1
|
Gu S, Tang L, Guo L, Zhong C, Fu X, Ye G, Zhong S, Li X, Wen C, Zhou Y, Wei J, Chen H, Novikov N, Fletcher SP, Moody MA, Hou J, Li Y. Circulating HBsAg-specific B cells are partially rescued in chronically HBV-infected patients with functional cure. Emerg Microbes Infect 2024; 13:2409350. [PMID: 39470771 PMCID: PMC11523254 DOI: 10.1080/22221751.2024.2409350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024]
Abstract
It is well established that humoral immunity targeting hepatitis B virus surface antigen (HBsAg) plays a critical role in viral clearance and clinical cure. However, the functional changes in HBsAg-specific B cells before and after achieving functional cure remain poorly understood. In this study, we characterized circulating HBsAg-specific B cells and identified functional shifts and B-cell epitopes directly associated with HBsAg loss. The phenotypes and functions of HBV-specific B cells in patients with chronic HBV infection were investigated using a dual staining method and the ELISpot assay. Epitope mapping was performed to identify B cell epitopes associated with functional cure. Hyperactivated HBsAg-specific B cells in patients who achieved HBsAg loss were composed of enriched resting memory and contracted atypical memory fractions, accompanied by sustained co-expression of multiple inhibitory receptors and increased IL-6 secretion. The frequency of HBsAb-secreting B cells was significantly increased after achieving a functional cure. The rHBsAg displayed a weaker immunomodulatory effect on B cells than rHBeAg and rHBcAg in vitro. Notably, sera from patients with HBsAg loss reacted mainly with peptides S60, S61, and S76, suggesting that these are dominant linear B-cell epitopes relevant for functional cure. Intriguingly, patients reactive with S76 showed a higher frequency of the HLA class II DQB1*05:01 allele. Taken together, HBsAg-specific B cells were partially restored in patients after achieving a functional cure. Functional cure-related epitopes may be promising targets for developing therapeutic vaccines to treat HBV infection and promote functional cure.
Collapse
Affiliation(s)
- Shuqin Gu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Infectious Diseases Division, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Libo Tang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Ling Guo
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chunxiu Zhong
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Xin Fu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Guofu Ye
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Shihong Zhong
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Xiaoyi Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chunhua Wen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Department of Hematology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yang Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Infectious Diseases Division, Department of Pediatrics, Duke University, Durham, NC, USA
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jinling Wei
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Haitao Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Nikolai Novikov
- Department of Biology, Gilead Sciences, Foster City, CA, USA
| | | | - M. Anthony Moody
- Infectious Diseases Division, Department of Pediatrics, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Jinlin Hou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Yongyin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| |
Collapse
|
2
|
Ye Y, Shi Y, Wei Z, Liu H, Li W. SIGIRR suppresses hepatitis B virus X protein-induced chronic inflammation in hepatocytes. Gene 2024; 928:148768. [PMID: 39013482 DOI: 10.1016/j.gene.2024.148768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Although antiviral drugs can effectively inhibit hepatitis B virus (HBV) replication, the maintenance of chronic inflammation in the liver is still considered to be an important cause for the progression of HBV-related liver disease to liver fibrosis and advanced liver disease. As an endogenous inhibitory receptor of IL-1R and TLR signaling pathways, single immunoglobulin interleukin-1-related receptor (SIGIRR) has been proven to reduce inflammation in tissues to maintain system homeostasis. However, the relationship between SIGIRR expression and HBV replication and inflammatory pathway activation in hepatocytes remains unclear. In this study, hepatitis B virus X protein (HBx) upregulated MyD88 in liver cells, promoting NF-κB signaling and inflammatory factor production with LPS treatment, and the cell supernatant accelerated the activation and collagen secretion of hepatic stellate cells. However, SIGIRR overexpression suppressed HBx-mediated MyD88/NF-κB inflammatory signaling activation and inflammatory cytokine production induced by LPS in hepatocytes and HBV replication hepatocytes. Although we did not find any effect of SIGIRR on HBV replication in vitro, this study investigated the role of SIGIRR in blocking the proinflammatory function of HBx, which may provide a new idea for the treatment of chronic hepatitis B.
Collapse
Affiliation(s)
- Yanshuo Ye
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Yunpeng Shi
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Zhenhong Wei
- Scientifc Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Hongyu Liu
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| |
Collapse
|
3
|
Osmani Z, Brouwer WP, Grashof DGB, Lim Y, Doukas M, Janssen HLA, van de Werken HJG, Boonstra A. Metabolic dysfunction-associated steatohepatitis reduces interferon and macrophage liver gene signatures in patients with chronic hepatitis B. J Hepatol 2024:S0168-8278(24)02653-9. [PMID: 39490745 DOI: 10.1016/j.jhep.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND & AIMS Chronic HBV patients with concomitant metabolic dysfunction-associated steatohepatitis (MASH) have been shown to develop more advanced fibrosis faster with more severe liver disease as compared to patients with chronic HBV alone. However, our understanding of the underlying mechanisms is limited. Here we study how MASH co-morbidity impact immune activity in the liver of patients with chronic HBV infection. METHODS Bulk RNA sequencing was performed on liver biopsies from patients with only MASH (n=10), only HBeAg-negative chronic HBV (ENEG; n=11), combined MASH/ENEG (n=9) and healthy controls (n=9). Biopsies with no or minimal fibrosis (≤F2) were selected to avoid confounding effects of fibrosis. We compared whole transcriptome data from patients with MASH/ENEG to those with ENEG alone to determine the impact of MASH co-morbidity on chronic hepatitis B. RESULTS There is a high degree of overlap of liver gene expression profiles in patients with only ENEG versus those with only MASH compared to healthy controls, suggesting a largely shared mechanism of liver dysfunction and immune activity for these distinct conditions. In patients with ENEG, MASH co-morbidity significantly reduced interferon pathway activity (NES=2.03, p.adj=0.0251), the expression of ISGs (e.g., IFIT2, IFI27, IFITM1, IFI6), and macrophage gene signatures (e.g., MARCO, CD163, CD5L, CD63), when compared to patients with ENEG alone. CONCLUSIONS Transcriptomic profiling of the liver suggests that MASH negatively impacts ISGs expression in the liver of patients with ENEG, which may affect antiviral immune pathways, viral replication and inflammatory responses resulting in an increased risk of advanced fibrosis in patients with chronic hepatitis B. Our study provides valuable insights for guiding future research aimed at developing effective, tailored strategies for managing patients with both conditions. IMPACT AND IMPLICATIONS In recent decades, obesity and associated health issues have reached epidemic levels, with steatotic liver disease affecting up to 30% of adults in developed countries, and this trend is also observed among chronic hepatitis B patients. Given the high and rising prevalence of steatotic liver disease and its frequent co-occurrence in chronic hepatitis B patients, it is essential to understand how conditions such as metabolic dysfunction-associated steatohepatitis (MASH) impact immune responses in the liver. This study provides unique insights into the impact of MASH on HBV antiviral immune activity in the liver of patients with chronic hepatitis B. The rising number of patients with both conditions affects treatment outcomes and highlights the urgent need for novel, tailored therapeutic strategies. Our study holds significant relevance for guiding future research on developing treatment strategies for patients with both MASH and chronic hepatitis B.
Collapse
Affiliation(s)
- Zgjim Osmani
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Willem Pieter Brouwer
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dwin G B Grashof
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Youkyung Lim
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michael Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Harry L A Janssen
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Patel NH, Lucko A, Vachon A, Doucette KE, Ramji A, Sycuro L, Patel TR, Chadee K, Raman M, van Marle G, Osiowy C, Coffin CS. Assessment of HBV variants and novel viral and immune biomarkers in chronic hepatitis B patients with metabolic dysfunction associated steatotic liver disease. J Viral Hepat 2024; 31:582-591. [PMID: 39109700 DOI: 10.1111/jvh.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 11/05/2024]
Abstract
Co-existing chronic hepatitis B virus (CHB) infection and metabolic dysfunction associated steatotic liver disease (MASLD) can exert complex effects on hepatic metabolism, requiring mechanistic study. CHB participants were assessed for MASLD and the impact of hepatic steatosis/metabolic syndrome (MetS) on novel viral and immunological markers. In this prospective, cohort study, untreated CHB subjects were assessed for liver disease by non-invasive tests (i.e. FibroScan, controlled attenuation parameter, CAP). Subjects were tested for cytokines and IFN-γ ELISPOT assay to HBV Surface (S) and Core (C) proteins. Standard HBV serological, exploratory biomarkers and deep sequencing of HBV S and C genes were performed. In 53 subjects (median age 45 years [SD = 10.6], 35% F, 56% Asian, 20% Black, 3% White), 94% (50) HBeAg negative, 63% genotype B/C, mean HBV DNA 3.2 log10 IU/mL (SD = 1.8), quantitative HBsAg 2.9 log10 IU/mL (SD = 1.2) and HBV pgRNA 2.1 log10 copies/mL (SD = 1.3). In enrolled subjects, the mean ALT was 41.9 U/L (SD = 24.0), FibroScan was 5.7 kPa (SD = 1.9) and CAP was 306.4 dB/m (SD = 49.0). The mean BMI was 28.2 kg/m2 (SD = 4.2), 20% (11/53) had diabetes, 35% (19/53) dyslipidaemia and 24% (13/53) hypertension. Subjects with MetS and steatosis showed lower HBV markers (p < .01), higher HBV S diversity (p = .02) and greater frequency of HBV variants associated with host-anti-viral immune escape. Pro-inflammatory cytokine levels and HBV-specific cellular responses were higher in participants with hepatic steatosis. In CHB, MASLD/hepatic steatosis was associated with HBV variants and systemic immune responses potentially impacting liver disease progression despite low-level viraemia.
Collapse
Affiliation(s)
- Nishi H Patel
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aaron Lucko
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alicia Vachon
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Karen E Doucette
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Alnoor Ramji
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Sycuro
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Trushar R Patel
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Departments of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maitreyi Raman
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Guido van Marle
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carla Osiowy
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Carla S Coffin
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Shigeno S, Kodama T, Murai K, Motooka D, Fukushima A, Nishio A, Hikita H, Tatsumi T, Okamoto T, Kanto T, Takehara T. Intrahepatic Exhausted Antiviral Immunity in an Immunocompetent Mouse Model of Chronic Hepatitis B. Cell Mol Gastroenterol Hepatol 2024:101412. [PMID: 39349249 DOI: 10.1016/j.jcmgh.2024.101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND & AIMS Targeting exhausted immune systems would be a promising therapeutic strategy to achieve a functional cure for HBV infection in patients with chronic hepatitis B (CHB). However, animal models recapitulating the immunokinetics of CHB are very limited. We aimed to develop an immunocompetent mouse model of CHB for intrahepatic immune profiling. METHODS CHB mice were created by intrahepatic delivery of the Sleeping Beauty transposon vector tandemly expressing the hepatitis B virus (HBV) genome and fumarylacetoacetate hydrolase (FAH) cDNA into C57BL/6J congenic FAH knockout mice via hydrodynamic tail vein injection. We profiled the viral and intrahepatic immune kinetics in CHB mice with or without treatment with recombinant IFNα or the hepatotropic Toll-like receptor 7 agonist SA-5 using single-cell RNA-seq. RESULTS CHB mice exhibited sustained HBV viremia and persistent hepatitis. They showed intrahepatic expansion of exhausted CD8+ T (Tex) cells, the frequency of which was positively associated with viral load. Recruited macrophages increased in number but impaired inflammatory responses in the liver. The cytotoxicity of mature natural killer (NK) cells also increased in CHB mice. IFNα and SA-5 treatment both resulted in viral suppression with mild hepatic flares in CHB mice. Although both treatments activated NK cells, SA-5 had the capacity to revitalize the impaired function of Tex cells and liver-recruited macrophages. CONCLUSION Our novel CHB mouse model recapitulated the intrahepatic exhausted antiviral immunity in patients with CHB, which might be able to be reinvigorated by a hepatotropic TLR7 agonist.
Collapse
Affiliation(s)
- Satoshi Shigeno
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | - Akira Nishio
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
6
|
Yang Y, Ge F, Luo C, Liao C, Deng J, Yang Y, Chen Y, Guo X, Bai Z, Xiao X, Tang C. An Experimental Animal Study: Electroacupuncture Facilitates Antiviral Immunity Against Hepatitis B Virus Through the IFN-γ/JAK/STAT Axis. J Inflamm Res 2024; 17:6547-6562. [PMID: 39318991 PMCID: PMC11420899 DOI: 10.2147/jir.s477202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Background Chronic hepatitis B (CHB) remains a global health challenge, necessitating innovative therapeutic strategies. Enhancing the body's immune response against the hepatitis B virus (HBV) emerges as a fundamental strategy for achieving a functional cure. While acupuncture has shown potential in immune modulation, its specific anti-HBV effects are not well understood. This study evaluates the potential of electroacupuncture (EA) in HBV infection and explores its underlying immunological mechanisms using a mouse model. Methods HBV-infected mice were established using the high-pressure hydrodynamic method and divided into four groups: normal saline (NS), EA, sham EA (SE), and tenofovir disoproxil fumarate (TF), with n = 6 per group. During treatment, blood was collected every Sunday via the orbital sinus to monitor HBV DNA, HBsAg, and HBeAg levels. Transcriptomics and metabolomics analyses were employed to unearth clues regarding EA's anti-HBV mechanism. Validation of these mechanisms included splenic T-cell flow analysis, Western blotting, RT-qPCR, immunofluorescence, and ELISA. Results Serum HBV DNA levels decreased by 1.10, 0.19, and 1.98 log10 IU/mL in the EA, SE, and TF-treated mice, respectively, compared to the NS. Concurrently, the hepatic HBV DNA levels decreased by 1.09, 0.24, and 2.03 log10 IU/mL. EA also demonstrated superior inhibition of HBV antigens, with serum HBeAg levels decreasing by 43.86%, 8.74%, and 8.03%, and serum HBsAg levels decreasing by 28.01%, 0.26%, and 9.39% in the EA, SE, and TF groups, respectively. Further analysis through transcriptomics and metabolomics revealed that EA's anti-HBV effects primarily hinge on immune modulation, particularly the IFN-γ/JAK/STAT pathway and taurine metabolism. EA also increased the ratio of splenic CD8+ CD69+ and CD8+ IFN-γ+ T-cells while upregulating key proteins in the JAK/STAT pathway and cytokines associated with antiviral immunity. Conclusion EA manifests inhibitory effects on HBV, particularly in antigen suppression, with its mode of action intricately linked to the regulation of IFN-γ/JAK/STAT.
Collapse
Affiliation(s)
- Yan Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Feilin Ge
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Chen Luo
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Cai Liao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Junyuan Deng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yunhao Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yang Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Xiao Guo
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhaofang Bai
- Senior Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Xiaohe Xiao
- Senior Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Chenglin Tang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| |
Collapse
|
7
|
Zhang Y, Han S, Li Y, Zhou Y, Sun M, Hu M, Zhou C, Lin L, Lan J, Lu X, Zhang Q, Liu L, Jin J. Manganese inhibits HBV transcription and promotes HBsAg degradation at non-toxic levels. Int J Biol Macromol 2024; 280:135764. [PMID: 39299429 DOI: 10.1016/j.ijbiomac.2024.135764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Chronic hepatitis B virus (HBV) infection continues to pose a significant global health challenge. However, therapeutic measures for a cure are lacking in clinical practice. Manganese, an essential trace element, has garnered attention due to its potential to activate innate immune pathways and its significant role in antiviral and antitumor immunity. Yet, the specific impact of manganese on chronic hepatitis B has been largely unexplored. Our research reveals that manganese substantially inhibits HBV replication in hepatocellular carcinoma cells at non-toxic levels. This suppression occurs independently of well-known anti-HBV innate immune pathways, such as the cGAS-STING pathway. Mechanistically, manganese decreases HBV transcription by diminishing the levels of liver-specific transcription factors. Furthermore, it activates the mTOR pathway, enhancing HBsAg ubiquitination through the upregulation of the ubiquitin ligase β-TrCP and increasing proteasome activity via the augmentation of its subunits, leading to a ubiquitin-dependent degradation of HBsAg. Significantly, our study also uncovers a notable clinical correlation between manganese levels and chronic hepatitis B infection. These findings position manganese as a critical element in diminishing HBV replication, offering a new direction in the management of chronic hepatitis B.
Collapse
Affiliation(s)
- Yong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| | - Shaowei Han
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yuanyuan Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yuting Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; School of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Mengdan Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Mingna Hu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; School of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Chengcai Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Lu Lin
- Clinical Medical College, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Jianfeng Lan
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Xing Lu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Qinqin Zhang
- Department of Thyroid and Breast Surgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541002, Guangxi, China
| | - Lingyun Liu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Department of Hepatobiliary and Pancreatic Surgery, Laboratory of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| |
Collapse
|
8
|
Xie Z, Protzer U. Activating adaptive immunity by bispecific, T-cell engager antibodies bridging infected and immune-effector cells is a promising novel therapy for chronic hepatitis B. Antiviral Res 2024; 229:105972. [PMID: 39084340 DOI: 10.1016/j.antiviral.2024.105972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Bispecific antibodies (bsAbs) are engineered immunoglobulins that combine two different antigen-binding sites in one molecule. BsAbs can be divided into two molecular formats: IgG-like and non-IgG-like antibodies. Structural elements of each format have implications for engaging the immune system. T cell engager antibodies (TCEs) are bsAbs designed to engage T cells with target cells. TCEs can be applied not only in cancer but also in infectious disease therapy to activate T-cell responses. In this review, we focus on current literature on the design and use of bsAbs as an innovative strategy to enhance adaptive antiviral immune responses. We summarized the novel T cell-related immunotherapies with a focus on TCEs, that are developed for the treatment of chronic hepatitis B. Chronic infection with the hepatitis B virus (HBV) had a death toll of 1.1 million humans in 2022, mainly due to liver cirrhosis and hepatocellular carcinoma developing in the more than 250 million humans chronically infected. A curative treatment approach for chronic hepatitis B is lacking. Combining antiviral therapy with immune therapies activating T-cell responses is regarded as the most promising therapeutic approach to curing HBV and preventing the sequelae of chronic infection. Attracting functionally intact T cells that are not HBV-specific and, therefore, have not yet been exposed to regulatory mechanisms and activating those at the target site in the liver is a very interesting therapeutic approach that could be achieved by TCEs. Thus, TCEs redirecting T cells toward HBV-positive cells represent a promising strategy for treating chronic hepatitis B and HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhe Xie
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Sites, Germany.
| |
Collapse
|
9
|
Zhang M, Chen H, Liu H, Tang H. The impact of integrated hepatitis B virus DNA on oncogenesis and antiviral therapy. Biomark Res 2024; 12:84. [PMID: 39148134 PMCID: PMC11328401 DOI: 10.1186/s40364-024-00611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/29/2024] [Indexed: 08/17/2024] Open
Abstract
The global burden of hepatitis B virus (HBV) infection remains high, with chronic hepatitis B (CHB) patients facing a significantly increased risk of developing cirrhosis and hepatocellular carcinoma (HCC). The ultimate objective of antiviral therapy is to achieve a sterilizing cure for HBV. This necessitates the elimination of intrahepatic covalently closed circular DNA (cccDNA) and the complete eradication of integrated HBV DNA. This review aims to summarize the oncogenetic role of HBV integration and the significance of clearing HBV integration in sterilizing cure. It specifically focuses on the molecular mechanisms through which HBV integration leads to HCC, including modulation of the expression of proto-oncogenes and tumor suppressor genes, induction of chromosomal instability, and expression of truncated mutant HBV proteins. The review also highlights the impact of antiviral therapy in reducing HBV integration and preventing HBV-related HCC. Additionally, the review offers insights into future objectives for the treatment of CHB. Current strategies for HBV DNA integration inhibition and elimination include mainly antiviral therapies, RNA interference and gene editing technologies. Overall, HBV integration deserves further investigation and can potentially serve as a biomarker for CHB and HBV-related HCC.
Collapse
Affiliation(s)
- Mingming Zhang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huan Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Feng Z, Fu J, Tang L, Bao C, Liu H, Liu K, Yang T, Yuan JH, Zhou CB, Zhang C, Xu R, Wang FS. HBeAg induces neutrophils activation impairing NK cells function in patients with chronic hepatitis B. Hepatol Int 2024; 18:1122-1134. [PMID: 38829576 DOI: 10.1007/s12072-024-10689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/21/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND The role of neutrophils in hepatitis B virus (HBV) infection has been a subject of debate due to their involvement in antiviral responses and immune regulation. This study aimed to elucidate the neutrophil characteristics in patients with chronic hepatitis B (CHB). METHODS Through flow cytometry and ribonucleic acid-sequencing analysis, the phenotypes and counts of neutrophils were analyzed in patients with CHB. Moreover, the effects of HBeAg on neutrophils and the corresponding pattern recognition receptors were identified. Simultaneously, the cross-talk between neutrophils and natural killer (NK) cells was investigated. RESULTS Neutrophils were activated in patients with CHB, characterized by higher expression levels of programmed death-ligand 1 (PD-L1), cluster of differentiation 86, and interleukin-8, and lower levels of CXC motif chemokine receptor (CXCR) 1 and CXCR2. Hepatitis B e antigen (HBeAg) partially induces neutrophil activation through the Toll-like receptor 2 (TLR2). A consistent upregulation of the TLR2 and HBeAg expression was observed in patients with CHB. Notably, the genes encoding molecules pivotal for NK-cell function upon NK receptor engagement enriched in neutrophils after HBeAg activation. The HBeAg-activated neutrophils demonstrated the ability to decrease the production of interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) in NK cells, while the PD-1 and PD-L1 pathways partially mediated the immunosuppression. CONCLUSIONS The immunosuppression of neutrophils induced by HBeAg suggests a novel pathogenic mechanism contributing to immune tolerance in patients with CHB.
Collapse
Affiliation(s)
- Zhiqian Feng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lili Tang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chunmei Bao
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Honghong Liu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Kai Liu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Tao Yang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruonan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Zhu Y, Yu M, Aisikaer M, Zhang C, He Y, Chen Z, Yang Y, Han R, Li Z, Zhang F, Ding J, Lu X. Contriving a novel of CHB therapeutic vaccine based on IgV_CTLA-4 and L protein via immunoinformatics approach. J Biomol Struct Dyn 2024; 42:6323-6341. [PMID: 37424209 DOI: 10.1080/07391102.2023.2234043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Chronic infection induced by immune tolerance to hepatitis B virus (HBV) is one of the most common causes of hepatic cirrhosis and hepatoma. Fortunately, the application of therapeutic vaccine can not only reverse HBV-tolerance, but also serve a potentially effective therapeutic strategy for treating chronic hepatitis B (CHB). However, the clinical effect of the currently developed CHB therapeutic vaccine is not optimistic due to the weak immunogenicity. Given that the human leukocyte antigen CTLA-4 owns strong binding ability to the surface B7 molecules (CD80 and CD86) of antigen presenting cell (APCs), the immunoglobulin variable region of CTLA-4 (IgV_CTLA-4) was fused with the L protein of HBV to contrive a novel therapeutic vaccine (V_C4HBL) for CHB in this study. We found that the addition of IgV_CTLA-4 did not interfere with the formation of L protein T cell and B cell epitopes after analysis by means of immunoinformatics approaches. Meanwhile, we also found that the IgV_CTLA-4 had strong binding force to B7 molecules through molecular docking and molecular dynamics (MD) simulation. Notably, our vaccine V_C4HBL showed good immunogenicity and antigenicity by in vitro and in vivo experiments. Therefore, the V_C4HBL is promising to again effectively activate the cellular and humoral immunity of CHB patients, and provides a potentially effective therapeutic strategy for the treatment of CHB in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yuejie Zhu
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Infectious Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mingkai Yu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Maierhaba Aisikaer
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Chuntao Zhang
- Department of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yueyue He
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Zhiqiang Chen
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Yinyin Yang
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Rui Han
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhiwei Li
- Clinical Laboratory Center, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Xiaobo Lu
- Infectious Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
12
|
Laaribi AB, Mehri A, Yahia HB, Chaouch H, Babay W, Letaief A, Ouzari HI, Hannachi N, Boukadida J, Zidi I. Association of HLA-G 3'UTR polymorphisms with hepatitis B virus infection in Tunisian population. Immunol Res 2024:10.1007/s12026-024-09516-2. [PMID: 38970627 DOI: 10.1007/s12026-024-09516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Hepatitis B virus (HBV) infection is a major public health burden. The mechanisms of immune evasion during chronic HBV (CHB) infection are poorly understood. Human leukocyte antigen (HLA)-G, an immune checkpoint molecule, plays a crucial role in the tolerance mechanisms of various infectious diseases. The 3' untranslated region (3'UTR), including the HLA-G + 3142 C > G polymorphism (rs1063320) and the 14-pb Ins/Del (rs66554220) has been strongly suggested to influence HLA-G expression. This study conducted a case-control analysis to evaluate the potential correlation between the HLA-G + 3142 C > G polymorphism and HBV infection outcome in a Tunisian cohort. The HLA-G + 3142 C > G polymorphism was analysed by PCR-RFLP in 242 patients with chronic HBV infection (116 males and 126 females), 241 healthy controls (116 males and 125 females), and 100 spontaneously resolved subjects (52 males and 48 females). Patients with chronic HBV infection showed a higher frequency of the + 3142G allele compared to healthy controls and spontaneously resolved subjects (p = 0.001 and p = 0.002, respectively). An association between the + 3142G allele and high HBV DNA levels was observed when HBV patients were stratified based on their HBV DNA levels (p = 0.016). Furthermore, the dominant model (GG + GC vs CC) was associated with liver function parameters, including AST, ALT, and high HBV DNA levels (p = 0.04, p < 0.001 and p = 0.002, respectively). However, there was no significant association found between this polymorphism and the fibrosis stage (p = 0.32). The haplotype analysis, using a subset of previously published data on the HLA-G 14-pb Ins/Del polymorphism, revealed an association between the Ins/G haplotype and chronic HBV infection (H1: InsG, p < 0.001). Our findings suggest that the + 3142G allele is a risk factor for the persistence and progression of HBV infection, while the + 3142C allele serves as a protective allele associated with the spontaneous resolution of the infection. Additionally, the HLA-G 3'UTR haplotype Ins/G is associated with chronic HBV infection in the Tunisian population.
Collapse
Affiliation(s)
- Ahmed Baligh Laaribi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| | - Asma Mehri
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hamza Ben Yahia
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Houda Chaouch
- Department of Internal Medicine and Infectious Diseases, University Hospital Farhat Hached, Sousse, Tunisia
| | - Wafa Babay
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Amel Letaief
- Department of Internal Medicine and Infectious Diseases, University Hospital Farhat Hached, Sousse, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Naila Hannachi
- Laboratory of Microbiology (UR12SP34), Faculty of Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| | - Jalel Boukadida
- Laboratory of Microbiology (UR12SP34), Faculty of Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| | - Ines Zidi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
13
|
Song J, Liu L, Wang Z, Xie D, Azami NLB, Lu L, Huang Y, Ye W, Zhang Q, Sun M. CCL20 and CD8A as potential diagnostic biomarkers for HBV-induced liver fibrosis in chronic hepatitis B. Heliyon 2024; 10:e28329. [PMID: 38596115 PMCID: PMC11002547 DOI: 10.1016/j.heliyon.2024.e28329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
Background The main cause of the liver fibrosis (LF) remains hepatitis B virus (HBV) infection, especially in China. Histologically, liver fibrosis still occurs progressively in chronic hepatitis B (CHB) patients, even if HBV-DNA is negative or undetectable. The diagnosis of LF is beneficial to control the development of it, also it may promote the reversal of LF. Although liver biopsy is the gold standard of diagnosis in LF at present, it isa traumatic diagnosis. There are no diagnostic biomarkers as yet for the condition. It is badly in need of biomarkers clinically, which is simple to test, minimally invasive, highly specific, and sensitive. Early detection of HBV-LF development is crucial in the prevention, treatment, and prognosis prediction of HBV-LF. Cytokines are closely associated with both immune regulation and inflammation in the progression of hepatitis B virus associated-liver fibrosis (HBV-LF). In this bioinformatic study, we not only analyzed the relationship between HBV-LF and immune infiltration, but also identified key genes to uncover new therapeutic targets. Objectives To find potential biomarkers for liver fibrosis in the development of chronic hepatic B patients. Materials and methods We obtained two sets of data including CHB/healthy control and CHB/HBV-LF from the Integrated Gene Expression (GEO) database to select for differential expression analysis. Protein-protein interaction (PPI) network was also generated, while key genes and important gene modules involved in the occurrence and development of HBV-LF were identified. These key genes were analyzed by functional enrichment analysis, module analysis, and survival analysis. Furthermore, the relationship between these two diseases and immune infiltration was explored. Results Among the identified genes, 150 were individually associated with CHB and healthy control in the differential gene expression (DGE) analysis. While 14 with CHB and HBV-LF. It was also analyzed in the Robust rank aggregation (RRA) analysis, 34 differential genes were further identified by Cytohubba. Among 34 differential genes, two core genes were determined: CCL20 and CD8A. CCL20 was able to predict CHB positivity (area under the receiver operating characteristic curve [AUC-ROC] = 0.883, 95% confidence interval [CI] 0.786-0.963), while HBV-LF positivity ([AUC-ROC] = 0.687, 95% confidence interval [CI] 0.592-0.779). And CD8A was able to predict CHB positivity ([AUC-ROC] = 0.960, 95% confidence interval [CI] 0.915-0.992), while HBV-LF positivity ([AUC-ROC] = 0.773, 95% confidence interval [CI] 0.680-0.856). Relationship between CCL20 gene expression and LF grades was P < 0.05, as well as CD8A. Conclusion CCL20 and CD8A were found to be potential biomarkers and therapeutic targets for HBV-LF. It is instructive for research on the progression of LF in HBV patients, suppression of chronic inflammation, and development of molecularly targeted-therapy for HBV-LF.
Collapse
Affiliation(s)
- Jingru Song
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China
| | - Lu Liu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zheng Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong Xie
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nisma Lena Bahaji Azami
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lu Lu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanping Huang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Wei Ye
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China
| | - Qin Zhang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Mingyu Sun
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
14
|
Lin J, Jiang S, Chen X, Zhu M, Zhang H. The significance of detecting HBV pgRNA and HBcrAg in HBV patients treated with NAs. Medicine (Baltimore) 2024; 103:e37752. [PMID: 38579047 PMCID: PMC10994503 DOI: 10.1097/md.0000000000037752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
The value of detecting hepatitis B virus (HBV), pregenomic RNA (pgRNA), and hepatitis B core-related antigen (HBcrAg), both separately and jointly, in the management of HBV patients undergoing treatment with Nucleotide Analog was investigated. A total of 149 HBV patients who were being treated with Nucleotide Analog were enrolled in this study. The quantitative levels of HBV pgRNA and HBcrAg in the sera of these patients were determined, aiming to comprehend their replication levels and expression during the course of antiviral therapy. The patients were separated into 3 groups based on treatment duration: treatment time ≤ 12 months, treatment time ranging from 12 months to <60 months, and treatment time ≥ 60 months. Significantly different levels of HBcrAg and HBV pgRNA were observed among 3 groups (P < .05). In the group of patients with positive hepatitis B e antigen, both HBcrAg and pgRNA levels were higher compared to the group with negative hepatitis B e antigen, and this difference between the 2 groups was found to be statistically significant. Stratified analysis based on levels of hepatitis B surface antigen (HBsAg) revealed that the group with HBsAg levels < 100 IU/mL had lower levels of both HBcrAg and pgRNA compared to the group with HBsAg levels ≥ 100 IU/mL (P < .001). Following antiviral therapy, various degrees of transcription of covalently closed circular DNA continue to exist within the liver of HBV patients. The levels of serum HBcrAg and HBV pgRNA vary among patients with different treatment durations, indicating their efficacy in evaluating disease conditions during antiviral therapy.
Collapse
Affiliation(s)
- Jie Lin
- Department of Infectious Diseases, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Shiyao Jiang
- Department of Infectious Diseases, The Third People’s Hospital of Deqing, Huzhou, Zhejiang, P.R. China
| | - Xiangyu Chen
- Department of Infectious Diseases, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Min Zhu
- Department of Infectious Diseases, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Haifeng Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
- Infection Management Office, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| |
Collapse
|
15
|
Su J, Harati Taji Z, Kosinska AD, Ates Oz E, Xie Z, Bielytskyi P, Shein M, Hagen P, Esmaeili S, Steiger K, Protzer U, Schütz AK. Introducing adjuvant-loaded particulate hepatitis B core antigen as an alternative therapeutic hepatitis B vaccine component. JHEP Rep 2024; 6:100997. [PMID: 38425450 PMCID: PMC10904195 DOI: 10.1016/j.jhepr.2023.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024] Open
Abstract
Background & Aims Particulate hepatitis B core antigen (HBcoreAg) is a potent immunogen used as a vaccine carrier platform. HBcoreAg produced in E. coli encapsidates random bacterial RNA (bRNA). Using the heterologous protein-prime, viral-vector-boost therapeutic hepatitis B vaccine TherVacB, we compared the properties of different HBcoreAg forms. We explored how the content of HBcoreAg modulates antigen stability, immunogenicity, and antiviral efficacy. Methods bRNA was removed from HBcoreAg by capsid disassembly, followed by reassembly in the absence or presence of specific nucleic acid-based adjuvants poly I:C or CpG. The morphology and structure of empty, bRNA-containing and adjuvant-loaded HBcoreAg were monitored by electron microscopy and nuclear magnetic resonance spectroscopy. Empty, bRNA-containing or adjuvant-loaded HBcoreAg were applied together with HBsAg and with or without nucleic acid-based external adjuvants within the TherVacB regimen in both wild-type and HBV-carrier mice. Results While HBcoreAg retained its structure upon bRNA removal, its stability and immunogenicity decreased significantly. Loading HBcoreAg with nucleic acid-based adjuvants re-established stability of the capsid-like antigen. Immunization with poly I:C- or CpG-loaded HBcoreAg induced high antibody titers against co-administered HBsAg. When applied within the TherVacB regimen, they activated vigorous HBcoreAg- and HBsAg-specific T-cell responses in wild-type and HBV-carrier mice, requiring a significantly lower dose of adjuvant compared to externally added adjuvant. Finally, immunization with adjuvant-loaded HBcoreAg mixed with HBsAg led to long-term control of persistent HBV replication in the HBV-carrier mice. Conclusion Adjuvant-loaded HBcoreAg retained capsid integrity and stability, was as immunogenic in vivo as externally adjuvanted HBcoreAg, requiring lower adjuvant levels, and supported immunity against co-administered, non-adjuvanted HBsAg. Thus, adjuvant-loaded HBcoreAg represents a promising novel platform for vaccine development. Impact and implications Hepatitis B core antigen (HBcoreAg) recapitulates the capsid of the HBV that hosts the viral genome. Produced recombinantly, it is not infectious but emerges as a potent immunogen in vaccine development. In this preclinical study, we show that loading HBcoreAg with defined nucleic-acid-based adjuvants on the one hand stabilizes the HBcoreAg with standardized capsid content and, on the other hand, efficiently promotes the immunity of HBcoreAg and a co-administered antigen, allowing for reduced adjuvant doses. Therefore, adjuvant-loaded HBcoreAg not only serves as an encouraging option for therapeutic hepatitis B vaccines, but could also act as an efficient adjuvant delivery system for other types of vaccine.
Collapse
Affiliation(s)
- Jinpeng Su
- Institute of Virology, Technical University of Munich / Helmholtz Munich, 81675, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Germany
| | - Zahra Harati Taji
- Ludwig Maximilians University of Munich, 81377, Munich, Germany
- Bavarian NMR Center, Technical University of Munich, 85748, Garching, Germany
- Institute of Structural Biology, Helmholtz Munich, 85764, Neuherberg, Germany
| | - Anna D. Kosinska
- Institute of Virology, Technical University of Munich / Helmholtz Munich, 81675, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Germany
| | - Edanur Ates Oz
- Institute of Virology, Technical University of Munich / Helmholtz Munich, 81675, Munich, Germany
| | - Zhe Xie
- Institute of Virology, Technical University of Munich / Helmholtz Munich, 81675, Munich, Germany
| | - Pavlo Bielytskyi
- Bavarian NMR Center, Technical University of Munich, 85748, Garching, Germany
- Institute of Structural Biology, Helmholtz Munich, 85764, Neuherberg, Germany
| | - Mikhail Shein
- Ludwig Maximilians University of Munich, 81377, Munich, Germany
- Bavarian NMR Center, Technical University of Munich, 85748, Garching, Germany
- Institute of Structural Biology, Helmholtz Munich, 85764, Neuherberg, Germany
| | - Philipp Hagen
- Institute of Virology, Technical University of Munich / Helmholtz Munich, 81675, Munich, Germany
| | - Shohreh Esmaeili
- Ludwig Maximilians University of Munich, 81377, Munich, Germany
- Bavarian NMR Center, Technical University of Munich, 85748, Garching, Germany
- Institute of Structural Biology, Helmholtz Munich, 85764, Neuherberg, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institute of Pathology, School of Medicine and Health, Technical University Munich, 81675, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich / Helmholtz Munich, 81675, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Germany
| | - Anne K. Schütz
- Ludwig Maximilians University of Munich, 81377, Munich, Germany
- Bavarian NMR Center, Technical University of Munich, 85748, Garching, Germany
- Institute of Structural Biology, Helmholtz Munich, 85764, Neuherberg, Germany
| |
Collapse
|
16
|
Yang Z, Guan R, Fu Y, Hu D, Zhou Z, Chen M, Zhang Y. Risk of hepatitis B virus reactivation and its effect on survival in advanced hepatocellular carcinoma patients treated with hepatic arterial infusion chemotherapy and lenvatinib plus programmed death receptor-1 inhibitors. Front Cell Infect Microbiol 2024; 14:1336619. [PMID: 38415009 PMCID: PMC10896825 DOI: 10.3389/fcimb.2024.1336619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Background Hepatitis B virus (HBV) reactivation is a common complication in hepatocellular carcinoma (HCC) patients treated with chemotherapy or immunotherapy. This study aimed to evaluate the risk of HBV reactivation and its effect on survival in HCC patients treated with HAIC and lenvatinib plus PD1s. Methods We retrospectively collected the data of 213 HBV-related HCC patients who underwent HAIC and lenvatinib plus PD1s treatment between June 2019 to June 2022 at Sun Yat-sen University, China. The primary outcome was the risk of HBV reactivation. The secondary outcomes were overall survival (OS), progression-free survival (PFS), and treatment-related adverse events. Results Sixteen patients (7.5%) occurred HBV reactivation in our study. The incidence of HBV reactivation was 5% in patients with antiviral prophylaxis and 21.9% in patients without antiviral prophylaxis, respectively. The logistic regression model indicated that for HBV reactivation, lack of antiviral prophylaxis (P=0.003) and tumor diameter (P=0.036) were independent risk factors. The OS and PFS were significantly shorter in the HBV reactivation group than the non-reactivation group (P=0.0023 and P=0.00073, respectively). The number of AEs was more in HBV reactivation group than the non-reactivation group, especially hepatic AEs. Conclusion HBV reactivation may occur in HCC patients treated with HAIC and lenvatinib plus PD1s. Patients with HBV reactivation had shorter survival time compared with non-reactivation. Therefore, HBV-related HCC patients should undergo antiviral therapy and HBV-DNA monitoring before and during the combination treatment.
Collapse
Affiliation(s)
- Zhenyun Yang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Renguo Guan
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yizhen Fu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dandan Hu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhongguo Zhou
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Minshan Chen
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yaojun Zhang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Dobrica MO, Varghese CS, Harris JM, Ferguson J, Magri A, Arnold R, Várnai C, Parish JL, McKeating JA. CTCF regulates hepatitis B virus cccDNA chromatin topology. J Gen Virol 2024; 105. [PMID: 38175123 DOI: 10.1099/jgv.0.001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Hepatitis B Virus (HBV) is a small DNA virus that replicates via an episomal covalently closed circular DNA (cccDNA) that serves as the transcriptional template for viral mRNAs. The host protein, CCCTC-binding factor (CTCF), is a key regulator of cellular transcription by maintaining epigenetic boundaries, nucleosome phasing, stabilisation of long-range chromatin loops and directing alternative exon splicing. We previously reported that CTCF binds two conserved motifs within Enhancer I of the HBV genome and represses viral transcription, however, the underlying mechanisms were not identified. We show that CTCF depletion in cells harbouring cccDNA-like HBV molecules and in de novo infected cells resulted in an increase in spliced transcripts, which was most notable in the abundant SP1 spliced transcript. In contrast, depletion of CTCF in cell lines with integrated HBV DNA had no effect on the abundance of viral transcripts and in line with this observation there was limited evidence for CTCF binding to viral integrants, suggesting that CTCF-regulation of HBV transcription is specific to episomal cccDNA. Analysis of HBV chromatin topology by Assay for Transposase Accessible Chromatin Sequencing (ATAC-Seq) revealed an accessible region spanning Enhancers I and II and the basal core promoter (BCP). Mutating the CTCF binding sites within Enhancer I resulted in a dramatic rearrangement of chromatin accessibility where the open chromatin region was no longer detected, indicating loss of the phased nucleosome up- and down-stream of the HBV enhancer/BCP. These data demonstrate that CTCF functions to regulate HBV chromatin conformation and nucleosomal positioning in episomal maintained cccDNA, which has important consequences for HBV transcription regulation.
Collapse
Affiliation(s)
- Mihaela Olivia Dobrica
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Present address: Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Christy Susan Varghese
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Jack Ferguson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Present address: Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roland Arnold
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Csilla Várnai
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joanna L Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Oxford, UK
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Mahmood F, Xu R, Awan MUN, Song Y, Han Q, Xia X, Wei J, Xu J, Peng J, Zhang J. HBV Vaccines: Advances and Development. Vaccines (Basel) 2023; 11:1862. [PMID: 38140265 PMCID: PMC10747071 DOI: 10.3390/vaccines11121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health problem that is closely related to liver cirrhosis and hepatocellular carcinoma (HCC). The prevalence of acute and chronic HBV infection, liver cirrhosis, and HCC has significantly decreased as a result of the introduction of universal HBV vaccination programs. The first hepatitis B vaccine approved was developed by purifying the hepatitis B surface antigen (HBsAg) from the plasma of asymptomatic HBsAg carriers. Subsequently, recombinant DNA technology led to the development of the recombinant hepatitis B vaccine. Although there are already several licensed vaccines available for HBV infection, continuous research is essential to develop even more effective vaccines. Prophylactic hepatitis B vaccination has been important in the prevention of hepatitis B because it has effectively produced protective immunity against hepatitis B viral infection. Prophylactic vaccines only need to provoke neutralizing antibodies directed against the HBV envelop proteins, whereas therapeutic vaccines are most likely needed to induce a comprehensive T cell response and thus, should include other HBV antigens, such as HBV core and polymerase. The existing vaccines have proven to be highly effective in preventing HBV infection, but ongoing research aims to improve their efficacy, duration of protection, and accessibility. The routine administration of the HBV vaccine is safe and well-tolerated worldwide. The purpose of this type of immunization is to trigger an immunological response in the host, which will halt HBV replication. The clinical efficacy and safety of the HBV vaccine are affected by a number of immunological and clinical factors. However, this success is now in jeopardy due to the breakthrough infections caused by HBV variants with mutations in the S gene, high viral loads, and virus-induced immunosuppression. In this review, we describe various types of available HBV vaccines, along with the recent progress in the ongoing battle to develop new vaccines against HBV.
Collapse
Affiliation(s)
- Faisal Mahmood
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.M.); (R.X.); (Y.S.); (Q.H.); (X.X.)
- Central Laboratory, Liver Disease Research Center and Department of Infectious Disease, The Affiliated Hospital of Yunnan University, Kunming 650021, China;
| | - Ruixian Xu
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.M.); (R.X.); (Y.S.); (Q.H.); (X.X.)
| | - Maher Un Nisa Awan
- Department of Neurology, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Kunming 650021, China; (M.U.N.A.); (J.X.)
| | - Yuzhu Song
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.M.); (R.X.); (Y.S.); (Q.H.); (X.X.)
| | - Qinqin Han
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.M.); (R.X.); (Y.S.); (Q.H.); (X.X.)
| | - Xueshan Xia
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.M.); (R.X.); (Y.S.); (Q.H.); (X.X.)
| | - Jia Wei
- Central Laboratory, Liver Disease Research Center and Department of Infectious Disease, The Affiliated Hospital of Yunnan University, Kunming 650021, China;
| | - Jun Xu
- Department of Neurology, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Kunming 650021, China; (M.U.N.A.); (J.X.)
| | - Juan Peng
- The Obstetrical Department, The First People’s Hospital of Yunnan Province, Kunming 650032, China;
| | - Jinyang Zhang
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.M.); (R.X.); (Y.S.); (Q.H.); (X.X.)
| |
Collapse
|
19
|
Festag J, Festag MM, Asen T, Wettengel JM, Mück-Häusl MA, Abdulhaqq S, Stahl-Hennig C, Sacha JB, Burwitz BJ, Protzer U, Wisskirchen K. Vector-Mediated Delivery of Human Major Histocompatibility Complex-I into Hepatocytes Enables Investigation of T Cell Receptor-Redirected Hepatitis B Virus-Specific T Cells in Mice, and in Macaque Cell Cultures. Hum Gene Ther 2023; 34:1204-1218. [PMID: 37747811 PMCID: PMC10825313 DOI: 10.1089/hum.2023.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
Adoptive T cell therapy using natural T cell receptor (TCR) redirection is a promising approach to fight solid cancers and viral infections in liver and other organs. However, clinical efficacy of such TCR+-T cells has been limited so far. One reason is that syngeneic preclinical models to evaluate safety and efficacy of TCR+-T cells are missing. We, therefore, developed an efficient viral vector strategy mediating expression of human major histocompatibility complex (MHC)-I in hepatocytes, which allows evaluation of TCR-T cell therapies targeting diseased liver cells. We designed adeno-associated virus (AAV) and adenoviral vectors encoding either the human-mouse chimeric HLA-A*02-like molecule, or fully human HLA-A*02 and human β2 microglobulin (hβ2m). Upon transduction of murine hepatocytes, the HLA-A*02 construct proved superior in terms of expression levels, presentation of endogenously processed peptides and activation of murine TCR+-T cells grafted with HLA-A*02-restricted, hepatitis B virus (HBV)-specific TCRs. In vivo, these T cells elicited effector function, controlled HBV replication, and reduced HBV viral load and antigen expression in livers of those mice that had received AAV-HBV and AAV-HLA-A*02. We then demonstrated the broad utility of this approach by grafting macaque T cells with the HBV-specific TCRs and enabling them to recognize HBV-infected primary macaque hepatocytes expressing HLA-A*02 upon adenoviral transduction. In conclusion, AAV and adenovirus vectors are suitable for delivery of HLA-A*02 and hβ2m into mouse and macaque hepatocytes. When recognizing their cognate antigen in HLA-A*02-transduced mouse livers or on isolated macaque hepatocytes, HLA-A*02-restricted, HBV-specific TCR+-T cells become activated and exert antiviral effector functions. This approach is applicable to any MHC restriction and target disease, paving the way for safety and efficacy studies of human TCR-based therapies in physiologically relevant preclinical animal models.
Collapse
Affiliation(s)
- Julia Festag
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Marvin M. Festag
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Theresa Asen
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Jochen M. Wettengel
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Shaheed Abdulhaqq
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | | | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
- Oregon National Primate Research Center (ONPRC), Oregon Health and Science University, Beaverton, Oregon, USA
| | - Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
- Oregon National Primate Research Center (ONPRC), Oregon Health and Science University, Beaverton, Oregon, USA
| | - Ulrike Protzer
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Karin Wisskirchen
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| |
Collapse
|
20
|
Abstract
The use of cancer vaccines is considered a promising therapeutic strategy in clinical oncology, which is achieved by stimulating antitumor immunity with tumor antigens delivered in the form of cells, peptides, viruses, and nucleic acids. The ideal cancer vaccine has many advantages, including low toxicity, specificity, and induction of persistent immune memory to overcome tumor heterogeneity and reverse the immunosuppressive microenvironment. Many therapeutic vaccines have entered clinical trials for a variety of cancers, including melanoma, breast cancer, lung cancer, and others. However, many challenges, including single antigen targeting, weak immunogenicity, off-target effects, and impaired immune response, have hindered their broad clinical translation. In this review, we introduce the principle of action, components (including antigens and adjuvants), and classification (according to applicable objects and preparation methods) of cancer vaccines, summarize the delivery methods of cancer vaccines, and review the clinical and theoretical research progress of cancer vaccines. We also present new insights into cancer vaccine technologies, platforms, and applications as well as an understanding of potential next-generation preventive and therapeutic vaccine technologies, providing a broader perspective for future vaccine design.
Collapse
Affiliation(s)
- Nian Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Xiangyu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Ziqiang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
21
|
Bertoletti A, Le Bert N, Tan AT, Boni C, Fisicaro P, Ferrari C, Chang KM, Gehring AJ, Lauer G, Maini M, Thimme R, Neumann-Haefelin C. Comment on 'End-of-treatment HBcrAg and HBsAb levels identify durable functional cure after Peg-IFN-based therapy in patients with CHB'. J Hepatol 2023; 79:e202-e204. [PMID: 37307998 DOI: 10.1016/j.jhep.2023.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/14/2023]
Affiliation(s)
| | | | | | | | | | | | - Kyong-Mi Chang
- University of Pennsylvania Perelman School of Medicine, USA
| | | | - Georg Lauer
- Massachusetts General Hospital, Harvard Medical School, USA
| | | | | | | |
Collapse
|
22
|
Fu YL, Zhou SN, Hu W, Li J, Zhou MJ, Li XY, Wang YY, Zhang P, Chen SY, Fan X, Song JW, Jiao YM, Xu R, Zhang JY, Zhen C, Zhou CB, Yuan JH, Shi M, Wang FS, Zhang C. Metabolic interventions improve HBV envelope-specific T-cell responses in patients with chronic hepatitis B. Hepatol Int 2023; 17:1125-1138. [PMID: 36976426 PMCID: PMC10522531 DOI: 10.1007/s12072-023-10490-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/16/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Restoration of HBV-specific T cell immunity is a promising approach for the functional cure of chronic Hepatitis B (CHB), necessitating the development of valid assays to boost and monitor HBV-specific T cell responses in patients with CHB. METHODS We analyzed hepatitis B virus (HBV) core- and envelope (env)-specific T cell responses using in vitro expanded peripheral blood mononuclear cells (PBMCs) from patients with CHB exhibiting different immunological phases, including immune tolerance (IT), immune activation (IA), inactive carrier (IC), and HBeAg-negative hepatitis (ENEG). Additionally, we evaluated the effects of metabolic interventions, including mitochondria-targeted antioxidants (MTA), polyphenolic compounds, and ACAT inhibitors (iACAT), on HBV-specific T-cell functionality. RESULTS We found that HBV core- and env-specific T cell responses were finely coordinated and more profound in IC and ENEG than in the IT and IA stages. HBV env-specific T cells were more dysfunctional but prone to respond to metabolic interventions using MTA, iACAT, and polyphenolic compounds than HBV core-specific T-cells. The responsiveness of HBV env-specific T cells to metabolic interventions can be predicted by the eosinophil (EO) count and the coefficient of variation of red blood cell distribution width (RDW-CV). CONCLUSION These findings may provide valuable information for metabolically invigorating HBV-specific T-cells to treat CHB.
Collapse
Affiliation(s)
- Yu-Long Fu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuang-Nan Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Hu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming-Ju Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Yu Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - You-Yuan Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Si-Yuan Chen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruonan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Cheng Zhen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Hong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Shi
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
23
|
Zhang JM, Kang NL, Wu LY, Zeng DW. Hepatitis B Virus Envelope Antigen and Hepatitis B Virus Surface Antigen Both Contribute to the Innate Immune Response During Persistent Hepatitis B Virus Infection. Viral Immunol 2023; 36:484-493. [PMID: 37610852 DOI: 10.1089/vim.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
This study aimed to investigate the changes of toll-like receptor 4 (TLR4), proinflammatory cytokine expression, hepatitis B virus surface antigen (HBsAg), and hepatitis B virus envelope antigen (HBeAg) expression as well as innate immune cell percentages in a mouse model of persistent hepatitis B virus (HBV) infection to better understand the innate immune response. Mouse models of persistent HBV infection, HBsAg expression, and HBeAg expression were developed using high-pressure tail-vein injection of recombinant adeno-associated viruses. Enzyme-linked immunosorbent assays (ELISAs) were used to determine the serum proinflammatory cytokine levels. Immunohistochemistry and western blot assays were used to detect TLR4 expression. Flow cytometric analysis was used to assess the percentage of innate immune cells in the whole blood. Persistent HBV infection, HBsAg expression, and HBeAg expression each significantly decreased the expression of TLR4. Persistent HBV infection significantly increased the percentages of T cells and monocytes, whereas it decreased the percentage of natural killer (NK) cells. Persistent HBeAg expression also decreased the percentage of NK cells, whereas persistent HBsAg expression increased the percentage of NK cells. Both persistent HBsAg and HBeAg expression increased the percentage of monocytes. However, both persistent HBsAg and HBeAg expression decreased the percentage of T cells. HBV as well as HBsAg and HBeAg showed similar effects on the expression of TLR4 and proinflammatory cytokines as well as the percentage of monocytes. Persistent HBV infection increased the percentage of T cells and decreased the percentage of NK cells, whereas only persistent HBeAg expression contributed to a decreased percentage of NK cells.
Collapse
Affiliation(s)
- Jie-Min Zhang
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Na-Ling Kang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lu-Ying Wu
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Da-Wu Zeng
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
24
|
Bybee G, Moeun Y, Wang W, Kharbanda KK, Poluektova LY, Kidambi S, Osna NA, Ganesan M. Increased liver stiffness promotes hepatitis B progression by impairing innate immunity in CCl4-induced fibrotic HBV + transgenic mice. Front Immunol 2023; 14:1166171. [PMID: 37600826 PMCID: PMC10435739 DOI: 10.3389/fimmu.2023.1166171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background Hepatitis B virus (HBV) infection develops as an acute or chronic liver disease, which progresses from steatosis, hepatitis, and fibrosis to end-stage liver diseases such as cirrhosis and hepatocellular carcinoma (HCC). An increased stromal stiffness accompanies fibrosis in chronic liver diseases and is considered a strong predictor for disease progression. The goal of this study was to establish the mechanisms by which enhanced liver stiffness regulates HBV infectivity in the fibrotic liver tissue. Methods For in vitro studies, HBV-transfected HepG2.2.15 cells were cultured on polydimethylsiloxane gels coated by polyelectrolyte multilayer films of 2 kPa (soft) or 24 kPa (stiff) rigidity mimicking the stiffness of the healthy or fibrotic liver. For in vivo studies, hepatic fibrosis was induced in C57Bl/6 parental and HBV+ transgenic (HBVTg) mice by injecting CCl4 twice a week for 6 weeks. Results We found higher levels of HBV markers in stiff gel-attached hepatocytes accompanied by up-regulated OPN content in cell supernatants as well as suppression of anti-viral interferon-stimulated genes (ISGs). This indicates that pre-requisite "fibrotic" stiffness increases osteopontin (OPN) content and releases and suppresses anti-viral innate immunity, causing a subsequent rise in HBV markers expression in hepatocytes. In vitro results were corroborated by data from HBVTg mice administered CCl4 (HBVTg CCl4). These mice showed higher HBV RNA, DNA, HBV core antigen (HBcAg), and HBV surface antigen (HBsAg) levels after liver fibrosis induction as judged by a rise in Col1a1, SMA, MMPs, and TIMPs mRNAs and by increased liver stiffness. Importantly, CCl4-induced the pro-fibrotic activation of liver cells, and liver stiffness was higher in HBVTg mice compared with control mice. Elevation of HBV markers and OPN levels corresponded to decreased ISG activation in HBVTg CCl4 mice vs HBVTg control mice. Conclusion Based on our data, we conclude that liver stiffness enhances OPN levels to limit anti-viral ISG activation in hepatocytes and promote an increase in HBV infectivity, thereby contributing to end-stage liver disease progression.
Collapse
Affiliation(s)
- Grace Bybee
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Youra Moeun
- Department of Chemical and Biomolecular Engineering, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Weimin Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
25
|
Sandmann L, Wedemeyer H. Interferon-based treatment of chronic hepatitis D. Liver Int 2023; 43 Suppl 1:69-79. [PMID: 36002390 DOI: 10.1111/liv.15410] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 12/23/2022]
Abstract
Treatment of hepatitis D virus (HDV) infection has been based on the administration of interferon-alfa for more than three decades. First studies to treat HDV-infected patients with type 1 interferons were already performed in the 1980s. Several smaller trials and case series were reported thereafter. During the mid 2000s the use of pegylated interferons for hepatitis D was established. Since then, additional trials were performed in different countries exploring strategies to personalize treatment including extended treatment durations. The overall findings were that about one-quarter to one-third of patients benefit from interferon treatment with persistent suppression of HDV replication. However, only few patients achieve also functional cure of hepatitis B with HBsAg loss. Importantly, several studies indicate that successful interferon treatment is associated with improved clinical long-term outcomes. Still, only a proportion of patients with hepatitis D can be treated with interferons. Even though alternative treatments are currently developed, it is likely that pegylated interferon-alfa will still have an important role in the management of hepatitis D - either alone or in combination. Therefore, better biomarkers are needed to select patients with a high likelihood to benefit from interferon-based treatments. In this review we are discussing basic principles of mode of action of interferon alpha against HDV, summarize previous data on interferon treatment of hepatitis D and give an outlook on potential combinations with novel drugs currently in development.
Collapse
Affiliation(s)
- Lisa Sandmann
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Excellence Cluster Resist, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
- Clinician Scientist Program PRACTIS, Supported by the German Research Foundation DFG, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Excellence Cluster Resist, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
- Collaborative Research Center (SFB) 900, Hannover, Germany
| |
Collapse
|
26
|
Feld JJ, Lok AS, Zoulim F. New Perspectives on Development of Curative Strategies for Chronic Hepatitis B. Clin Gastroenterol Hepatol 2023; 21:2040-2050. [PMID: 37080262 DOI: 10.1016/j.cgh.2023.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 02/28/2023] [Indexed: 04/22/2023]
Abstract
A functional cure of chronic hepatitis B defined as sustained hepatitis B surface antigen loss after finite course of therapy is rarely achieved with current therapy but is the goal of novel treatments. Understanding the virological and immunological mechanisms of hepatitis B virus persistence has enabled the identification of novel treatment targets, drug discovery, and the evaluation of novel agents in clinical trials. Lessons were learned from early phase 1 and phase 2 trials regarding the antiviral activity and safety profile of these agents. There is a strong rationale to combine agents to reduce viral replication, reduce viral antigen load, invigorate immune responses, and induce specific adaptive immune responses. Nucleos(t)ide analogs will likely remain an essential backbone of future combinations to control viral replication and prevent resistance to antiviral drugs. In this review, we discuss perspectives on approaches to achieving functional cure, with a review of virological and immunological strategies, highlighting challenges and unresolved questions with the various attempts to achieve cure, as well as exploring alternative endpoints such as partial cure and new noninvasive viral and immunological biomarkers to stratify patients and predict/monitor antiviral response.
Collapse
Affiliation(s)
- Jordan J Feld
- Toronto Centre for Liver Disease, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan
| | - Fabien Zoulim
- INSERM Unit 1052 - Cancer Research Center of Lyon, Lyon Hepatology Institute, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
27
|
Salama II, Sami SM, Salama SI, Abdel-Latif GA, Shaaban FA, Fouad WA, Abdelmohsen AM, Raslan HM. Current and novel modalities for management of chronic hepatitis B infection. World J Hepatol 2023; 15:585-608. [PMID: 37305370 PMCID: PMC10251278 DOI: 10.4254/wjh.v15.i5.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Over 296 million people are estimated to have chronic hepatitis B viral infection (CHB), and it poses unique challenges for elimination. CHB is the result of hepatitis B virus (HBV)-specific immune tolerance and the presence of covalently closed circular DNA as mini chromosome inside the nucleus and the integrated HBV. Serum hepatitis B core-related antigen is the best surrogate marker for intrahepatic covalently closed circular DNA. Functional HBV “cure” is the durable loss of hepatitis B surface antigen (HBsAg), with or without HBsAg seroconversion and undetectable serum HBV DNA after completing a course of treatment. The currently approved therapies are nucleos(t)ide analogues, interferon-alpha, and pegylated-interferon. With these therapies, functional cure can be achieved in < 10% of CHB patients. Any variation to HBV or the host immune system that disrupts the interaction between them can lead to reactivation of HBV. Novel therapies may allow efficient control of CHB. They include direct acting antivirals and immunomodulators. Reduction of the viral antigen load is a crucial factor for success of immune-based therapies. Immunomodulatory therapy may lead to modulation of the host immune system. It may enhance/restore innate immunity against HBV (as toll-like-receptors and cytosolic retinoic acid inducible gene I agonist). Others may induce adaptive immunity as checkpoint inhibitors, therapeutic HBV vaccines including protein (HBsAg/preS and hepatitis B core antigen), monoclonal or bispecific antibodies and genetically engineered T cells to generate chimeric antigen receptor-T or T-cell receptor-T cells and HBV-specific T cells to restore T cell function to efficiently clear HBV. Combined therapy may successfully overcome immune tolerance and lead to HBV control and cure. Immunotherapeutic approaches carry the risk of overshooting immune responses causing uncontrolled liver damage. The safety of any new curative therapies should be measured in relation to the excellent safety of currently approved nucleos(t)ide analogues. Development of novel antiviral and immune modulatory therapies should be associated with new diagnostic assays used to evaluate the effectiveness or to predict response.
Collapse
Affiliation(s)
- Iman Ibrahim Salama
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Samia M Sami
- Department of Child Health, National Research Centre, Giza 12411, Dokki, Egypt
| | - Somaia I Salama
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Ghada A Abdel-Latif
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Fatma A Shaaban
- Department of Child Health, National Research Centre, Giza 12411, Dokki, Egypt
| | - Walaa A Fouad
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Aida M Abdelmohsen
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Hala M Raslan
- Department of Internal Medicine, National Research Centre, Giza 12411, Dokki, Egypt
| |
Collapse
|
28
|
Su J, Brunner L, Ates Oz E, Sacherl J, Frank G, Kerth HA, Thiele F, Wiegand M, Mogler C, Aguilar JC, Knolle PA, Collin N, Kosinska AD, Protzer U. Activation of CD4 T cells during prime immunization determines the success of a therapeutic hepatitis B vaccine in HBV-carrier mouse models. J Hepatol 2023; 78:717-730. [PMID: 36634821 DOI: 10.1016/j.jhep.2022.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS We recently developed a heterologous therapeutic vaccination scheme (TherVacB) comprising a particulate protein prime followed by a modified vaccinia-virus Ankara (MVA)-vector boost for the treatment of HBV. However, the key determinants required to overcome HBV-specific immune tolerance remain unclear. Herein, we aimed to study new combination adjuvants and unravel factors that are essential for the antiviral efficacy of TherVacB. METHODS Recombinant hepatitis B surface and core antigen (HBsAg and HBcAg) particles were formulated with different liposome- or oil-in-water emulsion-based combination adjuvants containing saponin QS21 and monophosphoryl lipid A; these formulations were compared to STING-agonist c-di-AMP and conventional aluminium hydroxide formulations. Immunogenicity and the antiviral effects of protein antigen formulations and the MVA-vector boost within TherVacB were evaluated in adeno-associated virus-HBV-infected and HBV-transgenic mice. RESULTS Combination adjuvant formulations preserved HBsAg and HBcAg integrity for ≥12 weeks, promoted human and mouse dendritic cell activation and, within TherVacB, elicited robust HBV-specific antibody and T-cell responses in wild-type and HBV-carrier mice. Combination adjuvants that prime a balanced HBV-specific type 1 and 2 T helper response induced high-titer anti-HBs antibodies, cytotoxic T-cell responses and long-term control of HBV. In the absence of an MVA-vector boost or following selective CD8 T-cell depletion, HBsAg still declined (mediated mainly by anti-HBs antibodies) but HBV replication was not controlled. Selective CD4 T-cell depletion during the priming phase of TherVacB resulted in a complete loss of vaccine-induced immune responses and its therapeutic antiviral effect in mice. CONCLUSIONS Our results identify CD4 T-cell activation during the priming phase of TherVacB as a key determinant of HBV-specific antibody and CD8 T-cell responses. IMPACT AND IMPLICATIONS Therapeutic vaccination is a potentially curative treatment option for chronic hepatitis B. However, it remains unclear which factors are essential for breaking immune tolerance in HBV carriers and determining successful outcomes. Our study provides the first direct evidence that efficient priming of HBV-specific CD4 T cells determines the success of therapeutic hepatitis B vaccination in two preclinical HBV-carrier mouse models. Applying an optimal formulation of HBV antigens that activates CD4 and CD8 T cells during prime immunization provided the foundation for an antiviral effect of therapeutic vaccination, while depletion of CD4 T cells led to a complete loss of vaccine-induced antiviral efficacy. Boosting CD8 T cells was important to finally control HBV in these mouse models. Our findings provide important insights into the rational design of therapeutic vaccines for the cure of chronic hepatitis B.
Collapse
Affiliation(s)
- Jinpeng Su
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Center Munich, Munich, Germany
| | - Livia Brunner
- Vaccine Formulation Institute, Plan-Les-Ouates, Switzerland
| | - Edanur Ates Oz
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Center Munich, Munich, Germany
| | - Julia Sacherl
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Center Munich, Munich, Germany
| | | | - Helene Anne Kerth
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Center Munich, Munich, Germany; Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Frank Thiele
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Center Munich, Munich, Germany
| | - Marian Wiegand
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Center Munich, Munich, Germany
| | - Carolin Mogler
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Julio Cesar Aguilar
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Percy A Knolle
- Center for Genetic Engineering and Biotechnology, Havana, Cuba; German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Nicolas Collin
- Vaccine Formulation Institute, Plan-Les-Ouates, Switzerland
| | - Anna D Kosinska
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Center Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Center Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| |
Collapse
|
29
|
Lopez-Scarim J, Nambiar SM, Billerbeck E. Studying T Cell Responses to Hepatotropic Viruses in the Liver Microenvironment. Vaccines (Basel) 2023; 11:681. [PMID: 36992265 PMCID: PMC10056334 DOI: 10.3390/vaccines11030681] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
T cells play an important role in the clearance of hepatotropic viruses but may also cause liver injury and contribute to disease progression in chronic hepatitis B and C virus infections which affect millions of people worldwide. The liver provides a unique microenvironment of immunological tolerance and hepatic immune regulation can modulate the functional properties of T cell subsets and influence the outcome of a virus infection. Extensive research over the last years has advanced our understanding of hepatic conventional CD4+ and CD8+ T cells and unconventional T cell subsets and their functions in the liver environment during acute and chronic viral infections. The recent development of new small animal models and technological advances should further increase our knowledge of hepatic immunological mechanisms. Here we provide an overview of the existing models to study hepatic T cells and review the current knowledge about the distinct roles of heterogeneous T cell populations during acute and chronic viral hepatitis.
Collapse
Affiliation(s)
| | | | - Eva Billerbeck
- Division of Hepatology, Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
30
|
Wang Q, Qian H, Liu X, Jiang J, Hao Q. Plasma cytokine profile in occult HBV-infected blood donors. Future Virol 2023. [DOI: 10.2217/fvl-2022-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Aim: Cytokine profile in occult HBV infection (OBI) was systematically investigated to identify the immunopathogenesis of OBI. Materials & methods: A total of 46 OBI, ten asymptomatic hepatitis B surface antigen carriers, ten chronic hepatitis B and 12 healthy blood donors were recruited. A total of 21 plasma cytokines were detected. Results: Compared with healthy blood donors, elevated plasma Th1, Th2, Th17 and immune regulatory associated cytokines were observed in OBI. Almost no significant difference was found for these cytokines among OBI, asymptomatic hepatitis B surface antigen carriers and chronic hepatitis B. OBI displayed the predominance of type 2 and regulatory immunity. Conclusion: OBI displayed the general cytokine profile of chronic HBV infection, which might contribute to virus persistence and the presence of the liver microinflammatory environment. The clinical implications of OBI deserve more attention.
Collapse
Affiliation(s)
- Qinghui Wang
- Department of Clinical Laboratory, Wuxi Blood Center, Wuxi, 214000, China
| | - Huizhong Qian
- Department of Clinical Laboratory, Wuxi Blood Center, Wuxi, 214000, China
| | - Xiao Liu
- Department of Clinical Laboratory, Wuxi Blood Center, Wuxi, 214000, China
| | - Jian Jiang
- Department of Clinical Laboratory, Wuxi Blood Center, Wuxi, 214000, China
| | - Qingqin Hao
- Department of Clinical Laboratory, Wuxi Blood Center, Wuxi, 214000, China
| |
Collapse
|
31
|
Durantel D. Therapies against chronic hepatitis B infections: The times they are a-changin', but the changing is slow! Antiviral Res 2023; 210:105515. [PMID: 36603773 DOI: 10.1016/j.antiviral.2022.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
PREAMBULAR NOTA BENE As a tribute to Dr Mike Bray, the following review of literature willbe mainly based on published data andconcepts, but will also contain my personal views, and in this respect could be more considered as a bioassay. Even though a cost-effective and excellent prophylactic vaccine exists since many years to protect against hepatitis B virus (HBV) infection, academic-researcher/drug-developers/stakeholders are still busy with the R&D of novel therapies that could eventually have an impact on its worldwide incidence. The Taiwanese experience have univocally demonstrated the effectiveness of constrained national HBV prophylactic vaccination programs to prevent the most dramatic HBV-induced end-stage liver disease, which is hepatocellular carcinoma; but yet the number of individuals chronically infected with the virus, for whom the existing prophylactic vaccine is no longer useful, remains high, with around 300 million individuals around the globe. In this review/bioassay, recent findings and novel concepts on prospective therapies against HBV infections will be discussed; yet it does not have the pretention to be exhaustive, as "pure immunotherapeutic concepts" will be mainly let aside (or referred to other reviews) due to a lack of expertise of this writer, but also due to the lack of, or incremental, positive results in clinical trials as-off today with these approaches.
Collapse
Affiliation(s)
- David Durantel
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, UMR_5308 CNRS-Université de Lyon (UCBL1), ENS de Lyon, Lyon, 69007, France.
| |
Collapse
|
32
|
Affiliation(s)
- Geoffrey Dusheiko
- From University College London (G.D.), Kings College Hospital London (G.D., K.A.), Kings College London (K.A.), and the Institute of Immunity and Transplantation, University College London (M.K.M.) - all in London
| | - Kosh Agarwal
- From University College London (G.D.), Kings College Hospital London (G.D., K.A.), Kings College London (K.A.), and the Institute of Immunity and Transplantation, University College London (M.K.M.) - all in London
| | - Mala K Maini
- From University College London (G.D.), Kings College Hospital London (G.D., K.A.), Kings College London (K.A.), and the Institute of Immunity and Transplantation, University College London (M.K.M.) - all in London
| |
Collapse
|
33
|
Nkongolo S, Mahamed D, Kuipery A, Sanchez Vasquez JD, Kim SC, Mehrotra A, Patel A, Hu C, McGilvray I, Feld JJ, Fung S, Chen D, Wallin JJ, Gaggar A, Janssen HL, Gehring AJ. Longitudinal liver sampling in patients with chronic hepatitis B starting antiviral therapy reveals hepatotoxic CD8+ T cells. J Clin Invest 2023; 133:158903. [PMID: 36594467 PMCID: PMC9797343 DOI: 10.1172/jci158903] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
Accumulation of activated immune cells results in nonspecific hepatocyte killing in chronic hepatitis B (CHB), leading to fibrosis and cirrhosis. This study aims to understand the underlying mechanisms in humans and to define whether these are driven by widespread activation or a subpopulation of immune cells. We enrolled CHB patients with active liver damage to receive antiviral therapy and performed longitudinal liver sampling using fine-needle aspiration to investigate mechanisms of CHB pathogenesis in the human liver. Single-cell sequencing of total liver cells revealed a distinct liver-resident, polyclonal CD8+ T cell population that was enriched at baseline and displayed a highly activated immune signature during liver damage. Cytokine combinations, identified by in silico prediction of ligand-receptor interaction, induced the activated phenotype in healthy liver CD8+ T cells, resulting in nonspecific Fas ligand-mediated killing of target cells. These results define a CD8+ T cell population in the human liver that can drive pathogenesis and a key pathway involved in their function in CHB patients.
Collapse
Affiliation(s)
- Shirin Nkongolo
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Deeqa Mahamed
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adrian Kuipery
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Juan D. Sanchez Vasquez
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Aman Mehrotra
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anjali Patel
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Christine Hu
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ian McGilvray
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jordan J. Feld
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Scott Fung
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Diana Chen
- Gilead Sciences, Foster City, California, USA
| | | | - Anuj Gaggar
- Gilead Sciences, Foster City, California, USA
| | - Harry L.A. Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adam J. Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Yu X, Zheng Y, Zeng D, Zhou Y, Sun J, Su M, Zhang H, Zheng M, Huang Z, Lin W, Mao R, Zhang J, Zheng C, Su Z. Decreased frequency of a novel T-lymphocyte subset, CD3 + CD4 - CD7 + CD57 - T cells, in hepatitis B virus-related end-stage liver disease might contribute to disease progression. J Med Virol 2023; 95:e28129. [PMID: 36068190 DOI: 10.1002/jmv.28129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Abstract
CD7 and CD57 are related to the differentiation and functional stages of CD8+ T cells. However, the role of their combined presence in CD8+ T cells in patients with chronic hepatitis B virus (HBV) infection, especially those with end-stage liver disease, remains unclear. Blood samples from healthy volunteers and patients with chronic hepatitis B were analyzed via Luminex assay and ELISA to measure plasma cytokine levels. Further, recombinant IL-22 was used to stimulate peripheral blood mononuclear cells from healthy volunteers, and the frequency of CD3+ CD4- CD7+ CD57- T cells and apoptosis rates were investigated via flow cytometry. Patients with end-stage liver disease, particularly those with acute to chronic liver failure, showed decreased CD3+ CD4- CD7+ CD57- T cell frequency. Furthermore, the prevalence of CD3+ CD4- CD7+ CD57- T cells was negatively correlated with disease severity, prognosis, and complications (ascites). We also observed that IL-22 promoted apoptosis and brought about a decrease in the number of CD3+ CD4- CD7+ CD57- T cells in a dose-dependent manner. CD3+ CD4- CD7+ CD57- T cells displayed a B and T lymphocyte attenuator (BTLA)high CD25high CD127high immunosuppressive phenotype and showed low interferon-γ, tumor necrosis factor-α, granzyme A, and perforin expression levels. The present findings will elucidate the pathogenesis of HBV-related end-stage liver disease and aid the identification of novel drug targets.
Collapse
Affiliation(s)
- Xueping Yu
- Department of Infectious Diseases, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, China.,Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yijuan Zheng
- Department of Infectious Diseases, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, China
| | - Dawu Zeng
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Department of Liver Center, The First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Yongjun Zhou
- Institute of Bioengineering and Biotechnology, College of Life Sciences and Chemistry, Minnan Science and Technology University, Quanzhou, China
| | - Jian Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Department of Infectious Diseases, The First Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Milong Su
- Department of Infectious Diseases, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, China
| | - Huatang Zhang
- Department of Infectious Diseases, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, China
| | - Minhui Zheng
- Department of Infectious Diseases, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, China
| | - Zhipeng Huang
- Department of Infectious Diseases, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, China
| | - Wenwu Lin
- Department of Infectious Diseases, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China.,Department of Infectious Diseases, Jing' An Branch of Huashan Hospital, Fudan University, Shanghai, China
| | - Chunfu Zheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Zhijun Su
- Department of Infectious Diseases, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, China
| |
Collapse
|
35
|
Zhang C, Li J, Cheng Y, Meng F, Song JW, Fan X, Fan H, Li J, Fu YL, Zhou MJ, Hu W, Wang SY, Fu YJ, Zhang JY, Xu RN, Shi M, Hu X, Zhang Z, Ren X, Wang FS. Single-cell RNA sequencing reveals intrahepatic and peripheral immune characteristics related to disease phases in HBV-infected patients. Gut 2023; 72:153-167. [PMID: 35361683 PMCID: PMC9763233 DOI: 10.1136/gutjnl-2021-325915] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/16/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE A comprehensive immune landscape for HBV infection is pivotal to achieve HBV cure. DESIGN We performed single-cell RNA sequencing of 2 43 000 cells from 46 paired liver and blood samples of 23 individuals, including six immune tolerant, 5 immune active (IA), 3 acute recovery (AR), 3 chronic resolved and 6 HBV-free healthy controls (HCs). Flow cytometry and histological assays were applied in a second HBV cohort for validation. RESULTS Both IA and AR were characterised by high levels of intrahepatic exhausted CD8+ T (Tex) cells. In IA, Tex cells were mainly derived from liver-resident GZMK+ effector memory T cells and self-expansion. By contrast, peripheral CX3CR1+ effector T cells and GZMK+ effector memory T cells were the main source of Tex cells in AR. In IA but not AR, significant cell-cell interactions were observed between Tex cells and regulatory CD4+ T cells, as well as between Tex and FCGR3A+ macrophages. Such interactions were potentially mediated through human leukocyte antigen class I molecules together with their receptors CANX and LILRBs, respectively, contributing to the dysfunction of antiviral immune responses. By contrast, CX3CR1+GNLY+ central memory CD8+ T cells were concurrently expanded in both liver and blood of AR, providing a potential surrogate marker for viral resolution. In clinic, intrahepatic Tex cells were positively correlated with serum alanine aminotransferase levels and histological grading scores. CONCLUSION Our study dissects the coordinated immune responses for different HBV infection phases and provides a rich resource for fully understanding immunopathogenesis and developing effective therapeutic strategies.
Collapse
Affiliation(s)
- Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiesheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China,Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yongqian Cheng
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fanping Meng
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongtao Fan
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Jing Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yu-Long Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming-Ju Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Hu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Si-Yu Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuan-Jie Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruo-Nan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Shi
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xueda Hu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China .,Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xianwen Ren
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China .,Changping Laboratory, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
He T, Ling N, Zhang G, Xiang D, Hu P, Peng M, Cai D, Zhang D, Chen M, Ren H. Decreased antibody response to influenza vaccine with an enhanced antibody response to subsequent SARS-CoV-2 vaccination in patients with chronic hepatitis B virus infection. Immun Inflamm Dis 2023; 11:e759. [PMID: 36705404 PMCID: PMC9803931 DOI: 10.1002/iid3.759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Influenza or SARS-CoV-2 vaccination is especially recommended for people with underlying diseases. For the large number of patients with chronic hepatitis B virus infection (CHB), studies on their immune responses to these vaccines are still lacking. METHODS A total of 57 CHB patients and 19 healthy controls (HCs) receiving inactivated influenza vaccination were prospectively followed up. Influenza-specific immunoglobulin G (IgG) antibodies (anti-H1N1, anti-H3N2, and anti-B IgG), antibody-secreting cells (ASCs), and circulating T follicular helper cells were assessed simultaneously. Eight CHB patients subsequently got inactivated SARS-CoV-2 vaccination during 1-year follow-up, and levels of serum antibodies against SARS-CoV-2 were further analyzed. RESULTS On day 28 after influenza vaccination, three influenza antibodies levels appeared to be lower in CHB patients than in HCs. And anti-H1N1 IgG level was significantly decreased in cirrhotic patients (p < .05). Anti-H1N1 IgG levels (day 28) were positively correlated with ASC frequencies (day 7) (p < .05), and negatively correlated with cirrhosis and hepatitis B surface antigen levels (p < .05). Anti-SARS-CoV-2 antibodies were higher in patients with influenza vaccination history than in patients without the history (p < .05). Moreover, positive correlations existed between influenza vaccination history and anti-SARS-CoV-2 antibody levels (p < .01). CONCLUSIONS CHB patients, especially those with cirrhosis, appeared to have a decreased antibody response to inactivated influenza vaccine. A history of inactivated influenza vaccination within 1 year before inactivated SARS-CoV-2 vaccination might induce stronger anti-SARS-CoV-2 antibody response.
Collapse
Affiliation(s)
- Taiyu He
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Ning Ling
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Gaoli Zhang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Dejuan Xiang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Peng Hu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Mingli Peng
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Dachuan Cai
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Dazhi Zhang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Min Chen
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Hong Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
37
|
Chen YF, Wang Y, Wang Y, Luo YL, Lu ZD, Du XJ, Xu CF, Wang J. Optimized Cationic Lipid-assisted Nanoparticle for Delivering CpG Oligodeoxynucleotides to Treat Hepatitis B Virus Infection. Pharm Res 2023; 40:145-156. [PMID: 36002611 DOI: 10.1007/s11095-022-03307-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Hepatitis B virus (HBV) infection is such a global health problem that hundreds of millions of people are HBV carriers. Current anti-viral agents can inhibit HBV replication, but can hardly eradicate HBV. Cytosine-phosphate-guanosine (CpG) oligodeoxynucleotides (ODNs) are an adjuvant that can activate plasmacytoid dendritic cells (pDCs) and conventional dendritic cells (cDCs) to induce therapeutic immunity for HBV eradication. However, efficient delivery of CpG ODNs into pDCs and cDCs remains a challenge. In this study, we constructed a series of cationic lipid-assisted nanoparticles (CLANs) using different cationic lipids to screen an optimal nanoparticle for delivering CpG ODNs into pDCs and cDCs. METHODS We constructed different CLANCpG using six cationic lipids and analyzed the cellular uptake of different CLANCpG by pDCs and cDCs in vitro and in vivo, and further analyzed the efficiency of different CLANCpG for activating pDCs and cDCs in both wild type mice and HBV-carrier mice. RESULTS We found that CLAN fabricated with 1,2-Dioleoyl-3-trimethylammonium propane (DOTAP) showed the highest efficiency for delivering CpG ODNs into pDCs and cDCs, resulting in strong therapeutic immunity in HBV-carrier mice. By using CLANCpG as an immune adjuvant in combination with the injection of recombinant hepatitis B surface antigen (rHBsAg), HBV was successfully eradicated and the chronic liver inflammation in HBV-carrier mice was reduced. CONCLUSION We screened an optimized CLAN fabricated with DOTAP for efficient delivery of CpG ODNs to pDCs and cDCs, which can act as a therapeutic vaccine adjuvant for treating HBV infection.
Collapse
Affiliation(s)
- Yi-Fang Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, People's Republic of China
| | - Yan Wang
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yue Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Ying-Li Luo
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zi-Dong Lu
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiao-Jiao Du
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, People's Republic of China. .,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.,Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
38
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
|
39
|
Walker A, Schwarz T, Brinkmann-Paulukat J, Wisskirchen K, Menne C, Alizei ES, Kefalakes H, Theissen M, Hoffmann D, Schulze zur Wiesch J, Maini MK, Cornberg M, Kraft ARM, Keitel V, Bock HH, Horn PA, Thimme R, Wedemeyer H, Heinemann FM, Luedde T, Neumann-Haefelin C, Protzer U, Timm J. Immune escape pathways from the HBV core 18-27 CD8 T cell response are driven by individual HLA class I alleles. Front Immunol 2022; 13:1045498. [PMID: 36439181 PMCID: PMC9686862 DOI: 10.3389/fimmu.2022.1045498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background and aims There is growing interest in T cell-based immune therapies for a functional cure of chronic HBV infection including check-point inhibition, T cell-targeted vaccines or TCR-grafted effector cells. All these approaches depend on recognition of HLA class I-presented viral peptides. The HBV core region 18-27 is an immunodominant target of CD8+ T cells and represents the prime target for T cell-based therapies. Here, a high-resolution analysis of the core18-27 specific CD8+ T cell and the selected escape pathways was performed. Methods HLA class I typing and viral sequence analyses were performed for 464 patients with chronic HBV infection. HBV-specific CD8+ T-cell responses against the prototype and epitope variants were characterized by flow cytometry. Results Consistent with promiscuous presentation of the core18-27 epitope, antigen-specific T cells were detected in patients carrying HLA-A*02:01, HLA-B*35:01, HLA-B*35:03 or HLA-B*51:01. Sequence analysis confirmed reproducible selection pressure on the core18-27 epitope in the context of these alleles. Interestingly, the selected immune escape pathways depend on the presenting HLA-class I-molecule. Although cross-reactive T cells were observed, some epitope variants achieved functional escape by impaired TCR-interaction or disturbed antigen processing. Of note, selection of epitope variants was exclusively observed in HBeAg negative HBV infection and here, detection of variants associated with significantly greater magnitude of the CD8 T cell response compared to absence of variants. Conclusion The core18-27 epitope is highly variable and under heavy selection pressure in the context of different HLA class I-molecules. Some epitope variants showed evidence for impaired antigen processing and reduced presentation. Viruses carrying such escape substitutions will be less susceptible to CD8+ T cell responses and should be considered for T cell-based therapy strategies.
Collapse
Affiliation(s)
- Andreas Walker
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tatjana Schwarz
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Janine Brinkmann-Paulukat
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karin Wisskirchen
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Site Munich, Munich, Germany
| | - Christopher Menne
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elahe Salimi Alizei
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Helenie Kefalakes
- Institute of Virology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Martin Theissen
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Julian Schulze zur Wiesch
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg, Hamburg, Germany
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover, Hannover, Germany
| | - Anke RM Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover, Hannover, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans H. Bock
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover, Hannover, Germany
| | - Falko M. Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Site Munich, Munich, Germany
| | - Jörg Timm
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
40
|
Zhang W, Li YY, Shang QH, Qi L, Sun MM, Chen G, An Y, Li JX, Jia WP, Sun ZA, Xu HB, Gao QM, Tang L, Wang XW, Zhang JY, Mu YM, Wang FS. Randomised controlled trial: effect of metformin add-on therapy on functional cure in entecavir-treated patients with chronic hepatitis B. Ann Hepatol 2022; 27:100745. [PMID: 35964909 DOI: 10.1016/j.aohep.2022.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/11/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hepatitis B surface antigen (HBsAg) clearance, indicating functional cure or resolved chronic hepatitis B (CHB), remains difficult to achieve via nucleos(t)ide analogue monotherapy. We investigated whether metformin add-on therapy could help achieve this goal in entecavir-treated patients with hepatitis B e antigen (HBeAg)-negative CHB. PATIENTS AND METHODS Patients with HBeAg-negative CHB who met eligibility criteria (entecavir treatment for > 12 months, HBsAg < 1000 IU/mL) were randomly assigned (1:1) to receive 24 weeks of either metformin (1000 mg, oral, once a day) or placebo (oral, once a day) add-on therapy. The group allocation was blinded for both patients and investigators. Efficacy and safety analyses were based on the intention-to-treat set. The primary outcome, serum HBsAg level (IU/mL) at weeks 24 and 36, was analysed using mixed models. RESULTS Sixty eligible patients were randomly assigned to the metformin (n = 29) and placebo (n = 31) groups. There was no substantial between-group difference in the HBsAg level at week 24 (adjusted mean difference 0.05, 95% confidence interval -0.04 to 0.13, p = 0.278) or week 36 (0.06, -0.03 to 0.15, p = 0.187), and no significant effect of group-by-time interaction on the HBsAg level throughout the trial (p = 0.814). The occurrence of total adverse events between the two groups was comparable (9 [31.0%] of 29 vs. 5 [16.1%] of 31, p = 0.227) and no patient experienced serious adverse events during the study. CONCLUSION Although it was safe, metformin add-on therapy did not accelerate HBsAg clearance in entecavir-treated patients with HBeAg-negative CHB.
Collapse
Affiliation(s)
- Wei Zhang
- Medical School of Chinese PLA, Beijing 100853, China; Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Yuan-Yuan Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Qing-Hua Shang
- Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Lin Qi
- Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Mi-Mi Sun
- Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Gang Chen
- Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Yong An
- Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Jing-Xin Li
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China
| | - Wang-Ping Jia
- Department of Wound Infection and Drug, Daping Hospital of Army Medical University, Chongqing 400042, China
| | - Zhong-An Sun
- Department of Endocrinology, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Hui-Bin Xu
- Medical Laboratory Center, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Qing-Mei Gao
- Department of Ultrasonography, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Li Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Xiao-Wen Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yi-Ming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Fu-Sheng Wang
- Medical School of Chinese PLA, Beijing 100853, China; Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
41
|
Yin GQ, Chen KP, Gu XC. Heterogeneity of immune control in chronic hepatitis B virus infection: Clinical implications on immunity with interferon-α treatment and retreatment. World J Gastroenterol 2022; 28:5784-5800. [PMID: 36353205 PMCID: PMC9639659 DOI: 10.3748/wjg.v28.i40.5784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health issue. Interferon-α (IFN-α) treatment has been used to treat hepatitis B for over 20 years, but fewer than 5% of Asians receiving IFN-α treatment achieve functional cure. Thus, IFN-α retreatment has been introduced to enhance antiviral function. In recent years, immune-related studies have found that the complex interactions between immune cells and cytokines could modulate immune response networks, in-cluding both innate and adaptive immunity, triggering immune responses that control HBV replication. However, heterogeneity of the immune system to control HBV infection, particularly HBV-specific CD8+ T cell heterogeneity, has consequ-ential effects on T cell-based immunotherapy for treating HBV infection. Altogether, the host’s genetic variants, negative-feedback regulators and HBV components affecting the immune system's ability to control HBV. In this study, we reviewed the literature on potential immune mechanisms affecting the immune control of HBV and the clinical effects of IFN-α treatment and retreatment.
Collapse
Affiliation(s)
- Guo-Qing Yin
- Center of Hepatology, Zhong-Da Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ke-Ping Chen
- Center of Hepatology, Zhong-Da Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Xiao-Chun Gu
- Center of Hepatology, Zhong-Da Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
42
|
Sacherl J, Kosinska AD, Kemter K, Kächele M, Laumen SC, Kerth HA, Öz EA, Wolff LS, Su J, Essbauer S, Sutter G, Scholz M, Singethan K, Altrichter J, Protzer U. Efficient stabilization of therapeutic hepatitis B vaccine components by amino-acid formulation maintains its potential to break immune tolerance. JHEP Rep 2022; 5:100603. [PMID: 36714793 PMCID: PMC9880034 DOI: 10.1016/j.jhepr.2022.100603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Background & Aims Induction of potent, HBV-specific immune responses is crucial to control and finally cure HBV. The therapeutic hepatitis B vaccine TherVacB combines protein priming with a Modified Vaccinia virus Ankara (MVA)-vector boost to break immune tolerance in chronic HBV infection. Particulate protein and vector vaccine components, however, require a constant cooling chain for storage and transport, posing logistic and financial challenges to vaccine applications. We aimed to identify an optimal formulation to maintain stability and immunogenicity of the protein and vector components of the vaccine using a systematic approach. Methods We used stabilizing amino acid (SAA)-based formulations to stabilize HBsAg and HBV core particles (HBcAg), and the MVA-vector. We then investigated the effect of lyophilization and short- and long-term high-temperature storage on their integrity. Immunogenicity and safety of the formulated vaccine was validated in HBV-naïve and adeno-associated virus (AAV)-HBV-infected mice. Results In vitro analysis proved the vaccine's stability against thermal stress during lyophilization and the long-term stability of SAA-formulated HBsAg, HBcAg and MVA during thermal stress at 40 °C for 3 months and at 25 °C for 12 months. Vaccination of HBV-naïve and AAV-HBV-infected mice demonstrated that the stabilized vaccine was well tolerated and able to brake immune tolerance established in AAV-HBV mice as efficiently as vaccine components constantly stored at 4 °C/-80 °C. Even after long-term exposure to elevated temperatures, stabilized TherVacB induced high titre HBV-specific antibodies and strong CD8+ T-cell responses, resulting in anti-HBs seroconversion and strong suppression of the virus in HBV-replicating mice. Conclusion SAA-formulation resulted in highly functional and thermostable HBsAg, HBcAg and MVA vaccine components. This will facilitate global vaccine application without the need for cooling chains and is important for the development of prophylactic as well as therapeutic vaccines supporting vaccination campaigns worldwide. Impact and implications Therapeutic vaccination is a promising therapeutic option for chronic hepatitis B that may enable its cure. However, its application requires functional cooling chains during transport and storage that can hardly be guaranteed in many countries with high demand. In this study, the authors developed thermostable vaccine components that are well tolerated and that induce immune responses and control the virus in preclinical mouse models, even after long-term exposure to high surrounding temperatures. This will lower costs and ease application of a therapeutic vaccine and thus be beneficial for the many people affected by hepatitis B around the world.
Collapse
Key Words
- AAV, adeno-associated virus
- ALT, alanine aminotransferase
- CHB, chronic hepatitis B
- CTC, controlled temperature chain
- Ctrl, control
- DLS, dynamic light scattering
- HBcAg
- HBcAg, hepatitis B core antigen
- HBeAg, hepatitis B e antigen
- HBsAg
- HBsAg, hepatitis B surface antigen
- Heat-stable vaccine
- ICS, intracellular cytokine staining
- IFNα, interferon alpha
- MVA
- MVA, Modified Vaccinia virus Ankara
- NAGE, native agarose gel electrophoresis
- RH, relative humidity
- RT, room temperature
- SAA, stabilizing amino acids
- SEC-HPLC, size exclusion-high performance liquid chromatography
- SPS®
- TCID50, median tissue culture infection dose
- TherVacBCtrl, non-lyophilized
- WHO, World Health Organization
- anti-HBc, hepatitis B core antibodies
- anti-HBs, hepatitis B surface antibodies
- cccDNA, covalently closed circular DNA
- formulation
- hepatitis B virus
- heterologous prime/boost vaccination
- lyophilization
- non-stressed, non-stabilized TherVacB
- stabilization
- stabilizing amino acid-based formulation
- stabilizing excipients
Collapse
Affiliation(s)
- Julia Sacherl
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Anna D. Kosinska
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | | | - Martin Kächele
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Sabine C. Laumen
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Hélène A. Kerth
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Edanur Ates Öz
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Lisa S. Wolff
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Jinpeng Su
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | | | - Gerd Sutter
- Institute of Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | | | - Katrin Singethan
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
- Corresponding author. Address: Institute of Virology, Trogerstr. 30, 81675 Munich, Germany; Tel.: +49-89-4140-6821, fax: +49-89-4140-6823.
| |
Collapse
|
43
|
Contribution of T- and B-cell intrinsic toll-like receptors to the adaptive immune response in viral infectious diseases. Cell Mol Life Sci 2022; 79:547. [PMID: 36224474 PMCID: PMC9555683 DOI: 10.1007/s00018-022-04582-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/03/2022]
Abstract
Toll-like receptors (TLRs) comprise a class of highly conserved molecules that recognize pathogen-associated molecular patterns and play a vital role in host defense against multiple viral infectious diseases. Although TLRs are highly expressed on innate immune cells and play indirect roles in regulating antiviral adaptive immune responses, intrinsic expression of TLRs in adaptive immune cells, including T cells and B cells, cannot be ignored. TLRs expressed in CD4 + and CD8 + T cells play roles in enhancing TCR signal-induced T-cell activation, proliferation, function, and survival, serving as costimulatory molecules. Gene knockout of TLR signaling molecules has been shown to diminish antiviral adaptive immune responses and affect viral clearance in multiple viral infectious animal models. These results have highlighted the critical role of TLRs in the long-term immunological control of viral infection. This review summarizes the expression and function of TLR signaling pathways in T and B cells, focusing on the in vitro and vivo mechanisms and effects of intrinsic TLR signaling in regulating T- and B-cell responses during viral infection. The potential clinical use of TLR-based immune regulatory drugs for viral infectious diseases is also explored.
Collapse
|
44
|
Zhang W, Sun H, Sun R, Lian Z, Wei H, Tian Z, Chen Y. HBV immune tolerance of HBs-transgenic mice observed through parabiosis with WT mice. Front Immunol 2022; 13:993246. [PMID: 36203595 PMCID: PMC9530942 DOI: 10.3389/fimmu.2022.993246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
It was extensively recognized that central tolerance to HBV exists in HBs-transgenic (Tg) mice, however, the immune response to HBV vaccine may be inspired in adult HBs-Tg mice after boosting with potent adjuvants, leaving a mystery to explore its immune tolerance. Here, WT-HBs-Tg parabiotic mice model was generated by conjoining WT (donor) and HBs-Tg (host) mouse via parabiotic surgery, in order to see how immunocompetent WT mice naturally respond to HBV, and how tolerant HBs-Tg mice influence the anti-HBV immunity from WT mice. It was found that WT CD8+ T cells markedly accumulated into the liver of HBs-Tg parabionts, and importantly, almost all HBsAg-specific CD8+ T cells derived from WT but not HBs-Tg mice, making a clear separation of a normal immune response from WT donor and a tolerant response by recipient host. Further, in the absence of host but not donor spleen, HBsAg-specific CD8+ T cells disappeared, indicating that host spleen was the indispensable site for donor HBsAg-specific CD8+ T cell priming though its mechanisms need further study. We found that donor CD4+ T helper cells were necessary for donor HBsAg-specific CD8+ T cell response by CD4-deficiency in WT or in HBs-Tg mice, indicating that an immune response was elicited between CD4+ T helper cells and CD8+ cytotoxic T cells of donor in the host but not donor spleen. It was noted that compared to donor CD4+ T cells, host CD4+ T cells were characterized with more tolerant features by harboring more CD25+Foxp3+ Tregs with higher expression of PD-1 and TIGIT in the spleen of HBs-Tg parabionts, which exhibited suppressive function on CD8+ T cells directly. Moreover, the Th1/Treg ratio was enhanced after parabiosis, suggesting that donor T helper cells may overcome the negative regulation of host Tregs in host spleen. In conclusion, both incompetent anti-HBV CD8+ T cells and insufficient help from CD4+ T cells are the major mechanisms underlying immune tolerance in HBs-Tg mice which helps explain HBV persistence.
Collapse
Affiliation(s)
- Wendi Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haoyu Sun
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhexiong Lian
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Zhigang Tian, ; Yongyan Chen,
| | - Yongyan Chen
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Zhigang Tian, ; Yongyan Chen,
| |
Collapse
|
45
|
Burm R, Maravelia P, Ahlen G, Ciesek S, Caro Perez N, Pasetto A, Urban S, Van Houtte F, Verhoye L, Wedemeyer H, Johansson M, Frelin L, Sällberg M, Meuleman P. Novel prime-boost immune-based therapy inhibiting both hepatitis B and D virus infections. Gut 2022; 72:1186-1195. [PMID: 35977815 PMCID: PMC10176361 DOI: 10.1136/gutjnl-2022-327216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Chronic HBV/HDV infections are a major cause of liver cancer. Current treatments can only rarely eliminate HBV and HDV. Our previously developed preS1-HDAg immunotherapy could induce neutralising antibodies to HBV in vivo and raise HBV/HDV-specific T-cells. Here, we further investigate if a heterologous prime-boost strategy can circumvent T-cell tolerance and preclude HDV superinfection in vivo. DESIGN A DNA prime-protein boost strategy was evaluated for immunogenicity in mice and rabbits. Its ability to circumvent T-cell tolerance was assessed in immunocompetent hepatitis B surface antigen (HBsAg)-transgenic mice. Neutralisation of HBV and HDV was evaluated both in vitro and in immunodeficient human-liver chimeric mice upon adoptive transfer. RESULTS The prime-boost strategy elicits robust HBV/HDV-specific T-cells and preS1-antibodies that can effectively prevent HBV and HDV (co-)infection in vitro and in vivo. In a mouse model representing the chronic HBsAg carrier state, active immunisation primes high levels of preS1-antibodies and HDAg-specific T-cells. Moreover, transfer of vaccine-induced antibodies completely protects HBV-infected human-liver chimeric mice from HDV superinfection. CONCLUSION The herein described preS1-HDAg immunotherapy is shown to be immunogenic and vaccine-induced antibodies are highly effective at preventing HBV and HDV (super)infection both in vitro and in vivo. Our vaccine can complement current and future therapies for the control of chronic HBV and HDV infection.
Collapse
Affiliation(s)
- Rani Burm
- Laboratory of Liver Infectious Diseases (LLID), Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Panagiota Maravelia
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustaf Ahlen
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University, Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany.,German Center for Infection Research, DZIF, External partner site, Frankfurt am Main, Germany
| | - Noelia Caro Perez
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Pasetto
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Freya Van Houtte
- Laboratory of Liver Infectious Diseases (LLID), Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieven Verhoye
- Laboratory of Liver Infectious Diseases (LLID), Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Magnus Johansson
- School of Medical Sciences, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Orebro, Sweden
| | - Lars Frelin
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matti Sällberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases (LLID), Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
46
|
Desmares M, Delphin M, Chardès B, Pons C, Riedinger J, Michelet M, Rivoire M, Verrier B, Salvetti A, Lucifora J, Durantel D. Insights on the antiviral mechanisms of action of the TLR1/2 agonist Pam3CSK4 in hepatitis B virus (HBV)-infected hepatocytes. Antiviral Res 2022; 206:105386. [PMID: 35963549 DOI: 10.1016/j.antiviral.2022.105386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Pegylated-interferon-alpha (Peg-IFNα), an injectable innate immune protein, is still used to treat chronically HBV-infected patients, despite its poor tolerability. Peg-IFNα has the advantage over nucleos(t)ide analogues (NAs) to be administrated in finite regimen and to lead to a higher HBsAg loss rate. Yet it would be interesting to improve the efficacy (i.e. while decreasing doses), or replace, this old medicine by novel small molecules/stimulators able to engage innate immune receptors in both HBV replicating hepatocytes and relevant innate immune cells. We have previously identified the Toll-Like-Receptor (TLR)-2 agonist Pam3CSK4 as such a potential novel immune stimulator. The aim of this study was to gain insights on the antiviral mechanisms of action of this agonist in in vitro cultivated human hepatocytes. DESIGN We used in vitro models of HBV-infected cells, based on both primary human hepatocytes (PHH) and the non-transformed HepaRG cell line to investigate the MoA of Pam3SCK4 and identify relevant combinations with other approved or investigational drugs. RESULTS We exhaustively described the inhibitory anti-HBV phenotypes induced by Pam3CSK4, which include a strong decrease in HBV RNA production (inhibition of synthesis and acceleration of decay) and cccDNA levels. We confirmed the long-lasting anti-HBV activity of this agonist, better described the kinetics of antiviral events, and demonstrated the specificity of action through the TLR1/2- NF-κB canonical-pathway. Moreover, we found that FEN-1 could be involved in the regulation and inhibitory phenotype on cccDNA levels. Finally, we identified the combination of Pam3CSK4 with IFNα or an investigational kinase inhibitor (called 1C8) as valuable strategies to reduce cccDNA levels and obtain a long-lasting anti-HBV effect in vitro. CONCLUSIONS TLR2 agonists represent possible assets to improve the rate of HBV cure in patients. Further evaluations, including regulatory toxicity studies, are warranted to move toward clinical trials.
Collapse
Affiliation(s)
- Manon Desmares
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Marion Delphin
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Brieux Chardès
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Caroline Pons
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France; INSERM, U1111, Centre International de Recherche en Infectiologie (CIRI), University of Lyon (UCBL1), CNRS UMR_5308, ENS de Lyon, Lyon, France
| | - Juliette Riedinger
- INSERM, U1111, Centre International de Recherche en Infectiologie (CIRI), University of Lyon (UCBL1), CNRS UMR_5308, ENS de Lyon, Lyon, France
| | - Maud Michelet
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | | | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS UMR_5305, University of Lyon (UCBL1), Lyon, France
| | - Anna Salvetti
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France; INSERM, U1111, Centre International de Recherche en Infectiologie (CIRI), University of Lyon (UCBL1), CNRS UMR_5308, ENS de Lyon, Lyon, France
| | - Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France; INSERM, U1111, Centre International de Recherche en Infectiologie (CIRI), University of Lyon (UCBL1), CNRS UMR_5308, ENS de Lyon, Lyon, France
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France; INSERM, U1111, Centre International de Recherche en Infectiologie (CIRI), University of Lyon (UCBL1), CNRS UMR_5308, ENS de Lyon, Lyon, France.
| |
Collapse
|
47
|
Feng B, Zheng JR. Importance of quantitative HBsAg detection in whole course management of patients with chronic hepatitis B. Shijie Huaren Xiaohua Zazhi 2022; 30:655-660. [DOI: 10.11569/wcjd.v30.i15.655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HBsAg is the earliest known serum marker for hepatitis B virus (HBV). It plays an important role in the pathogenesis, diagnosis, and prevention of chronic hepatitis B (CHB). In the era of antiviral therapy, the concept of functional cure is put forward. HBsAg, as an old marker of HBV infection, has been found to have more and more new applications in the management of CHB patients. Positive HBsAg is taken as the indication of antiviral treatment in special CHB patients. The level of HBsAg is conducive to the selection of treatment regimens, and the dynamics of HBsAg is conducive to the adjustment of treatment scheme. HBsAg level and its kinetics can predict the therapeutic effect and disease outcome, and guide drug withdrawal. Further research is needed on the sensitivity of HBsAg, its impact on long-term outcomes, and its value in functional cure and complete cure.
Collapse
Affiliation(s)
- Bo Feng
- Department of Hepatology, Peking University People's Hospital, Peking University Hepatology Institute, Beijing 100044, China
| | - Jia-Rui Zheng
- Department of Hepatology, Peking University People's Hospital, Peking University Hepatology Institute, Beijing 100044, China
| |
Collapse
|
48
|
Zhang Q, Huang H, Sun A, Liu C, Wang Z, Shi F, Duan W, Sun X, Wang Q, Sun P, Pu C, Zhang Y. Change of Cytokines in Chronic Hepatitis B Patients and HBeAg are Positively Correlated with HBV RNA, Based on Real-world Study. J Clin Transl Hepatol 2022; 10:390-397. [PMID: 35836760 PMCID: PMC9240249 DOI: 10.14218/jcth.2021.00160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Accepted: 08/17/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS The natural course of chronic hepatitis B virus (HBV) infection is widely studied; however, follow-up studies of the same patients are scanty. Here, we studied the dynamic changes of serum HBV RNA and cytokines in hepatitis B virus e antigen (HBeAg)-positive patients treated with entecavir (ETV) to explore the relationship between the HBV serum viral nucleic acids and host immunity. METHODS Thirty-three chronic hepatitis B patients who are HBeAg-positive, with high virus load (HBV DNA >20,000 IU/mL), and received standard nucleos(t)ide analogue (NA) antiviral therapy (ETV) for more than 48 weeks were included. The serum levels of HBV nucleic acids and selected cytokines were measured at 0, 12, 24, and 48 weeks respectively. RESULTS Serum HBV RNA could still be detected while serum HBV DNA had fallen below the detection limit in patients treated with ETV. There was a strong positive correlation between HBV RNA and HBeAg, with a concomitant decrease in the secretion of cytokines from type 1 helper T (Th1)/type 2 helper T (Th2)/interleukin (IL)-17 producing T (Th17) cells. IL-4 and IL-10 were the main cytokines negatively associated with serum HBV RNA. CONCLUSIONS HBeAg can be used to reflect the load of HBV RNA indirectly, because serum HBV RNA has not been widely used in clinical practice. Meanwhile, serum IL-4 and IL-10 might be explored in combination with HBV RNA in guiding future clinical antiviral therapy.
Collapse
Affiliation(s)
- Qiqi Zhang
- Department of Biobank, The Sixth Affiliated People's Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hui Huang
- Department of Biobank, The Sixth Affiliated People's Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Aijun Sun
- Outpatient Department of Hepatitis, The Sixth Affiliated People's Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chunyan Liu
- Department of Biobank, The Sixth Affiliated People's Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhidong Wang
- Department of Pathology, The Sixth Affiliated People's Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Feifan Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Wei Duan
- School of Medicine, Deakin University, Victoria, Australia
| | - Xueying Sun
- Department of Biobank, The Sixth Affiliated People's Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qi Wang
- Department of Pathology, The Sixth Affiliated People's Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ping Sun
- Department of Pathology, The Sixth Affiliated People's Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chunwen Pu
- Department of Biobank, The Sixth Affiliated People's Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yong Zhang
- Outpatient Department of Hepatitis, The Sixth Affiliated People's Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
49
|
He T, Zhou Y, Xu P, Ling N, Chen M, Huang T, Zhang B, Yang Z, Ao L, Li H, Chen Z, Zhang D, Shi X, Lei Y, Wang Z, Zeng W, Hu P, Lan Y, Zhou Z, Kang J, Huang Y, Shi T, Pan Q, Zhu Q, Ran X, Zhang Y, Song R, Xiang D, Xiao S, Zhang G, Shen W, Peng M, Cai D, Ren H. Safety and antibody response to inactivated COVID-19 vaccine in patients with chronic hepatitis B virus infection. Liver Int 2022; 42:1287-1296. [PMID: 35107848 DOI: 10.1111/liv.15173] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/09/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS The safety and antibody responses of coronavirus disease 2019 (COVID-19) vaccination in patients with chronic hepatitis B (CHB) virus infection is still unclear, and exploration in safety and antibody responses of COVID-19 vaccination in CHB patients is significant in clinical practice. METHODS 362 adult CHB patients and 87 healthy controls at an interval of at least 21 days after a full-course vaccination (21-105 days) were enrolled. Adverse events (AEs) were collected by questionnaire. The antibody profiles at 1, 2 and 3 months were elucidated by determination of anti-spike IgG, anti-receptor-binding domain (RBD) IgG, and RBD-angiotensin-converting enzyme 2 blocking antibody. SARS-CoV-2 specific B cells were also analysed. RESULTS All AEs were mild and self-limiting, and the incidence was similar between CHB patients and controls. Seropositivity rates of three antibodies were similar between CHB patients and healthy controls at 1, 2 and 3 months, but CHB patients had lower titers of three antibodies at 1 month. Compared to healthy controls, HBeAg-positive CHB patients had higher titers of three antibodies at 3 months (all P < .05) and a slower decline in antibody titers. Frequency of RBD-specific B cells was positively correlated with titers of anti-RBD IgG (OR = 1.067, P = .004), while liver cirrhosis, antiviral treatment, levels of HBV DNA, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and total bilirubin (TB) were not correlated with titers of anti-RBD IgG. CONCLUSIONS Inactivated COVID-19 vaccines were well tolerated, and induced effective antibody response against SARS-CoV-2 in CHB patients.
Collapse
Affiliation(s)
- Taiyu He
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yingzhi Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Pan Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ning Ling
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Min Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tianquan Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Biqiong Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ziqiao Yang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Ao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hu Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiwei Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dazhi Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaofeng Shi
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yu Lei
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiyi Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weiqun Zeng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yinghua Lan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhi Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Kang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tongdong Shi
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qingbo Pan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qian Zhu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiping Ran
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yingzhi Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rui Song
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dejuan Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shuang Xiao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gaoli Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wei Shen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dachuan Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
50
|
Wu S, Yi W, Gao Y, Deng W, Bi X, Lin Y, Yang L, Lu Y, Liu R, Chang M, Shen G, Hu L, Zhang L, Li M, Xie Y. Immune Mechanisms Underlying Hepatitis B Surface Antigen Seroclearance in Chronic Hepatitis B Patients With Viral Coinfection. Front Immunol 2022; 13:893512. [PMID: 35634301 PMCID: PMC9130599 DOI: 10.3389/fimmu.2022.893512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
It is considered that chronic hepatitis B patients have obtained functional cure if they get hepatitis B surface antigen (HBsAg) seroclearance after treatment. Serum HBsAg is produced by cccDNA that is extremely difficult to clear and dslDNA that is integrated with host chromosome. High HBsAg serum level leads to failure of host immune system, which makes it unable to produce effective antiviral response required for HBsAg seroclerance. Therefore, it is very difficult to achieve functional cure, and fewer than 1% of chronic hepatitis B patients are cured with antiviral treatment annually. Some chronic hepatitis B patients are coinfected with other chronic viral infections, such as HIV, HCV and HDV, which makes more difficult to cure. However, it is found that the probability of obtaining HBsAg seroclearance in patients with coinfection is higher than that in patients with HBV monoinfection, especially in patients with HBV/HIV coinfection who have an up to 36% of HBsAg 5-year-seroclerance rate. The mechanism of this interesting phenomenon is related to the functional reconstruction of immune system after antiretroviral therapy (ART). The quantity increase and function recovery of HBV specific T cells and B cells, and the higher level of cytokines and chemokines such as IP-10, GM-CSF, promote HBsAg seroclearance. This review summarizes recent studies on the immune factors that have influence on HBsAg seroconversion in the chronic hepatitis B patients with viral coinfection, which might provide new insights for the development of therapeutic approaches to partially restore the specific immune response to HBV and other viruses.
Collapse
Affiliation(s)
- Shuling Wu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuanjiao Gao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ruyu Liu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Min Chang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ge Shen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leiping Hu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|