1
|
Duan H, Gong M, Yuan G, Wang Z. Sex Hormone: A Potential Target at Treating Female Metabolic Dysfunction-Associated Steatotic Liver Disease? J Clin Exp Hepatol 2025; 15:102459. [PMID: 39722783 PMCID: PMC11667709 DOI: 10.1016/j.jceh.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rising due to rapid lifestyle changes. Although females may be less prone to MASLD than males, specific studies on MASLD in females should still be conducted. Previous research has shown that sex hormone levels are strongly linked to MASLD in females. By reviewing a large number of experimental and clinical studies, we summarized the pathophysiological mechanisms of estrogen, androgen, sex hormone-binding globulin, follicle-stimulating hormone, and prolactin involved in the development of MASLD. We also analyzed the role of these hormones in female MASLD patients with polycystic ovarian syndrome or menopause, and explored the potential of targeting sex hormones for the treatment of MASLD. We hope this will provide a reference for further exploration of mechanisms and treatments for female MASLD from the perspective of sex hormones.
Collapse
Affiliation(s)
- Huiyan Duan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minmin Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Cherubini A, Della Torre S, Pelusi S, Valenti L. Sexual dimorphism of metabolic dysfunction-associated steatotic liver disease. Trends Mol Med 2024; 30:1126-1136. [PMID: 38890029 DOI: 10.1016/j.molmed.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver condition. MASLD is a sexually dimorphic condition, with its development and progression influenced by sex chromosomes and hormones. Estrogens typically protect against, whereas androgens promote, MASLD. Therapeutic approaches for a sex-specific personalized medicine include estrogen replacement, androgen blockers, and novel drugs targeting hormonal pathways. However, the interactions between hormonal factors and inherited genetic variation impacts MASLD risk, necessitating more tailored therapies. Understanding sex disparities and the role of estrogens could improve MASLD interventions and management, whereas clinical trials addressing sex differences are crucial for advancing personalized treatment. This review explores the underappreciated impact of sexual dimorphism in MASLD and discusses the potential therapeutic application of sex-related hormones.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Serena Pelusi
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
3
|
Song Y, Zhu M, Islam MA, Gu W, Alim K, Cheng CS, Chen J, Xu Y, Xu H. Glutathione peroxidase 3 is essential for countering senescence in adipose remodelling by maintaining mitochondrial homeostasis. Redox Biol 2024; 77:103365. [PMID: 39312866 PMCID: PMC11447410 DOI: 10.1016/j.redox.2024.103365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024] Open
Abstract
Adipose tissue senescence is a precursor to organismal aging and understanding adipose remodelling contributes to discovering novel anti-aging targets. Glutathione peroxidase 3 (GPx3), a critical endogenous antioxidant enzyme, is diminished in the subcutaneous adipose tissue (sWAT) with white adipose expansion. Based on the active role of the antioxidant system in counteracting aging, we investigated the involvement of GPx3 in adipose senescence. We determined that knockdown of GPx3 in adipose tissue by adeno-associated viruses impaired mitochondrial function in mice, increased susceptibility to obesity, and exacerbated adipose tissue senescence. Impairment of GPx3 may cause mitochondrial dysfunction through inner mitochondrial membrane disruption. Adipose reshaping management (cold stimulation and intermittent diet) counteracted the aging of tissues, with an increase in GPx3 expression. Overall metabolic improvement induced by cold stimulation was partially attenuated when GPx3 was depleted. GPx3 may be involved in adipose browning by interacting with UCP1, and GPx3 may be a limiting factor for intracellular reactive oxygen species (ROS) accumulation during stem cell browning. Collectively, these findings emphasise the importance of restoring the imbalanced redox state in adipose tissue to counteract aging and that GPx3 may be a potential target for maintaining mitochondrial homeostasis and longevity.
Collapse
Affiliation(s)
- Yijie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Mengjie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Md Ariful Islam
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Wenyi Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Kavsar Alim
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Chien-Shan Cheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, 20025, China
| | - Jingxian Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, 20025, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China; Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Nie Y, Meng W, Liu D, Yang Z, Wang W, Ren H, Mao K, Lan W, Li C, Wang Z, Lan J. Exosomes derived from apical papilla stem cells improve NASH by regulating fatty acid metabolism and reducing inflammation. Mol Med 2024; 30:186. [PMID: 39462343 PMCID: PMC11512503 DOI: 10.1186/s10020-024-00945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Apical papilla stem cells (SCAPs) exhibit significant potential for tissue repair, characterized by their anti-inflammatory and pro-angiogenic properties. Exosomes derived from stem cells have emerged as safer alternatives that retain comparable physiological functions. This study explores the therapeutic potential of exosomes sourced from SCAPs in the treatment of non-alcoholic steatohepatitis (NASH). METHODS A NASH mouse model was established through the administration of a high-fat diet (HFD), and SCAPs were subsequently isolated for experimental purposes. A cell model of NASH was established in vitro by treating hepatocellular carcinoma cells with oleic acid (OA) and palmitic acid (PA). Exosomes were isolated via differential centrifugation. The mice were treated with exosomes injected into the tail vein, and the hepatocytes were incubated with exosomes in vitro. After the experiment, physiological and biochemical markers were analyzed to assess the effects of exosomes derived from SCAPs on the progression of NASH in both NASH mouse models and NASH cell models. RESULTS After exosomes treatment, the weight gain and liver damage induced by HFD were significantly reduced. Additionally, hepatic fat accumulation was markedly alleviated. Mechanistically, exosomes treatment promoted the expression of genes involved in hepatic fatty acid oxidation and transport, while simultaneously suppressing genes associated with fatty acid synthesis. Furthermore, the levels of serum inflammatory cytokines and the mRNA expression of inflammatory markers in liver tissue were significantly decreased. In vitro cell experiments produced similar results.
Collapse
Affiliation(s)
- Yifei Nie
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Wenqing Meng
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Duanqin Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Ziqing Yang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Wenhao Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Huiping Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Kai Mao
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Weipeng Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Chuanhua Li
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Zhifeng Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| | - Jing Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
Wang D, Wang J, Yin Z, Gong K, Zhang S, Zha Z, Duan Y. Polyoxometalates Ameliorate Metabolic Dysfunction-Associated Steatotic Liver Disease by Activating the AMPK Signaling Pathway. Int J Nanomedicine 2024; 19:10839-10856. [PMID: 39479173 PMCID: PMC11522013 DOI: 10.2147/ijn.s485084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD), the most prevalent chronic liver disorder, has garnered increasing attention globally owing to its associated health complications. However, the lack of available therapeutic medications and inadequate management of complications in metabolic dysfunction-associated steatohepatitis (MASH) present significant challenges. There are little studies evaluating the effectiveness of POM in treating MASLD. In this study, we synthesized polyoxometalates (POM) for potential treatment of MASLD. Methods We induced liver disease in mice using two approaches: feeding a high-fat diet (HFD) to establish MASLD or feeding a methionine-choline deficient (MCD) diet to induce hepatic lipotoxicity and MASH. Various metabolic parameters were detected, and biochemical and histological evaluations were conducted on MASLD. Western blotting, qRT-PCR and immunofluorescence assays were used to elucidate the molecular mechanism of POM in the treatment of MASLD. Results POM therapy resulted in significant improvements in weight gain, dyslipidemia, liver injury, and hepatic steatosis in mice fed a HFD. Notably, in a more severe dietary-induced MASH model with MCD diet, POM significantly attenuated hepatic lipid accumulation, inflammation, and fibrosis. POM treatment effectively attenuated palmitic acid and oleic acid-induced lipid accumulation in HepG2 and Huh7 cells by targeting the AMPK pathway to regulate lipid metabolism, which was confirmed by AMPK inhibitor. Additionally, the activation of AMPK signaling by POM suppressed the expression of lipid synthesis genes, including sterol regulatory element-binding protein 1c (SREBP1c) and SREBP2, while concurrently upregulating the expression of sirtuin 1 (SIRT1) to promote fatty acid oxidation. Conclusion These findings suggest that POM is a promising therapeutic strategy with high efficacy in multiple MASLD models.
Collapse
Affiliation(s)
- Dandan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230011, People’s Republic of China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Jingguo Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Zequn Yin
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
| | - Ke Gong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Shuang Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
| |
Collapse
|
6
|
Bello-Medina PC, Díaz-Muñoz M, Martín del Campo ST, Pacheco-Moisés FP, Flores Miguel C, Cobián Cervantes R, García Solano PB, Navarro-Meza M. A maternal low-protein diet results in sex-specific differences in synaptophysin expression and milk fatty acid profiles in neonatal rats. J Nutr Sci 2024; 13:e64. [PMID: 39469193 PMCID: PMC11514622 DOI: 10.1017/jns.2024.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 10/30/2024] Open
Abstract
The developmental origins of health and disease hypothesis have highlighted the link between early life environment and long-term health outcomes in offspring. For example, maternal protein restriction during pregnancy and lactation can result in adverse metabolic and cognitive outcomes in offspring postnatal. Hence, in the present study, we assess whether an isocaloric low-protein diet (ILPD) affects the fatty acid profile in breast milk, the hippocampal synaptophysin (Syn) ratio, and the oxidative stress markers in the neonatal stage of male and female offspring. The aim of this work was to assess the effect of an ILPD on the fatty acid profile in breast milk, quantified the hippocampal synaptophysin (Syn) ratio and oxidative stress markers in neonatal stage of male and female offspring. Female Wistar rats were fed with either a control diet or an ILPD during gestation to day 10 of lactation. Oxidative stress markers were assessed in serum and liver. All quantifications were done at postnatal day 10. The results showed: ILPD led to decreases of 38.5% and 17.4% in breast milk volume and polyunsaturated fatty acids content. Significant decreases of hippocampal Syn ratio in male offspring (decreases of 98% in hippocampal CA1 pyramidal and CA1 oriens, 83%, stratum pyramidal in CA3, 80%, stratum lucidum in CA3, and 81% stratum oriens in CA3). Male offspring showed an increase in pro-oxidant status in serum and liver. Thus, the data suggest that male offspring are more vulnerable than females to an ILPD during gestation and lactation.
Collapse
Affiliation(s)
- Paola C. Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Sandra Teresita Martín del Campo
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Querétaro, México
- Food Engineering and Statistical Independent Consultant, Querétaro, México
| | | | - Claudia Flores Miguel
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Raquel Cobián Cervantes
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Perla Belén García Solano
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Mónica Navarro-Meza
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
- Departamento de Ciencias Clínicas, División de Ciencias de Salud, Centro Universitario del Sur, Ciudad Guzmán, Jalisco, México
| |
Collapse
|
7
|
Arconzo M, Piccinin E, Pasculli E, Cariello M, Loiseau N, Bertrand-Michel J, Guillou H, Matrella ML, Villani G, Moschetta A. Hepatic-specific Pgc-1α ablation drives fibrosis in a MASH model. Liver Int 2024; 44:2738-2752. [PMID: 39046166 DOI: 10.1111/liv.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is a growing cause of chronic liver disease, characterized by fat accumulation, inflammation and fibrosis, which development depends on mitochondrial dysfunction and oxidative stress. Highly expressed in the liver during fasting, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) regulates mitochondrial and oxidative metabolism. Given the relevant role of mitochondrial function in MASH, we investigated the relationship between PGC-1α and steatohepatitis. METHODS We measured the hepatic expression of Pgc-1α in both MASH patients and wild-type mice fed a western diet (WD) inducing steatosis and fibrosis. We then generated a pure C57BL6/J strain loss of function mouse model in which Pgc-1α is selectively deleted in the liver and we fed these mice with a WD supplemented with sugar water that accurately mimics human MASH. RESULTS We observed that the hepatic expression of Pgc-1α is strongly reduced in MASH, in both humans and mice. Moreover, the hepatic ablation of Pgc-1α promotes a considerable reduction of the hepatic mitochondrial respiratory capacity, setting up a bioenergetic harmful environment for liver diseases. Indeed, the lack of Pgc-1α decreases mitochondrial function and increases inflammation, fibrosis and oxidative stress in the scenario of MASH. Intriguingly, this profibrotic phenotype is not linked with obesity, insulin resistance and lipid disbalance. CONCLUSIONS In a MASH model the hepatic ablation of Pgc-1α drives fibrosis independently from lipid and glucose metabolism. These results add a novel mechanistic piece to the puzzle of the specific and crucial role of mitochondrial function in MASH development.
Collapse
Affiliation(s)
- Maria Arconzo
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Elena Piccinin
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Emanuela Pasculli
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | | | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Maria L Matrella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Gaetano Villani
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
8
|
Taskintuna K, Bhat MA, Shaikh T, Hum J, Golestaneh N. Sex-dependent regulation of retinal pigment epithelium and retinal function by Pgc-1α. Front Cell Neurosci 2024; 18:1442079. [PMID: 39285939 PMCID: PMC11403373 DOI: 10.3389/fncel.2024.1442079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness that affects people over 60. While aging is the prominent factor in AMD, studies have reported a higher prevalence of AMD in women compared to age-matched men. Higher levels of the innate immune response's effector proteins complement factor B and factor I were also found in females compared to males in intermediate AMD. However, the mechanisms underlying these differences remain elusive. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a key regulator of mitochondrial biogenesis and metabolic pathways. Previously, we showed that Pgc-1α repression and high-fat diet induce drastic AMD-like phenotypes in mice. Our recent data revealed that Pgc-1α repression alone can also induce retinal pigment epithelium (RPE) and retinal dysfunction in mice, and its inhibition in vitro results in lipid droplet accumulation in human RPE. Whether sex is a contributing factor in these phenotypes remains to be elucidated. Using electroretinography, we demonstrate that sex could influence RPE function during aging independent of Pgc-1α in wild-type (WT) mice. We further show that Pgc-1α repression exacerbates RPE and retinal dysfunction in females compared to aged-match male mice. Gene expression analyses revealed that Pgc-1α differentially regulates genes related to antioxidant enzymes and mitochondrial dynamics in males and females. RPE flat mounts immunolabeled with TOMM20 and DRP1 indicated a sex-dependent role for Pgc-1α in regulating mitochondrial fission. Analyses of mitochondrial network morphology suggested sex-dependent effects of Pgc-1α repression on mitochondrial dynamics. Together, our study demonstrates that inhibition of Pgc-1α induces a sex-dependent decline in RPE and retinal function in mice. These observations on the sex-dependent regulation of RPE and retinal function could offer novel insights into targeted therapeutic approaches for age-related RPE and retinal degeneration.
Collapse
Affiliation(s)
- Kaan Taskintuna
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, United States
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Mohd Akbar Bhat
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, United States
| | - Tasneem Shaikh
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, United States
| | - Jacob Hum
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, United States
| | - Nady Golestaneh
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, United States
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
- Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
9
|
Kim MB, Lee J, Lee JY. Targeting Mitochondrial Dysfunction for the Prevention and Treatment of Metabolic Disease by Bioactive Food Components. J Lipid Atheroscler 2024; 13:306-327. [PMID: 39355406 PMCID: PMC11439752 DOI: 10.12997/jla.2024.13.3.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 05/13/2024] [Indexed: 10/03/2024] Open
Abstract
Dysfunctional mitochondria have been linked to the pathogenesis of obesity-associated metabolic diseases. Excessive energy intake impairs mitochondrial biogenesis and function, decreasing adenosine-5'-triphosphate production and negatively impacting metabolically active tissues such as adipose tissue, skeletal muscle, and the liver. Compromised mitochondrial function disturbs lipid metabolism and increases reactive oxygen species production in these tissues, contributing to the development of insulin resistance, type 2 diabetes, and non-alcoholic fatty liver disease. Recent studies have demonstrated the therapeutic potential of bioactive food components, such as resveratrol, quercetin, coenzyme Q10, curcumin, and astaxanthin, by enhancing mitochondrial function. This review provides an overview of the current understanding of how these bioactive compounds ameliorate mitochondrial dysfunction to mitigate obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Jaeeun Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
10
|
Fu CE, Teng M, Tung D, Ramadoss V, Ong C, Koh B, Lim WH, Tan DJH, Koh JH, Nah B, Syn N, Tamaki N, Siddiqui MS, Wijarnpreecha K, Ioannou GN, Nakajima A, Noureddin M, Sanyal AJ, Ng CH, Muthiah M. Sex and Race-Ethnic Disparities in Metabolic Dysfunction-Associated Steatotic Liver Disease: An Analysis of 40,166 Individuals. Dig Dis Sci 2024; 69:3195-3205. [PMID: 38940975 DOI: 10.1007/s10620-024-08540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND To overcome the limitations of the term "non-alcoholic fatty liver disease" (NAFLD), the term metabolic-associated steatotic liver disease (MASLD) was introduced. While epidemiologic studies have been conducted on MASLD, there is limited evidence on its associated sex and ethnic variations. AIMS This study assesses the differences across sex and race-ethnicity on the prevalence, associated risk factors and adverse outcomes in individuals with MASLD. METHODS Data retrieved from the National Health and Nutrition Examination Survey between 1999 to 2018 was analyzed. Prevalence, clinical characteristics, and outcomes were evaluated according to sex and race-ethnicity. Adverse outcomes and mortality events were analyzed using multivariate analyses. RESULTS Of 40,166 individuals included, 37.63% had MASLD. There was a significant increase in MASLD prevalence from 1999 to 2018 among Mexican Americans (Annual Percentage Change [APC] + 1.889%, p < 0.001), other Hispanics (APC + 1.661%, p = 0.013), NH Whites (APC + 1.084%, p = 0.018), NH Blacks (APC + 1.108%, p = 0.007), and females (APC + 0.879%, p = 0.030), but not males. Females with MASLD were at lower risk of all-cause (HR: 0.766, 95%CI 0.711 to 0.825, p < 0.001), cardiovascular disease-related (CVD) (SHR: 0.802, 95% CI 0.698 to 0.922, p = 0.002) and cancer-related mortality (SHR: 0.760, 95% CI 0.662 to 0.873, p < 0.001). Significantly, NH Blacks have the highest risk of all-cause and CVD-related mortality followed by NH Whites then Mexican Americans. CONCLUSION There has been an increase in prevalence in most race-ethnicities over time. While the change in definition shows no significant differences in previous associations found in NAFLD, the increased mortality in NH Whites relative to Mexican Americans remains to be explored.
Collapse
Affiliation(s)
- Clarissa Elysia Fu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 10 Medical Dr, Singapore, 117597, Singapore
| | - Margaret Teng
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Daniel Tung
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Vijay Ramadoss
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christen Ong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 10 Medical Dr, Singapore, 117597, Singapore
| | - Benjamin Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 10 Medical Dr, Singapore, 117597, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 10 Medical Dr, Singapore, 117597, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 10 Medical Dr, Singapore, 117597, Singapore
| | - Jia Hong Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 10 Medical Dr, Singapore, 117597, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Benjamin Nah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Nicholas Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 10 Medical Dr, Singapore, 117597, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Karn Wijarnpreecha
- Division of Gastroenterology and Hepatology, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
| | - George N Ioannou
- Division of Gastroenterology, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, WA, USA
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Mazen Noureddin
- Houston Research Institute, Houston Methodist Hospital, Houston, USA
| | - Arun J Sanyal
- Department of Internal Medicine, Stravitz-Sanyal Institute of Liver Disease and Metabolic Health,, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 10 Medical Dr, Singapore, 117597, Singapore.
- Ministry of Health Holdings, Singapore, Singapore.
- Department of Medicine, Kurume University School of Medicine, Kurume, Japan.
| | - Mark Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 10 Medical Dr, Singapore, 117597, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| |
Collapse
|
11
|
Rojas I, Caballero-Solares A, Vadboncoeur É, Sandrelli RM, Hall JR, Clow KA, Parrish CC, Rise ML, Swanson AK, Gamperl AK. Prolonged Cold Exposure Negatively Impacts Atlantic Salmon ( Salmo salar) Liver Metabolism and Function. BIOLOGY 2024; 13:494. [PMID: 39056688 PMCID: PMC11273521 DOI: 10.3390/biology13070494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Large-scale mortality events have occurred during the winter in Atlantic salmon sea cages in Eastern Canada and Iceland. Thus, in salmon held at 3 °C that were apparently healthy (i.e., asymptomatic) and that had 'early' and 'advanced' symptoms of 'winter syndrome'/'winter disease' (WS/WD), we measured hepatic lipid classes and fatty acid levels, and the transcript expression of 34 molecular markers of fatty liver disease (FLD; a clinical sign of WS/WD). In addition, we correlated our results with previously reported characteristics associated with this disease's progression in these same individuals. Total lipid and triacylglycerol (TAG) levels increased by ~50%, and the expression of 32 of the 34 genes was dysregulated, in fish with symptoms of FLD. TAG was positively correlated with markers of inflammation (5loxa, saa5), hepatosomatic index (HSI), and plasma aspartate aminotransferase levels, but negatively correlated with genes related to lipid metabolism (elovl5b, fabp3a, cd36c), oxidative stress (catc), and growth (igf1). Multivariate analyses clearly showed that the three groups of fish were different, and that saa5 was the largest contributor to differences. Our results provide a number of biomarkers for FLD in salmon, and very strong evidence that prolonged cold exposure can trigger FLD in this ecologically and economically important species.
Collapse
Affiliation(s)
- Isis Rojas
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Émile Vadboncoeur
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Jennifer R. Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Kathy A. Clow
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | | | - Anthony K. Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| |
Collapse
|
12
|
Tie F, Ding J, Gao Y, Wang H. Chlorogenic Acid and its Isomers Attenuate NAFLD by Mitigating Lipid Accumulation in Oleic Acid-Induced HepG2 Cells and High-Fat Diet- Fed Zebrafish. Chem Biodivers 2024; 21:e202400564. [PMID: 38708558 DOI: 10.1002/cbdv.202400564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Chlorogenic acid (Chl), isochlorogenic acid A (Isochl A), and isochlorogenic acid B (Isochl B) are naturally occurring phenolic compounds, which have been shown to exert a regulatory effect on lipid metabolism. However, the mechanism underlying this effect remains unclear. Herein, we investigated the inhibitory effects and underlying mechanisms of these three phenolic compounds on oleic acid (OA)-induced HepG2 cells and high-fat diet (HFD)-fed zebrafish. Lipid accumulation and triacylglycerol levels increased in OA-induced cells, which was attenuated by Chl, Isochl A, and Isochl B. Moreover, the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) decreased, while superoxide dismutase (SOD) levels increased by Chl, Isochl A and Isochl B treatment. Western blot analysis demonstrated that Chl, Isochl A and Isochl B reduced the expression of lipogenesis-related protein, including fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, peroxisome proliferator-activated receptor alpha gamma (PPARα) was increased by Chl, Isochl A, and Isochl B treatment. In addition, our results indicated that Chl, Isochl A and Isochl B decreased lipid profiles and lipid accumulation in HFD-fed zebrafish. Thus, these findings highlight the potential of Chl, Isochl A, and Isochl B as effective agents for treating or/and ameliorating non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Fangfang Tie
- Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China
| | - Jin Ding
- Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China
| | - Yidan Gao
- Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China
| |
Collapse
|
13
|
Yang Z, Song S, Li L, Yuan Z, Li Y. Association between the composite dietary antioxidant index and metabolic dysfunction-associated steatotic liver disease in adults: a cross-sectional study from NHANES 2017-2020. Sci Rep 2024; 14:13801. [PMID: 38877074 PMCID: PMC11178812 DOI: 10.1038/s41598-024-63965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a predominant liver disease worldwide, lacking approved drugs for clinical intervention at present. The composite dietary antioxidant index (CDAI) is used to assess the anti-inflammatory properties of diets, with higher CDAI indicating greater exposure to antioxidants. Therefore, our study aimed to explore the relationship between CDAI and MASLD in order to identify potential therapeutic approaches. We collected data from 12,286 participants in the National Health and Nutrition Examination Survey (NHANES) database from 2017 to 2020 for analysis. The correlation between CDAI and MASLD status, controlled attenuation parameter (CAP), and liver stiffness measurement (LSM) was evaluated by adjusting for confounding variables using weighted binary logistic regression model, linear regression model, and restricted cubic spline (RCS) regression. The median CDAI in this study was - 0.3055 (interquartile range [IQR], - 2.299 to 2.290). The CDAI was higher in the population characterized by being young, female, higher income, absence of diabetes, and non-MASLD. After multivariable adjustment, the results of the weighted linear regression model suggested that higher CDAI may be associated with a decrease in CAP values; the results of the RCS regression model indicated significant non-linear relationships between MASLD status, CAP, LSM, and CDAI. The CDAI corresponding to the inflection points of the relationship curves between MASLD status, CAP, LSM, and CDAI were 0.349, 0.699, and 0.174, respectively. After further stratification by gender, we found that the relationship between MASLD status, CAP, and CDAI was significantly linear for females, whereas for males, it was non-linear, and the CDAI values corresponding to the inflection points in the curves for males were 1.325 and 0.985, respectively. We found that higher CDAI may be associated with decreased CAP values, particularly significant in females, suggesting that the intake of complex dietary antioxidants may ameliorate hepatic steatosis and reduce the occurrence of MASLD. Therefore, promoting dietary patterns rich in antioxidants may be an appropriate strategy to reduce the incidence of MASLD.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Disease, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Shupeng Song
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lufeng Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhe Yuan
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yongguo Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Caon E, Martins M, Hodgetts H, Blanken L, Vilia MG, Levi A, Thanapirom K, Al-Akkad W, Abu-Hanna J, Baselli G, Hall AR, Luong TV, Taanman JW, Vacca M, Valenti L, Romeo S, Mazza G, Pinzani M, Rombouts K. Exploring the impact of the PNPLA3 I148M variant on primary human hepatic stellate cells using 3D extracellular matrix models. J Hepatol 2024; 80:941-956. [PMID: 38365182 DOI: 10.1016/j.jhep.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND & AIMS The PNPLA3 rs738409 C>G (encoding for I148M) variant is a risk locus for the fibrogenic progression of chronic liver diseases, a process driven by hepatic stellate cells (HSCs). We investigated how the PNPLA3 I148M variant affects HSC biology using transcriptomic data and validated findings in 3D-culture models. METHODS RNA sequencing was performed on 2D-cultured primary human HSCs and liver biopsies of individuals with obesity, genotyped for the PNPLA3 I148M variant. Data were validated in wild-type (WT) or PNPLA3 I148M variant-carrying HSCs cultured on 3D extracellular matrix (ECM) scaffolds from human healthy and cirrhotic livers, with/without TGFB1 or cytosporone B (Csn-B) treatment. RESULTS Transcriptomic analyses of liver biopsies and HSCs highlighted shared PNPLA3 I148M-driven dysregulated pathways related to mitochondrial function, antioxidant response, ECM remodelling and TGFB1 signalling. Analogous pathways were dysregulated in WT/PNPLA3-I148M HSCs cultured in 3D liver scaffolds. Mitochondrial dysfunction in PNPLA3-I148M cells was linked to respiratory chain complex IV insufficiency. Antioxidant capacity was lower in PNPLA3-I148M HSCs, while reactive oxygen species secretion was increased in PNPLA3-I148M HSCs and higher in bioengineered cirrhotic vs. healthy scaffolds. TGFB1 signalling followed the same trend. In PNPLA3-I148M cells, expression and activation of the endogenous TGFB1 inhibitor NR4A1 were decreased: treatment with the Csn-B agonist increased total NR4A1 in HSCs cultured in healthy but not in cirrhotic 3D scaffolds. NR4A1 regulation by TGFB1/Csn-B was linked to Akt signalling in PNPLA3-WT HSCs and to Erk signalling in PNPLA3-I148M HSCs. CONCLUSION HSCs carrying the PNPLA3 I148M variant have impaired mitochondrial function, antioxidant responses, and increased TGFB1 signalling, which dampens antifibrotic NR4A1 activity. These features are exacerbated by cirrhotic ECM, highlighting the dual impact of the PNPLA3 I148M variant and the fibrotic microenvironment in progressive chronic liver diseases. IMPACT AND IMPLICATIONS Hepatic stellate cells (HSCs) play a key role in the fibrogenic process associated with chronic liver disease. The PNPLA3 genetic mutation has been linked with increased risk of fibrogenesis, but its role in HSCs requires further investigation. Here, by using comparative transcriptomics and a novel 3D in vitro model, we demonstrate the impact of the PNPLA3 genetic mutation on primary human HSCs' behaviour, and we show that it affects the cell's mitochondrial function and antioxidant response, as well as the antifibrotic gene NR4A1. Our publicly available transcriptomic data, 3D platform and our findings on NR4A1 could facilitate the discovery of targets to develop more effective treatments for chronic liver diseases.
Collapse
Affiliation(s)
- Elisabetta Caon
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Maria Martins
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Harry Hodgetts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Lieke Blanken
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Maria Giovanna Vilia
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Ana Levi
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Kessarin Thanapirom
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Walid Al-Akkad
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Jeries Abu-Hanna
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
| | - Guido Baselli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Andrew R Hall
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London, UK; Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Tu Vinh Luong
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London, UK; Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Jan-Willem Taanman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London UK
| | - Michele Vacca
- Laboratory of Hepatic Metabolism and NAFLD, Roger Williams Institute of Hepatology, London, UK; Clinica Medica "Frugoni", Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Precision Medicine, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Giuseppe Mazza
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK.
| |
Collapse
|
15
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
16
|
Song Z, Miao X, Xie X, Tang G, Deng J, Hu M, Liu S, Leng S. Associations between serum ferritin baselines and trajectories and the incidence of metabolic dysfunction-associated steatotic liver disease: a prospective cohort study. Lipids Health Dis 2024; 23:141. [PMID: 38760825 PMCID: PMC11100236 DOI: 10.1186/s12944-024-02129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND AND AIMS Evidence from prospective cohort studies on the relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and longitudinal changes in serum ferritin (SF) still limited. This study aimed to investigate the associations of SF baselines and trajectories with new-onset MASLD and to present a MASLD discriminant model. METHODS A total of 1895 participants who attended health examinations at least three times in a hospital in Dalian City between 2015 and 2022 were included. The main outcome was the incidence of MASLD. The associations between SF baselines and trajectories with the risk of MASLD were analyzed by Cox proportional hazards regression, restricted cubic spline (RCS) analysis and time-dependent receiver operating characteristic (ROC) curve analysis. In addition, a MASLD discrimination model was established using logistic regression analyses. RESULTS Among the 1895 participants, 492 developed MASLD during follow-up. Kaplan-Meier analysis indicated that participants in the low-stable trajectory group had a longer MASLD-free time compared with participants in other groups. Compared with those in the low-stable trajectory group, the adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) for the risk of new-onset MASLD in the medium-high, high-stable and high-high trajectory groups were 1.54(1.18-2.00), 1.77(1.35-2.32) and 1.55(1.07-2.26), respectively (Ptrend < 0.001). The results were robust in subgroup and sensitivity analyses. Multivariate Cox proportional regression showed that SF was an independent risk factor of MASLD (HR = 1.002, 95%CI: 1.000-1.003, P = 0.003). The restricted cubic spline demonstrated a nonlinear relationship between SF and the risk of MASLD. The 8-variable model had high discriminative performance, good accuracy and clinical effectiveness. The ROC curve results showed that AUC was greater than that of the FLI, HSI and ZJU models (all P < 0.01). CONCLUSIONS Not only a higher baseline SF but also SF changing trajectory are significantly associated with risk of new-onset MASLD. SF could be a predictor of the occurrence of MASLD.
Collapse
Affiliation(s)
- Ziping Song
- Health Management Center, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China
| | - Xinlei Miao
- Health Management Center, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China
| | - Xiaoling Xie
- School of Public Health, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Guimin Tang
- School of Public Health, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Jiayi Deng
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China
| | - Manling Hu
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China
| | - Shuang Liu
- School of Public Health, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Song Leng
- Health Management Center, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China.
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China.
| |
Collapse
|
17
|
Wei Z, Ye Y, Liu C, Wang Q, Zhang Y, Chen K, Cheng G, Zhang X. MIER2/PGC1A elicits sunitinib resistance via lipid metabolism in renal cell carcinoma. J Adv Res 2024:S2090-1232(24)00177-2. [PMID: 38702028 DOI: 10.1016/j.jare.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is one of the most common malignant tumors of the urinary system and accounts for more than 90 % of all renal tumors. Resistance to targeted therapy has emerged as a pivotal factor that contributes to the progressive deterioration of patients with advanced RCC. Metabolic reprogramming is a hallmark of tumorigenesis and progression, with an increasing body of evidence indicating that abnormal lipid metabolism plays a crucial role in the advancement of renal clear cell carcinoma. OBJECTIVES Clarify the precise mechanisms underlying abnormal lipid metabolism and drug resistance. METHODS Bioinformatics screening and analyses were performed to identify hub gene. qRT-PCR, western blot, chromatin immunoprecipitation (ChIP) assays, and other biological methods were used to explore and verify related pathways. Various cell line models and animal models were used to perform biological functional experiments. RESULTS In this study, we identified Mesoderm induction early response 2 (MIER2) as a novel biomarker for RCC, demonstrating its role in promoting malignancy and sunitinib resistance by influencing lipid metabolism in RCC. Mechanistically, MIER2 facilitated P53 deacetylation by binding to HDAC1. Acetylation modification augmented the DNA-binding stability and transcriptional function of P53, while deacetylation of P53 hindered the transcriptional process of PGC1A, leading to intracellular lipid accumulation in RCC. Furthermore, Trichostatin A (TSA), an inhibitor of HDAC1, was found to impede the MIER2/HDAC1/P53/PGC1A pathway, offering potential benefits for patients with sunitinib-resistant renal cell cancer. CONCLUSION Our findings highlight MIER2 as a key player in anchoring HDAC1 and inhibiting PGC1A expression through the deacetylation of P53, thereby inducing lipid accumulation in RCC and promoting drug resistance. Lipid-rich RCC cells compensate for energy production and sustain their own growth in a glycolysis-independent manner, evading the cytotoxic effects of targeted drugs and ultimately culminating in the development of drug resistance.
Collapse
Affiliation(s)
- Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhong Ye
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenchen Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunxuan Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailei Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Shenzhen Huazhong University of Science and Technology Research Institute, China.
| |
Collapse
|
18
|
Tian Y, Xie Y, Hong X, Guo Z, Yu Q. 17β-Estradiol protects female rats from bilateral oophorectomy-induced nonalcoholic fatty liver disease induced by improving linoleic acid metabolism alteration and gut microbiota disturbance. Heliyon 2024; 10:e29013. [PMID: 38601573 PMCID: PMC11004821 DOI: 10.1016/j.heliyon.2024.e29013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
After surgical or natural menopause, women face a high risk of nonalcoholic fatty liver disease (NAFLD), which can be diminished by hormone replacement therapy (HRT). The gut microbiota is subject to modulation by various physiological changes and the progression of diseases. This microbial ecosystem coexists symbiotically with the host, playing pivotal roles in immune maturation, microbial defense mechanisms, and metabolic functions essential for nutritional and hormone homeostasis. E2 supplementation effectively prevented the development of NAFLD after bilateral oophorectomy (OVX) in female rats. The changes in the gut microbiota such as abnormal biosynthetic metabolism of fatty acids caused by OVX were partially restored by E2 supplementation. The combination of liver transcriptomics and metabolomics analysis revealed that linoleic acid (LA) metabolism, a pivotal pathway in fatty acids metabolism was mainly manipulated during the induction and treatment of NAFLD. Further correlation analysis indicated that the gut microbes were associated with abnormal serum indicators and different LA metabolites. These metabolites are also closely related to serum indicators of NAFLD. An in vitro study verified that LA is an inducer of hepatic steatosis. The changes in transcription in the LA metabolism pathway could be normalized by E2 treatment. The metabolic perturbations of LA may directly and secondhand impact the development of NAFLD in postmenopausal individuals. This research focused on the sex-specific pathophysiology and treatment of NAFLD, providing more evidence for HRT and calling for the multitiered management of NAFLD.
Collapse
Affiliation(s)
| | | | - Xinyu Hong
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zaixin Guo
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| |
Collapse
|
19
|
Sommerauer C, Gallardo-Dodd CJ, Savva C, Hases L, Birgersson M, Indukuri R, Shen JX, Carravilla P, Geng K, Nørskov Søndergaard J, Ferrer-Aumatell C, Mercier G, Sezgin E, Korach-André M, Petersson C, Hagström H, Lauschke VM, Archer A, Williams C, Kutter C. Estrogen receptor activation remodels TEAD1 gene expression to alleviate hepatic steatosis. Mol Syst Biol 2024; 20:374-402. [PMID: 38459198 PMCID: PMC10987545 DOI: 10.1038/s44320-024-00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Sex-based differences in obesity-related hepatic malignancies suggest the protective roles of estrogen. Using a preclinical model, we dissected estrogen receptor (ER) isoform-driven molecular responses in high-fat diet (HFD)-induced liver diseases of male and female mice treated with or without an estrogen agonist by integrating liver multi-omics data. We found that selective ER activation recovers HFD-induced molecular and physiological liver phenotypes. HFD and systemic ER activation altered core liver pathways, beyond lipid metabolism, that are consistent between mice and primates. By including patient cohort data, we uncovered that ER-regulated enhancers govern central regulatory and metabolic genes with clinical significance in metabolic dysfunction-associated steatotic liver disease (MASLD) patients, including the transcription factor TEAD1. TEAD1 expression increased in MASLD patients, and its downregulation by short interfering RNA reduced intracellular lipid content. Subsequent TEAD small molecule inhibition improved steatosis in primary human hepatocyte spheroids by suppressing lipogenic pathways. Thus, TEAD1 emerged as a new therapeutic candidate whose inhibition ameliorates hepatic steatosis.
Collapse
Affiliation(s)
- Christian Sommerauer
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Carlos J Gallardo-Dodd
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Christina Savva
- Department of Medicine, Integrated Cardio Metabolic Center, Karolinska Institute, Huddinge, Sweden
| | - Linnea Hases
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Madeleine Birgersson
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Rajitha Indukuri
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Pablo Carravilla
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
- Department of Women's and Children's Health, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Keyi Geng
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Jonas Nørskov Søndergaard
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Clàudia Ferrer-Aumatell
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Grégoire Mercier
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Erdinc Sezgin
- Department of Women's and Children's Health, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Marion Korach-André
- Department of Medicine, Integrated Cardio Metabolic Center, Karolinska Institute, Huddinge, Sweden
| | - Carl Petersson
- Department of Drug Metabolism and Pharmacokinetics, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Hannes Hagström
- Department of Medicine Huddinge, Karolinska Institute, Huddinge, Sweden
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Amena Archer
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Cecilia Williams
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
20
|
Nie YF, Shang JM, Liu DQ, Meng WQ, Ren HP, Li CH, Wang ZF, Lan J. Apical papilla stem cell-derived exosomes regulate lipid metabolism and alleviate inflammation in the MCD-induced mouse NASH model. Biochem Pharmacol 2024; 222:116073. [PMID: 38395263 DOI: 10.1016/j.bcp.2024.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Stem cells from the apical papilla(SCAPs) exhibit remarkable tissue repair capabilities, demonstrate anti-inflammatory and pro-angiogenic effects, positioning them as promising assets in the realm of regenerative medicine. Recently, the focus has shifted towards exosomes derived from stem cells, perceived as safer alternatives while retaining comparable physiological functions. This study delves into the therapeutic implications of exosomes derived from SCAPs in the methionine-choline-deficient (MCD) diet-induced mice non-alcoholic steatohepatitis (NASH) model. We extracted exosomes from SCAPs. During the last two weeks of the MCD diet, mice were intravenously administered SCAPs-derived exosomes at two distinct concentrations (50 μg/mouse and 100 μg/mouse) biweekly. Thorough examinations of physiological and biochemical indicators were performed to meticulously evaluate the impact of exosomes derived from SCAPs on the advancement of NASH in mice induced by MCD diet. This findings revealed significant reductions in body weight loss and liver damage induced by the MCD diet following exosomes treatment. Moreover, hepatic fat accumulation was notably alleviated. Mechanistically, the treatment with exosomes led to an upregulation of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) levels in the liver, enhancing hepatic fatty acid oxidation and transporter gene expression while inhibiting genes associated with fatty acid synthesis. Additionally, exosomes treatment increased the transcription levels of key liver mitochondrial marker proteins and the essential mitochondrial biogenesis factor. Furthermore, the levels of serum inflammatory factors and hepatic tissue inflammatory factor mRNA expression were significantly reduced, likely due to the anti-inflammatory phenotype induced by exosomes in macrophages. The above conclusion suggests that SCAPs-exosomes can improve NASH.
Collapse
Affiliation(s)
- Yi-Fei Nie
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Jia-Ming Shang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Duan-Qin Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Wen-Qing Meng
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Hui-Ping Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Chuan-Hua Li
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhi-Feng Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China.
| | - Jing Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China.
| |
Collapse
|
21
|
Zuo Q, Park NH, Lee JK, Santaliz-Casiano A, Madak-Erdogan Z. Navigating nonalcoholic fatty liver disease (NAFLD): Exploring the roles of estrogens, pharmacological and medical interventions, and life style. Steroids 2024; 203:109330. [PMID: 37923152 DOI: 10.1016/j.steroids.2023.109330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
The pursuit of studying this subject is driven by the urgency to address the increasing global prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD) and its profound health implications. NAFLD represents a significant public health concern due to its association with metabolic disorders, cardiovascular complications, and the potential progression to more severe conditions like non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Liver estrogen signaling is important for maintaining liver function, and loss of estrogens increases the likelihood of NAFLD in postmenopausal women. Understanding the multifaceted mechanisms underlying NAFLD pathogenesis, its varied treatment strategies, and their effectiveness is crucial for devising comprehensive and targeted interventions. By unraveling the intricate interplay between genetics, lifestyle, hormonal regulation, and gut microbiota, we can unlock insights into risk stratification, early detection, and personalized therapeutic approaches. Furthermore, investigating the emerging pharmaceutical interventions and dietary modifications offers the potential to revolutionize disease management. This review reinforces the role of collaboration in refining NAFLD comprehension, unveiling novel therapeutic pathways, and ultimately improving patient outcomes for this intricate hepatic condition.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Nicole Hwajin Park
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jenna Kathryn Lee
- Department of Neuroscience, Northwestern University, Evanston, IL 60208, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
22
|
Li L, Yao Y, Wang Y, Cao J, Jiang Z, Yang Y, Wang H, Ma H. G protein-coupled estrogen receptor 1 ameliorates nonalcoholic steatohepatitis through targeting AMPK-dependent signaling. J Biol Chem 2024; 300:105661. [PMID: 38246352 PMCID: PMC10876613 DOI: 10.1016/j.jbc.2024.105661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), especially nonalcoholic steatohepatitis (NASH), has emerged as a prevalent cause of liver cirrhosis and hepatocellular carcinoma, posing severe public health challenges worldwide. The incidence of NASH is highly correlated with an increased prevalence of obesity, insulin resistance, diabetes, and other metabolic diseases. Currently, no approved drugs specifically targeted for the therapies of NASH partially due to the unclear pathophysiological mechanisms. G protein-coupled estrogen receptor 1 (GPER1) is a membrane estrogen receptor involved in the development of metabolic diseases such as obesity and diabetes. However, the function of GPER1 in NAFLD/NASH progression remains unknown. Here, we show that GPER1 exerts a beneficial role in insulin resistance, hepatic lipid accumulation, oxidative stress, or inflammation in vivo and in vitro. In particular, we observed that the lipid accumulation, inflammatory response, fibrosis, or insulin resistance in mouse NAFLD/NASH models were exacerbated by hepatocyte-specific GPER1 knockout but obviously mitigated by hepatic GPER1 activation in female and male mice. Mechanistically, hepatic GPER1 activates AMP-activated protein kinase signaling by inducing cyclic AMP release, thereby exerting its protective effect. These data suggest that GPER1 may be a promising therapeutic target for NASH.
Collapse
Affiliation(s)
- Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yulei Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ji Cao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
23
|
Hoyeck MP, Angela Ching ME, Basu L, van Allen K, Palaniyandi J, Perera I, Poleo-Giordani E, Hanson AA, Ghorbani P, Fullerton MD, Bruin JE. The aryl hydrocarbon receptor in β-cells mediates the effects of TCDD on glucose homeostasis in mice. Mol Metab 2024; 81:101893. [PMID: 38309623 PMCID: PMC10867573 DOI: 10.1016/j.molmet.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
OBJECTIVE Chronic exposure to persistent organic pollutants (POPs) is associated with increased incidence of type 2 diabetes, hyperglycemia, and poor insulin secretion in humans. Dioxins and dioxin-like compounds are a broad class of POPs that exert cellular toxicity through activation of the aryl hydrocarbon receptor (AhR). We previously showed that a single high-dose injection of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, aka dioxin; 20 μg/kg) in vivo reduced fasted and glucose-stimulated plasma insulin levels for up to 6 weeks in male and female mice. TCDD-exposed male mice were also modestly hypoglycemic and had increased insulin sensitivity, whereas TCDD-exposed females were transiently glucose intolerant. Whether these effects are driven by AhR activation in β-cells requires investigation. METHODS We exposed female and male β-cell specific Ahr knockout (βAhrKO) mice and littermate Ins1-Cre genotype controls (βAhrWT) to a single high dose of 20 μg/kg TCDD and tracked the mice for 6 weeks. RESULTS Under baseline conditions, deleting AhR from β-cells caused hypoglycemia in female mice, increased insulin secretion ex vivo in female mouse islets, and promoted modest weight gain in male mice. Importantly, high-dose TCDD exposure impaired glucose homeostasis and β-cell function in βAhrWT mice, but these phenotypes were largely abolished in TCDD-exposed βAhrKO mice. CONCLUSION Our study demonstrates that AhR signaling in β-cells is important for regulating baseline β-cell function in female mice and energy homeostasis in male mice. We also show that β-cell AhR signaling largely mediates the effects of TCDD on glucose homeostasis in both sexes, suggesting that the effects of TCDD on β-cell function and health are driving metabolic phenotypes in peripheral tissues.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Ma Enrica Angela Ching
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Lahari Basu
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kyle van Allen
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Jana Palaniyandi
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Ineli Perera
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Emilia Poleo-Giordani
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Antonio A Hanson
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Peyman Ghorbani
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, Ottawa, ON, Canada; Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Jennifer E Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
24
|
Chung HH. Integrative prediction of metabolic dysfunction-associated fatty liver disease by endogenous fructose and related metabolism. Hepatol Res 2024; 54:213-214. [PMID: 37574651 DOI: 10.1111/hepr.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Affiliation(s)
- Hsien-Hui Chung
- Department of Pharmacy and Clinical Trial Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- Preventive Medicine Program, Center for General Education, Chung Yuan Christian University, Taoyuan City, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| |
Collapse
|
25
|
Yang F, Lv XT, Lin XL, Wang RH, Wang SM, Wang GE. Restraint stress promotes nonalcoholic steatohepatitis by regulating the farnesoid X receptor/NLRP3 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1961-1971. [PMID: 37997375 PMCID: PMC10753372 DOI: 10.3724/abbs.2023240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 11/25/2023] Open
Abstract
Psychological stress promotes nonalcoholic steatohepatitis (NASH) development. However, the pathogenesis of psychological stress-induced NASH remains unclear. This study aims to explore the underlying mechanism of restraint stress-induced NASH, which mimics psychological stress, and to discover potential NASH candidates. Methionine choline deficient diet- and high fat diet-induced hepatosteatotic mice are subjected to restraint stress to induce NASH. The mice are administrated with Xiaoyaosan granules, NOD-like receptor family pyrin domain containing 3 (NLRP3) inhibitors, farnesoid X receptor (FXR) agonists, or macrophage scavengers. Pathological changes and NLRP3 signaling in the liver are determined. These results demonstrate that restraint stress promotes hepatic inflammation and fibrosis in hepatosteatotic mice. Restraint stress increases the expressions of NLRP3, Caspase-1, Gasdermin D, interleukin-1β, cholesterol 7α-hydroxylase, and sterol 12α-hydroxylase and decreases the expression of FXR in NASH mice. Xiaoyaosan granules reverse hepatic inflammation and fibrosis and target FXR and NLRP3 signals. In addition, inhibition of NLRP3 reduces the NLRP3 inflammasome and liver damage in mice with restraint stress-induced NASH. Elimination of macrophages and activation of FXR also attenuate inflammation and fibrosis by inhibiting NLRP3 signaling. However, NLRP3 inhibitors or macrophage scavengers fail to affect the expression of FXR. In conclusion, restraint stress promotes NASH-related inflammation and fibrosis by regulating the FXR/NLRP3 signaling pathway. Xiaoyaosan granules, NLRP3 inhibitors, FXR agonists, and macrophage scavengers are potential candidates for the treatment of psychological stress-related NASH.
Collapse
Affiliation(s)
- Fan Yang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Xi-Ting Lv
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Xiao-Li Lin
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Ruo-Hong Wang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Shu-Mei Wang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
- Key Laboratory of Digital Quality Evaluation of Traditional Chinese MedicineNational Administration of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhou510006China
- Guangdong Provincial Traditional Chinese Medicine Quality Engineering and Technology Research CenterGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Guo-En Wang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
- Key Laboratory of Digital Quality Evaluation of Traditional Chinese MedicineNational Administration of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhou510006China
- Guangdong Provincial Traditional Chinese Medicine Quality Engineering and Technology Research CenterGuangdong Pharmaceutical UniversityGuangzhou510006China
| |
Collapse
|
26
|
Hou Y, Zhao X, Wang Y, Li Y, Chen C, Zhou X, Jin J, Ye J, Li D, Gan L, Wu R. Oleuropein-Rich Jasminum Grandiflorum Flower Extract Regulates the LKB1-PGC-1α Axis Related to the Attenuation of Hepatocellular Lipid Dysmetabolism. Nutrients 2023; 16:58. [PMID: 38201888 PMCID: PMC10780778 DOI: 10.3390/nu16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Diets() rich in fat are a major() cause() of metabolic disease(), and nutritional() food has been widely() used() to counteract the metabolic disorders such() as obesity() and fatty() liver(). The present study investigated the effects of oleuropein-enriched extract() from Jasminum grandiflorum L. flowers (OLE-JGF) in high-fat diet() (HFD)-fed mice and oleic acid() (OA)-treated AML-12 cells. Treatment() of HFD-fed mice with 0.6% OLE-JGF for 8 weeks significantly reduced body and liver() weights, as well as attenuating lipid dysmetabolism and hepatic steatosis. OLE-JGF administration() prominently suppressed the mRNA expressions() of monocyte chemoattractant protein()-1 (MCP-1) and cluster of differentiation 68 (CD68), and it also downregulated acetyl-CoA carboxylase (ACC) and fatty() acid() synthase (FAS) as well as sterol-regulatory-element()-binding protein() (SREBP-1c) in the liver(). Meanwhile, mitochondrial DNA and uncoupling protein() 2 (UCP2) were upregulated along with the increased expression() of mitochondrial biogenic promoters including liver() kinase B1 (LKB1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear() factor()-erythroid-derived 2-like 2 (Nrf2), and mitochondrial transcription factor() A (Tfam), but did not change AMP-activated protein() kinase (AMPK) in liver(). The lipid droplets were decreased significantly after treatment() with 80 μM oleuropein for 24 h in OA-induced AML-12 cells. Furthermore, oleuropein significantly inhibited ACC mRNA expression() and upregulated LKB1, PGC-1α, and Tfam mRNA levels, as well as increasing the binding level of LKB1 to PGC-1α promoter in OA-induced cells. These findings indicate() that OLE-JGF reduces hepatic lipid deposition in HFD-fed mice, as well as the fact that OA-induced liver() cells may be partly() attributed to upregulation of the LKB1-PGC-1α axis, which mediates hepatic lipogenesis and mitochondrial biogenesis. Our study provides a scientific() basis() for the benefits and potential() use() of the J. grandiflorum flower as a food supplement() for the prevention() and treatment() of metabolic disease().
Collapse
Affiliation(s)
- Yajun Hou
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Xuan Zhao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Yalin Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Yapeng Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Caihong Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Xiu Zhou
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Jingwei Jin
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jiming Ye
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Dongli Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Lishe Gan
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Rihui Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| |
Collapse
|
27
|
Tian Y, Hong X, Xie Y, Guo Z, Yu Q. 17β-Estradiol (E 2) Upregulates the ERα/SIRT1/PGC-1α Signaling Pathway and Protects Mitochondrial Function to Prevent Bilateral Oophorectomy (OVX)-Induced Nonalcoholic Fatty Liver Disease (NAFLD). Antioxidants (Basel) 2023; 12:2100. [PMID: 38136219 PMCID: PMC10740447 DOI: 10.3390/antiox12122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Premature menopause is associated with an increased prevalence of nonalcoholic fatty liver disease (NAFLD). Menopausal hormone therapy (MHT) has been widely used in clinical practice and has the potential to protect mitochondrial function and alleviate NAFLD. After bilateral oophorectomy (OVX), female rats without 17β-estradiol (E2) intervention developed NAFLD, whereas E2 supplementation was effective in preventing NAFLD in female rats. The altered pathways and cellular events from both comparison pairs, namely, the OVX vs. sham group and the OVX vs. E2 group, were assessed using transcriptomic analysis. KEGG pathways enriched by both transcriptomic and metabolomic analyses strongly suggest that oxidative phosphorylation is a vital pathway that changes during the development of NAFLD and remains unchanged when E2 is applied. Liver tissue from the OVX-induced NAFLD group exhibited increased lipid peroxidation, impaired mitochondria, and downregulated ERα/SIRT1/PGC-1α expression. An in vitro study indicated that the protective effect of E2 treatment on hepatic steatosis could be abolished when ERα or SIRT1 was selectively inhibited. This damage was accompanied by reduced mitochondrial complex activity and increased lipid peroxidation. The current research indicates that E2 upregulates the ERα/SIRT1/PGC-1α signaling pathway and protects mitochondrial function to prevent OVX-induced NAFLD.
Collapse
Affiliation(s)
| | | | | | | | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China; (Y.T.); (X.H.); (Y.X.); (Z.G.)
| |
Collapse
|
28
|
La Colla A, Cámara CA, Campisano S, Chisari AN. Mitochondrial dysfunction and epigenetics underlying the link between early-life nutrition and non-alcoholic fatty liver disease. Nutr Res Rev 2023; 36:281-294. [PMID: 35067233 DOI: 10.1017/s0954422422000038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Early-life malnutrition plays a critical role in foetal development and predisposes to metabolic diseases later in life, according to the concept of 'developmental programming'. Different types of early nutritional imbalance, including undernutrition, overnutrition and micronutrient deficiency, have been related to long-term metabolic disorders. Accumulating evidence has demonstrated that disturbances in nutrition during the period of preconception, pregnancy and primary infancy can affect mitochondrial function and epigenetic mechanisms. Moreover, even though multiple mechanisms underlying non-alcoholic fatty liver disease (NAFLD) have been described, in the past years, special attention has been given to mitochondrial dysfunction and epigenetic alterations. Mitochondria play a key role in cellular metabolic functions. Dysfunctional mitochondria contribute to oxidative stress, insulin resistance and inflammation. Epigenetic mechanisms have been related to alterations in genes involved in lipid metabolism, fibrogenesis, inflammation and tumorigenesis. In accordance, studies have reported that mitochondrial dysfunction and epigenetics linked to early-life nutrition can be important contributing factors in the pathogenesis of NAFLD. In this review, we summarise the current understanding of the interplay between mitochondrial dysfunction, epigenetics and nutrition during early life, which is relevant to developmental programming of NAFLD.
Collapse
Affiliation(s)
- Anabela La Colla
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Carolina Anahí Cámara
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Sabrina Campisano
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Andrea Nancy Chisari
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| |
Collapse
|
29
|
Kobayashi H, Matsubara S, Yoshimoto C, Shigetomi H, Imanaka S. The role of mitochondrial dynamics in the pathophysiology of endometriosis. J Obstet Gynaecol Res 2023; 49:2783-2791. [PMID: 37681703 DOI: 10.1111/jog.15791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
AIM Endometriosis is a chronic disease of reproductive age, associated with pelvic pain and infertility. Endometriotic cells adapt to changing environments such as oxidative stress and hypoxia in order to survive. However, the underlying mechanisms remain to be fully elucidated. In this review, we summarize our current understanding of the pathogenesis of endometriosis, focusing primarily on the molecular basis of energy metabolism, redox homeostasis, and mitochondrial function, and discuss perspectives on future research directions. METHODS Papers published up to March 31, 2023 in the PubMed and Google Scholar databases were included in this narrative literature review. RESULTS Mitochondria serve as a central hub sensing a multitude of physiological processes, including energy production and cellular redox homeostasis. Under hypoxia, endometriotic cells favor glycolysis and actively produce pyruvate, nicotinamide adenine dinucleotide phosphate (NADPH), and other metabolites for cell proliferation. Mitochondrial fission and fusion dynamics may regulate the phenotypic plasticity of cellular energy metabolism, that is, aerobic glycolysis or OXPHOS. Endometriotic cells have been reported to have reduced mitochondrial numbers, increased lamellar cristae, improved energy efficiency, and enhanced cell proliferation and survival. Increased mitochondrial fission and fusion turnover by hypoxic and normoxic conditions suggests an activation of mitochondrial quality control mechanisms. Recently, candidate molecules that influence mitochondrial dynamics have begun to be identified. CONCLUSION This review suggests that unique energy metabolism and redox homeostasis driven by mitochondrial dynamics may be linked to the pathophysiology of endometriosis. However, further studies are needed to elucidate the regulatory mechanisms of mitochondrial dynamics in endometriosis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
30
|
Meng T, Zhang D, Zhang Y, Tian P, Chen J, Liu A, Li Y, Song C, Zheng Y, Su G. Tamoxifen induced cardiac damage via the IL-6/p-STAT3/PGC-1α pathway. Int Immunopharmacol 2023; 125:110978. [PMID: 37925944 DOI: 10.1016/j.intimp.2023.110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023]
Abstract
Tamoxifen (TAM) is an effective anticancer drug for breast and ovarian cancer. However, increased risk of cardiotoxicity is a long-term clinical problem associated with TAM, while the underlying mechanisms remain unclear. Here, we performed experiments in cardiomyocytes and tumor-bearing or nontumor-bearing mice, and demonstrated that TAM induced cardiac injury via the IL-6/p-STAT3/PGC-1α/IL-6 feedback loop, which is responsible for reactive oxygen species (ROS) accumulation. Compared with non-tumor bearing mice, tumor-bearing mice showed stronger cardiac toxicity after TAM injection, although there was no significant difference. In vitro experiments demonstrated STAT3 phosphorylation inhibitor can increase PGC-1α expression and protect cardiomyocyte via decreasing ROS. Since tumor has higher STAT3 phosphorylation and IL-6 expression level, our research results indicated combining TAM and STAT3 inhibitor might be an effective treatment strategy which can provide both tumor killing and cardioprotective function. Further in vivo research is needed to fully elucidate the effect and mechanisms of the combination therapy of TAM and STAT3 inhibitor.
Collapse
Affiliation(s)
- Tingting Meng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Zhang
- Jinan Central Hospital, Jinan, Shandong, China
| | - Yu Zhang
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Peng Tian
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Jianlin Chen
- Research Center of Translational Medicine, Jinan Central Hospital, Weifang Medical University, Weifang, China
| | - Anbang Liu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ying Li
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunhong Song
- Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| | - Guohai Su
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
31
|
Yang Z, Li J, Song H, Mei Z, Jia X, Tian X, Yan C, Han Y. Unraveling the molecular links between benzopyrene exposure, NASH, and HCC: an integrated bioinformatics and experimental study. Sci Rep 2023; 13:20520. [PMID: 37993485 PMCID: PMC10665343 DOI: 10.1038/s41598-023-46440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
Benzopyrene (B[a]P) is a well-known carcinogen that can induce chronic inflammation and fibrosis in the liver, leading to liver disease upon chronic exposure. Nonalcoholic steatohepatitis (NASH) is a chronic liver condition characterized by fat accumulation, inflammation, and fibrosis, often resulting in hepatocellular carcinoma (HCC). In this study, we aimed to investigate the intricate connections between B[a]P exposure, NASH, and HCC. Through comprehensive bioinformatics analysis of publicly available gene expression profiles, we identified differentially expressed genes (DEGs) associated with B[a]P exposure, NASH, and liver cancer. Furthermore, network analysis revealed hub genes and protein-protein interactions, highlighting cellular metabolic dysfunction and disruption of DNA damage repair in the B[a]P-NASH-HCC process. Notably, HSPA1A and PPARGC1A emerged as significant genes in this pathway. To validate their involvement, we conducted qPCR analysis on cell lines and NASH mouse liver tissues and performed immunohistochemistry labeling in mouse and human HCC liver sections. These findings provide crucial insights into the potential regulatory mechanisms underlying benzopyrene-induced hepatotoxicity, shedding light on the pathogenesis of B[a]P-associated NASH and HCC. Moreover, our study suggests that HSPA1A and PPARGC1A could serve as promising therapeutic targets. Enhancing our understanding of their regulatory roles may facilitate the development of targeted therapies, leading to improved patient outcomes.
Collapse
Affiliation(s)
- Zheming Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110167, Liaoning, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Jiayin Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110167, Liaoning, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Zhu Mei
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110167, Liaoning, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xiaodong Jia
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xiaoxiang Tian
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Yaling Han
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110167, Liaoning, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| |
Collapse
|
32
|
Abrahams Y, Willmer T, Patel O, Samodien E, Muller CJF, Windvogel S, Johnson R, Pheiffer C. A high fat, high sugar diet induces hepatic Peroxisome proliferator-activated receptor gamma coactivator 1-alpha promoter hypermethylation in male Wistar rats. Biochem Biophys Res Commun 2023; 680:25-33. [PMID: 37713959 DOI: 10.1016/j.bbrc.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 09/02/2023] [Indexed: 09/17/2023]
Abstract
Previously we reported that a high fat, high sugar (HFHS) diet induced adiposity, hyperinsulinaemia, hyperleptinaemia, hypertriglyceridaemia and increased liver mass in male Wistar rats. In the present study, the mechanisms underlying the increased liver mass were further elucidated by assessing hepatic lipid accumulation and the expression and methylation status of key metabolic genes using histology, quantitative real-time PCR and pyrosequencing, respectively. The HFHS diet induced hepatic steatosis, increased hepatic triglycerides (1.8-fold, p < 0.001), and increased the expression of sterol regulatory element-binding transcription factor 1 (Srebf1) (2.0-fold, p < 0.001) and peroxisome proliferator-activated receptor gamma (Pparg) (1.7-fold, p = 0.017) in the liver. The expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Pgc1a) was decreased (2.6-fold, p < 0.010), which was accompanied by hypermethylation (p = 0.018) of a conserved CpG site in the promoter of Pgc1a in HFHS fed rats compared to controls. In silico analysis identified putative binding sites for CCAAT/enhancer-binding protein beta (C/EBPß) and hepatocyte nuclear factor 1 (HNF1) within proximity to the hypermethylated CpG. As Pgc1a is a co-activator of several transcription factors regulating multiple metabolic pathways, hypermethylation of this conserved CpG site in the promoter of Pgc1a may be one possible mechanism contributing to the development of hepatic steatosis in response to a HFHS diet. However, further work is required to confirm the role of Pgc1a in steatosis.
Collapse
Affiliation(s)
- Yoonus Abrahams
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Oelfah Patel
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Ebrahim Samodien
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa, South Africa
| | - Shantal Windvogel
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
33
|
Xu J, Jin Y, Song C, Chen G, Li Q, Yuan H, Wei S, Yang M, Li S, Jin S. Comparative analysis of the synergetic effects of Diwuyanggan prescription on high fat diet-induced non-alcoholic fatty liver disease using untargeted metabolomics. Heliyon 2023; 9:e22151. [PMID: 38045182 PMCID: PMC10692813 DOI: 10.1016/j.heliyon.2023.e22151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders worldwide and had no approved pharmacological treatments. Diwuyanggan prescription (DWYG) is a traditional Chinese medicine preparation composed of 5 kinds of herbs, which has been used for treating chronic liver diseases in clinic. Whereas, the synergistic mechanism of this prescription for anti-NAFLD remains unclear. In this study, we aimed to demonstrate the synergetic effect of DWYG by using the disassembled prescriptions and untargeted metabolomics research strategies. The therapeutic effects of the whole prescription of DWYG and the individual herb were divided into six groups according to the strategy of disassembled prescriptions, including DWYG, Artemisia capillaris Thunb. (AC), Curcuma longa L. (CL), Schisandra chinensis Baill. (SC), Rehmannia glutinosa Libosch. (RG) and Glycyrrhiza uralensis Fisch. (GU) groups. The high fat diets-induced NAFLD mice model was constructed to evaluate the efficacy effects of DWYG. An untargeted metabolomics based on the UPLC-QTOF-MS/MS approach was carried out to make clear the synergetic effect on the regulation of metabolites dissecting the united mechanisms. Experimental results on animals revealed that the anti-NAFLD effect of DWYG prescription was better than the individual herb group in reducing liver lipid deposition and restoring the abnormality of lipidemia. In addition, further metabolomics analysis indicated that 23 differential metabolites associated with the progression of NAFLD were identified and 19 of them could be improved by DWYG. Compared with five single herbs, DWYG showed the most extensive regulatory effects on metabolites and their related pathways, which were related to lipid and amino acid metabolisms. Besides, each individual herb in DWYG was found to show different degrees of regulatory effects on NAFLD and metabolic pathways. SC and CL possessed the highest relationship in the regulation of NAFLD. Altogether, these results provided an insight into the synergetic mechanisms of DWYG from the metabolic perspective, and also supported a scientific basis for the rationality of clinical use of this prescription.
Collapse
Affiliation(s)
- Jinlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Yuehui Jin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chengwu Song
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guangya Chen
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Qiaoyu Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hao Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Sha Wei
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Min Yang
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Sen Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuna Jin
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
34
|
Hafez HA, Atoom AM, Khafaga RHM, Shaker SA, Kamel MA, Assem NM, Mahmoud SA. Direct-Acting Antiviral Drug Modulates the Mitochondrial Biogenesis in Different Tissues of Young Female Rats. Int J Mol Sci 2023; 24:15844. [PMID: 37958828 PMCID: PMC10647297 DOI: 10.3390/ijms242115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
(1) Background: Hepatitis C virus (HCV) infection is endemic in Egypt, with the highest prevalence rate worldwide. Sofosbuvir (SOF) is a nucleos(t)ide analog that specifically inhibits HCV replication. This study aimed to explore the possible effects of the therapeutic dose of SOF on the mitochondrial biogenesis and functions of the liver, muscle, and ovarian tissues of young normal female rats. (2) Methods: This study was conducted on 20 female Wistar rats, classified into two groups, the control group and the exposed group; the latter was orally supplemented with 4 mg/kg/day of SOF for 3 months. (3) Results: The exposure to SOF impairs mitochondrial biogenesis via mitochondrial DNA copy number decline and suppressed mitochondrial biogenesis-regulated parameters at mRNA and protein levels. Also, SOF suppresses the DNA polymerase γ (POLG) expression, citrate synthase activity, and mitochondrial NADH dehydrogenase subunit-5 (ND5) content, which impairs mitochondrial functions. SOF increased lipid peroxidation and oxidative DNA damage markers and decreased tissue expression of nuclear factor erythroid 2-related factor 2 (Nfe2l2). (4) Conclusions: The present findings demonstrate the adverse effects of SOF on mitochondrial biogenesis and function in different tissues of young female rats, which mostly appeared in ovarian tissues.
Collapse
Affiliation(s)
- Hala A. Hafez
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (R.H.M.K.); (S.A.S.); (N.M.A.); (S.A.M.)
| | - Ali M. Atoom
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19111, Jordan;
| | - Rana H. M. Khafaga
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (R.H.M.K.); (S.A.S.); (N.M.A.); (S.A.M.)
| | - Sara A. Shaker
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (R.H.M.K.); (S.A.S.); (N.M.A.); (S.A.M.)
| | - Maher A. Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (R.H.M.K.); (S.A.S.); (N.M.A.); (S.A.M.)
| | - Nagwa M. Assem
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (R.H.M.K.); (S.A.S.); (N.M.A.); (S.A.M.)
| | - Shimaa A. Mahmoud
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (R.H.M.K.); (S.A.S.); (N.M.A.); (S.A.M.)
| |
Collapse
|
35
|
Liu G, Li Y, Liao N, Shang X, Xu F, Yin D, Shao D, Jiang C, Shi J. Energy metabolic mechanisms for high altitude sickness: Downregulation of glycolysis and upregulation of the lactic acid/amino acid-pyruvate-TCA pathways and fatty acid oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164998. [PMID: 37353011 DOI: 10.1016/j.scitotenv.2023.164998] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Hypobaric hypoxia is often associated with the plateau environment and can lead to altitude sickness or death. The underlying cause is a lack of oxygen, which limits energy metabolism and leads to a compensatory stress response. Although glycolysis is commonly accepted as the primary energy source during clinical hypoxia, our preliminary experiments suggest that hypobaric hypoxia may depress glycolysis. To provide a more comprehensive understanding of energy metabolism under short-term hypobaric hypoxia, we exposed mice to a simulated altitude of 5000 m for 6 or 12 h. After the exposure, we collected blood and liver tissues to quantify the substrates, enzymes, and metabolites involved in glycolysis, lactic acid metabolism, the tricarboxylic acid cycle (TCA), and fatty acid β-oxidation. We also performed transcriptome and enzymatic activity analyses of the liver. Our results show that 6 h of hypoxic exposure significantly increased blood glucose, decreased lactic acid and triglyceride concentrations, and altered liver enzyme activities of mice exposed to hypoxia. The key enzymes in the glycolytic, TCA, and fatty acid β-oxidation pathways were primarily affected. Specifically, the activities of key glycolytic enzymes, such as glucokinase, decreased significantly, while the activities of enzymes in the TCA cycle, such as isocitrate dehydrogenase, increased significantly. Lactate dehydrogenase, pyruvate carboxylase, and alanine aminotransferase were upregulated. These changes were partially restored when the exposure time was extended to 12 h, except for further downregulation of phosphofructokinase and glucokinase. This study demonstrates that acute high altitude hypoxia upregulated the lactic acid/amino acid-pyruvate-TCA pathways and fatty acid oxidation, but downregulated glycolysis in the liver of mice. The results obtained in this study provide a theoretical framework for understanding the mechanisms underlying the pathogenesis of high-altitude sickness in humans. Additionally, these findings have potential implications for the development of prevention and treatment strategies for altitude sickness.
Collapse
Affiliation(s)
- Guanwen Liu
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Yinghui Li
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Ning Liao
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Xinzhe Shang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Fengqin Xu
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Dachuan Yin
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Dongyan Shao
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Chunmei Jiang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Junling Shi
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
36
|
Abounouh K, Tanouti IA, Ouladlahsen A, Tahiri M, Badre W, Dehbi H, Sarih M, Benjelloun S, Pineau P, Ezzikouri S. The peroxisome proliferator-activated receptor γ coactivator-1 alpha rs8192678 (Gly482Ser) variant and hepatitis B virus clearance. Infect Dis (Lond) 2023; 55:614-624. [PMID: 37376899 DOI: 10.1080/23744235.2023.2228403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Chronic hepatitis B virus (CHB) infection is still incurable a major public health problem. It is yet unclear how host genetic factors influence the development of HBV infection. The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) has been shown to regulate hepatitis B virus (HBV). Several reports found that PPARGC1A variants are involved in a number of distinct liver diseases. Here we investigate whether the PPARGC1A rs8192678 (Gly482Ser) variant is involved in the spontaneous clearance of acute HBV infection and if it participates in chronic disease progression in Moroccan patients. METHODS Our study included 292 chronic hepatitis B (CHB) patients and 181 individuals who spontaneously cleared-HBV infection. We genotyped the rs8192678 SNP using a TaqMan allelic discrimination assay and then explored its association with spontaneous HBV clearance and CHB progression. RESULTS Our data showed that individuals carrying CT and TT genotypes were more likely to achieve spontaneous clearance (OR = 0.48, 95% CI (0.32-0.73), p = 0.00047; OR = 0.28, 95% CI (0.15-0.53), p = 0.00005, respectively). Subjects carrying the mutant allele T were more likely to achieve spontaneous clearance (OR = 0.51, 95% CI (0.38-0.67), P = 2.68E-06). However, when we investigated the impact of rs8192678 on the progression of liver diseases, we neither observe any influence (p > 0.05) nor found any significant association between ALT, AST, HBV viral loads, and the PPARGC1A rs8192678 genotypes in patients with CHB (p > 0.05). CONCLUSION Our result suggests that PPARGC1A rs8192678 may modulate acute HBV infection, and could therefore represent a potential predictive marker in the Moroccan population.
Collapse
Affiliation(s)
- Karima Abounouh
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Cellular and Molecular Pathology, Medical School, University Hassan II
| | - Ikram-Allah Tanouti
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ahd Ouladlahsen
- Faculté de médecine de Casablanca, CHU Ibn Rochd, Casablanca, Morocco
| | - Mohamed Tahiri
- Faculté de médecine de Casablanca, CHU Ibn Rochd, Casablanca, Morocco
| | - Wafaa Badre
- Faculté de médecine de Casablanca, CHU Ibn Rochd, Casablanca, Morocco
| | - Hind Dehbi
- Laboratory of Cellular and Molecular Pathology, Medical School, University Hassan II
| | - M'hammed Sarih
- Service de Parasitologie et des Maladies Vectorielles, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
37
|
Gajęcka M, Otrocka-Domagała I, Brzuzan P, Zielonka Ł, Dąbrowski M, Gajęcki MT. Influence of deoxynivalenol and zearalenone on the immunohistochemical expression of oestrogen receptors and liver enzyme genes in vivo in prepubertal gilts. Arch Toxicol 2023; 97:2155-2168. [PMID: 37328583 PMCID: PMC10322793 DOI: 10.1007/s00204-023-03502-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/20/2023] [Indexed: 06/18/2023]
Abstract
Deoxynivalenol (DON) and zearalenone (ZEN) are often detected in plant materials used to produce feed for pre-pubertal gilts. Daily exposure to small amounts of these mycotoxins causes subclinical conditions in pigs and affects various biological processes (e.g. mycotoxin biotransformation). The aim of this preclinical study was to evaluate the effect of low monotonic doses of DON and ZEN (12 µg/kg body weight-BW-and 40 µg/kg BW, respectively), administered alone or in combination to 36 prepubertal gilts for 42 days, on the degree of immunohistochemical expression of oestrogen receptors (ERs) in the liver and the mRNA expression of genes encoding selected liver enzymes during biotransformation processes. The level of expression of the analysed genes proves that the tested mycotoxins exhibit variable biological activity at different stages of biotransformation. The biological activity of low doses of mycotoxins determines their metabolic activity. Therefore, taking into account the impact of low doses of mycotoxins on energy-intensive processes and their endogenous metabolism, it seems that the observed situation may lead to the activation of adaptation mechanisms.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718, Olsztyn, Poland
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13D, 10-718, Olsztyn, Poland
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719, Olsztyn, Poland
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718, Olsztyn, Poland
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718, Olsztyn, Poland
| | - Maciej T. Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718, Olsztyn, Poland
| |
Collapse
|
38
|
Wu P, Wang X. Natural Drugs: A New Direction for the Prevention and Treatment of Diabetes. Molecules 2023; 28:5525. [PMID: 37513397 PMCID: PMC10385698 DOI: 10.3390/molecules28145525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance, as a common pathological process of many metabolic diseases, including diabetes and obesity, has attracted much attention due to its relevant influencing factors. To date, studies have mainly focused on the shared mechanisms between mitochondrial stress and insulin resistance, and they are now being pursued as a very attractive therapeutic target due to their extensive involvement in many human clinical settings. In view of the complex pathogenesis of diabetes, natural drugs have become new players in diabetes prevention and treatment because of their wide targets and few side effects. In particular, plant phenolics have received attention because of their close relationship with oxidative stress. In this review, we briefly review the mechanisms by which mitochondrial stress leads to insulin resistance. Moreover, we list some cytokines and genes that have recently been found to play roles in mitochondrial stress and insulin resistance. Furthermore, we describe several natural drugs that are currently widely used and give a brief overview of their therapeutic mechanisms. Finally, we suggest possible ideas for future research related to the unique role that natural drugs play in the treatment of insulin resistance through the above targets.
Collapse
Affiliation(s)
- Peishan Wu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China
| |
Collapse
|
39
|
Huang M, Claussnitzer M, Saadat A, Coral DE, Kalamajski S, Franks PW. Engineered allele substitution at PPARGC1A rs8192678 alters human white adipocyte differentiation, lipogenesis, and PGC-1α content and turnover. Diabetologia 2023; 66:1289-1305. [PMID: 37171500 PMCID: PMC10244287 DOI: 10.1007/s00125-023-05915-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
AIMS/HYPOTHESIS PPARGC1A encodes peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), a central regulator of energy metabolism and mitochondrial function. A common polymorphism in PPARGC1A (rs8192678, C/T, Gly482Ser) has been associated with obesity and related metabolic disorders, but no published functional studies have investigated direct allele-specific effects in adipocyte biology. We examined whether rs8192678 is a causal variant and reveal its biological function in human white adipose cells. METHODS We used CRISPR-Cas9 genome editing to perform an allelic switch (C-to-T or T-to-C) at rs8192678 in an isogenic human pre-adipocyte white adipose tissue (hWAs) cell line. Allele-edited single-cell clones were expanded and screened to obtain homozygous T/T (Ser482Ser), C/C (Gly482Gly) and heterozygous C/T (Gly482Ser) isogenic cell populations, followed by functional studies of the allele-dependent effects on white adipocyte differentiation and mitochondrial function. RESULTS After differentiation, the C/C adipocytes were visibly less BODIPY-positive than T/T and C/T adipocytes, and had significantly lower triacylglycerol content. The C allele presented a dose-dependent lowering effect on lipogenesis, as well as lower expression of genes critical for adipogenesis, lipid catabolism, lipogenesis and lipolysis. Moreover, C/C adipocytes had decreased oxygen consumption rate (OCR) at basal and maximal respiration, and lower ATP-linked OCR. We determined that these effects were a consequence of a C-allele-driven dysregulation of PGC-1α protein content, turnover rate and transcriptional coactivator activity. CONCLUSIONS/INTERPRETATION Our data show allele-specific causal effects of the rs8192678 variant on adipogenic differentiation. The C allele confers lower levels of PPARGC1A mRNA and PGC-1α protein, as well as disrupted dynamics of PGC-1α turnover and activity, with downstream effects on cellular differentiation and mitochondrial function. Our study provides the first experimentally deduced insights on the effects of rs8192678 on adipocyte phenotype.
Collapse
Affiliation(s)
- Mi Huang
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Melina Claussnitzer
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Alham Saadat
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Daniel E Coral
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Sebastian Kalamajski
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Clinical Research Centre, Lund University, Malmö, Sweden.
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Clinical Research Centre, Lund University, Malmö, Sweden.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
40
|
Yang L, Meng Y, Shi Y, Fang H, Zhang L. Maternal hepatic immunology during pregnancy. Front Immunol 2023; 14:1220323. [PMID: 37457700 PMCID: PMC10348424 DOI: 10.3389/fimmu.2023.1220323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The liver plays pivotal roles in immunologic responses, and correct hepatic adaptations in maternal immunology are required during pregnancy. In this review, we focus on anatomical and immunological maternal hepatic adaptations during pregnancy, including our recent reports in this area. Moreover, we summarize maternal pregnancy-associated liver diseases, including hyperemesis gravidarum; intrahepatic cholestasis of pregnancy; preeclampsia, specifically hemolysis, elevated liver enzymes, and low platelet count syndrome; and acute fatty liver of pregnancy. In addition, the latest information about the factors that regulate hepatic immunology during pregnancy are reviewed for the first time, including human chorionic gonadotropin, estrogen, progesterone, growth hormone, insulin like growth factor 1, oxytocin, adrenocorticotropic hormone, adrenal hormone, prolactin, melatonin and prostaglandins. In summary, the latest progress on maternal hepatic anatomy and immunological adaptations, maternal pregnancy-associated diseases and the factors that regulate hepatic immunology during pregnancy are discussed, which may be used to prevent embryo loss and abortion, as well as pregnancy-associated liver diseases.
Collapse
|
41
|
Sanchez JI, Parra ER, Jiao J, Solis Soto LM, Ledesma DA, Saldarriaga OA, Stevenson HL, Beretta L. Cellular and Molecular Mechanisms of Liver Fibrosis in Patients with NAFLD. Cancers (Basel) 2023; 15:2871. [PMID: 37296834 PMCID: PMC10252068 DOI: 10.3390/cancers15112871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The expression of immune- and cancer-related genes was measured in liver biopsies from 107 NAFLD patients. The strongest difference in overall gene expression was between liver fibrosis stages F3 and F4, with 162 cirrhosis-associated genes identified. Strong correlations with fibrosis progression from F1 to F4 were observed for 91 genes, including CCL21, CCL2, CXCL6, and CCL19. In addition, the expression of 21 genes was associated with fast progression to F3/F4 in an independent group of eight NAFLD patients. These included the four chemokines, SPP1, HAMP, CXCL2, and IL-8. A six-gene signature including SOX9, THY-1, and CD3D had the highest performance detecting the progressors among F1/F2 NAFLD patients. We also characterized immune cell changes using multiplex immunofluorescence platforms. Fibrotic areas were strongly enriched in CD3+ T cells compared to CD68+ macrophages. While the number of CD68+ macrophages increased with fibrosis severity, the increase in CD3+ T-cell density was more substantial and progressive from F1 to F4. The strongest correlation with fibrosis progression was observed for CD3+CD45R0+ memory T cells, while the most significant increase in density between F1/F2 and F3/F4 was for CD3+CD45RO+FOXP3+CD8- and CD3+CD45RO-FOXP3+CD8- regulatory T cells. A specific increase in the density of CD68+CD11b+ Kupffer cells with liver fibrosis progression was also observed.
Collapse
Affiliation(s)
- Jessica I. Sanchez
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edwin R. Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jingjing Jiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luisa M. Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Debora A. Ledesma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Omar A. Saldarriaga
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Heather L. Stevenson
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
42
|
Abu Shelbayeh O, Arroum T, Morris S, Busch KB. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants (Basel) 2023; 12:antiox12051075. [PMID: 37237941 DOI: 10.3390/antiox12051075] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria play a major role in ROS production and defense during their life cycle. The transcriptional activator PGC-1α is a key player in the homeostasis of energy metabolism and is therefore closely linked to mitochondrial function. PGC-1α responds to environmental and intracellular conditions and is regulated by SIRT1/3, TFAM, and AMPK, which are also important regulators of mitochondrial biogenesis and function. In this review, we highlight the functions and regulatory mechanisms of PGC-1α within this framework, with a focus on its involvement in the mitochondrial lifecycle and ROS metabolism. As an example, we show the role of PGC-1α in ROS scavenging under inflammatory conditions. Interestingly, PGC-1α and the stress response factor NF-κB, which regulates the immune response, are reciprocally regulated. During inflammation, NF-κB reduces PGC-1α expression and activity. Low PGC-1α activity leads to the downregulation of antioxidant target genes resulting in oxidative stress. Additionally, low PGC-1α levels and concomitant oxidative stress promote NF-κB activity, which exacerbates the inflammatory response.
Collapse
Affiliation(s)
- Othman Abu Shelbayeh
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| | - Tasnim Arroum
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
- Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - Silke Morris
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| | - Karin B Busch
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| |
Collapse
|
43
|
Zhao Z, Du JF, Wang QL, Qiu FN, Chen XY, Liu FJ, Li P, Jiang Y, Li HJ. An integrated strategy combining network toxicology and feature-based molecular networking for exploring hepatotoxic constituents and mechanism of Epimedii Folium-induced hepatotoxicity in vitro. Food Chem Toxicol 2023; 176:113785. [PMID: 37080529 DOI: 10.1016/j.fct.2023.113785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/21/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
Epimedii Folium (EF), a commonly used herbal medicine to treat osteoporosis, has caused serious concern due to potential hepatotoxicity. Until now, its intrinsic hepatotoxic mechanism and hepatotoxic ingredients remain unclear. Here, a novel high-throughput approach was designed to investigate the intrinsic hepatotoxic of EF. High-content screen imaging (HCS) and biochemical tests were first performed to obtain the cytotoxicity parameter matrix of 17 batch EF samples. EF-treated alpha mouse liver 12 (AML12) cells showed increased reactive oxygen species (ROS), reduced glutathione (GSH) and mitochondrial membrane potential (MMP), and apoptosis and cholestasis were further observed. Network toxicology predicted that EF-triggered hepatotoxiciy was involved in transcription factor (TF) activity. The FXR expression, screened by a TF PCR array, exhibited down-regulation following EF extract administration. Moreover, EF inhibited bile acid (BA) metabolism pathway in an FXR-dependent manner. Pearson correlation between the cytotoxicity parameter matrix and quantification feature table obtained from UHPLC-QTOF data of EF suggested 7 prenylated flavonoids possessed potent hepatotoxicities and their cytotoxicity order was further summarized. The transcriptional repression effects of them on FXR were also verified. Collectively, our findings indicate that FXR is probably responsible for EF-induced hepatotoxicity and prenylated flavonoids may be a major class of hepatotoxic constituents in EF.
Collapse
Affiliation(s)
- Zhen Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Jin-Fa Du
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Qiao-Lei Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Fang-Ning Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Xu-Yan Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Feng-Jie Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
44
|
Kotsos D, Tziomalos K. Microsomal Prostaglandin E Synthase-1 and -2: Emerging Targets in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24033049. [PMID: 36769370 PMCID: PMC9918023 DOI: 10.3390/ijms24033049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects a substantial proportion of the general population and is even more prevalent in obese and diabetic patients. NAFLD, and particularly the more advanced manifestation of the disease, nonalcoholic steatohepatitis (NASH), increases the risk for both liver-related and cardiovascular morbidity. The pathogenesis of NAFLD is complex and multifactorial, with many molecular pathways implicated. Emerging data suggest that microsomal prostaglandin E synthase-1 and -2 might participate in the development and progression of NAFLD. It also appears that targeting these enzymes might represent a novel therapeutic approach for NAFLD. In the present review, we discuss the association between microsomal prostaglandin E synthase-1 and -2 and NAFLD.
Collapse
|
45
|
Ding J, Wu L, Zhu G, Zhu J, Luo P, Li Y. HADHA alleviates hepatic steatosis and oxidative stress in NAFLD via inactivation of the MKK3/MAPK pathway. Mol Biol Rep 2023; 50:961-970. [PMID: 36376538 PMCID: PMC9889437 DOI: 10.1007/s11033-022-07965-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a liver metabolic syndrome and still lacks effective treatments because the molecular mechanism underlying the development of NAFLD is not completely understood. We investigated the role of Hydroxyl CoA dehydrogenase alpha subunit (HADHA) in the pathogenesis of NAFLD. METHODS HADHA expression was detected both in NAFLD cell and mice, and knockdown of HADHA in free fatty acids (FFA)-treated L02 or overexpression of HADHA in high fat diet (HFD)-fed mice was used to detected the influence of HADHA on hepatic steatosis, mitochondrial dysfunction, and oxidative stress by regulating of MKK3/MAPK signaling. RESULTS Our data revealed that HADHA expression was decreased in FFA-treated L02 cells and in HFD-fed mice. Knockdown of HADHA markedly aggravated hepatic steatosis, inflammation and oxidative stress in FFA-treated L02 cells, which was associated with the activation of MKK3/MAPK signalling pathways. Moreover, oxidative stress and liver lesions were improved in NAFLD mice by upregulation of HADHA. Importantly, we demonstrated that overexpression of HADHA inhibited the expression of p-MAPK in NAFLD mice, reducing lipid accumulation and steatosis. CONCLUSION HADHA may function as a protective factor in the progression of NAFLD by alleviating abnormal metabolism and oxidative stress by suppressing MKK3/MAPK signalling pathway activation, providing a new target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Jiexia Ding
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China.
| | - Lili Wu
- Department of Oncology, Ruian City People's Hospital, 325200, Rui'an, China
| | - Guoxian Zhu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China
| | - Jing Zhu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China
| | - Pingping Luo
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China
| | - Youming Li
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, 310003, Hangzhou, China
| |
Collapse
|
46
|
Selective deficiency of UCP-1 and adropin may lead to different subtypes of anti-neutrophil cytoplasmic antibody-associated vasculitis. Genes Immun 2023; 24:39-45. [PMID: 36670189 DOI: 10.1038/s41435-023-00195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease that is prone to respiratory and renal failures. Its major target antigens are serine protease 3 (PR3) and myeloperoxidase (MPO), but the determinants of PR3 and MPO subtypes are still unclear. Uncoupling protein-1 (UCP-1) and adropin (Adr) regulate mutually and play an important role in endothelial cell injury. In this study, adropin and UCP-1 knockout (AdrKO and UCP-1-KO) models were established on the basis of C57BL/6 J mice. The results showed that UCP-1-KO and AdrKO mice similar to AAV: significant inflammatory cell infiltration, vascular wall damage, and erythrocyte extravasation. The pathological basis of AdrKO was that endothelial cells adhered and activated neutrophils to release MPO, and the core gene was peroxisome proliferator-activated receptor gamma (PPARG). However, UCP-1-KO induced PR3 release, and the accumulation and expression of tissue factor on the vascular wall, and the core gene was peroxisome proliferator-activated receptor delta (PPARD). The present study verified that the subtypes of AAV may be genetically different diseases and it also provide novel experimental evidence for clinical differentiation of the two subtypes.
Collapse
|
47
|
Nguyen Huu T, Park J, Zhang Y, Duong Thanh H, Park I, Choi JM, Yoon HJ, Park SC, Woo HA, Lee SR. The Role of Oxidative Inactivation of Phosphatase PTEN and TCPTP in Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12010120. [PMID: 36670982 PMCID: PMC9854873 DOI: 10.3390/antiox12010120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are becoming increasingly prevalent worldwide. Despite the different etiologies, their spectra and histological feature are similar, from simple steatosis to more advanced stages such as steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Studies including peroxiredoxin knockout models revealed that oxidative stress is crucial in these diseases, which present as consequences of redox imbalance. Protein tyrosine phosphatases (PTPs) are a superfamily of enzymes that are major targets of reactive oxygen species (ROS) because of an oxidation-susceptible nucleophilic cysteine in their active site. Herein, we review the oxidative inactivation of two tumor suppressor PTPs, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and T-cell protein tyrosine phosphatase (TCPTP), and their contribution to the pathogenicity of ALD and NAFLD, respectively. This review might provide a better understanding of the pathogenic mechanisms of these diseases and help develop new therapeutic strategies to treat fatty liver disease.
Collapse
Affiliation(s)
- Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
| | - Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Ying Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hien Duong Thanh
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Iha Park
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Sang Chul Park
- The Future Life and Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- Correspondence: ; Tel.: +82-61-379-2775; Fax: +82-61-379-2782
| |
Collapse
|
48
|
Zhao M, Ma L, Honda T, Kato A, Ohshiro T, Yokoyama S, Yamamoto K, Ito T, Imai N, Ishizu Y, Nakamura M, Kawashima H, Tsuji NM, Ishigami M, Fujishiro M. Astaxanthin Attenuates Nonalcoholic Steatohepatitis with Downregulation of Osteoprotegerin in Ovariectomized Mice Fed Choline-Deficient High-Fat Diet. Dig Dis Sci 2023; 68:155-163. [PMID: 35397697 DOI: 10.1007/s10620-022-07489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/14/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Postmenopausal estrogen decline increases the risk of developing nonalcoholic steatohepatitis (NASH), and it might accelerate progression to cirrhosis and hepatocellular carcinoma. AIMS This study aimed to investigate a novel therapy for postmenopausal women who are diagnosed with NASH. METHODS Seven-week-old female C57BL/6 J mice were divided into three experimental groups as follows: (1) sham operation (SHAM group), (2) ovariectomy (OVX group), and (3) ovariectomy + 0.02% astaxanthin (OVX + ASTX group). These three groups of mice were fed a choline-deficient high-fat (CDHF) diet for 8 weeks. Blood serum and liver tissues were collected to examine liver injury, histological changes, and hepatic genes associated with NASH. An in vitro study was performed with the hepatic stellate cell line LX-2. RESULTS The administration of ASTX significantly improved pathological NASH with suppressed steatosis, inflammation, and fibrosis, in comparison with those in the OVX-induced estrogen deficiency group. As a result, liver injury was also attenuated with reduced levels of alanine aminotransferase and aspartate transaminase. In addition, our study found that ASTX supplementation decreased hepatic osteoprotegerin (OPG) in vivo, a possible factor that contributes to NASH development. In vitro, this study further confirmed that ASTX has an inhibitory effect on the secretion of OPG in LX-2 human hepatic stellate cells. CONCLUSIONS Our findings suggest that ASTX alleviates CDHF-OVX-induced pathohistological NASH with downregulated OPG, possibly via suppression of the transforming growth factor beta pathway. ASTX could has promise for use in postmenopausal women diagnosed with NASH.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Lingyun Ma
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Asuka Kato
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.,ITOCHU Collaborative Research-Molecular Targeted Cancer Treatment for Next Generation, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Taichi Ohshiro
- ITOCHU Collaborative Research-Molecular Targeted Cancer Treatment for Next Generation, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinya Yokoyama
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Norihiro Imai
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Noriko M Tsuji
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Department of Food Science, Jumonji University, Saitama, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.,Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
49
|
Krøyer Rasmussen M, Thøgersen R, Horsbøl Lindholm P, Bertram HC, Pilegaard H. Hepatic PGC-1α has minor regulatory effect on the transcriptome and metabolome during high fat high fructose diet and exercise. Gene 2022; 851:147039. [DOI: 10.1016/j.gene.2022.147039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
50
|
Kuang M, Sheng G, Hu C, Lu S, Peng N, Zou Y. The value of combining the simple anthropometric obesity parameters, Body Mass Index (BMI) and a Body Shape Index (ABSI), to assess the risk of non-alcoholic fatty liver disease. Lipids Health Dis 2022; 21:104. [PMID: 36266655 PMCID: PMC9585710 DOI: 10.1186/s12944-022-01717-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/15/2022] Open
Abstract
Background Body mass index (BMI) and A Body Shape Index (ABSI) are current independent risk factors for non-alcoholic fatty liver disease (NAFLD). The aim of this study was to explore the value of combining these two most common obesity indexes in identifying NAFLD. Methods The subjects in this study were 14,251 individuals from the NAfld in the Gifu Area, Longitudinal Analysis (NAGALA) cohort who underwent routine health examination. We integrated BMI with WC and with ABSI to construct 6 combined obesity indicators—obesity phenotypes, the combined anthropometric risk index (ARI) for BMI and ABSI, optimal proportional combination OBMI+WC and OBMI+ABSI, and multiplicative combination BMI*WC and BMI*ABSI. Several multivariable logistic regression models were established to evaluate the relationship between BMI, WC, ABSI, and the above six combined indicators and NAFLD; receiver operating characteristic (ROC) curves were drawn to compare the ability of each obesity indicator to identify NAFLD. Results A total of 2,507 (17.59%) subjects were diagnosed with NAFLD. BMI, WC, ABSI, and all other combined obesity indicators were significantly and positively associated with NAFLD in the current study, with BMI*WC having the strongest correlation with NAFLD in female subjects (OR per SD increase: 3.13) and BMI*ABSI having the strongest correlation in male subjects (OR per SD increase: 2.97). ROC analysis showed that ARI and OBMI+ABSI had the best diagnostic performance in both sexes, followed by BMI*WC (area under the curve: female 0.8912; male 0.8270). After further age stratification, it was found that ARI and multiplicative indicators (BMI*WC, BMI*ABSI) and optimal proportional combination indicators (OBMI+WC, OBMI+ABSI) significantly improved the NAFLD risk identification ability of the basic anthropometric parameters in middle-aged females and young and middle-aged males. Conclusion In the general population, BMI combined with ABSI best identified obesity-related NAFLD risk and was significantly better than BMI or WC, or ABSI. We find that ARI and the multiplicative combined indicators BMI*WC and BMI*ABSI further improved risk prediction and may be proposed for possible use in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01717-8.
Collapse
Affiliation(s)
- Maobin Kuang
- Medical College of Nanchang University, Nanchang of Jiangxi, 330006, Nanchang, China.,Department of Cardiology, Jiangxi Provincial People's Hospital, 330006, Nanchang, Jiangxi, China
| | - Guotai Sheng
- Department of Cardiology, Jiangxi Provincial People's Hospital, 330006, Nanchang, Jiangxi, China
| | - Chong Hu
- Department of Gastroenterology, Jiangxi Provincial People's Hospital, 330006, Nanchang, Jiangxi, China
| | - Song Lu
- Medical College of Nanchang University, Nanchang of Jiangxi, 330006, Nanchang, China.,Department of Cardiology, Jiangxi Provincial People's Hospital, 330006, Nanchang, Jiangxi, China
| | - Nan Peng
- Medical College of Nanchang University, Nanchang of Jiangxi, 330006, Nanchang, China.,Department of Cardiology, Jiangxi Provincial People's Hospital, 330006, Nanchang, Jiangxi, China
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, 330006, Nanchang, Jiangxi, China.
| |
Collapse
|