1
|
Fung KY, de Geus ED, Ying L, Cumming H, Bourke N, Foster SC, Hertzog PJ. Expression of Interferon Epsilon in Mucosal Epithelium is Regulated by Elf3. Mol Cell Biol 2024; 44:334-343. [PMID: 38975675 PMCID: PMC11296529 DOI: 10.1080/10985549.2024.2366207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Interferon epsilon (IFNε) is a unique type I interferon (IFN) that shows distinct constitutive expression in reproductive tract epithelium. Understanding how IFNε expression is regulated is critical for the mechanism of action in protecting the mucosa from infection. Combined computational and experimental investigation of the promoter of IFNε predicted transcription factor binding sites for the ETS family of transcription factors. We demonstrate here that Ifnε is regulated by Elf3, an epithelial restricted member of the ETS family. It is co-expressed with IFNε at the epithelium of uterus, lung and intestine, and we focused on regulation of IFNε expression in the uterus. Promoter reporter studies demonstrated that Elf3 was a strong driver of Ifnε expression; knockdown of Elf3 reduced expression levels of IFNε; Elf3 regulated Ifnε expression and chromatin immunoprecipitation (ChIP) confirmed the direct binding of Elf3 to the IFNε promoter. These data show that Elf3 is important in regulating protective mucosal immunity by driving constitutive expression of IFNε to protect mucosal tissues from infection in at least three organ systems.
Collapse
Affiliation(s)
- Ka Yee Fung
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Eveline D. de Geus
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Le Ying
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Helen Cumming
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Nollaig Bourke
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Samuel C. Foster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Paul J. Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Lin J, Hou L, Zhao X, Zhong J, Lv Y, Jiang X, Ye B, Qiao Y. Switch of ELF3 and ATF4 transcriptional axis programs the amino acid insufficiency-linked epithelial-to-mesenchymal transition. Mol Ther 2024; 32:1956-1969. [PMID: 38627967 PMCID: PMC11184330 DOI: 10.1016/j.ymthe.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) that endows cancer cells with increased invasive and migratory capacity enables cancer dissemination and metastasis. This process is tightly associated with metabolic reprogramming acquired for rewiring cell status and signaling pathways for survival in dietary insufficiency conditions. However, it remains largely unclear how transcription factor (TF)-mediated transcriptional programs are modulated during the EMT process. Here, we reveal that depletion of a key epithelial TF, ELF3 (E74-like factor-3), triggers a transforming growth factor β (TGF-β) signaling activation-like mesenchymal transcriptomic profile and metastatic features linked to the aminoacyl-tRNA biogenesis pathway. Moreover, the transcriptome alterations elicited by ELF3 depletion perfectly resemble an ATF4-dependent weak response to amino acid starvation. Intriguingly, we observe an exclusive enrichment of ELF3 and ATF4 in epithelial and TGF-β-induced or ELF3-depletion-elicited mesenchymal enhancers, respectively, with rare co-binding on altered enhancers. We also find that the upregulation of aminoacyl-tRNA synthetases and some mesenchymal genes upon amino acid deprivation is diminished in ATF4-depleted cells. In sum, the loss of ELF3 binding on epithelial enhancers and the gain of ATF4 binding on the enhancers of mesenchymal factors and amino acid deprivation responsive genes facilitate the loss of epithelial cell features and the gain of TGF-β-signaling-associated mesenchymal signatures, which further promote lung cancer cell metastasis.
Collapse
Affiliation(s)
- Jianxiang Lin
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Linjun Hou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Zhao
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Jingli Zhong
- College of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Yilv Lv
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaohua Jiang
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China.
| | - Bo Ye
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yunbo Qiao
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China.
| |
Collapse
|
3
|
Ju Y, Fang S, Liu L, Ma H, Zheng L. The function of the ELF3 gene and its mechanism in cancers. Life Sci 2024; 346:122637. [PMID: 38614305 DOI: 10.1016/j.lfs.2024.122637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
E74-like factor 3 (ELF3) is an important member of the E-twenty-six (ETS) transcription factor family. ELF3 is expressed in various types of cells and regulates a variety of biological behaviors, such as cell proliferation, differentiation, apoptosis, migration, and invasion, by binding to DNA to regulate the expression of other genes. In recent years, studies have shown that ELF3 plays an important role in the occurrence and development of many tumors and inflammation and immune related diseases. ELF3 has different functions and expression patterns in different tumors; it can function as a tumor suppressor gene or an oncogene, highlighting its dual effects of tumor promotion and inhibition. ELF3 also affects the levels of tumor immunity-related cytokines and is involved in the regulation and expression of multiple signaling pathways. In tumor therapy, ELF3 is a complex and multifunctional gene and has become a key focus of targeted treatment research. An in-depth study of the biological function of ELF3 can help to elucidate its role in biological processes and provide ideas and a basis for the development and clinical application of ELF3-related therapeutic methods. This review introduces the structure and physiological and cellular functions of the ELF3 gene, summarizes the mechanisms of action of ELF3 in different types of malignant tumors and its role in immune regulation, inflammation, etc., and discusses treatment methods for ELF3-related diseases, providing significant reference value for scholars studying the ELF3 gene and related diseases.
Collapse
Affiliation(s)
- Yiheng Ju
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sheng Fang
- Yantai Penglai People's Hospital, Yantai, China
| | - Lei Liu
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Ma
- Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Longbo Zheng
- Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Wang F, Ferreira LMR, Mazzanti A, Yu H, Gu B, Meissner TB, Li Q, Strominger JL. Progesterone-mediated remodeling of the maternal-fetal interface by a PGRMC1-dependent mechanism. J Reprod Immunol 2024; 163:104244. [PMID: 38555747 PMCID: PMC11151737 DOI: 10.1016/j.jri.2024.104244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Implantation and maintenance of pregnancy involve intricate immunological processes that enable the developing fetus to coexist with the maternal immune system. Progesterone, a critical hormone during pregnancy, is known to promote immune tolerance and prevent preterm labor. However, the mechanism by which progesterone mediates these effects remains unclear. In this study, we investigated the role of the non-classical progesterone receptor membrane component 1 (PGRMC1) in progesterone signaling at the maternal-fetal interface. Using JEG3 cells, a trophoblast model cell line, we observed that progesterone stimulation increased the expression of human leukocyte antigen-C (HLA-C) and HLA-G, key molecules involved in immune tolerance. We also found that progesterone upregulated the expression of the transcription factor ELF3, which is known to regulate trophoblast-specific HLA-C expression. Interestingly, JEG3 cells lacked expression of classical progesterone receptors (PRs) but exhibited high expression of PGRMC1, a finding we confirmed in primary trophoblasts by mining sc-RNA seq data from human placenta. To investigate the role of PGRMC1 in progesterone signaling, we used CRISPR/Cas9 technology to knockout PGRMC1 in JEG3 cells. PGRMC1-deficient cells showed a diminished response to progesterone stimulation. Furthermore, we found that the progesterone antagonist RU486 inhibited ELF3 expression in a PGRMC1-dependent manner, suggesting that RU486 acts as a progesterone antagonist by competing for receptor binding. Additionally, we found that RU486 inhibited cell invasion, an important process for successful pregnancy, and this inhibitory effect was dependent on PGRMC1. Our findings highlight the crucial role of PGRMC1 in mediating the immunoregulatory effects of progesterone at the maternal-fetal interface.
Collapse
Affiliation(s)
- Fang Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States; Department of Obstetrics, Zhongnan Hospital, Wuhan University, Hubei 430072, China
| | - Leonardo M R Ferreira
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Andrew Mazzanti
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Huaxiao Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Bowen Gu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Qin Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
5
|
Akinsuyi OS, Xhumari J, Ojeda A, Roesch LFW. Gut permeability among Astronauts during Space missions. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:171-180. [PMID: 38670644 DOI: 10.1016/j.lssr.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
The space environment poses substantial challenges to human physiology, including potential disruptions in gastrointestinal health. Gut permeability has only recently become widely acknowledged for its potential to cause adverse effects on a systemic level, rendering it a critical factor to investigate in the context of spaceflight. Here, we propose that astronauts experience the onset of leaky gut during space missions supported by transcriptomic and metagenomic analysis of human and murine samples. A genetic map contributing to intestinal permeability was constructed from a systematic review of current literature. This was referenced against our re-analysis of three independent transcriptomic datasets which revealed significant changes in gene expression patterns associated with the gut barrier. Specifically, in astronauts during flight, we observed a substantial reduction in the expression genes that are crucial for intestinal barrier function, goblet cell development, gut microbiota modulation, and immune responses. Among rodent spaceflight studies, differential expression of cytokines, chemokines, and genes which regulate mucin production and post-translational modifications suggest a similar dysfunction of intestinal permeability. Metagenomic analysis of feces from two murine studies revealed a notable reduction probiotic, short chain fatty acid-producing bacteria and an increase in the Gram-negative pathogens, including Citrobacter rodentium, Enterobacter cloacea, Klebsiella aerogenes, and Proteus hauseri which promote LPS circulation, a recipe for barrier disruption and systemic inflammatory activation. These findings emphasize the critical need to understand the underlying mechanisms and develop interventions to maintain gastrointestinal health in space.
Collapse
Affiliation(s)
- Oluwamayowa S Akinsuyi
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Jessica Xhumari
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Amanda Ojeda
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Luiz F W Roesch
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
6
|
Pan L, Parini P, Tremmel R, Loscalzo J, Lauschke VM, Maron BA, Paci P, Ernberg I, Tan NS, Liao Z, Yin W, Rengarajan S, Li X. Single Cell Atlas: a single-cell multi-omics human cell encyclopedia. Genome Biol 2024; 25:104. [PMID: 38641842 PMCID: PMC11027364 DOI: 10.1186/s13059-024-03246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
Single-cell sequencing datasets are key in biology and medicine for unraveling insights into heterogeneous cell populations with unprecedented resolution. Here, we construct a single-cell multi-omics map of human tissues through in-depth characterizations of datasets from five single-cell omics, spatial transcriptomics, and two bulk omics across 125 healthy adult and fetal tissues. We construct its complement web-based platform, the Single Cell Atlas (SCA, www.singlecellatlas.org ), to enable vast interactive data exploration of deep multi-omics signatures across human fetal and adult tissues. The atlas resources and database queries aspire to serve as a one-stop, comprehensive, and time-effective resource for various omics studies.
Collapse
Affiliation(s)
- Lu Pan
- Institute of Environmental Medicine, Karolinska Institutet, 171 65, Solna, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Medicine, and, Department of Laboratory Medicine , Karolinska Institutet, 141 86, Stockholm, Sweden
- Theme Inflammation and Ageing, Medicine Unit, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Volker M Lauschke
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Solna, Sweden
| | - Bradley A Maron
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, 00185, Rome, Italy
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Solna, Sweden
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore
| | - Zehuan Liao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Solna, Sweden
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Weiyao Yin
- Institute of Environmental Medicine, Karolinska Institutet, 171 65, Solna, Sweden
| | - Sundararaman Rengarajan
- Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Solna, Sweden.
| |
Collapse
|
7
|
Riera-Ferrer E, Del Pozo R, Muñoz-Berruezo U, Palenzuela O, Sitjà-Bobadilla A, Estensoro I, Piazzon MC. Mucosal affairs: glycosylation and expression changes of gill goblet cells and mucins in a fish-polyopisthocotylidan interaction. Front Vet Sci 2024; 11:1347707. [PMID: 38655531 PMCID: PMC11035888 DOI: 10.3389/fvets.2024.1347707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Secreted mucins are highly O-glycosylated glycoproteins produced by goblet cells in mucosal epithelia. They constitute the protective viscous gel layer overlying the epithelia and are involved in pathogen recognition, adhesion and expulsion. The gill polyopisthocotylidan ectoparasite Sparicotyle chrysophrii, feeds on gilthead seabream (Sparus aurata) blood eliciting severe anemia. Methods Control unexposed and recipient (R) gill samples of gilthead seabream experimentally infected with S. chrysophrii were obtained at six consecutive times (0, 11, 20, 32, 41, and 61 days post-exposure (dpe)). In histological samples, goblet cell numbers and their intensity of lectin labelling was registered. Expression of nine mucin genes (muc2, muc2a, muc2b, muc5a/c, muc4, muc13, muc18, muc19, imuc) and three regulatory factors involved in goblet cell differentiation (hes1, elf3, agr2) was studied by qPCR. In addition, differential expression of glycosyltransferases and glycosidases was analyzed in silico from previously obtained RNAseq datasets of S. chrysophrii-infected gilthead seabream gills with two different infection intensities. Results and Discussion Increased goblet cell differentiation (up-regulated elf3 and agr2) leading to neutral goblet cell hyperplasia on gill lamellae of R fish gills was found from 32 dpe on, when adult parasite stages were first detected. At this time point, acute increased expression of both secreted (muc2a, muc2b, muc5a/c) and membrane-bound mucins (imuc, muc4, muc18) occurred in R gills. Mucins did not acidify during the course of infection, but their glycosylation pattern varied towards more complex glycoconjugates with sialylated, fucosylated and branched structures, according to lectin labelling and the shift of glycosyltransferase expression patterns. Gilthead seabream gill mucosal response against S. chrysophrii involved neutral mucus hypersecretion, which could contribute to worm expulsion and facilitate gas exchange to counterbalance parasite-induced hypoxia. Stress induced by the sparicotylosis condition seems to lead to changes in glycosylation characteristic of more structurally complex mucins.
Collapse
Affiliation(s)
| | | | | | | | | | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Castellón, Spain
| | | |
Collapse
|
8
|
Ramal M, Corral S, Kalisz M, Lapi E, Real FX. The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene 2024; 43:1-21. [PMID: 37996699 DOI: 10.1038/s41388-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The urothelium is a stratified epithelium composed of basal cells, one or more layers of intermediate cells, and an upper layer of differentiated umbrella cells. Most bladder cancers (BLCA) are urothelial carcinomas. Loss of urothelial lineage fidelity results in altered differentiation, highlighted by the taxonomic classification into basal and luminal tumors. There is a need to better understand the urothelial transcriptional networks. To systematically identify transcription factors (TFs) relevant for urothelial identity, we defined highly expressed TFs in normal human bladder using RNA-Seq data and inferred their genomic binding using ATAC-Seq data. To focus on epithelial TFs, we analyzed RNA-Seq data from patient-derived organoids recapitulating features of basal/luminal tumors. We classified TFs as "luminal-enriched", "basal-enriched" or "common" according to expression in organoids. We validated our classification by differential gene expression analysis in Luminal Papillary vs. Basal/Squamous tumors. Genomic analyses revealed well-known TFs associated with luminal (e.g., PPARG, GATA3, FOXA1) and basal (e.g., TP63, TFAP2) phenotypes and novel candidates to play a role in urothelial differentiation or BLCA (e.g., MECOM, TBX3). We also identified TF families (e.g., KLFs, AP1, circadian clock, sex hormone receptors) for which there is suggestive evidence of their involvement in urothelial differentiation and/or BLCA. Genomic alterations in these TFs are associated with BLCA. We uncover a TF network involved in urothelial cell identity and BLCA. We identify novel candidate TFs involved in differentiation and cancer that provide opportunities for a better understanding of the underlying biology and therapeutic intervention.
Collapse
Affiliation(s)
- Maria Ramal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
9
|
Boers R, Boers J, Tan B, van Leeuwen ME, Wassenaar E, Sanchez EG, Sleddens E, Tenhagen Y, Mulugeta E, Laven J, Creyghton M, Baarends W, van IJcken WFJ, Gribnau J. Retrospective analysis of enhancer activity and transcriptome history. Nat Biotechnol 2023; 41:1582-1592. [PMID: 36823354 PMCID: PMC10635829 DOI: 10.1038/s41587-023-01683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/20/2023] [Indexed: 02/25/2023]
Abstract
Cell state changes in development and disease are controlled by gene regulatory networks, the dynamics of which are difficult to track in real time. In this study, we used an inducible DCM-RNA polymerase subunit b fusion protein which labels active genes and enhancers with a bacterial methylation mark that does not affect gene transcription and is propagated in S-phase. This DCM-RNA polymerase fusion protein enables transcribed genes and active enhancers to be tagged and then examined at later stages of development or differentiation. We apply this DCM-time machine (DCM-TM) technology to study intestinal homeostasis, revealing rapid and coordinated activation of enhancers and nearby genes during enterocyte differentiation. We provide new insights in absorptive-secretory lineage decision-making in intestinal stem cell (ISC) differentiation and show that ISCs retain a unique chromatin landscape required to maintain ISC identity and delineate future expression of differentiation-associated genes. DCM-TM has wide applicability in tracking cell states, providing new insights in the regulatory networks underlying cell state changes.
Collapse
Affiliation(s)
- Ruben Boers
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Beatrice Tan
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marieke E van Leeuwen
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Evelyne Wassenaar
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Erlantz Gonzalez Sanchez
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Esther Sleddens
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Yasha Tenhagen
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joop Laven
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Menno Creyghton
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willy Baarends
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.
| |
Collapse
|
10
|
Wang X, Hallen NR, Lee M, Samuchiwal S, Ye Q, Buchheit KM, Maxfield AZ, Roditi RE, Bergmark RW, Bhattacharyya N, Ryan T, Gakpo D, Raychaudhuri S, Dwyer D, Laidlaw TM, Boyce JA, Gutierrez-Arcelus M, Barrett NA. Type 2 inflammation drives an airway basal stem cell program through insulin receptor substrate signaling. J Allergy Clin Immunol 2023; 151:1536-1549. [PMID: 36804595 PMCID: PMC10784786 DOI: 10.1016/j.jaci.2023.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyposis (CRSwNP) is a type 2 (T2) inflammatory disease associated with an increased number of airway basal cells (BCs). Recent studies have identified transcriptionally distinct BCs, but the molecular pathways that support or inhibit human BC proliferation and differentiation are largely unknown. OBJECTIVE We sought to determine the role of T2 cytokines in regulating airway BCs. METHODS Single-cell and bulk RNA sequencing of sinus and lung airway epithelial cells was analyzed. Human sinus BCs were stimulated with IL-4 and IL-13 in the presence and absence of inhibitors of IL-4R signaling. Confocal analysis of human sinus tissue and murine airway was performed. Murine BC subsets were sorted for RNA sequencing and functional assays. Fate labeling was performed in a murine model of tracheal injury and regeneration. RESULTS Two subsets of BCs were found in human and murine respiratory mucosa distinguished by the expression of basal cell adhesion molecule (BCAM). BCAM expression identifies airway stem cells among P63+KRT5+NGFR+ BCs. In the sinonasal mucosa, BCAMhi BCs expressing TSLP, IL33, CCL26, and the canonical BC transcription factor TP63 are increased in patients with CRSwNP. In cultured BCs, IL-4/IL-13 increases the expression of BCAM and TP63 through an insulin receptor substrate-dependent signaling pathway that is increased in CRSwNP. CONCLUSIONS These findings establish BCAM as a marker of airway stem cells among the BC pool and demonstrate that airway epithelial remodeling in T2 inflammation extends beyond goblet cell metaplasia to the support of a BC stem state poised to perpetuate inflammation.
Collapse
Affiliation(s)
- Xin Wang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Nils R Hallen
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Minkyu Lee
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Sachin Samuchiwal
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Qihua Ye
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Kathleen M Buchheit
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Alice Z Maxfield
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Rachel E Roditi
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Regan W Bergmark
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Neil Bhattacharyya
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Mass
| | - Tessa Ryan
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Deb Gakpo
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, Mass; Divisions of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Mass; Versus Arthritis Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dan Dwyer
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Tanya M Laidlaw
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Joshua A Boyce
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Maria Gutierrez-Arcelus
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Mass; Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Nora A Barrett
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| |
Collapse
|
11
|
Liu Y, Yu Z, Zhu L, Ma S, Luo Y, Liang H, Liu Q, Chen J, Guli S, Chen X. Orchestration of MUC2 - The key regulatory target of gut barrier and homeostasis: A review. Int J Biol Macromol 2023; 236:123862. [PMID: 36870625 DOI: 10.1016/j.ijbiomac.2023.123862] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
The gut mucosa of human is covered by mucus, functioning as a crucial defense line for the intestine against external stimuli and pathogens. Mucin2 (MUC2) is a subtype of secretory mucins generated by goblet cells and is the major macromolecular component of mucus. Currently, there is an increasing interest on the investigations of MUC2, noting that its function is far beyond a maintainer of the mucus barrier. Moreover, numerous gut diseases are associated with dysregulated MUC2 production. Appropriate production level of MUC2 and mucus contributes to gut barrier function and homeostasis. The production of MUC2 is regulated by a series of physiological processes, which are orchestrated by various bioactive molecules, signaling pathways and gut microbiota, etc., forming a complex regulatory network. Incorporating the latest findings, this review provided a comprehensive summary of MUC2, including its structure, significance and secretory process. Furthermore, we also summarized the molecular mechanisms of the regulation of MUC2 production aiming to provide developmental directions for future researches on MUC2, which can act as a potential prognostic indicator and targeted therapeutic manipulation for diseases. Collectively, we elucidated the micro-level mechanisms underlying MUC2-related phenotypes, hoping to offer some constructive guidance for intestinal and overall health of mankind.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Lanping Zhu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Shuang Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Yang Luo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Huixi Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Qinlingfei Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Sitan Guli
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| |
Collapse
|
12
|
The transcription factor ELF5 is essential for early preimplantation development. Mol Biol Rep 2023; 50:2119-2125. [PMID: 36542237 DOI: 10.1007/s11033-022-08217-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND During early embryonic development, the cell adhesion molecule E-cadherin encoded by the Cdh1 gene plays a vital role in providing proper cell-cell adhesion, ensuring an undifferentiated state critical for maintaining the pluripotency for the development of the preimplantation embryo. The transcriptional regulation of Cdh1 gained attention recently but is not yet fully understood. In a previous study, our team established a correlation between Elf3 and Cdh1 expression and showed its importance in the regulation of MET. METHODS AND RESULTS Here, the regulation of Cdh1 by Ets transcription factors in early embryogenesis was investigated. A loss-of-function approach was used to study the effect of Elf5 loss on Cdh1 gene expression by small interfering RNAs in fertilized oocytes. Changes in gene expression were measured by qPCR analysis, and developing embryos were visualized by microscopy. Loss of Elf5 arrested the embryos at the 2-cell stage, accompanied by a significant downregulation of Cdh1 expression. CONCLUSION The findings presented here illustrate the role of ELF5 in preimplantation development and in regulating the expression of Cdh1. The maintenance of the ELF5 and Cdh1 regulatory node proved essential for the proper development of the early mouse embryos, which is in agreement with the critical role of Elf5 and Cdh1 genes in regulating the early events during embryogenesis.
Collapse
|
13
|
Xu HJ, Bai J, Tian Y, Feng X, Chen AP, Wang J, Wu J, Jin XR, Zhang F, Quan MY, Chen C, Lee KY, Zhang JS. ESE1/AGR2 axis antagonizes TGF-β-induced epithelial-mesenchymal transition in low-grade pancreatic cancer. Cancer Med 2023; 12:5979-5993. [PMID: 36329620 PMCID: PMC10028153 DOI: 10.1002/cam4.5397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Epithelium-specific ETS transcription factor 1 (ESE1) has been implicated in epithelial homeostasis, inflammation, as well as tumorigenesis, and cancer progression. However, numerous studies have reported contradictory roles-as an oncogene or a tumor suppressor of ESE1 in different cancers, and its function in the development and progression of pancreatic ductal adenocarcinoma (PDAC) has remained largely unexplored. Herein, we report that ESE1 was found upregulated in primary PDAC compared to normal pancreatic tissue, but high expression of ESE1 correlated to better relapse-free survival in patients with PDAC. Interestingly, ESE1 was found to exhibit dual roles in regulation of malignant properties of PDAC cells in that its overexpression promoted cell proliferation, whereas its downregulation enhanced epithelial-mesenchymal transition (EMT) phenotype. In the context of TGF-β-induced EMT, ESE1 is markedly downregulated at post-transcriptional level, and reconstituted ESE1 expression partially reversed TGF-β-induced EMT marker expression. Furthermore, we identify AGR2 as a novel transcriptional target of ESE1 that participates in TGF-β-induced EMT in PDAC. Collectively, our findings reveal an ESE1/AGR2 axis that interacts with TGF-β signaling to modulate EMT phenotype in PDAC.
Collapse
Affiliation(s)
- Hui-Jing Xu
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Jing Bai
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Ye Tian
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Xiao Feng
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Ai-Ping Chen
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Jie Wang
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Jin Wu
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Xu-Ru Jin
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Zhejiang, China
| | - Feng Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Zhejiang, China
| | - Mei-Yu Quan
- Medical Research Center, and Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chengshui Chen
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Zhejiang, China
| | - Kwang-Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Jin-San Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Zhejiang, China
- Medical Research Center, and Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
14
|
Horie M, Tanaka H, Suzuki M, Sato Y, Takata S, Takai E, Miyashita N, Saito A, Nakatani Y, Yachida S. An integrative epigenomic approach identifies ELF3 as an oncogenic regulator in ASCL1-positive neuroendocrine carcinoma. Cancer Sci 2023. [PMID: 36840413 DOI: 10.1111/cas.15764] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/16/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Neuroendocrine carcinoma (NEC) is a highly aggressive subtype of the neuroendocrine tumor with an extremely poor prognosis. We have previously conducted a comprehensive genomic analysis of over 100 cases of NEC of the gastrointestinal system (GIS-NEC) and unraveled its unique and organ-specific genomic drivers. However, the epigenomic features of GIS-NEC remain unexplored. In this study, we have described the epigenomic landscape of GIS-NEC and small cell lung carcinoma (SCLC) by integrating motif enrichment analysis from the assay of transposase-accessible chromatin sequencing (ATAC-seq) and enhancer profiling from a novel cleavage under targets and tagmentation (CUT&Tag) assay for H3K27ac and identified ELF3 as one of the super-enhancer-related transcriptional factors in NEC. By combining CUT&Tag and knockdown RNA sequencing for ELF3, we uncovered the transcriptional network regulated by ELF3 and defined its distinctive gene signature, including AURKA, CDC25B, CLDN4, ITGB6, and YWAHB. Furthermore, a loss-of-function assay revealed that ELF3 depletion led to poor cell viability. Finally, using gene expression of clinical samples, we successfully divided GIS-NEC patients into two subgroups according to the ELF3 signature and demonstrated that tumor-promoting pathways were activated in the ELF3 signature-high group. Our findings highlight the transcriptional regulation of ELF3 as an oncogenic transcription factor and its tumor-promoting properties in NEC.
Collapse
Affiliation(s)
- Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidenori Tanaka
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masami Suzuki
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshihiko Sato
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - So Takata
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Erina Takai
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naoya Miyashita
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoichiro Nakatani
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,Division of Genomic Medicine, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
15
|
Huerta M, Franco-Serrano L, Amela I, Perez-Pons JA, Piñol J, Mozo-Villarías A, Querol E, Cedano J. Role of Moonlighting Proteins in Disease: Analyzing the Contribution of Canonical and Moonlighting Functions in Disease Progression. Cells 2023; 12:cells12020235. [PMID: 36672169 PMCID: PMC9857295 DOI: 10.3390/cells12020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
The term moonlighting proteins refers to those proteins that present alternative functions performed by a single polypeptide chain acquired throughout evolution (called canonical and moonlighting, respectively). Over 78% of moonlighting proteins are involved in human diseases, 48% are targeted by current drugs, and over 25% of them are involved in the virulence of pathogenic microorganisms. These facts encouraged us to study the link between the functions of moonlighting proteins and disease. We found a large number of moonlighting functions activated by pathological conditions that are highly involved in disease development and progression. The factors that activate some moonlighting functions take place only in pathological conditions, such as specific cellular translocations or changes in protein structure. Some moonlighting functions are involved in disease promotion while others are involved in curbing it. The disease-impairing moonlighting functions attempt to restore the homeostasis, or to reduce the damage linked to the imbalance caused by the disease. The disease-promoting moonlighting functions primarily involve the immune system, mesenchyme cross-talk, or excessive tissue proliferation. We often find moonlighting functions linked to the canonical function in a pathological context. Moonlighting functions are especially coordinated in inflammation and cancer. Wound healing and epithelial to mesenchymal transition are very representative. They involve multiple moonlighting proteins with a different role in each phase of the process, contributing to the current-phase phenotype or promoting a phase switch, mitigating the damage or intensifying the remodeling. All of this implies a new level of complexity in the study of pathology genesis, progression, and treatment. The specific protein function involved in a patient's progress or that is affected by a drug must be elucidated for the correct treatment of diseases.
Collapse
|
16
|
Klocke J, Kim SJ, Skopnik CM, Hinze C, Boltengagen A, Metzke D, Grothgar E, Prskalo L, Wagner L, Freund P, Görlich N, Muench F, Schmidt-Ott KM, Mashreghi MF, Kocks C, Eckardt KU, Rajewsky N, Enghard P. Urinary single-cell sequencing captures kidney injury and repair processes in human acute kidney injury. Kidney Int 2022; 102:1359-1370. [PMID: 36049643 DOI: 10.1016/j.kint.2022.07.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 01/12/2023]
Abstract
Acute kidney injury (AKI) is a major health issue, the outcome of which depends primarily on damage and reparative processes of tubular epithelial cells. Mechanisms underlying AKI remain incompletely understood, specific therapies are lacking and monitoring the course of AKI in clinical routine is confined to measuring urine output and plasma levels of filtration markers. Here we demonstrate feasibility and potential of a novel approach to assess the cellular and molecular dynamics of AKI by establishing a robust urine-to-single cell RNA sequencing (scRNAseq) pipeline for excreted kidney cells via flow cytometry sorting. We analyzed 42,608 single cell transcriptomes of 40 urine samples from 32 patients with AKI and compared our data with reference material from human AKI post-mortem biopsies and published mouse data. We demonstrate that tubular epithelial cells transcriptomes mirror kidney pathology and reflect distinct injury and repair processes, including oxidative stress, inflammation, and tissue rearrangement. We also describe an AKI-specific abundant urinary excretion of adaptive progenitor-like cells. Thus, single cell transcriptomics of kidney cells excreted in urine provides noninvasive, unprecedented insight into cellular processes underlying AKI, thereby opening novel opportunities for target identification, AKI sub-categorization, and monitoring of natural disease course and interventions.
Collapse
Affiliation(s)
- Jan Klocke
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany.
| | - Seung Joon Kim
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Christopher M Skopnik
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Christian Hinze
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Anastasiya Boltengagen
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Diana Metzke
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Emil Grothgar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Luka Prskalo
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Leonie Wagner
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Paul Freund
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Nina Görlich
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Frédéric Muench
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Christine Kocks
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| |
Collapse
|
17
|
Elf3 deficiency during zebrafish development alters extracellular matrix organization and disrupts tissue morphogenesis. PLoS One 2022; 17:e0276255. [DOI: 10.1371/journal.pone.0276255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
E26 transformation specific (ETS) family transcription factors are expressed during embryogenesis and are involved in various cellular processes such as proliferation, migration, differentiation, angiogenesis, apoptosis, and survival of cellular lineages to ensure appropriate development. Dysregulated expression of many of the ETS family members is detected in different cancers. The human ELF3, a member of the ETS family of transcription factors, plays a role in the induction and progression of human cancers is well studied. However, little is known about the role of ELF3 in early development. Here, the zebrafish elf3 was cloned, and its expression was analyzed during zebrafish development. Zebrafish elf3 is maternally deposited. At different developmental stages, elf3 expression was detected in different tissue, mainly neural tissues, endoderm-derived tissues, cartilage, heart, pronephric duct, blood vessels, and notochord. The expression levels were high at the tissue boundaries. Elf3 loss-of-function consequences were examined by using translation blocking antisense morpholino oligonucleotides, and effects were validated using CRISPR/Cas9 knockdown. Elf3-knockdown produced short and bent larvae with notochord, craniofacial cartilage, and fin defects. The extracellular matrix (ECM) in the fin and notochord was disorganized. Neural defects were also observed. Optic nerve fasciculation (bundling) and arborization in the optic tectum were defective in Elf3-morphants, and fragmentation of spinal motor neurons were evident. Dysregulation of genes encoding ECM proteins and matrix metalloprotease (MMP) and disorganization of ECM may play a role in the observed defects in Elf3 morphants. We conclude that zebrafish Elf3 is required for epidermal, mesenchymal, and neural tissue development.
Collapse
|
18
|
Epithelial dysfunction is prevented by IL-22 treatment in a Citrobacter rodentium-induced colitis model that shares similarities with inflammatory bowel disease. Mucosal Immunol 2022; 15:1338-1349. [PMID: 36372810 DOI: 10.1038/s41385-022-00577-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by a dysregulated intestinal epithelial barrier leading to breach of barrier immunity. Here we identified similar protein expression changes between IBD and Citrobacter rodentium-infected FVB mice with respect to dysregulation of solute transporters as well as components critical for intestinal barrier integrity. We attribute the disease associated changes in the model to the emergence of undifferentiated intermediate intestinal epithelial cells. Prophylactic treatment with IL-22.Fc in C. rodentium-infected FVB mice reduced disease severity and rescued the mice from lethality. Multi-omics and solute analyses revealed that IL-22.Fc treatment prevented disease-associated changes including disruption of the solute transporter machinery and restored proper physiological functions of the intestine, respectively. Taken together, we established the disease relevance of the C. rodentium-induced colitis model to IBD, demonstrated the protective role of IL-22 in amelioration of epithelial dysfunction and elucidated the molecular mechanisms with IL-22's effect on intestinal epithelial cells.
Collapse
|
19
|
Fink M, Wrana JL. Regulation of homeostasis and regeneration in the adult intestinal epithelium by the TGF-β superfamily. Dev Dyn 2022; 252:445-462. [PMID: 35611490 DOI: 10.1002/dvdy.500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
The delicate balance between the homeostatic maintenance and regenerative capacity of the intestine makes this a fascinating tissue of study. The intestinal epithelium undergoes continuous homeostatic renewal but is also exposed to a diverse array of stresses that can range from physiological processes such as digestion, to exposure to infectious agents, drugs, radiation therapy, and inflammatory stimuli. The intestinal epithelium has thus evolved to efficiently maintain and reinstate proper barrier function that is essential for intestinal integrity and function. Factors governing homeostatic epithelial turnover are well described, however, the dynamic regenerative mechanisms that occur following injury are the subject of intense ongoing investigations. The TGF-β superfamily is a key regulator of both homeostatic renewal and regenerative processes of the intestine. Here we review the roles of TGF-β and BMP on the adult intestinal epithelium during self-renewal and injury to provide a framework for understanding how this major family of morphogens can tip the scale between intestinal health and disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mardi Fink
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey L Wrana
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
ELF3 activated by a superenhancer and an autoregulatory feedback loop is required for high-level HLA-C expression on extravillous trophoblasts. Proc Natl Acad Sci U S A 2021; 118:2025512118. [PMID: 33622787 PMCID: PMC7936349 DOI: 10.1073/pnas.2025512118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
HLA-C arose during evolution of pregnancy in the great apes 10 to 15 million years ago. It has a dual function on placental extravillous trophoblasts (EVTs) as it contributes to both tolerance and immunity at the maternal-fetal interface. The mode of its regulation is of considerable interest in connection with the biology of pregnancy and pregnancy abnormalities. First-trimester primary EVTs in which HLA-C is highly expressed, as well as JEG3, an EVT model cell line, were employed. Single-cell RNA-seq data and quantitative PCR identified high expression of the transcription factor ELF3 in those cells. Chromatin immunoprecipitation (ChIP)-PCR confirmed that both ELF3 and MED1 bound to the proximal HLA-C promoter region. However, binding of RFX5 to this region was absent or severely reduced, and the adjacent HLA-B locus remained closed. Expression of HLA-C was inhibited by ELF3 small interfering RNAs (siRNAs) and by wrenchnolol treatment. Wrenchnolol is a cell-permeable synthetic organic molecule that mimics ELF3 and is relatively specific for binding to ELF3's coactivator, MED23, as our data also showed in JEG3. Moreover, the ELF3 gene is regulated by a superenhancer that spans more than 5 Mb, identified by assay for transposase-accessible chromatin using sequencing (ATAC-seq), as well as by its sensitivity to (+)-JQ1 (inhibitor of BRD4). ELF3 bound to its own promoter, thus creating an autoregulatory feedback loop that establishes expression of ELF3 and HLA-C in trophoblasts. Wrenchnolol blocked binding of MED23 to ELF3, thus disrupting the positive-feedback loop that drives ELF3 expression, with down-regulation of HLA-C expression as a consequence.
Collapse
|
21
|
Reehorst CM, Nightingale R, Luk IY, Jenkins L, Koentgen F, Williams DS, Darido C, Tan F, Anderton H, Chopin M, Schoffer K, Eissmann MF, Buchert M, Mouradov D, Sieber OM, Ernst M, Dhillon AS, Mariadason JM. EHF is essential for epidermal and colonic epithelial homeostasis, and suppresses Apc-initiated colonic tumorigenesis. Development 2021; 148:269265. [PMID: 34180969 DOI: 10.1242/dev.199542] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023]
Abstract
Ets homologous factor (EHF) is a member of the epithelial-specific Ets (ESE) family of transcription factors. To investigate its role in development and epithelial homeostasis, we generated a series of novel mouse strains in which the Ets DNA-binding domain of Ehf was deleted in all tissues (Ehf-/-) or specifically in the gut epithelium. Ehf-/- mice were born at the expected Mendelian ratio, but showed reduced body weight gain, and developed a series of pathologies requiring most Ehf-/- mice to reach an ethical endpoint before reaching 1 year of age. These included papillomas in the facial skin, abscesses in the preputial glands (males) or vulvae (females), and corneal ulcers. Ehf-/-mice also displayed increased susceptibility to experimentally induced colitis, which was confirmed in intestinal-specific Ehf knockout mice. Gut-specific Ehf deletion also impaired goblet cell differentiation, induced extensive transcriptional reprogramming in the colonic epithelium and enhanced Apc-initiated adenoma development. The Ets DNA-binding domain of EHF is therefore essential for postnatal homeostasis of the epidermis and colonic epithelium, and its loss promotes colonic tumour development.
Collapse
Affiliation(s)
- Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Rebecca Nightingale
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Laura Jenkins
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | | | - David S Williams
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Charbel Darido
- Peter MacCallum Cancer Centre, Melbourne, 3000Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010Australia
| | - Fiona Tan
- Peter MacCallum Cancer Centre, Melbourne, 3000Australia
| | - Holly Anderton
- Walter and Eliza Hall Institute, Melbourne, 3052Australia
| | - Michael Chopin
- Walter and Eliza Hall Institute, Melbourne, 3052Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010Australia
| | - Kael Schoffer
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Moritz F Eissmann
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | | | - Oliver M Sieber
- Walter and Eliza Hall Institute, Melbourne, 3052Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010Australia.,Department of Surgery, The University of Melbourne, Parkville, Victoria, 3010Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Amardeep S Dhillon
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, 3216Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, 3010Australia
| |
Collapse
|
22
|
Ramirez Alvarez C, Kee C, Sharma AK, Thomas L, Schmidt FI, Stanifer ML, Boulant S, Herrmann C. The endogenous cellular protease inhibitor SPINT2 controls SARS-CoV-2 viral infection and is associated to disease severity. PLoS Pathog 2021; 17:e1009687. [PMID: 34181691 PMCID: PMC8270430 DOI: 10.1371/journal.ppat.1009687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/09/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 outbreak is the biggest threat to human health in recent history. Currently, there are over 1.5 million related deaths and 75 million people infected around the world (as of 22/12/2020). The identification of virulence factors which determine disease susceptibility and severity in different cell types remains an essential challenge. The serine protease TMPRSS2 has been shown to be important for S protein priming and viral entry, however, little is known about its regulation. SPINT2 is a member of the family of Kunitz type serine protease inhibitors and has been shown to inhibit TMPRSS2. Here, we explored the existence of a co-regulation between SPINT2/TMPRSS2 and found a tightly regulated protease/inhibitor expression balance across tissues. We found that SPINT2 negatively correlates with SARS-CoV-2 expression in Calu-3 and Caco-2 cell lines and was down-regulated in secretory cells from COVID-19 patients. We validated our findings using Calu-3 cell lines and observed a strong increase in viral load after SPINT2 knockdown, while overexpression lead to a drastic reduction of the viral load. Additionally, we evaluated the expression of SPINT2 in datasets from comorbid diseases using bulk and scRNA-seq data. We observed its down-regulation in colon, kidney and liver tumors as well as in alpha pancreatic islets cells from diabetes Type 2 patients, which could have implications for the observed comorbidities in COVID-19 patients suffering from chronic diseases.
Collapse
Affiliation(s)
| | - Carmon Kee
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Research Group “Cellular Polarity and Viral Infection”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ashwini Kumar Sharma
- Health Data Science Unit, Medical Faculty Heidelberg and BioQuant, Heidelberg, Germany
| | - Leonie Thomas
- Health Data Science Unit, Medical Faculty Heidelberg and BioQuant, Heidelberg, Germany
| | - Florian I. Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Megan L. Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Research Group “Cellular Polarity and Viral Infection”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty Heidelberg and BioQuant, Heidelberg, Germany
| |
Collapse
|
23
|
Boti MA, Adamopoulos PG, Tsiakanikas P, Scorilas A. Nanopore Sequencing Unveils Diverse Transcript Variants of the Epithelial Cell-Specific Transcription Factor Elf-3 in Human Malignancies. Genes (Basel) 2021; 12:genes12060839. [PMID: 34072506 PMCID: PMC8227732 DOI: 10.3390/genes12060839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
The human E74-like ETS transcription factor 3 (Elf-3) is an epithelium-specific member of the ETS family, all members of which are characterized by a highly conserved DNA-binding domain. Elf-3 plays a crucial role in epithelial cell differentiation by participating in morphogenesis and terminal differentiation of the murine small intestinal epithelium, and also acts as an indispensable regulator of mesenchymal to epithelial transition, underlying its significant involvement in development and in pathological states, such as cancer. Although previous research works have deciphered the functional role of Elf-3 in normal physiology as well as in tumorigenesis, the present study highlights for the first time the wide spectrum of ELF3 mRNAs that are transcribed, providing an in-depth analysis of splicing events and exon/intron boundaries in a broad panel of human cell lines. The implementation of a versatile targeted nanopore sequencing approach led to the identification of 25 novel ELF3 mRNA transcript variants (ELF3 v.3–v.27) with new alternative splicing events, as well as two novel exons. Although the current study provides a qualitative transcriptional profile regarding ELF3, further studies must be conducted, so the biological function of all novel alternative transcript variants as well as the putative protein isoforms are elucidated.
Collapse
|
24
|
Little DR, Lynch AM, Yan Y, Akiyama H, Kimura S, Chen J. Differential chromatin binding of the lung lineage transcription factor NKX2-1 resolves opposing murine alveolar cell fates in vivo. Nat Commun 2021; 12:2509. [PMID: 33947861 PMCID: PMC8096971 DOI: 10.1038/s41467-021-22817-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Differential transcription of identical DNA sequences leads to distinct tissue lineages and then multiple cell types within a lineage, an epigenetic process central to progenitor and stem cell biology. The associated genome-wide changes, especially in native tissues, remain insufficiently understood, and are hereby addressed in the mouse lung, where the same lineage transcription factor NKX2-1 promotes the diametrically opposed alveolar type 1 (AT1) and AT2 cell fates. Here, we report that the cell-type-specific function of NKX2-1 is attributed to its differential chromatin binding that is acquired or retained during development in coordination with partner transcriptional factors. Loss of YAP/TAZ redirects NKX2-1 from its AT1-specific to AT2-specific binding sites, leading to transcriptionally exaggerated AT2 cells when deleted in progenitors or AT1-to-AT2 conversion when deleted after fate commitment. Nkx2-1 mutant AT1 and AT2 cells gain distinct chromatin accessible sites, including those specific to the opposite fate while adopting a gastrointestinal fate, suggesting an epigenetic plasticity unexpected from transcriptional changes. Our genomic analysis of single or purified cells, coupled with precision genetics, provides an epigenetic basis for alveolar cell fate and potential, and introduces an experimental benchmark for deciphering the in vivo function of lineage transcription factors.
Collapse
Affiliation(s)
- Danielle R Little
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yun Yan
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
25
|
Molecular Classification and Tumor Microenvironment Characterization of Gallbladder Cancer by Comprehensive Genomic and Transcriptomic Analysis. Cancers (Basel) 2021; 13:cancers13040733. [PMID: 33578820 PMCID: PMC7916565 DOI: 10.3390/cancers13040733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Gallbladder cancer (GBC) is a rare but lethal cancer. Molecular characterization of GBC is insufficient so far, and a comprehensive molecular portrait is warranted to uncover new targets and classify GBC. Clustering analysis of RNA expression revealed two subclasses of 36 GBCs, which reflects the status of the tumor microenvironment (TME) and poor prognosis of GBC, including epithelial–mesenchymal transition (EMT), immune suppression, and the TGF-β signaling pathway. The knockout of miR125B1 in GBC cell lines decreased its invasion ability and altered the EMT pathway. Mutations of the genes related to the TGF-β signaling pathway were enriched in the poor-prognosis/TME-rich cluster of GBCs. This comprehensive molecular analysis provides a new classification of GBCs based on the TME activity, which is involved with EMT and immune suppression for poor prognosis of GBC. This information may be useful for GBC prognosis and therapeutic decision-making. Abstract Gallbladder cancer (GBC), a rare but lethal disease, is often diagnosed at advanced stages. So far, molecular characterization of GBC is insufficient, and a comprehensive molecular portrait is warranted to uncover new targets and classify GBC. We performed a transcriptome analysis of both coding and non-coding RNAs from 36 GBC fresh-frozen samples. The results were integrated with those of comprehensive mutation profiling based on whole-genome or exome sequencing. The clustering analysis of RNA-seq data facilitated the classification of GBCs into two subclasses, characterized by high or low expression levels of TME (tumor microenvironment) genes. A correlation was observed between gene expression and pathological immunostaining. TME-rich tumors showed significantly poor prognosis and higher recurrence rate than TME-poor tumors. TME-rich tumors showed overexpression of genes involved in epithelial-to-mesenchymal transition (EMT) and inflammation or immune suppression, which was validated by immunostaining. One non-coding RNA, miR125B1, exhibited elevated expression in stroma-rich tumors, and miR125B1 knockout in GBC cell lines decreased its invasion ability and altered the EMT pathway. Mutation profiles revealed TP53 (47%) as the most commonly mutated gene, followed by ELF3 (13%) and ARID1A (11%). Mutations of ARID1A, ERBB3, and the genes related to the TGF-β signaling pathway were enriched in TME-rich tumors. This comprehensive analysis demonstrated that TME, EMT, and TGF-β pathway alterations are the main drivers of GBC and provides a new classification of GBCs that may be useful for therapeutic decision-making.
Collapse
|
26
|
Quintero M, Liu S, Xia Y, Huang Y, Zou Y, Li G, Hu L, Singh N, Blumberg R, Cai Y, Xu H, Li H. Cdk5rap3 is essential for intestinal Paneth cell development and maintenance. Cell Death Dis 2021; 12:131. [PMID: 33504792 PMCID: PMC7841144 DOI: 10.1038/s41419-021-03401-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Intestinal Paneth cells are professional exocrine cells that play crucial roles in maintenance of homeostatic microbiome, modulation of mucosal immunity, and support for stem cell self-renewal. Dysfunction of these cells may lead to the pathogenesis of human diseases such as inflammatory bowel disease (IBD). Cdk5 activator binding protein Cdk5rap3 (also known as C53 and LZAP) was originally identified as a binding protein of Cdk5 activator p35. Although previous studies have indicated its involvement in a wide range of signaling pathways, the physiological function of Cdk5rap3 remains largely undefined. In this study, we found that Cdk5rap3 deficiency resulted in very early embryonic lethality, indicating its indispensable role in embryogenesis. To further investigate its function in the adult tissues and organs, we generated intestinal epithelial cell (IEC)-specific knockout mouse model to examine its role in intestinal development and tissue homeostasis. IEC-specific deletion of Cdk5rap3 led to nearly complete loss of Paneth cells and increased susceptibility to experimentally induced colitis. Interestingly, Cdk5rap3 deficiency resulted in downregulation of key transcription factors Gfi1 and Sox9, indicating its crucial role in Paneth cell fate specification. Furthermore, Cdk5rap3 is highly expressed in mature Paneth cells. Paneth cell-specific knockout of Cdk5rap3 caused partial loss of Paneth cells, while inducible acute deletion of Cdk5rap3 resulted in disassembly of the rough endoplasmic reticulum (RER) and abnormal zymogen granules in the mature Paneth cells, as well as loss of Paneth cells. Together, our results provide definitive evidence for the essential role of Cdk5rap3 in Paneth cell development and maintenance.
Collapse
Affiliation(s)
- Michaela Quintero
- Department of Biochemistry & Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Siyang Liu
- Department of Biochemistry & Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yanhua Xia
- Faculty of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yonghong Huang
- Faculty of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Zou
- Department of Metabolic Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ge Li
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Ling Hu
- Department of Metabolic Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Nagendra Singh
- Department of Biochemistry & Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Richard Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hong Xu
- Faculty of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Honglin Li
- Department of Biochemistry & Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
27
|
Abstract
The evolutionary emergence of the mesenchymal phenotype greatly increased the complexity of tissue architecture and composition in early Metazoan species. At the molecular level, an epithelial-to-mesenchymal transition (EMT) was permitted by the innovation of specific transcription factors whose expression is sufficient to repress the epithelial transcriptional program. The reverse process, mesenchymal-to-epithelial transition (MET), involves direct inhibition of EMT transcription factors by numerous mechanisms including tissue-specific MET-inducing transcription factors (MET-TFs), micro-RNAs, and changes to cell and tissue architecture, thus providing an elegant solution to the need for tight temporal and spatial control over EMT and MET events during development and adult tissue homeostasis.
Collapse
Affiliation(s)
- John-Poul Ng-Blichfeldt
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.
| | - Katja Röper
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
28
|
Suzuki M, Saito-Adachi M, Arai Y, Fujiwara Y, Takai E, Shibata S, Seki M, Rokutan H, Maeda D, Horie M, Suzuki Y, Shibata T, Kiyono T, Yachida S. E74-Like Factor 3 Is a Key Regulator of Epithelial Integrity and Immune Response Genes in Biliary Tract Cancer. Cancer Res 2020; 81:489-500. [PMID: 33293429 DOI: 10.1158/0008-5472.can-19-2988] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/28/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022]
Abstract
The transcription factor E74-like factor 3 (ELF3) is inactivated in a range of cancers, including biliary tract cancer (BTC). Here, we investigated the tumor-suppressive role of ELF3 in bile duct cells by identifying several previously unknown direct target genes of ELF3 that appear to be implicated in biliary duct carcinogenesis. ELF3 directly repressed ZEB2, a key regulator of epithelial-mesenchymal transition, and upregulated the expression of CGN, an integral element in lumen formation. Loss of ELF3 led to decreased cell-cell junctions and enhanced cell motility. ALOX5 and CXCL16 were also identified as additional direct targets of ELF3; their corresponding proteins 5-lipoxygenase and CXCL16 play a role in the immune response. Conditioned medium from cells overexpressing ELF3 significantly enhanced the migration of natural killer cells and CD8+ T cells toward the conditioned medium. Gene expression profiling for BTC expressing high levels of ELF3 revealed significant enrichment of the ELF3-related genes. In a BTC xenograft model, activation of ELF3 increased expression of ELF3-related genes, enhanced the tubular structure of the tumors, and led to a loss of vimentin. Overall, our results indicate that ELF3 is a key regulator of both epithelial integrity and immune responses in BTC. SIGNIFICANCE: Thease finding shows that ELF3 regulates epithelial integrity and host immune responses and functions as a tumor suppressor in biliary tract cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/2/489/F1.large.jpg.
Collapse
Affiliation(s)
- Masami Suzuki
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mihoko Saito-Adachi
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuko Fujiwara
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Erina Takai
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Rokutan
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Daichi Maeda
- Department of Clinical Genomics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masafumi Horie
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan.
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
29
|
Huang D, Xiong M, Xu X, Wu X, Xu J, Cai X, Lu L, Zhou H. Bile acids elevated by high-fat feeding induce endoplasmic reticulum stress in intestinal stem cells and contribute to mucosal barrier damage. Biochem Biophys Res Commun 2020; 529:289-295. [PMID: 32703425 DOI: 10.1016/j.bbrc.2020.05.226] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/31/2022]
Abstract
Long-term high-fat feeding (HF) induces intestinal mucosal barrier damage. However, the mechanism for this remains unclear. HF can elevate the intestinal and circulating bile acid (BA) levels, especially deoxycholic acid (DCA). We hypothesize that BAs elevated by HF regulate intestinal stem cell (ISC) function, which may contribute to mucosal barrier injury in the ileum of mice. In this study, we showed that 2 weeks of HF resulted in a shortening of intestinal villi and a decrease in the tight junction (TJ) protein occludin in the ileum of mice, accompanied by an increase in circulating BA levels. Importantly, 2 weeks of HF also reduced ileal ISCs and goblet cells and decreased the proliferation function of ISCs and their ability to differentiate into goblet cells. Endoplasmic reticulum (ER) stress was found to be involved in the process of ISC damage. All these alterations were reversed by cofeeding with the bile acid binder cholestyramine. In addition, the in vitro studies also confirmed a cytotoxic effect of DCA at a high concentration on ISCs and goblet cells. In conclusion, these data suggested that high levels of BAs induced by HF could impair ISC function by triggering ER stress, resulting in the disruption of the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Dan Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minli Xiong
- Medical Department, Shanghai University of International Business and Economics, Shanghai, China
| | - Xianjun Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowan Wu
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Nanjing, China
| | - Jingxian Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobo Cai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Nanjing, China.
| | - Hui Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
30
|
Qiao Y, Wang Z, Tan F, Chen J, Lin J, Yang J, Li H, Wang X, Sali A, Zhang L, Zhong G. Enhancer Reprogramming within Pre-existing Topologically Associated Domains Promotes TGF-β-Induced EMT and Cancer Metastasis. Mol Ther 2020; 28:2083-2095. [PMID: 32526202 DOI: 10.1016/j.ymthe.2020.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/10/2020] [Accepted: 05/27/2020] [Indexed: 01/06/2023] Open
Abstract
Transcription growth factor β (TGF-β) signaling-triggered epithelial-to-mesenchymal transition (EMT) process is associated with tumor stemness, metastasis, and chemotherapy resistance. However, the epigenomic basis for TGF-β-induced EMT remains largely unknown. Here we reveal that HDAC1-mediated global histone deacetylation and the gain of specific histone H3 lysine 27 acetylation (H3K27ac)-marked enhancers are essential for the TGF-β-induced EMT process. Enhancers gained upon TGF-β treatment are linked to gene activation of EMT markers and cancer metastasis. Notably, dynamic enhancer gain or loss mainly occurs within pre-existing topologically associated domains (TADs) in epithelial cells, with minimal three-dimensional (3D) genome architecture reorganization. Through motif enrichment analysis of enhancers that are lost or gained upon TGF-β stimulation, we identify FOXA2 as a key factor to activate epithelial-specific enhancer activity, and we also find that TEAD4 forms a complex with SMAD2/3 to mediate TGF-β signaling-triggered mesenchymal enhancer reprogramming. Together, our results implicate that key transcription-factor (TF)-mediated enhancer reprogramming modulates the developmental transition in TGF-β signaling-associated cancer metastasis.
Collapse
Affiliation(s)
- Yunbo Qiao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Zejian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangzhi Tan
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Jun Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jianxiang Lin
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jie Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Guisheng Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
31
|
Coon JI, Jain S, Sepuru KM, Chung Y, Mohankumar K, Rajarathnam K, Jain SK. Lyophilization of human amniotic fluid is feasible without affecting biological activity. Pediatr Res 2020; 87:847-852. [PMID: 31756731 DOI: 10.1038/s41390-019-0632-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/20/2019] [Accepted: 10/02/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Fetal swallowing of human amniotic fluid (hAF) containing trophic factors (TFs) promotes gastrointestinal tract (GIT) development. Preterm birth interrupts hAF swallowing, which may increase the risk of necrotizing enterocolitis (NEC). Postnatally, it is difficult to replicate fetal swallowing of hAF due to volume. We aimed to evaluate whether hAF lyophilization is feasible and its effect on hAF-borne TFs. METHODS We collected hAF (n = 16) from uncomplicated pregnancies. hAF was divided into three groups: unprocessed control (C), concentration by microfiltration (F), and by dialysis and lyophilization (L). EGF, HGF, GM-CSF, and TGF-α were measured in each group by multiplex assay. Bioavailability of TFs was measured by proliferation and LPS-induced IL-8 production by intestinal epithelial cells FHs74. RESULTS After dialysis/lyophilization, GM-CSF and TGF-α were preserved with partial loss of EGF and HGF. hAF increased cell proliferation and reduced LPS-induced IL-8 production compared to medium alone. Compared to control, dialysis/lyophilization and filtration of hAF increased FHs74 cell proliferation (p < 0.001) and decreased LPS-induced IL-8 production (p < 0.01). CONCLUSIONS Lyophilization and filtration of hAF is feasible with partial loss of TFs but maintains and even improves bioavailability of TFs measured by proliferation and LPS-induced IL-8 production by FHs74.
Collapse
Affiliation(s)
- John I Coon
- Department of Pediatrics, Division of Neonatology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sangeeta Jain
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Krishna M Sepuru
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yerin Chung
- Department of Pediatrics, Division of Neonatology, John Hopkins University, Baltimore, MD, USA
| | - Krishnan Mohankumar
- Department of Pediatrics, Division of Neonatology, John Hopkins University, Baltimore, MD, USA
| | - Krishna Rajarathnam
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sunil K Jain
- Department of Pediatrics, Division of Neonatology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
32
|
Bruschi M, Garnier L, Cleroux E, Giordano A, Dumas M, Bardet AF, Kergrohen T, Quesada S, Cesses P, Weber M, Gerbe F, Jay P. Loss of Apc Rapidly Impairs DNA Methylation Programs and Cell Fate Decisions in Lgr5 + Intestinal Stem Cells. Cancer Res 2020; 80:2101-2113. [PMID: 32213541 DOI: 10.1158/0008-5472.can-19-2104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/13/2020] [Accepted: 03/19/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer initiation and progression result from the accumulation of genetic and epigenetic alterations. Although aberrant gene expression and DNA methylation profiles are considered hallmarks of colorectal cancer development, the precise timing at which these are produced during tumor establishment remains elusive. Here we investigated the early transcriptional and epigenetic changes induced by adenomatous polyposis coli (Apc) inactivation in intestinal crypts. Hyperactivation of the Wnt pathway via Apc inactivation in crypt base columnar intestinal stem cells (ISC) led to their rapid accumulation driven by an impaired molecular commitment to differentiation, which was associated with discrete alterations in DNA methylation. Importantly, inhibiting the enzymes responsible for de novo DNA methylation restored the responsiveness of Apc-deficient intestinal organoids to stimuli regulating the proliferation-to-differentiation transition in ISC. This work reveals that early DNA methylation changes play critical roles in the establishment of the impaired fate decision program consecutive to Apc loss of function. SIGNIFICANCE: This study demonstrates the functional impact of changes in DNA methylation to determine the colorectal cancer cell phenotype following loss of Apc function.
Collapse
Affiliation(s)
- Marco Bruschi
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Laure Garnier
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Elouan Cleroux
- UMR 7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, Illkirch, France
| | - Alicia Giordano
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Michael Dumas
- UMR 7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, Illkirch, France
| | - Anaïs F Bardet
- UMR 7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, Illkirch, France
| | - Thomas Kergrohen
- Département de Cancérologie de l'Enfant et de l'Adolescent, Institut de Cancérologie Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif Cedex, France
| | - Stanislas Quesada
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Pierre Cesses
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Michael Weber
- UMR 7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, Illkirch, France
| | - François Gerbe
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France.
| | - Philippe Jay
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France.
| |
Collapse
|
33
|
Sarmah S, Srivastava R, McClintick JN, Janga SC, Edenberg HJ, Marrs JA. Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects. Sci Rep 2020; 10:3951. [PMID: 32127575 PMCID: PMC7054311 DOI: 10.1038/s41598-020-59043-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Ethanol exposure during prenatal development causes fetal alcohol spectrum disorder (FASD), the most frequent preventable birth defect and neurodevelopmental disability syndrome. The molecular targets of ethanol toxicity during development are poorly understood. Developmental stages surrounding gastrulation are very sensitive to ethanol exposure. To understand the effects of ethanol on early transcripts during embryogenesis, we treated zebrafish embryos with ethanol during pre-gastrulation period and examined the transcripts by Affymetrix GeneChip microarray before gastrulation. We identified 521 significantly dysregulated genes, including 61 transcription factors in ethanol-exposed embryos. Sox2, the key regulator of pluripotency and early development was significantly reduced. Functional annotation analysis showed enrichment in transcription regulation, embryonic axes patterning, and signaling pathways, including Wnt, Notch and retinoic acid. We identified all potential genomic targets of 25 dysregulated transcription factors and compared their interactions with the ethanol-dysregulated genes. This analysis predicted that Sox2 targeted a large number of ethanol-dysregulated genes. A gene regulatory network analysis showed that many of the dysregulated genes are targeted by multiple transcription factors. Injection of sox2 mRNA partially rescued ethanol-induced gene expression, epiboly and gastrulation defects. Additional studies of this ethanol dysregulated network may identify therapeutic targets that coordinately regulate early development.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Rajneesh Srivastava
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sarath C Janga
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
34
|
Epithelial tumor suppressor ELF3 is a lineage-specific amplified oncogene in lung adenocarcinoma. Nat Commun 2019; 10:5438. [PMID: 31780666 PMCID: PMC6882813 DOI: 10.1038/s41467-019-13295-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/24/2019] [Indexed: 01/22/2023] Open
Abstract
Gene function in cancer is often cell type-specific. The epithelial cell-specific transcription factor ELF3 is a documented tumor suppressor in many epithelial tumors yet displays oncogenic properties in others. Here, we show that ELF3 is an oncogene in the adenocarcinoma subtype of lung cancer (LUAD), providing genetic, functional, and clinical evidence of subtype specificity. We discover a region of focal amplification at chromosome 1q32.1 encompassing the ELF3 locus in LUAD which is absent in the squamous subtype. Gene dosage and promoter hypomethylation affect the locus in up to 80% of LUAD analyzed. ELF3 expression was required for tumor growth and a pan-cancer expression network analysis supports its subtype and tissue specificity. We further show that ELF3 displays strong prognostic value in LUAD but not LUSC. We conclude that, contrary to many other tumors of epithelial origin, ELF3 is an oncogene and putative therapeutic target in LUAD. Tissue context can dictate why a gene can have seemingly opposing functions in different settings. ELF3 is tumor suppressive in many cancers of epithelial origin but in lung cancer, the authors describe an oncogenic role in the adenocarcinoma histology of non-small cell lung cancer.
Collapse
|
35
|
The Transcription Factor Elf3 Is Essential for a Successful Mesenchymal to Epithelial Transition. Cells 2019; 8:cells8080858. [PMID: 31404945 PMCID: PMC6721682 DOI: 10.3390/cells8080858] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 12/13/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) and the mesenchymal to epithelial transition (MET) are two critical biological processes that are involved in both physiological events such as embryogenesis and development and also pathological events such as tumorigenesis. They present with dramatic changes in cellular morphology and gene expression exhibiting acute changes in E-cadherin expression. Despite the comprehensive understanding of EMT, the regulation of MET is far from being understood. To find novel regulators of MET, we hypothesized that such factors would correlate with Cdh1 expression. Bioinformatics examination of several expression profiles suggested Elf3 as a strong candidate. Depletion of Elf3 at the onset of MET severely impaired the progression to the epithelial state. This MET defect was explained, in part, by the absence of E-cadherin at the plasma membrane. Moreover, during MET, ELF3 interacts with the Grhl3 promoter and activates its expression. Our findings present novel insights into the regulation of MET and reveal ELF3 as an indispensable guardian of the epithelial state. A better understanding of MET will, eventually, lead to better management of metastatic cancers.
Collapse
|
36
|
Özbek M, Bayraktaroğlu AG. Developmental study on the ileal Peyer's patches of sheep, and cytokeratin-18 as a possible marker for M cells in follicle associated epithelium. Acta Histochem 2019; 121:311-322. [PMID: 30745250 DOI: 10.1016/j.acthis.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
Abstract
Peyer's patches are known as the immune sensors of the intestine because of their ability to transport luminal antigens. The objective of this study was both to assess the prenatal and postnatal development of sheep ileal Peyer's patches with respect to histomorphology, distribution of CD4+ and CD8+ cells, and localization of proliferating and apoptotic cells, and to examine the morphology of M cells and expression of CK18 in follicle associated epithelium (FAE). We also hypothesized that CK18 could be a potential marker for M cell. Peyer's patches completed their histomorphological development in prenatal period and involuted in the postnatal period. The distribution of the CD4+ and CD8+ cells was similar in the last trimester of pregnancy (days 120-150) and the postnatal period, but differed in the early stages of foetal development (days 70-120). In the prenatal period, the follicular area displayed high levels of proliferation and apoptosis. We observed CK18 immunoreaction only in FAE. While M cells were devoid of microfolds in the early stages of the prenatal period, these cells acquired a prismatic shape and bore distinct apical microfolds in the late prenatal period and postnatal period. As a result, it was determined that, in sheep, the development of the ileal Peyer's patches occurred in the prenatal period, independent of exogenous antigenic stimulation, and in association with high levels of lymphopoiesis and apoptosis in the follicles. We found, for the first time, that CK18 is a novel and reliable marker for FAE in sheep ileal Peyer's patches. We suggest that CK18 positive cells in FAE are M cells.
Collapse
Affiliation(s)
- Mehmet Özbek
- Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Burdur, Turkey.
| | - Alev Gürol Bayraktaroğlu
- Ankara University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Ankara, Turkey
| |
Collapse
|
37
|
Ha T, Lee J, Lou Z, Lee B, Kim C, Lee S. Identification of epithelial‐specific ETS‐1 (ESE‐1) as a tumor suppressor and molecular target of green tea compound, EGCG. Mol Carcinog 2019; 58:922-932. [DOI: 10.1002/mc.22981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Taekyu Ha
- Department of Nutrition and Food ScienceCollege of Agriculture and Natural ResourcesUniversity of MarylandCollege ParkMaryland
| | - Jihye Lee
- Department of Nutrition and Food ScienceCollege of Agriculture and Natural ResourcesUniversity of MarylandCollege ParkMaryland
| | - Zhiyuan Lou
- Department of Nutrition and Food ScienceCollege of Agriculture and Natural ResourcesUniversity of MarylandCollege ParkMaryland
| | - Bok‐Soon Lee
- Department of OtolaryngologySchool of MedicineAjou UniversitySuwonRepublic of Korea
| | - Chul‐Ho Kim
- Department of OtolaryngologySchool of MedicineAjou UniversitySuwonRepublic of Korea
| | - Seong‐Ho Lee
- Department of Nutrition and Food ScienceCollege of Agriculture and Natural ResourcesUniversity of MarylandCollege ParkMaryland
| |
Collapse
|
38
|
Abstract
The adult gastrointestinal tract (GI) is a series of connected organs (esophagus, stomach, small intestine, colon) that develop via progressive regional specification of a continuous tubular embryonic organ anlage. This chapter focuses on organogenesis of the small intestine. The intestine arises by folding of a flat sheet of endodermal cells into a tube of highly proliferative pseudostratified cells. Dramatic elongation of this tube is driven by rapid epithelial proliferation. Then, epithelial-mesenchymal crosstalk and physical forces drive a stepwise cascade that results in convolution of the tubular surface into finger-like projections called villi. Concomitant with villus formation, a sharp epithelial transcriptional boundary is defined between stomach and intestine. Finally, flask-like depressions called crypts are established to house the intestinal stem cells needed throughout life for epithelial renewal. New insights into these events are being provided by in vitro organoid systems, which hold promise for future regenerative engineering of the small intestine.
Collapse
Affiliation(s)
- Sha Wang
- University of Michigan, Cell and Developmental Biology Department, Ann Arbor, MI, United States
| | - Katherine D Walton
- University of Michigan, Cell and Developmental Biology Department, Ann Arbor, MI, United States.
| | - Deborah L Gumucio
- University of Michigan, Cell and Developmental Biology Department, Ann Arbor, MI, United States
| |
Collapse
|
39
|
Luk IY, Reehorst CM, Mariadason JM. ELF3, ELF5, EHF and SPDEF Transcription Factors in Tissue Homeostasis and Cancer. Molecules 2018; 23:molecules23092191. [PMID: 30200227 PMCID: PMC6225137 DOI: 10.3390/molecules23092191] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Abstract
The epithelium-specific ETS (ESE) transcription factors (ELF3, ELF5, EHF and SPDEF) are defined by their highly conserved ETS DNA binding domain and predominant epithelial-specific expression profile. ESE transcription factors maintain normal cell homeostasis and differentiation of a number of epithelial tissues, and their genetic alteration and deregulated expression has been linked to the progression of several epithelial cancers. Herein we review the normal function of the ESE transcription factors, the mechanisms by which they are dysregulated in cancers, and the current evidence for their role in cancer progression. Finally, we discuss potential therapeutic strategies for targeting or reactivating these factors as a novel means of cancer treatment.
Collapse
Affiliation(s)
- Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| |
Collapse
|
40
|
Özbek M, Ergün E, Beyaz F, Ergün L, Y Ld R M N, Özgenç Ö, Erhan F. Prenatal development and histochemical characteristics of gastrointestinal mucins in sheep fetuses. Microsc Res Tech 2018. [PMID: 29536591 DOI: 10.1002/jemt.23018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The object of this study was to describe the prenatal development and histochemical properties of mucins in the sheep gastrointestinal tract. To determine changes in the mucin profile, the sections were stained with specific histochemical stains for carbohydrates. While neutral and mixed mucins were observed in the superficial epithelial cells of the abomasal pyloric region, acidic mucins were detected in the secretory ducts and corpus of the glands. Acidic mucins consisted predominantly of sialomucins. In the duodenal villi, the number of goblet cells containing neutral mucins increased toward the end of gestation, whereas Brunner's glands contained acidic mucins until the 95th day of gestation and both acidic and neutral mucins thereafter. The jejunal goblet cells contained either acidic, neutral, or mixed mucins. Goblet cells containing acidic mucins, which were mainly localized to the ileal crypts and villi, mostly contained sulfated mucins. While villi were observed in the proximal colon until the 115th day of gestation, later the typical crypt structure emerged. During the period in which the villi were found in the proximal colon, the goblet cells containing sulphomucins were predominant, whereas the goblet cells containing sialomucins were predominant after the typical crypt structure was formed. In conclusion, gastrointestinal mucins may be involved in the formation of meconium during the prenatal period, and acidic mucins may contribute to the strength of the intestinal barrier against pathogens and digestive enzymes, as the barrier is not fully functional after birth.
Collapse
Affiliation(s)
- Mehmet Özbek
- Department of Histology and Embryology, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Emel Ergün
- Department of Histology and Embryology, Ankara University, Ankara, Turkey
| | - Feyzullah Beyaz
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Levent Ergün
- Department of Histology and Embryology, Ankara University, Ankara, Turkey
| | - Nuh Y Ld R M
- Department of Histology and Embryology, Ankara University, Ankara, Turkey
| | - Özge Özgenç
- Department of Histology and Embryology, Ankara University, Ankara, Turkey
| | - Füsun Erhan
- Department of Histology and Embryology, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
41
|
Ampulla of Vater Carcinoma: Sequencing Analysis Identifies TP53 Status as a Novel Independent Prognostic Factor and Potentially Actionable ERBB, PI3K, and WNT Pathways Gene Mutations. Ann Surg 2017; 267:149-156. [PMID: 27611608 DOI: 10.1097/sla.0000000000001999] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To identify molecular prognostic factors and potentially actionable mutations in ampulla of Vater cancer (AVC). BACKGROUND The largely variable outcomes of AVCs make clinical decisions difficult regarding the need of postsurgical therapy, which is based on morphological and immunohistochemical classification that do not adequately consider the varying degrees of heterogeneity present in many AVCs. No approved targeted therapies for AVC exist, but some show promising results requiring better molecular characterization to identify potential responders. METHODS We assessed 80 AVCs for the prognostic value of mutations of kirsten rat sarcoma (KRAS), neuroblastoma RAS (NRAS), B rapidly accelerated fibrosarcoma (BRAF), TP53, and 4 membrane erythroblastosis oncogene B (ERBB) receptor tyrosine kinases (EGFR-ERBB1, HER2-ERBB2, HER3-ERBB3, HER4-ERBB4) amenable to pharmacological inhibition. Moreover, we evaluated mutations in 16 key components of rat sarcoma (RAS), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), protein 53 (P53), transforming growth factor beta (TGF-β), and wingless/integrated (WNT) pathways, recently associated to AVC by whole-exome sequencing. RESULTS TP53 and KRAS were mutated in 41% and 35% of cases, respectively, and emerged as independent prognostic factors together with tumor stage and regardless of the histotype (TP53: P = 0.0006; KRAS: P = 0.0018; stage IIB: P = 0.0117; stage III-IV: P = 0.0020). ERBB, WNT and PI3K pathway genes were mutated in 37.5% of cases. CONCLUSIONS KRAS and TP53 mutations are negative predictors of survival in AVCs, regardless of histotype. Potentially actionable mutations in ERBB, WNT, and PI3K signaling pathway genes are present in 37.5% of all cases. These might be amenable to target therapy using available drugs like Everolimus in PI3K-mutated cases or compounds under active screening against ERBB and WNT signaling.
Collapse
|
42
|
Lickwar CR, Camp JG, Weiser M, Cocchiaro JL, Kingsley DM, Furey TS, Sheikh SZ, Rawls JF. Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells. PLoS Biol 2017; 15:e2002054. [PMID: 28850571 PMCID: PMC5574553 DOI: 10.1371/journal.pbio.2002054] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs) in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS) found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development and physiology. The epithelium lining the intestine is an ancient animal tissue that serves as a primary site of nutrient absorption and interaction with microbiota. Its formation and function require complex patterns of gene transcription that vary along the intestine and in specialized intestinal epithelial cell (IEC) subtypes. However, it is unknown how the underlying transcriptional regulatory mechanisms have changed over the course of vertebrate evolution. Here, we used genome-wide profiling of mRNA levels and chromatin accessibility to identify conserved IEC genes and regulatory regions in 4 vertebrate species (zebrafish, stickleback, mouse, and human) separated from a common ancestor by 420 million years. We identified substantial similarities in genes expressed along the vertebrate intestine. These data disclosed putative conserved transcription factor binding sites (TFBS) enriched in accessible chromatin near IEC genes and in regulatory sites with accessibility restricted to IECs. Fluorescent reporter assays in transparent zebrafish showed that these regions, which frequently lacked sequence conservation, were still capable of driving conserved expression patterns. We also found a highly conserved region near mammalian and fish hes1 sufficient to drive expression in a specific population of IECs with active Notch signaling. These results establish a platform to define the conserved transcriptional networks underlying vertebrate IEC physiology.
Collapse
Affiliation(s)
- Colin R. Lickwar
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - J. Gray Camp
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Matthew Weiser
- Departments of Genetics and Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jordan L. Cocchiaro
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David M. Kingsley
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Terrence S. Furey
- Departments of Genetics and Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shehzad Z. Sheikh
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
43
|
Yeung TL, Leung CS, Wong KK, Gutierrez-Hartmann A, Kwong J, Gershenson DM, Mok SC. ELF3 is a negative regulator of epithelial-mesenchymal transition in ovarian cancer cells. Oncotarget 2017; 8:16951-16963. [PMID: 28199976 PMCID: PMC5370013 DOI: 10.18632/oncotarget.15208] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/27/2017] [Indexed: 12/22/2022] Open
Abstract
Transcription factors are master switches for various biochemical pathways. However, transcription factors involved in the pathogenesis of ovarian cancer have yet to be explored thoroughly. Therefore, in the present study, we assessed the prognostic value of the transcription factor E74-like factor 3 (ELF3) identified via transcriptome profiling of the epithelial components of microdissected ovarian tumor samples isolated from long- and short-term survivors and determined its roles in ovarian cancer pathogenesis. Immunohistochemical analysis of ELF3 in tumor tissue sections suggested that ELF3 was exclusively expressed by epithelial ovarian cancer cells. Furthermore, using 112 high-grade ovarian cancer samples isolated from patients and The Cancer Genome Atlas (TCGA) data, we found that downregulation of ELF3 expression was markedly associated with reduced survival. Functional studies demonstrated that overexpression of ELF3 in ovarian cancer cells suppressed proliferation and anchorage-dependent growth of the cells and that ELF3 silencing increased cell proliferation. Furthermore, upregulation of ELF3 increased expression of epithelial markers, decreased expression of mesenchymal markers, and mediated translocation of epithelial-mesenchymal transition (EMT) signaling molecules in ovarian cancer cells. Finally, we validated the tumor-inhibitory roles of ELF3 using animal models. In conclusion, ELF3 is a favorable prognostic marker for ovarian cancer. As a negative regulator of EMT, ELF3-modulated reversal of EMT may be a new effective modality in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Tsz-Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cecilia S Leung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Joseph Kwong
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong
| | - David M Gershenson
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Lo YH, Chung E, Li Z, Wan YW, Mahe MM, Chen MS, Noah TK, Bell KN, Yalamanchili HK, Klisch TJ, Liu Z, Park JS, Shroyer NF. Transcriptional Regulation by ATOH1 and its Target SPDEF in the Intestine. Cell Mol Gastroenterol Hepatol 2016; 3:51-71. [PMID: 28174757 PMCID: PMC5247424 DOI: 10.1016/j.jcmgh.2016.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS The transcription factor atonal homolog 1 (ATOH1) controls the fate of intestinal progenitors downstream of the Notch signaling pathway. Intestinal progenitors that escape Notch activation express high levels of ATOH1 and commit to a secretory lineage fate, implicating ATOH1 as a gatekeeper for differentiation of intestinal epithelial cells. Although some transcription factors downstream of ATOH1, such as SPDEF, have been identified to specify differentiation and maturation of specific cell types, the bona fide transcriptional targets of ATOH1 still largely are unknown. Here, we aimed to identify ATOH1 targets and to identify transcription factors that are likely to co-regulate gene expression with ATOH1. METHODS We used a combination of chromatin immunoprecipitation and messenger RNA-based high-throughput sequencing (ChIP-seq and RNA-seq), together with cell sorting and transgenic mice, to identify direct targets of ATOH1, and establish the epistatic relationship between ATOH1 and SPDEF. RESULTS By using unbiased genome-wide approaches, we identified more than 700 genes as ATOH1 transcriptional targets in adult small intestine and colon. Ontology analysis indicated that ATOH1 directly regulates genes involved in specification and function of secretory cells. De novo motif analysis of ATOH1 targets identified SPDEF as a putative transcriptional co-regulator of ATOH1. Functional epistasis experiments in transgenic mice show that SPDEF amplifies ATOH1-dependent transcription but cannot independently initiate transcription of ATOH1 target genes. CONCLUSIONS This study unveils the direct targets of ATOH1 in the adult intestines and illuminates the transcriptional events that initiate the specification and function of intestinal secretory lineages.
Collapse
Key Words
- ATOH1
- ATOH1, atonal homolog 1
- Atoh1Flag
- Atoh1GFP
- CRC, colorectal cancer
- ChIP, chromatin immunoprecipitation
- ChIP-seq, chromatin immunoprecipitation sequencing
- DBZ, dibenzazepine
- FACS, fluorescence-activated cell sorting
- FDR, false-discovery rate
- GFP, green fluorescent protein
- GO, gene ontology
- Gfi1, growth factor independent 1
- ISC, intestinal stem cell
- Intestinal Epithelium
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- QES, Q-enrichment-score
- RT-qPCR, reverse-transcription quantitative polymerase chain reaction
- SPDEF
- Spdef, SAM pointed domain containing ETS transcription factor
- TRE-Spdef
- TSS, transcription start site
- Transcription
- Villin-creER
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Yuan-Hung Lo
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Eunah Chung
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Zhaohui Li
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas
| | - Maxime M. Mahe
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Min-Shan Chen
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Taeko K. Noah
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kristin N. Bell
- Graduate Program in Molecular Developmental Biology, University of Cincinnati, Cincinnati, Cincinnati, Ohio
| | | | - Tiemo J. Klisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Zhandong Liu
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joo-Seop Park
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Joo-Seop Park, PhD, Divisions of Pediatric Urology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.Divisions of Pediatric Urology and Developmental BiologyCincinnati Children's Hospital Medical CenterCincinnatiOhio
| | - Noah F. Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
- Division of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
- Correspondence Address correspondence to: Noah F. Shroyer, PhD, Division of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas.Division of MedicineSection of Gastroenterology and HepatologyBaylor College of MedicineHoustonTexas
| |
Collapse
|
45
|
Scholz GM, Sulaiman NS, Al Baiiaty S, Kwa MQ, Reynolds EC. A novel regulatory relationship between RIPK4 and ELF3 in keratinocytes. Cell Signal 2016; 28:1916-1922. [PMID: 27667567 DOI: 10.1016/j.cellsig.2016.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
Keratinocytes are central to the barrier functions of surface epithelia, such as the gingiva and epidermis. RIPK4 is a key regulator of keratinocyte differentiation; however, the signalling pathways in which it functions remain poorly defined. In this study, we identified a regulatory relationship between RIPK4 and ELF3, an ETS family transcription factor. RIPK4 was shown to be important for the upregulation of ELF3 gene expression by the PKC agonist PMA in both oral and epidermal keratinocytes. RIPK4 promotes keratinocyte differentiation in part by phosphorylating and thereby activating the IRF6 transcription factor. Significantly, silencing of IRF6 inhibited the PMA-inducible expression of ELF3. A role for the GRHL3 transcription factor, a downstream target gene of IRF6, in the regulation of ELF3 expression was similarly demonstrated. ELF3 has previously been shown to regulate the expression of SPPR1A and SPRR1B, small proline-rich proteins that contribute to the cornification of keratinocytes. Consistently, RIPK4 and IRF6 were important for the PMA-inducible expression of SPRR1A and SPRR1B. They were also important for the upregulation of TGM1, a transglutaminase that catalyses the cross-linking of proteins, including small proline-rich proteins, during keratinocyte cornification. RIPK4 was also shown to upregulate the expression of TGM2 independently of IRF6. Collectively, our findings position RIPK4 upstream of a hierarchal IRF6-GRHL3-ELF3 transcription factor pathway in keratinocytes, as well as provide insight into a potential role for RIPK4 in the regulation of keratinocyte cornification.
Collapse
Affiliation(s)
- Glen M Scholz
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Nur S Sulaiman
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Sahar Al Baiiaty
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Mei Qi Kwa
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
46
|
Sano R, Nakajima T, Takahashi Y, Kubo R, Kobayashi M, Takahashi K, Takeshita H, Ogasawara K, Kominato Y. Epithelial Expression of Human ABO Blood Group Genes Is Dependent upon a Downstream Regulatory Element Functioning through an Epithelial Cell-specific Transcription Factor, Elf5. J Biol Chem 2016; 291:22594-22606. [PMID: 27587399 DOI: 10.1074/jbc.m116.730655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/30/2016] [Indexed: 01/03/2023] Open
Abstract
The human ABO blood group system is of great importance in blood transfusion and organ transplantation. The ABO system is composed of complex carbohydrate structures that are biosynthesized by A- and B-transferases encoded by the ABO gene. However, the mechanisms regulating ABO gene expression in epithelial cells remain obscure. On the basis of DNase I-hypersensitive sites in and around ABO in epithelial cells, we prepared reporter plasmid constructs including these sites. Subsequent luciferase assays and histone modifications indicated a novel positive regulatory element, designated the +22.6-kb site, downstream from ABO, and this was shown to enhance ABO promoter activity in an epithelial cell-specific manner. Expression of ABO and B-antigen was reduced in gastric cancer KATOIII cells by biallelic deletion of the +22.6-kb site using the CRISPR/Cas9 system. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that the site bound to an epithelial cell-specific transcription factor, Elf5. Mutation of the Ets binding motifs to abrogate binding of this factor reduced the regulatory activity of the +22.6-kb site. Furthermore, ELF5 knockdown with shRNA reduced both endogenous transcription from ABO and B-antigen expression in KATOIII cells. Thus, Elf5 appeared to be involved in the enhancer potential of the +22.6-kb site. These results support the contention that ABO expression is dependent upon a downstream positive regulatory element functioning through a tissue-restricted transcription factor, Elf5, in epithelial cells.
Collapse
Affiliation(s)
- Rie Sano
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan,
| | - Tamiko Nakajima
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Yoichiro Takahashi
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Rieko Kubo
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Momoko Kobayashi
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Keiko Takahashi
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Haruo Takeshita
- the Department of Legal Medicine, Shimane University School of Medicine, Izumo, Japan, and
| | | | - Yoshihiko Kominato
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| |
Collapse
|
47
|
Lee CM, Wu J, Xia Y, Hu J. ESE-1 in Early Development: Approaches for the Future. Front Cell Dev Biol 2016; 4:73. [PMID: 27446923 PMCID: PMC4924247 DOI: 10.3389/fcell.2016.00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/17/2016] [Indexed: 01/14/2023] Open
Abstract
E26 transformation-specific (Ets) family of transcription factors are characterized by the presence of Ets-DNA binding domain and have been found to be highly involved in hematopoiesis and various tissue differentiation. ESE-1, or Elf3 in mice, is a member of epithelium-specific Ets sub-family which is most prominently expressed in epithelial tissues such as the gut, mammary gland, and lung. The role of ESE-1 during embryogenesis had long been alluded from 30% fetal lethality in homozygous knockout mice and its high expression in preimplantation mouse embryos, but there has been no in-depth of analysis of ESE-1 function in early development. With improved proteomics, gene editing tools and increasing knowledge of ESE-1 function in adult tissues, we hereby propose future research directions for the study of ESE-1 in embryogenesis, including studying its regulation at the protein level and at the protein family level, as well as better defining the developmental phase under investigation. Understanding the role of ESE-1 in early development will provide new insights into its involvement in tissue regeneration and cancer, as well as how it functions with other Ets factors as a protein family.
Collapse
Affiliation(s)
- Chan Mi Lee
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids HospitalToronto, ON, Canada; Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada
| | - Jing Wu
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids Hospital Toronto, ON, Canada
| | - Yi Xia
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids HospitalToronto, ON, Canada; Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada
| | - Jim Hu
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids HospitalToronto, ON, Canada; Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada
| |
Collapse
|
48
|
Conde J, Otero M, Scotece M, Abella V, López V, Pino J, Gómez R, Lago F, Goldring MB, Gualillo O. E74-like factor 3 and nuclear factor-κB regulate lipocalin-2 expression in chondrocytes. J Physiol 2016; 594:6133-6146. [PMID: 27222093 DOI: 10.1113/jp272240] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS E74-like factor 3 (ELF3) is a transcription factor regulated by inflammation in different physio-pathological situations. Lipocalin-2 (LCN2) emerged as a relevant adipokine involved in the regulation of inflammation. In this study we showed for the first time the involvement of ELF3 in the control of LCN2 expression and its cooperation with nuclear factor-κB (NFκB). Our results will help to better understand of the role of ELF3, NFκB and LCN2 in the pathophysiology of articular cartilage. ABSTRACT E74-like factor 3 (ELF3) is a transcription factor induced by inflammatory cytokines in chondrocytes that increases gene expression of catabolic and inflammatory mediators. Lipocalin 2 (LCN2) is a novel adipokine that negatively impacts articular cartilage, triggering catabolic and inflammatory responses in chondrocytes. Here, we investigated the control of LCN2 gene expression by ELF3 in the context of interleukin 1 (IL-1)-driven inflammatory responses in chondrocytes. The interaction of ELF3 and nuclear factor-κB (NFκB) in modulating LCN2 levels was also explored. LCN2 mRNA and protein levels, as well those of several other ELF3 target genes, were determined by RT-qPCR and Western blotting. Human primary chondrocytes, primary chondrocytes from wild-type and Elf3 knockout mice, and immortalized human T/C-28a2 and murine ATDC5 cell lines were used in in vitro assays. The activities of various gene reporter constructs were evaluated by luciferase assays. Gene overexpression and knockdown were performed using specific expression vectors and siRNA technology, respectively. ELF3 overexpression transactivated the LCN2 promoter and increased the IL-1-induced mRNA and protein levels of LCN2, as well as the mRNA expression of other pro-inflammatory mediators, in human and mouse chondrocytes. We also identified a collaborative loop between ELF3 and NFκB that amplifies the induction of LCN2. Our findings show a novel role for ELF3 and NFκB in the induction of the pro-inflammatory adipokine LCN2, providing additional evidence of the interaction between ELF3 and NFκB in modulating inflammatory responses, and a better understanding of the mechanisms of action of ELF3 in chondrocytes.
Collapse
Affiliation(s)
- Javier Conde
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - Miguel Otero
- Tissue Engineering Regeneration and Repair Program, The Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Morena Scotece
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - Vanessa Abella
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - Verónica López
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - Jesús Pino
- SERGAS (Servizo Gallego de Saude), Santiago University Clinical Hospital, Division of Orthopaedic Surgery, Santiago de Compostela, Spain
| | - Rodolfo Gómez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - Francisca Lago
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - Mary B Goldring
- Tissue Engineering Regeneration and Repair Program, The Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain.
| |
Collapse
|
49
|
Abstract
The vertebrate small intestine requires an enormous surface area to effectively absorb nutrients from food. Morphological adaptations required to establish this extensive surface include generation of an extremely long tube and convolution of the absorptive surface of the tube into villi and microvilli. In this Review, we discuss recent findings regarding the morphogenetic and molecular processes required for intestinal tube elongation and surface convolution, examine shared and unique aspects of these processes in different species, relate these processes to known human maladies that compromise absorptive function and highlight important questions for future research.
Collapse
Affiliation(s)
- Katherine D Walton
- Cell and Developmental Biology Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Andrew M Freddo
- Cell and Developmental Biology Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sha Wang
- Cell and Developmental Biology Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Deborah L Gumucio
- Cell and Developmental Biology Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
50
|
Intestinal barrier dysfunction: implications for chronic inflammatory conditions of the bowel. Nutr Res Rev 2016; 29:40-59. [DOI: 10.1017/s0954422416000019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractThe intestinal epithelium of adult humans acts as a differentially permeable barrier that separates the potentially harmful contents of the lumen from the underlying tissues. Any dysfunction of this boundary layer that disturbs the homeostatic equilibrium between the internal and external environments may initiate and sustain a biochemical cascade that results in inflammation of the intestine. Key to such dysfunction are genetic, microbial and other environmental factors that, singularly or in combination, result in chronic inflammation that is symptomatic of inflammatory bowel disease (IBD). The aim of the present review is to assess the scientific evidence to support the hypothesis that defective transepithelial transport mechanisms and the heightened absorption of intact antigenic proinflammatory oligopeptides are important contributing factors in the pathogenesis of IBD.
Collapse
|