1
|
Waclawiková B, Codutti A, Alim K, El Aidy S. Gut microbiota-motility interregulation: insights from in vivo, ex vivo and in silico studies. Gut Microbes 2022; 14:1997296. [PMID: 34978524 PMCID: PMC8741295 DOI: 10.1080/19490976.2021.1997296] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
The human gastrointestinal tract is home to trillions of microbes. Gut microbial communities have a significant regulatory role in the intestinal physiology, such as gut motility. Microbial effect on gut motility is often evoked by bioactive molecules from various sources, including microbial break down of carbohydrates, fibers or proteins. In turn, gut motility regulates the colonization within the microbial ecosystem. However, the underlying mechanisms of such regulation remain obscure. Deciphering the inter-regulatory mechanisms of the microbiota and bowel function is crucial for the prevention and treatment of gut dysmotility, a comorbidity associated with many diseases. In this review, we present an overview of the current knowledge on the impact of gut microbiota and its products on bowel motility. We discuss the currently available techniques employed to assess the changes in the intestinal motility. Further, we highlight the open challenges, and incorporate biophysical elements of microbes-motility interplay, in an attempt to lay the foundation for describing long-term impacts of microbial metabolite-induced changes in gut motility.
Collapse
Affiliation(s)
- Barbora Waclawiková
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Agnese Codutti
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Karen Alim
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Physics Department and Center for Protein Assemblies (CPA), Technische Universität München, Garching, Germany
| | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Design of Catalase Monolithic Tablets for Intestinal Targeted Delivery. Pharmaceutics 2021; 13:pharmaceutics13010069. [PMID: 33430270 PMCID: PMC7825700 DOI: 10.3390/pharmaceutics13010069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 01/29/2023] Open
Abstract
Several studies confirmed a correlation between elevated hydrogen peroxide (H2O2) levels in patients with intestinal bowel diseases (IBD) and the negative effects caused by its presence. The objective of this study was to explore the potential use of catalase (CAT) to diminish the level of H2O2 and its deleterious action on intestinal mucosa. Oral dosage forms of a CAT bioactive agent targeted to the intestines were designed and tested in various simulated gastric and intestinal media. Monolithic tablets (30% loading) were prepared using commercial CarboxyMethylCellulose (CMC) or synthesized CarboxyMethylStarch (CMS) and TriMethylAmineCarboxyMethylStarch (TMACMS) as matrix-forming excipients. For starch derivatives, the presence of the ionic groups (carboxymethyl and trimethylamine) was validated by spectral analysis. In vitro studies have shown that tablets formulated with TMACMS and 30% CAT resisted the acidity of the simulated gastric fluid and gradually released the enzyme into the simulated intestinal fluid. The investigation of the CAT release mechanism revealed the role of anionic and cationic groups of polymeric excipients and their involvement in the modulation of the CAT dissolution profile. The proposed drug delivery system can be considered an efficient solution to target CAT release in the intestine and contribute to the reduction of H2O2 associated with intestinal inflammation.
Collapse
|
3
|
Drimousis S, Markus I, Murphy TV, Perera DS, Phan-Thien KC, Zhang L, Liu L. Gender-Related Differences of Tachykinin NK2Receptor Expression and Activity in Human Colonic Smooth Muscle. J Pharmacol Exp Ther 2020; 375:28-39. [DOI: 10.1124/jpet.120.265967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
|
4
|
Mao YL, Shen CL, Zhou T, Ma BT, Tang LY, Wu WT, Zhang HX, Lu HL, Xu WX, Wang ZG. Ablation of Tacr2 in mice leads to gastric emptying disturbance. Neurogastroenterol Motil 2017; 29. [PMID: 28585346 DOI: 10.1111/nmo.13117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Tacr2 is one of the G protein-coupled receptors(GPCRs) that mediate the biological actions of tachykinins. It is abundantly expressed in the gastrointestinal (GI) system and is thought to play an important role in GI motility, secretion, and visceral sensitivity. Previously, the physiological and pathophysiological functions of Tacr2 were mainly studied using Tacr2 selective agonists or antagonists. Here, we seek to investigate the effect of Tacr2 disruption in mice to provide further insights. METHODS The Tacr2 knockout mice were generated by homologous recombination and the phenotypic changes of the Tacr2-null mice were analyzed and compared with their wild type (wt) littermates. KEY RESULTS Increased food retention was detected in Tacr2-/- mice. The stomach of Tacr2-/- mice had thinner muscularis externa and less neurons in the myenteric plexus. The stomach and small intestine exhibited longer duration of electrical field stimulation (EFS)-induced inhibition in the gastric fundus and decreased frequency of migrating motor complex (MMC), respectively. Neuronal nitric oxide synthase (nNOS) and vasoactive intestinal polypeptide (VIP) were significantly up-regulated due to Tarc2 deficiency, contributing to enhanced nitric oxide (NO) signaling in the stomach of Tacr2-/- mice. Intraperitoneal application of 7-nitroindazole (7-NI) to Tacr2-/- mice effectively relieved the gastric emptying disturbance. Moreover, Creb and NF-κB signalings were involved in the regulation of these physiological changes initiated by Tacr2 deficiency. CONCLUSIONS & INFERENCES Tacr2 negatively regulated the expression of nNOS and VIP both in vivo and in vitro. Its ablation in mice elevated the expression of nNOS and VIP, enhanced NO signaling and changed the Creb and NF-κB signalings, finally leading to the gastric emptying disturbance of Tacr2-/- mice.
Collapse
Affiliation(s)
- Y-L Mao
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - C-L Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - T Zhou
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - B-T Ma
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - L-Y Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - W-T Wu
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - H-X Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - H-L Lu
- Department of Physiology, SJTUSM, Shanghai, China
| | - W-X Xu
- Department of Physiology, SJTUSM, Shanghai, China
| | - Z-G Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.,Shanghai Research Center for Model Organisms, Shanghai, China
| |
Collapse
|
5
|
Gallego D, Ortega O, Arenas C, López I, Mans E, Clavé P. The effect of levosulpiride on in vitro motor patterns in the human gastric fundus, antrum, and jejunum. Neurogastroenterol Motil 2016; 28:879-90. [PMID: 26842870 DOI: 10.1111/nmo.12788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/06/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Levosulpiride is a 5HT4 agonist/D2 antagonist prokinetic agent used to improve gastric emptying in patients with functional dyspepsia or gastroparesis. The aim of this study was to characterize its effect on the main in vitro motility patterns in the human fundus, antrum, and jejunum. METHODS Circular muscle strips from human stomach (antrum and fundus) and jejunum, obtained from 46 patients undergoing bariatric surgery, were studied using organ baths. Enteric motor neurons (EMNs) were stimulated by electrical field stimulation (EFS). KEY RESULTS Levosulpiride, caused an increase in the EFS-induced cholinergic contractions in the gastric antrum (+37 ± 15.18% at 100 μM, pEC50 = 4.46 ± 0.14; p < 0.05, n = 8) and jejunum (+45.4 ± 22.03% at 100 μM, pEC50 = 3.78 ± 6.81; p < 0.05, n = 5), but not in the gastric fundus. It also caused a slight decrease in tone and frequency of spontaneous contractions in the jejunum, but did not have any major effect on tone or spontaneous contractions in the stomach. It did not have any effect on EFS-induced relaxations mediated by nitric oxide (NO) in the stomach (antrum and fundus) and by NO and ATP in the jejunum. CONCLUSIONS & INFERENCES Our results suggest that the prokinetic effects of levosulpiride in humans are mainly due to the facilitation of the release of acetylcholine by enteric motor neurons in the gastric antrum and the jejunum.
Collapse
Affiliation(s)
- D Gallego
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas CIBERehd, Instituto de Salud Carlos III, Barcelona, Spain
| | - O Ortega
- Gastrointestinal Physiology Laboratory, Department of Surgery, Hospital de Mataró, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Arenas
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas CIBERehd, Instituto de Salud Carlos III, Barcelona, Spain
| | - I López
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas CIBERehd, Instituto de Salud Carlos III, Barcelona, Spain
| | - E Mans
- Gastrointestinal Physiology Laboratory, Department of Surgery, Hospital de Mataró, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - P Clavé
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas CIBERehd, Instituto de Salud Carlos III, Barcelona, Spain.,Gastrointestinal Physiology Laboratory, Department of Surgery, Hospital de Mataró, Universitat Autònoma de Barcelona, Barcelona, Spain.,Health Sciences Research Institute of the Germans Trias i Pujol Foundation, Barcelona, Spain
| |
Collapse
|
6
|
Corsetti M, Akyuz F, Tack J. Targeting tachykinin receptors for the treatment of functional gastrointestinal disorders with a focus on irritable bowel syndrome. Neurogastroenterol Motil 2015; 27:1354-70. [PMID: 26088804 DOI: 10.1111/nmo.12616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/13/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tachykinins (TKs) are a family of endogenous peptides widely expressed in the central and in the peripheral nervous systems as well as in the gastrointestinal (GI) tract. They act as full agonists at three different membrane receptors neurokinin (NK) 1, NK2, and NK3, which are G protein-coupled receptors and in the GI tract are expressed both on neurons and effector cells. PURPOSE This article reviews the literature concerning the role of TKs in the GI tract function in physiological and pathological conditions and their potential relevance in the treatment of functional GI disorders with particular reference to irritable bowel syndrome (IBS). The efficacy of NK1 antagonists in chemotherapy-induced and postoperative nausea and vomiting is well established. While pharmacodynamic studies have reported conflicting and negative results concerning the effects of NK1 and of NK3 antagonists, respectively, on the GI tract function in humans, clinical studies applying the NK3 antagonist talnetant in IBS-D were negative. Pharmacodynamic studies applying NK2 antagonists have suggested a role for antagonism of NK2 receptors in modulation of GI chemical-induced altered motility and of stress-induced altered bowel habits. Clinical studies and in particular a recently completed Phase 2 study have reported that the NK2 antagonist ibodutant is effective and safe in treating symptoms of D-IBS, especially in females.
Collapse
Affiliation(s)
- M Corsetti
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - F Akyuz
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - J Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Mastropaolo M, Zizzo MG, Auteri M, Caldara G, Liotta R, Mulè F, Serio R. Activation of angiotensin II type 1 receptors and contractile activity in human sigmoid colon in vitro. Acta Physiol (Oxf) 2015; 215:37-45. [PMID: 26052867 DOI: 10.1111/apha.12538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/30/2015] [Accepted: 06/01/2015] [Indexed: 12/15/2022]
Abstract
AIM To analyse the effects of angiotensin II (Ang II) on the contractility of human sigmoid colon, and to characterize the subtype(s) of receptor(s) involved and the related action mechanism. METHODS The contractility of sigmoid colon circular muscle strips was recorded isometrically. RT-PCR and immunohistochemistry were used to reveal the eventual existence of a local renin-angiotensin system (RAS) and the distribution of Ang II receptors. RESULTS Transcripts encoding for the Ang II type 1 (AT1 ) and the Ang II type 2 (AT2 ) receptor subtypes and for the angiotensin-converting enzyme in the whole-thickness muscular wall were observed. Ang II caused a concentration-dependent contractile response, which is antagonized by losartan, AT1 receptor antagonist, but not by PD123319, AT2 receptor antagonist. The joint application of losartan and PD123319 did not produce any additive effect. The contractile response to Ang II was partially reduced by tetrodotoxin, Na(+) voltage-gated neural channel blocker, and to some extent by SR48968, tachykinin NK2 receptor antagonist. However, hexamethonium, nicotinic receptor antagonist, atropine, cholinergic muscarinic receptor antagonist and SR140333, tachykinin NK1 receptor antagonist, were ineffective. Immunohistochemical analysis showed that AT1 receptors were expressed on the smooth muscle layers and myenteric plexus. CONCLUSION Ang II positively modulates the spontaneous contractile activity of human sigmoid colon via activation of post-junctional and pre-junctional AT1 receptors, the latter located on the enteric nerves that modulate the release of tachykinins. The presence of the components of RAS in the human colon suggests that Ang II can be also locally generated to control colonic motility.
Collapse
Affiliation(s)
- M. Mastropaolo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Laboratorio di Fisiologia generale; Palermo Italy
| | - M. G. Zizzo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Laboratorio di Fisiologia generale; Palermo Italy
| | - M. Auteri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Laboratorio di Fisiologia generale; Palermo Italy
| | - G. Caldara
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Laboratorio di Fisiologia generale; Palermo Italy
| | - R. Liotta
- Pathology Service; Department of Diagnostic and Therapeutic Services; Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT); Palermo Italy
| | - F. Mulè
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Laboratorio di Fisiologia generale; Palermo Italy
| | - R. Serio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Laboratorio di Fisiologia generale; Palermo Italy
| |
Collapse
|
8
|
Martinez-Cutillas M, Gil V, Mañé N, Clavé P, Gallego D, Martin MT, Jimenez M. Potential role of the gaseous mediator hydrogen sulphide (H2S) in inhibition of human colonic contractility. Pharmacol Res 2015; 93:52-63. [PMID: 25641403 DOI: 10.1016/j.phrs.2015.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Hydrogen sulphide (H2S) is an endogenous signalling molecule that might play a physiologically relevant role in gastrointestinal motility. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are two enzymes responsible for H2S production. d,l-Propargylglycine (PAG) is a CSE inhibitor whereas both aminooxyacetic acid (AOAA) and hydroxylamine (HA) are CBS inhibitors. The characterization of H2S responses and its mechanism of action are crucial to define H2S function. METHODS Human colonic strips were used to investigate the role of H2S on contractility (muscle bath) and smooth muscle electrophysiology (microelectrodes). NaHS was used as a H2S donor. RESULTS Combination of PAG and AOAA depolarized the smooth muscle (5-6mV, n=4) and elicited a transient increase in tone (260.5±92.8mg, n=12). No effect was observed on neural mediated inhibitory junction potential or relaxation. In the presence of tetrodotoxin 1μM, NaHS concentration-dependently inhibited spontaneous contractions (EC50=329.2μM, n=18). This effect was partially reduced by the guanylyl cyclase inhibitor ODQ 10μM (EC50=2.6μM, n=12) and by l-NNA 1mM (EC50=1.4mM, n=8). NaHS reversibly blocked neural mediated cholinergic (EC50=2mM) and tachykinergic (EC50=5.7mM) contractions. NaHS concentration-dependently reduced the increase in spontaneous mechanical activity (AUC) induced by carbachol (EC50=1.9mM) and NKA (EC50=1.7mM AUC). CONCLUSIONS H2S might be an endogenous gasomediator regulating human colonic contractility. Its inhibitory effect is observed at high concentrations and could be mediated by a direct effect on smooth muscle with a possible synergistic effect with NO, as well as by an interaction with the cholinergic and tachykinergic neural mediated pathways.
Collapse
Affiliation(s)
- M Martinez-Cutillas
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - V Gil
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - N Mañé
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - P Clavé
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain; Fundació de Gastroenterologia Dr Vilardell and Department of Surgery, Hospital de Mataró, Mataró, Barcelona, Spain
| | - D Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - M T Martin
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - M Jimenez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
9
|
Sanger GJ, Broad J, Kung V, Knowles CH. Translational neuropharmacology: the use of human isolated gastrointestinal tissues. Br J Pharmacol 2014; 168:28-43. [PMID: 22946540 DOI: 10.1111/j.1476-5381.2012.02198.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/08/2012] [Accepted: 08/23/2012] [Indexed: 12/22/2022] Open
Abstract
Translational sciences increasingly emphasize the measurement of functions in native human tissues. However, such studies must confront variations in patient age, gender, genetic background and disease. Here, these are discussed with reference to neuromuscular and neurosecretory functions of the human gastrointestinal (GI) tract. Tissues are obtained after informed consent, in collaboration with surgeons (surgical techniques help minimize variables) and pathologists. Given the difficulties of directly recording from human myenteric neurones (embedded between muscle layers), enteric motor nerve functions are studied by measuring muscle contractions/relaxations evoked by electrical stimulation of intrinsic nerves; responses are regionally dependent, often involving cholinergic and nitrergic phenotypes. Enteric sensory functions can be studied by evoking the peristaltic reflex, involving enteric sensory and motor nerves, but this has rarely been achieved. As submucosal neurones are more accessible (after removing the mucosa), direct neuronal recordings are possible. Neurosecretory functions are studied by measuring changes in short-circuit current across the mucosa. For all experiments, basic questions must be addressed. Because tissues are from patients, what are the controls and the influence of disease? How long does it take before function fully recovers? What is the impact of age- and gender-related differences? What is the optimal sample size? Addressing these and other questions minimizes variability and raises the scientific credibility of human tissue research. Such studies also reduce animal use. Further, the many differences between animal and human GI functions also means that human tissue research must question the ethical validity of using strains of animals with unproved translational significance.
Collapse
Affiliation(s)
- G J Sanger
- Neurogastroenterology Group, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, UK.
| | | | | | | |
Collapse
|
10
|
Guarino MPL, Sessa R, Altomare A, Cocca S, Di Pietro M, Carotti S, Schiavoni G, Alloni R, Emerenziani S, Morini S, Severi C, Cicala M. Human colonic myogenic dysfunction induced by mucosal lipopolysaccharide translocation and oxidative stress. Dig Liver Dis 2013; 45:1011-6. [PMID: 23891549 DOI: 10.1016/j.dld.2013.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/03/2013] [Accepted: 06/08/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Impairment of gastrointestinal motility is frequently observed in patients with severe infection. AIM To assess whether exposure of human colonic mucosa to pathogenic lipopolysaccharide affects smooth muscle contractility. METHODS Human colonic mucosa and submucosa were sealed between two chambers, with the luminal side facing upwards and covered with Krebs solution, with or without lipopolysaccharide from a pathogenic strain of Escherichia coli (O111:B4; 1,000 ng/mL), and with the submucosal side facing downwards into Krebs. The solution on the submucosal side was collected following 30-min mucosal exposure to Krebs without (N-undernatant) or with lipopolysaccharide (lipopolysaccharide undernatant). Undernatants were tested for lipopolysaccharide and hydrogen peroxide levels and for their effects on smooth muscle cells in the presence of catalase, indomethacin or MG132. RESULTS Smooth muscle cells incubated with N-undernatant had a maximal contraction of 32 ± 5% that was reduced by 62.9 ± 12% when exposed to lipopolysaccharide undernatant. Inhibition of contraction was reversed by catalase, indomethacin and MG132. Lipopolysaccharide levels were higher in the lipopolysaccharide undernatant (2.7 ± 0.7 ng/mL) than in N-undernatant (0.45 ± 0.06 ng/mL) as well as hydrogen peroxide levels (133.75 ± 15.9 vs 82 ± 7.5 nM respectively). CONCLUSIONS Acute exposure of colonic mucosa to pathogenic lipopolysaccharide impairs muscle cell contractility owing to both lipopolysaccharide mucosal translocation and production of free radicals.
Collapse
|
11
|
Traini C, Cipriani G, Evangelista S, Santicioli P, Faussone-Pellegrini MS, Vannucchi MG. Chronic treatment with otilonium bromide induces changes in L-type Ca²⁺ channel, tachykinins, and nitric oxide synthase expression in rat colon muscle coat. Neurogastroenterol Motil 2013; 25:e728-39. [PMID: 23901937 DOI: 10.1111/nmo.12197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 07/03/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Otilonium bromide (OB) is a quaternary ammonium derivative used for the treatment of intestinal hypermotility and is endowed with neurokinin2 receptor (NK2r) antagonist and Ca²⁺ channel blocker properties. Therefore, the possibility that OB might play a role in the neurokinin receptor/Substance-P/nitric oxide (NKr/SP/NO) circuit was investigated after chronic exposition to the drug. METHODS Rats were treated with OB 2-20 mg kg⁻¹ for 10 and 30 days. In the proximal colon, the expression and distribution of muscle NOsynthase 1 (NOS1), NK1r, NK2r, SP and Cav 1.2 subunit (for L-type Ca²⁺ channel) and the spontaneous activity and stimulated responses to NK1r and NK2r agonists were investigated. KEY RESULTS Immunohistochemistry showed a redistribution of NK1r and L-type Ca²⁺ channel in muscle cells with no change of NK2r at 30 days, a significant increase in muscle NOS1 expression at 10 days and a significant decrease in the SP content early in the ganglia and later in the intramuscular nerve fibers. Functional studies showed no change in spontaneous activity but a significant increase in maximal contraction induced by NK1r agonist. CONCLUSIONS & INFERENCES Chronic exposition to OB significantly affects the NKr/SP/NO circuit. The progressive decrease in SP-expression might be the consequence of the persistent presence of OB, the increase of NOS1 expression in muscle cells at 10 days in an attempt to guarantee an adequate NO production, and, at 30 days, the redistribution of the L-type Ca²⁺ channel and NK1r as a sign to compensate the drug channel block by re-cycling both of them. The physiological data suggest NK1r hypersensitivity.
Collapse
Affiliation(s)
- C Traini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Carbone SE, Dinning PG, Costa M, Spencer NJ, Brookes SJH, Wattchow DA. Ascending excitatory neural pathways modulate slow phasic myogenic contractions in the isolated human colon. Neurogastroenterol Motil 2013; 25:670-6. [PMID: 23634776 DOI: 10.1111/nmo.12129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/16/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND In animal models, enteric reflex pathways have potent effects on motor activity; their roles have been much less extensively studied in human gut. The aim of this study was to determine if ascending excitatory interneuronal pathways can modulate spontaneous phasic contractions in isolated preparations of human colonic circular muscle. METHODS Human colonic preparations were cut into T shapes, with vertical bar of the 'T' pharmacologically isolated. Electrical stimulation and the nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), were applied to the isolated region and circular muscle contractile activity was measured from the cross-bar of the T, more than 10 mm orally from the region of stimulation. KEY RESULTS The predominant form of spontaneous muscle activity consisted of tetrodotoxin-resistant, large amplitude, slow phasic contractions (SPCs), occurring at average intervals of 124 ± 68 s. Addition of a high concentration of hexamethonium (1 mmol L(-1)) to the superfusing solution significantly increased the interval between SPCs to 278.1 ± 138.3 s (P < 0.005). Focal electrical stimulation more than 10 mm aboral to the muscle recording site advanced the onset of the next SPC, and this effect persisted in hexamethonium. However, the effect of electrical stimulation was blocked by tetrodotoxin (TTX, 1 μmol L(-1)). Application of the nicotinic agonist DMPP (1 mmol L(-1)) to the aboral chamber often stimulated a premature SPC (n = 4). CONCLUSIONS & INFERENCES The major form of spontaneous contractility in preparations of human colonic circular muscle is SPCs, which are myogenic in origin. Activation of ascending excitatory neural pathways, which involve nicotinic receptors, can modulate the timing of SPCs and thus influence human colonic motility.
Collapse
Affiliation(s)
- S E Carbone
- Discipline of Human Physiology, Flinders Medical Science and Technology, Flinders University, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Santicioli P, Meini S, Giuliani S, Catalani C, Bechi P, Riccadonna S, Ringressi MN, Maggi CA. Characterization of ibodutant at NK2 receptor in human colon. Eur J Pharmacol 2013; 702:32-7. [DOI: 10.1016/j.ejphar.2013.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 11/28/2022]
|
14
|
Sanders KM, Koh SD, Ro S, Ward SM. Regulation of gastrointestinal motility--insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 2012; 9:633-45. [PMID: 22965426 PMCID: PMC4793911 DOI: 10.1038/nrgastro.2012.168] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal motility results from coordinated contractions of the tunica muscularis, the muscular layers of the alimentary canal. Throughout most of the gastrointestinal tract, smooth muscles are organized into two layers of circularly or longitudinally oriented muscle bundles. Smooth muscle cells form electrical and mechanical junctions between cells that facilitate coordination of contractions. Excitation-contraction coupling occurs by Ca(2+) entry via ion channels in the plasma membrane, leading to a rise in intracellular Ca(2+). Ca(2+) binding to calmodulin activates myosin light chain kinase; subsequent phosphorylation of myosin initiates cross-bridge cycling. Myosin phosphatase dephosphorylates myosin to relax muscles, and a process known as Ca(2+) sensitization regulates the activity of the phosphatase. Gastrointestinal smooth muscles are 'autonomous' and generate spontaneous electrical activity (slow waves) that does not depend upon input from nerves. Intrinsic pacemaker activity comes from interstitial cells of Cajal, which are electrically coupled to smooth muscle cells. Patterns of contractile activity in gastrointestinal muscles are determined by inputs from enteric motor neurons that innervate smooth muscle cells and interstitial cells. Here we provide an overview of the cells and mechanisms that generate smooth muscle contractile behaviour and gastrointestinal motility.
Collapse
|
15
|
Nakamura A, Tanaka T, Imanishi A, Kawamoto M, Toyoda M, Mizojiri G, Tsukimi Y. Bidirectional regulation of human colonic smooth muscle contractility by tachykinin NK(2) receptors. J Pharmacol Sci 2011; 117:106-15. [PMID: 21946672 DOI: 10.1254/jphs.11118fp] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
In this study, we attempted to clarify the mechanism of tachykinin-induced motor response in isolated smooth muscle preparations of the human colon. Fresh specimens of normal colon were obtained from patients suffering from colonic cancer. Using mucosa-free smooth muscle strips, smooth muscle tension with circular direction was monitored isometrically. Substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) produced marked contraction. All of these contractions were inhibited by saredutant, a selective NK(2)-R antagonist, but not by CP122721, a selective NK(1)-R antagonist or talnetant, a selective NK(3)-R antagonist. βAla(8)-NKA(4-10) induced concentration-dependent contraction similar to NKA, but Sar(9)-Met(11)-SP and Met-Phe(7)-NKB did not cause marked contraction. Colonic contraction induced by βAla(8)-NKA(4-10) was completely blocked by saredutant, but not by atropine. Tetrodotoxin or N(G)-nitro-L-arginine methyl ester pretreatment significantly enhanced βAla(8)-NKA(4-10)-induced contraction. Immunohistochemical analysis showed that the NK(2)-R was expressed on the smooth muscle layers and myenteric plexus where it was also co-expressed with neuronal nitric oxide synthase in the myenteric plexus. These results suggest that the NK(2)-R is a major contributor to tachykinin-induced smooth muscle contraction in human colon and that the NK(2)-R-mediated response consists of an excitatory component via direct action on the smooth muscle and an inhibitory component possibly via nitric oxide neurons.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Inflammation Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Yodogawa-ku, Osaka 532-8686, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Constipation is a major medical problem in the United States, affecting 2% to 28% of the population. Individual patients may have different conceptions of what constipation is, and the findings overlap with those in other functional gastrointestinal disorders. In 1999, an international panel of experts laid out specific criteria for the diagnosis of constipation known as the Rome II criteria. When patients present with complaints of constipation, a complete history and physical examination can elicit the cause of constipation. It is imperative to rule out a malignancy or other organic causes of the patient's symptoms prior to making the diagnosis of functional constipation. Many patients' symptoms can be relieved with lifestyle and dietary modification, both of which should be implemented before other potentially unnecessary tests are performed. Functional constipation is divided into two subtypes: slow transit constipation and obstructive defecation. Because many different terms are used interchangeably to describe these subtypes of constipation, physicians need to be comfortable with the language. Slow transit constipation is due to abnormal colonic motility. The diagnosis is made with the use of a colonic transit study. We continue to use a single-capsule technique as first described in the literature, but modifications of the capsule technique as well as scintigraphic techniques are validated and can be substituted in place of the capsule. Obstructive defecation is a much more complex problem, with etiologies ranging from rare diseases such as Hirschsprung's to physiologic abnormalities such as paradoxical puborectalis contraction. To fully evaluate the patient with obstructive defecation, anorectal manometry, defecography, and electromyography should be utilized. The different techniques available for each test are fully covered in this article. When evaluating each patient with constipation, it is important to keep in mind that the disease may be specific to one subtype or a combination of both subtypes. Because it is difficult to differentiate the subtypes from the patient's history, we feel it is imperative to evaluate patients fully for both slow transit and obstructive defecation prior to any surgical intervention. Furthermore, we have described many tests that need to be applied to one's population of patients on the basis of the capabilities and expertise the institution offers.
Collapse
Affiliation(s)
- Matthew D Vrees
- Department of Colorectal Surgery, Cleveland Clinic Florida, Weston, FL 33326, USA
| | | |
Collapse
|
17
|
Gallego D, Aulí M, Aleu J, Martínez E, Rofes L, Martí-Ragué J, Jiménez M, Clavé P. Effect of otilonium bromide on contractile patterns in the human sigmoid colon. Neurogastroenterol Motil 2010; 22:e180-91. [PMID: 20367799 DOI: 10.1111/j.1365-2982.2010.01495.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The mechanism of action of the spasmolytic compound otilonium bromide (OB) on human colonic motility is not understood. The aim of our study was to characterize the pharmacological effects of OB on contractile patterns in the human sigmoid colon. METHODS Circular sigmoid strips were studied in organ baths. Isolated smooth muscle cells from human sigmoid colon were examined using the calcium imaging technique. KEY RESULTS Otilonium bromide inhibited by 85% spontaneous non-neural rhythmic phasic contractions (RPCs), (IC(50) = 49.9 nmol L(-1)) and stretch-induced tone (IC(50) = 10.7 nmol L(-1)) with maximum effects at micromolar range. OB also inhibited by 50% both on- (IC(50) = 38.0 nmol L(-1)) and off-contractions induced by electrical stimulation of excitatory motor neurons. In contrast, the inhibitory latency period prior to off-contractions was unaffected by OB. OB inhibited acetylcholine-, substance P-, and neurokinin A-induced contractions. The L-type Ca(2+) channel agonist BayK8644 reversed the effects of OB on RPCs, on- and off-contractions. Hexamethonium, atropine, the NK(2) antagonist, or depletion of intracellular Ca(2+) stores by thapsigargin did not prevent the inhibitory effect of OB on RPCs and electrical contractions. KCl-induced calcium transients in isolated smooth muscle cells were also inhibited by OB (IC(50) = 0.2 micromol L(-1)). CONCLUSIONS & INFERENCES Otilonium bromide strongly inhibited the main patterns of human sigmoid motility in vitro by blocking calcium influx through L-type calcium channels on smooth muscle cells. This pharmacological profile may mediate the clinically observed effects of the drug in patients with irritable bowel syndrome.
Collapse
Affiliation(s)
- D Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Instituto de Salud Carlos III, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lefebvre RA, Ferrero S, Van Colen I, Dhaese I, Camerini G, Fulcheri E, Remorgida V. Influence of 5-HT4 receptor activation on acetylcholine release in human large intestine with endometriosis. Neurogastroenterol Motil 2010; 22:557-63, e121-2. [PMID: 20025676 DOI: 10.1111/j.1365-2982.2009.01438.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The 5-HT(4) receptor agonist prucalopride enhances large intestinal contractility by facilitating acetylcholine release through activation of 5-HT(4) receptors on cholinergic nerves and is effective in patients with constipation. Patients with intestinal endometriosis can present with constipation. We investigated in vitro whether large intestinal endometriotic infiltration influences contractility and facilitation of acetylcholine release by prucalopride. METHODS Sigmoid colon or rectum circular muscle strips were obtained at the level of an endometriotic nodule with infiltration of the Auerbach plexus, and at a macroscopically healthy site at least 5 cm cranially from the nodule, in patients undergoing laparoscopic colorectal resection because of symptomatic bowel endometriosis. Responses to muscarinic receptor stimulation and to electrical field stimulation (EFS), and the facilitating effect of prucalopride on acetylcholine release were evaluated. KEY RESULTS The EC50 and E(max) of the contractile responses to the muscarinic receptor agonist carbachol did not differ between healthy and lesioned strips. EFS-induced on-contractions were not different between the healthy and lesioned strips, while the non-nitrergic relaxant responses induced by EFS were decreased in the lesioned strips. The facilitating effect of prucalopride on acetylcholine release in healthy strips was similar to that reported before in macroscopically healthy colon tissue of patients with colon cancer; in lesioned strips, the effect of prucalopride was fully maintained in 6/8 patients and absent in two. CONCLUSIONS & INFERENCES Large intestinal endometriosis does not lead to a systematic interference with the cholinergic facilitating effect of prucalopride.
Collapse
Affiliation(s)
- R A Lefebvre
- Heymans Institute of Pharmacology, Ghent University, Gent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
19
|
Effect of acute mucosal exposure to Lactobacillus rhamnosus GG on human colonic smooth muscle cells. J Clin Gastroenterol 2008; 42 Suppl 3 Pt 2:S185-90. [PMID: 18685510 DOI: 10.1097/mcg.0b013e31817e1cac] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM To define whether human colonic mucosa exposure to Lactobacillus rhamnosus GG (LGG), American Type Culture Collection (ATCC) 53103, may influence intestinal muscle cell contractility. METHODS Human colon specimens were obtained from disease-free margins of resected segments for cancer. The mucosa and submucosa, after dissection, were sealed between 2 chambers, with the luminal side of the mucosa facing upward and covered with 5 mL of Krebs solution and the submucosal side facing downward into 20 mL of Krebs solution. LGG or normal undernatant (N-undernatant) were added to the luminal side of the mucosa for 30 minutes. Smooth muscle cells (SMCs), isolated from the circular muscle layer, were exposed to undernatant for 30 minutes from the submucosal chamber of mucosa that was either preexposed to N-undernatant or to LGG (36 x 10(-9) colony forming units/mL) (LGG-undernatant). Acetylcholine (Ach) dose-response was obtained for SMCs. RESULTS SMCs exposed to N-undernatant presented a dose-response to Ach (maximal contraction: 32%+/-5% with 1-muM Ach) that is similar to unstimulated SMCs. Exposure to LGG-undernatant resulted both in an 18%+/-3% cell shortening and a 78%+/-7% inhibition of maximal Ach-induced contraction. When SMCs were directly exposed to LGG, a significant impairment of contraction (70%+/-5%, compared with control cells) and a dose-dependent and time-dependent shortening were observed. CONCLUSIONS After acute exposure of colonic mucosa to LGG, a significant shortening of SMCs is observed that possibly contributes to the reduced contractile response to Ach. Further studies are needed to establish the mechanisms of this effect that could account for the clinical efficacy of probiotics in intestinal disorders.
Collapse
|
20
|
Effects of excitatory and inhibitory neurotransmission on motor patterns of human sigmoid colon in vitro. Br J Pharmacol 2008; 155:1043-55. [PMID: 18846038 DOI: 10.1038/bjp.2008.332] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE To characterize the in vitro motor patterns and the neurotransmitters released by enteric motor neurons (EMNs) in the human sigmoid colon. EXPERIMENTAL APPROACH Sigmoid circular strips were studied in organ baths. EMNs were stimulated by electrical field stimulation (EFS) and through nicotinic ACh receptors. KEY RESULTS Strips developed weak spontaneous rhythmic contractions (3.67+/-0.49 g, 2.54+/-0.15 min) unaffected by the neurotoxin tetrodotoxin (TTX; 1 microM). EFS induced strong contractions during (on, 56%) or after electrical stimulus (off, 44%), both abolished by TTX. Nicotine (1-100 microM) inhibited spontaneous contractions. Latency of off-contractions and nicotine responses were reduced by N(G)-nitro-L-arginine (1 mM) and blocked after further addition of apamin (1 microM) or the P2Y(1) receptor antagonist MRS 2179 (10 microM) and were unaffected by the P2X antagonist NF279 (10 microM) or alpha-chymotrypsin (10 U mL(-1)). Amplitude of on- and off-contractions was reduced by atropine (1 microM) and the selective NK(2) receptor antagonist Bz-Ala-Ala-D-Trp-Phe-D-Pro-Pro-Nle-NH(2) (1 microM). MRS 2179 reduced the amplitude of EFS on- and off-contractions without altering direct muscular contractions induced by ACh (1 nM-1 mM) or substance P (1 nM-10 microM). CONCLUSIONS AND IMPLICATIONS Latency of EFS-induced off-contractions and inhibition of spontaneous motility by nicotine are caused by stimulation of inhibitory EMNs coreleasing NO and a purine acting at muscular P2Y(1) receptors through apamin-sensitive K(+) channels. EFS-induced on- and off-contractions are caused by stimulation of excitatory EMNs coreleasing ACh and tachykinins acting on muscular muscarinic and NK(2) receptors. Prejunctional P2Y(1) receptors might modulate the activity of excitatory EMNs. P2Y(1) and NK(2) receptors might be therapeutic targets for colonic motor disorders.
Collapse
|
21
|
Jaafari N, Khomitch-Baud A, Gilhodes JC, Hua G, Julé Y. Qualitative and quantitative analysis of tachykinin NK2 receptors in chemically defined human colonic neuronal pathways. J Comp Neurol 2008; 507:1542-58. [DOI: 10.1002/cne.21628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Smid SD, Bjorklund CK, Svensson KM, Heigis S, Revesz A. The endocannabinoids anandamide and 2-arachidonoylglycerol inhibit cholinergic contractility in the human colon. Eur J Pharmacol 2007; 575:168-76. [PMID: 17706636 DOI: 10.1016/j.ejphar.2007.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/10/2007] [Accepted: 07/17/2007] [Indexed: 11/25/2022]
Abstract
The effects of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) were determined on cholinergic contractility in strips of human colonic longitudinal muscle and circular muscle in vitro, in the presence of nitric oxide synthase blockade with N-nitro-l-arginine (10(-4) M). Anandamide and 2-AG inhibited longitudinal muscle and circular muscle contractile responses to acetylcholine (10(-9)-10(-4) M) in a concentration-dependent manner. This was unaltered following pretreatment with the cannabinoid CB(1) receptor-selective antagonist AM251 (10(-7) M), however in isolation AM251 elicited a significant rightward shift in the potency of acetylcholine-evoked contraction in both longitudinal muscle and circular muscle preparations. Pretreatment with an inhibitor of anandamide catabolism, arachidonoyl trifluoromethyl ketone (10(-5) M), alone caused a significant decrease in the potency of acetylcholine-evoked contraction in both longitudinal and circular muscle, but had no significant additional effect on the anandamide-induced (10(-5) M) suppression of contraction. Pretreatment with the cannabinoid CB(2) receptor inverse agonist JTE 907 (10(-6) M) neither influenced the potency of acetylcholine-evoked contraction alone nor prevented the potency shift in acetylcholine-evoked contraction in the presence of anandamide (10(-5) M). The findings of the present study indicate that the endocannabinoids anandamide and 2-arachidonoylglycerol suppress colonic cholinergic contractility via a non conventional cannabinoid or non-cannabinoid receptor-mediated pathway. Cholinergic contraction may be tonically modulated by endocannabinoids and/or products of arachidonate metabolism unrelated to endocannabinoid production. The extent of anandamide metabolism is not sufficient to influence the functional effects of its exogenous administration in human colonic tissue in vitro.
Collapse
Affiliation(s)
- Scott D Smid
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, Australia.
| | | | | | | | | |
Collapse
|
23
|
Regulation of basal tone, relaxation and contraction of the lower oesophageal sphincter. Relevance to drug discovery for oesophageal disorders. Br J Pharmacol 2007; 153:858-69. [PMID: 17994108 DOI: 10.1038/sj.bjp.0707572] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The lower oesophageal sphincter (LOS) is a specialized region of the oesophageal circular smooth muscle that allows the passage of a swallowed bolus to the stomach and prevents the reflux of gastric contents into the oesophagus. The anatomical arrangement of the LOS includes semicircular clasp fibres adjacent to the lesser gastric curvature and sling fibres following the greater gastric curvature. Such anatomical arrangement together with an asymmetric intrinsic innervation and distinct proportion of neurotransmitters in both regions produces an asymmetric pressure profile. The LOS tone is myogenic in origin and depends on smooth muscle properties that lead to opening of L-type Ca(2+) channels; however it can be modulated by enteric motor neurons, the parasympathetic and sympathetic extrinsic nervous system and several neurohumoral substances. Nitric oxide synthesized by neuronal NOS is the main inhibitory neurotransmitter involved in LOS relaxation. Different putative neurotransmitters have been proposed to play a role together with NO. So far, only ATP or related purines have shown to be co-transmitters with NO. Acetylcholine and tachykinins are involved in the LOS contraction acting through acetylcholine M(3) and tachykinin NK(2) receptors. Nitric oxide can also be involved in the regulation of LOS contraction. The understanding of the mechanisms that originate and modulate LOS tone, relaxation and contraction and the characterization of neurotransmitters and receptors involved in LOS function are important to develop new pharmacological tools to treat primary oesophageal motor disorders and gastro-oesophageal reflux disease.
Collapse
|
24
|
Koon HW, Pothoulakis C. Immunomodulatory properties of substance P: the gastrointestinal system as a model. Ann N Y Acad Sci 2007; 1088:23-40. [PMID: 17192554 DOI: 10.1196/annals.1366.024] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Communication between nerves and immune and inflammatory cells of the small and large intestine plays a major role in the modulation of several intestinal functions, including intestinal motility, ion transport, and mucosal permeability. Neuroimmune interactions at intestinal sites have been associated with the pathophysiology of infectious and enterotoxin-mediated diarrhea and intestinal inflammation, including inflammatory bowel disease (IBD). During the past 20 years the neuropeptide substance P (SP) has been identified as an important mediator in the development and progress of intestinal inflammation by binding to its high-affinity neurokinin-1 receptor (NK-1R). This peptide, released from enteric nerves, sensory neurons, and inflammatory cells of the lamina propria during intestinal inflammation, participates in gut inflammation by interacting, directly or indirectly, with NK-1R expressed on nerves, epithelial cells, and immune and inflammatory cells, such as mast cells, macrophages, and T cells. SP-dependent activation of these cells leads to the release of cytokines and chemokines as well as other neuropeptides that modulate diarrhea, inflammation, and motility associated with the pathophysiology of several intestinal disease states. The recent development of specific nonpeptide NK-1R antagonists and NK-1R-deficient mice helped us understand the functional importance of the SP-NK-1R system in mediating intestinal neuroimmune interactions and to identify the particular cells and signaling pathways involved in this response. This review summarizes our understanding on the immunomodulatory properties of SP and its receptor in the intestinal tract with particular focus on their involvement in intestinal physiology as well as in the pathophysiology of several intestinal disease states at the in vivo and cell signaling level.
Collapse
Affiliation(s)
- Hon Wai Koon
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
25
|
Takeuchi T, Tanaka K, Nakajima H, Matsui M, Azuma YT. M2 and M3 muscarinic receptors are involved in enteric nerve-mediated contraction of the mouse ileum: Findings obtained with muscarinic-receptor knockout mouse. Am J Physiol Gastrointest Liver Physiol 2007; 292:G154-64. [PMID: 17008557 DOI: 10.1152/ajpgi.00173.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The involvement of muscarinic receptors in neurogenic responses of the ileum was studied in wild-type and muscarinic-receptor (M-receptor) knockout (KO) mice. Electrical field stimulation to the wild-type mouse ileum induced a biphasic response, a phasic and sustained contraction that was abolished by tetrodotoxin. The sustained contraction was prolonged for an extended period after the termination of electrical field stimulation. The phasic contraction was completely inhibited by atropine. In contrast, the sustained contraction was enhanced by atropine. Ileal strips prepared from M2-receptor KO mice exhibited a phasic contraction similar to that seen in wild-type mice and a sustained contraction that was larger than that in wild-type mice. In M3-receptor KO mice, the phasic contraction was smaller than that observed in wild-type mice. Acetylcholine exogenously administrated induced concentration-dependent contractions in strips isolated from wild-type, M2- and M3-receptor KO mice. However, contractions in M3-receptor KO mice shifted to the right. The sustained contraction was inhibited by capsaicin and neurokinin NK2 receptor antagonist, suggesting that it is mediated by substance P (SP). SP-induced contraction of M2-receptor KO mice did not differ from that of wild-type mice. SP immunoreactivity was located in enteric neurons, colocalized with M2 receptor immunoreactivity. These results suggest that atropine-sensitive phasic contraction is mainly mediated via the M3 receptor, and SP-mediated sustained contraction is negatively regulated by the M2 receptor at a presynaptic level.
Collapse
Affiliation(s)
- Tadayoshi Takeuchi
- Department of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai Osaka 599-8531, Japan.
| | | | | | | | | |
Collapse
|
26
|
Jaafari N, Khomitch-Baud A, Christen MO, Julé Y. Distribution pattern of tachykinin NK2 receptors in human colon: Involvement in the regulation of intestinal motility. J Comp Neurol 2007; 503:381-91. [PMID: 17503489 DOI: 10.1002/cne.21359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although a number of pharmacological studies have shown the involvement of tachykinin type 2 receptors (NK2r) in the regulation of human colonic motility, few data are available so far on their pattern of expression. In this study this pattern was investigated in the myenteric plexuses, the longitudinal and circular muscle layers (external muscular layers), and the interstitial cells of Cajal (ICCs) using confocal microscopy immunofluorescence methods. NK2r immunoreactivity (NK2r-IR) was detected in the soma of myenteric neurons and in nerve varicosities located in myenteric plexuses as well as in external muscular layers. Colocalization analysis of NK2r-IR and synaptophysin-IR, showed significant regional differences in the distribution of NK2r-expressing nerve varicosities, the rate of occurrence was found to be 56.08% +/- 3% (mean +/- SE) in the external muscular layers and 30.22% +/- 1% (mean +/- SE) in the myenteric plexuses. NK2r-IR was found in membranes of most muscle cells previously incubated with a selective NK2r agonist, [beta-Ala(8)] neurokinin A fragment 4-10, at 4 degrees C, and then mainly relocated in the cytoplasm when heated to 37 degrees C. A number of NK2r-IR nerve varicosities were close to NK2r-expressing neurons and muscle cells. Some of NK2r-expressing neurons and nerves were tachykinin-IR. No NK2r-IR was detected in ICCs. The present data indicate that presynaptic and postsynaptic neuroneuronal and neuromuscular regulatory processes mediated by tachykinins via NK2r may occur for modulating human colonic motility.
Collapse
Affiliation(s)
- Nadia Jaafari
- Département de Biologie Animale, Université de Provence, 13331 Marseille, France.
| | | | | | | |
Collapse
|
27
|
Gallego D, Hernández P, Clavé P, Jiménez M. P2Y1 receptors mediate inhibitory purinergic neuromuscular transmission in the human colon. Am J Physiol Gastrointest Liver Physiol 2006; 291:G584-94. [PMID: 16751171 DOI: 10.1152/ajpgi.00474.2005] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Indirect evidence suggests that ATP is a neurotransmitter involved in inhibitory pathways in the neuromuscular junction in the gastrointestinal tract. The aim of this study was to characterize purinergic inhibitory neuromuscular transmission in the human colon. Tissue was obtained from colon resections for neoplasm. Muscle bath, microelectrode experiments, and immunohistochemical techniques were performed. 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate tetraammonium salt (MRS 2179) was used as a selective inhibitor of P2Y(1) receptors. We found that 1) ATP (1 mM) and adenosine 5'-beta-2-thiodiphosphate (ADPbetaS) (10 microM), a preferential P2Y agonist, inhibited spontaneous motility and caused smooth muscle hyperpolarization (about -12 mV); 2) MRS 2179 (10 microM) and apamin (1 microM) significantly reduced these effects; 3) both the fast component of the inhibitory junction potential (IJP) and the nonnitrergic relaxation induced by electrical field stimulation were dose dependently inhibited (IC(50) approximately 1 microM) by MRS 2179; 4) ADPbetaS reduced the IJP probably by a desensitization mechanism; 5) apamin (1 microM) reduced the fast component of the IJP (by 30-40%) and the inhibitory effect induced by electrical field stimulation; and 6) P2Y(1) receptors were localized in smooth muscle cells as well as in enteric neurons. These results show that ATP or a related purine is released by enteric inhibitory motoneurons, causing a fast hyperpolarization and smooth muscle relaxation. The high sensitivity of MRS 2179 has revealed, for the first time in the human gastrointestinal tract, that a P2Y(1) receptor present in smooth muscle probably mediates this mechanism through a pathway that partially involves apamin-sensitive calcium-activated potassium channels. P2Y(1) receptors can be an important pharmacological target to modulate smooth muscle excitability.
Collapse
Affiliation(s)
- Diana Gallego
- Dept. of Cell Biology, Physiology, and Immunology, Edifici V, Universidad Autònoma de Barcelona, Bellaterra 08193, Spain
| | | | | | | |
Collapse
|
28
|
Kovac JR, Chrones T, Preiksaitis HG, Sims SM. Tachykinin Receptor Expression and Function in Human Esophageal Smooth Muscle. J Pharmacol Exp Ther 2006; 318:513-20. [PMID: 16714401 DOI: 10.1124/jpet.106.104034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tachykinins are present in enteric nerves of the gastrointestinal tract and cause contraction of esophageal smooth muscle; however, the mechanisms involved are not understood. Our aim was to characterize tachykinin signaling in human esophageal smooth muscle. We investigated functional effects of tachykinins on human esophageal smooth muscle using tension recordings and isolated cells, receptor expression with reverse transcription (RT)-polymerase chain reaction (PCR) and immunoblotting, intracellular Ca2+ responses using fluorescent indicator dyes, and membrane currents with patch-clamp electrophysiology. The mammalian tachykinins [substance P and neurokinin (NK) A and NKB] elicited concentration-dependent contractions of human esophageal smooth muscle. These responses were not affected by muscarinic receptor or neuronal blockade indicating a direct effect on smooth muscle cells (SMCs). Immunofluorescence and RT-PCR identified tachykinin receptors (NK1, NK2, and NK3) on SMCs. Contraction was mediated through a combination of Ca2+ release from intracellular stores and influx through L-type Ca2+ channels. NK2 receptor blockade inhibited the largest proportion of tachykinin-evoked responses. NKA evoked a nonselective cation current (I(NSC)) with properties similar to that elicited by muscarinic stimulation. The following paradigm is suggested: tachykinin receptor binding to SMCs releases Ca2+ from stores along with activation of I(NSC), which in turn results in membrane depolarization, L-type Ca2+ channel opening, rise of Ca2+ concentration, and contraction. These studies reveal new aspects of tachykinin signaling in human esophageal SMCs. Excitatory tachykinin pathways may represent targets for pharmacological intervention in disorders of esophageal dysmotility.
Collapse
Affiliation(s)
- Jason R Kovac
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | | | |
Collapse
|
29
|
Xiao ZL, Cao W, Biancani P, Behar J. Nongenomic effects of progesterone on the contraction of muscle cells from the guinea pig colon. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1008-15. [PMID: 16399876 DOI: 10.1152/ajpgi.00382.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Progesterone (PG) affects muscle cells by genomic mechanisms through nuclear receptors and by nongenomic mechanisms through unidentified pathways. This study aimed to determine the pathways mediating its nongenomic actions. Experiments were performed in dissociated muscle cells from guinea pig colons. Nongenomic actions were defined as those occurring within 10 min of PG exposure. PG blocked the contraction to CCK-8 and NKA (10(-7) M) but did not impair ACh (10(-7) M) and KCl (2.5 x 10(-2) M)-induced contraction. Both CCK-8 and NKA contract muscle cells by releasing calcium from intracellular stores, whereas ACh and KCl can utilize extracellular calcium. PG also blocked the contraction induced by inositol 1,4,5-trisphosphate, thapsigargin, and caffeine, agents that contract muscle cells by releasing calcium from storage sites. The nongenomic actions of PG were transient because they were absent 1 h after the first PG dose, remaining unresponsive after a second PG dose was administered. Furthermore, PG had no effect on the contraction induced by CCK-8 and thapsigargin in muscle cells from animals pretreated with daily intramuscular PG for 4 days. Cytosolic incorporation experiments of [(3)H]PG showed that pretreatment with unlabeled PG significantly reduced the radiolabeled PG incorporation in the cytosol. We conclude that the nongenomic actions of PG on colonic muscle cells transiently blocked calcium release from storage sites, and this response became rapidly desensitized. This effect does not appear to be specific to PG because other steroid hormones such as aldosterone and testosterone can also induce it.
Collapse
Affiliation(s)
- Zuo-Liang Xiao
- Division of Gastroenterology, APC 406, Rhode Island Hospital/Brown University Medical School, 593 Eddy St., Providence, RI 02903, USA.
| | | | | | | |
Collapse
|
30
|
Lecci A, Capriati A, Altamura M, Maggi CA. Tachykinins and tachykinin receptors in the gut, with special reference to NK2 receptors in human. Auton Neurosci 2006; 126-127:232-49. [PMID: 16616700 DOI: 10.1016/j.autneu.2006.02.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 02/21/2006] [Accepted: 02/27/2006] [Indexed: 12/12/2022]
Abstract
Tachykinins (TKs), substance P (SP), neurokinin A (NKA) and B (NKB) are important peptide modulators of intestinal motility in animal species studied so far, including humans. Modulation of motility by TKs can occur at various levels, since these peptides are expressed in cholinergic excitatory motor neurons projecting to both circular and longitudinal muscle, interneurons, and intramural and extramural sensory neurons. The effects of SP, NKA and NKB are preferentially mediated through the stimulation of NK1, NK2 and NK3 receptors, respectively; however, the selectivity of natural TKs for their preferred receptors is relative. In addition, SP and NKA are expressed in similar quantities in the human intestine and adequate stimuli can release similar amount of these TKs from enteric nerves. Furthermore, a single anatomical substrate can express more than one TK receptor type, so that the blockade of a single receptor type may not reveal functional effects in integrated models of motility. In isolated human small intestine and colon circular muscle strips, both NK1 and NK2 receptors mediate contractile effects. Indeed, in the human small intestine, smooth muscle electrical and motor events induced by electrical field stimulation (EFS) can involve either or both NK1 and NK2 receptors or these latter receptors predominantly, depending on the experimental conditions. In contrast, in the human colonic smooth muscle, only the NK2 receptor-mediated component of the response to EFS is prominent and some evidence would suggest that this component is the main excitatory motor mechanism at this level. Furthermore, a NK2 receptor-mediated secretory component in the human colonic mucosa has been recently demonstrated. Thus, it could be speculated that the blockade of both NK1 and NK2 receptors will be necessary to antagonise motor effects induced by exogenous administration or endogenous release of TKs in the small intestine, whereas the blockade of the NK2 receptors would be sufficient to disrupt physiological motor and, possibly, secretory activity at the colonic level. Available evidence indicates that, in healthy volunteers, the infusion of NKA (25 pmol/kg/min i.v.) stimulated small intestine motility and precipitated a series of intestinal and non-intestinal adverse events. Nepadutant (8 mg i.v.), a selective NK2 receptor antagonist, antagonised small intestine motility induced by NKA and prevented associated intestinal adverse events. In another study, the same dose of nepadutant increased colo-rectal compliance during isobaric balloon distension in healthy volunteers pretreated with a glycerol enema, disclosing a NK2 receptor-mediated component in the regulation of colonic smooth muscle tone. However, the prolonged blockade of NK2 receptors by nepadutant (16 mg i.v. b.i.d. for 8 days) did not affect bowel habits, neither in term of movements nor of stool consistency. Altogether, these results indicate that, even when there is a significant redundance in the effects of TKs and in the role of their receptors, the selective blockade of tachykinin NK2 receptors can have functional consequences on human intestinal motility and perception, but this can occur without the disruption of the physiological functions.
Collapse
Affiliation(s)
- Alessandro Lecci
- Clinical Research Department, Menarini Ricerche, via Sette Santi 1, 50131 Firenze, Italy.
| | | | | | | |
Collapse
|
31
|
Cao W, Harnett KM, Pricolo VE. NK2 Receptor-Mediated Spontaneous Phasic Contractions in Normal and Ulcerative Colitis Human Sigmoid Colon. J Pharmacol Exp Ther 2006; 317:1349-55. [PMID: 16554357 DOI: 10.1124/jpet.105.097030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human colonic circular muscle produces spontaneous phasic contractions that are reduced in ulcerative colitis. How the spontaneous phasic contractions develop and why they decrease in ulcerative colitis are not known. We found that spontaneous phasic contractions of normal sigmoid circular muscle strips were significantly reduced by 90-min incubation with tetrodotoxin (10(-5) M), which blocked neurokinin A release in basal conditions and in response to electrical stimulation. In addition, spontaneous contraction of human sigmoid colon was significantly decreased by the NK2 receptor antagonists MEN10376 (Asp-Tyr-D-Trp-Val-D-Trp-D-Trp-Lys-NH2) and NK2ra (Bz-Ala-Ala-D-Trp-Phe-D-pro-Pro-Nle-NH2) but not by atropine or by the NK1 antagonist FK888 (N2-[(4R)-4-hydroxyl-1-(1-methyl-1H-indol-3-yl)carbonyl-l-prolyl]-N-methyl-N-phenylmethyl-3-(2-naphthyl)-l-alaninamide), suggesting that NK2 receptors are involved in their development. The spontaneous phasic contractions were abolished by thapsigargin and cyclopiazonic acid and significantly decreased by the protein kinase C inhibitor chelerythrine and by the calmodulin inhibitor CGS9343B (1,3-dihydro-1-[1-[(4-methyl-4H,6H-pyrrolo[1,2-a]-[4,1]-benzoxazepin-4-yl)methyl]-4-piperidinyl]-2H-benzimidazol-2-one (1:1) maleate), suggesting that spontaneous phasic contractions may be mediated by Ca2+ release from intracellular stores and by a protein kinase C- and calmodulin-dependent pathway. In strips from patients with ulcerative colitis, spontaneous contractions were significantly reduced, and this reduction was partially restored by the hydrogen peroxide scavenger catalase. Neurokinin A release, however, was not affected. We conclude that spontaneous phasic contractions of human sigmoid circular smooth muscle may be mediated by activation of NK2 receptors, calcium release from intracellular stores, and activation of calmodulin and protein kinase C. In ulcerative colitis patients, spontaneous phasic contractions are decreased, and this decrease may be in part due to overproduction of hydrogen peroxide affecting sigmoid circular muscle.
Collapse
Affiliation(s)
- Weibiao Cao
- Department of Medicine, Brown Medical School and Rhode Island Hospital, 55 Claverick Street, Room 337, Providence, RI 02903, USA.
| | | | | |
Collapse
|
32
|
Cao W, Fiocchi C, Pricolo VE. Production of IL-1β, hydrogen peroxide, and nitric oxide by colonic mucosa decreases sigmoid smooth muscle contractility in ulcerative colitis. Am J Physiol Cell Physiol 2005; 289:C1408-16. [PMID: 16033908 DOI: 10.1152/ajpcell.00073.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have previously shown that sigmoid circular muscle cells from patients with ulcerative colitis (UC) exhibit reduced contraction and Ca2+signaling in response to the neurotransmitter neurokinin A (NKA) and that IL-1β and H2O2may contribute to these reduced responses in UC. In addition, we have found that nitric oxide (NO) levels were significantly increased in UC circular muscle. To establish the site of origin for IL-1β, H2O2, and NO, we assembled an in vitro system in which normal or UC mucosa were sealed between two chambers filled with oxygenated Krebs solution. Because the mucosa consists of full-thickness mucosa and submucosa, it is expected that whatever is released into the undernatant from the submucosal side may diffuse to the circular muscle layer in the intact colon. Treatment of normal sigmoid circular muscle cells for 2 h with undernatants collected from the UC submucosal side (UCS) significantly decreased contraction induced by NKA and thapsigargin and the NKA- and caffeine-induced Ca2+signal in Ca2+-free medium. In addition, UC mucosa released into the undernatant on its submucosal side significantly more H2O2, IL-1β, and NO than normal mucosa. The reduction in contraction and Ca2+signal induced by UCS was partially reversed by pretreatment with an IL-1β antibody or with catalase. The NO scavenger hemoglobin partially prevented UCS-induced reduction in contraction and Ca2+signaling in response to NKA but not the reduced response to thapsigargin or caffeine. Sodium nitroprusside inhibited NKA but not the caffeine-induced Ca2+signal. We conclude that in UC the mucosa releases IL-1β, H2O2, and NO, which may contribute to the impaired Ca2+release and altered sigmoid muscle contractility.
Collapse
Affiliation(s)
- Weibiao Cao
- Dept. of Medicine, Brown Medical School and Rhode Island Hospital, 55 Claverick St., Rm. 337, Providence, RI 02903, USA.
| | | | | |
Collapse
|
33
|
Cao W, Vrees MD, Potenti FM, Harnett KM, Fiocchi C, Pricolo VE. Interleukin 1β-Induced Production of H2O2Contributes to Reduced Sigmoid Colonic Circular Smooth Muscle Contractility in Ulcerative Colitis. J Pharmacol Exp Ther 2004; 311:60-70. [PMID: 15205451 DOI: 10.1124/jpet.104.068023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have shown that neurokinin A-induced contraction of human sigmoid circular muscle (HSCM) is reduced in patients with ulcerative colitis and that interleukin (IL)-1beta may play a role in this change. We now examine changes in the signal transduction pathway mediating neurokinin A-induced contraction of HSCM and explore the role of IL-1beta and of H(2)O(2) in these changes. In Fura 2-AM-loaded ulcerative colitis HSCM cells, neurokinin A- and caffeine-induced peak Ca(2+) increase and cell shortening were significantly reduced. In normal cells, neurokinin A-induced contraction was decreased by protein kinase C inhibitor chelerythrine and by calmodulin inhibitor CGS9343B [1,3-dihydro-1-[1-[(4-methyl-4H,6H-pyrrolo[1,2-a][4,1]-benzoxazepin-4-yl)methyl]-4-piperidinyl]-2H-benzimidazol-2-one (1:1) maleate]. In ulcerative colitis muscle cells, contraction was inhibited only by chelerythrine but not by CGS9343B. IL-1beta treatment of normal HSCM strips and cells reproduced the changes observed in ulcerative colitis. IL-1beta-induced reduction in caffeine-induced peak Ca(2+) increase and contraction was reversed by catalase, suggesting a role of H(2)O(2). IL-1beta-induced H(2)O(2) production was inhibited by mitogen-activated protein kinase (MAPK) kinase inhibitor PD98059 (2'-amino-3'-methoxyflavone) and by cytosolic phospholipase A2 (cPLA(2)) inhibitor AACOCF3 (arachidonyltrifluoromethyl ketone), but neither by p38 MAPK inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole] nor by nuclear factor-kappaB (NF-kappaB) inhibitory peptide NF-kappaB SN50 (H-Ala-Ala-Val-Ala-Leu-Leu-Pro-Ala-Val-Leu-Leu-Ala-Leu-Leu-Ala-Pro-Val-Gln-Arg-Lys-Arg-Gln-Lys-Leu-Met-Pro-OH). IL-1beta significantly increased the phosphorylation of extracellular signal-regulated kinase 1 (ERK1)/ERK2 MAPKs and cPLA(2) and IL-1beta-induced cPLA(2) phosphorylation was blocked by PD98059. We conclude that Ca(2+) stores of HSCM cells may be reduced in ulcerative colitis and that the signal transduction pathway of neurokinin A-induced contraction switches from calmodulin- and protein kinase C-dependent in normal cells to protein kinase C-dependent in ulcerative colitis cells. IL-1beta reproduces these changes, possibly by production of H(2)O(2) via sequential activation of MAPKs (ERK1/ERK2) and cPLA(2).
Collapse
Affiliation(s)
- Weibiao Cao
- Department of Surgery, Brown Medical School and Rhode Island Hospital, 2 Dudley St., Suite 470, Providence, RI 02905, USA
| | | | | | | | | | | |
Collapse
|
34
|
Maselli MA, Piepoli AL, Guerra V, Caruso ML, Pezzolla F, Lorusso D, Demma I, De Ponti F. Colonic smooth muscle responses in patients with diverticular disease of the colon: effect of the NK2 receptor antagonist SR48968. Dig Liver Dis 2004; 36:348-54. [PMID: 15191205 DOI: 10.1016/j.dld.2004.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Little is known about the pathophysiology of diverticular disease. AIM To compare passive and active stress and the response to carbachol of colonic smooth muscle specimens from patients with diverticular disease and patients with colon cancer. The effect of the NK2 receptor antagonist, SR48968, on electrically evoked contractions of circular muscle was also investigated. PATIENTS Sigmoid colon segments were obtained from 16 patients (51-83 years) undergoing elective sigmoid resection for diverticular disease and 39 patients (50-88 years) undergoing left hemicolectomy for non-obstructive sigmoid colon cancer. METHODS Isometric tension was measured on circular or longitudinal taenial muscle. Strips were stretched gradually to Lo (length allowing the development of optimal active tension with carbachol) and were also exposed to increasing carbachol concentrations. The effects of atropine, tetrodotoxin and SR48968 on electrically evoked (supramaximal strength, 0.3 ms, 0.1-10 Hz) contractions of circular strips from 8 patients with diverticular disease and 19 patients with colon cancer were also studied. RESULTS Both passive and active stress in circular muscle strips obtained from patients with diverticular disease was higher than in patients with colon cancer (P < 0.05). Electrically evoked contractions were significantly reduced by atropine in all preparations and were virtually suppressed by combined SR48968 and atropine. Tetrodotoxin suppressed electrically evoked contractions only in patients with colon cancer, whereas a tetrodotoxin-resistant component was identified in patients with diverticular disease. CONCLUSIONS The changes in both passive and active stress in specimens from patients with diverticular disease may reflect circular smooth muscle dysfunction. Acetylcholine and tachykinins are the main excitatory neurotransmitters mediating electrically evoked contractions in human sigmoid colon circular muscle.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Anesthetics, Local/pharmacology
- Atropine/pharmacology
- Benzamides/pharmacology
- Carbachol/pharmacology
- Case-Control Studies
- Cholinergic Agonists/pharmacology
- Colon, Sigmoid/drug effects
- Colon, Sigmoid/physiology
- Colonic Neoplasms/surgery
- Diverticulitis, Colonic/physiopathology
- Diverticulitis, Colonic/surgery
- Electric Stimulation
- Female
- Humans
- In Vitro Techniques
- Isometric Contraction/drug effects
- Isometric Contraction/physiology
- Male
- Middle Aged
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Parasympatholytics/pharmacology
- Piperidines/pharmacology
- Receptors, Neurokinin-2/antagonists & inhibitors
- Stress, Mechanical
- Tetrodotoxin/pharmacology
Collapse
Affiliation(s)
- M A Maselli
- Experimental Pathophysiology and Pharmacology Laboratory, Scientific Institute of Gastroenterology S. de Bellis, Via F. Valente 4, I-70013 Castellana Grotte BA, Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Cao W, Vrees MD, Kirber MT, Fiocchi C, Pricolo VE. Hydrogen peroxide contributes to motor dysfunction in ulcerative colitis. Am J Physiol Gastrointest Liver Physiol 2004; 286:G833-43. [PMID: 14670823 DOI: 10.1152/ajpgi.00414.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ulcerative colitis (UC) affects colonic motor function, but the mechanism responsible for this motor dysfunction is not well understood. We have shown that neurokinin A (NKA) may be an endogenous neurotransmitter mediating contraction of human sigmoid colonic circular muscle (HSCCM). To elucidate factors responsible for UC motor dysfunction, we examined the role of hydrogen peroxide (H(2)O(2)) in the decrease of NKA-induced response of HSCCM. As previously demonstrated, NKA-induced contraction or Ca(2+) increase of normal muscle cells is mediated by release of Ca(2+) from intracellular stores, because it was not affected by incubation in Ca(2+)-free medium (CFM) containing 200 microM BAPTA. In UC, however, CFM reduced both cell contraction and NKA-induced Ca(2+) increase, suggesting reduced Ca(2+) release from intracellular stores. In normal Ca(2+) medium, NKA and KCl caused normal Ca(2+) signal in UC cells but reduced cell shortening. The decreased Ca(2+) signal and contraction in response to NKA or thapsigargin were partly recovered in the presence of H(2)O(2) scavenger catalase, suggesting involvement of H(2)O(2) in UC-induced dysmotility. H(2)O(2) levels were higher in UC than in normal HSCCM, and enzymatically isolated UC muscle cells contained much higher levels of H(2)O(2) than normal cells, which were significantly reduced by catalase. H(2)O(2) treatment of normal cells in CFM reproduced the reduction of NKA-induced Ca(2+) release observed in UC cells. In addition, H(2)O(2) caused a measurable, direct release of Ca(2+) from intracellular stores. We conclude that H(2)O(2) may contribute to reduction of NKA-induced Ca(2+) release from intracellular Ca(2+) stores in UC and contribute to the observed colonic motor dysfunction.
Collapse
Affiliation(s)
- Weibiao Cao
- Dept. of Medicine, Brown Medical School and Rhode Island Hospital, 593 Eddy St., SWP-510, Providence, RI 02903, USA.
| | | | | | | | | |
Collapse
|
36
|
Lecci A, Capriati A, Maggi CA. Tachykinin NK2 receptor antagonists for the treatment of irritable bowel syndrome. Br J Pharmacol 2004; 141:1249-63. [PMID: 15037522 PMCID: PMC1574903 DOI: 10.1038/sj.bjp.0705751] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 02/12/2004] [Accepted: 02/19/2004] [Indexed: 01/15/2023] Open
Abstract
Tachykinin NK2 receptors are expressed in the gastrointestinal tract of both laboratory animals and humans. Experimental data indicate a role for these receptors in the regulation of intestinal motor functions (both excitatory and inhibitory), secretions, inflammation and visceral sensitivity. In particular, NK2 receptor stimulation inhibits intestinal motility by activating sympathetic extrinsic pathways or NANC intramural inhibitory components, whereas a modulatory effect on cholinergic nerves or a direct effect on smooth muscle account for the NK2 receptor-mediated increase in intestinal motility. Accordingly, selective NK2 receptor antagonists can reactivate inhibited motility or decrease inflammation- or stress-associated hypermotility. Intraluminal secretion of water is increased by NK2 receptor agonists via a direct effect on epithelial cells, and this mechanism is active in models of diarrhoea since selective antagonists reverse the increase in faecal water content in these models. Hyperalgesia in response to intraluminal volume signals is possibly mediated through the stimulation of NK2 receptors located on peripheral branches of primary afferent neurones. NK2 receptor antagonists reduce the hyper-responsiveness that occurs following intestinal inflammation or application of stressful stimuli to animals. Likewise, NK2 receptor antagonists reduce intestinal tissue damage induced by chemical irritation of the intestinal wall or lumen. In healthy volunteers, the selective NK2 antagonist nepadutant reduced the motility-stimulating effects and irritable bowel syndrome-like symptoms triggered by intravenous infusion of neurokinin A, and displayed other characteristics that could support its use in patients. It is concluded that blockade of peripheral tachykinin NK2 receptors should be considered as a viable mechanism for decreasing the painful symptoms and altered bowel habits of irritable bowel syndrome patients.
Collapse
Affiliation(s)
- Alessandro Lecci
- Clinical Research Department, Menarini Ricerche via Sette Santi 1, 50131 Florence, Italy.
| | | | | |
Collapse
|
37
|
Abstract
Receptors of the of seven transmembrane spanning, heterotrimeric G protein coupled family (GPCR) play crucial roles in regulating physiological functions and consequently are targets for the action of many classes of drugs. Activation of receptor by agonist leads to the dissociation of GDP from Galpha of the Galphabetagamma heterotrimer, followed by the binding of GTP to Galpha and subsequent modulation of downstream effectors. The G protein heterotrimer is reformed by GTPase activity of the Galpha subunit, forming Galpha-GDP and so allowing Galpha and Gbetagamma to recombine. The [35S]GTPgammaS assay measures the level of G protein activation following agonist occupation of a GPCR, by determining the binding of the non-hydrolyzable analog [35S]GTPgammaS to Galpha subunits. Thus, the assay measures a functional consequence of receptor occupancy at one of the earliest receptor-mediated events. The assay allows for traditional pharmacological parameters of potency, efficacy and antagonist affinity, with the advantage that agonist measures are not subjected to amplification or other modulation that may occur when analyzing parameters further downstream of the receptor. In general the assay is experimentally more feasible for receptors coupled to the abundant G(i/o) proteins. Nevertheless, [35S]GTPgammaS binding assays are used with GPCRs that couple to the G(s) and G(q) families of G proteins, especially in artificial expression systems, or using receptor-Galpha constructs or immunoprecipitation of [35S]GTPgammaS-labeled Galpha. The relative simplicity of the assay has made it very popular and its use is providing insights into contemporary pharmacological topics including the roles of accessory proteins in signaling, constitutive activity of receptors and agonist specific signaling.
Collapse
Affiliation(s)
- C Harrison
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, West Medical Center Drive, Ann Arbor, MI 48109-0632, USA
| | | |
Collapse
|
38
|
Stanton MP, Hengel PT, Southwell BR, Chow CW, Keck J, Hutson JM, Bornstein JC. Cholinergic transmission to colonic circular muscle of children with slow-transit constipation is unimpaired, but transmission via NK2 receptors is lacking. Neurogastroenterol Motil 2003; 15:669-78. [PMID: 14651603 DOI: 10.1046/j.1350-1925.2003.00443.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tachykinins (TKs) colocalize with acetylcholine in excitatory motor neurones supplying human colonic circular muscle (CCM). Some children with slow-transit constipation (STC) have reduced TK-immunoreactivity in nerve terminals in CCM suggesting a deficit in neuromuscular transmission. This study aimed to test this possibility. Seromuscular biopsies of transverse colon were obtained laparoscopically from STC children (37, 17 with low density of TK-immunoreactivity). Specimens of transverse (17) and sigmoid colon (20) were obtained from adults undergoing colonic resection for cancer. CCM contractions were measured isotonically and responses to carbachol, neurokinin A (NKA) and electrical field stimulation (EFS) recorded. Carbachol and NKA-evoked contractions in adult and STC colon. Hyoscine (2 micromol L-1) significantly depressed responses to EFS in all preparations. Blockade of NK2 receptors (SR 48968, 2 micromol L-1) significantly depressed EFS-evoked contractions of adult transverse CCM, but had no effect on STC preparations. Thus, neuromuscular transmission in both adults and STC children is predominantly cholinergic and this component is unimpaired in the latter, indicating that reduced TK-immunoreactivity is not a marker for depressed cholinergic responses. Although pharmacologically responsive TK receptors are present in STC colon, we did not detect neuromuscular transmission mediated by release of TKs in these preparations.
Collapse
Affiliation(s)
- M P Stanton
- Murdoch Children's Research Institute and Department of General Surgery, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Warner FJ, Miller RC, Burcher E. Human tachykinin NK2 receptor: a comparative study of the colon and urinary bladder. Clin Exp Pharmacol Physiol 2003; 30:632-9. [PMID: 12940880 DOI: 10.1046/j.1440-1681.2003.03887.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The present study compared the binding and functional characteristics of tachykinin NK2 receptors in human detrusor muscle with those in human colon circular muscle. 2. In radioligand binding studies, similar KD values were observed for tachykinin NK2 receptor radioligands [125I]-neurokinin (NK) A, [125I]-[Lys5,Tyr(I2)7,MeLeu9,Nle10,]NKA(4-10) and [3H]-SR48968 in both human colon circular muscle (0.28-1.1 nmol/L) and human bladder detrusor (0.49-0.91 nmol/L), suggesting binding was primarily to tachykinin NK2 receptors. Receptor capacity (Bmax) was greater in colon compared with detrusor muscle. 3. In functional studies of isolated smooth muscle contraction, there was an excellent positive correlation between human bladder detrusor and colon circular muscle with respect to in vitro contractile potency (r = 0.97) and maximum responses (r = 0.98) to tachykinins, selective tachykinin receptor ligands and l-Ala-substituted NKA(4-10) analogues. 4. Species differences between the human and rat tachykinin NK2 receptors were apparent as observed by a low correlation for potency (r = 0.77) and efficacy (r = 0.32) of l-Ala-substituted analogues in isolated smooth muscle contractile studies. 5. Minor differences observed in the affinity and potency of NK2 receptor agonists between colon and bladder are dependent on the tissue of interest, the receptor-effector coupling and the presence of other tachykinin receptors. Overall, the NK2 receptors of human colon and urinary bladder smooth muscle appear pharmacologically identical.
Collapse
Affiliation(s)
- Fiona J Warner
- School of Physiology and Pharmacology, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
40
|
Lee T, Kim J, Sohn U. Sphingosylphosphorylcholine-induced contraction of feline ileal smooth muscle cells is mediated by Galphai3 protein and MAPK. Cell Signal 2002; 14:989-97. [PMID: 12359304 DOI: 10.1016/s0898-6568(02)00032-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We studied the mechanism of sphingosylphosphorylcholine (SPC)-induced contraction in feline ileal smooth muscle cells. Western blotting revealed that G protein subtypes of Galpha(i1), Galpha(i3) and Galpha(o) existed in feline ileum. Galpha(i3) antibody penetration into permeabilized cells decreased SPC-induced contraction. In addition, incubation of [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTPgammaS) with membrane fraction increased its binding to Galpha(i3) subtype after SPC treatment, suggesting that the signalling pathways invoked by SPC were mediated by Galpha(i3) protein. MAPK kinase (MEK) inhibitor PD98059 blocked the contraction significantly, but p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 did not. Chelerythrine and neomycin also inhibited the contraction. However, cotreatment of PD98059 and chelerythrine showed no significant difference. Phosphorylation of p44/42 MAPK was increased by SPC treatment, which was reversed by pretreatment of inhibitors of signalling molecules that decreased SPC-induced contraction previously. The same result was obtained in the assay of MAPK activity.
Collapse
Affiliation(s)
- Tai Lee
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul 156-756, Republic of Korea
| | | | | |
Collapse
|
41
|
Takahashi R, Nishimura J, Hirano K, Naito S, Kanaide H. The mechanisms for tachykinin-induced contractions of the rabbit corpus cavernosum. Br J Pharmacol 2002; 137:845-54. [PMID: 12411416 PMCID: PMC1573559 DOI: 10.1038/sj.bjp.0704938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. This study was designed to investigate the mechanisms for the contractions induced by tachykinins (substance P (SP), neurokinin A (NKA) and neurokinin B (NKB)) in the rabbit corpus cavernosum strips, using fura-PE3 fluorimetry and alpha-toxin permeabilization. 2. Tachykinins induced contractions in the rabbit corpus cavernosum in a concentration-dependent manner. The potency order was SP>NKA>NKB. 3. The tachykinin-induced contractions were enhanced by phosphoramidon (PPAD), an endopeptidase inhibitor, but not by N(omega)-nitro-L-arginine methylester (L-NAME). 4. The NK(1) receptor selective antagonist, SR 140333 significantly inhibited the tachykinin-induced contractions. Although the NK(2) receptor selective antagonist, SR 48968 alone did not influence the effects of tachykinins, it potentiated the inhibitory effect of SR 140333. The NK(3) receptor selective antagonist, SR142801 had no effect. 5. In the rabbit corpus cavernosum, tachykinins induced sustained increases in [Ca(2+)](i) and tension in normal PSS, while only small transient increases in [Ca(2+)](i) and tension were observed in Ca(2+)-free solution. 6. In alpha-toxin permeabilized preparations, tachykinins induced an additional force development at a constant [Ca(2+)](i). 7. These results indicated that in the rabbit corpus cavernosum: (1) Tachykinins induced contractions by increasing both the [Ca(2+)](i) and myofilament Ca(2+) sensitivity; (2) The tachykinin-induced [Ca(2+)](i) elevations were mainly due to the Ca(2+) influx; (3) Tachykinin-induced contractions were mainly mediated through the activation of NK(1) receptor expressed in the rabbit corpus cavernosum smooth muscle, and affected by the endopeptidase activity and (4) Tachykinins may thus play a role in controlling the corpus cavernosum tone.
Collapse
Affiliation(s)
- Ryosuke Takahashi
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Junji Nishimura
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Katsuya Hirano
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seiji Naito
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideo Kanaide
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Author for correspondence:
| |
Collapse
|
42
|
Cao W, Harnett KM, Behar J, Biancani P. PGF(2alpha)-induced contraction of cat esophageal and lower esophageal sphincter circular smooth muscle. Am J Physiol Gastrointest Liver Physiol 2002; 283:G282-91. [PMID: 12121874 DOI: 10.1152/ajpgi.00357.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lower esophageal sphincter (LES) tone depends on PGF(2alpha) and thromboxane A(2) acting on receptors linked to G(i3) and G(q) to activate phospholipases and produce second messengers resulting in muscle contraction. We therefore examined PGF(2alpha) signal transduction in circular smooth muscle cells isolated by enzymatic digestion from cat esophagus (Eso) and LES. In Eso, PGF(2alpha)-induced contraction was inhibited by antibodies against the alpha-subunit of G(13) and the monomeric G proteins RhoA and ADP-ribosylation factor (ARF)1 and by the C3 exoenzyme of Clostridium botulinum. A [(35)S]GTPgammaS-binding assay confirmed that G(13), RhoA, and ARF1 were activated by PGF(2alpha). Contraction of Eso was reduced by propranolol, a phospholipase D (PLD) pathway inhibitor and by chelerythrine, a PKC inhibitor. In LES, PGF(2alpha)-induced contraction was inhibited by antibodies against the alpha-subunit of G(q) and G(i3), and a [(35)S]GTPgammaS-binding assay confirmed that G(q) and G(i3) were activated by PGF(2alpha). PGF(2alpha)-induced contraction of LES was reduced by U-73122 and D609 and unaffected by propranolol. At low PGF(2alpha) concentration, contraction was blocked by chelerythrine, whereas at high concentration, contraction was blocked by chelerythrine and CGS9343B. Thus, in Eso, PGF(2alpha) activates a PLD- and protein kinase C (PKC)-dependent pathway through G(13), RhoA, and ARF1. In LES, PGF(2alpha) receptors are coupled to G(q) and G(i3), activating phosphatidylinositol- and phosphatidylcholine-specific phospholipase C. At low concentrations, PGF(2alpha) activates PKC. At high concentration, it activates both a PKC- and a calmodulin-dependent pathway.
Collapse
Affiliation(s)
- Weibiao Cao
- Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence 02903, USA
| | | | | | | |
Collapse
|
43
|
Liu L, Shang F, Markus I, Burcher E. Roles of substance P receptors in human colon circular muscle: alterations in diverticular disease. J Pharmacol Exp Ther 2002; 302:627-35. [PMID: 12130725 DOI: 10.1124/jpet.102.034702] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The characteristics of [(125)I]Bolton-Hunter[Sar(9),Met(O(2))(11)]substance P ([(125)I]BH-SarSP) binding were investigated in membranes of human ascending, transverse, distal, and sigmoid colon circular muscle. Binding of [(125)I]BH-SarSP was of high affinity (K(D) = 68 nM) and low capacity (B(max) = 0.31 fmol/mg of wet weight tissue), and showed no regional differences. [(125)I]BH-SarSP binding was inhibited by SP approximately equal to [Pro(9)]SP > or = (2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine (CP99994) >> neurokinin (NK) A > or = neuropeptide gamma > [Lys(5),MeLeu(9),Nle(10)]-NKA(4-10) approximately (S)-N-methyl-N[4-acetylamino-4-phenylpiperidino)-2-(3,4-dichlorophenyl) butyl]benzamide (SR48968) >> senktide, suggesting binding to NK-1 sites. Most agonists seemed to bind to two sites. In autoradiographic studies, dense binding for [(125)I]BH-SarSP was associated with submucosal and longitudinal muscle blood vessels, and the submucosal margin of circular muscle (corresponding to interstitial cells of Cajal), with moderate binding over most of the circular muscle. In normal colon circular muscle strips, [Pro(9)]SP was almost ineffective, and SP caused contractions with pD(2) values of 5.3 to 5.7. No regional differences were observed in potency or efficacy. Responses to SP were inhibited by the NK-2 receptor antagonist SR48968, but not by NK-1 antagonist CP99994, indicating the involvement of NK-2 rather than NK-1 receptors. Atropine significantly inhibited contractions induced by SP, indicating a minor cholinergic component. Contractile responses to SP were considerably reduced in preparations from patients with diverticular disease, and marginally reduced in ulcerative colitis compared with control. This study clearly demonstrates an NK-1 binding site on human colon circular muscle, but its role in this tissue remains unclear and may not involve contractile mechanisms. The attenuated contractility in specimens with diverticular disease may reflect disease-related alterations of the tachykinin receptor system.
Collapse
Affiliation(s)
- Lu Liu
- Department of Physiology and Pharmacology, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
44
|
O'Riordan AM, Quinn T, Hyland JM, O'Donoghue DP, Baird AW. Sources of calcium in neurokinin A-induced contractions of human colonic smooth muscle in vitro. Am J Gastroenterol 2001; 96:3117-21. [PMID: 11721758 DOI: 10.1111/j.1572-0241.2001.05257.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Tachykinins have been implicated in the pathogenesis of colonic dysmotility. The sources of activator calcium for neurokinin A (NKA)-induced contraction of human colonic smooth muscle have not been assessed. We evaluated the contribution of extracellular and intracellular Ca2+ to NKA-induced contractions. METHODS Circular smooth muscle strips of human colon were suspended under 1 g of tension in organ baths containing Krebs solution at 37 degrees C gased with 95% O2/5% CO2. Contractile activity was recorded isometrically. RESULTS Cumulatively applied NKA (0.1 nmol/L-0.3 micromol/L), produced concentration-dependent contractions of human colonic smooth muscle strips that were not affected by tetrodotoxin (1 micromol/L). The contractile response to NKA was abolished in a Ca2+-free medium containing ethylenediaminetetraacetate (EDTA) (1 mmol/L). Pretreatment of muscle strips with nifedipine (1 micromol/L), an L-type voltage-operated Ca2+ channel antagonist, abolished the contractile responses to NKA. Pretreatment with SK&F 96365 (10 micromol/L and 30 micromol/L), a putative receptor-activated and voltage-operated Ca2+ channel antagonist, attenuated the contractile responses. Depletion of intracellular Ca2+ stores with thapsigargin (1 micromol/L), an inhibitor of the sarcoplasmic reticulum Ca2+ ATP-ase, had no effect on NKA-induced contractions. CONCLUSIONS NKA-mediated contraction of human colonic smooth muscle is dependent on an influx of extracellular Ca2+ through L-type voltage-operated Ca2+ channels. Intracellular Ca2+ release seems to have little role to play in NKA-mediated contractions.
Collapse
Affiliation(s)
- A M O'Riordan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University College Dublin, Ireland
| | | | | | | | | |
Collapse
|