1
|
Jia W, Kawahata I, Cheng A, Sasaki T, Sasaoka T, Fukunaga K. Amelioration of Nicotine-Induced Conditioned Place Preference Behaviors in Mice by an FABP3 Inhibitor. Int J Mol Sci 2023; 24:ijms24076644. [PMID: 37047614 PMCID: PMC10095245 DOI: 10.3390/ijms24076644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
We previously demonstrated that fatty acid-binding protein 3 null (FABP3−/−) mice exhibit resistance to nicotine-induced conditioned place preference (CPP). Here, we confirm that the FABP3 inhibitor, MF1 ((4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy) butanoic acid), successfully reduces nicotine-induced CPP scores in mice. MF1 (0.3 or 1.0 mg/kg) was orally administered 30 min before nicotine, and CPP scores were assessed in the conditioning, withdrawal, and relapse phases. MF1 treatment decreased CPP scores in a dose-dependent manner. Failure of CPP induction by MF1 (1.0 mg/kg, p.o.) was associated with the inhibition of both CaMKII and ERK activation in the nucleus accumbens (NAc) and hippocampal CA1 regions. MF1 treatment reduced nicotine-induced increases in phosphorylated CaMKII and cAMP-response element-binding protein (CREB)-positive cells. Importantly, the increase in dopamine D2 receptor (D2R) levels following chronic nicotine exposure was inhibited by MF1 treatment. Moreover, the quinpirole (QNP)-induced increase in the level of CaMKII and ERK phosphorylation was significantly inhibited by MF1 treatment of cultured NAc slices from wild type (WT) mice; however, QNP treatment had no effect on CaMKII and ERK phosphorylation levels in the NAc of D2R null mice. Taken together, these results show that MF1 treatment suppressed D2R/FABP3 signaling, thereby preventing nicotine-induced CPP induction. Hence, MF1 can be used as a novel drug to block addiction to nicotine and other drugs by inhibiting the dopaminergic system.
Collapse
Affiliation(s)
- Wenbin Jia
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - An Cheng
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- BRI Pharma Inc., Sendai 982-0804, Japan
| |
Collapse
|
2
|
Ferraiolo M, Hermans E. The complex molecular pharmacology of the dopamine D 2 receptor: Implications for pramipexole, ropinirole, and rotigotine. Pharmacol Ther 2023; 245:108392. [PMID: 36958527 DOI: 10.1016/j.pharmthera.2023.108392] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
With L-DOPA, dopamine agonists such as pramipexole, ropinirole and rotigotine constitute key therapeutic options for the management of motor symptoms of Parkinson's disease. These compounds exert their beneficial effect on motor behaviours by activating dopamine D2-class receptors and thereby compensating for the declining dopaminergic transmission in the dorsal striatum. Despite a strong similarity in their mechanism of action, these three dopamine agonists present distinct clinical profiles, putatively underpinned by differences in their pharmacological properties. In this context, this review aims at contributing to close the gap between clinical observations and data from molecular neuropharmacology by exploring the properties of pramipexole, ropinirole and rotigotine from both the clinical and molecular perspectives. Indeed, this review first summarizes and compares the clinical features of these three dopamine agonists, and then explores their binding profiles at the different dopamine receptor subtypes. Moreover, the signalling profiles of pramipexole, ropinirole and rotigotine at the D2 receptor are recapitulated, with a focus on biased signalling and the potential therapeutic implications. Overall, this review aims at providing a unifying framework of interpretation for both clinicians and fundamental pharmacologists interested in a deep understanding of the pharmacological properties of pramipexole, ropinirole and rotigotine.
Collapse
Affiliation(s)
- Mattia Ferraiolo
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Emmanuel Hermans
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium.
| |
Collapse
|
3
|
Proietti Onori M, van Woerden GM. Role of calcium/calmodulin-dependent kinase 2 in neurodevelopmental disorders. Brain Res Bull 2021; 171:209-220. [PMID: 33774142 DOI: 10.1016/j.brainresbull.2021.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/28/2023]
Abstract
Neurodevelopmental disorders are a complex and heterogeneous group of neurological disorders characterized by their early-onset and estimated to affect more than 3% of children worldwide. The rapid advancement of sequencing technologies in the past years allowed the identification of hundreds of variants in several different genes causing neurodevelopmental disorders. Between those, new variants in the Calcium/calmodulin dependent protein kinase II (CAMK2) genes were recently linked to intellectual disability. Despite many years of research on CAMK2, this proves for the first time that this well-known and highly conserved molecule plays an important role in the human brain. In this review, we give an overview of the identified CAMK2 variants, and we speculate on potential mechanisms through which dysfunctions in CAMK2 result in neurodevelopmental disorders. Additionally, we discuss how the identification of CAMK2 variants might result in new exciting discoveries regarding the function of CAMK2 in the human brain.
Collapse
Affiliation(s)
- Martina Proietti Onori
- Department of Neuroscience, Erasmus MC, Rotterdam, 3015 GD, the Netherlands; The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, 3015 GD, the Netherlands
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus MC, Rotterdam, 3015 GD, the Netherlands; The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, 3015 GD, the Netherlands.
| |
Collapse
|
4
|
The Role of CaMKII and ERK Signaling in Addiction. Int J Mol Sci 2021; 22:ijms22063189. [PMID: 33804804 PMCID: PMC8004038 DOI: 10.3390/ijms22063189] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nicotine is the predominant addictive compound of tobacco and causes the acquisition of dependence through its interactions with nicotinic acetylcholine receptors and various neurotransmitter releases in the central nervous system. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) play a pivotal role in synaptic plasticity in the hippocampus. CaMKII is involved in long-term potentiation induction, which underlies the consolidation of learning and memory; however, the roles of CaMKII in nicotine and other psychostimulant-induced addiction still require further investigation. This article reviews the molecular mechanisms and crucial roles of CaMKII and ERK in nicotine and other stimulant drug-induced addiction. We also discuss dopamine (DA) receptor signaling involved in nicotine-induced addiction in the brain reward circuitry. In the last section, we introduce the association of polyunsaturated fatty acids and cellular chaperones of fatty acid-binding protein 3 in the context of nicotine-induced addiction in the mouse nucleus accumbens and provide a novel target for the treatment of drug abuse affecting dopaminergic systems.
Collapse
|
5
|
Huang Z, Wu D, Qu X, Li M, Zou J, Tan S. BDNF and nicotine dependence: associations and potential mechanisms. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0044/revneuro-2020-0044.xml. [PMID: 32887210 DOI: 10.1515/revneuro-2020-0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/18/2020] [Indexed: 12/30/2022]
Abstract
Smoking is the leading preventable cause of death worldwide and tobacco addiction has become a serious public health problem. Nicotine is the main addictive component of tobacco, and the majority of people that smoke regularly develop nicotine dependence. Nicotine addiction is deemed to be a chronic mental disorder. Although it is well known that nicotine binds to the nicotinic acetylcholine receptors (nAChRs) and activates the mesolimbic dopaminergic system (MDS) to generate the pleasant and rewarding effects, the molecular mechanisms of nicotine addiction are not fully understood. Brain-derived neurotrophic factor (BDNF) is the most prevalent growth factor in the brain, which regulates neuron survival, differentiation, and synaptic plasticity, mainly through binding to the high affinity receptor tyrosine kinase receptor B (TrkB). BDNF gene polymorphisms are associated with nicotine dependence and blood BDNF levels are altered in smokers. In this review, we discussed the effects of nicotine on BDNF expression in the brain and summarized the underlying signaling pathways, which further indicated BDNF as a key regulator in nicotine dependence. Further studies that aim to understand the neurobiological mechanism of BDNF in nicotine addcition would provide a valuable reference for quitting smoking and developing the treatment of other addictive substances.
Collapse
Affiliation(s)
- Zeyi Huang
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| | - Daichao Wu
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| | - Xilin Qu
- Grade 2017 of Clinical Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang421001,Hunan, China
| | - Meixiang Li
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| | - Ju Zou
- Department of Parasitology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang421001,Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| |
Collapse
|
6
|
Moriguchi S, Inagaki R, Yi L, Shibata M, Sakagami H, Fukunaga K. Nicotine Rescues Depressive-like Behaviors via α7-type Nicotinic Acetylcholine Receptor Activation in CaMKIV Null Mice. Mol Neurobiol 2020; 57:4929-4940. [PMID: 32815115 DOI: 10.1007/s12035-020-02077-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/14/2020] [Indexed: 01/23/2023]
Abstract
The nicotinic acetylcholine receptors (nAChRs) are essential for acetylcholine-mediated signaling. Two major functional subtypes of nAChR in the brain, α7-type and α4β2-type, have a high affinity for nicotine. Here, we demonstrated that chronic exposure to nicotine at 0.03-0.3 mg/kg for 14 days rescued depressive-like behavior in calcium/calmodulin-dependent protein kinase IV (CaMKIV) null mice. Chronic exposure to nicotine together with methyllycaconitine, an α7-type nAChR antagonist, but not with dihydro-β-erythroidine, an α4β2-type nAChR antagonist, failed to rescue the depressive-like behavior and restore the reduced number of BrdU-positive cells in the dentate gyrus (DG) of CaMKIV null mice. Furthermore, chronic exposure to nicotine enhanced the PI3K/Akt and ERK/CREB pathways and increased BDNF expression in the DG of CaMKIV null mice. Similar to chronic exposure to nicotine, both PNU-282987 and GTS-21, α7-type nAChR agonists, significantly rescued depressive-like behavior, with a reduction in the number of BrdU-positive cells in the DG of CaMKIV null mice. Both PNU-282987 and GTS-21 also enhanced the PI3K/Akt and ERK/CREB pathways and increased brain-derived neurotrophic factor (BDNF) expression in the DG of CaMKIV null mice. Taken together, we demonstrated that chronic exposure to nicotine rescues depressive-like behavior via α7-type nAChR through the activation of both PI3K/Akt and ERK/CREB pathways in CaMKIV null mice.
Collapse
Affiliation(s)
- Shigeki Moriguchi
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan. .,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Ryo Inagaki
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Lusha Yi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Mikako Shibata
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
7
|
Chen ZC, Wang TT, Bian W, Ye X, Li MY, Du JJ, Zhou P, Cui HR, Ding YQ, Ren YH, Qi SS, Yuan YY, Liao M, Sun CY. Allopregnanolone restores the tyrosine hydroxylase-positive neurons and motor performance in a 6-OHDA-injected mouse model. CNS Neurosci Ther 2020; 26:1069-1082. [PMID: 32602622 PMCID: PMC7539840 DOI: 10.1111/cns.13432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/25/2020] [Accepted: 06/12/2020] [Indexed: 01/02/2023] Open
Abstract
AIMS It has been reported that allopregnanolone (APα) promotes the neurogenesis of the neural progenitor cells (NPCs) in the subventricular zone (SVZ) and prevents the decrease of dopaminergic neurons in 6-hydroxydopamine (6-OHDA)-treated mice by binding to γ-aminobutyric acid A receptor (GABAAR) and then opening voltage-gated L-type Ca2+ channel, but the underlying mechanisms remain elusive. The aim of this study was to explore the possible involvement of GABAAR and calcium/calmodulin-dependent protein kinase II delta 3 (CaMKIIδ3) in this process. METHODS 6-OHDA-treated mice and primary cultured midbrain cells were administrated with APα and GABAAR antagonist bicuculline (Bic), and the proliferation and differentiation of NPCs, the tyrosine hydroxylase (TH)-positive neurons and their fibers, the expression levels of CaMKIIδ3 and brain-derived neurotrophic factor (BDNF), and motor functions were measured using ELISA, immunohistochemical staining, real-time RT-PCR, Western blot, and behavioral test. RESULTS Allopregnanolone significantly promoted the phosphorylation of cytoplasmic CaMKIIδ3 and its nuclear translocation by binding to GABAAR, which, in turn, increased the expression levels of BDNF. This may account for the findings that the exogenous APα enhanced the proliferation and differentiation of NPCs, and ameliorated the nigrostriatal system and behavioral performance in 6-OHDA-treated mice. CONCLUSIONS Allopregnanolone may directly activate GABAAR, which, in turn, enhance the proliferation and differentiation of NPCs via upregulating the expression levels of CaMKIIδ3, and finally contribute to the restoration of dopaminergic neurons in 6-OHDA-treated mice.
Collapse
Affiliation(s)
- Zhi-Chi Chen
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tong-Tong Wang
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Bian
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xin Ye
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meng-Yi Li
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juan-Juan Du
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peng Zhou
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huai-Rui Cui
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu-Qiang Ding
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan-Hua Ren
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuang-Shuang Qi
- Department of Pharmacy, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuan-Yuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Liao
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chen-You Sun
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Wang T, Ye X, Bian W, Chen Z, Du J, Li M, Zhou P, Cui H, Ding YQ, Qi S, Liao M, Sun C. Allopregnanolone Modulates GABAAR-Dependent CaMKIIδ3 and BDNF to Protect SH-SY5Y Cells Against 6-OHDA-Induced Damage. Front Cell Neurosci 2020; 13:569. [PMID: 31998078 PMCID: PMC6970471 DOI: 10.3389/fncel.2019.00569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022] Open
Abstract
Allopregnanolone (APα), as a functional neurosteroid, exhibits the neuroprotective effect on neurodegenerative diseases such as Parkinson’s disease (PD) through γ-aminobutyric acid A receptor (GABAAR), but it has not been completely understood about its molecular mechanisms. In order to investigate the neuroprotective effect of APα, as well as to clarify its possible molecular mechanisms, SH-SY5Y neuronal cell lines were incubated with 6-hydroxydopamine (6-OHDA), which has been widely used as an in vitro model for PD, along with APα alone or in combination with GABAAR antagonist (bicuculline, Bic), intracellular Ca2+ chelator (EGTA) and voltage-gated L-type Ca2+ channel blocker (Nifedipine). The viability, proliferation, and differentiation of SH-SY5Y cells, the expression levels of calmodulin (CaM), Ca2+/calmodulin-dependent protein kinase II δ3 (CaMKIIδ3), cyclin-dependent kinase-1 (CDK1) and brain-derived neurotrophic factor (BDNF), as well as the interaction between CaMKIIδ3 and CDK1 or BDNF, were detected by morphological and molecular biological methodology. Our results found that the cell viability and the number of tyrosine hydroxylase (TH), bromodeoxyuridine (BrdU) and TH/BrdU-positive cells in 6-OHDA-treated SH-SY5Y cells were significantly decreased with the concomitant reduction in the expression levels of aforementioned proteins, which were ameliorated following APα administration. In addition, Bic could further increase the number of TH or BrdU-positive cells as well as the expression levels of aforementioned proteins except for TH/BrdU-double positive cells, while EGTA and Nifedipine could attenuate the expression levels of CaM, CaMKIIδ3 and BDNF. Moreover, there existed a direct interaction between CaMKIIδ3 and CDK1 or BDNF. As a result, APα-induced an increase in the number of TH-positive SH-SY5Y cells might be mediated through GABAAR via Ca2+/CaM/CaMKIIδ3/BDNF (CDK1) signaling pathway, which would ultimately facilitate to elucidate PD pathogenesis and hold a promise as an alternative therapeutic target for PD.
Collapse
Affiliation(s)
- Tongtong Wang
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xin Ye
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Bian
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhichi Chen
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juanjuan Du
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengyi Li
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peng Zhou
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huairui Cui
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu-Qiang Ding
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuangshuang Qi
- Department of Pharmacy, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Liao
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenyou Sun
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
O'Donovan B, Adeluyi A, Anderson EL, Cole RD, Turner JR, Ortinski PI. Altered gating of K v1.4 in the nucleus accumbens suppresses motivation for reward. eLife 2019; 8:e47870. [PMID: 31487241 PMCID: PMC6728144 DOI: 10.7554/elife.47870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Deficient motivation contributes to numerous psychiatric disorders, including withdrawal from drug use, depression, schizophrenia, and others. Nucleus accumbens (NAc) has been implicated in motivated behavior, but it remains unclear whether motivational drive is linked to discrete neurobiological mechanisms within the NAc. To examine this, we profiled cohorts of Sprague-Dawley rats in a test of motivation to consume sucrose. We found that substantial variability in willingness to exert effort for reward was not associated with operant responding under low-effort conditions or stress levels. Instead, effort-based motivation was mirrored by a divergent NAc shell transcriptome with differential regulation at potassium and dopamine signaling genes. Functionally, motivation was inversely related to excitability of NAc principal neurons. Furthermore, neuronal and behavioral outputs associated with low motivation were linked to faster inactivation of a voltage-gated potassium channel, Kv1.4. These results raise the prospect of targeting Kv1.4 gating in psychiatric conditions associated with motivational dysfunction.
Collapse
Affiliation(s)
| | - Adewale Adeluyi
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of PharmacyUniversity of South CarolinaColumbiaUnited States
| | - Erin L Anderson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of PharmacyUniversity of South CarolinaColumbiaUnited States
| | - Robert D Cole
- Department of NeuroscienceUniversity of KentuckyLexingtonUnited States
| | - Jill R Turner
- College of PharmacyUniversity of KentuckyLexingtonUnited States
| | - Pavel I Ortinski
- Department of NeuroscienceUniversity of KentuckyLexingtonUnited States
| |
Collapse
|
10
|
Wilar G, Shinoda Y, Sasaoka T, Fukunaga K. Crucial Role of Dopamine D2 Receptor Signaling in Nicotine-Induced Conditioned Place Preference. Mol Neurobiol 2019; 56:7911-7928. [PMID: 31129809 DOI: 10.1007/s12035-019-1635-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022]
Abstract
Nicotine in tobacco causes psychological dependence through its rewarding effect in the central nervous system (CNS). Although nicotine dependence is explained by dopamine receptor (DR) signaling together with nicotinic acetylcholine receptors (nAChRs), the synaptic molecular mechanism underlying the interaction between dopamine receptor and nAChRs remains unclear. Since reward signaling is mediated by dopamine receptors, we hypothesized that the dopamine D2 receptor (D2R), in part, mediates the synaptic modulation of nicotine-induced conditioned place preference (CPP) in addition to dopamine D1 receptor. To investigate the involvement of D2R, wild-type (WT) and dopamine D2 receptor knockout (D2RKO) mice were assessed using the CPP task after induction of nicotine-induced CPP. As expected, D2RKO mice failed to induce CPP behaviors after repeated nicotine administration (0.5 mg/kg). When kinase signaling was assessed in the nucleus accumbens and hippocampal CA1 region after repeated nicotine administration, both Ca2+/calmodulin-dependent protein kinase (CaMKII) and extracellular signal-regulated kinase (ERK) were upregulated in WT mice but not in D2RKO mice. Likewise, nicotine-induced CPP was associated with elevation of pro- brain-derived neurotropic factor (BDNF) and BDNF protein levels in WT mice, but not in D2RKO mice. Taken together, in addition to dopamine D1 receptor signaling, dopamine D2 receptor signaling is critical for induction of nicotine-induced CPP in mice.
Collapse
Affiliation(s)
- Gofarana Wilar
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi-ken, Sendai-shi, Aoba-Ku, Aramaki, Aoba 6-3, Sendai, 980-8578, Japan
- Department of Pharmacology and Clinical Pharmacy Faculty of Pharmacy, Universitas Padjadjaran, JL. Raya Bandung-Sumedang KM 20.5 Jatinangor, Sumedang, Jawa Barat, 45363, Indonesia
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi-ken, Sendai-shi, Aoba-Ku, Aramaki, Aoba 6-3, Sendai, 980-8578, Japan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi-ken, Sendai-shi, Aoba-Ku, Aramaki, Aoba 6-3, Sendai, 980-8578, Japan.
| |
Collapse
|
11
|
Proietti Onori M, Koopal B, Everman DB, Worthington JD, Jones JR, Ploeg MA, Mientjes E, van Bon BW, Kleefstra T, Schulman H, Kushner SA, Küry S, Elgersma Y, van Woerden GM. The intellectual disability-associated CAMK2G p.Arg292Pro mutation acts as a pathogenic gain-of-function. Hum Mutat 2018; 39:2008-2024. [PMID: 30184290 PMCID: PMC6240363 DOI: 10.1002/humu.23647] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 01/28/2023]
Abstract
The abundantly expressed calcium/calmodulin-dependent protein kinase II (CAMK2), alpha (CAMK2A), and beta (CAMK2B) isoforms are essential for learning and memory formation. Recently, a de novo candidate mutation (p.Arg292Pro) in the gamma isoform of CAMK2 (CAMK2G) was identified in a patient with severe intellectual disability (ID), but the mechanism(s) by which this mutation causes ID is unknown. Here, we identified a second, unrelated individual, with a de novo CAMK2G p.Arg292Pro mutation, and used in vivo and in vitro assays to assess the impact of this mutation on CAMK2G and neuronal function. We found that knockdown of CAMK2G results in inappropriate precocious neuronal maturation. We further found that the CAMK2G p.Arg292Pro mutation acts as a highly pathogenic gain-of-function mutation, leading to increased phosphotransferase activity and impaired neuronal maturation as well as impaired targeting of the nuclear CAMK2G isoform. Silencing the catalytic site of the CAMK2G p.Arg292Pro protein reversed the pathogenic effect of the p.Arg292Pro mutation on neuronal maturation, without rescuing its nuclear targeting. Taken together, our results reveal an indispensable function of CAMK2G in neurodevelopment and indicate that the CAMK2G p.Arg292Pro protein acts as a pathogenic gain-of-function mutation, through constitutive activity toward cytosolic targets, rather than impaired targeting to the nucleus.
Collapse
Affiliation(s)
- Martina Proietti Onori
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Balwina Koopal
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | | | - Melissa A Ploeg
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Edwin Mientjes
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bregje W van Bon
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
| | | | - Steven A Kushner
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, Nantes, France.,l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Ype Elgersma
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Gower A, Tiberi M. The Intersection of Central Dopamine System and Stroke: Potential Avenues Aiming at Enhancement of Motor Recovery. Front Synaptic Neurosci 2018; 10:18. [PMID: 30034335 PMCID: PMC6043669 DOI: 10.3389/fnsyn.2018.00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
Dopamine, a major neurotransmitter, plays a role in a wide range of brain sensorimotor functions. Parkinson's disease and schizophrenia are two major human neuropsychiatric disorders typically associated with dysfunctional dopamine activity levels, which can be alleviated through the druggability of the dopaminergic systems. Meanwhile, several studies suggest that optimal brain dopamine activity levels are also significantly impacted in other serious neurological conditions, notably stroke, but this has yet to be fully appreciated at both basic and clinical research levels. This is of utmost importance as there is a need for better treatments to improve recovery from stroke. Here, we discuss the state of knowledge regarding the modulation of dopaminergic systems following stroke, and the use of dopamine boosting therapies in animal stroke models to improve stroke recovery. Indeed, studies in animals and humans show stroke leads to changes in dopamine functioning. Moreover, evidence from animal stroke models suggests stimulation of dopamine receptors may be a promising therapeutic approach for enhancing motor recovery from stroke. With respect to the latter, we discuss the evidence for several possible receptor-linked mechanisms by which improved motor recovery may be mediated. One avenue of particular promise is the subtype-selective stimulation of dopamine receptors in conjunction with physical therapy. However, results from clinical trials so far have been more mixed due to a number of potential reasons including, targeting of the wrong patient populations and use of drugs which modulate a wide array of receptors. Notwithstanding these issues, it is hoped that future research endeavors will assist in the development of more refined dopaminergic therapeutic approaches to enhance stroke recovery.
Collapse
Affiliation(s)
- Annette Gower
- Ottawa Hospital Research Institute (Neuroscience Program), Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Departments of Medicine, Cellular and Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, ON, Canada
| | - Mario Tiberi
- Ottawa Hospital Research Institute (Neuroscience Program), Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Departments of Medicine, Cellular and Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Ogundele OM, Lee CC. CaMKIIα expression in a mouse model of NMDAR hypofunction schizophrenia: Putative roles for IGF-1R and TLR4. Brain Res Bull 2018; 137:53-70. [PMID: 29137928 PMCID: PMC5835406 DOI: 10.1016/j.brainresbull.2017.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022]
Abstract
Schizophrenia (SCZ) is a neuropsychiatric disorder that is linked to social behavioral deficits and other negative symptoms associated with hippocampal synaptic dysfunction. Synaptic mechanism of schizophrenia is characterized by loss of hippocampal N-Methyl-d-Aspartate Receptor (NMDAR) activity (NMDAR hypofunction) and dendritic spines. Previous studies show that genetic deletion of hippocampal synaptic regulatory calcium-calmodulin dependent kinase II alpha (CaMKIIα) cause synaptic and behavioral defects associated with schizophrenia in mice. Although CaMKIIα is involved in modulation of NMDAR activity, it is equally linked to inflammatory and neurotropin signaling in neurons. Based on these propositions, we speculate that non-neurotransmitter upstream receptors associated with neurotropic and inflammatory signaling activities of CaMKIIα may alter its synaptic function. Besides, how these receptors (i.e. inflammatory and neurotropic receptors) alter CaMKIIα function (phosphorylation) relative to hippocampal NMDAR activity in schizophrenia is poorly understood. Here, we examined the relationship between toll-like receptor (TLR4; inflammatory), insulin-like growth factor receptor 1 (IGF-1R; neurotropic) and CaMKIIα expression in the hippocampus of behaviorally deficient schizophrenic mice after we induced schizophrenia through NMDAR inhibition. Schizophrenia was induced in WT (C57BL/6) mice through intraperitoneal administration of 30mg/Kg ketamine (NMDAR antagonist) for 5days (WT/SCZ). Five days after the last ketamine treatment, wild type schizophrenic mice show deficiencies in sociability and social novelty behavior. Furthermore, there was a significant decrease in hippocampal CaMKIIα (p<0.001) and IGF-1R (p<0.001) expression when assessed through immunoblotting and confocal immunofluorescence microscopy. Additionally, WT schizophrenic mice show an increased percentage of phosphorylated CaMKIIα in addition to upregulated TLR4 signaling (TLR4, NF-κB, and MAPK/ErK) in the hippocampus. To ascertain the functional link between TLR4, IGF-1R and CaMKIIα relative to NMDAR hypofunction in schizophrenia, we created hippocampal-specific TLR4 knockdown mouse using AAV-driven Cre-lox technique (TLR4 KD). Subsequently, we inhibited NMDAR function in TLR4 KD mice in an attempt to induce schizophrenia (TLR4 KD SCZ). Interestingly, IGF-1R and CaMKIIα expressions were preserved in the TLR4 KD hippocampus after attenuation of NMDAR function. Furthermore, TLR4 KD SCZ mice showed no prominent defects in sociability and social novelty behavior when compared with the control (WT). Our results show that a sustained IGF-1R expression may preserve the synaptic activity of CaMKIIα while TLR4 signaling ablates hippocampal CaMKIIα expression in NMDAR hypofunction schizophrenia. Together, we infer that IGF-1R depletion and increased TLR4 signaling are non-neurotransmitter pro-schizophrenic cues that can reduce synaptic CaMKIIα activity in a pharmacologic mouse model of schizophrenia.
Collapse
Affiliation(s)
- O M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States.
| | - C C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States.
| |
Collapse
|
14
|
Heidarinejad M, Nakamura H, Inoue T. Stimulation-induced changes in diffusion and structure of calmodulin and calmodulin-dependent protein kinase II proteins in neurons. Neurosci Res 2018; 136:13-32. [PMID: 29395358 DOI: 10.1016/j.neures.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 11/28/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) and calmodulin (CaM) play essential roles in synaptic plasticity, which is an elementary process of learning and memory. In this study, fluorescence correlation spectroscopy (FCS) revealed diffusion properties of CaM, CaMKIIα and CaMKIIβ proteins in human embryonic kidney 293 (HEK293) cells and hippocampal neurons. A simultaneous multiple-point FCS recording system was developed on a random-access two-photon microscope, which facilitated efficient analysis of molecular dynamics in neuronal compartments. The diffusion of CaM in neurons was slower than that in HEK293 cells at rest, while the diffusion in stimulated neurons was accelerated and indistinguishable from that in HEK293 cells. This implied that activity-dependent binding partners of CaM exist in neurons, which slow down the diffusion at rest. Diffusion properties of CaMKIIα and β proteins implied that major populations of these proteins exist as holoenzymatic forms. Upon stimulation of neurons, the diffusion of CaMKIIα and β proteins became faster with reduced particle brightness, indicating drastic structural changes of the proteins such as dismissal from holoenzyme structure and further fragmentation.
Collapse
Affiliation(s)
- Morteza Heidarinejad
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Hideki Nakamura
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
15
|
Sheng G, Zhang J, Gao S, Gu Y, Jiang B, Gao Q. SKF83959 Has Protective Effects in the Scopolamine Model of Dementia. Biol Pharm Bull 2018; 41:427-434. [DOI: 10.1248/bpb.b17-00877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Gaofeng Sheng
- Department of Pharmacy, The Second Affiliated Hospital of Nantong University
| | - Jinlin Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Nantong University
| | - Shengfeng Gao
- Department of Pharmacy, The Second Affiliated Hospital of Nantong University
| | - Yuanyuan Gu
- Department of Pharmacy, The Second Affiliated Hospital of Nantong University
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University
- Department of Pharmacy, The Third Affiliated Hospital of Nantong University
| | - Qiufang Gao
- Department of Pharmacology, School of Pharmacy, Nantong University
- Department of Pharmacy, The Third Affiliated Hospital of Nantong University
| |
Collapse
|
16
|
Physiological and Pathological Roles of CaMKII-PP1 Signaling in the Brain. Int J Mol Sci 2017; 19:ijms19010020. [PMID: 29271887 PMCID: PMC5795971 DOI: 10.3390/ijms19010020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/25/2023] Open
Abstract
Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII), a multifunctional serine (Ser)/threonine (Thr) protein kinase, regulates diverse activities related to Ca2+-mediated neuronal plasticity in the brain, including synaptic activity and gene expression. Among its regulators, protein phosphatase-1 (PP1), a Ser/Thr phosphatase, appears to be critical in controlling CaMKII-dependent neuronal signaling. In postsynaptic densities (PSDs), CaMKII is required for hippocampal long-term potentiation (LTP), a cellular process correlated with learning and memory. In response to Ca2+ elevation during hippocampal LTP induction, CaMKIIα, an isoform that translocates from the cytosol to PSDs, is activated through autophosphorylation at Thr286, generating autonomous kinase activity and a prolonged Ca2+/CaM-bound state. Moreover, PP1 inhibition enhances Thr286 autophosphorylation of CaMKIIα during LTP induction. By contrast, CaMKII nuclear import is regulated by Ser332 phosphorylation state. CaMKIIδ3, a nuclear isoform, is dephosphorylated at Ser332 by PP1, promoting its nuclear translocation, where it regulates transcription. In this review, we summarize physio-pathological roles of CaMKII/PP1 signaling in neurons. CaMKII and PP1 crosstalk and regulation of gene expression is important for neuronal plasticity as well as survival and/or differentiation.
Collapse
|
17
|
Karam CS, Javitch JA. Phosphorylation of the Amino Terminus of the Dopamine Transporter: Regulatory Mechanisms and Implications for Amphetamine Action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:205-234. [PMID: 29413521 DOI: 10.1016/bs.apha.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amphetamines (AMPHs) are potent psychostimulants that are widely used and abused, with profound medical and societal impact. Their actions at dopaminergic neurons are thought to mediate their therapeutic efficacy as well as their liability for abuse and dependence. AMPHs target the dopamine transporter (DAT), the plasmalemmal membrane protein that mediates the inactivation of released dopamine (DA) through its reuptake. AMPHs act as substrates for DAT and are known to cause mobilization of dopamine (DA) to the cell exterior via DAT-mediated reverse transport (efflux). It has become increasingly evident that the mechanisms that regulate AMPH-induced DA efflux are distinct from those that regulate DA uptake. Central to these mechanisms is the phosphorylation of the DAT amino (N)-terminus, which has been repeatedly demonstrated to facilitate DAT-mediated DA efflux, without impacting other aspects of DAT physiology. This review aims to summarize the current status of knowledge regarding DAT N-terminal phosphorylation and its regulation by protein modulators and the membrane microenvironment. A better understanding of these mechanisms may lead to the identification of novel therapeutic approaches that interfere selectively with the pharmacological effects of AMPHs without altering the physiological function of DAT.
Collapse
Affiliation(s)
- Caline S Karam
- College of Physicians & Surgeons, Columbia University, New York, NY, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Jonathan A Javitch
- College of Physicians & Surgeons, Columbia University, New York, NY, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States.
| |
Collapse
|
18
|
Stress-altered synaptic plasticity and DAMP signaling in the hippocampus-PFC axis; elucidating the significance of IGF-1/IGF-1R/CaMKIIα expression in neural changes associated with a prolonged exposure therapy. Neuroscience 2017; 353:147-165. [PMID: 28438613 DOI: 10.1016/j.neuroscience.2017.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022]
Abstract
Traumatic stress patients showed significant improvement in behavior after a prolonged exposure to an unrelated stimulus. This treatment method attempts to promote extinction of the fear memory associated with the initial traumatic experience. However, the subsequent prolonged exposure to such stimulus creates an additional layer of neural stress. Although the mechanism remains unclear, prolonged exposure therapy (PET) likely involves changes in synaptic plasticity, neurotransmitter function and inflammation; especially in parts of the brain concerned with the formation and retrieval of fear memory (Hippocampus and Prefrontal Cortex: PFC). Since certain synaptic proteins are also involved in danger-associated molecular pattern signaling (DAMP), we identified the significance of IGF-1/IGF-1R/CaMKIIα expression as a potential link between the concurrent progression of synaptic and inflammatory changes in stress. Thus, a comparison between IGF-1/IGF-1R/CaMKIIα, synaptic and DAMP proteins in stress and PET may highlight the significance of PET on synaptic morphology and neuronal inflammatory response. In behaviorally characterized Sprague-Dawley rats, there was a significant decline in neural IGF-1 (p<0.001), hippocampal (p<0.001) and cortical (p<0.05) IGF-1R expression. These animals showed a significant loss of presynaptic markers (synaptophysin; p<0.001), and changes in neurotransmitters (VGLUT2, Tyrosine hydroxylase, GABA, ChAT). Furthermore, naïve stressed rats recorded a significant decrease in post-synaptic marker (PSD-95; p<0.01) and synaptic regulator (CaMKIIα; p<0.001). As part of the synaptic response to a decrease in brain CaMKIIα, small ion conductance channel (KCa2.2) was upregulated in the brain of naïve stressed rats (p<0.01). After a PET, an increase in IGF-1 (p<0.05) and IGF-1R was recorded in the Stress-PET group (p<0.001). As such, hippocampal (p<0.001), but not cortical (ns) synaptophysin expression increased in Stress-PET. Although PSD-95 was relatively unchanged in the hippocampus and PFC, CaMKIIα (p<0.001) and KCa2.2 (p<0.01) were upregulated in Stress-PET, and may be involved in extinction of fear memory-related synaptic potentials. These changes were also associated with a normalized neurotransmitter function, and a significant reduction in open space avoidance; when the animals were assessed in elevated plus maze (EPM). In addition to a decrease in IGF-1/IGF-1R, an increase in activated hippocampal and cortical microglia was seen in stress (p<0.05) and after a PET (Stress-PET; p<0.001). Furthermore, this was linked with a significant increase in HMGB1 (Hippocampus: p<0.001, PFC: p<0.05) and TLR4 expression (Hippocampus: p<0.01; PFC: ns) in the neurons. Taken together, this study showed that traumatic stress and subsequent PET involves an event-dependent alteration of IGF1/IGF-1R/CaMKIIα. Firstly, we showed a direct relationship between IGF-1/IGF-1R expression, presynaptic function (synaptophysin) and neurotransmitter activity in stress and PET. Secondly, we identified the possible role of CaMKIIα in post-synaptic function and regulation of small ion conductance channels. Lastly, we highlighted some of the possible links between IGF1/IGF-1R/CaMKIIα, the expression of DAMP proteins, Microglia activation, and its implication on synaptic plasticity during stress and PET.
Collapse
|
19
|
Fukunaga K, Moriguchi S. Stimulation of the Sigma-1 Receptor and the Effects on Neurogenesis and Depressive Behaviors in Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:201-211. [PMID: 28315273 DOI: 10.1007/978-3-319-50174-1_14] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sigma-1 receptor (Sig-1R) is molecular chaperone regulating calcium efflux from the neuronal endoplasmic reticulum to mitochondria. Recent studies show that Sig-1R stimulation antagonizes depressive-like behaviors in animal models, but molecular mechanisms underlying this effect remain unclear. Here, we focus on the effects of Sig-1R ligands on hippocampal neurogenesis and depressive-like behaviors. Sig-1R stimulation also enhances CaMKII /CaMKIV and protein kinase B (Akt) activities in hippocampus. Therefore, we discuss the fundamental roles of Sig-1R, CaMKII /CaMKIV and protein kinase B (Akt) signaling in amelioration of depressive-like behaviors following Sig-1R stimulation.
Collapse
Affiliation(s)
- Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Shigeki Moriguchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
20
|
Moriguchi S, Sakagami H, Yabuki Y, Sasaki Y, Izumi H, Zhang C, Han F, Fukunaga K. Stimulation of Sigma-1 Receptor Ameliorates Depressive-like Behaviors in CaMKIV Null Mice. Mol Neurobiol 2015; 52:1210-1222. [PMID: 25316382 DOI: 10.1007/s12035-014-8923-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/06/2014] [Indexed: 01/22/2023]
Abstract
Sigma-1 receptor (Sig-1R) is a molecular chaperone regulating calcium efflux from the neuronal endoplasmic reticulum to the mitochondria. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) null mice exhibit depressive-like behaviors and impaired neurogenesis as assessed by bromodeoxyuridine (BrdU) incorporation into newborn cells of the hippocampal dentate gyrus (DG). Here, we demonstrate that chronic stimulation of Sig-1R by treatment with the agonist SA4503 or the SSRI fluvoxamine for 14 days improves depressive-like behaviors in CaMKIV null mice. By contrast, treatment with paroxetine, which lacks affinity for Sig-1R, did not alter these behaviors. Reduced numbers of BrdU-positive cells and decreased brain-derived neurotrophic factor (BDNF) mRNA expression and protein kinase B (Akt; Ser-473) phosphorylation seen in the DG of CaMKIV null mice were significantly rescued by chronic Sig-1R stimulation. Interestingly, reduced ATP production observed in the DG of CaMKIV null mice was improved by chronic Sig-1R stimulation. Such stimulation also improved hippocampal long-term potentiation (LTP) induction and maintenance, which are impaired in the DG of CaMKIV null mice. LTP rescue was closely associated with both increases in calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and GluA1 (Ser-831) phosphorylation. Taken together, Sig-1R stimulation by SA4503 or fluvoxamine treatment increased hippocampal neurogenesis, which is closely associated with amelioration of depressive-like behaviors in CaMKIV null mice.
Collapse
Affiliation(s)
- Shigeki Moriguchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Yuzuru Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Hisanao Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Chen Zhang
- Department of Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feng Han
- Department of Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
21
|
Cui SY, Li SJ, Cui XY, Zhang XQ, Yu B, Sheng ZF, Huang YL, Cao Q, Xu YP, Lin ZG, Yang G, Song JZ, Ding H, Wang ZJ, Zhang YH. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation. J Neurochem 2015; 136:609-19. [PMID: 26558357 DOI: 10.1111/jnc.13431] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022]
Abstract
The Ca(2+) modulation in the dorsal raphe nucleus (DRN) plays an important role in sleep-wake regulation. Calmodulin-dependent kinase II (CaMKII) is an important signal-transducing molecule that is activated by Ca(2+) . This study investigated the effects of intracellular Ca(2+) /CaMKII signaling in the DRN on sleep-wake states in rats. Maximum and minimum CaMKII phosphorylation was detected at Zeitgeber time 21 (ZT 21; wakefulness state) and ZT 3 (sleep state), respectively, across the light-dark rhythm in the DRN in rats. Six-hour sleep deprivation significantly reduced CaMKII phosphorylation in the DRN. Microinjection of the CAMKII activation inhibitor KN-93 (5 or 10 nmol) into the DRN suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REM sleep (NREMS). Application of a high dose of KN-93 (10 nmol) increased slow-wave sleep (SWS) time, SWS bouts, the mean duration of SWS, the percentage of SWS relative to total sleep, and delta power density during NREMS. Microinjection of CaCl2 (50 nmol) in the DRN increased CaMKII phosphorylation and decreased NREMS, SWS, and REMS. KN-93 abolished the inhibitory effects of CaCl2 on NREMS, SWS, and REMS. These data indicate a novel wake-promoting and sleep-suppressing role for the Ca(2+) /CaMKII signaling pathway in DRN neurons. We propose that the intracellular Ca(2+) /CaMKII signaling in the dorsal raphe nucleus (DRN) plays wake-promoting and sleep-suppressing role in rats. Intra-DRN application of KN-93 (CaMKII activation inhibitor) suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Intra-DRN application of CaCl2 attenuated REMS and NREMS. We think these findings should provide a novel cellular and molecular mechanism of sleep-wake regulation.
Collapse
Affiliation(s)
- Su-Ying Cui
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Sheng-Jie Li
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Xiang-Yu Cui
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Xue-Qiong Zhang
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Bin Yu
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Zhao-Fu Sheng
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Yuan-Li Huang
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Qing Cao
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Ya-Ping Xu
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Zhi-Ge Lin
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Guang Yang
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Jin-Zhi Song
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Hui Ding
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Zi-Jun Wang
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Yong-He Zhang
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| |
Collapse
|
22
|
Shioda N, Sawai M, Ishizuka Y, Shirao T, Fukunaga K. Nuclear Translocation of Calcium/Calmodulin-dependent Protein Kinase IIδ3 Promoted by Protein Phosphatase-1 Enhances Brain-derived Neurotrophic Factor Expression in Dopaminergic Neurons. J Biol Chem 2015; 290:21663-75. [PMID: 26163515 DOI: 10.1074/jbc.m115.664920] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 02/05/2023] Open
Abstract
We have reported previously that dopamine D2 receptor stimulation activates calcium/calmodulin-dependent protein kinase II (CaMKII) δ3, a CaMKII nuclear isoform, increasing BDNF gene expression. However, the mechanisms underlying that activity remained unclear. Here we report that CaMKIIδ3 is dephosphorylated at Ser(332) by protein phosphatase 1 (PP1), promoting CaMKIIδ3 nuclear translocation. Neuro-2a cells transfected with CaMKIIδ3 showed cytoplasmic and nuclear staining, but the staining was predominantly nuclear when CaMKIIδ3 was coexpressed with PP1. Indeed, PP1 and CaMKIIδ3 coexpression significantly increased nuclear CaMKII activity and enhanced BDNF expression. In support of this idea, chronic administration of the dopamine D2 receptor partial agonist aripiprazole increased PP1 activity and promoted nuclear CaMKIIδ3 translocation and BDNF expression in the rat brain substantia nigra. Moreover, aripiprazole treatment enhanced neurite extension and inhibited cell death in cultured dopaminergic neurons, effects blocked by PP1γ knockdown. Taken together, nuclear translocation of CaMKIIδ3 following dephosphorylation at Ser(332) by PP1 likely accounts for BDNF expression and subsequent neurite extension and survival of dopaminergic neurons.
Collapse
Affiliation(s)
- Norifumi Shioda
- From the Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan and
| | - Masahiro Sawai
- From the Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan and
| | - Yuta Ishizuka
- the Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Tomoaki Shirao
- the Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Kohji Fukunaga
- From the Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan and
| |
Collapse
|
23
|
Ma H, Groth RD, Cohen SM, Emery JF, Li B, Hoedt E, Zhang G, Neubert TA, Tsien RW. γCaMKII shuttles Ca²⁺/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell 2015; 159:281-94. [PMID: 25303525 DOI: 10.1016/j.cell.2014.09.019] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/02/2014] [Accepted: 09/09/2014] [Indexed: 12/23/2022]
Abstract
Activity-dependent CREB phosphorylation and gene expression are critical for long-term neuronal plasticity. Local signaling at CaV1 channels triggers these events, but how information is relayed onward to the nucleus remains unclear. Here, we report a mechanism that mediates long-distance communication within cells: a shuttle that transports Ca(2+)/calmodulin from the surface membrane to the nucleus. We show that the shuttle protein is γCaMKII, its phosphorylation at Thr287 by βCaMKII protects the Ca(2+)/CaM signal, and CaN triggers its nuclear translocation. Both βCaMKII and CaN act in close proximity to CaV1 channels, supporting their dominance, whereas γCaMKII operates as a carrier, not as a kinase. Upon arrival within the nucleus, Ca(2+)/CaM activates CaMKK and its substrate CaMKIV, the CREB kinase. This mechanism resolves long-standing puzzles about CaM/CaMK-dependent signaling to the nucleus. The significance of the mechanism is emphasized by dysregulation of CaV1, γCaMKII, βCaMKII, and CaN in multiple neuropsychiatric disorders.
Collapse
Affiliation(s)
- Huan Ma
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA.
| | - Rachel D Groth
- Centers for Therapeutic Innovation, Pfizer, 1700 Owens Street, San Francisco, CA 94158, USA
| | - Samuel M Cohen
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - John F Emery
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Boxing Li
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Esthelle Hoedt
- Department of Biochemistry and Molecular Pharmacology and Skirball Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Guoan Zhang
- Department of Biochemistry and Molecular Pharmacology and Skirball Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Thomas A Neubert
- Department of Biochemistry and Molecular Pharmacology and Skirball Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Richard W Tsien
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
24
|
Abstract
The α isoform of the calcium/calmodulin-dependent protein kinase II (αCaMKII) has been implicated extensively in molecular and cellular mechanisms underlying spatial and contextual learning in a wide variety of species. Germline deletion of Camk2a leads to severe deficits in spatial and contextual learning in mice. However, the temporal and region-specific requirements for αCaMKII have remained largely unexplored. Here, we generated conditional Camk2a mutants to examine the influence of spatially restricted and temporally controlled expression of αCaMKII. Forebrain-specific deletion of the Camk2a gene resulted in severe deficits in water maze and contextual fear learning, whereas mice with deletion restricted to the cerebellum learned normally. Furthermore, we found that temporally controlled deletion of the Camk2a gene in adult mice is as detrimental as germline deletion for learning and synaptic plasticity. Together, we confirm the requirement for αCaMKII in the forebrain, but not the cerebellum, in spatial and contextual learning. Moreover, we highlight the absolute requirement for intact αCaMKII expression at the time of learning.
Collapse
|
25
|
Immune-mediated animal models of Tourette syndrome. Neurosci Biobehav Rev 2013; 37:1120-38. [PMID: 23313649 DOI: 10.1016/j.neubiorev.2013.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/11/2012] [Accepted: 01/03/2013] [Indexed: 12/20/2022]
Abstract
An autoimmune diathesis has been proposed in Tourette syndrome (TS) and related neuropsychiatric disorders such as obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism and anorexia nervosa. Environmental triggers including infection and xenobiotics are hypothesized to lead to the production of brain-directed autoantibodies in a subset of genetically susceptible individuals. Although much work has focused on Group A Streptococcus (GAS), the role of this common childhood infection remains controversial. Animal model studies based on immune and autoantibody findings in TS have demonstrated immunoglobulin (Ig) deposits and stereotypic movements and related behavioral disturbances reminiscent of TS following exposure to GAS, other activators of host anti-microbial responses, soluble immune mediators and anti-GAS or anti-neuronal antibodies. Demonstration of the ability to recreate these abnormalities through passive transfer of serum IgG from GAS-immunized mice into naïve mice and abrogation of this activity through depletion of IgG has provided compelling evidence in support of the autoimmune hypothesis. Immunologically-based animal models of TS are a potent tool for dissecting the pathogenesis of this serious neuropsychiatric syndrome.
Collapse
|
26
|
Papaleo F, Yang F, Garcia S, Chen J, Lu B, Crawley JN, Weinberger DR. Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Mol Psychiatry 2012; 17:85-98. [PMID: 20956979 PMCID: PMC3388848 DOI: 10.1038/mp.2010.106] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dysbindin-1 regulates D2-receptor trafficking and is implicated in schizophrenia and related cognitive abnormalities, but whether this molecular effect mediates the clinical manifestations of the disorder is unknown. We explored in dysbindin-1-deficient mice (dys-/-) (1) schizophrenia-related behaviors, (2) molecular and electrophysiological changes in medial prefrontal cortex (mPFC) and (3) the dependence of these on D2-receptor stimulation. Dysbindin-1 disruption altered dopamine-related behaviors and impaired working memory under challenging/stressful conditions. Dys-/- pyramidal neurons in mPFC layers II/III were hyperexcitable at baseline but hypoexcitable following D2 stimulation. Dys-/- were also respectively more and less sensitive to D2 agonist- and antagonist-induced behavioral effects. Dys-/- had reduced expression of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and CaMKKβ in mPFC. Chronic D2 agonist treatment reproduced these changes in protein expression, and some of the dys-/- behavioral effects. These results elucidate dysbindin's modulation of D2-related behavior, cortical activity and mPFC CaMK components, implicating cellular and molecular mechanisms of the association of dysbindin with psychosis.
Collapse
Affiliation(s)
- F Papaleo
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | - F Yang
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA,Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - S Garcia
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - J Chen
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - B Lu
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - JN Crawley
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - DR Weinberger
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Fukunaga K, Shioda N. Novel dopamine D2 receptor signaling through proteins interacting with the third cytoplasmic loop. Mol Neurobiol 2011; 45:144-52. [PMID: 22183739 DOI: 10.1007/s12035-011-8227-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/07/2011] [Indexed: 01/09/2023]
Abstract
The diverse activities of dopamine D2-like receptors, including D2, D3, and D4 receptors, are mediated by proteins that interact with the third cytoplasmic loop and regulate receptor signaling, receptor trafficking, and apoptosis. Such interacting proteins include calmodulin, the N-methyl-D: -aspartate receptor 2B subunit, calcium/calmodulin-dependent protein kinase II, prostate apoptosis response-4, and β-arrestins, which regulate receptor signaling and the pharmacological action through D2 receptor. The gene encoding the D2 receptor gives rise to two isoforms, termed the dopamine D2 receptor long isoform (D2L) and the dopamine D2 receptor short isoform; the latter lacks 29 amino acids of the D2L receptor within the third cytoplasmic loop. In this review, we first focus on novel functions of the hetero-oligomeric D1/D2 and D2/adenosine A(2A) receptors. We next discuss novel signaling through proteins interacting with the D2 receptor third cytoplasmic loop and define the function of a novel binding protein, heart-type fatty acid binding protein, which interacts with the D2L third cytoplasmic loop.
Collapse
Affiliation(s)
- Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki-Aoba Aoba-ku, Sendai 980-8578, Japan.
| | | |
Collapse
|
28
|
Sharp BM, Chen H, Gong S, Wu X, Liu Z, Hiler K, Taylor WL, Matta SG. Gene expression in accumbens GABA neurons from inbred rats with different drug-taking behavior. GENES BRAIN AND BEHAVIOR 2011; 10:778-88. [PMID: 21745336 DOI: 10.1111/j.1601-183x.2011.00716.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inbred Lewis and Fisher 344 rat strains differ greatly in drug self-administration; Lewis rats operantly self-administer drugs of abuse including nicotine, whereas Fisher self-administer poorly. As shown herein, operant food self-administration is similar. On the basis of their pivotal role in drug reward, we hypothesized that differences in basal gene expression in GABAergic neurons projecting from nucleus accumbens (NAcc) to ventral pallidum (VP) play a role in vulnerability to drug-taking behavior. The transcriptomes of NAcc shell-VP GABAergic neurons from these two strains were analyzed in adolescents, using a multidisciplinary approach that combined stereotaxic ionotophoretic brain microinjections, laser-capture microdissection (LCM) and microarray measurement of transcripts. Laser-capture microdissection enriched the gene transcripts detected in gamma-aminobutyric acid (GABA) neurons compared to the residual NAcc tissue: a ratio of neuron/residual >1 and false discovery rate (FDR) <5% yielded 6623 transcripts, whereas a ratio of >3 yielded 3514. Strain-dependent differences in gene expression within GABA neurons were identified; 322 vs. 60 transcripts showed 1.5-fold vs. 2-fold differences in expression (FDR < 5%). Classification by gene ontology showed that these 322 transcripts were widely distributed, without categorical enrichment. This is most consistent with a global change in GABA neuron function. Literature mining by Chilibot found 38 genes related to synaptic plasticity, signaling and gene transcription, all of which determine drug abuse; 33 genes have no known association with addiction or nicotine. In Lewis rats, upregulation of Mint-1, Cask, CamkII , Ncam1, Vsnl1, Hpcal1 and Car8 indicates that these transcripts likely contribute to altered signaling and synaptic function in NAcc GABA projection neurons to VP.
Collapse
Affiliation(s)
- B M Sharp
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Perra S, Clements MA, Bernier BE, Morikawa H. In vivo ethanol experience increases D(2) autoinhibition in the ventral tegmental area. Neuropsychopharmacology 2011; 36:993-1002. [PMID: 21248720 PMCID: PMC3077268 DOI: 10.1038/npp.2010.237] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alcoholism is characterized by compulsive alcohol intake after a history of chronic consumption. A reduction in mesolimbic dopaminergic transmission observed during abstinence may contribute to the negative affective state that drives compulsive intake. Although previous in vivo recording studies in rodents have demonstrated profound decreases in the firing activity of ventral tegmental area (VTA) dopamine neurons after withdrawal from long-term ethanol exposure, the cellular mechanisms underlying this reduced activity are not well understood. Somatodendritic dopamine release within the VTA exerts powerful feedback inhibition of dopamine neuron activity via stimulation of D(2) autoreceptors and subsequent activation of G protein-gated inwardly rectifying K(+) (GIRK) channels. Here, by performing patch-clamp recordings from putative dopamine neurons in the VTA of mouse brain slices, we show that D(2) receptor/GIRK-mediated inhibition becomes more potent and exhibits less desensitization after withdrawal from repeated in vivo ethanol exposure (2 g/kg, i.p., three times daily for 7 days). In contrast, GABA(B) receptor/GIRK-mediated inhibition and its desensitization are not affected. Chelating cytosolic Ca(2+) with BAPTA augments D(2) inhibition and suppresses its desensitization in control mice, while these effects of BAPTA are occluded in ethanol-treated mice. Furthermore, inositol 1,4,5-trisphosphate (IP(3))-induced intracellular Ca(2+) release and Ca(2+)/calmodulin-dependent protein kinase II are selectively involved in the desensitization of D(2), but not GABA(B), receptor signaling. Consistent with this, activation of metabotropic glutamate receptors that are coupled to IP(3) generation leads to cross-desensitization of D(2)/GIRK-mediated responses. We propose that enhancement of D(2) receptor-mediated autoinhibition via attenuation of a Ca(2+)-dependent desensitization mechanism may contribute to the hypodopaminergic state during ethanol withdrawal.
Collapse
Affiliation(s)
- Simona Perra
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - Michael A Clements
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - Brian E Bernier
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - Hitoshi Morikawa
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2400 Speedway, PAT 402, Austin, TX 78712, USA. Tel: +1 512 232 9299, Fax: +1 512 471 3878, E-mail:
| |
Collapse
|
30
|
Current perspectives on the selective regulation of dopamine D2 and D3 receptors. Arch Pharm Res 2010; 33:1521-38. [DOI: 10.1007/s12272-010-1005-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 08/20/2010] [Accepted: 08/20/2010] [Indexed: 01/07/2023]
|
31
|
Fumagalli F, Cattaneo A, Caffino L, Ibba M, Racagni G, Carboni E, Gennarelli M, Riva MA. Sub-chronic exposure to atomoxetine up-regulates BDNF expression and signalling in the brain of adolescent spontaneously hypertensive rats: comparison with methylphenidate. Pharmacol Res 2010; 62:523-9. [PMID: 20691787 DOI: 10.1016/j.phrs.2010.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 01/05/2023]
Abstract
The stimulant methylphenidate and the non-stimulant atomoxetine are widely used for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD), but the molecular mechanisms of their therapeutic action are not fully understood. The aim of our study was to investigate, in adolescent rats, the sub-chronic effect of these two drugs on neuronal plasticity, through a detailed analysis of BDNF expression and signalling in order to establish the contribution of these mechanisms in the pharmacotherapy of ADHD. Atomoxetine (ATX) up-regulated BDNF mRNA levels in the hippocampus whereas methylphenidate (MPH) increased BDNF gene expression in the nucleus accumbens and caudate-putamen. Opposite effects were seen in the prefrontal cortex, a critical region in attention disorders, where ATX increased while MPH reduced total and exon IV BDNF mRNA levels. Analysis of BDNF-mediated signalling in the prefrontal cortex revealed that ATX enhanced AKT and GSK3β phosphorylation whereas MPH reduced the synaptic levels of trkB, the high-affinity BDNF receptor, and ERK1/2 activation. Our findings show that ATX and MPH exert an opposite modulation of the BDNF system, primarily in prefrontal cortex that, independently from the behavioral control exerted by the two drugs, may be important for long-term consequences on cognitive function.
Collapse
Affiliation(s)
- Fabio Fumagalli
- Center of Neuropharmacology, Department of Pharmacological Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dysregulation of dopamine transporters via dopamine D2 autoreceptors triggers anomalous dopamine efflux associated with attention-deficit hyperactivity disorder. J Neurosci 2010; 30:6048-57. [PMID: 20427663 DOI: 10.1523/jneurosci.5094-09.2010] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neurotransmitter dopamine (DA) modulates brain circuits involved in attention, reward, and motor activity. Synaptic DA homeostasis is primarily controlled via two presynaptic regulatory mechanisms, DA D(2) receptor (D(2)R)-mediated inhibition of DA synthesis and release, and DA transporter (DAT)-mediated DA clearance. D(2)Rs can physically associate with DAT and regulate DAT function, linking DA release and reuptake to a common mechanism. We have established that the attention-deficit hyperactivity disorder-associated human DAT coding variant Ala559Val (hDAT A559V) results in anomalous DA efflux (ADE) similar to that caused by amphetamine-like psychostimulants. Here, we show that tonic activation of D(2)R provides support for hDAT A559V-mediated ADE. We determine in hDAT A559V a pertussis toxin-sensitive, CaMKII-dependent phosphorylation mechanism that supports D(2)R-driven DA efflux. These studies identify a signaling network downstream of D(2)R activation, normally constraining DA action at synapses, that may be altered by DAT mutation to impact risk for DA-related disorders.
Collapse
|
33
|
Mizuo K, Narita M, Miyagawa K, Suzuki T. Effects of Prenatal and Neonatal Exposure to Bisphenol A on the Development of the Central Nervous System. Biomol Ther (Seoul) 2010. [DOI: 10.4062/biomolther.2010.18.2.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
34
|
Wang ZJ, Wilkie DJ, Molokie R. Neurobiological mechanisms of pain in sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2010; 2010:403-8. [PMID: 21239826 PMCID: PMC3650026 DOI: 10.1182/asheducation-2010.1.403] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pain is a frequent complaint of people living with sickle cell disease (SCD); however, the neurobiology of pain in SCD remains poorly understood. Whereas this pain has been thought to be primarily related to visceral and somatic tissue injury subsequent to vaso-occlusion events, emerging evidence from human and animal studies has suggested that a component of SCD pain may be related to neuropathic processes. Significant knowledge has been obtained from studies of molecular and neurobiological mechanisms leading to and maintaining neuropathic pain. Some of the most promising evidence has implicated major roles of protein kinase C and Ca2+/calmodulin-dependent protein kinase II, and their interaction with the N-methyl-D-aspartate receptors and the transient receptor potential vanilloid 1 receptor in the development of neuropathic pain. The latest evidence from our studies suggests that these pathways are important for SCD pain as well. Coupled with emerging animal models of SCD pain, we can now start to elucidate neurobiological mechanisms underlying pain in SCD, which may lead to better understanding and effective therapies.
Collapse
Affiliation(s)
- Zaijie J Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
35
|
Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, Dalton ND, Peterson KL, Chen J, Bers D, Brown JH, Heller Brown J. Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest 2009; 119:1230-40. [PMID: 19381018 DOI: 10.1172/jci38022] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 02/25/2009] [Indexed: 11/17/2022] Open
Abstract
Ca2+/calmodulin-dependent kinase II (CaMKII) has been implicated in cardiac hypertrophy and heart failure. We generated mice in which the predominant cardiac isoform, CaMKIIdelta, was genetically deleted (KO mice), and found that these mice showed no gross baseline changes in ventricular structure or function. In WT and KO mice, transverse aortic constriction (TAC) induced comparable increases in relative heart weight, cell size, HDAC5 phosphorylation, and hypertrophic gene expression. Strikingly, while KO mice showed preserved hypertrophy after 6-week TAC, CaMKIIdelta deficiency significantly ameliorated phenotypic changes associated with the transition to heart failure, such as chamber dilation, ventricular dysfunction, lung edema, cardiac fibrosis, and apoptosis. The ratio of IP3R2 to ryanodine receptor 2 (RyR2) and the fraction of RyR2 phosphorylated at the CaMKII site increased significantly during development of heart failure in WT mice, but not KO mice, and this was associated with enhanced Ca2+ spark frequency only in WT mice. We suggest that CaMKIIdelta contributes to cardiac decompensation by enhancing RyR2-mediated sarcoplasmic reticulum Ca2+ leak and that attenuating CaMKIIdelta activation can limit the progression to heart failure.
Collapse
Affiliation(s)
- Haiyun Ling
- Department of Pharmacology, UCSD, La Jolla, California 92093-0636, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Perreault ML, Graham D, Scattolon S, Wang Y, Szechtman H, Foster JA. Cotreatment with the kappa opioid agonist U69593 enhances locomotor sensitization to the D2/D3 dopamine agonist quinpirole and alters dopamine D2 receptor and prodynorphin mRNA expression in rats. Psychopharmacology (Berl) 2007; 194:485-96. [PMID: 17619861 DOI: 10.1007/s00213-007-0855-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 06/08/2007] [Indexed: 11/30/2022]
Abstract
RATIONALE The repeated coadministration of the kappa opioid receptor agonist U69593 with the D2/D3 dopamine (DA) agonist quinpirole (QNP) potentiates locomotor sensitization induced by QNP. Behavioral evidence has implicated both pre- and postsynaptic changes as being involved in this augmentation. OBJECTIVES The objectives of this study were to obtain supporting molecular evidence of pre- and/or postsynaptic alterations in the DA system with U69593/QNP cotreatment and to examine the relationship of such changes to locomotor sensitization. MATERIALS AND METHODS Gene expression of D1 and D2 receptors (D1R and D2R), the DA transporter, as well as the endogenous opioid prodynorphin (DYN), in the basal ganglia was examined by in situ hybridization in rats after one or ten drug injections. RESULTS After one injection, changes that were specific to U69593/QNP cotreatment were decreased D1R and D2R messenger RNA (mRNA) in the nucleus accumbens (Acb) shell and increased DYN mRNA in the dorsal striatum (STR). After ten injections, U69593/QNP-specific changes were decreased D2R mRNA in substantia nigra (SN) and increased DYN mRNA in STR and Acb core. Only in U69593/QNP rats was the sensitized locomotor performance on injection ten positively correlated with DYN mRNA levels in Acb and STR. CONCLUSIONS Distinct alterations of D2R and DYN mRNA levels in SN and Acb/STR, respectively, strengthen the evidence implicating pre- and postsynaptic changes in augmented locomotor sensitization to U69593/QNP cotreatment. It is suggested that repeated U69593/QNP cotreatment may augment locomotor sensitization to QNP by activating D1R-expressing DYN neurons and attenuating presynaptic D2R function.
Collapse
Affiliation(s)
- Melissa L Perreault
- Department of Psychiatry and Behavioural Neurosciences, Health Science Centre, Room 4N7, McMaster University, Hamilton, ON, Canada.
| | | | | | | | | | | |
Collapse
|
37
|
Bok J, Wang Q, Huang J, Green SH. CaMKII and CaMKIV mediate distinct prosurvival signaling pathways in response to depolarization in neurons. Mol Cell Neurosci 2007; 36:13-26. [PMID: 17651987 PMCID: PMC2040167 DOI: 10.1016/j.mcn.2007.05.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 05/10/2007] [Accepted: 05/22/2007] [Indexed: 01/29/2023] Open
Abstract
By fusing the CaMKII-inhibitory peptide AIP to GFP, we constructed a specific and effective CaMKII inhibitor, GFP-AIP. Expression of GFP-AIP and/or dominant-inhibitory CaMKIV in cultured neonatal rat spiral ganglion neurons (SGNs) shows that CaMKII and CaMKIV act additively and in parallel to mediate the prosurvival effect of depolarization. Depolarization or expression of constitutively active CaMKII functionally inactivates Bad, indicating that this is one means by which CaMKII promotes neuronal survival. CaMKIV, but not CaMKII, requires CREB to promote SGN survival, consistent with the exclusively nuclear localization of CaMKIV and indicating that the principal prosurvival function of CaMKIV is activation of CREB. Consistent with this, a constitutively active CREB construct that provides a high level of CREB activity promotes SGN survival, although low levels of CREB activity did not do so. Also, in apoptotic SGNs, activation of CREB by depolarization is disabled, presumably as part of a cellular commitment to apoptosis.
Collapse
Affiliation(s)
- Jinwoong Bok
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
38
|
Carter CJ. Multiple genes and factors associated with bipolar disorder converge on growth factor and stress activated kinase pathways controlling translation initiation: implications for oligodendrocyte viability. Neurochem Int 2007; 50:461-90. [PMID: 17239488 DOI: 10.1016/j.neuint.2006.11.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 02/06/2023]
Abstract
Famine and viral infection, as well as interferon therapy have been reported to increase the risk of developing bipolar disorder. In addition, almost 100 polymorphic genes have been associated with this disease. Several form most of the components of a phosphatidyl-inositol signalling/AKT1 survival pathway (PIK3C3, PIP5K2A, PLCG1, SYNJ1, IMPA2, AKT1, GSK3B, TCF4) which is activated by growth factors (BDNF, NRG1) and also by NMDA receptors (GRIN1, GRIN2A, GRIN2B). Various other protein products of genes associated with bipolar disorder either bind to or are affected by phosphatidyl-inositol phosphate products of this pathway (ADBRK2, HIP1R, KCNQ2, RGS4, WFS1), are associated with its constituent elements (BCR, DUSP6, FAT, GNAZ) or are downstream targets of this signalling cascade (DPYSL2, DRD3, GAD1, G6PD, GCH1, KCNQ2, NOS3, SLC6A3, SLC6A4, SST, TH, TIMELESS). A further pathway relates to endoplasmic reticulum-stress (HSPA5, XBP1), caused by problems in protein glycosylation (ALG9), growth factor receptor sorting (PIK3C3, HIP1R, SYBL1), or aberrant calcium homoeostasis (WFS1). Key processes relating to these pathways appear to be under circadian control (ARNTL, CLOCK, PER3, TIMELESS). DISC1 can also be linked to many of these pathways. The growth factor pathway promotes protein synthesis, while the endoplasmic reticulum stress pathway, and other stress pathways activated by viruses and cytokines (IL1B, TNF, Interferons), oxidative stress or starvation, all factors associated with bipolar disorder risk, shuts down protein synthesis via control of the EIF2 alpha and beta translation initiation complex. For unknown reasons, oligodendrocytes appear to be particularly prone to defects in the translation initiation complex (EIF2B) and the convergence of these environmental and genomic signalling pathways on this area might well explain their vulnerability in bipolar disorder.
Collapse
|
39
|
Larouche A, Berube P, Sarret P, Grignon S. Subacute H2O2, but not poly(IC), upregulates dopamine D2 receptors in retinoic acid differentiated SH-SY5Y neuroblastoma. Synapse 2007; 62:70-3. [DOI: 10.1002/syn.20458] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
40
|
Miyatake M, Miyagawa K, Mizuo K, Narita M, Suzuki T. Dynamic changes in dopaminergic neurotransmission induced by a low concentration of bisphenol-A in neurones and astrocytes. J Neuroendocrinol 2006; 18:434-44. [PMID: 16684133 DOI: 10.1111/j.1365-2826.2006.01434.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
One of the most common chemicals that behaves as an endocrine disruptor is the compound 4,4'-isopronylidenediphenol, called bisphenol-A (BPA). We previously reported that prenatal and postnatal exposure to BPA potentiated central dopaminergic neurotransmission, resulting in supersensitivity to psychostimulant-induced pharmacological actions. Many recent findings have supported the idea that astrocytes, which are a subpopulation of glial cells, play a critical role in neuronal transmission in the central nervous system. The present study aimed to investigate the role of neurone-astrocyte communication in the enhancement of dopaminergic neurotransmission induced by BPA. We found that treatment of mouse purified astrocytes and neurone/glia cocultures with BPA in vitro caused the activation of astrocytes, as detected by a stellate morphology and an increase in levels of glial fibrillary acidic protein. A low concentration of BPA significantly enhanced the Ca2+ responses to dopamine in both neurones and astrocytes. Furthermore, a high concentration of BPA markedly induced the activation of caspase-3, which is a marker of neuronal apoptotic cell death in mouse midbrain neurone/glia cocultures. By contrast, treatment with 17beta-oestradiol (E2) had no such effects. Prenatal and neonatal exposure to BPA led to an enhancement of the dopamine-dependent rewarding effect induced by morphine. These findings provide evidence that BPA alters dopamine responsiveness in neurones and astrocytes and that, at least in part, it may contribute to potentiate the development of psychological dependence on drugs of abuse.
Collapse
Affiliation(s)
- M Miyatake
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | |
Collapse
|
41
|
Yamashita T, Inui S, Maeda K, Hua DR, Takagi K, Fukunaga K, Sakaguchi N. Regulation of CaMKII by α4/PP2Ac contributes to learning and memory. Brain Res 2006; 1082:1-10. [PMID: 16516168 DOI: 10.1016/j.brainres.2006.01.101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 12/10/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
Ca(2+)-dependent CaMKIIalpha activation with autophosphorylation plays an essential role in learning and memory. The regulation of CaMKIIalpha by dephosphorylation by protein phosphatase 1 (PP1) has been demonstrated. We addressed whether the protein phosphatase 2A (PP2A) that is abundant in the brain could be involved in the regulation of CaMKIIalpha. CaMKIIalpha was associated with the catalytic subunit of PP2A (PP2Ac) and alpha4, a regulator of PP2A. To investigate whether alpha4 plays an important role in the CNS, we established a neuron specific Cre transgenic mouse and a neuron specific alpha4 deficient mouse (N-alpha4 KO mouse). This N-alpha4 KO mouse showed impaired learning and memory in a water maze and also shuttle-box avoidance test. The activity of CaMKIIalpha also increased in hippocampus. An overexpression of alpha4 in the neuronal cell line demonstrated the activity of CaMKIIalpha to be regulated by alpha4. alpha4 and PP2Ac were localized in the cytoplasm but not in the postsynaptic density (PSD), thus suggesting that the dephosphorylation of CaMKIIalpha by alpha4/PP2Ac occurred in the cytoplasm. These results suggest that alpha4 and PP2A may thus play an important role in CaMKIIalpha regulation and thereby also influence learning.
Collapse
Affiliation(s)
- Takeshi Yamashita
- Department of Immunology, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Shankar E, Santhosh KT, Paulose CS. Dopaminergic regulation of glucose-induced insulin secretion through dopamine D2 receptors in the pancreatic islets in vitro. IUBMB Life 2006; 58:157-63. [PMID: 16766383 DOI: 10.1080/15216540600687993] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The stimulatory effect of dopamine through dopamine D2 receptor on glucose-induced insulin secretion was studied in the pancreatic islets in vitro. Dopamine significantly stimulated insulin secretion at a concentration of 10-8 M in the presence of high glucose (20 mM). The higher concentrations of dopamine (10(-7)-10(-4)) inhibited glucose-induced insulin secretion in the presence of both 4 mM and 20 mM glucose. Stimulatory and inhibitory effect of dopamine on glucose-induced insulin secretion was reverted by the addition of dopamine D2 receptor antagonists such as butaclamol and sulpiride. Norepinephrine (NE) at 10(-4) M concentration inhibited the dopamine uptake as well as its stimulatory effect at 10(-8) M concentration on glucose induced insulin secretion. Our results suggest that dopamine exerts a differential effect on glucose-induced insulin secretion through dopamine D2 receptor and it is essential for the regulation of glucose-induced insulin secretion by pancreatic islets.
Collapse
Affiliation(s)
- Eswar Shankar
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, India
| | | | | |
Collapse
|
43
|
Kamata A, Takeuchi Y, Fukunaga K. Identification of the isoforms of Ca2+/calmodulin-dependent protein kinase II and expression of brain-derived neurotrophic factor mRNAs in the substantia nigra. J Neurochem 2006; 96:195-203. [PMID: 16277604 DOI: 10.1111/j.1471-4159.2005.03531.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase (CaMK)II is highly expressed in the CNS and mediates activity-dependent neuronal plasticity. Four CaMKII isoforms, alpha, beta, gamma and delta, have a large number of splicing variants. Here we identified isoforms of CaMKII in the rat substantia nigra (SN). Northern blot and RT-PCR analyses revealed that the gamma and delta isoform mRNAs with several splicing variants were predominantly expressed in SN. Immunoblot analysis indicated that the major isoforms were gammaA, gammaC, delta1 and delta3. An immunohistochemical study also confirmed the preferential localization of gamma and delta isoforms in SN dopaminergic neurons. In dopaminergic neurons, immunoreactivity against anti-CaMKIIdelta1-4 antibody was detected in both nucleus and cytoplasm, in contrast to the predominant expression of gamma isoforms in the cytoplasm. Furthermore, we showed expression of brain-derived neurotrophic factor (BDNF) mRNAs with exons II and IV in SN. Taken together with our previous observations, the results suggest that the CaMKIIdelta3 isoform is involved in the expression of BDNF in the SN.
Collapse
Affiliation(s)
- Akifumi Kamata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
44
|
Du F, Li R, Huang Y, Li X, Le W. Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons. Eur J Neurosci 2005; 22:2422-30. [PMID: 16307585 DOI: 10.1111/j.1460-9568.2005.04438.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anti-parkinsonian agents, pramipexole (PPX) and ropinirole (ROP), have been reported to possess neuroprotective properties, both in vitro and in vivo. The mechanisms underlying neuroprotection afforded by the D3-preferring receptor agonists remain poorly understood. The present study demonstrates that incubation of primary mesencephalic cultures with PPX and ROP or the conditioned medium from PPX- or ROP-treated primary cultures induced a marked increase in the number of dopamine (DA) neurons in the cultures. Similar effects can be observed after incubating with the conditioned medium derived from PPX- and ROP-treated substantia nigra astroglia. Meanwhile, PPX and ROP can protect the primary cells from insult of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). Furthermore, the neurotrophic effects of PPX and ROP on mesencephalic dopamine neurons could be significantly blocked by D3 receptor antagonist, but not by D2 receptor antagonist. Moreover, we found that the levels of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in the conditioned medium of mesencephalic cultures treated with PPX and ROP were significantly increased. Blocking GDNF and BDNF with the neutralizing antibodies, the neurotrophic effects of PPX and ROP were greatly diminished. These results suggest that D3 dopamine receptor-preferring agonists, PPX and ROP, exert neurotrophic effects on cultured DA neurons by modulating the production of endogenous GDNF and BDNF, which may participate in their neuroprotection.
Collapse
Affiliation(s)
- Fang Du
- Joint Laboratory of Institutes of Biomedical Sciences, Ruijin Hospital, Jiao Tong University Medical School, and Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, P. R. China
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Takeuchi Y, Fukunaga K. Dopamine D2 receptor activates extracellular signal-regulated kinase through the specific region in the third cytoplasmic loop. J Neurochem 2004; 89:1498-507. [PMID: 15189353 DOI: 10.1111/j.1471-4159.2004.02446.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate whether the third cytoplasmic loop and the C-terminal cytoplasmic tail of dopamine D(2) receptor (D2R) are involved in extracellular signal-regulated kinase (ERK) activation and subsequent regulation of transcription factors, we established NG108-15 cells stably expressing D2LR and D2SR deleted 40 amino acid residues in the third cytoplasmic loop (NGD2LR-3rd-dele and NGD2SR-3rd-dele) or the C-terminal cytoplasmic tail (NGD2LR-C-dele and NGD2SR-C-dele) and evaluated these receptors' functions using luciferase reporter gene assay. Immunocytochemical studies showed similar intracellular distributions of D2LR-3rd-dele and D2SR-3rd-dele to D2LR and D2SR, respectively. Quinpirole-induced inhibition of forskolin-induced cyclic AMP responsive element (CRE) activation was not affected by the deletion of 40 amino acid residues. However, nuclear factor-kappa B (NF-kappaB) activation by D2R-3rd-dele was largely attenuated compared to that by D2R. Similarly, ERK or serum-responsive element (SRE) activation by quinpirole treatment was totally abolished in NGD2R-3rd-dele cells. Moreover, D2R-C-dele was diffusely distributed or clustered in the cell bodies and lost the receptor functions. Taken together, the 40 amino acid residues in the third cytoplasmic loop are essential for the ERK activation but not for inhibition of adenylyl cyclase through Gi/o proteins. In addition, the C-terminal cytoplasmic tail is essential for membrane association of D2Rs to elicit the receptor functions.
Collapse
Affiliation(s)
- Yusuke Takeuchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki-Aoba, Aoba-ku, Sendai 980-8578, Japan.
| | | |
Collapse
|
47
|
Takeuchi Y, Fukunaga K. Different activation of NF-κB by stimulation of dopamine D2L and D2S receptors through calcineurin activation. J Neurochem 2004; 90:155-63. [PMID: 15198675 DOI: 10.1111/j.1471-4159.2004.02476.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dopamine D2 receptor (D2R) has known to activate Ca(2+)/calmodulin-dependent protein phosphatase, calcineurin by increasing in the intracellular Ca(2+). We previously showed that D2LR (long isoform) and D2SR (short isoform) enhanced SRE and NF-kappaB, and conversely suppressed CRE transcriptional activities in NG108-15 cells stably expressed with these receptors (NGD2LR and NGD2SR). In this study, to investigate whether activation of calcineurin is involved in the transcriptional regulations through D2R, we evaluated effect of cyclosporin A, a selective calcineurin inhibitor, on them in NGD2LR and NGD2SR cells using luciferase reporter gene assay. We first confirmed that D2LR activates calcineurin in NG108-15 cells by measurement of dephosphorylation of dopamine- and cyclic AMP-regulated phosphoprotein Mr 32 000 (DARPP-32) at threonin 34 by immunoblot analysis with its phospho-specific antibody. Cyclosporin A treatment showed no change in suppression of forskolin-induced CRE activation or activation of SRE but significantly attenuated NF-kappaB activation by D2LR stimulation in NGD2LR cells. Interestingly, D2SR-induced NF-kappaB activation, which was weaker than that by D2LR stimulation, was not affected by cyclosporin A treatment in NGD2SR cells. Furthermore, D2SR stimulation did not cause dephosphorylation of DARPP-32 at threonin 34. Taken together, D2SR and D2LR may employ different signaling pathway on intracellular Ca(2+) mobilization, thereby showing different NF-kappaB activation in the calcineurin-dependent manner.
Collapse
Affiliation(s)
- Yusuke Takeuchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | | |
Collapse
|
48
|
Mizuo K, Narita M, Miyatake M, Suzuki T. Enhancement of dopamine-induced signaling responses in the forebrain of mice lacking dopamine D3 receptor. Neurosci Lett 2004; 358:13-6. [PMID: 15016423 DOI: 10.1016/j.neulet.2003.12.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2003] [Revised: 12/12/2003] [Accepted: 12/15/2003] [Indexed: 11/18/2022]
Abstract
It is well known that the dopamine D(3) receptor plays a critical role in several psychological disorders, such as drug dependence. The present study was designed to investigate the influence of lacking dopamine D(3) receptors in dopamine-induced G-protein activation and Ca(2+) influx in the mouse forebrain. The deletion of dopamine D(3) receptor gene caused the enhancement of dopamine-induced G-protein activation in the limbic forebrain of dopamine D(3) receptor knockout (D(3)KO) mice. Furthermore, the dopamine-induced Ca(2+) influx was enhanced in the coculture of neuron/glia cells obtained from the forebrain of D(3)KO mice. The present data provide direct evidence that a deletion of central dopamine D(3) receptor enhances the dopamine D(1)/D(2) receptor-mediated intracellular signaling.
Collapse
Affiliation(s)
- Keisuke Mizuo
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
49
|
Takeuchi Y, Fukunaga K. Different effects of five dopamine receptor subtypes on nuclear factor-kappaB activity in NG108-15 cells and mouse brain. J Neurochem 2004; 88:41-50. [PMID: 14675148 DOI: 10.1046/j.1471-4159.2003.02129.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously showed that dopamine receptors D1R and D2R expressed in NG108-15 cells activated protein kinase A and extracellular signal-regulated kinase (ERK) respectively, resulting in differential activation of nuclear factor (NF)-kappaB activity. To investigate whether other dopamine receptor subtypes regulate NF-kappaB, we established NG108-15 cells stably expressing D3R, D4R and D5R (NGD3R, NGD4R and NGD5R). D5R stimulation with SKF 38393 decreased NF-kappaB luciferase reporter activity in NGD5R cells, similar to D1R stimulation in NGD1R cells. However, D3R or D4R stimulation with quinpirole showed no change in NF-kappaB-Luci activity, although forskolin-induced cyclic AMP responsive element-Luci activation was attenuated by quinpirole treatment in NGD2LR, NGD3R and NGD4R cells. As expected, activation of ERK or serum responsive element-luciferase reporter not observed following stimulation with quinpirole in D3R- or D4R-expressing cells. We further examined the effects of haloperidol and risperidone, which are typical and atypical antipsychotic drugs respectively, on NF-kappaB activity by gel shift assay in mouse frontal cortex. Haloperidol treatment slightly attenuated basal NF-kappaB activity. By contrast, risperidone treatment enhanced NF-kappaB activity. Taken together, D2R and D1R/D5R had opposite effects on NF-kappaB activity in NG108-15 cells. Risperidone up-regulated and haloperidol down-regulated NF-kappaB activity in mouse brain. This effect may be related to the atypical antipsychotic properties of risperidone.
Collapse
Affiliation(s)
- Yusuke Takeuchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | | |
Collapse
|
50
|
Takeuchi Y, Nomura K, Fukunaga K. Differential subcellular distribution of Ca2+/calmodulin-dependent protein kinase II isoforms in the striatum and NG108-15 cells. J Neurosci Res 2004; 75:480-90. [PMID: 14743431 DOI: 10.1002/jnr.20010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Four subunits of Ca2+/calmodulin-dependent protein kinase II (CaM KII) have several isoforms, which differ in the variable domain. We previously reported that all subunits were highly expressed in rat striatal neurons. To examine intracellular distributions of CaM KII subunits in the rat striatal neurons, we performed immunoblot analysis with antibodies specific to each subunit in cell extracts from the rat striatum after continuous sucrose density gradient fractionation. The alpha subunit, but not the beta, gamma, or delta subunits, was colocalized with synapsin I, and each subunit showed a distinct distribution pattern in the fractions. To examine further the intracellular distributions of CaM KII isoforms in the same subunit, we established NG108-15 cells stably expressing delta1, delta3, and delta4 isoforms and examined distributions of the delta and gamma isoforms in these cell lines after fractionation. Each of the overexpressed exogenous delta isoforms showed a distinct distribution pattern. The endogenous delta2 was colocalized with the overexpressed delta1, delta3, and delta4 isoforms. However, the endogenous gammaB/gammaC isoforms were not colocalized with the overexpressed delta isoforms. Furthermore, the endogenous delta1 was concentrated in the microsomal fraction from the rat striatum. With the results taken together, it is suggested that CaM KII forms oligomers between isoforms in the same subunit but not in different subunits. The variable domain of CaM KII isoforms might possibly be responsible for targeting to certain intracellular compartments.
Collapse
Affiliation(s)
- Yusuke Takeuchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki-Aoba-ku, Sendai 980-8578, Japan.
| | | | | |
Collapse
|