1
|
Mottawea W, Yousuf B, Sultan S, Ahmed T, Yeo J, Hüttmann N, Li Y, Bouhlel NE, Hassan H, Zhang X, Minic Z, Hammami R. Multi-level analysis of gut microbiome extracellular vesicles-host interaction reveals a connection to gut-brain axis signaling. Microbiol Spectr 2025; 13:e0136824. [PMID: 39699251 PMCID: PMC11792502 DOI: 10.1128/spectrum.01368-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024] Open
Abstract
Microbiota-released extracellular vesicles (MEVs) have emerged as a key player in intercellular signaling. However, their involvement in the gut-brain axis has been poorly investigated. We hypothesize that MEVs cross host cellular barriers and deliver their cargoes of bioactive compounds to the brain. In this study, we aimed to investigate the cargo capacity of MEVs for bioactive metabolites and their interactions with the host cellular barriers. First, we conducted a multi-omics profiling of MEVs' contents from ex vivo and stool samples. Metabolomics analysis identified various neuro-related compounds encapsulated within MEVs, such as arachidonyl-dopamine, gabapentin, glutamate, and N-acylethanolamines. Metaproteomics unveiled an enrichment of enzymes involved in neuronal metabolism, primarily in the glutamine/glutamate/gamma-aminobutyric acid (GABA) pathway. These neuro-related proteins and metabolites were correlated with Bacteroides spp. We isolated 18 Bacteroides strains and assessed their GABA production capacity in extracellular vesicles (EVs) and culture supernatant. A GABA-producing Bacteroides finegoldii, released EVs with a high GABA content (4 µM) compared to Phocaeicola massiliensis. Upon testing the capacity of MEVs to cross host barriers, MEVs exhibited a dose-dependent paracellular transport and were endocytosed by Caco-2 and hCMEC/D3 cells. Exposure of Caco-2 cells to MEVs did not alter expression of genes related to intestinal barrier integrity, while affected immune pathways and cell apoptosis process as revealed by RNA-seq analyses. In vivo, MEVs biodistributed across mice organs, including the brain, liver, stomach, and spleen. Our results highlight the ability of MEVs to cross the intestinal and blood-brain barriers to deliver their cargoes to distant organs, with potential implication for the gut-brain axis. IMPORTANCE Microbiota-released extracellular vesicles (MEVs) have emerged as a key player in intercellular signaling. In this study, a multi-level analysis revealed presence of a diverse array of biologically active molecules encapsulated within MEVs, including neuroactive metabolites, such as arachidonyl-dopamine, gabapentin, glutamate, and N-acylethanolamines, and gamma-aminobutyric acid (GABA). Metaproteomics also unveiled an enrichment of neural-related proteins, mainly the glutamine/glutamate/GABA pathway. MEVs were able to cross epithelial and blood-brain barriers in vitro. RNA-seq analyses showed that MEVs stimulate several immune pathways while suppressing cell apoptosis process. Furthermore, MEVs were able to traverse the intestinal barriers and reach distal organs, including the brain, thereby potentially influencing brain functionality and contributing to mental and behavior.
Collapse
Affiliation(s)
- Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Basit Yousuf
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Salma Sultan
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Tamer Ahmed
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - JuDong Yeo
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Yingxi Li
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Nour Elhouda Bouhlel
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Hebatoallah Hassan
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Xu Zhang
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
2
|
Jiao F, Zhou L, Wu Z. The microbiota-gut-brain axis: a potential target in the small-molecule compounds and gene therapeutic strategies for Parkinson's disease. Neurol Sci 2025; 46:561-578. [PMID: 39546084 PMCID: PMC11772541 DOI: 10.1007/s10072-024-07878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUNDS Parkinson's disease (PD) is a common neurodegenerative disorder characterized by motor symptoms and non-motor symptoms. It has been found that intestinal issues usually precede motor symptoms. Microorganisms in the gastrointestinal tract can affect central nervous system through the microbiota-gut-brain axis. Accumulating evidence has shown that disturbances in the microbiota-gut-brain axis are linked with PD. Thus, this pathway appears to be a promising therapeutic target for treatment of PD. OBJECTIVES In this review, we mainly described gut dysbiosis in PD and their underlying mechanisms for mediating neuroinflammation and peripheral immune response in PD pathology and futher discussed the potential small-molecule compounds and genic therapeutic strategies targeting the microbiota-gut-brain axis and their applications in PD. CONCLUSIONS Studies have found that some small molecule compounds and alterations of inflammation-related genes can improve the motor and non-motor symptoms of PD by improving the microbiota-gut-brain axis, which may provide potentially beneficial drugs and molecular targets for the therapies of PD.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, No. 45, Jianshe South Road, Jining City, Shandong Province, 272067, P. R. China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, P. R. China.
| | - Lincong Zhou
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Zaixin Wu
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, PR China
| |
Collapse
|
3
|
Lv Y, Xu C, Sun Q. Evaluation of the in vitro probiotic properties of Ligilactobacillus salivarius JCF5 and its impact on Jersey yogurt quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 39838832 DOI: 10.1002/jsfa.14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Jersey milk, known for its high protein content, is an excellent base for yogurt production. Given that Jersey milk is derived from Jersey cows, this study was to isolate probiotics from Jersey cow feces and investigate their potential as alternative starter cultures for fermenting Jersey milk. Our goal was to develop new starter cultures specifically suited for Jersey yogurt production, while also contributing to the diversity of fermentation agents available for dairy products. This study aimed to evaluate the probiotic functions of Ligilactobacillus salivarius isolated from the feces of newborn Jersey calves after colostrum consumption and to investigate its impact as a starter culture on the quality of Jersey yogurt. RESULTS A lactic acid bacterial strain was screened through acid and bile salt tolerance tests and simulated gastrointestinal experiments. The strain survived up to 42.8% after 3 h of cultivation at pH 2, and its viable count after 3 h of cultivation in a medium containing 0.3% bile salt was 3 log(CFU mL-1). Additionally, the survival rates after 3 h of treatment with gastric and intestinal juices were 90.67 ± 0.41% and 84.97 ± 1.40%, respectively, indicating good acid and bile salt tolerance. Identification using 16S rDNA showed that the strain was L. salivarius JCF5. This strain improved the texture properties such as viscosity, elasticity and cohesiveness of yogurt when used in combination with commercial starter cultures. CONCLUSION Ligilactobacillus salivarius JCF5 is a promising probiotic strain for enhancing the quality of Jersey yogurt. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Lv
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Chunyue Xu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Qingshen Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
4
|
Iqbal H, Kim Y, Jin M, Rhee DK. Ginseng as a therapeutic target to alleviate gut and brain diseases via microbiome regulation. J Ginseng Res 2025; 49:12-21. [PMID: 39872288 PMCID: PMC11764131 DOI: 10.1016/j.jgr.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 01/30/2025] Open
Abstract
The human gut, which contains a diverse microbiome, plays an important role in maintaining physiological balance and preserving the immune system. The complex interplay between the central nervous system (CNS) and the gut microbiome has gained significant attention due to its profound implications for overall health, particularly for gut and brain disorders. There is emerging evidence that the gut-brain axis (GBA) represents a bidirectional communication system between the CNS and the gastrointestinal tract and plays a pivotal role in regulating many aspects of human health. Ginseng has shown potential to ameliorate conditions associated with dysbiosis, such as gut and CNS disorders by restoring microbial balance and enhancing gut barrier function. This comprehensive review provides valuable insights into the potential of ginseng as a herbal modulator of GBA as a therapeutic intervention for preventing and treating gut and neurological diseases via microbiota regulation to ultimately enhance overall health. Furthermore, we emphasize the therapeutic benefits of ginseng, its ability to enhance beneficial probiotics, such as Firmicutes, Bacteroides, Lactobacillus, Bifidobacterium, and Akkermansia while reducing pathogenic bacteria prevalence, such as Helicobacter, Clostridium, and Proteobacteria. Although the connection between ginseng regulation of microbial communities in response to the gut and neuropsychiatric disorders is lacking, additional investigations are warranted to elucidate the underlying mechanisms, optimize dosages, and explore the clinical relevance of ginseng in promoting GBA balance and ultimately overall health.
Collapse
Affiliation(s)
- Hamid Iqbal
- Department of Pharmacy, CECOS University, Hayatabad, Peshawar, Pakistan
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Yihyo Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Mirim Jin
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Dong-kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Lee YB, Cho YJ, Kim JK. The unique role of fluoxetine in alleviating depression and anxiety by regulating gut microbiota and the expression of vagus nerve-mediated serotonin and melanocortin-4 receptors. Biomed Pharmacother 2025; 182:117748. [PMID: 39671722 DOI: 10.1016/j.biopha.2024.117748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/20/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024] Open
Abstract
Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) widely used for depression, but its potential effects on gut microbiota regulation and vagus nerve-mediated serotonin receptor expression have not been well studied. We investigated changes in the gut microbiome regulated by fluoxetine and vagus nerve-mediated expression of several serotonin (5-HT) receptor types associated with anxiety and depression. Oral administration of fluoxetine alleviated lipopolysaccharide (LPS)-induced depressive and anxiety behaviors, increased 5-HT1A, 2 C, and melanocortin 4 (MC4) receptor expression, and the composition of Lactobacillus in mice's gut microbiome. In contrast, in the vagotomized group, fluoxetine did not modulate behaviors and receptor expression. Increased Lactobacillus composition was found to correlate significantly with behavioral test results. The importance of Lactobacillus growth to the efficacy of fluoxetine was confirmed by the effectiveness of fluoxetine, which was reduced by co-administering antibiotics. To determine the additional impact of the gut microbiome, we isolated Limosilactobacillus reuteri and Ligilactobacillus murinus, which were increased in the fluoxetine-treated group and administrated. The results showed that administration of each strain improved anxious or depressive behavior, as did fluoxetine, and vagotomy eliminated these effects. These results suggest that fluoxetine administration increases the proportion of Lactobacillus in the gut, which modulates 5-HT1A, 2 C, and MC4 receptor expression through the enteric nervous system and improves depression.
Collapse
Affiliation(s)
- Yu-Bin Lee
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University Jeonju 54896, Republic of Korea
| | - Ye-Jin Cho
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University Jeonju 54896, Republic of Korea
| | - Jeon-Kyung Kim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University Jeonju 54896, Republic of Korea.
| |
Collapse
|
6
|
Dhanawat M, Malik G, Wilson K, Gupta S, Gupta N, Sardana S. The Gut Microbiota-Brain Axis: A New Frontier in Alzheimer's Disease Pathology. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:7-20. [PMID: 38967078 DOI: 10.2174/0118715273302508240613114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024]
Abstract
Dr. Aloysius Alzheimer, a German neuropathologist and psychiatrist, recognized the primary instance of Alzheimer's disease (AD) for a millennium, and this ailment, along with its related dementias, remains a severe overall community issue related to health. Nearly fifty million individuals worldwide suffer from dementia, with Alzheimer's illness contributing to between 60 and 70% of the instances, estimated through the World Health Organization. In addition, 82 million individuals are anticipated to be affected by the global dementia epidemic by 2030 and 152 million by 2050. Furthermore, age, environmental circumstances, and inherited variables all increase the likelihood of acquiring neurodegenerative illnesses. Most recent pharmacological treatments are found in original hypotheses of disease, which include cholinergic (drugs that show affective cholinergic system availability) as well as amyloid-accumulation (a single drug is an antagonist receptor of Nmethyl D-aspartate). In 2020, the FDA provided approval on anti-amyloid drugs. According to mounting scientific data, this gut microbiota affects healthy physiological homeostasis and has a role in the etiology of conditions that range between obesity and neurodegenerative disorders like Alzheimer's. The microbiota-gut-brain axis might facilitate interconnection among gut microbes as well as the central nervous system (CNS). Interaction among the microbiota-gut system as well as the brain occurs through the "two-way" microbiota-gut-brain axis. Along this axis, the stomach as well as the brain develop physiologically and take on their final forms. This contact is constant and is mediated by numerous microbiota-derived products. The gut microbiota, for instance, can act as non-genetic markers to set a threshold for maintaining homeostasis or getting ill. The scientific community has conducted research and found that bowel dysbiosis and gastrointestinal tract dysregulation frequently occur in Alzheimer's disease (AD) patients. In this review, the effects of the microbiota- gut-brain axis on AD pathogenesis will be discussed.
Collapse
Affiliation(s)
- Meenakshi Dhanawat
- Amity Institute of Pharmacy, Amity University Haryana, Gurugram 122413, India
| | - Garima Malik
- Department of Pharmaceutics, M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Kashish Wilson
- Department of Pharmaceutics, M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Sumeet Gupta
- Department of Pharmaceutics, M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nidhi Gupta
- Department of Pharmaceutics, M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Satish Sardana
- Amity Institute of Pharmacy, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
7
|
García Mansilla MJ, Rodríguez Sojo MJ, Lista AR, Ayala Mosqueda CV, Ruiz Malagón AJ, Gálvez J, Rodríguez Nogales A, Rodríguez Sánchez MJ. Exploring Gut Microbiota Imbalance in Irritable Bowel Syndrome: Potential Therapeutic Effects of Probiotics and Their Metabolites. Nutrients 2024; 17:155. [PMID: 39796588 PMCID: PMC11723002 DOI: 10.3390/nu17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Irritable bowel syndrome is a common functional gastrointestinal disorder characterized by recurrent abdominal discomfort, bloating, cramping, flatulence, and changes in bowel movements. The pathophysiology of IBS involves a complex interaction between motor, sensory, microbiological, immunological, and psychological factors. Diversity, stability, and metabolic activity of the gut microbiota are frequently altered in IBS, thus leading to a situation of gut dysbiosis. Therefore, the use of probiotics and probiotic-derived metabolites may be helpful in balancing the gut microbiota and alleviating irritable bowel syndrome symptoms. This review aimed to report and consolidate recent progress in understanding the role of gut dysbiosis in the pathophysiology of IBS, as well as the current studies that have focused on the use of probiotics and their metabolites, providing a foundation for their potential beneficial effects as a complementary and alternative therapeutic strategy for this condition due to the current absence of effective and safe treatments.
Collapse
Affiliation(s)
- María José García Mansilla
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
| | - María Jesús Rodríguez Sojo
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - Andrea Roxana Lista
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | | | - Antonio Jesús Ruiz Malagón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Julio Gálvez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
- CIBER de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rodríguez Nogales
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - María José Rodríguez Sánchez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| |
Collapse
|
8
|
Yue X, Liu H, Guo W, Gao Y, Shi S. Yogurt consumption and risk of accelerated aging: A population-based study from the NHANES 2003-2006. Front Nutr 2024; 11:1482980. [PMID: 39723160 PMCID: PMC11669320 DOI: 10.3389/fnut.2024.1482980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Yogurt consumption is beneficial to health, but its association with aging remains unclear. This study aims to explore the relationship between yogurt consumption and aging using data from the 2003-2006 National Health and Nutrition Examination Survey (NHANES). Methods We used data from 4,056 participants to examine the relationship between yogurt consumption and aging. Yogurt consumers were defined as individuals who consumed yogurt at least once per year. Phenotypic age acceleration was used as a surrogate marker for aging. Nearest-neighbor propensity score matching (PSM) was applied to reduce bias, followed by weighted multivariate logistic regression analysis, subgroup analysis, and restricted cubic spline (RCS) to investigate the relationship between yogurt consumption and aging. Results Yogurt consumption was associated with a lower risk of accelerated aging compared to non-consumers (OR = 0.544, 95% CI: 0.354-0.836, p = 0.020). A U-shaped relationship was observed between the frequency of yogurt intake and the risk of accelerated aging. Additionally, yogurt consumption was related to a lower risk of overweight status. Discussion These findings suggest that yogurt consumption may reduce the risk of accelerated aging and may also be linked to a lower risk of overweight status. This could provide a promising avenue for exploring the beneficial effects of dietary factors on lifespan extension.
Collapse
Affiliation(s)
- Xinghai Yue
- The Second Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Hongfei Liu
- The Second Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wenzhao Guo
- The Second Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuhang Gao
- The Second Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shaoshun Shi
- The Second Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of Intensive Care Unit, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
9
|
Esfandiari F, Bakhshi B, Shahbazi T, Derakhshan-nezhad E, Bahroudi M, Minaeeian S, Boustanshenas M, Alborzi F, Behboudi B, Fazeli MS. Significant difference in gut microbiota Bifidobacterium species but not Lactobacillus species in colorectal cancer patients in comparison with healthy volunteers using quantitative real-time PCR. PLoS One 2024; 19:e0294053. [PMID: 39602380 PMCID: PMC11602092 DOI: 10.1371/journal.pone.0294053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC), with a growing incidence trend, is one of the most diagnosed cancers and the second cause of cancer-related deaths worldwide. The literature has frequently focused attention on the correlation between the gut microbiota imbalance and CRC. The genera Lactobacillus and Bifidobacterium have recently received increasing attention because of their potential in restoring alterations in the gut microflora. Therefore, this study aimed to quantitatively evaluate the presence of lactobacilli and bifidobacterial strains in the fecal samples of CRC patients compared to healthy volunteers. METHODS From 2018 to 2019, 25 confirmed CRC patients and 25 age- and gender-matched control subjects were enrolled in the study. Bacterial DNA was extracted from the fecal samples and the presence of lactobacilli and bifidobacterial strains were quantitatively determined using quantitative real-time PCR using genus-specific 16S rDNA primers. RESULTS A significant decline in the abundance of bifidobacteria in CRC patients compared to healthy individuals (p value<0.003) was observed; however, no significant difference was observed between the two groups regarding the abundance of lactobacilli (p value<0.163). Correlation analysis showed a positive association between the lack of genetic history of CRC and the numbers of gut bifidobacteria and lactobacilli. CONCLUSION As a putative gut probiotic, depletion of bifidobacteria showed significant correlation to the development and progression of CRC; therefore, therapeutic use of these probiotic bacteria could be considered a possible adjuvant approach in disease management through modulation of the microbiota.
Collapse
Affiliation(s)
- Fahime Esfandiari
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tayebe Shahbazi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mahboube Bahroudi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Minaeeian
- Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Boustanshenas
- Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Forough Alborzi
- Division of Gastroenterology, Department of Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Behboudi
- Division of Colon and Rectal Surgery, Department of Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Sadegh Fazeli
- Division of Colon and Rectal Surgery, Department of Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Freijy TM, Cribb L, Oliver G, Metri NJ, Opie RS, Jacka FN, Hawrelak JA, Rucklidge JJ, Ng CH, Sarris J. The impact of a prebiotic-rich diet and/or probiotic supplements on human cognition: Secondary outcomes from the 'Gut Feelings' randomised controlled trial. Nutr Neurosci 2024:1-11. [PMID: 39546418 DOI: 10.1080/1028415x.2024.2425570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
BACKGROUND Emerging evidence indicates that gut microbiota-targeted interventions may lead to improvements in cognition. We assessed whether a prebiotic-rich dietary intervention, probiotic supplement, or synbiotic combination of both would improve human cognition, as part of the 'Gut Feelings' trial. METHODS An 8-week, 2 × 2 factorial randomised controlled trial was conducted on 118 adults with low mood and potential for dietary improvement. Treatment arms: (1) probiotic supplement and diet-as-usual (probiotic group); (2) high-prebiotic diet and placebo supplement (prebiotic diet group); (3) probiotic supplement and high-prebiotic diet (synbiotic group); and (4) placebo supplement and diet-as-usual (placebo group). At baseline and 8-weeks, the Cogstate Brief Battery was administered, testing processing speed, attention, visual learning, and working memory. Data were analysed using Bayesian linear regression. RESULTS We found weak evidence that the probiotic improved working memory (Cohen's d = -0.32, 95% CI: -0.67, 0.03; posterior probability [post. prob] of benefit: 96%). For the other treatments, there was little or no evidence of cognitive improvement. We found weak evidence that the prebiotic diet impaired processing speed (d = 0.25, 95% CI: -0.02, 0.51; post. prob of harm: 97%). There was little indication of a synergistic interaction between the probiotic and prebiotic diet. CONCLUSION We found suggestive evidence of a probiotic-induced improvement in working memory, and prebiotic-induced impairment in processing speed. However, the evidence remains inconclusive regarding any cognitive benefit or harm induced by the probiotic, prebiotic diet, or synbiotic treatments. Larger intervention studies are recommended, with inclusion of neuroimaging or electrophysiology measures.Trial Registration: Australian New Zealand Clinical Trials Registry (ACTRN12617000795392; registered 31 May 2017).
Collapse
Affiliation(s)
- Tanya M Freijy
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Richmond, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Lachlan Cribb
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Richmond, Australia
| | - Georgina Oliver
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Richmond, Australia
| | - Najwa-Joelle Metri
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Rachelle S Opie
- IPAN, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Felice N Jacka
- Food & Mood Centre, IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Jason A Hawrelak
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
- Human Nutrition and Functional Medicine Department, University of Western States, Portland, OR, USA
| | - Julia J Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Chee H Ng
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Richmond, Australia
| | - Jerome Sarris
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| |
Collapse
|
11
|
McDonnell SC, Graham-Engeland JE, Sliwinski MJ, Engeland CG, Knight EL. Cognotoxemia: endotoxemia and gender predict changes in working memory performance in healthy adults. Front Neurosci 2024; 18:1453325. [PMID: 39568668 PMCID: PMC11577790 DOI: 10.3389/fnins.2024.1453325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Examining the contribution of peripheral systems to cognitive function under healthy circumstances may improve our understanding of the systems that confer risk or resilience in diseased states. Endotoxemia-a pro-inflammatory response to the translocation of bacteria that reside in the gut on other sources (e.g., respiratory tract; infection) into the blood-was hypothesized to relate to worsened cognitive functioning. Gender was explored as a moderator. Methods A sample of 162 healthy adults (25-65 years old) provided plasma, from which a measure of endotoxemia was determined [i.e., the ratio of lipopolysaccharide binding protein (LBP) to soluble cluster of differentiation 14 receptors (sCD14)]. Participants performed an array of laboratory and ambulatory cognitive tasks at three timepoints, each separated by 9 months. Two sets of multilevel models were used: Prospective models, linking endotoxemia at baseline with changes in cognition across time, and coupling models, which examine correlations of endotoxemia with cognition across time. Results A prospective model indicated lower levels of endotoxemia at baseline predicted improvements in working memory across the three timepoints; higher levels were associated with no change in cognitive performance. Gender was not found to modulate this finding. Interestingly, a coupling analysis of endotoxemia and gender across time showed that in men, those with higher endotoxemia performed better at the working memory task overall; in women, working memory performance was similar regardless of endotoxemia level. Conclusion This work provides initial evidence that endotoxemia may be associated with a dampening of improvement in working memory, improvement consistent with practice effects, which should be expected in a sample of healthy, relatively young adults. The findings also provide preliminary evidence that, at least for men, higher degrees of endotoxemia are not inherently negative, and may link with short term positive outcomes for working memory.
Collapse
Affiliation(s)
- Sally C McDonnell
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Jennifer E Graham-Engeland
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States
- Center for Healthy Aging, Pennsylvania State University, University Park, PA, United States
| | - Martin J Sliwinski
- Center for Healthy Aging, Pennsylvania State University, University Park, PA, United States
- Department of Human Development and Family Studies, Pennsylvania State University, University Park, PA, United States
| | - Christopher G Engeland
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States
- Center for Healthy Aging, Pennsylvania State University, University Park, PA, United States
- Ross and Carol Nese College of Nursing, Pennsylvania State University, University Park, PA, United States
| | - Erik L Knight
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
12
|
Ueda E, Matsunaga M, Fujihara H, Kajiwara T, Takeda AK, Watanabe S, Hagihara K, Myowa M. Temperament in Early Childhood Is Associated With Gut Microbiota Composition and Diversity. Dev Psychobiol 2024; 66:e22542. [PMID: 39237483 DOI: 10.1002/dev.22542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Temperament is a key predictor of human mental health and cognitive and emotional development. Although human fear behavior is reportedly associated with gut microbiome in infancy, infant gut microbiota changes dramatically during the first 5 years, when the diversity and composition of gut microbiome are established. This period is crucial for the development of the prefrontal cortex, which is involved in emotion regulation. Therefore, this study investigated the relationship between temperament and gut microbiota in 284 preschool children aged 3-4 years. Child temperament was assessed by maternal reports of the Children's Behavior Questionnaire. Gut microbiota (alpha/beta diversity and genera abundance) was evaluated using 16S rRNA sequencing of stool samples. A low abundance of anti-inflammatory bacteria (e.g., Faecalibacterium) and a high abundance of pro-inflammatory bacteria (e.g., Eggerthella, Flavonifractor) were associated with higher negative emotionality and stress response (i.e., negative affectivity, β = -0.17, p = 0.004) and lower positive emotionality and reward-seeking (i.e., surgency/extraversion, β = 0.15, p = 0.013). Additionally, gut microbiota diversity was associated with speed of response initiation (i.e., impulsivity, a specific aspect of surgency/extraversion, β = 0.16, p = 0.008). This study provides insight into the biological mechanisms of temperament and takes important steps toward identifying predictive markers of psychological/emotional risk.
Collapse
Affiliation(s)
- Eriko Ueda
- Graduate School of Education, Kyoto University, Kyoto, Kyoto, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Michiko Matsunaga
- Graduate School of Education, Kyoto University, Kyoto, Kyoto, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hideaki Fujihara
- Graduate School of Education, Kyoto University, Kyoto, Kyoto, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Takamasa Kajiwara
- Graduate School of Education, Kyoto University, Kyoto, Kyoto, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | | | | | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masako Myowa
- Graduate School of Education, Kyoto University, Kyoto, Kyoto, Japan
| |
Collapse
|
13
|
Baenas I, Camacho-Barcia L, Miranda-Olivos R, Solé-Morata N, Misiolek A, Jiménez-Murcia S, Fernández-Aranda F. Probiotic and prebiotic interventions in eating disorders: A narrative review. EUROPEAN EATING DISORDERS REVIEW 2024; 32:1085-1104. [PMID: 38297469 DOI: 10.1002/erv.3069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/17/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
AIMS The review aimed to summarise and discuss findings focused on therapeutic probiotic and prebiotic interventions in eating disorders (ED). METHODS Using PubMed/MEDLINE, Cochrane Library, and Web of Science all published studies were retrieved until February 2023, following PRISMA guidelines. From the 111 initial studies, 5 met the inclusion criteria for this review. RESULTS All studies included in this narrative review were focused on anorexia nervosa (AN). Three longitudinal, randomised, controlled trials aimed to evaluate interventions with probiotics (Lactobacillus reuteri, yoghurt with Lactobacillus, and Streptococcus) in children and adolescents. These studies primarily emphasised medical outcomes and anthropometric measures following the administration of probiotics. However, the findings yielded mixed results in terms of short-term weight gain or alterations in specific immunological parameters. With a lower level of evidence, supplementation with synbiotics (probiotic + prebiotic) has been associated with improvements in microbiota diversity and attenuation of inflammatory responses. CONCLUSIONS Research on probiotics and prebiotics in ED is limited, primarily focussing on anorexia nervosa (AN). Their use in AN regarding medical and anthropometric outcomes needs further confirmation and future research should be warranted to assess their impact on psychological and ED symptomatology, where there is a notable gap in the existing literature.
Collapse
Affiliation(s)
- Isabel Baenas
- Department of Clinical Psychology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Instituto Salud Carlos III, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Clinical Psychology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Instituto Salud Carlos III, Barcelona, Spain
| | - Romina Miranda-Olivos
- Department of Clinical Psychology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Instituto Salud Carlos III, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain
| | - Neus Solé-Morata
- Department of Clinical Psychology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alejandra Misiolek
- Proyecto Autoestima Relaciones y Trastornos Alimenticios (ART), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Clinical Psychology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Psychology Services, University of Barcelona, Barcelona, Spain
| | - Fernando Fernández-Aranda
- Department of Clinical Psychology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
14
|
Schneider E, Balasubramanian R, Ferri A, Cotter PD, Clarke G, Cryan JF. Fibre & fermented foods: differential effects on the microbiota-gut-brain axis. Proc Nutr Soc 2024:1-16. [PMID: 39449646 DOI: 10.1017/s0029665124004907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The ability to manipulate brain function through the communication between the microorganisms in the gastrointestinal tract and the brain along the gut-brain axis has emerged as a potential option to improve cognitive and emotional health. Dietary composition and patterns have demonstrated a robust capacity to modulate the microbiota-gut-brain axis. With their potential to possess pre-, pro-, post-, and synbiotic properties, dietary fibre and fermented foods stand out as potent shapers of the gut microbiota and subsequent signalling to the brain. Despite this potential, few studies have directly examined the mechanisms that might explain the beneficial action of dietary fibre and fermented foods on the microbiota-gut-brain axis, thus limiting insight and treatments for brain dysfunction. Herein, we evaluate the differential effects of dietary fibre and fermented foods from whole food sources on cognitive and emotional functioning. Potential mediating effects of dietary fibre and fermented foods on brain health via the microbiota-gut-brain axis are described. Although more multimodal research that combines psychological assessments and biological sampling to compare each food type is needed, the evidence accumulated to date suggests that dietary fibre, fermented foods, and/or their combination within a psychobiotic diet can be a cost-effective and convenient approach to improve cognitive and emotional functioning across the lifespan.
Collapse
Affiliation(s)
| | - Ramya Balasubramanian
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Aimone Ferri
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Sha C, Jin Z, Ku SY, Kogosov AS, Yu S, Bergese SD, Hsieh H. Necrotizing Enterocolitis and Neurodevelopmental Impairments: Microbiome, Gut, and Brain Entanglements. Biomolecules 2024; 14:1254. [PMID: 39456187 PMCID: PMC11505939 DOI: 10.3390/biom14101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
There is significant communication and interdependence among the gut, the microbiome, and the brain during development. Diseases, such as necrotizing enterocolitis (NEC), highlight how injury to the immature gastrointestinal tract leads to long-term neurological consequences, due to vulnerabilities of the brain in the early stages of life. A better understanding of the developing gut-microbiota-brain axis is needed to both prevent and treat the devastating consequences of these disease processes. The gut-microbiota-brain axis is a bidirectional communication pathway that includes metabolic, nervous, endocrine, and immune components. In this review, we discuss gut development, microbiome colonization and maturation, and the interactions that influence neurodevelopment in the context of NEC. We describe the components of the gut-brain axis and how the microbiome is an integral member of this relationship. Finally, we explore how derangements within the microbiome and gut-microbiota-brain axis affect the normal development and function of the other systems and long-term neurodevelopmental consequences for patients.
Collapse
Affiliation(s)
- Cuilee Sha
- Department of Pharmacological Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA;
- Center for Nervous System Disorders, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Zhaosheng Jin
- Department of Anesthesiology, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA;
| | - Stella Y. Ku
- Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Ann S. Kogosov
- Renaissance School of Medicine, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Sun Yu
- Department of Surgery, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA
| | - Sergio D. Bergese
- Department of Anesthesiology, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA;
| | - Helen Hsieh
- Center for Nervous System Disorders, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
- Department of Surgery, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
16
|
Fu Y, Gu Z, Cao H, Zuo C, Huang Y, Song Y, Jiang Y, Wang F. The role of the gut microbiota in neurodegenerative diseases targeting metabolism. Front Neurosci 2024; 18:1432659. [PMID: 39391755 PMCID: PMC11464490 DOI: 10.3389/fnins.2024.1432659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
In recent years, the incidence of neurodegenerative diseases (NDs) has gradually increased over the past decades due to the rapid aging of the global population. Traditional research has had difficulty explaining the relationship between its etiology and unhealthy lifestyle and diets. Emerging evidence had proved that the pathogenesis of neurodegenerative diseases may be related to changes of the gut microbiota's composition. Metabolism of gut microbiota has insidious and far-reaching effects on neurodegenerative diseases and provides new directions for disease intervention. Here, we delineated the basic relationship between gut microbiota and neurodegenerative diseases, highlighting the metabolism of gut microbiota in neurodegenerative diseases and also focusing on treatments for NDs based on gut microbiota. Our review may provide novel insights for neurodegeneration and approach a broadly applicable basis for the clinical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yufeng Fu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengchao Zuo
- Department of Rehabilitation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Song
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Furong Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Crocetta A, Liloia D, Costa T, Duca S, Cauda F, Manuello J. From gut to brain: unveiling probiotic effects through a neuroimaging perspective-A systematic review of randomized controlled trials. Front Nutr 2024; 11:1446854. [PMID: 39360283 PMCID: PMC11444994 DOI: 10.3389/fnut.2024.1446854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
The gut-brain axis, a bidirectional communication network between the gastrointestinal system and the brain, significantly influences mental health and behavior. Probiotics, live microorganisms conferring health benefits, have garnered attention for their potential to modulate this axis. However, their effects on brain function through gut microbiota modulation remain controversial. This systematic review examines the effects of probiotics on brain activity and functioning, focusing on randomized controlled trials using both resting-state and task-based functional magnetic resonance imaging (fMRI) methodologies. Studies investigating probiotic effects on brain activity in healthy individuals and clinical populations (i.e., major depressive disorder and irritable bowel syndrome) were identified. In healthy individuals, task-based fMRI studies indicated that probiotics modulate brain activity related to emotional regulation and cognitive processing, particularly in high-order areas such as the amygdala, precuneus, and orbitofrontal cortex. Resting-state fMRI studies revealed changes in connectivity patterns, such as increased activation in the Salience Network and reduced activity in the Default Mode Network. In clinical populations, task-based fMRI studies showed that probiotics could normalize brain function in patients with major depressive disorder and irritable bowel syndrome. Resting-state fMRI studies further suggested improved connectivity in mood-regulating networks, specifically in the subcallosal cortex, amygdala and hippocampus. Despite promising findings, methodological variability and limited sample sizes emphasize the need for rigorous, longitudinal research to clarify the beneficial effects of probiotics on the gut-brain axis and mental health.
Collapse
Affiliation(s)
- Annachiara Crocetta
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Donato Liloia
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Tommaso Costa
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Sergio Duca
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Franco Cauda
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Jordi Manuello
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Move’N’Brains Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
18
|
Prescott SL, Holton KF, Lowry CA, Nicholson JJ, Logan AC. The Intersection of Ultra-Processed Foods, Neuropsychiatric Disorders, and Neurolaw: Implications for Criminal Justice. NEUROSCI 2024; 5:354-377. [PMID: 39483285 PMCID: PMC11477939 DOI: 10.3390/neurosci5030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
Over the last decade there has been increasing interest in the links between the consumption of ultra-processed foods and various neuropsychiatric disorders, aggression, and antisocial behavior. Neurolaw is an interdisciplinary field that seeks to translate the rapid and voluminous advances in brain science into legal decisions and policy. An enhanced understanding of biophysiological mechanisms by which ultra-processed foods influence brain and behavior allows for a historical reexamination of one of forensic neuropsychiatry's most famous cases-The People v. White and its associated 'Twinkie Defense'. Here in this Viewpoint article, we pair original court transcripts with emergent research in neurolaw, including nutritional neuroscience, microbiome sciences (legalome), pre-clinical mechanistic research, and clinical intervention trials. Advances in neuroscience, and related fields such as the microbiome, are challenging basic assumptions in the criminal justice system, including notions of universal free will. Recent dismissals of criminal charges related to auto-brewery syndrome demonstrate that courts are open to advances at the intersection of neuromicrobiology and nutritional neuroscience, including those that relate to criminal intent and diminished capacity. As such, it is our contention that experts in the neurosciences will play an increasing role in shaping research that underpins 21st-century courtroom discourse, policy, and decision-making.
Collapse
Affiliation(s)
- Susan L Prescott
- Nova Institute for Health, Baltimore, MD 21231, USA;
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kathleen F Holton
- Departments of Health Studies and Neuroscience, American University, Washington, DC 20016, USA;
| | - Christopher A Lowry
- Department of Integrative Physiology, Department of Psychology and Neuroscience, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA;
| | - Jeffrey J Nicholson
- Law and Government, Humber College Institute of Technology & Advanced Learning, Toronto, ON M9W 5L7, Canada;
| | - Alan C Logan
- Nova Institute for Health, Baltimore, MD 21231, USA;
| |
Collapse
|
19
|
Pasqualette L, Fidalgo TKDS, Freitas-Fernandes LB, Souza GGL, Imbiriba LA, Lobo LA, Volchan E, Domingues RMCP, Valente AP, Miranda KR. Alterations in Vagal Tone Are Associated with Changes in the Gut Microbiota of Adults with Anxiety and Depression Symptoms: Analysis of Fecal Metabolite Profiles. Metabolites 2024; 14:450. [PMID: 39195546 DOI: 10.3390/metabo14080450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Accumulating evidence suggests that interactions between the brain and gut microbiota significantly impact brain function and mental health. In the present study, we aimed to investigate whether young, healthy adults without psychiatric diagnoses exhibit differences in metabolic stool and microbiota profiles based on depression/anxiety scores and heart rate variability (HRV) parameters. Untargeted nuclear magnetic resonance-based metabolomics was used to identify fecal metabolic profiles. Results were subjected to multivariate analysis through principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), and the metabolites were identified through VIP score. Metabolites separating asymptomatic and symptomatic groups were acetate, valine, and glutamate, followed by sugar regions, glutamine, acetone, valerate, and acetoacetate. The main metabolites identified in high vagal tone (HVT) and low vagal tone (LVT) groups were acetate, valerate, and glutamate, followed by propionate and butyrate. In addition to the metabolites identified by the PLS-DA test, significant differences in aspartate, sarcosine, malate, and methionine were observed between the groups. Levels of acetoacetate were higher in both symptomatic and LVT groups. Valerate levels were significantly increased in the symptomatic group, while isovalerate, propionate, glutamate, and acetone levels were significantly increased in the LVT group. Furthermore, distinct abundance between groups was only confirmed for the Firmicutes phylum. Differences between participants with high and low vagal tone suggest that certain metabolites are involved in communication between the vagus nerve and the brain.
Collapse
Affiliation(s)
- Laura Pasqualette
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Developmental and Educational Psychology, University of Bremen, 28359 Bremen, Germany
| | - Tatiana Kelly da Silva Fidalgo
- Pediatric Dentistry, Department of Preventive and Community Dentistry, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Liana Bastos Freitas-Fernandes
- National Centre of Nuclear Magnetic Resonance/CENABIO, Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gabriela Guerra Leal Souza
- Laboratory of Psychophysiology, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Luís Aureliano Imbiriba
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Leandro Araujo Lobo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eliane Volchan
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Ana Paula Valente
- National Centre of Nuclear Magnetic Resonance/CENABIO, Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Karla Rodrigues Miranda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
20
|
Castells-Nobau A, Mayneris-Perxachs J, Fernández-Real JM. Unlocking the mind-gut connection: Impact of human microbiome on cognition. Cell Host Microbe 2024; 32:1248-1263. [PMID: 39146797 DOI: 10.1016/j.chom.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
This perspective explores the current understanding of the gut microbiota's impact on cognitive function in apparently healthy humans and in individuals with metabolic disease. We discuss how alterations in gut microbiota can influence cognitive processes, focusing not only on bacterial composition but also on often overlooked components of the gut microbiota, such as bacteriophages and eukaryotes, as well as microbial functionality. We examine the mechanisms through which gut microbes might communicate with the central nervous system, highlighting the complexity of these interactions. We provide a comprehensive overview of the emerging field of microbiota-gut-brain interactions and its significance for cognitive health. Additionally, we summarize novel therapeutic strategies designed to promote cognitive resilience and reduce the risk of cognitive disorders, focusing on interventions that target the gut microbiota. An in-depth understanding of the microbiome-brain axis is imperative for developing innovative treatments aimed at improving cognitive health.
Collapse
Affiliation(s)
- Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
21
|
Chen X, Zhu Z, Zhang X, Chen L, Gu Q, Li P. Lactobacillus paracasei ZFM54 alters the metabolomic profiles of yogurt and the co-fermented yogurt improves the gut microecology of human adults. J Dairy Sci 2024; 107:5280-5300. [PMID: 38460876 DOI: 10.3168/jds.2023-24332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/02/2024] [Indexed: 03/11/2024]
Abstract
Gut microbiota imbalance could lead to various diseases, making it important to optimize the structure of the gut flora in adults. Lactobacillus paracasei ZFM54 is a bacteriocin- and folic acid-producing Lactobacillus strain. Herein, L. paracasei ZFM54 was used as the potentially probiotic bacterium to ferment milk together with a yogurt starter. We optimized the fermentation conditions, and the obtained yogurts were then subjected to volatile and nonvolatile metabolome analysis, showing that L. paracasei ZFM54 can not only improve the acidity, water holding capacity and live lactic acid bacteria counts, but also improve many volatile acid contents and increase some beneficial nonvolatile metabolites, such as N-ethyl glycine and l-lysine, endowing the yogurt with more flavor and better function. The regulatory effects of the co-fermented yogurt on the intestinal microecology of volunteers were investigated by 16S rRNA sequencing and short-chain fatty acid (SCFA) analysis after consuming the yogurt for a 2-wk period, showing a better effect to increase the relative abundance of beneficial bacteria such as Ruminococcus and Alistipes, decrease harmful bacteria (Escherichia-Shigella and Enterobacter), and enhance the production of SCFA (acetate, propionate, and butyric acid) compared with the control yogurt. We found that L. paracasei ZFM54 can significantly improve the health benefits of yogurt, laying the foundation for its commercial application in improving gut microbiota.
Collapse
Affiliation(s)
- Xiangfeng Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Zichun Zhu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Xin Zhang
- College of Forest and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Lin Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
22
|
Zhang M, Liang C, Chen X, Cai Y, Cui L. Interplay between microglia and environmental risk factors in Alzheimer's disease. Neural Regen Res 2024; 19:1718-1727. [PMID: 38103237 PMCID: PMC10960290 DOI: 10.4103/1673-5374.389745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/09/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease, among the most common neurodegenerative disorders, is characterized by progressive cognitive impairment. At present, the Alzheimer's disease main risk remains genetic risks, but major environmental factors are increasingly shown to impact Alzheimer's disease development and progression. Microglia, the most important brain immune cells, play a central role in Alzheimer's disease pathogenesis and are considered environmental and lifestyle "sensors." Factors like environmental pollution and modern lifestyles (e.g., chronic stress, poor dietary habits, sleep, and circadian rhythm disorders) can cause neuroinflammatory responses that lead to cognitive impairment via microglial functioning and phenotypic regulation. However, the specific mechanisms underlying interactions among these factors and microglia in Alzheimer's disease are unclear. Herein, we: discuss the biological effects of air pollution, chronic stress, gut microbiota, sleep patterns, physical exercise, cigarette smoking, and caffeine consumption on microglia; consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer's disease; and present the neuroprotective effects of a healthy lifestyle. Toward intervening and controlling these environmental risk factors at an early Alzheimer's disease stage, understanding the role of microglia in Alzheimer's disease development, and targeting strategies to target microglia, could be essential to future Alzheimer's disease treatments.
Collapse
Affiliation(s)
- Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Chunmei Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| |
Collapse
|
23
|
Lin D, Fu Z, Liu J, Perrone-Bizzozero N, Hutchison KE, Bustillo J, Du Y, Pearlson G, Calhoun VD. Association between the oral microbiome and brain resting state connectivity in schizophrenia. Schizophr Res 2024; 270:392-402. [PMID: 38986386 DOI: 10.1016/j.schres.2024.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Recent microbiome-brain axis findings have shown evidence of the modulation of microbiome community as an environmental mediator in brain function and psychiatric illness. This work is focused on the role of the microbiome in understanding a rarely investigated environmental involvement in schizophrenia (SZ), especially in relation to brain circuit dysfunction. We leveraged high throughput microbial 16s rRNA sequencing and functional neuroimaging techniques to enable the delineation of microbiome-brain network links in SZ. N = 213 SZ and healthy control subjects were assessed for the oral microbiome. Among them, 139 subjects were scanned by resting-state functional magnetic resonance imaging (rsfMRI) to derive brain functional connectivity. We found a significant microbiome compositional shift in SZ beta diversity (weighted UniFrac distance, p = 6 × 10-3; Bray-Curtis distance p = 0.021). Fourteen microbial species involving pro-inflammatory and neurotransmitter signaling and H2S production, showed significant abundance alterations in SZ. Multivariate analysis revealed one pair of microbial and functional connectivity components showing a significant correlation of 0.46. Thirty five percent of microbial species and 87.8 % of brain functional network connectivity from each component also showed significant differences between SZ and healthy controls with strong performance in classifying SZ from healthy controls, with an area under curve (AUC) = 0.84 and 0.87, respectively. The results suggest a potential link between oral microbiome dysbiosis and brain functional connectivity alteration in relation to SZ, possibly through immunological and neurotransmitter signaling pathways and the hypothalamic-pituitary-adrenal axis, supporting for future work in characterizing the role of oral microbiome in mediating effects on SZ brain functional activity.
Collapse
Affiliation(s)
- Dongdong Lin
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America.
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| | - Nora Perrone-Bizzozero
- Department of neuroscience, University of New Mexico, Albuquerque, NM, 87109, United States of America
| | - Kent E Hutchison
- Department of psychology and neuroscience, University of Colorado Boulder, Boulder, CO 80309, United States of America
| | - Juan Bustillo
- Department of psychiatry, University of New Mexico, Albuquerque, NM 87109, United States of America
| | - Yuhui Du
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| | - Godfrey Pearlson
- Olin Research Center, Institute of Living Hartford, CT 06102, United States of America; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States of America; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, United States of America
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| |
Collapse
|
24
|
Schneider E, O'Riordan KJ, Clarke G, Cryan JF. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis. Nat Metab 2024; 6:1454-1478. [PMID: 39174768 DOI: 10.1038/s42255-024-01108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The prevalence of brain disorders, including stress-related neuropsychiatric disorders and conditions with cognitive dysfunction, is rising. Poor dietary habits contribute substantially to this accelerating trend. Conversely, healthy dietary intake supports mood and cognitive performance. Recently, the communication between the microorganisms within the gastrointestinal tract and the brain along the gut-brain axis has gained prominence as a potential tractable target to modulate brain health. The composition and function of the gut microbiota is robustly influenced by dietary factors to alter gut-brain signalling. To reflect this interconnection between diet, gut microbiota and brain functioning, we propose that a diet-microbiota-gut-brain axis exists that underpins health and well-being. In this Review, we provide a comprehensive overview of the interplay between diet and gut microbiota composition and function and the implications for cognition and emotional functioning. Important diet-induced effects on the gut microbiota for the development, prevention and maintenance of neuropsychiatric disorders are described. The diet-microbiota-gut-brain axis represents an uncharted frontier for brain health diagnostics and therapeutics across the lifespan.
Collapse
Affiliation(s)
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
25
|
Mysonhimer AR, Brown MD, Alvarado DA, Cornman E, Esmail M, Abdiel T, Gutierrez K, Vasquez J, Cannavale CN, Miller MJ, Khan NA, Holscher HD. Honey Added to Yogurt with Bifidobacterium animalis subsp. lactis DN-173 010/CNCM I-2494 Supports Probiotic Enrichment but Does Not Reduce Intestinal Transit Time in Healthy Adults: A Randomized, Controlled, Crossover Trial. J Nutr 2024; 154:2396-2410. [PMID: 38830472 PMCID: PMC11375456 DOI: 10.1016/j.tjnut.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Honey improves probiotic survival in vitro. However, if this effect translates to humans has not been investigated. OBJECTIVES We aimed to determine effects of honey plus yogurt containing the probiotic Bifidobacterium animalis subsp. lactis DN-173 010/CNCM I-2494 (B. animalis) on intestinal transit time, probiotic enrichment, digestive health, mood, and cognition in adults. METHODS Sixty-six healthy adults (34 female; 33.6 ± 9.8 y; 24.6 ± 3.0 kg/m2) in a crossover trial were randomly assigned to 2-wk yogurt conditions in a counterbalanced order with ≥4-wk washout: 1) Honey (HON): yogurt plus honey and 2) Negative Control (NC): heat-treated yogurt plus sugar. Of the participants, n = 62 completed the trial, and n = 37 (17 female; 32.0 ± 8.3 y; 25.0 ± 2.9 kg/m2) elected to enroll in a third condition (a nonrandomized study extension) after ≥4-wk washout with a reference Positive Control (PC): yogurt plus sugar. At baseline and end of each of the 3 conditions, intestinal transit time was measured with dye capsules; probiotic abundance with fecal DNA 16S sequencing; digestive health with symptom/function records, Bristol stool consistency, Gastrointestinal Tolerability, and Gastrointestinal Quality of Life Index; mood with Positive and Negative Affect Schedule-Short Form, Depression Anxiety Stress Scales-42, Patient-Reported Outcomes Measurement Information System questionnaires, and an emotional image task; and cognition with a spatial reconstruction task. Data were analyzed using linear mixed-effects models (LMMs) with significance at P ≤ 0.05. Baseline and end data were included in the LMM, with fixed effects being treatment, time, treatment by time interaction, and baseline covariate, and the random effect being the participant. RESULTS B. animalis was enriched in HON (d = 3.54; P = 0.0002) compared to controls with linear discriminant analysis effect size. Intestinal transit time, gastrointestinal health, mood, and cognition did not differ between conditions (LMM: Ps > 0.05). CONCLUSIONS Yogurt + honey enriched B. animalis but did not reduce intestinal transit time or have other functional gastrointestinal, mood, or cognitive effects in adults. This trial was registered at www. CLINICALTRIALS gov as NCT04187950 and NCT04901390.
Collapse
Affiliation(s)
- Annemarie R Mysonhimer
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Marina D Brown
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - David A Alvarado
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Eva Cornman
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Myra Esmail
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Tehila Abdiel
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Karen Gutierrez
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jorge Vasquez
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Corinne N Cannavale
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States; Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States; Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
26
|
Chakravarty K, Gaur S, Kumar R, Jha NK, Gupta PK. Exploring the Multifaceted Therapeutic Potential of Probiotics: A Review of Current Insights and Applications. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10328-x. [PMID: 39069588 DOI: 10.1007/s12602-024-10328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
The interplay between human health and the microbiome has gained extensive attention, with probiotics emerging as pivotal therapeutic agents due to their vast potential in treating various health issues. As significant modulators of the gut microbiota, probiotics are crucial in maintaining intestinal homeostasis and enhancing the synthesis of short-chain fatty acids. Despite extensive research over the past decades, there remains an urgent need for a comprehensive and detailed review that encapsulates probiotics' latest insights and applications. This review focusses on the multifaceted roles of probiotics in promoting health and preventing disease, highlighting the complex mechanisms through which these beneficial bacteria influence both gut flora and the human body at large. This paper also explores probiotics' neurological and gastrointestinal applications, focussing on their significant impact on the gut-brain axis and their therapeutic potential in a broad spectrum of pathological conditions. Current innovations in probiotic formulations, mainly focusing on integrating genomics and biotechnological advancements, have also been comprehensively discussed herein. This paper also critically examines the regulatory landscape that governs probiotic use, ensuring safety and efficacy in clinical and dietary settings. By presenting a comprehensive overview of recent studies and emerging trends, this review aims to illuminate probiotics' extensive therapeutic capabilities, leading to future research and clinical applications. However, besides extensive research, further advanced explorations into probiotic interactions and mechanisms will be essential for developing more targeted and effective therapeutic strategies, potentially revolutionizing health care practices for consumers.
Collapse
Affiliation(s)
- Kashyapi Chakravarty
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India.
| | - Rohit Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, 140401, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
27
|
Hameed J, Nazir R. Probiotic Potential of Lactobacillus and Enterococcus Strains Isolated From the Faecal Microbiota of Critically Endangered Hangul Deer (Cervus hanglu hanglu): Implications for Conservation Management. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10325-0. [PMID: 39046670 DOI: 10.1007/s12602-024-10325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
The mammalian gut microbiota plays a crucial role in promoting host health, and lactic acid bacteria (LAB) are commonly employed as probiotics for their beneficial effects. The Hangul deer (Cervus hanglu hanglu), a critically endangered red deer subspecies found in the Indian subcontinent, requires meticulous health management for its conservation. This pioneering study aimed to isolate, identify, and evaluate the in-vitro probiotic functional properties of LAB strains from the faeces of Hangul deer. A total of 27 LAB strains were isolated and identified using 16S rDNA gene sequencing, followed by comprehensive probiotic characterization and safety assessment. Remarkably, four species exhibited robust resistance and survivability against varying pH levels and bile salts, along with high aggregation and co-aggregation capacities. Notably, Lactobacillus acidophilus and Enterococcus mundtii strains displayed antibacterial activities. Safety assessment revealed the absence of hemolytic activity and virulence genes in all four strains. Antibiotic susceptibility testing showed that Lactobacillus acidophilus and Enterococcus casseliflavus were susceptible to all tested antibiotics, while Enterococcus mundtii exhibited resistance to clindamycin, and Enterococcus gallinarum exhibited resistance to erythromycin. These findings suggest that the isolated LAB strains possess advantageous probiotic characteristics and hold potential as dietary supplements for promoting the health and disease management of Hangul deer.
Collapse
Affiliation(s)
- Javaid Hameed
- Microbiology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006, J&K, India
| | - Ruqeya Nazir
- Microbiology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006, J&K, India.
| |
Collapse
|
28
|
Liu S, Xi H, Xue X, Sun X, Huang H, Fu D, Mi Y, He Y, Yang P, Tang Y, Zheng P. Clostridium butyricum regulates intestinal barrier function via trek1 to improve behavioral abnormalities in mice with autism spectrum disorder. Cell Biosci 2024; 14:95. [PMID: 39034406 PMCID: PMC11265103 DOI: 10.1186/s13578-024-01278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that has been found to be associated with dysregulation of gastrointestinal functions and gut microbial homeostasis (the so-called "gut-brain axis"). ASD is often accompanied by poor performances in social interaction and repetitive behaviors. Studies on the gut-brain axis provide novel insights and candidate targets for ASD therapeutics and diagnosis. Based on the ASD mice model, this work aims to reveal the mechanisms behind the interaction of intestinal barrier function and probiotics in ASD mouse models. RESULTS We found an altered intestinal barrier in both BTBR T+ Itpr3tf/J (BTBR) and valproic acid (VPA) mice, including increased intestinal permeability, decreased expression of intestinal tight junction proteins (claudin1, claudin3, and occludin), and increased levels of IL-6, TNF-α, and IFN-γ. Based on intestinal microbial alternation, C. butyricum can drive reduced expression of histone deacetylases 1 (HDAC1) and enhanced intestinal barrier function, significantly promoting behavioral abnormalities of ASD in BTBR mice. In parallel, we confirmed that C. butyricum was involved in the regulation of intestinal function by the Trek1 channel, indicating that it is a target of C. butyricum/butyric acid to improve intestinal barrier function in ASD mice. CONCLUSIONS Our finding provides solid evidence for the gut microbiota involved in ASD through the brain-gut axis. In addition, the probiotics C. butyricum hold promise to improve gut health and ameliorate behavioral abnormalities associated with ASD.
Collapse
Affiliation(s)
- Simeng Liu
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Xiangyu Medical CO., LTD, Anyang, 456300, Henan, China.
| | - Huayuan Xi
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Gastroenterology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xia Xue
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiangdong Sun
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Huang Huang
- Department of Gastroenterology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dongjun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Mi
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongzheng He
- Xiangyu Medical CO., LTD, Anyang, 456300, Henan, China
| | - Pingchang Yang
- Brain Body Institute, McMaster University, Hamilton, ON, Canada
| | - Youcai Tang
- Department of Pediatrics, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Pengyuan Zheng
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Gastroenterology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
29
|
Shumilov K, Ni A, Garcia-Bonilla M, Celorrio M, Friess SH. Early depletion of gut microbiota shape oligodendrocyte response after traumatic brain injury. J Neuroinflammation 2024; 21:171. [PMID: 39010082 PMCID: PMC11251111 DOI: 10.1186/s12974-024-03158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
White matter injury (WMI) is thought to be a major contributor to long-term cognitive dysfunctions after traumatic brain injury (TBI). This damage occurs partly due to apoptotic death of oligodendrocyte lineage cells (OLCs) after the injury, triggered directly by the trauma or in response to degenerating axons. Recent research suggests that the gut microbiota modulates the inflammatory response through the regulation of peripheral immune cell infiltration after TBI. Additionally, T-cells directly impact OLCs differentiation and proliferation. Therefore, we hypothesized that the gut microbiota plays a critical role in regulating the OLC response to WMI influencing T-cells differentiation and activation. Gut microbial depletion early after TBI chronically reduced re-myelination, acutely decreased OLCs proliferation, and was associated with increased myelin debris accumulation. Surprisingly, the absence of T-cells in gut microbiota depleted mice restored OLC proliferation and remyelination after TBI. OLCs co-cultured with T-cells derived from gut microbiota depleted mice resulted in impaired proliferation and increased expression of MHC-II compared with T cells from control-injured mice. Furthermore, MHC-II expression in OLCs appears to be linked to impaired proliferation under gut microbiota depletion and TBI conditions. Collectively our data indicates that depletion of the gut microbiota after TBI impaired remyelination, reduced OLCs proliferation with concomitantly increased OLC MHCII expression, and required the presence of T cells. This data suggests that T cells are an important mechanistic link by which the gut microbiota modulate the oligodendrocyte response and white matter recovery after TBI.
Collapse
Affiliation(s)
- Kirill Shumilov
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Allen Ni
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Marta Celorrio
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Stuart H Friess
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, Campus Box 8028, 3rd Fl MPRB 660 S. Euclid Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
30
|
Ashique S, Mohanto S, Ahmed MG, Mishra N, Garg A, Chellappan DK, Omara T, Iqbal S, Kahwa I. Gut-brain axis: A cutting-edge approach to target neurological disorders and potential synbiotic application. Heliyon 2024; 10:e34092. [PMID: 39071627 PMCID: PMC11279763 DOI: 10.1016/j.heliyon.2024.e34092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The microbiota-gut-brain axis (MGBA) represents a sophisticated communication network between the brain and the gut, involving immunological, endocrinological, and neural mediators. This bidirectional interaction is facilitated through the vagus nerve, sympathetic and parasympathetic fibers, and is regulated by the hypothalamic-pituitary-adrenal (HPA) axis. Evidence shows that alterations in gut microbiota composition, or dysbiosis, significantly impact neurological disorders (NDs) like anxiety, depression, autism, Parkinson's disease (PD), and Alzheimer's disease (AD). Dysbiosis can affect the central nervous system (CNS) via neuroinflammation and microglial activation, highlighting the importance of the microbiota-gut-brain axis (MGBA) in disease pathogenesis. The microbiota influences the immune system by modulating chemokines and cytokines, impacting neuronal health. Synbiotics have shown promise in treating NDs by enhancing cognitive function and reducing inflammation. The gut microbiota's role in producing neurotransmitters and neuroactive compounds, such as short-chain fatty acids (SCFAs), is critical for CNS homeostasis. Therapeutic interventions targeting the MGBA, including dietary modulation and synbiotic supplementation, offer potential benefits for managing neurodegenerative disorders. However, more in-depth clinical studies are necessary to fully understand and harness the therapeutic potential of the MGBA in neurological health and disease.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Timothy Omara
- Department of Chemistry, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Shabnoor Iqbal
- African Medicines Innovations and Technologies Development, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Uganda
| |
Collapse
|
31
|
Aktas B, Aslim B, Ozdemir DA. A neurotherapeutic approach with Lacticaseibacillus rhamnosus E9 on gut microbiota and intestinal barrier in MPTP-induced mouse model of Parkinson's disease. Sci Rep 2024; 14:15460. [PMID: 38965287 PMCID: PMC11224381 DOI: 10.1038/s41598-024-65061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
The gut microbiota plays a crucial role in neural development and progression of neural disorders like Parkinson's disease (PD). Probiotics have been suggested to impact neurodegenerative diseases via gut-brain axis. This study aims to investigate the therapeutic potential of Lacticaseibacillus rhamnosus E9, a high exopolysaccharide producer, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of PD. C57BL/6 mice subjected to MPTP were fed L. rhamnosus E9 for fifteen days and sacrificed after the last administration. Motor functions were determined by open-field, catalepsy, and wire-hanging tests. The ileum and the brain tissues were collected for ELISA, qPCR, and immunohistochemistry analyses. The cecum content was obtained for microbiota analysis. E9 supplementation alleviated MPTP-induced motor dysfunctions accompanied by decreased levels of striatal TH and dopamine. E9 also reduced the level of ROS in the striatum and decreased the DAT expression while increasing the DR1. Furthermore, E9 improved intestinal integrity by enhancing ZO-1 and Occludin levels and reversed the dysbiosis of the gut microbiota induced by MPTP. In conclusion, E9 supplementation improved the MPTP-induced motor deficits and neural damage as well as intestinal barrier by modulating the gut microbiota in PD mice. These findings suggest that E9 supplementation holds therapeutic potential in managing PD through the gut-brain axis.
Collapse
Affiliation(s)
- Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur, 15200, Turkey.
| | - Belma Aslim
- Department of Biology, Faculty of Science, Gazi University, Ankara, 06500, Turkey
| | - Deniz Ates Ozdemir
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, 06230, Turkey
| |
Collapse
|
32
|
Contreras‐Rodriguez O, Blasco G, Biarnés C, Puig J, Arnoriaga‐Rodríguez M, Coll‐Martinez C, Gich J, Ramió‐Torrentà L, Motger‐Albertí A, Pérez‐Brocal V, Moya A, Radua J, Manuel Fernández‐Real J. Unraveling the gut-brain connection: The association of microbiota-linked structural brain biomarkers with behavior and mental health. Psychiatry Clin Neurosci 2024; 78:339-346. [PMID: 38421082 PMCID: PMC11488601 DOI: 10.1111/pcn.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
AIM The gut microbiota can influence human behavior. However, due to the massive multiple-testing problem, research into the relationship between microbiome ecosystems and the human brain faces drawbacks. This problem arises when attempting to correlate thousands of gut bacteria with thousands of brain voxels. METHODS We performed brain magnetic resonance imaging (MRI) scans on 133 participants and applied machine-learning algorithms (Ridge regressions) combined with permutation tests. Using this approach, we were able to correlate specific gut bacterial families with brain MRI signals, circumventing the difficulties of massive multiple testing while considering sex, age, and body mass index as confounding factors. RESULTS The relative abundance (RA) of the Selenomonadaceae, Clostridiaceae, and Veillonellaceae families in the gut was associated with altered cerebellar, visual, and frontal T2-mapping and diffusion tensor imaging measures. Conversely, decreased relative abundance of the Eubacteriaceae family was also linked to T2-mapping values in the cerebellum. Significantly, the brain regions associated with the gut microbiome were also correlated with depressive symptoms and attentional deficits. CONCLUSIONS Our analytical strategy offers a promising approach for identifying potential brain biomarkers influenced by gut microbiota. By gathering a deeper understanding of the microbiota-brain connection, we can gain insights into the underlying mechanisms and potentially develop targeted interventions to mitigate the detrimental effects of dysbiosis on brain function and mental health.
Collapse
Affiliation(s)
- Oren Contreras‐Rodriguez
- Department of Radiology‐Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
- Department of Psychiatry and Legal Medicine, Faculty of MedicineUniversitat Autònoma de BarcelonaBellaterraSpain
- Health Institute Carlos III (ISCIII)MadridSpain
- CIBERSAMMadridSpain
| | - Gerard Blasco
- Department of Radiology‐Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
| | - Carles Biarnés
- Department of Radiology‐Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
| | - Josep Puig
- Radiology Department CDIHospital Clinic of BarcelonaBarcelonaSpain
| | - Maria Arnoriaga‐Rodríguez
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03/0010)GironaSpain
| | - Clàudia Coll‐Martinez
- Neuroimmunology and Multiple Sclerosis Unit, Department of NeurologyDr. Josep Trueta University HospitalGironaSpain
| | - Jordi Gich
- Neuroimmunology and Multiple Sclerosis Unit, Department of NeurologyDr. Josep Trueta University HospitalGironaSpain
| | - Lluís Ramió‐Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Department of NeurologyDr. Josep Trueta University HospitalGironaSpain
| | - Anna Motger‐Albertí
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03/0010)GironaSpain
- Department of Medical Sciences, School of MedicineUniversity of GironaGironaSpain
| | - Vicente Pérez‐Brocal
- Department of Genomics and HealthFoundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO‐Public Health)ValènciaSpain
- CIBERespMadridSpain
| | - Andrés Moya
- Department of Genomics and HealthFoundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO‐Public Health)ValènciaSpain
- CIBERespMadridSpain
- Institute for Integrative Systems Biology (I2SysBio)The Spanish National Research Council (CSIC‐UVEG), The University of ValenciaValènciaSpain
| | - Joaquim Radua
- Health Institute Carlos III (ISCIII)MadridSpain
- CIBERSAMMadridSpain
- Imaging of Mood‐ and Anxiety‐Related Disorders (IMARD) GroupInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Department of Medicine, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
| | - José Manuel Fernández‐Real
- Health Institute Carlos III (ISCIII)MadridSpain
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03/0010)GironaSpain
- Department of Medical Sciences, School of MedicineUniversity of GironaGironaSpain
| |
Collapse
|
33
|
Irani H, Abiri B, Khodami B, Yari Z, Lafzi Ghazi M, Hosseinzadeh N, Saidpour A. Effect of time restricted feeding on anthropometric measures, eating behavior, stress, serum levels of BDNF and LBP in overweight/obese women with food addiction: a randomized clinical trial. Nutr Neurosci 2024; 27:577-589. [PMID: 37436939 DOI: 10.1080/1028415x.2023.2234704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
BACKGROUND & AIM Food addiction (FA) as a specific food-related behavior may play an essential role in the pathogenesis of obesity. Brain-derived neurotrophic factor (BDNF) and gut microbiota (GM) alterations probably through fasting are closely related to brain function, affecting eating behaviors and body weight management. This study aimed to evaluate the effect of time-restricted feeding (TRF) on serum BDNF levels and eating behaviors in overweight and obese women with FA. METHODS AND DESIGN This clinical trial was performed with a 2-month follow-up on 56 obese and overweight women with FA. Participants were randomly divided into two groups receiving a low-calorie diet (n = 27) and a group receiving a low-calorie diet with TRF (n = 29). Anthropometric measurements, biochemical markers, eating behavior, and stress were assessed during the study period. RESULTS The reductions in weight, body mass index (BMI), waist circumference, and body fat mass were significantly higher in the TRF group compared to the control group at week 8 (P = 0.018, P = 0.015. P = 0.03, and P = 0.036, respectively). The cognitive restriction score was higher in the TRF as compared with the control group (P = 0.002). The food addiction criteria score was significantly reduced in both groups (P < 0.001). Serum levels of BDNF were significantly increased in the TRF group (P < 0.001). In addition, BDNF levels had a positive and significant correlation with the cognitive restriction score (r = 0.468 and P < 0.001), While the correlation with FA was not significant (β = 0.588 and P = 0.618). Lipopolysaccharide binding protein decreased significantly in both groups, but this decrease was significantly higher in the TRF group than in the control group (P < 0.001). CONCLUSION The results of this study showed that a low-calorie diet with TRF is more effective in weight management than a low-calorie diet alone, probably through further modulating the GM and improving BDNF levels. More effective weight loss in the TRF is probably related to better management of eating behavior than FA. TRIAL REGISTRATION Iranian Registry of Clinical Trials identifier: IRCT20131228015968N7.
Collapse
Affiliation(s)
- Hanieh Irani
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Banafsheh Khodami
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yari
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Lafzi Ghazi
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nima Hosseinzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atoosa Saidpour
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Allahyari P, Abbas Torki S, Aminnezhad Kavkani B, Mahmoudi Z, Mousavi Hoseini MS, Moradi M, Alami F, Keshavarz Mohammadian M, Bahoo Sele Bani S, Abbasi Mobarakeh K, Shafaei H, Khoshdooz S, Hajipour A, Doaei S, Gholamalizadeh M. A systematic review of the beneficial effects of prebiotics, probiotics, and synbiotics on ADHD. Neuropsychopharmacol Rep 2024; 44:300-307. [PMID: 38623929 PMCID: PMC11144606 DOI: 10.1002/npr2.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Children with attention deficit hyperactivity disorder (ADHD) may benefit from probiotics and prebiotics, but the effects are unclear. To determine whether probiotics and prebiotics affect children with ADHD, a systematic review was conducted. METHODS The present systematic review analyzed cohort studies and randomized controlled trials that examined whether prebiotics and probiotics are associated with ADHD. Seven randomized controlled trials and two cohort studies met our inclusion criteria. RESULTS Research on Lactobacillus rhamnosus GG (LGG) probiotic supplementation showed that children with ADHD had better emotional, physical, social, and school functioning, and a higher health-related quality of life compared to the placebo group. The studies also showed that Synbiotic 2000 reduces markers of intestinal and vascular inflammation in children with ADHD, in part through increasing SCFA levels. CONCLUSION The use of probiotics and prebiotics as adjuvants therapy in patients with ADHD is beneficial. Further studies with longer duration, including more participants and a variety of age groups, and using various evaluation techniques such as in vivo observation are required to examine the effects of prebiotics and probiotics on ADHD.
Collapse
Affiliation(s)
- Pooneh Allahyari
- Department of Exercise Physiology, Faculty of Physical Education and Sport SciencesIslamic Azad University, Central Tehran BranchTehranIran
| | - Saheb Abbas Torki
- Department of Nutrition, Faculty of Nutrition SciencesShiraz University of Medical SciencesShirazIran
| | | | - Zahra Mahmoudi
- Department of Nutrition, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Mahdi Moradi
- Department of Clinical PsychologyPayame Noor UniversityTehranIran
| | - Farkhondeh Alami
- Student Research Committee, Department of Nutrition, Faculty of MedicineUrmia University of Medical SciencesUrmiaIran
| | | | | | - Khadijeh Abbasi Mobarakeh
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food ScienceIsfahan University of Medical SciencesIsfahanIran
| | - Hanieh Shafaei
- Shahid Beheshti College of MidwiferyGilan University of Medical SciencesRashtIran
| | - Sara Khoshdooz
- Shahid Beheshti College of MidwiferyGilan University of Medical SciencesRashtIran
| | - Azadeh Hajipour
- School of HealthQazvin University of Medical SciencesQazvinIran
| | - Saeid Doaei
- Reproductive Health Research Center, Al‐Zahra HospitalGuilan University of Medical SciencesRashtIran
| | | |
Collapse
|
35
|
Rook GAW. Evolution and the critical role of the microbiota in the reduced mental and physical health associated with low socioeconomic status (SES). Neurosci Biobehav Rev 2024; 161:105653. [PMID: 38582194 DOI: 10.1016/j.neubiorev.2024.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The evolution of the gut-microbiota-brain axis in animals reveals that microbial inputs influence metabolism, the regulation of inflammation and the development of organs, including the brain. Inflammatory, neurodegenerative and psychiatric disorders are more prevalent in people of low socioeconomic status (SES). Many aspects of low SES reduce exposure to the microbial inputs on which we are in a state of evolved dependence, whereas the lifestyle of wealthy citizens maintains these exposures. This partially explains the health deficit of low SES, so focussing on our evolutionary history and on environmental and lifestyle factors that distort microbial exposures might help to mitigate that deficit. But the human microbiota is complex and we have poor understanding of its functions at the microbial and mechanistic levels, and in the brain. Perhaps its composition is more flexible than the microbiota of animals that have restricted habitats and less diverse diets? These uncertainties are discussed in relation to the encouraging but frustrating results of attempts to treat psychiatric disorders by modulating the microbiota.
Collapse
Affiliation(s)
- Graham A W Rook
- Centre for Clinical Microbiology, Department of infection, UCL (University College London), London, UK.
| |
Collapse
|
36
|
Freitas SM, Franco B, Saragiotto G, Morais MA, Simabuco FM, Cunha DT, Esteves AM, Antunes AEC. Effect of a probiotic fermented milk supplementation on behavior and sleep. Nutr Neurosci 2024; 27:607-619. [PMID: 37496309 DOI: 10.1080/1028415x.2023.2240990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
This study attempted to analyze the effect of supplementing Wistar-Kyoto rats with fermented milk containing the probiotic Bifidobacterium animalis BB-12 and pomegranate juice on the microbiota-gut-brain axis of rats, with special focus on their behavior, sleep patterns, and response to stress. This study was divided into two experiments: (1) For the behavioral analysis the animals were divided into two groups: Fermented probiotic milk (BB + 1) and control (BB-). (2) For the sleep analysis the animals were divided into two groups: Fermented probiotic milk (BB + 2) and control (H2O). For the behavioral analysis, the open field method was used, which evaluates the behavior after ten, twenty, and thirty days of supplementation. For sleep analysis, the animals were submitted to implantation of electrodes and 24 h polysomnography, followed by 48 h sleep deprivation (REM) and 48 h polysomnography, then euthanized 100 days after the beginning of the experiment. In addition, animal feces were collected before and after sleep deprivation to assess its effects on the microbiota. A decrease in anxiety-related behaviors was observed in the supplemented animals and an increase in sleep efficiency and a reduction in the number of awakenings of the animals before deprivation. It has also been observed that sleep deprivation decreased the amount of total bacterial DNA. The number of copies of genomes of the genus Bifidobacterium did not differ in both groups.
Collapse
Affiliation(s)
- Samara M Freitas
- School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Beatriz Franco
- School of Physical Education, University of Campinas, Campinas, Brazil
| | | | - Milca A Morais
- School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Diogo T Cunha
- School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Andrea M Esteves
- School of Applied Sciences, University of Campinas, Limeira, Brazil
- School of Physical Education, University of Campinas, Campinas, Brazil
| | | |
Collapse
|
37
|
Nahidi M, Soleimanpour S, Emadzadeh M. Probiotics as a Promising Therapy in Improvement of Symptoms in Children With ADHD: A Systematic Review. J Atten Disord 2024; 28:1163-1172. [PMID: 38369739 DOI: 10.1177/10870547241228828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
BACKGROUND ADHD is widely recognized as the most prevalent neurodevelopmental disorder in children. Recently, the potential role of gut microbiota as an etiological factor in ADHD has gained attention. This systematic review aims to investigate the potential impact of probiotic supplements on alleviating ADHD symptoms and influencing behavior. METHODS PubMed, Web of Science, Cochrane Library, and SCOPUS were searched from inception to May 2023. Only randomized controlled trials that have suitable data of the effects of probiotics/synbiotics on children with ADHD were enrolled. The risk of bias of the included studies was assessed by Cochrane Collaboration risk of bias tool. RESULTS Five related randomized controlled trial were evaluated in the current review. Types of interventions ranged from single/multi strain probiotics to synbiotic. The duration of intervention in all of the studies were 2 to 3 months. The assessed outcomes were very diverse and different tools were used to report the symptoms in children. Among those which used Conners' Parent Rating Scale, a decrease in the total score occurred in the probiotic group, compared to the placebo group. An improvement in both intervention and control groups was seen in one study which used ADHD-Rating Scale. CONCLUSION In summary, the combined findings from the reviewed studies suggest that probiotic supplements might potentially serve as a complementary intervention for ADHD. However, given the small number of studies, limited sample sizes, and the diversity of probiotic strains, further research is needed to clarify the effects of probiotics in children with ADHD. The observed tolerability of probiotics is noteworthy as none of the studies report adverse effects.
Collapse
Affiliation(s)
- Mahsa Nahidi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Emadzadeh
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Zhao L, Li X, Wang Y, Yang Q, Jiang X, Zhao R, Chen H, Zhang Y, Ran J, Chen W, Wei Z, Wang H. Resistance role of Lactobacillus sp. and Lactococcus sp. to copper ions in healthy children's intestinal microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134059. [PMID: 38503209 DOI: 10.1016/j.jhazmat.2024.134059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Heavy metal exposure is closely associated with gut microbe function and tolerance. However, intestinal microbe responses in children to different copper ion (Cu2+) concentrations have not yet been clarified. Here, in vitro cultivation systems were established for fecal microbe control and Cu2+-treated groups in healthy children. 16S rDNA high-throughput sequencing, meta-transcriptomics and metabolomics were used here to identify toxicity resistance mechanisms at microbiome levels. The results showed that Lactobacillus sp. and Lactococcus sp. exerted protective effects against Cu2+ toxicity, but these effects were limited by Cu2+ concentration. When the Cu2+ concentration was ≥ 4 mg/L, the abundance of Lactobacillus sp. and Lactococcus sp. significantly decreased, and the pathways of antioxidant activity and detoxification processes were enriched at 2 mg/L Cu2+, and beneficial metabolites accumulated. However, at high concentrations of Cu2+ (≥4 mg/L), the abundance of potential pathogen increased, and was accompanied by a downregulation of genes in metabolism and detoxification pathways, which meant that the balance of gut microbiota was disrupted and toxicity resistance decreased. From these observations, we identified some probiotics that are tolerant to heavy metal Cu2+, and warn that only when the concentration limit of Cu2+ in food is 2 mg/L, then a balanced gut microbiota can be guaranteed in children, thereby providing protection for their health.
Collapse
Affiliation(s)
- Lili Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xinlei Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yibin Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xiaobing Jiang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Ruixiang Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Hong Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yiping Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Junjian Ran
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Wanrong Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zihan Wei
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
39
|
Falkenstein M, Simon MC, Mantri A, Weber B, Koban L, Plassmann H. Impact of the gut microbiome composition on social decision-making. PNAS NEXUS 2024; 3:pgae166. [PMID: 38745566 PMCID: PMC11093127 DOI: 10.1093/pnasnexus/pgae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
There is increasing evidence for the role of the gut microbiome in the regulation of socio-affective behavior in animals and clinical conditions. However, whether and how the composition of the gut microbiome may influence social decision-making in health remains unknown. Here, we tested the causal effects of a 7-week synbiotic (vs. placebo) dietary intervention on altruistic social punishment behavior in an ultimatum game. Results showed that the intervention increased participants' willingness to forgo a monetary payoff when treated unfairly. This change in social decision-making was related to changes in fasting-state serum levels of the dopamine-precursor tyrosine proposing a potential mechanistic link along the gut-microbiota-brain-behavior axis. These results improve our understanding of the bidirectional role body-brain interactions play in social decision-making and why humans at times act "irrationally" according to standard economic theory.
Collapse
Affiliation(s)
- Marie Falkenstein
- Control-Interoception-Attention Team, Sorbonne Université, Paris Brain Institute (ICM), Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France
| | - Marie-Christine Simon
- Institute of Nutrition and Food Science (IEL), Nutrition and Microbiota, University of Bonn, Katzenburgweg 7, 53115 Bonn, Germany
| | - Aakash Mantri
- Institute of Nutrition and Food Science (IEL), Nutrition and Microbiota, University of Bonn, Katzenburgweg 7, 53115 Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, University of Bonn and University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University of Bonn and University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Leonie Koban
- Control-Interoception-Attention Team, Sorbonne Université, Paris Brain Institute (ICM), Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France
- Marketing Area INSEAD, Boulevard de Constance, 77300 Fontainebleau, France
- Lyon Neuroscience Research Center, CNRS, INSERM, Claude Bernard University Lyon 1, CH Le Vinatier - Bâtiment 462 - Neurocampus, 95 Bd Pinel, 69500 Bron, France
| | - Hilke Plassmann
- Control-Interoception-Attention Team, Sorbonne Université, Paris Brain Institute (ICM), Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France
- Marketing Area INSEAD, Boulevard de Constance, 77300 Fontainebleau, France
| |
Collapse
|
40
|
Shumilov K, Ni A, Garcia-Bonilla M, Celorrio M, Friess SH. Gut Microbiota Shape Oligodendrocyte Response after Traumatic Brain Injury. RESEARCH SQUARE 2024:rs.3.rs-4289147. [PMID: 38746334 PMCID: PMC11092821 DOI: 10.21203/rs.3.rs-4289147/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
White matter injury (WMI) is thought to be a major contributor to long-term cognitive dysfunctions after traumatic brain injury (TBI). This damage occurs partly due to apoptotic death of oligodendrocyte lineage cells (OLCs) after the injury, triggered directly by the trauma or in response to degenerating axons. Recent research suggests that the gut microbiota modulates the inflammatory response through the modulation of peripheral immune cell infiltration after TBI. Additionally, T-cells directly impact OLCs differentiation and proliferation. Therefore, we hypothesized that the gut microbiota plays a critical role in regulating the OLC response to WMI influencing T-cells differentiation and activation. Gut microbial depletion early after TBI chronically reduced re-myelination, acutely decreased OLCs proliferation, and was associated with increased myelin debris accumulation. Surprisingly, the absence of T-cells in gut microbiota depleted mice restored OLC proliferation and remyelination after TBI. OLCs co-cultured with T-cells derived from gut microbiota depleted mice resulted in impaired proliferation and increased expression of MHC-II compared with T cells from control-injured mice. Furthermore, MHC-II expression in OLCs appears to be linked to impaired proliferation under gut microbiota depletion and TBI conditions. Collectively our data indicates that depletion of the gut microbiota after TBI impaired remyelination, reduced OLCs proliferation with concomitantly increased OLC MHCII expression and required the presence of T cells. This data suggests that T cells are an important mechanistic link by which the gut microbiota modulate the oligodendrocyte response and white matter recovery after TBI.
Collapse
Affiliation(s)
| | - Allen Ni
- Washington University in St. Louis School of Medicine
| | | | | | | |
Collapse
|
41
|
Tao W, Zhang Y, Wang B, Nie S, Fang L, Xiao J, Wu Y. Advances in molecular mechanisms and therapeutic strategies for central nervous system diseases based on gut microbiota imbalance. J Adv Res 2024:S2090-1232(24)00124-3. [PMID: 38579985 DOI: 10.1016/j.jare.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUD Central nervous system (CNS) diseases pose a serious threat to human health, but the regulatory mechanisms and therapeutic strategies of CNS diseases need to be further explored. It has been demonstrated that the gut microbiota (GM) is closely related to CNS disease. GM structure disorders, abnormal microbial metabolites, intestinal barrier destruction and elevated inflammation exist in patients with CNS diseases and promote the development of CNS diseases. More importantly, GM remodeling alleviates CNS pathology to some extent. AIM OF REVIEW Here, we have summarized the regulatory mechanism of the GM in CNS diseases and the potential treatment strategies for CNS repair based on GM regulation, aiming to provide safer and more effective strategies for CNS repair from the perspective of GM regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The abundance and composition of GM is closely associated with the CNS diseases. On the basis of in-depth analysis of GM changes in mice with CNS disease, as well as the changes in its metabolites, therapeutic strategies, such as probiotics, prebiotics, and FMT, may be used to regulate GM balance and affect its microbial metabolites, thereby promoting the recovery of CNS diseases.
Collapse
Affiliation(s)
- Wei Tao
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yanren Zhang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Bingbin Wang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Saiqun Nie
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Li Fang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
42
|
Kiecka A, Szczepanik M. Migraine and the microbiota. Can probiotics be beneficial in its prevention? - a narrative review. Pharmacol Rep 2024; 76:251-262. [PMID: 38502301 DOI: 10.1007/s43440-024-00584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024]
Abstract
Migraine is a recurrent disease of the central nervous system that affects an increasing number of people worldwide causing a continuous increase in the costs of treatment. The mechanisms underlying migraine are still unclear but recent reports show that people with migraine may have an altered composition of the intestinal microbiota. It is well established that the gut-brain axis is involved in many neurological diseases, and probiotic supplementation may be an interesting treatment option for these conditions. This review collects data on the gastrointestinal and oral microbiota in people suffering from migraine and the use of probiotics as a novel therapeutic approach in its treatment.
Collapse
Affiliation(s)
- Aneta Kiecka
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, Kraków, 31-034, Poland.
| | - Marian Szczepanik
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, Kraków, 31-034, Poland
| |
Collapse
|
43
|
Zhang J, Liu C, An P, Chen M, Wei Y, Li J, Zeng S, Xiang D, Cai Y, Li J, Chen B, Cui L, Qian J, Liu Z, Jiang C, Shi J, Wu K, Dong W. Psychological symptoms and quality of life in patients with inflammatory bowel disease in China: A multicenter study. United European Gastroenterol J 2024; 12:374-389. [PMID: 38315582 PMCID: PMC11017770 DOI: 10.1002/ueg2.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/21/2023] [Indexed: 02/07/2024] Open
Abstract
AIMS To investigate the current situation of mental psychology and quality of life (QoL) in patients with inflammatory bowel disease (IBD) in China, and analyze the influencing factors. METHODS A unified questionnaire was developed to collect clinical data on IBD patients from 42 hospitals in 22 provinces from September 2021 to May 2022. Multivariate Logistic regression analysis was conducted, and independent influencing factors were screened out to construct nomogram. The consistency index (C-index), receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), calibration curve, and decision curve analysis (DCA) were used to evaluate the discrimination, accuracy, and clinical utility of the nomogram model. RESULTS A total of 2478 IBD patients were surveyed, including 1371 patients with ulcerative colitis (UC) and 1107 patients with Crohn's disease (CD). Among them, 25.5%, 29.7%, 60.2%, and 37.7% of IBD patients had anxiety, depression, sleep disturbance and poor QoL, respectively. The proportion of anxiety, depression, and poor QoL in UC patients was significantly higher than that in CD patients (all p < 0.05), but there was no difference in sleep disturbance between them (p = 0.737). Female, higher disease activity and the first visit were independent risk factors for anxiety, depression and sleep disturbance in IBD patients (all p < 0.05). The first visit, higher disease activity, abdominal pain and diarrhea symptoms, anxiety, depression and sleep disturbance were independent risk factors for the poor QoL of patients (all p < 0.05). The AUC value of the nomogram prediction model for predicting poor QoL was 0.773 (95% CI: 0.754-0.792). The calibration diagram of the model showed that the calibration curve fit well with the ideal curve, and DCA showed that the nomogram model could bring clinical benefits. CONCLUSION IBD patients have higher anxiety, depression, and sleep disturbance, which affect their QoL. The nomogram prediction model we constructed has high accuracy and performance when predicting QoL.
Collapse
Affiliation(s)
- Jixiang Zhang
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Chuan Liu
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ping An
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Min Chen
- Department of GastroenterologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Yuping Wei
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jinting Li
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Suqi Zeng
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Dan Xiang
- Center for Mental HealthRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yanhui Cai
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jun Li
- Department of GastroenterologyPeking University Third HospitalBeijingChina
| | - Baili Chen
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Liqian Cui
- Department of Clinical PsychologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jiaming Qian
- Department of GastroenterologyPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhongchun Liu
- Center for Mental HealthRenmin Hospital of Wuhan UniversityWuhanChina
| | - Changqing Jiang
- Department of Clinical PsychologyBeijing Anding HospitalCapital Medical UniversityBeijingChina
| | - Jie Shi
- Department of Medical PsychologyChinese People's Liberation Army Rocket Army Characteristic Medical CenterBeijingChina
| | - Kaichun Wu
- Department of GastroenterologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Weiguo Dong
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina
| | | |
Collapse
|
44
|
Gao W, Yan Y, Guan Z, Zhang J, Chen W. Effects of Bacillus coagulans TBC169 on gut microbiota and metabolites in gynecological laparoscopy patients. Front Microbiol 2024; 15:1284402. [PMID: 38596369 PMCID: PMC11002114 DOI: 10.3389/fmicb.2024.1284402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Objective The primary objective of this study is to investigate the mechanism by which Bacillus coagulans TBC169 accelerates intestinal function recovery in patients who have undergone gynecological laparoscopic surgery, using metabolomics and gut microbiota analysis. Methods A total of 20 subjects were selected and randomly divided into two groups: the intervention group (n = 10) receiving Bacillus coagulans TBC169 Tablets (6 pills, 1.05 × 108 CFU), and the control group (n = 10) receiving placebos (6 pills). After the initial postoperative defecation, fecal samples were collected from each subject to analyze their gut microbiota and metabolic profiles by high-throughput 16S rRNA gene sequencing analysis and untargeted metabonomic. Results There were no statistically significant differences observed in the α-diversity and β-diversity between the two groups; however, in the intervention group, there was a significant reduction in the relative abundance of unclassified_Enterobacteriaceae at the genus level. Furthermore, the control group showed increased levels of Holdemanella and Enterobacter, whereas the intervention group exhibited elevated levels of Intestinimonas. And administration of Bacillus coagulans TBC169 led to variations in 2 metabolic pathways: D-glutamine and D-glutamate metabolism, and arginine biosynthesis. Conclusion This study demonstrated that consuming Bacillus coagulans TBC169 after gynecological laparoscopic surgery might inhibit the proliferation of harmful Enterobacteriaceae; mainly influence 2 pathways including D-glutamine and D-glutamate metabolism, and arginine biosynthesis; and regulate metabolites related to immunity and intestinal motility; which can help regulate immune function, maintain intestinal balance, promote intestinal peristalsis, and thus accelerate the recovery of intestinal function.
Collapse
Affiliation(s)
- Weiqi Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Yan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Zhaobo Guan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jingmin Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
45
|
Koutromanos I, Legaki E, Gazouli M, Vasilopoulos E, Kouzoupis A, Tzavellas E. Gut microbiome in alcohol use disorder: Implications for health outcomes and therapeutic strategies-a literature review. World J Methodol 2024; 14:88519. [PMID: 38577203 PMCID: PMC10989405 DOI: 10.5662/wjm.v14.i1.88519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Alcohol use disorder (AUD) represents a major public health issue which affects millions of people globally and consist a chronic relapsing condition associated with substantial morbidity and mortality. The gut microbiome plays a crucial role in maintaining overall health and has emerged as a significant contributor to the pathophysiology of various psychiatric disorders. Recent evidence suggests that the gut microbiome is intimately linked to the development and progression of AUD, with alcohol consumption directly impacting its composition and function. This review article aims to explore the intricate relationship between the gut microbiome and AUD, focusing on the implications for mental health outcomes and potential therapeutic strategies. We discuss the bidirectional communication between the gut microbiome and the brain, highlighting the role of microbiota-derived metabolites in neuroinflammation, neurotransmission, and mood regulation. Furthermore, we examine the influence of AUD-related factors, such as alcohol-induced gut dysbiosis and increased intestinal permeability, on mental health outcomes. Finally, we explore emerging therapeutic avenues targeting the gut microbiome in the management of AUD, including prebiotics, probiotics, and fecal microbiota transplantation. Understanding the complex interplay between the gut microbiome and AUD holds promise for developing novel interventions that could improve mental health outcomes in individuals with AUD.
Collapse
Affiliation(s)
- Ilias Koutromanos
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Evangelia Legaki
- Department of Basic Biological Science, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Efthimios Vasilopoulos
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Anastasios Kouzoupis
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Elias Tzavellas
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| |
Collapse
|
46
|
Rizzoli R, Biver E. Role of fermented dairy products in the health benefits of a mediterranean diet. Aging Clin Exp Res 2024; 36:75. [PMID: 38502263 PMCID: PMC10950975 DOI: 10.1007/s40520-024-02721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Mediterranean diet includes fermented dairy products like yogurt and cheese. These foods provide calcium, phosphorus, fat, carbohydrates and protein, all nutrients influencing various systems including bone, cardiovascular system, intermediary metabolism, cancer, central nervous system, and inflammation. In addition, they contain prebiotics and provide probiotics which are capable of modifiying microbiota composition and metabolism, potentially acting also indirectly on the various systems. A large body of evidence indicates that fermented dairy products consumption significantly contributes to the beneficial effects of a Mediterranean diet on various systems' health.
Collapse
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland.
| | - Emmanuel Biver
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland
| |
Collapse
|
47
|
Yin X, Liu W, Feng H, Huang J, Wang Q, Zhang Q, He J, Wang R. Bifidobacterium animalis subsp. lactis A6 attenuates hippocampal damage and memory impairments in an ADHD rat model. Food Funct 2024; 15:2668-2678. [PMID: 38374797 DOI: 10.1039/d3fo04665f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD) is commonly accompanied by learning and memory deficits. This study aimed to demonstrate the effects of probiotic Bifidobacterium animalis subsp. lactis A6 (BAA6) on behaviour and memory function in spontaneously hypertensive rats (SHRs). The results showed that BAA6 treatment ameliorated spatial working memory deficits and inhibited hippocampal neuron loss in SHRs. The levels of neurotransmitters such as acetylcholine, dopamine, and norepinephrine, and the brain derived neurotrophic factor increased and that of glutamate decreased in the brain tissue of SHRs after BAA6 administration. Moreover, BAA6 reduced the levels of pro-inflammatory cytokines TNF-α and IL-1β, and increased the levels of anti-inflammatory IL-10 and antioxidant glutathione in SHRs. 16S rRNA high-throughput sequencing showed that BAA6 treatment changed the gut microbiota composition. BAA6 promoted beneficial Lactobacillus, Romboutsia, Blautia, and Turicibacter, and decreased the enrichment of bacterial genera such as Dietzia, Sporosarcina, Brevibacterium, NK4A214_group, Atopostipes, and Facklamia negatively associated with neurotransmitter release and anti-inflammatory effects in SHRs. Together, these results suggested that BAA6 improved memory function by ameliorating hippocampal damage, abnormal neurotransmitter release and cerebral inflammation by reshaping the gut microbiota in SHRs. This study provides a scientific basis for the development and application of BAA6 as a promising dietary intervention to reduce the risk of ADHD.
Collapse
Affiliation(s)
- Xindi Yin
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China.
| | - Weichen Liu
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China.
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Haihong Feng
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China.
- Hebei Engineering Research Center of Animal Product, Langfang 065200, China
| | - Jiaqiang Huang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China.
| | - Qi Wang
- Xinjiang Golden Camel Investment Co., Ltd., Wulumuqi 830039, China
| | - Qi Zhang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China.
| | - Jingjing He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China.
| |
Collapse
|
48
|
Zhu R, Zhang N, Zhu H, Li F, Xu H. Major depressive disorder and the risk of irritable bowel syndrome: A Mendelian randomization study. Mol Genet Genomic Med 2024; 12:e2413. [PMID: 38439604 PMCID: PMC10912794 DOI: 10.1002/mgg3.2413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/08/2023] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The association between major depressive disorder (MDD) and irritable bowel syndrome (IBS) has been found in observational research; however, the causative relationship between MDD and IBS remains uncertain. Using the two-sample Mendelian randomization (MR) approach, we attempted to examine the causal effect of MDD on IBS. METHODS Independent genetic variants for MDD identified by Howard et al. based on a genome-wide meta-analysis were selected for this study. Gene-Outcome associations for IBS were gathered from UK Biobank and FinnGen databases. The MR analysis included inverse variance weighted (IVW), MR-Egger regression, weighted median, weighted mode, and MR-PRESSO sensitivity analyses. RESULTS FinnGen database subjected to inverse variance weighted (IVW) analysis revealed that MDD may be a risk factor for the development of IBS (OR = 1.356, 95% CI: 1.125-1.632, p = 0.0013). The same finding was reached in UK Biobank for IVW (OR = 1.011, 95% CI: 1.006-1.015, p = 3.18 × 10-7 ), MR-Egger progression (OR = 1.030, 95% CI: 1.008-1.051, p = 0.007), and weighted median (OR = 1.011, 95% CI: 1.005-1.016, p = 0.0001). CONCLUSION Our findings supported a causal relationship between MDD and IBS, which may have implications for the clinical management of IBS in individuals with MDD.
Collapse
Affiliation(s)
- Ruiming Zhu
- Department of EndoscopyThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Nan Zhang
- Department of EndoscopyThe First Hospital of Jilin UniversityChangchunJilinChina
| | - He Zhu
- Department of EndoscopyThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Fudong Li
- Department of EndoscopyThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Hong Xu
- Department of EndoscopyThe First Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
49
|
Sung J, Rajendraprasad SS, Philbrick KL, Bauer BA, Gajic O, Shah A, Laudanski K, Bakken JS, Skalski J, Karnatovskaia LV. The human gut microbiome in critical illness: disruptions, consequences, and therapeutic frontiers. J Crit Care 2024; 79:154436. [PMID: 37769422 PMCID: PMC11034825 DOI: 10.1016/j.jcrc.2023.154436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
With approximately 39 trillion cells and over 20 million genes, the human gut microbiome plays an integral role in both health and disease. Modern living has brought a widespread use of processed food and beverages, antimicrobial and immunomodulatory drugs, and invasive procedures, all of which profoundly disrupt the delicate homeostasis between the host and its microbiome. Of particular interest is the human gut microbiome, which is progressively being recognized as an important contributing factor in many aspects of critical illness, from predisposition to recovery. Herein, we describe the current understanding of the adverse impacts of standard intensive care interventions on the human gut microbiome and delve into how these microbial alterations can influence patient outcomes. Additionally, we explore the potential association between the gut microbiome and post-intensive care syndrome, shedding light on a previously underappreciated avenue that may enhance patient recuperation following critical illness. There is an impending need for future epidemiological studies to encompass detailed phenotypic analyses of gut microbiome perturbations. Interventions aimed at restoring the gut microbiome represent a promising therapeutic frontier in the quest to prevent and treat critical illnesses.
Collapse
Affiliation(s)
- Jaeyun Sung
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Kemuel L Philbrick
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Brent A Bauer
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ognjen Gajic
- Department of Pulmonary & Critical Care, Mayo Clinic, Rochester, MN, USA
| | - Aditya Shah
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN, USA
| | - Johan S Bakken
- Department of Infectious Diseases, St Luke's Hospital, Duluth, MN, United States of America
| | - Joseph Skalski
- Department of Pulmonary & Critical Care, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
50
|
Davey S, Halberstadt J, Bell E. Where is an emotion? Using an emotional spatial cueing task to test for emotional localization following targeted visceroception. Scand J Psychol 2024; 65:104-118. [PMID: 37615307 DOI: 10.1111/sjop.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
The relationship between emotion and attention is vital for adaptation. Trained attention to bodily sensations can heighten emotional awareness, including during "visceroception" (sensing the viscera, principally the heart, lungs and gut), which has been linked to emotion intensity and regulation. However, it is not always clear when bodily attention is adaptive, and useful to maintain, or maladaptive and best inhibited. The current study, part of a wider exploratory project, investigates "localized emotion" in this context. Localized emotion is a novel construct, articulated within the project, and suggested to be manifested within a visceroceptive system: targeted visceroception could result in disinhibited attention to localized emotion. In particular, whilst evidence points to the importance of the gastrointestinal tract for emotion (e.g., gut biome, enteric nervous system), gut sensations are often barely detectable, consistent with an inhibition process. An emotional spatial cueing task was used to test for localized effects within several groups: one trained for 8 weeks to focus on their lower abdomen (gastroception), with another focused on their chest cavity (cardioception), plus a control group. The spatial cueing task involved rapid responding to the detection of bodily feelings following the presentation of an emotional picture. Participants then indicated on a body map where they had detected the feeling, followed by corresponding valence and arousal levels (i.e., core affect) on a self-assessment manikin. Data were analyzed using generalized estimating equations. There was some support for localization in the gastroception group relative to the chest-focused group and controls. Gastroception-related findings included: greater improvement in interoception (interoceptive sensibility), slowed reaction times, a cluster of lower abdominal detections on a body map, changes in core affect, and indications of improved emotion regulation. Attending to the gut may play a key role in improving one's ability to access emotional feeling, with associated implications for emotion regulation.
Collapse
Affiliation(s)
- Steven Davey
- Department of Psychological Medicine, University of Otago Wellington, Wellington, New Zealand
| | | | - Elliot Bell
- Department of Psychological Medicine, University of Otago Wellington, Wellington, New Zealand
| |
Collapse
|