These results indicate that a command neuron may have several functionally distinct regions to regulate complex aspects of behavior.
Collapse
Affiliation(s)
- Dániel Bátora
- MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary
| | | | | | - Gábor Szegvári
- MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary
| | | | - András Málnási-Csizmadia
- MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary.,Motorpharma Limited, Budapest, Hungary
| |
Collapse
|
8
|
Nelson JC, Witze E, Ma Z, Ciocco F, Frerotte A, Randlett O, Foskett JK, Granato M. Acute Regulation of Habituation Learning via Posttranslational Palmitoylation. Curr Biol 2020; 30:2729-2738.e4. [PMID: 32502414 PMCID: PMC8446937 DOI: 10.1016/j.cub.2020.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/06/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
Habituation is an adaptive learning process that enables animals to adjust innate behaviors to changes in their environment. Despite its well-documented implications for a wide diversity of behaviors, the molecular and cellular basis of habituation learning is not well understood. Using whole-genome sequencing of zebrafish mutants isolated in an unbiased genetic screen, we identified the palmitoyltransferase Huntingtin interacting protein 14 (Hip14) as a critical regulator of habituation learning. We demonstrate that Hip14 regulates depression of sensory inputs onto an identified hindbrain neuron and provide evidence that Hip14 palmitoylates the Shaker-like K+ voltage-gated channel subunit (Kv1.1), thereby regulating Kv1.1 subcellular localization. Furthermore, we show that, like for Hip14, loss of Kv1.1 leads to habituation deficits and that Hip14 is dispensable in development and instead acts acutely to promote habituation. Combined, these results uncover a previously unappreciated role for acute posttranslational palmitoylation at defined circuit components to regulate learning.
Collapse
Affiliation(s)
- Jessica C Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Eric Witze
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Zhongming Ma
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Francesca Ciocco
- Department of Biology, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
| | - Abigaile Frerotte
- Department of Biology, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
| | - Owen Randlett
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Fenckova M, Blok LER, Asztalos L, Goodman DP, Cizek P, Singgih EL, Glennon JC, IntHout J, Zweier C, Eichler EE, von Reyn CR, Bernier RA, Asztalos Z, Schenck A. Habituation Learning Is a Widely Affected Mechanism in Drosophila Models of Intellectual Disability and Autism Spectrum Disorders. Biol Psychiatry 2019; 86:294-305. [PMID: 31272685 PMCID: PMC7053436 DOI: 10.1016/j.biopsych.2019.04.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Although habituation is one of the most ancient and fundamental forms of learning, its regulators and its relevance for human disease are poorly understood. METHODS We manipulated the orthologs of 286 genes implicated in intellectual disability (ID) with or without comorbid autism spectrum disorder (ASD) specifically in Drosophila neurons, and we tested these models in light-off jump habituation. We dissected neuronal substrates underlying the identified habituation deficits and integrated genotype-phenotype annotations, gene ontologies, and interaction networks to determine the clinical features and molecular processes that are associated with habituation deficits. RESULTS We identified >100 genes required for habituation learning. For 93 of these genes, a role in habituation learning was previously unknown. These genes characterize ID disorders with macrocephaly and/or overgrowth and comorbid ASD. Moreover, individuals with ASD from the Simons Simplex Collection carrying damaging de novo mutations in these genes exhibit increased aberrant behaviors associated with inappropriate, stereotypic speech. At the molecular level, ID genes required for normal habituation are enriched in synaptic function and converge on Ras/mitogen-activated protein kinase (Ras/MAPK) signaling. Both increased Ras/MAPK signaling in gamma-aminobutyric acidergic (GABAergic) neurons and decreased Ras/MAPK signaling in cholinergic neurons specifically inhibit the adaptive habituation response. CONCLUSIONS Our work supports the relevance of habituation learning to ASD, identifies an unprecedented number of novel habituation players, supports an emerging role for inhibitory neurons in habituation, and reveals an opposing, circuit-level-based mechanism for Ras/MAPK signaling. These findings establish habituation as a possible, widely applicable functional readout and target for pharmacologic intervention in ID/ASD.
Collapse
Affiliation(s)
- Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura E R Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lenke Asztalos
- Aktogen Limited, Department of Genetics, University of Cambridge, Cambridge, United Kingdom; Aktogen Hungary Limited, Bay Zoltán Nonprofit Limited for Applied Research, Institute for Biotechnology, Szeged, Hungary
| | - David P Goodman
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Pavel Cizek
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joanna IntHout
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington; Howard Hughes Medical Institute, University of Washington, Seattle, Washington
| | - Catherine R von Reyn
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Zoltan Asztalos
- Aktogen Limited, Department of Genetics, University of Cambridge, Cambridge, United Kingdom; Aktogen Hungary Limited, Bay Zoltán Nonprofit Limited for Applied Research, Institute for Biotechnology, Szeged, Hungary; Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Coll-Tané M, Krebbers A, Castells-Nobau A, Zweier C, Schenck A. Intellectual disability and autism spectrum disorders 'on the fly': insights from Drosophila. Dis Model Mech 2019; 12:dmm039180. [PMID: 31088981 PMCID: PMC6550041 DOI: 10.1242/dmm.039180] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASD) are frequently co-occurring neurodevelopmental disorders and affect 2-3% of the population. Rapid advances in exome and genome sequencing have increased the number of known implicated genes by threefold, to more than a thousand. The main challenges in the field are now to understand the various pathomechanisms associated with this bewildering number of genetic disorders, to identify new genes and to establish causality of variants in still-undiagnosed cases, and to work towards causal treatment options that so far are available only for a few metabolic conditions. To meet these challenges, the research community needs highly efficient model systems. With an increasing number of relevant assays and rapidly developing novel methodologies, the fruit fly Drosophila melanogaster is ideally positioned to change gear in ID and ASD research. The aim of this Review is to summarize some of the exciting work that already has drawn attention to Drosophila as a model for these disorders. We highlight well-established ID- and ASD-relevant fly phenotypes at the (sub)cellular, brain and behavioral levels, and discuss strategies of how this extraordinarily efficient and versatile model can contribute to 'next generation' medical genomics and to a better understanding of these disorders.
Collapse
Affiliation(s)
- Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alina Krebbers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
11
|
Altered Auditory Processing, Filtering, and Reactivity in the Cntnap2 Knock-Out Rat Model for Neurodevelopmental Disorders. J Neurosci 2018; 38:8588-8604. [PMID: 30126973 DOI: 10.1523/jneurosci.0759-18.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Sensory processing, and auditory processing in particular, is altered in individuals with neurodevelopmental disorders such as autism spectrum disorders (ASDs). The typical maturation of the auditory system is perturbed in these individuals during early development, which may underlie altered auditory reactivity that persists in later life. Of the many genes that regulate the auditory system development, loss-of-function mutations in the CNTNAP2 gene are strongly associated with language processing deficits and ASD. Therefore, using a novel Cntnap2 knock-out rat model, we tested the impact of Cntnap2 loss on auditory processing, filtering, and reactivity throughout development and young adulthood in male and female animals. Although hearing thresholds were not altered in Cntnap2 knock-out animals, we found a reduction in response amplitudes and a delay in response latency of the auditory brainstem response (ABR) in juvenile Cntnap2 knock-out rats compared with age-matched controls. Amplitudes and latency of the ABR largely normalized by adulthood, indicating a delayed maturation of auditory processing pathways in Cntnap2 knock-out rats. Despite the reduced ABR amplitudes, adolescent Cntnap2 knock-out animals displayed increased startle reactivity accompanied by disruptions in sensory filtering and sensorimotor gating across various conditions, most of which persisted in adulthood. All of these observations show striking parallels to disruptions reported in ASD. Our results also imply that developmental disruptions of sensory signal processing are associated with persistent changes in neural circuitries responsible for implicit auditory evoked behavior, emphasizing the need for interventions that target sensory processing disruptions early during development in ASD.SIGNIFICANCE STATEMENT This is the first study of brainstem auditory processing in a novel knock-out rat model with very high construct and face validity for autism spectrum disorders. Electrophysiological and behavioral measures of implicit auditory-evoked responses were systematically taken across developmental stages. Auditory processing, filtering, and reactivity disruptions show striking similarities to observations in autism. We also show for the first time that, whereas auditory brainstem responses normalize by adulthood, disruptions in brainstem-mediated auditory-evoked behavior persist. This indicates that early developmental perturbations in sensory processing can cause permanent maladaptive changes in circuitries responsible for auditory reactivity, underlining the importance for interventions early during development aiming at normalizing sensory processing.
Collapse
|
12
|
McDiarmid TA, Bernardos AC, Rankin CH. Habituation is altered in neuropsychiatric disorders-A comprehensive review with recommendations for experimental design and analysis. Neurosci Biobehav Rev 2017; 80:286-305. [PMID: 28579490 DOI: 10.1016/j.neubiorev.2017.05.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/29/2017] [Indexed: 02/03/2023]
Abstract
Abnormalities in the simplest form of learning, habituation, have been reported in a variety of neuropsychiatric disorders as etiologically diverse as Autism Spectrum Disorder, Fragile X syndrome, Schizophrenia, Parkinson's Disease, Huntington's Disease, Attention Deficit Hyperactivity Disorder, Tourette's Syndrome, and Migraine. Here we provide the first comprehensive review of what is known about alterations in this form of non-associative learning in each disorder. Across several disorders, abnormal habituation is predictive of symptom severity, highlighting the clinical significance of habituation and its importance to normal cognitive function. Abnormal habituation is discussed within the greater framework of learning theory and how it may relate to disease phenotype either as a cause, symptom, or therapy. Important considerations for the design and interpretation of habituation experiments are outlined with the hope that these will aid both clinicians and basic researchers investigating how this simple form of learning is altered in disease.
Collapse
Affiliation(s)
- Troy A McDiarmid
- Graduate Program in Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Rm F221, 2211 Wesbrook Mall, Vancouver, British Columbia, V6T 2B5, Canada
| | - Aram C Bernardos
- Graduate Program in Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Rm F221, 2211 Wesbrook Mall, Vancouver, British Columbia, V6T 2B5, Canada
| | - Catharine H Rankin
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Rm F221, 2211 Wesbrook Mall, Vancouver, British Columbia, V6T 2B5, Canada.
| |
Collapse
|
13
|
Sinclair D, Oranje B, Razak KA, Siegel SJ, Schmid S. Sensory processing in autism spectrum disorders and Fragile X syndrome-From the clinic to animal models. Neurosci Biobehav Rev 2017; 76:235-253. [PMID: 27235081 PMCID: PMC5465967 DOI: 10.1016/j.neubiorev.2016.05.029] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/08/2016] [Accepted: 05/23/2016] [Indexed: 01/08/2023]
Abstract
Brains are constantly flooded with sensory information that needs to be filtered at the pre-attentional level and integrated into endogenous activity in order to allow for detection of salient information and an appropriate behavioral response. People with Autism Spectrum Disorder (ASD) or Fragile X Syndrome (FXS) are often over- or under-reactive to stimulation, leading to a wide range of behavioral symptoms. This altered sensitivity may be caused by disrupted sensory processing, signal integration and/or gating, and is often being neglected. Here, we review translational experimental approaches that are used to investigate sensory processing in humans with ASD and FXS, and in relevant rodent models. This includes electroencephalographic measurement of event related potentials, neural oscillations and mismatch negativity, as well as habituation and pre-pulse inhibition of startle. We outline robust evidence of disrupted sensory processing in individuals with ASD and FXS, and in respective animal models, focusing on the auditory sensory domain. Animal models provide an excellent opportunity to examine common mechanisms of sensory pathophysiology in order to develop therapeutics.
Collapse
Affiliation(s)
- D Sinclair
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, 125 S 31st St., Philadelphia, PA 19104, USA
| | - B Oranje
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, HP A 01.126 Heidelberglaan 100, CX Utrecht, 3584, The Netherlands; Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Psychiatric Center Glostrup, Ndr. Ringvej 29-67, Glostrup, 2600, Denmark; Faculty of Health Sciences, Department of Neurology, Psychiatry, and Sensory Sciences, University of Copenhagen, Denmark
| | - K A Razak
- Psychology Department, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - S J Siegel
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, 125 S 31st St., Philadelphia, PA 19104, USA
| | - S Schmid
- Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, MSB 470, London, ON N6A 5C1, Canada.
| |
Collapse
|
14
|
BK Channels Mediate Synaptic Plasticity Underlying Habituation in Rats. J Neurosci 2017; 37:4540-4551. [PMID: 28348135 DOI: 10.1523/jneurosci.3699-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 11/21/2022] Open
Abstract
Habituation is a basic form of implicit learning and represents a sensory filter that is disrupted in autism, schizophrenia, and several other mental disorders. Despite extensive research in the past decades on habituation of startle and other escape responses, the underlying neural mechanisms are still not fully understood. There is evidence from previous studies indicating that BK channels might play a critical role in habituation. We here used a wide array of approaches to test this hypothesis. We show that BK channel activation and subsequent phosphorylation of these channels are essential for synaptic depression presumably underlying startle habituation in rats, using patch-clamp recordings and voltage-sensitive dye imaging in slices. Furthermore, positive modulation of BK channels in vivo can enhance short-term habituation. Although results using different approaches do not always perfectly align, together they provide convincing evidence for a crucial role of BK channel phosphorylation in synaptic depression underlying short-term habituation of startle. We also show that this mechanism can be targeted to enhance short-term habituation and therefore to potentially ameliorate sensory filtering deficits associated with psychiatric disorders.SIGNIFICANCE STATEMENT Short-term habituation is the most fundamental form of implicit learning. Habituation also represents a filter for inundating sensory information, which is disrupted in autism, schizophrenia, and other psychiatric disorders. Habituation has been studied in different organisms and behavioral models and is thought to be caused by synaptic depression in respective pathways. The underlying molecular mechanisms, however, are poorly understood. We here identify, for the first time, a BK channel-dependent molecular synaptic mechanism leading to synaptic depression that is crucial for habituation, and we discuss the significance of our findings for potential treatments enhancing habituation.
Collapse
|
15
|
Marsden KC, Granato M. In Vivo Ca(2+) Imaging Reveals that Decreased Dendritic Excitability Drives Startle Habituation. Cell Rep 2015; 13:1733-40. [PMID: 26655893 DOI: 10.1016/j.celrep.2015.10.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/15/2015] [Accepted: 10/20/2015] [Indexed: 01/12/2023] Open
Abstract
Exposure to repetitive startling stimuli induces habitation, a simple form of learning. Despite its simplicity, the precise cellular mechanisms by which repeated stimulation converts a robust behavioral response to behavioral indifference are unclear. Here, we use head-restrained zebrafish larvae to monitor subcellular Ca(2+) dynamics in Mauthner neurons, the startle command neurons, during startle habituation in vivo. Using the Ca(2+) reporter GCaMP6s, we find that the amplitude of Ca(2+) signals in the lateral dendrite of the Mauthner neuron determines startle probability and that depression of this dendritic activity rather than downstream inhibition mediates glycine and N-methyl-D-aspartate (NMDA)-receptor-dependent short-term habituation. Combined, our results suggest a model for habituation learning in which increased inhibitory drive from feedforward inhibitory neurons combined with decreased excitatory input from auditory afferents decreases dendritic and Mauthner neuron excitability.
Collapse
Affiliation(s)
- Kurt C Marsden
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Goddyn H, Callaerts-Vegh Z, D'Hooge R. Functional Dissociation of Group III Metabotropic Glutamate Receptors Revealed by Direct Comparison between the Behavioral Profiles of Knockout Mouse Lines. Int J Neuropsychopharmacol 2015; 18:pyv053. [PMID: 25999589 PMCID: PMC4756720 DOI: 10.1093/ijnp/pyv053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Group III metabotropic glutamate receptors (mGlu4, mGlu7, mGlu8) display differential brain distribution, which suggests different behavioral functions. However, comparison across the available animal studies remains methodologically hazardous and controversial. The present report directly compares knockouts for each group III receptor subtype using a single behavioral test battery and multivariate analysis. METHODS The behavioral phenotypes of C57BL/6J mice lacking mGlu4, mGlu7, or mGlu8 and their respective littermates were examined using a multimetric test battery, which included elements of neuromotor performance, exploratory behavior, and learning and memory. Multivariate statistical methods were used to identify subtype-specific behavioral profiles and variables that distinguished between these mouse lines. RESULTS It generally appears that mGlu7 plays a significant role in hippocampus-dependent spatial learning and in some fear-related behaviors, whereas mGlu4 is most clearly involved in startle and motivational processes. Excepting its influence on body weight, the effect of mGlu8 deletion on behavior appears more subtle than that of the other group III receptors. These receptors have been proposed as potential drug targets for a variety of psychopathological conditions. CONCLUSION On the basis of these controlled comparisons, we presently conclude that the different group III receptors indeed have quite distinct behavioral functions.
Collapse
Affiliation(s)
- Hannelore Goddyn
- KU Leuven, Laboratory of Biological Psychology, Leuven, Belgium (Drs Goddyn, Callaerts-Vegh, and D'Hooge)
| | - Zsuzsanna Callaerts-Vegh
- KU Leuven, Laboratory of Biological Psychology, Leuven, Belgium (Drs Goddyn, Callaerts-Vegh, and D'Hooge)
| | - Rudi D'Hooge
- KU Leuven, Laboratory of Biological Psychology, Leuven, Belgium (Drs Goddyn, Callaerts-Vegh, and D'Hooge).
| |
Collapse
|
17
|
Pinnock F, Bosch D, Brown T, Simons N, Yeomans JR, DeOliveira C, Schmid S. Nicotine receptors mediating sensorimotor gating and its enhancement by systemic nicotine. Front Behav Neurosci 2015; 9:30. [PMID: 25717295 PMCID: PMC4324144 DOI: 10.3389/fnbeh.2015.00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/28/2015] [Indexed: 12/02/2022] Open
Abstract
Prepulse inhibition (PPI) of startle occurs when intensity stimuli precede stronger startle-inducing stimuli by 10–1000 ms. PPI deficits are found in individuals with schizophrenia and other psychiatric disorders, and they correlate with other cognitive impairments. Animal research and clinical studies have demonstrated that both PPI and cognitive function can be enhanced by nicotine. PPI has been shown to be mediated, at least in part, by mesopontine cholinergic neurons that project to pontine startle neurons and activate muscarinic and potentially nicotine receptors (nAChRs). The subtypes and anatomical location of nAChRs involved in mediating and modulating PPI remain unresolved. We tested the hypothesis that nAChRs that are expressed by pontine startle neurons contribute to PPI. We also explored whether or not these pontine receptors are responsible for the nicotine enhancement of PPI. While systemic administration of nAChR antagonists had limited effects on PPI, PnC microinfusions of the non-α7nAChR preferring antagonist TMPH, but not of the α7nAChR antagonist MLA, into the PnC significantly reduced PPI. Electrophysiological recordings from startle-mediating PnC neurons confirmed that nicotine affects excitability of PnC neurons, which could be antagonized by TMPH, but not by MLA, indicating the expression of non-α7nAChR. In contrast, systemic nicotine enhancement of PPI was only reversed by systemic MLA and not by TMPH or local microinfusions of MLA into the PnC. In summary, our data indicate that non-α7nAChRs in the PnC contribute to PPI at stimulus intervals of 100 ms or less, whereas activation of α7nAChRs in other brain areas is responsible for the systemic nicotine enhancement of PPI. This is important knowledge for the correct interpretation of behavioral, preclinical, and clinical data as well as for developing drugs for the amelioration of PPI deficits and the enhancement of cognitive function.
Collapse
Affiliation(s)
- Farena Pinnock
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - Daniel Bosch
- Department of Psychology, University of Toronto Toronto, ON, Canada ; Hertie Institute for Clinical Brain Research, Eberhard-Karls-Universität Tübingen, Germany
| | - Tyler Brown
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - Nadine Simons
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - John R Yeomans
- Department of Psychology, University of Toronto Toronto, ON, Canada
| | - Cleusa DeOliveira
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - Susanne Schmid
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Toronto Toronto, ON, Canada
| |
Collapse
|
18
|
Bellesi M, Riedner BA, Garcia-Molina GN, Cirelli C, Tononi G. Enhancement of sleep slow waves: underlying mechanisms and practical consequences. Front Syst Neurosci 2014; 8:208. [PMID: 25389394 PMCID: PMC4211398 DOI: 10.3389/fnsys.2014.00208] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/02/2014] [Indexed: 02/06/2023] Open
Abstract
Even modest sleep restriction, especially the loss of sleep slow wave activity (SWA), is invariably associated with slower electroencephalogram (EEG) activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation (tDCS) and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex (KC), a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep (SWS) enhancement.
Collapse
Affiliation(s)
- Michele Bellesi
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, USA
| | - Brady A. Riedner
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, USA
| | - Gary N. Garcia-Molina
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, USA
- Clinical Sites Research Program, Philips Group InnovationBriarcliff, NY, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
19
|
Activation of mGluR2/3 receptors in the ventro-rostral prefrontal cortex reverses sensorimotor gating deficits induced by systemic NMDA receptor antagonists. Int J Neuropsychopharmacol 2014; 17:303-12. [PMID: 24067361 DOI: 10.1017/s1461145713001041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Prepulse inhibition (PPI) of acoustic startle is an operational measure of sensorimotor gating, which is disrupted in schizophrenia. NMDA receptor (NMDAR) antagonist induced PPI disruption has become an important pharmacological model for schizophrenia; however, knowledge of the underlying mechanism remains incomplete. This study examines the role of NMDAR in the caudal pontine reticular nucleus (PnC) and the medial prefrontal cortex (mPFC) in NMDARs antagonist induced PPI deficits, as well as the NMDA receptor subtypes involved. We administered the NMDA antagonist MK-801 locally into the caudal pontine reticular formation (PnC), where the PPI mediating pathway converges with the primary startle pathway, and into the mPFC prior to behavioural testing. PnC microinjections had no effect on startle and PPI, whereas injections into the ventro-rostral part, but not into the dorso-caudal part of the mPFC, disrupted PPI. These effects could be mimicked by local injection of the NR2B subunit specific antagonist ifenprodil, whereas co-application of MK-801 and the mGluR2/3 agonist LY354740 had no effect on PPI. Moreover, PPI disruptions by systemically administered MK-801 could be reversed by local injections of LY354740 into the ventro-rostral mPFC, but not into the dorso-caudal mPFC. Our results indicate that NR2B subunit containing NMDARs in a specific subregion of the mPFC play a major role in PPI disruptions by systemic NMDAR antagonism. Our results further support the hypothesis that glutamate hyper-function in the mPFC is a main mechanism involved in sensory gating deficits induced by systemic MK-801, supporting the notion that this is an important mechanism in schizophrenia pathology.
Collapse
|
20
|
Prepulse inhibition predicts working memory performance whilst startle habituation predicts spatial reference memory retention in C57BL/6 mice. Behav Brain Res 2013; 242:166-77. [DOI: 10.1016/j.bbr.2012.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 12/26/2022]
|
21
|
Wolman M, Granato M. Behavioral genetics in larval zebrafish: learning from the young. Dev Neurobiol 2012; 72:366-72. [PMID: 22328273 DOI: 10.1002/dneu.20872] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Deciphering the genetic code that determines how the vertebrate nervous system assembles into neural circuits that ultimately control behavior is a fascinating and challenging question in modern neurobiology. Because of the complexity of this problem, successful strategies require a simple yet focused experimental approach without limiting the scope of the discovery. Unbiased, large-scale forward genetic screens in invertebrate organisms have yielded great insight into the genetic regulation of neural circuit assembly and function. For many reasons, this highly successful approach has been difficult to recapitulate in the behavioral neuroscience field's classic vertebrate model organisms-rodents. Here, we discuss how larval zebrafish provide a promising model system to which we can apply the design of invertebrate behavior-based screens to reveal the genetic mechanisms critical for neural circuit assembly and function in vertebrates.
Collapse
Affiliation(s)
- Marc Wolman
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | |
Collapse
|
22
|
Molecular mechanisms of short-term habituation in the leech Hirudo medicinalis. Behav Brain Res 2012; 229:235-43. [DOI: 10.1016/j.bbr.2012.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 02/06/2023]
|
23
|
Geis HR, Schmid S. Glycine inhibits startle-mediating neurons in the caudal pontine reticular formation but is not involved in synaptic depression underlying short-term habituation of startle. Neurosci Res 2011; 71:114-23. [PMID: 21726589 DOI: 10.1016/j.neures.2011.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 01/24/2023]
Abstract
The mammalian startle response is controlled by glycine inhibition in the spinal cord. Evidence for additional glycine inhibition on the level of the brainstem, namely in the caudal pontine reticular nucleus (PnC), is controversial. Startle mediating PnC neurons receive fast input from sensory pathways and project to cranial and spinal motoneurons. Synaptic depression in the sensory synapses in the PnC has been indicated as underlying mechanism of short-term habituation of startle. We here performed patch-clamp recordings of PnC giant neurons in rat brain slices to test the hypothesis that the activation of glycine receptors inhibits PnC neurons and that this inhibition is involved in synaptic depression in the PnC. Glycine strongly inhibited PnC neuron activity and synaptic signalling, indicating that functional glycine receptors mediate a powerful inhibition of PnC neurons over a wide range of glycine concentrations. Strychnine reversed all glycine effects, but had no effect on PnC neurons itself. Thus, we found no evidence for a tonic glycine inhibition or for glycine activation within the primary startle pathway indicating that baseline startle reactions are unlikely to be controlled by glycine in the PnC. Most importantly, synaptic depression underlying short-term habituation was not affected by glycine or strychnine.
Collapse
|
24
|
Schmid S, Azzopardi E, De Jaeger X, Prado MAM, Prado VF. VAChT knock-down mice show normal prepulse inhibition but disrupted long-term habituation. GENES BRAIN AND BEHAVIOR 2011; 10:457-64. [DOI: 10.1111/j.1601-183x.2011.00686.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Group III metabotropic glutamate receptors inhibit startle-mediating giant neurons in the caudal pontine reticular nucleus but do not mediate synaptic depression/short-term habituation of startle. J Neurosci 2010; 30:10422-30. [PMID: 20685984 DOI: 10.1523/jneurosci.0024-10.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Short-term habituation is a basic form of learning that is analyzed in different species and using different behavioral models. Previous studies on mechanisms of short-term habituation yielded evidence for a potential role of group III metabotropic glutamate receptors (mGluRIIIs). Here we tested the hypothesis that mGluRIII mediate short-term habituation of startle in rats, combining electrophysiological experiments in vitro with behavioral studies in vivo. We applied different mGluRIII agonists and antagonists on rat brainstem slices while recording from startle-mediating neurons in the caudal pontine reticular nucleus (PnC) and monitoring synaptic depression presumably underlying habituation. Furthermore, we injected the mGluRIII antagonist (RS)-alpha-phosphonophenylglycine (MPPG) and the agonist L-(+)-2-amino-4-phosphonobutyric acid (L-AP4) into the PnC of rats in vivo and measured its effect on startle habituation. Our results show that activation of mGluRIIIs in the PnC strongly inhibits startle-mediating giant neurons in vitro. Accordingly, L-AP4 reduced startle responses in vivo. However, synaptic depression in the slice was not disrupted by mGluRIII antagonists or agonists. Correspondingly, the in vivo application of the mGluRIII antagonist MPPG failed to show any effect on short-term habituation of startle responses. We therefore conclude that mGluRs are expressed within the primary startle pathway and that they inhibit startle responses upon activation; however, this inhibition does not play any role in synaptic depression and short-term habituation of startle. This is in contrast to the role of mGluRIIIs in other forms of habituation and supports the notion that there are different mechanisms involved in habituation of sensory-evoked behaviors.
Collapse
|
26
|
Dyck BA, Skoblenick KJ, Castellano JM, Ki K, Thomas N, Mishra RK. Behavioral abnormalities in synapsin II knockout mice implicate a causal factor in schizophrenia. Synapse 2009; 63:662-72. [PMID: 19360855 DOI: 10.1002/syn.20643] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent studies on the phosphoprotein synapsin II have revealed reduced expression in postmortem medial prefrontal cortex tissues from subjects with schizophrenia, and chronic antipsychotic drug treatment has resulted in concurrent increases in synapsin II mRNA and protein levels. Collectively, this research suggests a role of synapsin II in the pathophysiology of schizophrenia; however, whether synapsin II plays a causal role in this disease process still remains unclear. Therefore, the goal of this investigation was to examine whether synapsin II knockout mice display behavioral abnormalities commonly expressed in preclinical animal models of schizophrenia, namely deficits in prepulse inhibition (PPI), decreased social behavior, and locomotor hyperactivity. Results indicate that mice with knockout of the synapsin II gene demonstrate deficits in PPI at three prepulse intensities (67, 70, and 73 dB), along with deficits in habituation to startle to a 110 dB acoustic pulse. Knockout animals also expressed decreased social behavior and increased locomotor activity when compared to wildtype and heterozygous populations. Complete knockout of the synapsin II gene was confirmed in postmortem brain tissues via immunoblotting. In conclusion, these results confirm that synapsin II knockout mice display behavioral endophenotypes similar to established preclinical animal models of schizophrenia, and lend support to the notion that abnormalities in synapsin II expression may play a causal role in the underlying pathophysiological mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Bailee A Dyck
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Viral vector induction of CREB expression in the periaqueductal gray induces a predator stress-like pattern of changes in pCREB expression, neuroplasticity, and anxiety in rodents. Neural Plast 2009; 2009:904568. [PMID: 19360104 PMCID: PMC2664642 DOI: 10.1155/2009/904568] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 01/05/2009] [Indexed: 11/17/2022] Open
Abstract
Predator stress is lastingly anxiogenic. Phosphorylation of CREB to pCREB (phosphorylated cyclic AMP response element binding protein) is increased after predator stress in fear circuitry, including in the right lateral column of the PAG (periaqueductal gray). Predator stress also potentiates right but not left CeA-PAG (central amygdala-PAG) transmission up to 12 days after stress. The present study explored the functional significance of pCREB changes by increasing CREB expression in non-predator stressed rats through viral vectoring, and assessing the behavioral, electrophysiological and pCREB expression changes in comparison with handled and predator stressed controls. Increasing CREB expression in right PAG was anxiogenic in the elevated plus maze, had no effect on risk assessment, and increased acoustic startle response while delaying startle habituation. Potentiation of the right but not left CeA-PAG pathway was also observed. pCREB expression was slightly elevated in the right lateral column of the PAG, while the dorsal and ventral columns were not affected. The findings of this study suggest that by increasing CREB and pCREB in the right lateral PAG, it is possible to produce rats that exhibit behavioral, brain, and molecular changes that closely resemble those seen in predator stressed rats.
Collapse
|
28
|
Bell H, Chenoweth B, Wilson DA. Neurobehavioral consequences of cortical adaptation disruption during ontogeny. Neurosci Lett 2008; 445:47-52. [PMID: 18782603 DOI: 10.1016/j.neulet.2008.08.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/22/2008] [Accepted: 08/23/2008] [Indexed: 11/19/2022]
Abstract
Filtering of redundant or stable inputs is a critical function of all sensory pathways. Normal sensory gating can allow processing resources to be differentially devoted to changing or otherwise biologically significant stimuli. In olfaction, short-term odor habituation is mediated by a metabotropic glutamate receptor (mGluR)-mediated depression of afferent synapses in the piriform cortex. Given the role of early experience in shaping cortical function and anatomy, the present experiments examined the effects of chronic habituation disruption during development on behavior and local circuit anatomy. Rats were chronically intra-cerebrally infused with the mGluR group III antagonist (RS)-a-cyclopropyl-4-phosphonophenylglycine (CPPG) during early development. The results demonstrated that early onset mGluRIII blockade resulted in a long-lasting decrement in odor habituation compared to controls, evident for at least 2 weeks post-infusion offset. Odor investigation time in the youngest animals was correlated with cortical laminar thickness, though the long-lasting behavioral effect showed no such correlation. No changes in apical dendritic spine density in the piriform cortex were detected. Combined with previous work, these results suggest that sensory gating disruption during development can have both immediate and long-lasting effects on sensory-guided behavior.
Collapse
Affiliation(s)
- Heather Bell
- Neurobehavioral Institute, Department of Zoology, University of Oklahoma, USA
| | | | | |
Collapse
|
29
|
Faingold CL. Electrical stimulation therapies for CNS disorders and pain are mediated by competition between different neuronal networks in the brain. Med Hypotheses 2008; 71:668-81. [PMID: 18762389 DOI: 10.1016/j.mehy.2008.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 06/23/2008] [Accepted: 06/26/2008] [Indexed: 01/15/2023]
Abstract
CNS neuronal networks are known to control normal physiological functions, including locomotion and respiration. Neuronal networks also mediate the pathophysiology of many CNS disorders. Stimulation therapies, including localized brain and vagus nerve stimulation, electroshock, and acupuncture, are proposed to activate "therapeutic" neuronal networks. These therapeutic networks are dormant prior to stimulatory treatments, but when the dormant networks are activated they compete with pathophysiological neuronal networks, disrupting their function. This competition diminishes the disease symptoms, providing effective therapy for otherwise intractable CNS disorders, including epilepsy, Parkinson's disease, chronic pain, and depression. Competition between stimulation-activated therapeutic networks and pathophysiological networks is a major mechanism mediating the therapeutic effects of stimulation. This network interaction is hypothesized to involve competition for "control" of brain regions that contain high proportions of conditional multireceptive (CMR) neurons. CMR regions, including brainstem reticular formation, amygdala, and cerebral cortex, have extensive connections to numerous brain areas, allowing these regions to participate potentially in many networks. The participation of CMR regions in any network is often variable, depending on the conditions affecting the organism, including vigilance states, drug treatment, and learning. This response variability of CMR neurons is due to the high incidence of excitatory postsynaptic potentials that are below threshold for triggering action potentials. These subthreshold responses can be brought to threshold by blocking inhibition or enhancing excitation via the paradigms used in stimulation therapies. Participation of CMR regions in a network is also strongly affected by pharmacological treatments (convulsant or anesthetic drugs) and stimulus parameters (strength and repetition rate). Many studies indicate that treatment of unanesthetized animals with antagonists (bicuculline or strychnine) of inhibitory neurotransmitter (GABA or glycine) receptors can cause CMR neurons to become consistently responsive to external inputs (e.g., peripheral nerve, sensory, or electrical stimuli in the brain) to which these neurons did not previously respond. Conversely, agents that enhance GABA-mediated inhibition (e.g., barbiturates and benzodiazepines) or antagonize glutamate-mediated excitation (e.g., ketamine) can cause CMR neurons to become unresponsive to inputs to which they responded previously. The responses of CMR neurons exhibit extensive short-term and long-term plasticity, which permits them to participate to a variable degree in many networks. Short-term plasticity subserves termination of disease symptoms, while long-term plasticity in CMR regions subserves symptom prevention. This network interaction hypothesis has value for future research in CNS disease mechanisms and also for identifying therapeutic targets in specific brain networks for more selective stimulation and pharmacological therapies.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.
| |
Collapse
|
30
|
Wilson DA. Olfaction as a model system for the neurobiology of mammalian short-term habituation. Neurobiol Learn Mem 2008; 92:199-205. [PMID: 18678264 DOI: 10.1016/j.nlm.2008.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 07/08/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
Olfaction represents an ideal model system for the study of mammalian habituation given that it is an anatomically relatively simple system with strong reciprocal connections to the limbic system, driving both reflexive and non-reflexive (motivated) behaviors that are easily quantifiable. Data are reviewed here demonstrating short-term habituation of the odor-evoked heart-rate orienting reflex described according to the criteria for habituation outlined by Thompson and Spencer [Thompson, R. F., & Spencer, W. A. (1966). Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychological Reviews, 73(1), 16-43]. A necessary and sufficient mechanism of short-term habituation is then described, which involves a metabotropic glutamate receptor mediated depression of afferent input to the piriform (primary olfactory) cortex. Finally, evidence for, and a mechanisms of, dishabituation of the orienting reflex and cortical adaptation are described.
Collapse
Affiliation(s)
- Donald A Wilson
- Department of Zoology, Neurobehavioral Institute, University of Oklahoma, OK, USA.
| |
Collapse
|
31
|
Abstract
Habituation is one of the simplest forms of memory, yet its neurobiological mechanisms remain largely unknown in mammalian systems. This review summarizes recent multidisciplinary analyses of the neurobiology of mammalian odor habituation including in vitro and in vivo synaptic physiology, sensory physiology, behavioral pharmacology, and computational modeling approaches. The findings show that a metabotropic glutamate receptor–mediated depression of afferent synapses to the olfactory cortex is necessary and perhaps sufficient to account for cortical sensory adaptation and short-term behavioral habituation. Furthermore, long-term habituation is an N-methyl-d-aspartate (NMDA) receptor–dependent process within the olfactory bulb. Thus there is both a pharmacological and anatomical distinction between short-term and long-term memory for habituation. The differential locus of change underlying short- and long-term memory leads to predictable differences in their behavioral characteristics, such as specificity.
Collapse
|
32
|
Yasuda H, Miyaoka T, Horiguchi J, Yasuda A, Hänggi P, Yamamoto Y. Novel class of neural stochastic resonance and error-free information transfer. PHYSICAL REVIEW LETTERS 2008; 100:118103. [PMID: 18517832 DOI: 10.1103/physrevlett.100.118103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Indexed: 05/26/2023]
Abstract
We investigate a novel class of neural stochastic resonance (SR) exhibiting error-free information transfer. Unlike conventional neural SR, where the decrease of a system's response with too much noise is associated with an increase in the baseline firing rate, here the bell-shaped SR behavior of the input-output cross correlation emerges versus increasing input noise in spite of no significant increase of the baseline firing rate. The neuron thus acts as an error-free detector for weak signals. An integrate-and-fire model with short-term synaptic depression convincingly validates our experimental findings for SR in the human tactile blink reflex.
Collapse
Affiliation(s)
- Hideaki Yasuda
- Department of Psychiatry, School of Medicine, Shimane University, 89-1 Enyacho, Izumo City, Shimane 693-8501, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Kask K, Bäckström T, Gulinello M, Sundström-Poromaa I. Lower levels of prepulse inhibition of startle response in pregnant women compared to postpartum women. Psychoneuroendocrinology 2008; 33:100-7. [PMID: 18037247 DOI: 10.1016/j.psyneuen.2007.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE During the postpartum period, estradiol and progesterone levels decline from very high levels during late pregnancy to low levels within 48h of parturition. This period is associated with dysphoric states such as the postpartum blues. Animal studies have suggested an enhanced acoustic startle response and deficient prepulse inhibition (PPI) of startle response following progesterone withdrawal and during the postpartum period. The aim of the current study was to compare acoustic startle response and PPI in healthy third trimester pregnant women and healthy postpartum women. METHODS Twenty-eight healthy pregnant and 21 healthy postpartum women (examined between 48h and 1 week after delivery) were recruited for the study. In addition, to evaluate the time-course of postpartum changes 11 early postpartum women (examined within 48h following delivery) were included in the study. The eyeblink component of the acoustic startle reflex was assessed using electromyographic measurements of m. Orbicularis Oculi. Twenty pulse-alone trials (115dB 40ms broad-band white noise) and 40 prepulse-pulse trials were presented. The prepulse stimuli consisted of a 115dB 40ms noise burst preceded at a 100ms interval by 20ms prepulses that were 72, 74, 78 or 86dB. RESULTS Pregnant women exhibited lower levels of PPI compared to late postpartum women, p<0.05. There was no difference between pregnant women and postpartum women examined within 48h of delivery. There was no difference in startle response or habituation to startle response between pregnant women and either of the two groups of postpartum women. CONCLUSION Healthy women display lower levels of PPI during late pregnancy when estradiol and progesterone levels are high compared to the late postpartum period when ovarian steroid levels have declined.
Collapse
Affiliation(s)
- Kristiina Kask
- Department of Women's and Children's Health, Uppsala University, SE-751 85 Uppsala, Sweden.
| | | | | | | |
Collapse
|
34
|
Tanke MAC, Alserda E, Doornbos B, van der Most PJ, Goeman K, Postema F, Korf J. Low tryptophan diet increases stress-sensitivity, but does not affect habituation in rats. Neurochem Int 2008; 52:272-81. [PMID: 17673334 DOI: 10.1016/j.neuint.2007.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 04/10/2007] [Accepted: 05/31/2007] [Indexed: 11/22/2022]
Abstract
Cerebral dysfunction of 5-HT (serotonin) has been associated with stress response and with affective disorders. Stress alone is insufficient to induce depression, since only a minor proportion of subjects that have experienced stressful life events develop depressive episodes. We investigated whether long-term brain 5-HT depletion induced in rats by a diet with low content of its precursor tryptophan affects stress-responsiveness in rats. Stress-sensitivity was measured through various physiological parameters and by measuring the rats' response to acoustic stimuli. One group of rats was subjected to daily acoustic stimulus sessions for 5 days. Other groups received both immobilization stress and acoustic stimulus sessions daily for either 9 days (chronic experiment) or 1 day (acute experiment). A low tryptophan diet led to decreases in plasma tryptophan levels, low ratio of tryptophan/large neutral amino acid, whole blood 5-HT, and neuronal 5-HT content in the Dorsal and Median Raphe Nuclei, as well as altered c-fos expression in the brain. Without concomitant immobilization, the diet alone did not affect reactivity and habituation to acoustic stimuli, although plasma corticosterone levels, but not the adrenal weights, were increased on day 5. Low tryptophan and chronic immobilization stress together with the acoustic testing procedure increased adrenal weight, plasma corticosterone levels and reactivity to the acoustic stimuli, but not the rate of habituation to acoustic stimuli. These results show that cerebral dysfunction of serotonin achieved through a low tryptophan diet, increases the sensitivity of rats to external and stressful stimuli, but does not impair the capacity to adapt to these stimuli. Accordingly, brain-serotonin modulates reactivity to stress, but not stress coping.
Collapse
Affiliation(s)
- Marit A C Tanke
- Department of Psychiatry, University Medical Center Groningen, Graduate School of Behavioral Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Blouin JS, Siegmund GP, Timothy Inglis J. Interaction between acoustic startle and habituated neck postural responses in seated subjects. J Appl Physiol (1985) 2006; 102:1574-86. [PMID: 17170209 DOI: 10.1152/japplphysiol.00703.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postural and startle responses rapidly habituate with repeated exposures to the same stimulus, and the first exposure to a seated forward acceleration elicits a startle response in the neck muscles. Our goal was to examine how the acoustic startle response is integrated with the habituated neck postural response elicited by forward accelerations of seated subjects. In experiment 1, 14 subjects underwent 11 sequential forward accelerations followed by 5 additional sled accelerations combined with a startling tone (124-dB sound pressure level) initiated 18 ms after sled acceleration onset. During the acceleration-only trials, changes consistent with habituation occurred in the root-mean-square amplitude of the neck muscles and in the peak amplitude of five head and torso kinematic variables. The subsequent addition of the startling tone restored the amplitude of the neck muscles and four of the five kinematic variables but shortened onset of muscle activity by 9-12 ms. These shortened onset times were further explored in experiment 2, wherein 16 subjects underwent 11 acceleration-only trials followed by 15 combined acceleration-tone trials with interstimulus delays of 0, 13, 18, 23, and 28 ms. Onset times shortened further for the 0- and 13-ms delays but did not lengthen for the 23- and 28-ms delays. These temporal and spatial changes in EMG can be explained by a summation of the excitatory drive converging at or before the neck muscle motoneurons. The present observations suggest that habituation to repeated sled accelerations involves extinguishing the startle response and tuning the postural response to the whole body disturbance.
Collapse
|
36
|
Bespalov A, Jongen-Rêlo AL, van Gaalen M, Harich S, Schoemaker H, Gross G. Habituation Deficits Induced by Metabotropic Glutamate Receptors 2/3 Receptor Blockade in Mice: Reversal by Antipsychotic Drugs. J Pharmacol Exp Ther 2006; 320:944-50. [PMID: 17135347 DOI: 10.1124/jpet.106.110684] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cortical metabotropic glutamate receptors (mGluRs) seem to be involved in habituation of simple stimulus-bound behaviors (e.g., habituation to acoustic startle or odor-elicited orienting response). Habituation deficits may contribute to the cognitive symptoms of schizophrenia. In the present study, male NMRI mice were injected with mGluR2/3 antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid (LY-341495) 30 min before being placed into novel arenas for automatic motor activity recording (2-h sessions). Administration of LY-341495 (1-10 mg/kg s.c.) dose-dependently prevented the habituation of the locomotor activity. Effects of LY-341495 (10 mg/kg) were fully and dose-dependently reversed by i.p. administration of haloperidol (0.03-0.3 mg/kg), clozapine (1-10 mg/kg), risperidone (0.01-0.1 mg/kg), olanzapine (0.3-3 mg/kg), aripiprazole (1-10 mg/kg), and sulpiride (3-30 mg/kg), each of which was given 15 min before the test. Effects of antipsychotic drugs were observed at the dose levels that did not affect spontaneous motor activity. LY-341495-induced delayed hyperactivity was also partially attenuated by lithium (50-200 mg/kg), amisulpride (1-10 mg/kg), and the selective dopamine D3 antagonist trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide (SB-277011A; 3-30 mg/kg). Application of diazepam, imipramine, or several agonists and/or antagonists acting at various receptors that are thought to be relevant for antipsychotic treatment [e.g., 5-hydroxytryptamine (5-HT)(2A), 5-HT(3), and 5-HT(6) antagonists; 5-HT(1A) agonist; D4 antagonist; CB1 antagonist; ampakines; and glycine transporter inhibitor) had no appreciable effects. Thus, behavioral deficits induced by mGluR2/3 blockade (such as delayed motor hyperactivity) are selectively reversed by clinically used antipsychotic drugs.
Collapse
Affiliation(s)
- Anton Bespalov
- Neuroscience Discovery Research, Abbott GmbH and Co. KG, D-67008 Ludwigshafen, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Larrauri J, Schmajuk N. Prepulse inhibition mechanisms and cognitive processes: a review and model. EXS 2006; 98:245-78. [PMID: 17019891 DOI: 10.1007/978-3-7643-7772-4_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- José Larrauri
- Duke University, Department of Psychology and Neuroscience, Durham, NC 27708, USA
| | | |
Collapse
|
38
|
Simons-Weidenmaier NS, Weber M, Plappert CF, Pilz PKD, Schmid S. Synaptic depression and short-term habituation are located in the sensory part of the mammalian startle pathway. BMC Neurosci 2006; 7:38. [PMID: 16684348 PMCID: PMC1479352 DOI: 10.1186/1471-2202-7-38] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 05/09/2006] [Indexed: 11/10/2022] Open
Abstract
Background Short-term habituation of the startle response represents an elementary form of learning in mammals. The underlying mechanism is located within the primary startle pathway, presumably at sensory synapses on giant neurons in the caudal pontine reticular nucleus (PnC). Short trains of action potentials in sensory afferent fibers induce depression of synaptic responses in PnC giant neurons, a phenomenon that has been proposed to be the cellular correlate for short-term habituation. We address here the question whether both this synaptic depression and the short-term habituation of the startle response are localized at the presynaptic terminals of sensory afferents. If this is confirmed, it would imply that these processes take place prior to multimodal signal integration, rather than occurring at postsynaptic sites on PnC giant neurons that directly drive motor neurons. Results Patch-clamp recordings in vitro were combined with behavioral experiments; synaptic depression was specific for the input pathway stimulated and did not affect signals elicited by other sensory afferents. Concordant with this, short-term habituation of the acoustic startle response in behavioral experiments did not influence tactile startle response amplitudes and vice versa. Further electrophysiological analysis showed that the passive properties of the postsynaptic neuron were unchanged but revealed some alterations in short-term plasticity during depression. Moreover, depression was induced only by trains of presynaptic action potentials and not by single pulses. There was no evidence for transmitter receptor desensitization. In summary, the data indicates that the synaptic depression mechanism is located presynaptically. Conclusion Our electrophysiological and behavioral data strongly indicate that synaptic depression in the PnC as well as short-term habituation are located in the sensory part of the startle pathway, namely at the axon terminals of sensory afferents in the PnC. Our results further corroborate the link between synaptic depression and short-term habituation of the startle response.
Collapse
Affiliation(s)
- Nadine S Simons-Weidenmaier
- Tierphysiologie, Zoologisches Institut, Fakultät für Biologie, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Maruschka Weber
- Tierphysiologie, Zoologisches Institut, Fakultät für Biologie, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Physiologisches Institut, Universität Würzburg, Röntgenring 9, 97070 Würzburg, Germany
| | - Claudia F Plappert
- Tierphysiologie, Zoologisches Institut, Fakultät für Biologie, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Peter KD Pilz
- Tierphysiologie, Zoologisches Institut, Fakultät für Biologie, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Susanne Schmid
- Tierphysiologie, Zoologisches Institut, Fakultät für Biologie, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
39
|
Plappert CF, Schachner M, Pilz PKD. Neural cell adhesion molecule (NCAM-/-) null mice show impaired sensitization of the startle response. GENES BRAIN AND BEHAVIOR 2006; 5:46-52. [PMID: 16436188 DOI: 10.1111/j.1601-183x.2005.00132.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The neural cell adhesion molecule (NCAM) plays important roles in development of the nervous system and in synaptic plasticity and memory formation in the adult. The present study sought to further investigate the role of NCAM in learning by testing habituation and footshock sensitization learning of the startle response (SR) in NCAM null mutant (NCAM-/-) and wildtype littermate (NCAM+/+) mice. Whereas habituation is a form of non-associative learning, footshock sensitization is induced by rapid contextual fear conditioning. Habituation was tested by repetitive presentation of acoustic and tactile startle stimuli. Although NCAM-/- mice showed differences in sensitivity in both stimulus modalities, habituation learning was intact in NCAM-/- mice, suggesting that NCAM does not play a role in the mechanisms underlying synaptic plasticity in the startle pathway. Footshock sensitization was elicited by presentation of electric footshocks between two series of acoustic stimuli. In contrast to habituation, footshock sensitization learning was attenuated in NCAM-/- mice: the acoustic SR increase after the footshocks was lower in the mutant than in wildtype mice, indicating that NCAM plays an important role in the relevant brain areas, such as amygdala and/or the hippocampus.
Collapse
Affiliation(s)
- C F Plappert
- Universität Tübingen, Zoologisches Institut, Tübingen, Germany.
| | | | | |
Collapse
|
40
|
Frings M, Awad N, Jentzen W, Dimitrova A, Kolb FP, Diener HC, Timmann D, Maschke M. Involvement of the human cerebellum in short-term and long-term habituation of the acoustic startle response: a serial PET study. Clin Neurophysiol 2006; 117:1290-300. [PMID: 16644276 DOI: 10.1016/j.clinph.2006.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 02/03/2006] [Accepted: 02/25/2006] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Numerous studies have shown an involvement of the human cerebellum in motor learning, but little is known about the role of the cerebellum in learning of unspecific aversive reactions. The present study sought to distinguish which areas of the human cerebellum and brain-stem are involved in short-term habituation (STH) and long-term habituation (LTH) of the acoustic startle response. METHODS On 5 consecutive days 42 acoustic startle stimuli were applied each day in 8 male healthy subjects. On the first and on the fifth day of the experiment [15O]H2O PET scans were performed. RESULTS Electromyographic recordings revealed a significant decrease of the startle response within each day (STH) and across the 5 days of the experiment (LTH). On both days a decrease of regional cerebral blood flow (rCBF) across PET scans was found in the medial cerebellum most probably reflecting reduced sensory feedback during STH. Between days an increase of rCBF in the dorsomedial pons, in the mesencephalon and in an area of the medial cerebellum was observed. These activations may reflect increased inhibition of the startle response during LTH and correspond to previous animal lesion studies. Furthermore, during LTH an increase of rCBF within the lateral cerebellum in lobule HVI/Crus I was detected. CONCLUSIONS These results suggest that distinct parts of the medial and lateral cerebellum are involved in habituation of the acoustic startle response. Lobule HVI/Crus I most likely plays a more general role in implicit learning processes considering its involvement in several conditioning paradigms. SIGNIFICANCE The results of the present study contribute to the understanding of cerebellar involvement in learning of unspecific aversive reactions.
Collapse
Affiliation(s)
- Markus Frings
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Best AR, Thompson JV, Fletcher ML, Wilson DA. Cortical metabotropic glutamate receptors contribute to habituation of a simple odor-evoked behavior. J Neurosci 2006; 25:2513-7. [PMID: 15758159 PMCID: PMC2291201 DOI: 10.1523/jneurosci.5298-04.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Defining the circuits that are involved in production and cessation of specific behaviors is an ultimate goal of neuroscience. Short-term behavioral habituation is the response decrement observed in many behaviors that occurs during repeated presentation of non-reinforced stimuli. Within a number of invertebrate models of short-term behavioral habituation, depression of a defined synapse has been implicated as the mechanism. However, the synaptic mechanisms of short-term behavioral habituation have not been identified within mammals. We have shown previously that a presynaptic metabotropic glutamate receptor (mGluR)-dependent depression of synapses formed by olfactory bulb afferents to the piriform (olfactory) cortex significantly contributes to adaptation of cortical odor responses. Here we show that blockade of mGluRs within the olfactory cortex of awake, behaving rats diminishes habituation of a simple odor-induced behavior, strongly implicating a central mechanism for sensory gating in olfaction.
Collapse
Affiliation(s)
- Aaron R Best
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | |
Collapse
|
42
|
Hölscher C, Schmid S, Pilz PKD, Sansig G, van der Putten H, Plappert CF. Lack of the metabotropic glutamate receptor subtype 7 selectively modulates Theta rhythm and working memory. Learn Mem 2006; 12:450-5. [PMID: 16204199 DOI: 10.1101/lm.98305] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are known to play a role in synaptic plasticity and learning. We have previously shown that mGluR7 deletion in mice produces a selective working memory (WM) impairment, while other types of memory such as reference memory remain unaffected. Since WM has been associated with Theta activity (6-12 Hz) in EEGs, and since EEG abnormalities have been observed in these mice before, we studied the effect of mGluR7 gene ablation on EEG activity in the hippocampus, in particular in the Theta range, during performance of a WM task. In an eight-arm maze with four arms baited, mGluR7 knock-out (KO) and wild-type mice committed the same number of reference memory errors, whereas KOs committed more WM errors. While performing the task, KO mice showed substantially higher Theta amplitudes, and the ratio of Theta to overall EEG power was much increased. No change was seen in the Delta (0-5 Hz), or Gamma (30-40 Hz) EEG bands compared with controls. When recording EEGs during periods of rest in the home cages, no difference was seen between groups. These findings suggest that mGluR7 is important for modulation and control of Theta activity. Since only WM was affected, and only the Theta range of EEG activity was altered, these results show a correlation between Theta rhythm and WM performance, and therefore support the concept that Theta activity in the hippocampus is involved in WM storage.
Collapse
Affiliation(s)
- Christian Hölscher
- Department of Cognitive Neuroscience, University of Tübingen, Auf der Morgenstelle 28, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Blundell J, Adamec R, Burton P. Role of NMDA receptors in the syndrome of behavioral changes produced by predator stress. Physiol Behav 2005; 86:233-43. [PMID: 16102786 DOI: 10.1016/j.physbeh.2005.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 05/17/2005] [Accepted: 07/18/2005] [Indexed: 11/24/2022]
Abstract
Effects on behavioral response to predator stress of competitive block of NMDA receptors with doses of .1, 1.0 and 10 mg/kg of CPP (3-(2-carboxypiperazin4-yl)propyl-l-phosphonic acid) were studied. An affect test battery assessed behavioral response to stress and employed hole board, elevated plus maze, light/dark box, social interaction, social avoidance and response to acoustic startle tests. Doses of 1-10 mg/kg of CPP administered ip 30 min prior to predator stress blocked the effects of predator stress on some but not all behaviors measured 8-9 days later. Predator stress normally reduces open arm exploration and risk assessment in the plus maze, decreases entries into the lighted arm of the light dark box and delays habituation of the acoustic startle response. CPP blocked all of these effects of predator stress. A dose of 10 mg/kg of CPP was required for all behaviors except habituation to startle. Block of effects on habituation to startle occurred at 1 and 10 mg/kg. Behaviors in which effects of predator stress were not blocked by CPP included reduction in unprotected head dips in the elevated plus maze and reduced social interaction. In addition, predator stress was without effect on social avoidance measured with the Haller test. These findings extend previous work showing NMDA receptor dependence of effects of predator stress on behavior in the elevated plus maze and on amplitude of acoustic startle response. Novel findings include NMDA receptor dependence of predator stress effects on light dark box behavior and startle habituation. Taken together, the findings add to a body of evidence showing that a syndrome of behavioral changes follows predator stress. Components of this syndrome of behavioral changes likely depend on changes in separable neural substrates initiated in part by NMDA receptors as well as by other neurochemical means.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Avoidance Learning/drug effects
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Behavioral Symptoms/drug therapy
- Behavioral Symptoms/etiology
- Behavioral Symptoms/psychology
- Cats
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Antagonists/administration & dosage
- Handling, Psychological
- Interpersonal Relations
- Male
- Organophosphonates/administration & dosage
- Periodicity
- Piperazines/administration & dosage
- Predatory Behavior/physiology
- Random Allocation
- Rats
- Rats, Long-Evans
- Receptors, N-Methyl-D-Aspartate/physiology
- Reflex, Startle/drug effects
- Stress, Psychological/complications
- Stress, Psychological/drug therapy
- Stress, Psychological/psychology
Collapse
|
44
|
Pilz PKD, Carl TD, Plappert CF. Habituation of the acoustic and the tactile startle responses in mice: two independent sensory processes. Behav Neurosci 2005; 118:975-83. [PMID: 15506880 DOI: 10.1037/0735-7044.118.5.975] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To test whether habituation is specific to the stimulus modality, the authors analyzed cross-habituation between the tactile startle response' (TSR) and the acoustic startle response (ASR). The acoustic artifacts of airpuffs used to elicit the TSR were reduced by using a silencer and were effectively masked by background noise of 90-100 dB sound-pressure level. ASR was elicited by 14-kHz tones. TSR and ASR habituated in DBA and BALB mice: both the TSR and ASR habituated to a greater extent in DBA mice than in BALB mice. In both strains, habituation of the TSR did not generalize to the ASR, and vice versa. From this, the authors concluded that habituation of startle is located in the sensory afferent branches of the pathway.
Collapse
Affiliation(s)
- Peter K D Pilz
- Zoologisches Institut, Universität Tübingen, Morgenstelle 28, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|
45
|
Klamer D, Pålsson E, Revesz A, Engel JA, Svensson L. Habituation of acoustic startle is disrupted by psychotomimetic drugs: differential dependence on dopaminergic and nitric oxide modulatory mechanisms. Psychopharmacology (Berl) 2004; 176:440-50. [PMID: 15173930 DOI: 10.1007/s00213-004-1901-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 03/29/2004] [Indexed: 10/26/2022]
Abstract
RATIONALE A deficit in attention and information processing has been considered a central feature in schizophrenia, which might lead to stimulus overload and cognitive fragmentation. It has been shown that patients with schizophrenia display a relative inability to gate incoming stimuli. Thus, patients repeatedly subjected to acoustic startle-eliciting stimuli habituate less to these stimuli than controls. Furthermore, schizophrenia-like symptoms can be induced by pharmacological manipulations in humans by psychotomimetic drugs, e.g. phencyclidine (PCP) and D-amphetamine (D-AMP). Recent studies show that the behavioural and biochemical effects of PCP in rodents are blocked by nitric oxide synthase (NOS) inhibitors, suggesting that NO plays an important role in at least the pharmacological effects of PCP. OBJECTIVES The first aim of the present study was to investigate if PCP, MK-801 and D-AMP impair habituation of acoustic startle in mice. Secondly, we examine the effect of the NOS inhibitor, L-NAME, and the dopamine receptor antagonist, haloperidol, on drug-induced deficit in habituation. RESULTS PCP (4 mg/kg), MK-801 (0.4 mg/kg) and D-AMP (5.0 mg/kg), impaired habituation of the acoustic startle response in mice. This effect was reversed by the NOS inhibitor, L-NAME. The typical antipsychotic, haloperidol, reversed the effects of PCP and D-AMP, but not that of MK-801. CONCLUSIONS The finding that PCP, MK-801 and D-AMP impair habituation in mice is consistent with the idea that these treatments model certain filter deficits seen in schizophrenic patients. Furthermore, the present results suggest that NO is critically involved in these effects on habituation, whereas that of dopamine is less clear.
Collapse
Affiliation(s)
- Daniel Klamer
- Department of Pharmacology, The Sahlgrenska Academy, Göteborg University, PO Box 431, 405-30, Goteborg, Sweden
| | | | | | | | | |
Collapse
|
46
|
Hölscher C, Schmid S, Pilz PKD, Sansig G, van der Putten H, Plappert CF. Lack of the metabotropic glutamate receptor subtype 7 selectively impairs short-term working memory but not long-term memory. Behav Brain Res 2004; 154:473-81. [PMID: 15313036 DOI: 10.1016/j.bbr.2004.03.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 03/19/2004] [Accepted: 03/19/2004] [Indexed: 11/27/2022]
Abstract
Metabotropic glutamate receptors (mGluRs), and in particular the mGluR group III receptors (subtypes 4, 6, 7, 8) are known to play a role in synaptic plasticity and learning. Here, we report the effect of mGluR7 gene ablation in different learning paradigms. In the acoustic startle response (ASR), no differences were seen between knockout (KO) mice and wildtype (WT) littermates in parameters including prepulse inhibition and habituation. In an open field test, no differences were seen between genotypes in motor activity, exploratory behaviour, and fearful behaviour. In a T-maze reinforced alternation working memory (WM) task, again no difference was seen between groups. However, when increasing the demands on working-memory in a 4-arm and 8-arm maze task, KO mice committed more WM errors than WT littermates thereby uncovering a highly significant difference between the two groups that persisted every day for the whole 9 days of the experiment. In a 4-arm maze with 2 arms baited, KO and wildtype mice committed the same number of LTM errors, whereas KOs committed more WM errors. Altogether, these findings suggest that a lack of mGluR7 mainly impairs short-term working but not long-term memory performance while having no effect on sensorimotor processing, non-associative learning, motor activity and spatial orientation. The effects on WM are task-dependent and become apparent in more complex but not simple learning tasks. We discuss how mGluR7 could influence WM.
Collapse
MESH Headings
- Animals
- Behavior, Animal/physiology
- Exploratory Behavior/physiology
- Female
- Habituation, Psychophysiologic/physiology
- Inhibition, Psychological
- Male
- Maze Learning/physiology
- Memory Disorders/physiopathology
- Memory, Short-Term/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Kainic Acid/deficiency
- Receptors, Kainic Acid/genetics
- Receptors, Kainic Acid/physiology
- Reflex, Startle/genetics
- Time Factors
- GluK3 Kainate Receptor
Collapse
Affiliation(s)
- Christian Hölscher
- Department of Cognitive Neuroscience, University of Tübingen, Auf der Morgenstelle 28, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Heldt SA, Green A, Ressler KJ. Prepulse inhibition deficits in GAD65 knockout mice and the effect of antipsychotic treatment. Neuropsychopharmacology 2004; 29:1610-9. [PMID: 15114343 DOI: 10.1038/sj.npp.1300468] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent postmortem studies in humans suggest that defects in GABAergic neurotransmission might contribute to the neuropathology associated with schizophrenia. Disturbances in GABAergic systems may also contribute to the sensorimotor gating deficits classically observed in schizophrenic patients, including deficits in prepulse inhibition (PPI). To explore the relationship, the current study examined the integrity of PPI and startle habituation in knockout (KO) mice that lack the GABA synthesizing enzyme glutamic acid decarboxylase 65 (GAD 65). GAD65 KO mice displayed normal baseline and habituated startle responses, which did not differ from GAD65 wild-type (WT) or heterozygous (HET) mice. However, GAD65 KO mice showed robust deficits in PPI which were reversed by the atypical antipsychotic agent clozapine. These results lend support to the view that abnormalities in GABAergic systems might contribute to the basic pathophysiological mechanisms in schizophrenia.
Collapse
Affiliation(s)
- Scott A Heldt
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30329, USA.
| | | | | |
Collapse
|
48
|
Faingold CL. Emergent properties of CNS neuronal networks as targets for pharmacology: application to anticonvulsant drug action. Prog Neurobiol 2004; 72:55-85. [PMID: 15019176 DOI: 10.1016/j.pneurobio.2003.11.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Accepted: 11/19/2003] [Indexed: 01/13/2023]
Abstract
CNS drugs may act by modifying the emergent properties of complex CNS neuronal networks. Emergent properties are network characteristics that are not predictably based on properties of individual member neurons. Neuronal membership within networks is controlled by several mechanisms, including burst firing, gap junctions, endogenous and exogenous neuroactive substances, extracellular ions, temperature, interneuron activity, astrocytic integration and external stimuli. The effects of many CNS drugs in vivo may critically involve actions on specific brain loci, but this selectivity may be absent when the same neurons are isolated from the network in vitro where emergent properties are lost. Audiogenic seizures (AGS) qualify as an emergent CNS property, since in AGS the acoustic stimulus evokes a non-linear output (motor convulsion), but the identical stimulus evokes minimal behavioral changes normally. The hierarchical neuronal network, subserving AGS in rodents is initiated in inferior colliculus (IC) and progresses to deep layers of superior colliculus (DLSC), pontine reticular formation (PRF) and periaqueductal gray (PAG) in genetic and ethanol withdrawal-induced AGS. In blocking AGS, certain anticonvulsants reduce IC neuronal firing, while other agents act primarily on neurons in other AGS network sites. However, the NMDA receptor channel blocker, MK-801, does not depress neuronal firing in any network site despite potently blocking AGS. Recent findings indicate that MK-801 actually enhances firing in substantia nigra reticulata (SNR) neurons in vivo but not in vitro. Thus, the MK-801-induced firing increases in SNR neurons observed in vivo may involve an indirect effect via disinhibition, involving an action on the emergent properties of this seizure network.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.
| |
Collapse
|
49
|
Abstract
The startle response is an important mammalian model for studying the cellular mechanisms of emotions and of learning. It consists of contractions of facial and skeletal muscles in response to sudden acoustic, tactile or vestibular stimuli. Whereas the acoustic startle pathway is well described, only a few recent studies have investigated the tactile startle pathway. It was proposed that there is a direct projection from the principal sensory nucleus to the central sensorimotor interface of the startle response, which is formed by the giant neurons in the caudal pontine reticular formation. We explored this projection in greater detail in vitro. Anterograde tracing in rat brain slices confirmed projections with large axon terminals from the ventral part of the principal sensory nucleus to the lateral caudal pontine reticular formation. Electrophysiological studies revealed a monosynaptic glutamatergic connection between principal sensory nucleus neurons and caudal pontine reticular formation giant neurons. The synapses displayed paired-pulse facilitation at high-frequency stimulation, and homosynaptic depression at 1 Hz stimulation. The latter form of plasticity is thought to underlie habituation of the startle response. Furthermore, postsynaptic currents in caudal pontine reticular formation giant neurons evoked by principal sensory nucleus neuron stimulation summed in a linear way with signals evoked by stimulation of auditory afferents. Synaptic plasticity and summation of synaptic currents correspond well with in vivo data previously published by other groups. We thus presume that these synapses mediate trigeminal input to the startle pathway.
Collapse
Affiliation(s)
- Susanne Schmid
- Animal Physiology, Zool. Institute, University of Tuebingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|