1
|
Gong F, Zheng X, Zhao S, Liu H, Chen E, Xie R, Li R, Chen Y. Disseminated intravascular coagulation: cause, molecular mechanism, diagnosis, and therapy. MedComm (Beijing) 2025; 6:e70058. [PMID: 39822757 PMCID: PMC11733103 DOI: 10.1002/mco2.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/19/2025] Open
Abstract
Disseminated intravascular coagulation (DIC) is a complex and serious condition characterized by widespread activation of the coagulation cascade, resulting in both thrombosis and bleeding. This review aims to provide a comprehensive overview of DIC, emphasizing its clinical significance and the need for improved management strategies. We explore the primary causes of DIC, including sepsis, trauma, malignancies, and obstetric complications, which trigger an overactive coagulation response. At the molecular level, DIC is marked by excessive thrombin generation, leading to platelet and fibrinogen activation while simultaneously depleting clotting factors, creating a paradoxical bleeding tendency. Diagnosing DIC is challenging and relies on a combination of existing diagnostic criteria and laboratory tests. Treatment strategies focus on addressing the underlying causes and may involve supportive care, anticoagulation therapy, and other supportive measures. Recent advances in understanding the pathophysiology of DIC are paving the way for more targeted therapeutic approaches. This review highlights the critical need for ongoing research to enhance diagnostic accuracy and treatment efficacy, ultimately improving patient outcomes in those affected by DIC.
Collapse
Affiliation(s)
- Fangchen Gong
- Department of EmergencyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiangtao Zheng
- Department of EmergencyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shanzhi Zhao
- Department of EmergencyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huan Liu
- Department of EmergencyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Erzhen Chen
- Department of EmergencyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Institute of Aviation Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin HospitalShanghaiChina
| | - Rongli Xie
- Department of General SurgeryRuijin Hospital Lu Wan Branch, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Ranran Li
- Department of Critical Care MedicineRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ying Chen
- Department of EmergencyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Emergency and Critical Care MedicineRuijin Hospital Wuxi Branch, Shanghai Jiao Tong University School of MedicineWuxiChina
| |
Collapse
|
2
|
Fan SH, Pang MM, Si M, Cao CF, Yan MC, Xu Y, Meng T, Yin M, Wang H. Quantitative changes in platelet count in response to different pathogens: an analysis of patients with sepsis in both retrospective and prospective cohorts. Ann Med 2024; 56:2405073. [PMID: 39301858 PMCID: PMC11418053 DOI: 10.1080/07853890.2024.2405073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Thrombocytopenia is commonly observed in patients with sepsis and is an independent risk factor for poor prognosis. However, the changes of platelet count caused by different pathogens can vary significantly. Our study aims to evaluate the quantitative changes in platelet count in response to various pathogens. MATERIAL AND METHODS We retrospectively analysed data of 3044 patients with sepsis from Medical Information Mart for Intensive Care (MIMIC, 2008-2019) database and prospectively collected data of 364 patients with sepsis from our local cohort of the Shandong Bloodstream Infection and Sepsis Collaboration Study (SBISC, 2020-2022). Propensity score matching (PSM) was employed to control for baseline differences in variables, except for the causative pathogen. RESULTS Multivariate logistic analyses of both original and PSM populations identified Candida, Escherichia, Klebsiella, and Serratia species posing a higher risk for thrombocytopenia compared to others. Restricted cubic spline (RCS) curves showed L- or U-shaped associations between platelet count and 28-mortality with various cut-off values among different pathogens: ranging from 96 × 109/L in Candida species - 190 × 109/L in Klebsiella species. CONCLUSION Our present findings indicate a pathogen-specific effect on platelet count, highlighting the importance of monitoring thrombocytopenia in patients infected with above microorganisms. Clinicians need to consider pathogen-specific thresholds when intervene on platelet count.
Collapse
Affiliation(s)
- Shao Hua Fan
- Department of Critical Care Medicine, Central Hospital affiliated to Shandong First Medical University, Jinan Central Hospital affiliated to Shandong University, Jinan, China
| | - Ming Min Pang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Min Si
- Department of Critical Care Medicine, Central Hospital affiliated to Shandong First Medical University, Jinan Central Hospital affiliated to Shandong University, Jinan, China
| | - Chong Feng Cao
- Department of Critical Care Medicine, Central Hospital affiliated to Shandong First Medical University, Jinan Central Hospital affiliated to Shandong University, Jinan, China
| | - Mei Chen Yan
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Xu
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Ting Yu Meng
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Yin
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
Tokarz-Deptuła B, Baraniecki Ł, Palma J, Stosik M, Deptuła W. Characterization of Platelet Receptors and Their Involvement in Immune Activation of These Cells. Int J Mol Sci 2024; 25:12611. [PMID: 39684330 DOI: 10.3390/ijms252312611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The article characterises platelets, pointing out the role and contribution of their numerous receptors determining their specific and broad immune activity. Three types of platelet receptors are described, that is, extracellular and intracellular receptors-TLR (toll-like receptors), NLR (NOD-like receptor), and RLR (RIG-I-like receptor); extracellular receptors-selectins and integrins; and their other extracellular receptors-CLR (C-type lectin receptor), CD (cluster of differentiation), TNF (tumour necrosis factor), among others. Outlining the contribution of these numerous platelet receptors to the intravascular immunity, it has been shown that they are formed by their fusion with pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and lifestyle-associated molecular patterns (LAMPs). They are initiating and effector components of signal transduction of these cells, and their expression and quantity determine the specific and broad functions of platelets towards influencing vascular endothelial cells, but mainly PRRs (pattern recognition receptors) of blood immune cells. These facts make platelets the fundamental elements that shape not only intravascular homeostasis, as previously indicated, but they become the determinants of immunity in blood vessels. Describing the reactions of the characterised three groups of platelet receptors with PAMP, DAMP and LAMP molecules, the pathways and participation of platelets in the formation and construction of intravascular immune status, in physiological states, but mainly in pathological states, including bacterial and viral infections, are presented, making these cells essential elements in the health and disease of mammals, including humans.
Collapse
Affiliation(s)
| | - Łukasz Baraniecki
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Doctoral School, University of Szczecin, 70-384 Szczecin, Poland
| | - Joanna Palma
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Michał Stosik
- Institute of Biological Science, Faculty of Biological Sciences, University of Zielona Góra, 65-516 Zielona Góra, Poland
| | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
4
|
Chao Y, Mørch M, Håkansson AP, Shannon O. Biofilm-dispersed pneumococci induce elevated leukocyte and platelet activation. Front Cell Infect Microbiol 2024; 14:1405333. [PMID: 39149421 PMCID: PMC11324597 DOI: 10.3389/fcimb.2024.1405333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Streptococcus pneumoniae (the pneumococcus) effectively colonizes the human nasopharynx, but can migrate to other host sites, causing infections such as pneumonia and sepsis. Previous studies indicate that pneumococci grown as biofilms have phenotypes of bacteria associated with colonization whereas bacteria released from biofilms in response to changes in the local environment (i.e., dispersed bacteria) represent populations with phenotypes associated with disease. How these niche-adapted populations interact with immune cells upon reaching the vascular compartment has not previously been studied. Here, we investigated neutrophil, monocyte, and platelet activation using ex vivo stimulation of whole blood and platelet-rich plasma with pneumococcal populations representing distinct stages of the infectious process (biofilm bacteria and dispersed bacteria) as well as conventional broth-grown culture (planktonic bacteria). Methods Flow cytometry and ELISA were used to assess surface and soluble activation markers for neutrophil and monocyte activation, platelet-neutrophil complex and platelet-monocyte complex formation, and platelet activation and responsiveness. Results Overall, we found that biofilm-derived bacteria (biofilm bacteria and dispersed bacteria) induced significant activation of neutrophils, monocytes, and platelets. In contrast, little to no activation was induced by planktonic bacteria. Platelets remained functional after stimulation with bacterial populations and the degree of responsiveness was inversely related to initial activation. Bacterial association with immune cells followed a similar pattern as activation. Discussion Differences in activation of and association with immune cells by biofilm-derived populations could be an important consideration for other pathogens that have a biofilm state. Gaining insight into how these bacterial populations interact with the host immune response may reveal immunomodulatory targets to interfere with disease development.
Collapse
Affiliation(s)
- Yashuan Chao
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Section for Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Martina Mørch
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Section for Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Anders P Håkansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Section for Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
5
|
Ranson T, Rourick H, Sooch R, Ford N, Beyersdorfer N, Johnson K, Paulson J. An Investigation of Mortality Associated With Comorbid Pneumonia and Thrombocytopenia in a Rural Southwest Missouri Hospital System. Cureus 2024; 16:e67330. [PMID: 39170646 PMCID: PMC11338473 DOI: 10.7759/cureus.67330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Pneumonia places a significant burden on individuals and society, contributing to a substantial number of hospital admissions, emergency department visits, deaths, and healthcare costs each year. Comorbidities can greatly increase the risk of poor outcomes when associated with pneumonia. One comorbidity that has yet to be thoroughly researched is thrombocytopenia, which is known to play an important role in activating the immune response to infections. A decrease in platelet count may limit the immune response and consequently increase mortality in patients with pneumonia. The purpose of this study was to investigate whether comorbid thrombocytopenia and pneumonia are associated with poor outcomes. METHODS This study was a retrospective cohort analysis comparing mortality rates among patients with comorbid thrombocytopenia and pneumonia, pneumonia without thrombocytopenia, and thrombocytopenia without pneumonia. Data were collected from Freeman Health System using International Classification of Diseases, Tenth Revision (ICD-10) codes from January 1, 2019, to December 31, 2021. ICD-10 codes for pneumonia and thrombocytopenia were extracted and stratified into three groups: those with both pneumonia and thrombocytopenia, those with pneumonia without thrombocytopenia, and those with thrombocytopenia without pneumonia. Mortality rates were then compared across the three groups. RESULTS There were 4,414 patients admitted with pneumonia and 1,157 admissions for thrombocytopenia without pneumonia. Among the 4,414 patients admitted with pneumonia, 3,902 did not have thrombocytopenia, while 512 had thrombocytopenia. Of the patients without thrombocytopenia, 14% (3,902) expired. Among the 512 patients with thrombocytopenia, 43% expired. In the thrombocytopenia without pneumonia group, 11% (1,157) expired. CONCLUSION These results indicate a significant increase in mortality in patients with both pneumonia and thrombocytopenia compared to those with pneumonia without thrombocytopenia (an increase in mortality of 28.93% with a 95% CI: 24.50-33.36%, P < 0.0001). While pneumonia itself increases mortality compared to the general population, patients with both pneumonia and thrombocytopenia exhibit even higher mortality rates.
Collapse
Affiliation(s)
- Tabitha Ranson
- College of Medicine, Kansas City University, Joplin, USA
| | - Hannah Rourick
- College of Medicine, Kansas City University, Joplin, USA
| | - Rajbir Sooch
- College of Medicine, Kansas City University, Joplin, USA
| | - Nicole Ford
- College of Medicine, Kansas City University, Joplin, USA
| | - Nova Beyersdorfer
- Primary Care, College of Medicine, Kansas City University, Joplin, USA
| | - Kerry Johnson
- Mathematics, Missouri Southern State University, Joplin, USA
| | - John Paulson
- College of Medicine, Kansas City University, Joplin, USA
| |
Collapse
|
6
|
Ahmad I, Omura S, Sato F, Park AM, Khadka S, Gavins FNE, Tanaka H, Kimura MY, Tsunoda I. Exploring the Role of Platelets in Virus-Induced Inflammatory Demyelinating Disease and Myocarditis. Int J Mol Sci 2024; 25:3460. [PMID: 38542433 PMCID: PMC10970283 DOI: 10.3390/ijms25063460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 12/26/2024] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection has been used as a mouse model for two virus-induced organ-specific immune-mediated diseases. TMEV-induced demyelinating disease (TMEV-IDD) in the central nervous system (CNS) is a chronic inflammatory disease with viral persistence and an animal model of multiple sclerosis (MS) in humans. TMEV infection can also cause acute myocarditis with viral replication and immune cell infiltration in the heart, leading to cardiac fibrosis. Since platelets have been reported to modulate immune responses, we aimed to determine the role of platelets in TMEV infection. In transcriptome analyses of platelets, distinct sets of immune-related genes, including major histocompatibility complex (MHC) class I, were up- or downregulated in TMEV-infected mice at different time points. We depleted platelets from TMEV-infected mice by injecting them with platelet-specific antibodies. The platelet-depleted mice had significantly fewer viral antigen-positive cells in the CNS. Platelet depletion reduced the severities of TMEV-IDD and myocarditis, although the pathology scores did not reach statistical significance. Immunologically, the platelet-depleted mice had an increase in interferon (IFN)-γ production with a higher anti-TMEV IgG2a/IgG1 ratio. Thus, platelets may play roles in TMEV infection, such as gene expression, viral clearance, and anti-viral antibody isotype responses.
Collapse
Affiliation(s)
- Ijaz Ahmad
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
| | - Seiichi Omura
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
| | - Fumitaka Sato
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
| | - Ah-Mee Park
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
- Department of Arts and Sciences, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan
| | - Sundar Khadka
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
- Department of Immunology, Duke University, Durham, NC 27708, USA
| | - Felicity N. E. Gavins
- Department of Biosciences, Centre for Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa 078-8510, Japan;
| | - Motoko Y. Kimura
- Department of Experimental Immunology, Graduate School of Medicine, Chiba University, Chiba 263-8522, Japan;
| | - Ikuo Tsunoda
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
| |
Collapse
|
7
|
Xue M, Gao Z, Yan M, Bao Y. Profiling risk factors for separation of infection complications in patients with gastrointestinal and nodal diffuse large B-cell lymphoma. BMC Infect Dis 2023; 23:711. [PMID: 37864133 PMCID: PMC10589955 DOI: 10.1186/s12879-023-08671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
OBJECTIVE To identify risk factors for infection complications in patients with gastrointestinal diffuse large B-cell lymphoma (GI-DLBCL) and nodal DLBCL (N-DLBCL) during treatment, respectively. METHODS Total 51 GI-DLBCL patients and 80 N-DLBCL patients were included after retrieving clinical data from a single medical center in the past ten years. Logistic regression analysis was utilized to analyze patients' data, including baseline demographics, treatments and laboratory values, to determine independent risk factors of infection in these patients. RESULTS Total 28 of 51 patients (54.9%) in the GI-DLBCL group and 52 of 80 patients (65%) in the N-DLBCL group were observed infection events during treatment. A multivariate logistic regression model revealed that Ann-arbor stage IV (P = 0.034; odds ratio [OR]: 10.635; 95% confidence interval [CI]: 1.152-142.712), extra-nodal lesions ≥ 2 (P = 0.041; OR: 23.116; 95%CI: 1.144-466.949) and high serum lactate dehydrogenase (LDH) at the time of diagnosis (LDH > 252U/L; P = 0.033; OR: 6.058; 95%CI: 1.159-31.659) were independent risk factors for the development of infection in patients with GI-DLBCL after systemic treatment. In the N-DLBCL group, high serum C-reactive protein (CRP) (P = 0.027; OR: 1.104; 95%CI: 1.011-1.204) and a low platelet count (P = 0.041; OR: 0.991; 95%CI: 0.982-1.000) at routine blood tests just before infection occurred were identified as significant risk factors related to infection events during treatment. CONCLUSIONS Discordant independent risk factors induced infection may be present during the treatment in patients with GI-DLBCL and N-DLBCL. Close monitoring these risk factors is likely an effective strategy to prevent microbial infections in these patients.
Collapse
Affiliation(s)
- Min Xue
- Graduate School, Bengbu Medical College, 2600 Donghai Road, Bengbu, 233000, Anhui, China
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, Zhejiang, China
| | - Zhenzhen Gao
- The Department of Oncology, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, Zhejiang, China
| | - Miaolong Yan
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, Zhejiang, China
| | - Yi Bao
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, Zhejiang, China.
- The Department of Oncology, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, Zhejiang, China.
| |
Collapse
|
8
|
Favaloro EJ. New Seminars in Thrombosis and Hemostasis 2022 Impact Factor, Most Highly Cited Papers, and Other Journal Metrics. Semin Thromb Hemost 2023; 49:661-669. [PMID: 37611621 DOI: 10.1055/s-0043-1772572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Emmanuel J Favaloro
- Department of Haematology, Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, NSW, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
9
|
Bai H, Li H, Nie X, Yao Y, Han X, Wang J, Peng L. Development and validation of a nomogram for predicting cefoperazone/sulbactam-induced hypoprothrombinaemia in Hospitalized adult patients. PLoS One 2023; 18:e0291658. [PMID: 37733780 PMCID: PMC10513251 DOI: 10.1371/journal.pone.0291658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/03/2023] [Indexed: 09/23/2023] Open
Abstract
Cefoperazone/sulbactam-induced hypoprothrombinaemia is associated with longer hospital stays and increased risk of death. The aim of this study was to develop and validate a nomogram for predicting the occurrence of cefoperazone/sulbactam-induced hypoprothrombinaemia in hospitalized adult patients. This retrospective cohort study involved hospitalized adult patients at Xi'an Central Hospital from January 2020 to December 2022 based on the Chinese pharmacovigilance system developed and established by the Adverse Drug Reaction Monitoring Center in China. Independent predictors of cefoperazone/sulbactam-induced hypoprothrombinaemia were obtained using multivariate logistic regression and were used to develop and establish the nomogram. According to the same standard, the clinical data of hospitalized patients using cefoperazone/sulbactam at the Third Affiliated Hospital of Xi'an Medical University from January 1, 2023 to June 30, 2023 were collected as the external validation group. The 893 hospitalized patients included 95 who were diagnosed with cefoperazone/sulbactam-induced hypoprothrombinaemia. Our study enrolled 610 patients: 427 in the training group and 183 in the internal validation group. The independent predictors of cefoperazone/sulbactam-induced hypoprothrombinaemia were surgery (odds ratio [OR] = 5.279, 95% confidence interval [CI] = 2.597-10.729), baseline platelet count ≤50×109/L (OR = 2.492, 95% CI = 1.110-5.593), baseline hepatic dysfunction (OR = 12.362, 95% CI = 3.277-46.635), cumulative defined daily doses (OR = 1.162, 95% CI = 1.162-1.221) and nutritional risk (OR = 16.973, 95% CI = 7.339-39.254). The areas under the curve (AUC) of the receiver operating characteristic for the training and internal validation groups were 0.909 (95% CI = 0.875-0.943) and 0.888 (95% CI = 0.832-0.944), respectively. The Hosmer-Lemeshow tests yielded p = 0.475 and p = 0.742 for the training and internal validation groups, respectively, confirming the goodness of fit of the nomogram model. In the external validation group (n = 221), the nomogram was equally robust in cefoperazone/sulbactam-induced hypoprothrombinaemia (AUC = 0.837, 95%CI = 0.736-0.938). The nomogram model constructed in this study had good predictive performance and extrapolation, which can help clinicians to identify patients at high risk of cefoperazone/sulbactam-induced hypoprothrombinaemia early. This will be useful in preventing the occurrence of cefoperazone/sulbactam-induced hypoprothrombinaemia and allowing timely intervention measures to be performed.
Collapse
Affiliation(s)
- Hehe Bai
- Department of Pharmacy, Xi’ an Central Hospital, Xi’an, Shaanxi, China
| | - Huan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xiaojing Nie
- Department of Pharmacy, Xi’ an Central Hospital, Xi’an, Shaanxi, China
| | - Yanqin Yao
- Department of Pharmacy, The Third Affiliated Hospital of Xi ’an Medical University, Xi’an, Shaanxi, China
| | - Xiaonian Han
- Department of Pharmacy, Xi’ an Central Hospital, Xi’an, Shaanxi, China
| | - Jinping Wang
- Department of Pharmacy, Xi’ an Central Hospital, Xi’an, Shaanxi, China
| | - Lirong Peng
- Department of Pharmacy, Xi’ an Central Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Appelman B, Michels EHA, de Brabander J, Peters-Sengers H, van Amstel RBE, Noordzij SM, Klarenbeek AM, van Linge CCA, Chouchane O, Schuurman AR, Reijnders TDY, Douma RA, Bos LDJ, Wiersinga WJ, van der Poll T. Thrombocytopenia is associated with a dysregulated host response in severe COVID-19. Thromb Res 2023; 229:187-197. [PMID: 37541167 DOI: 10.1016/j.thromres.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/23/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Thrombocytopenia is associated with increased mortality in COVID-19 patients. OBJECTIVE To determine the association between thrombocytopenia and alterations in host response pathways implicated in disease pathogenesis in patients with severe COVID-19. PATIENTS/METHODS We studied COVID-19 patients admitted to a general hospital ward included in a national (CovidPredict) cohort derived from 13 hospitals in the Netherlands. In a subgroup, 43 host response biomarkers providing insight in aberrations in distinct pathophysiological domains (coagulation and endothelial cell function; inflammation and damage; cytokines and chemokines) were determined in plasma obtained at a single time point within 48 h after admission. Patients were stratified in those with normal platelet counts (150-400 × 109/L) and those with thrombocytopenia (<150 × 109/L). RESULTS 6.864 patients were enrolled in the national cohort, of whom 1.348 had thrombocytopenia and 5.516 had normal platelets counts; the biomarker cohort consisted of 429 patients, of whom 85 with thrombocytopenia and 344 with normal platelet counts. Plasma D-dimer levels were not different in thrombocytopenia, although patients with moderate-severe thrombocytopenia (<100 × 109/L) showed higher D-dimer levels, indicating enhanced coagulation activation. Patients with thrombocytopenia had lower plasma levels of many proinflammatory cytokines and chemokines, and antiviral mediators, suggesting involvement of platelets in inflammation and antiviral immunity. Thrombocytopenia was associated with alterations in endothelial cell biomarkers indicative of enhanced activation and a relatively preserved glycocalyx integrity. CONCLUSION Thrombocytopenia in hospitalized patients with severe COVID-19 is associated with broad host response changes across several pathophysiological domains. These results suggest a role of platelets in the immune response during severe COVID-19.
Collapse
Affiliation(s)
- Brent Appelman
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Erik H A Michels
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Justin de Brabander
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Hessel Peters-Sengers
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Boelelaan 1117, Amsterdam, the Netherlands
| | - Rombout B E van Amstel
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Sophie M Noordzij
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Augustijn M Klarenbeek
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Christine C A van Linge
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Osoul Chouchane
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Alex R Schuurman
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tom D Y Reijnders
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Renée A Douma
- Flevo Hospital, Department of Internal Medicine, Almere, the Netherlands
| | - Lieuwe D J Bos
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - W Joost Wiersinga
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Division of Infectious Diseases, Department of Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tom van der Poll
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Division of Infectious Diseases, Department of Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
11
|
Anderson R, Rapoport BL, Steel HC, Theron AJ. Pro-Tumorigenic and Thrombotic Activities of Platelets in Lung Cancer. Int J Mol Sci 2023; 24:11927. [PMID: 37569299 PMCID: PMC10418868 DOI: 10.3390/ijms241511927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Aside from their key protective roles in hemostasis and innate immunity, platelets are now recognized as having multifaceted, adverse roles in the pathogenesis, progression and outcome of many types of human malignancy. The most consistent and compelling evidence in this context has been derived from the notable association of elevated circulating platelet counts with the onset and prognosis of various human malignancies, particularly lung cancer, which represents the primary focus of the current review. Key topics include an overview of the association of lung cancer with the circulating platelet count, as well as the mechanisms of platelet-mediated, pro-tumorigenic immunosuppression, particularly the role of transforming growth factor beta 1. These issues are followed by a discussion regarding the pro-tumorigenic role of platelet-derived microparticles (PMPs), the most abundant type of microparticles (MPs) in human blood. In this context, the presence of increased levels of PMPs in the blood of lung cancer patients has been associated with tumor growth, invasion, angiogenesis and metastasis, which correlate with disease progression and decreased survival times. The final section of the review addresses, firstly, the role of cancer-related platelet activation and thrombosis in the pathogenesis of secondary cardiovascular disorders and the associated mortality, particularly in lung cancer, which is second only to disease progression; secondly, the review addresses the potential role of antiplatelet agents in the adjunctive therapy of cancer.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (B.L.R.); (H.C.S.); (A.J.T.)
| | - Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (B.L.R.); (H.C.S.); (A.J.T.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (B.L.R.); (H.C.S.); (A.J.T.)
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (B.L.R.); (H.C.S.); (A.J.T.)
| |
Collapse
|
12
|
Hernández-García S, Flores-García M, Maldonado-Vega M, Hernández G, Meneses-Melo F, López-Vanegas NC, Calderón-Salinas JV. Adaptive changes in redox response and decreased platelet aggregation in lead-exposed workers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104134. [PMID: 37116628 DOI: 10.1016/j.etap.2023.104134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/11/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Chronic lead exposure can generate pro-oxidative and pro-inflammatory conditions in the blood, related to high platelet activation and aggregation, altering cell functions. We studied ADP-stimulated aggregation and the oxidant/antioxidant system of platelets from chronically lead-exposed workers and non-exposed workers. Platelet aggregation was low in lead-exposed workers (62 vs. 97%), who had normal platelet counts and showed no clinical manifestations of hemostatic failure. ADP-activated platelets from lead-exposed workers failed to increase superoxide release (3.3 vs. 6.6 µmol/g protein), had low NADPH concentration (60 vs. 92 nmol/mg protein), high concentration of hydrogen peroxide (224 vs. 129 nmol/mg protein) and high plasma PGE2 concentration (287 vs. 79 pg/mL). Altogether, those conditions, on the one hand, could account for the low platelet aggregation and, on the other, indicate an adaptive mechanism for the oxidative status of platelets and anti-aggregating molecules to prevent thrombotic problems in the pro-oxidant and pro-inflammatory environment of chronic lead exposure.
Collapse
Affiliation(s)
- Sandra Hernández-García
- Biochemistry Department, Centro de Investigación y de Estudios Avanzados-IPN (Cinvestav), Mexico City, Mexico
| | - Mirthala Flores-García
- Molecular Biology Department, Instituto Nacional de Cardiología "Dr. Ignacio Chávez", Mexico City, Mexico
| | - María Maldonado-Vega
- Planning, Teaching and Research Department, Hospital Regional de Alta Especialidad del Bajío. León, Guanajuato, Mexico
| | - Gerardo Hernández
- Section Methodology of Science, Centro de Investigación y de Estudios Avanzados-IPN (Cinvestav), Mexico City, Mexico
| | | | | | | |
Collapse
|
13
|
Stefanini L, Ruberto F, Curreli M, Chistolini A, Schiera E, Marrapodi R, Visentini M, Ceccarelli G, D'Ettorre G, Santoro C, Gandini O, Moro EF, Zullino V, Pugliese F, Pulcinelli FM. Increased von Willebrand Factor Platelet-Binding Capacity Is Related to Poor Prognosis in COVID-19 Patients. Thromb Haemost 2023; 123:118-122. [PMID: 36252812 PMCID: PMC9831687 DOI: 10.1055/a-1962-5447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Franco Ruberto
- Department of General Surgery, Surgical Specialties and Organ Transplantation “Paride Stefanini” Sapienza University of Rome, Rome, Italy
| | | | - Antonio Chistolini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleonora Schiera
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ramona Marrapodi
- Department of General Surgery, Surgical Specialties and Organ Transplantation “Paride Stefanini” Sapienza University of Rome, Rome, Italy
| | - Marcella Visentini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Gabriella D'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cristina Santoro
- Department of Hematology, University Hospital Policlinico Umberto I, Rome, Italy
| | - Orietta Gandini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Emilia F. Moro
- Department of General Surgery, Surgical Specialties and Organ Transplantation “Paride Stefanini” Sapienza University of Rome, Rome, Italy
| | - Veronica Zullino
- Department of General Surgery, Surgical Specialties and Organ Transplantation “Paride Stefanini” Sapienza University of Rome, Rome, Italy
| | - Francesco Pugliese
- Department of General Surgery, Surgical Specialties and Organ Transplantation “Paride Stefanini” Sapienza University of Rome, Rome, Italy
| | - Fabio M. Pulcinelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy,Address for correspondence Fabio M. Pulcinelli, MD Department of Experimental Medicine, Sapienza University of RomeRome 00191Italy
| |
Collapse
|
14
|
Pociute A, Kottilingal Farook MF, Dagys A, Kevalas R, Laucaityte G, Jankauskaite L. Platelet-Derived Biomarkers: Potential Role in Early Pediatric Serious Bacterial Infection and Sepsis Diagnostics. J Clin Med 2022; 11:jcm11216475. [PMID: 36362702 PMCID: PMC9658833 DOI: 10.3390/jcm11216475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Fever is the most common complaint of children who are attending a pediatric emergency department (PED). Most of the fever cases are of viral origin; however, the most common markers, such as leucocyte, neutrophil count, or C-reactive protein, are not sensitive or specific enough to distinguish the etiology of fever, especially if children present at the early phase of infection. Currently, platelets have been attributed a role as important sentinels in viral and bacterial infection pathogenesis. Thus, our aim was to analyze different platelet indices, such as PNLR (platelet-to-neutrophil/lymphocyte ratio), PNR (platelet-to-neutrophil ratio) as well as specific secreted proteins, such as sP-selectin, CXCL4, CXCL7, and serotonin. We included 68 children who were referred to PED with the early onset of fever (<12 h). All children with comorbidities, older than five years, and psychiatric diseases, who refused to participate were excluded. All the participants were divided into viral, bacterial, or serious bacterial infection (SBI) groups. All the children underwent blood sampling, and an additional sample was collected for protein analysis. Our analysis revealed statistically significant differences between leucocyte, neutrophil, and CRP levels between SBI and other groups. However, leucocyte and neutrophil counts were within the age norms. A higher PNLR value was observed in a bacterial group, PNR-in viral. As we tested CXCL7 and sP-selectin, alone and together those markers were statistically significant to discriminate SBI and sepsis from other causes of infection. Together with tachypnoe and SpO2 < 94%, it improved the prediction value of sepsis as well as SBI. CXCL4 and serotonin did not differ between the groups. Concluding, CXCL7 and sP-selectin showed promising results in early SBI and sepsis diagnosis.
Collapse
Affiliation(s)
- Aiste Pociute
- Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | | | - Algirdas Dagys
- Department of Pediatrics, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rimantas Kevalas
- Department of Pediatrics, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Goda Laucaityte
- Department of Pediatrics, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Lina Jankauskaite
- Department of Pediatrics, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Correspondence:
| |
Collapse
|
15
|
Favaloro EJ. New Seminars in Thrombosis and Hemostasis (STH) 2021 Impact Factor, Most Highly Cited Papers, and Other Journal Metrics. Semin Thromb Hemost 2022; 48:634-642. [DOI: 10.1055/s-0042-1756172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Emmanuel J. Favaloro
- Department of Haematology, Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
16
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
17
|
Mellema RA, Crandell J, Petrey AC. Platelet Dysregulation in the Pathobiology of COVID-19. Hamostaseologie 2022; 42:221-228. [PMID: 34879421 DOI: 10.1055/a-1646-3392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) encompasses a broad spectrum of clinical manifestations caused by infection with severe acute respiratory syndrome coronavirus 2.Patients with severe disease present with hyperinflammation which can affect multiple organs which often include observations of microvascular and macrovascular thrombi. COVID-19 is increasingly recognized as a thromboinflammatory disease where alterations of both coagulation and platelets are closely linked to mortality and clinical outcomes. Although platelets are most well known as central mediators of hemostasis, they possess chemotactic molecules, cytokines, and adhesion molecules that are now appreciated as playing an important role in the regulation of immune response. This review summarizes the current knowledge of platelet alterations observed in the context of COVID-19 and their impact upon disease pathobiology.
Collapse
Affiliation(s)
- Rebecca A Mellema
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
| | - Jacob Crandell
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Aaron C Petrey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
18
|
The Occurrence of Hyperactivated Platelets and Fibrinaloid Microclots in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Pharmaceuticals (Basel) 2022; 15:ph15080931. [PMID: 36015078 PMCID: PMC9413879 DOI: 10.3390/ph15080931] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 12/10/2022] Open
Abstract
We have previously demonstrated that platelet-poor plasma (PPP) obtained from patients with Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is characterized by a hypercoagulable state and contains hyperactivated platelets and considerable numbers of already-formed amyloid fibrin(ogen) or fibrinaloid microclots. Due to the substantial overlap in symptoms and etiology between Long COVID/PASC and ME/CFS, we investigated whether coagulopathies reflected in Long COVID/PASC—hypercoagulability, platelet hyperactivation, and fibrinaloid microclot formation—were present in individuals with ME/CFS and gender- and age-matched healthy controls. ME/CFS samples showed significant hypercoagulability as judged by thromboelastography of both whole blood and platelet-poor plasma. The area of plasma images containing fibrinaloid microclots was commonly more than 10-fold greater in untreated PPP from individuals with ME/CFS than in that of healthy controls. A similar difference was found when the plasma samples were treated with thrombin. Using fluorescently labelled PAC-1, which recognizes glycoprotein IIb/IIIa, and CD62P, which binds P-selectin, we observed hyperactivation of platelets in ME/CFS hematocrit samples. Using a quantitative scoring system, the ME/CFS platelets were found to have a mean spreading score of 2.72 ± 1.24 vs. 1.00 (activation with pseudopodia formation) for healthy controls. We conclude that ME/CFS is accompanied by substantial and measurable changes in coagulability, platelet hyperactivation, and fibrinaloid microclot formation. However, the fibrinaloid microclot load was not as great as was previously noted in Long COVID/PASC. Fibrinaloid microclots, in particular, may contribute to many ME/CFS symptoms, such as fatigue, seen in patients with ME/CFS, via the (temporary) blockage of microcapillaries and hence ischemia. Furthermore, fibrinaloid microclots might damage the endothelium. The discovery of these biomarkers represents an important development in ME/CFS research. It also points to possible uses for treatment strategies using known drugs and/or nutraceuticals that target systemic vascular pathology and endothelial inflammation.
Collapse
|
19
|
Favaloro EJ. 2022 Eberhard F. Mammen Award Announcements: Part I-Most Popular Articles. Semin Thromb Hemost 2022; 48:502-513. [PMID: 35700963 DOI: 10.1055/s-0042-1748192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
20
|
Schrottmaier WC, Schmuckenschlager A, Pirabe A, Assinger A. Platelets in Viral Infections - Brave Soldiers or Trojan Horses. Front Immunol 2022; 13:856713. [PMID: 35419008 PMCID: PMC9001014 DOI: 10.3389/fimmu.2022.856713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infections are often associated with platelet activation and haemostatic complications. In line, low platelet counts represent a hallmark for poor prognosis in many infectious diseases. The underlying cause of platelet dysfunction in viral infections is multifaceted and complex. While some viruses directly interact with platelets and/or megakaryocytes to modulate their function, also immune and inflammatory responses directly and indirectly favour platelet activation. Platelet activation results in increased platelet consumption and degradation, which contributes to thrombocytopenia in these patients. The role of platelets is often bi-phasic. Initial platelet hyper-activation is followed by a state of platelet exhaustion and/or hypo-responsiveness, which together with low platelet counts promotes bleeding events. Thereby infectious diseases not only increase the thrombotic but also the bleeding risk or both, which represents a most dreaded clinical complication. Treatment options in these patients are limited and new therapeutic strategies are urgently needed to prevent adverse outcome. This review summarizes the current literature on platelet-virus interactions and their impact on viral pathologies and discusses potential intervention strategies. As pandemics and concomitant haemostatic dysregulations will remain a recurrent threat, understanding the role of platelets in viral infections represents a timely and pivotal challenge.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Whiteheart SW. Platelet-HIV: interactions and their implications. Platelets 2022; 33:208-211. [PMID: 35086429 PMCID: PMC8881393 DOI: 10.1080/09537104.2021.2019695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
While it is clear that platelets interact with viruses, the ramifications and mechanisms of those interactions are still being defined for each type of viral infection. HIV/AIDS+ represents a potentially unique example of how viremia affects platelets since the increasing efficacy of antiretroviral therapeutics (ART) has made it a chronic disease that increases the risk of cardiovascular disease. In this opinion article, we discuss some of the open questions about how platelets interact with HIV. What happens to a virion once it binds a platelet? What is the nature of virus-induced platelet activation? Are platelets a normal part of the immune response to viremia that has been co-opted to increase the spread of HIV? The answers to these and similar questions will help define how platelet-directed therapeutics might be used in treating HIV/AIDS+ patients.
Collapse
Affiliation(s)
- Sidney W. Whiteheart
- Dept. of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington KY, USA,Lexington VA Medical Center, Lexington, KY, USA,To whom correspondence should be directed: Sidney W. Whiteheart, Ph.D., Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, B361 BBSRB, 741 S Limestone, Lexington, KY 40536, USA, Tel: 859-257-4882, Fax: 859-257-2283,
| |
Collapse
|
22
|
Kell DB, Laubscher GJ, Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem J 2022; 479:537-559. [PMID: 35195253 PMCID: PMC8883497 DOI: 10.1042/bcj20220016] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Post-acute sequelae of COVID (PASC), usually referred to as 'Long COVID' (a phenotype of COVID-19), is a relatively frequent consequence of SARS-CoV-2 infection, in which symptoms such as breathlessness, fatigue, 'brain fog', tissue damage, inflammation, and coagulopathies (dysfunctions of the blood coagulation system) persist long after the initial infection. It bears similarities to other post-viral syndromes, and to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Many regulatory health bodies still do not recognize this syndrome as a separate disease entity, and refer to it under the broad terminology of 'COVID', although its demographics are quite different from those of acute COVID-19. A few years ago, we discovered that fibrinogen in blood can clot into an anomalous 'amyloid' form of fibrin that (like other β-rich amyloids and prions) is relatively resistant to proteolysis (fibrinolysis). The result, as is strongly manifested in platelet-poor plasma (PPP) of individuals with Long COVID, is extensive fibrin amyloid microclots that can persist, can entrap other proteins, and that may lead to the production of various autoantibodies. These microclots are more-or-less easily measured in PPP with the stain thioflavin T and a simple fluorescence microscope. Although the symptoms of Long COVID are multifarious, we here argue that the ability of these fibrin amyloid microclots (fibrinaloids) to block up capillaries, and thus to limit the passage of red blood cells and hence O2 exchange, can actually underpin the majority of these symptoms. Consistent with this, in a preliminary report, it has been shown that suitable and closely monitored 'triple' anticoagulant therapy that leads to the removal of the microclots also removes the other symptoms. Fibrin amyloid microclots represent a novel and potentially important target for both the understanding and treatment of Long COVID and related disorders.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, South Africa
| | | | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, South Africa
| |
Collapse
|
23
|
Gao T, Lin J, Wei H, Bao B, Zhu H, Zheng X. Platelets mediate trained immunity against bone and joint infections in a mouse model. Bone Joint Res 2022; 11:73-81. [PMID: 35118873 PMCID: PMC8882326 DOI: 10.1302/2046-3758.112.bjr-2021-0279.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIMS Trained immunity confers non-specific protection against various types of infectious diseases, including bone and joint infection. Platelets are active participants in the immune response to pathogens and foreign substances, but their role in trained immunity remains elusive. METHODS We first trained the innate immune system of C57BL/6 mice via intravenous injection of two toll-like receptor agonists (zymosan and lipopolysaccharide). Two, four, and eight weeks later, we isolated platelets from immunity-trained and control mice, and then assessed whether immunity training altered platelet releasate. To better understand the role of immunity-trained platelets in bone and joint infection development, we transfused platelets from immunity-trained mice into naïve mice, and then challenged the recipient mice with Staphylococcus aureus or Escherichia coli. RESULTS After immunity training, the levels of pro-inflammatory cytokines (tumour necrosis factor alpha (TNF-α), interleukin (IL)-17A) and chemokines (CCL5, CXCL4, CXCL5, CXCL7, CXCL12) increased significantly in platelet releasate, while the levels of anti-inflammatory cytokines (IL-4, IL-13) decreased. Other platelet-secreted factors (e.g. platelet-derived growth factor (PDGF)-AA, PDGF-AB, PDGF-BB, cathepsin D, serotonin, and histamine) were statistically indistinguishable between the two groups. Transfusion of platelets from trained mice into naïve mice reduced infection risk and bacterial burden after local or systemic challenge with either S. aureus or E. coli. CONCLUSION Immunity training altered platelet releasate by increasing the levels of inflammatory cytokines/chemokines and decreasing the levels of anti-inflammatory cytokines. Transfusion of platelets from immunity-trained mice conferred protection against bone and joint infection, suggesting that alteration of platelet releasate might be an important mechanism underlying trained immunity and may have clinical implications. Cite this article: Bone Joint Res 2022;11(2):73-81.
Collapse
Affiliation(s)
- Tao Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junqing Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haifeng Wei
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bingbo Bao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongyi Zhu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xianyou Zheng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
24
|
Chen B, Xuan J, Wu F, Shi N, Dai J, Cai S, An S, Huang Q, Huang X, Chen Z, Zeng Z. Administration of recombinant human thrombopoietin is associated with alleviated thrombocytopenia in adult intensive care unit patients with pneumonia: A single-center retrospective study. Front Pharmacol 2022; 13:1007719. [PMID: 36299903 PMCID: PMC9589100 DOI: 10.3389/fphar.2022.1007719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/22/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Recombinant human thrombopoietin (rhTPO) is reported to stimulate platelet production and increase peripheral platelet counts; it is primarily used to manage chemotherapy-induced thrombocytopenia and idiopathic thrombocytopenic purpura. However, the effect of rhTPO in patients with pneumonia and thrombocytopenia remains uncertain. Objective: To assess the association of rhTPO and platelet counts in ICU patients with pneumonia and thrombocytopenia. Materials and Methods: A retrospective cohort study was performed in the ICU department, Nanfang Hospital, Southern Medical University, Guangzhou, China. From January 2016 to April 2021, patients with pneumonia and thrombocytopenia were allocated to two groups-the rhTPO and no-rhTPO groups-according to whether they received rhTPO treatment or not during their ICU stay. Demographical and clinical data were collected and analyzed using statistical software; p < 0.05 was considered statistically significant. Results: Out of 327 patients, 149 were in the rhTPO group and 178 were in the no-rhTPO group. Within the first 7 days, platelet counts increased more for patients in the rhTPO group compared with those in the no-rhTPO group (99.21 ± 102.613 vs. 2.08 ± 43.877, p = 0.000). The clinical recovery rate of platelets increased within 7 days (65.8 vs. 18.5%, p = 0.000) and, after 7 days of enrollment, hemorrhagic scores decreased more apparently in the rhTPO group (2.81 ± 2.856 vs. 1.16 ± 2.123, p = 0.000). Further, bleeding events ceased in 66.7% of the patients in the rhTPO group compared with 37.3% of the patients in the no-rhTPO group (p = 0.000). Less red-blood-cells transfusions were needed in the rhTPO group (3.639 ± 4.630 vs. 5.818 ± 6.858, p = 0.009). Furthermore, through logistic regression, rhTPO administration was found to be an independent indicator that affected the platelet recovery rate within 7 days. Conclusion: This study finds that rhTPO administration is associated with increased platelet counts, alleviated bleeding, and reduced blood transfusion. For patients with pneumonia and thrombocytopenia, rhTPO may be an effective therapeutic drug; however, more RCT trails are needed to confirm our observation.
Collapse
Affiliation(s)
- Bailiang Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Critical Care Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jiabin Xuan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nengxian Shi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianwei Dai
- Department of Critical Care Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengli An
- Department of Biostatistics, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Qiaobing Huang
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xiaoling Huang
- Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Zhongqing Chen, ; Zhenhua Zeng,
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Zhongqing Chen, ; Zhenhua Zeng,
| |
Collapse
|
25
|
Tokarz-Deptuła B, Palma J, Baraniecki Ł, Stosik M, Kołacz R, Deptuła W. What Function Do Platelets Play in Inflammation and Bacterial and Viral Infections? Front Immunol 2021; 12:770436. [PMID: 34970260 PMCID: PMC8713818 DOI: 10.3389/fimmu.2021.770436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
The article presents the function of platelets in inflammation as well as in bacterial and viral infections, which are the result of their reaction with the endovascular environment, including cells of damaged vascular endothelium and cells of the immune system. This role of platelets is conditioned by biologically active substances present in their granules and in their specific structures - EV (extracellular vesicles).
Collapse
Affiliation(s)
| | - Joanna Palma
- Department of Biochemical Sciences, Pomeranian Medical University, Szczecin, Poland
| | | | - Michał Stosik
- Institute of Biological Science, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
| | - Roman Kołacz
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
26
|
Wu S, Wu G, Wu H. A Comparison of Coagulation Function in Patients Receiving Aspirin and Cefoperazone-Sulbactam With and Without Vitamin K 1: A Retrospective, Observational Study. Clin Ther 2021; 43:e335-e345. [PMID: 34819242 DOI: 10.1016/j.clinthera.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The study objective was to explore whether prophylaxis with vitamin K1 improves abnormal coagulation function-associated cefoperazone-sulbactam in patients treated in the long term with low-dose aspirin. METHODS This retrospective, observational study assessed patients treated with long-term low-dose aspirin in a naval military hospital in China from 2004 to 2018, including all patients treated concurrently with cefoperazone-sulbactam with or without vitamin K1. Differences in the coagulation index were analyzed statistically before and after receipt of cefoperazone-sulbactam. FINDINGS The cohort included 227 patients. After cefoperazone-sulbactam treatment, the mean (SD) prothrombin time (PT) was 14.07 (3.07) seconds, activated partial thromboplastin time (aPTT) was 35.15 (4.78) seconds, and international normalized ratio (INR) was 1.49 (0.49) in the cefoperazone-sulbactam group, which was significantly higher than the PT of 11.55 (1.29), aPTT of 31.37 (2.20), and INR of 1.12 (0.35) before cefoperazone-sulbactam treatment. No significant difference was in the cefoperazone-sulbactam plus vitamin K1 group. In addition, no significant difference was found in the thrombin time or fibrinogen level between before and after cefoperazone-sulbactam treatment in both groups. The mean (SD) platelet counts of the 2 groups were 197.34 (71.82) × 109/L and 187.75 (72.66) × 1 09/L after cefoperazone-sulbactam treatment, respectively, which was significantly lower than 231.77 (77.05) × 109/L and 232.08 (84.48) × 109/L before cefoperazone-sulbactam treatment. There were greater proportions of coagulation disorders (prolongation of PT, aPTT, INR, and bleeding) after cefoperazone-sulbactam treatment in the cefoperazone-sulbactam group compared with that in the cefoperazone-sulbactam plus vitamin K1 group. IMPLICATIONS Results indicate that, after adding cefoperazone-sulbactam to the regimens of patients receiving long-term low-dose aspirin, therapy contributed to remarkable increase in abnormal coagulation function and coagulation disorders. Prophylaxis with vitamin K1 decreased the risk of these abnormalities in blood coagulation parameters associated with cefoperazone-sulbactam in patients taking long-term aspirin.
Collapse
Affiliation(s)
- Shuxie Wu
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Gao Wu
- Department of Pharmacy, First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Hanbin Wu
- Clinical Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Jiang H, Li Y, Sheng Q, Dou X. Relationship between Hepatitis B virus infection and platelet production and dysfunction. Platelets 2021; 33:212-218. [PMID: 34806523 DOI: 10.1080/09537104.2021.2002836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatitis B virus (HBV) is a kind of hepatotropic DNA virus. The main target organ is liver, except for liver, HBV has been found in a variety of extrahepatic tissues, such as kidney, thyroid, pancreas, bone marrow, etc. HBV can cause severe complications by invading these tissues. Among them, pancytopenia is one of the common complications, especially thrombocytopenia that causes life-threatening bleeding. However, the mechanism of thrombocytopenia is unclear and the treatment is extremely difficult. It has been confirmed that HBV has a close relationship with platelets. HBV can directly infect bone marrow, inhibit platelet production, and accelerate platelet destruction by activating monocyte-macrophage system and immune system. While platelets act as a double-edged sword to HBV. On one hand, the activated platelets can degranulate and release inflammatory mediators to help clear the viruses. Furthermore, platelets can provide anti-fibrotic molecules to improve liver functions and reduce hepatic fibrosis. On the other hand, platelets can also cause negative effects. The infected platelets collect HBV-specific CD8+ T cells and nonspecific inflammatory cells into liver parenchyma, inducing chronic inflammation, liver fibrosis and hepatic carcinoma. This article explores the interaction between HBV infection and platelets, providing a theoretical basis for clinical treatment of thrombocytopenia and severe hemorrhage caused by HBV infection.
Collapse
Affiliation(s)
- Huinan Jiang
- Department of Infectious Diseases, China Medical University of Shengjing Hospital, Shenyang, China.,Liaoning Key Laboratory of Viral Hepatitis, China Medical University of Shengjing Hospital, Shenyang, China
| | - Yanwei Li
- Department of Infectious Diseases, China Medical University of Shengjing Hospital, Shenyang, China.,Liaoning Key Laboratory of Viral Hepatitis, China Medical University of Shengjing Hospital, Shenyang, China
| | - Qiuju Sheng
- Department of Infectious Diseases, China Medical University of Shengjing Hospital, Shenyang, China.,Liaoning Key Laboratory of Viral Hepatitis, China Medical University of Shengjing Hospital, Shenyang, China
| | - Xiaoguang Dou
- Department of Infectious Diseases, China Medical University of Shengjing Hospital, Shenyang, China.,Liaoning Key Laboratory of Viral Hepatitis, China Medical University of Shengjing Hospital, Shenyang, China
| |
Collapse
|
28
|
Page MJ, Pretorius E. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. Semin Thromb Hemost 2021; 48:382-404. [PMID: 34624913 DOI: 10.1055/s-0041-1733960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction-(neuro)inflammation, neurovascular dysfunction, and hypercoagulation-illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| |
Collapse
|
29
|
Matveeva K, Zyubin A, Demishkevich E, Rafalskiy V, Moiseeva E, Kon I, Kundalevich A, Butova V, Samusev I. Spectral and time-resolved photoluminescence of human platelets doped with platinum nanoparticles. PLoS One 2021; 16:e0256621. [PMID: 34469464 PMCID: PMC8409683 DOI: 10.1371/journal.pone.0256621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
This paper describes a detailed study of spectral and time-resolved photoprocesses in human platelets and their complexes with platinum (Pt) nanoparticles (NPs). Fluorescence, quantum yield, and platelet amino acid lifetime changes in the presence and without femtosecond ablated platinum NPs have been studied. Fluorescence spectroscopy analysis of main fluorescent amino acids and their residues (tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe)) belonging to the platelet membrane have been performed. The possibility of energy transfer between Pt NPs and the platelet membrane has been revealed. Förster Resonance Energy Transfer (FRET) model was used to perform the quantitative evaluation of energy transfer parameters. The prospects of Pt NPs usage deals with quenching-based sensing for pathology's based on platelet conformations as cardiovascular diseases have been demonstrated.
Collapse
Affiliation(s)
- Karina Matveeva
- REC «Fundamental and Applied Photonics, Nanophotonics», Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia
| | - Andrey Zyubin
- REC «Fundamental and Applied Photonics, Nanophotonics», Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia
| | - Elizaveta Demishkevich
- REC «Fundamental and Applied Photonics, Nanophotonics», Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia
| | - Vladimir Rafalskiy
- REC «Fundamental and Applied Photonics, Nanophotonics», Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia
| | - Ekaterina Moiseeva
- REC «Fundamental and Applied Photonics, Nanophotonics», Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia
| | - Igor Kon
- REC «Fundamental and Applied Photonics, Nanophotonics», Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia
| | - Anna Kundalevich
- REC «Fundamental and Applied Photonics, Nanophotonics», Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia
| | - Viktoria Butova
- REC «Fundamental and Applied Photonics, Nanophotonics», Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia
| | - Ilia Samusev
- REC «Fundamental and Applied Photonics, Nanophotonics», Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia
| |
Collapse
|
30
|
Getu S, Tiruneh T, Andualem H, Hailemichael W, Kiros T, Mesfin Belay D, Kiros M. Coagulopathy in SARS-CoV-2 Infected Patients: Implication for the Management of COVID-19. J Blood Med 2021; 12:635-643. [PMID: 34305416 PMCID: PMC8296964 DOI: 10.2147/jbm.s304783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 disease has led to an extraordinary inclusive health crisis globally. Elevation of D-dimer is the major remarkable abnormal coagulation test in seriously ill COVID-19 patients. In nearly 50% of COVID-19 patients, the value of D-dimer was significantly enhancing. Recent literature indicated that COVID-19 patients were at higher risk of developing disseminated intravascular coagulation. Pro-inflammatory cytokines and chemokines are some of the factors leading to these conditions. The majority of COVID-19 patients showed a higher profile of pro-inflammatory cytokines and chemokines in severe clinical conditions. Tumor necrosis factor-α (TNF-α) and interleukins (ILs) elevated in COVID-19 infected patients. TNF-α, IL-6, and IL-1 are major cytokines vital for the inhibition of intrinsic anticoagulant pathways. COVID-19 becomes a higher complication with a significant effect on blood cell production and hemostasis cascades. Deep vein thrombosis and arterial thrombosis are common complications. Changes in hematological parameters are also frequently observed in COVID-19 patients. Especially, thrombocytopenia is an indicator for poor prognosis of the disease and is highly expected and aggravates the likelihood of death of SARS-CoV-2 infected individuals. Thrombopoiesis reduction in COVID-19 patients might be due to viral abuse of the bone marrow/the viral load may affect thrombopoietin production and function. In other ways, immune-inflammation-mediated destruction and increased consumption of platelets are also the possible proposed mechanisms for thrombocytopenia. Therefore, the counting of platelet cells is an easily accessible biomarker for disease monitoring. All SARS-CoV-2 infected patients should be admitted and identifying potential higher-risk patients. It is also obligatory to provide appropriate treatments with intensive care and strict follow-up. In addition, considerations of chronic diseases are essential for better prognosis and recovery. The current review discusses coagulopathy among SARS-CoV-2 infected individuals and its complication for the management of the disease.
Collapse
Affiliation(s)
- Sisay Getu
- Hematology and Immuno-hematology, Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tegenaw Tiruneh
- Hematology and Immuno-hematology, Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Henok Andualem
- Immunology and Molecular Biology, Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Wasihun Hailemichael
- Immunology and Molecular Biology, Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Teklehayimanot Kiros
- Microbiology, Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Demeke Mesfin Belay
- Pediatrics and Child Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Kiros
- Microbiology, Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
31
|
Pretorius E. Platelets in HIV: A Guardian of Host Defence or Transient Reservoir of the Virus? Front Immunol 2021; 12:649465. [PMID: 33968041 PMCID: PMC8102774 DOI: 10.3389/fimmu.2021.649465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 01/28/2023] Open
Abstract
The immune and inflammatory responses of platelets to human immunodeficiency virus 1 (HIV-1) and its envelope proteins are of great significance to both the treatment of the infection, and to the comorbidities related to systemic inflammation. Platelets can interact with the HIV-1 virus itself, or with viral membrane proteins, or with dysregulated inflammatory molecules in circulation, ensuing from HIV-1 infection. Platelets can facilitate the inhibition of HIV-1 infection via endogenously-produced inhibitors of HIV-1 replication, or the virus can temporarily hide from the immune system inside platelets, whereby platelets act as HIV-1 reservoirs. Platelets are therefore both guardians of the host defence system, and transient reservoirs of the virus. Such reservoirs may be of particular significance during combination antiretroviral therapy (cART) interruption, as it may drive viral persistence, and result in significant implications for treatment. Both HIV-1 envelope proteins and circulating inflammatory molecules can also initiate platelet complex formation with immune cells and erythrocytes. Complex formation cause platelet hypercoagulation and may lead to an increased thrombotic risk. Ultimately, HIV-1 infection can initiate platelet depletion and thrombocytopenia. Because of their relatively short lifespan, platelets are important signalling entities, and could be targeted more directly during HIV-1 infection and cART.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
32
|
Favaloro EJ. 2021 Eberhard F. Mammen Award Announcements: Part I-Most Popular Articles. Semin Thromb Hemost 2021; 47:467-476. [PMID: 33890253 DOI: 10.1055/s-0041-1726415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
33
|
Larsen JB, Hvas AM. Fibrinolytic Alterations in Sepsis: Biomarkers and Future Treatment Targets. Semin Thromb Hemost 2021; 47:589-600. [PMID: 33878784 DOI: 10.1055/s-0041-1725096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sepsis is a life-threatening condition which develops as a dysregulated immune response in the face of infection and which is associated with profound hemostatic disturbances and in the most extreme cases disseminated intravascular coagulation (DIC). In addition, the fibrinolytic system is subject to alterations during infection and sepsis, and impaired fibrinolysis is currently considered a key player in sepsis-related microthrombus formation and DIC. However, we still lack reliable biomarkers to assess fibrinolysis in the clinical setting. Furthermore, drugs targeting the fibrinolytic system have potential value in sepsis patients with severe fibrinolytic disturbances, but these are still being tested in the preclinical stage. The present review provides an overview of key fibrinolytic changes in sepsis, reviews the current literature on potential laboratory markers of altered fibrinolysis in adult sepsis patients, and discusses future perspectives for diagnosis and treatment of fibrinolytic disturbances in sepsis patients.
Collapse
Affiliation(s)
- Julie Brogaard Larsen
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Mette Hvas
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Allaoui A, Khawaja AA, Badad O, Naciri M, Lordkipanidzé M, Guessous F, Zaid Y. Platelet Function in Viral Immunity and SARS-CoV-2 Infection. Semin Thromb Hemost 2021; 47:419-426. [PMID: 33851385 DOI: 10.1055/s-0041-1726033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Platelets, as nonnucleated blood components, are classically recognized for their pivotal role in hemostasis. In recent years, however, accumulating evidence points to a nonhemostatic role for platelets, as active participants in the inflammatory and immune responses to microbial organisms in infectious diseases. This stems from the ability of activated platelets to secrete a plethora of immunomodulatory cytokines and chemokines, as well as directly interplaying with viral receptors. While much attention has been given to the role of the cytokine storm in the severity of the coronavirus disease 2019 (COVID-19), less is known about the contribution of platelets to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we give a brief overview on the platelet contribution to antiviral immunity and response during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Afaf Allaoui
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Akif A Khawaja
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Oussama Badad
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco.,Department of Plant, Southern Illinois University, Carbondale, Illinois
| | - Mariam Naciri
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montréal, Quebec, Canada.,Faculty of pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Fadila Guessous
- Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia.,Department of Biological Sciences, Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Younes Zaid
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco.,Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco
| |
Collapse
|
35
|
Madzime M, Rossouw TM, Theron AJ, Anderson R, Steel HC. Interactions of HIV and Antiretroviral Therapy With Neutrophils and Platelets. Front Immunol 2021; 12:634386. [PMID: 33777022 PMCID: PMC7994251 DOI: 10.3389/fimmu.2021.634386] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils are important components of the innate immune system that mediate pathogen defense by multiple processes including phagocytosis, release of proteolytic enzymes, production of reactive oxygen species, and neutrophil extracellular trap formation. Abnormalities of neutrophil count and function have been described in the setting of HIV infection, with the majority of antiretroviral agents (ARVs), excluding zidovudine, having been reported to correct neutropenia. Questions still remain, however, about their impact on neutrophil function, particularly the possibility of persistent neutrophil activation, which could predispose people living with HIV to chronic inflammatory disorders, even in the presence of virally-suppressive treatment. In this context, the effects of protease inhibitors and integrase strand transfer inhibitors, in particular, on neutrophil function remain poorly understood and deserve further study. Besides mediating hemostatic functions, platelets are increasingly recognized as critical role players in the immune response against infection. In the setting of HIV, these cells have been found to harbor the virus, even in the presence of antiretroviral therapy (ART) potentially promoting viral dissemination. While HIV-infected individuals often present with thrombocytopenia, they have also been reported to have increased platelet activation, as measured by an upregulation of expression of CD62P (P-selectin), CD40 ligand, glycoprotein IV, and RANTES. Despite ART-mediated viral suppression, HIV-infected individuals reportedly have sustained platelet activation and dysfunction. This, in turn, contributes to persistent immune activation and an inflammatory vascular environment, seemingly involving neutrophil-platelet-endothelium interactions that increase the risk for development of comorbidities such as cardiovascular disease (CVD) that has become the leading cause of morbidity and mortality in HIV-infected individuals on treatment, clearly underscoring the importance of unraveling the possible etiologic roles of ARVs. In this context, abacavir and ritonavir-boosted lopinavir and darunavir have all been linked to an increased risk of CVD. This narrative review is therefore focused primarily on the role of neutrophils and platelets in HIV transmission and disease, as well as on the effect of HIV and the most common ARVs on the numbers and functions of these cells, including neutrophil-platelet-endothelial interactions.
Collapse
Affiliation(s)
- Morris Madzime
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Theresa M Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Annette J Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
36
|
Adelborg K, Larsen JB, Hvas AM. Disseminated intravascular coagulation: epidemiology, biomarkers, and management. Br J Haematol 2021; 192:803-818. [PMID: 33555051 DOI: 10.1111/bjh.17172] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Disseminated intravascular coagulation (DIC) is a systemic activation of the coagulation system, which results in microvascular thrombosis and, simultaneously, potentially life-threatening haemorrhage attributed to consumption of platelets and coagulation factors. Underlying conditions, e.g. infection, cancer, or obstetrical complications are responsible for the initiation and propagation of the DIC process. This review provides insights into the epidemiology of DIC and the current understanding of its pathophysiology. It details the use of diagnostic biomarkers, current diagnostic recommendations from international medical societies, and it provides an overview of emerging diagnostic and prognostic biomarkers. Last, it provides guidance on management. It is concluded that timely and accurate diagnosis of DIC and its underlying condition is essential for the prognosis. Treatment should primarily focus on the underlying cause of DIC and supportive treatment should be individualised according to the underlying aetiology, patient's symptoms and laboratory records.
Collapse
Affiliation(s)
- Kasper Adelborg
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Denmark
| | - Julie B Larsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
37
|
Theron AJ, Steel HC, Rapoport BL, Anderson R. Contrasting Immunopathogenic and Therapeutic Roles of Granulocyte Colony-Stimulating Factor in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13110406. [PMID: 33233675 PMCID: PMC7699711 DOI: 10.3390/ph13110406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor cells are particularly adept at exploiting the immunosuppressive potential of neutrophils as a strategy to achieve uncontrolled proliferation and spread. Recruitment of neutrophils, particularly those of an immature phenotype, known as granulocytic myeloid-derived suppressor cells, is achieved via the production of tumor-derived granulocyte colony-stimulating factor (G-CSF) and neutrophil-selective chemokines. This is not the only mechanism by which G-CSF contributes to tumor-mediated immunosuppression. In this context, the G-CSF receptor is expressed on various cells of the adaptive and innate immune systems and is associated with induction of T cell polarization towards the Th2 and regulatory T cell (Treg) phenotypes. In contrast to the potentially adverse effects of sustained, endogenous production of G-CSF by tumor cells, stringently controlled prophylactic administration of recombinant (r) G-CSF is now a widely practiced strategy in medical oncology to prevent, and in some cases treat, chemotherapy-induced severe neutropenia. Following an overview of the synthesis, structure and function of G-CSF and its receptor, the remainder of this review is focused on: (i) effects of G-CSF on the cells of the adaptive and innate immune systems; (ii) mechanisms by which this cytokine promotes tumor progression and invasion; and (iii) current clinical applications and potential risks of the use of rG-CSF in medical oncology.
Collapse
Affiliation(s)
- Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
- Correspondence: ; Tel.: +27-12-319-2355
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
| | - Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
| |
Collapse
|
38
|
Affiliation(s)
- Julie Brogaard Larsen
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Leonardo Pasalic
- Sydney Centres for Thrombosis and Haemostasis, Sydney, Australia
- Department of Haematology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, NSW Health Pathology, Sydney, Australia
| | - Anne-Mette Hvas
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
39
|
Parra-Izquierdo I, Aslan JE. Perspectives on Platelet Heterogeneity and Host Immune Response in Coronavirus Disease 2019 (COVID-19). Semin Thromb Hemost 2020; 46:826-830. [PMID: 32882716 PMCID: PMC7645832 DOI: 10.1055/s-0040-1715093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Iván Parra-Izquierdo
- Knight Cardiovascular Institute, Division of Cardiology, Department of Medicine, School of Medicine, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Joseph E. Aslan
- Knight Cardiovascular Institute, Division of Cardiology, Department of Medicine, School of Medicine, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
40
|
Dorgalaleh A, Dabbagh A, Tabibian S, Baghaeipour MR, Jazebi M, Bahraini M, Fazeli S, Rad F, Baghaeipour N. Patients with Congenital Bleeding Disorders Appear to be Less Severely Affected by SARS-CoV-2: Is Inherited Hypocoagulability Overcoming Acquired Hypercoagulability of Coronavirus Disease 2019 (COVID-19)? Semin Thromb Hemost 2020; 46:853-855. [PMID: 32557449 PMCID: PMC7645829 DOI: 10.1055/s-0040-1713435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Akbar Dorgalaleh
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Dabbagh
- Anesthesiology Department & Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Tabibian
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | | | | | - Mehran Bahraini
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Fazeli
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fariba Rad
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | | |
Collapse
|
41
|
Feldman C, Anderson R. Platelets and Their Role in the Pathogenesis of Cardiovascular Events in Patients With Community-Acquired Pneumonia. Front Immunol 2020; 11:577303. [PMID: 33042161 PMCID: PMC7527494 DOI: 10.3389/fimmu.2020.577303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Community-acquired pneumonia (CAP) remains an important cause of morbidity and mortality throughout the world with much recent and ongoing research focused on the occurrence of cardiovascular events (CVEs) during the infection, which are associated with adverse short-term and long-term survival. Much of the research directed at unraveling the pathogenesis of these events has been undertaken in the settings of experimental and clinical CAP caused by the dangerous, bacterial respiratory pathogen, Streptococcus pneumoniae (pneumococcus), which remains the most common bacterial cause of CAP. Studies of this type have revealed that although platelets play an important role in host defense against infection, there is also increasing recognition that hyperactivation of these cells contributes to a pro-inflammatory, prothrombotic systemic milieu that contributes to the etiology of CVEs. In the case of the pneumococcus, platelet-driven myocardial damage and dysfunction is exacerbated by the direct cardiotoxic actions of pneumolysin, a major pore-forming toxin of this pathogen, which also acts as potent activator of platelets. This review is focused on the role of platelets in host defense against infection, including pneumococcal infection in particular, and reviews the current literature describing the potential mechanisms by which platelet activation contributes to cardiovascular complications in CAP. This is preceded by an evaluation of the burden of pneumococcal infection in CAP, the clinical features and putative pathogenic mechanisms of the CVE, and concludes with an evaluation of the potential utility of the anti-platelet activity of macrolides and various adjunctive therapies.
Collapse
Affiliation(s)
- Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, Institute of Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
42
|
Feldman C, Anderson R. Brief review: Cardiac complications and platelet activation in COVID-19 infection. Afr J Thorac Crit Care Med 2020; 26:10.7196/AJTCCM.2020.v26i3.107. [PMID: 34235425 PMCID: PMC7433708 DOI: 10.7196/ajtccm.2020.v26i3.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
COVID-19 pneumonia, much like that of bacterial and viral community-acquired pneumonia before it, is accompanied by a high rate of cardio- and cerebrovascular events that are associated with an increased risk of complications and a greater mortality. Although the mechanisms underlying the pathogenesis of these adverse events are not entirely clear and may be multifactorial, platelets appear to have a prominent aetiologic role and this, together with an overview of the clinical evidence, forms the basis of this short review.
Collapse
Affiliation(s)
- C Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - R Anderson
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
43
|
Hardy M, Lecompte T, Douxfils J, Lessire S, Dogné JM, Chatelain B, Testa S, Gouin-Thibault I, Gruel Y, Medcalf RL, ten Cate H, Lippi G, Mullier F. Management of the thrombotic risk associated with COVID-19: guidance for the hemostasis laboratory. Thromb J 2020; 18:17. [PMID: 32922211 PMCID: PMC7474970 DOI: 10.1186/s12959-020-00230-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is associated with extreme inflammatory response, disordered hemostasis and high thrombotic risk. A high incidence of thromboembolic events has been reported despite thromboprophylaxis, raising the question of a more effective anticoagulation. First-line hemostasis tests such as activated partial thromboplastin time, prothrombin time, fibrinogen and D-dimers are proposed for assessing thrombotic risk and monitoring hemostasis, but are vulnerable to many drawbacks affecting their reliability and clinical relevance. Specialized hemostasis-related tests (soluble fibrin complexes, tests assessing fibrinolytic capacity, viscoelastic tests, thrombin generation) may have an interest to assess the thrombotic risk associated with COVID-19. Another challenge for the hemostasis laboratory is the monitoring of heparin treatment, especially unfractionated heparin in the setting of an extreme inflammatory response. This review aimed at evaluating the role of hemostasis tests in the management of COVID-19 and discussing their main limitations.
Collapse
Affiliation(s)
- M. Hardy
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Hematology Laboratory, Yvoir, Belgium
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Anesthesiology Department, Yvoir, Belgium
| | - T. Lecompte
- Département de Médecine, Hôpitaux Universitaires de Genève, service d’angiologie et d’hémostase et Faculté de Médecine Geneva Platelet Group (GpG), Université de Genève, Geneva, Suisse Switzerland
| | - J. Douxfils
- Pharmacy Department, University of Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur, Belgium
- Qualiblood s.a, Namur, Belgium
| | - S. Lessire
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Anesthesiology Department, Yvoir, Belgium
| | - J. M. Dogné
- Pharmacy Department, University of Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur, Belgium
| | - B. Chatelain
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Hematology Laboratory, Yvoir, Belgium
| | - S. Testa
- Haemostasis and Thrombosis Center, Cremona Hospital, Cremona, Italy
| | - I. Gouin-Thibault
- Département d’Hématologie Biologique, INSERM, CIC 1414 (Centre d’Investigation Clinique de Rennes), Université de Rennes, CHU de Rennes, Rennes, France
| | - Y. Gruel
- Laboratoire d’Hématologie-Hémostase, CHRU de Tours, Hôpital Trousseau, Tours, France
| | - R. L. Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria Australia
| | - H. ten Cate
- Department of Internal Medicine, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - G. Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - F. Mullier
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Hematology Laboratory, Yvoir, Belgium
| |
Collapse
|
44
|
Zadow EK, Wundersitz DWT, Hughes DL, Adams MJ, Kingsley MIC, Blacklock HA, Wu SSX, Benson AC, Dutheil F, Gordon BA. Coronavirus (COVID-19), Coagulation, and Exercise: Interactions That May Influence Health Outcomes. Semin Thromb Hemost 2020; 46:807-814. [PMID: 32882720 PMCID: PMC7645838 DOI: 10.1055/s-0040-1715094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The proinflammatory cytokine storm associated with coronavirus disease 2019 (COVID-19) negatively affects the hematological system, leading to coagulation activation and endothelial dysfunction and thereby increasing the risk of venous and arterial thrombosis. Coagulopathy has been reported as associated with mortality in people with COVID-19 and is partially reflected by enhanced D-dimer levels. Poor vascular health, which is associated with the cardiometabolic health conditions frequently reported in people with severer forms of COVID-19, might exacerbate the risk of coagulopathy and mortality. Sedentary lifestyles might also contribute to the development of coagulopathy, and physical activity participation has been inherently lowered due to at-home regulations established to slow the spread of this highly infectious disease. It is possible that COVID-19, coagulation, and reduced physical activity may contribute to generate a “perfect storm,” where each fuels the other and potentially increases mortality risk. Several pharmaceutical agents are being explored to treat COVID-19, but potential negative consequences are associated with their use. Exercise is known to mitigate many of the identified side effects from the pharmaceutical agents being trialled but has not yet been considered as part of management for COVID-19. From the limited available evidence in people with cardiometabolic health conditions, low- to moderate-intensity exercise might have the potential to positively influence biochemical markers of coagulopathy, whereas high-intensity exercise is likely to increase thrombotic risk. Therefore, low- to moderate-intensity exercise could be an adjuvant therapy for people with mild-to-moderate COVID-19 and reduce the risk of developing severe symptoms of illness that are associated with enhanced mortality.
Collapse
Affiliation(s)
- Emma Kate Zadow
- Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia
| | | | - Diane Louise Hughes
- Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia.,Department of Pharmacy and Biomedical Sciences, School of Molecular Sciences, La Trobe University, Bendigo, Victoria, Australia
| | - Murray John Adams
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Michael Ian Charles Kingsley
- Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia.,Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | | | - Sam Shi Xuan Wu
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Amanda Clare Benson
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Witty Fit, Clermont-Ferrand, France
| | - Brett Ashley Gordon
- Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia
| |
Collapse
|
45
|
Grobler C, Maphumulo SC, Grobbelaar LM, Bredenkamp JC, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB, Pretorius E. Covid-19: The Rollercoaster of Fibrin(Ogen), D-Dimer, Von Willebrand Factor, P-Selectin and Their Interactions with Endothelial Cells, Platelets and Erythrocytes. Int J Mol Sci 2020; 21:ijms21145168. [PMID: 32708334 PMCID: PMC7403995 DOI: 10.3390/ijms21145168] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), also known as coronavirus disease 2019 (COVID-19)-induced infection, is strongly associated with various coagulopathies that may result in either bleeding and thrombocytopenia or hypercoagulation and thrombosis. Thrombotic and bleeding or thrombotic pathologies are significant accompaniments to acute respiratory syndrome and lung complications in COVID-19. Thrombotic events and bleeding often occur in subjects with weak constitutions, multiple risk factors and comorbidities. Of particular interest are the various circulating inflammatory coagulation biomarkers involved directly in clotting, with specific focus on fibrin(ogen), D-dimer, P-selectin and von Willebrand Factor (VWF). Central to the activity of these biomarkers are their receptors and signalling pathways on endothelial cells, platelets and erythrocytes. In this review, we discuss vascular implications of COVID-19 and relate this to circulating biomarker, endothelial, erythrocyte and platelet dysfunction. During the progression of the disease, these markers may either be within healthy levels, upregulated or eventually depleted. Most significant is that patients need to be treated early in the disease progression, when high levels of VWF, P-selectin and fibrinogen are present, with normal or slightly increased levels of D-dimer (however, D-dimer levels will rapidly increase as the disease progresses). Progression to VWF and fibrinogen depletion with high D-dimer levels and even higher P-selectin levels, followed by the cytokine storm, will be indicative of a poor prognosis. We conclude by looking at point-of-care devices and methodologies in COVID-19 management and suggest that a personalized medicine approach should be considered in the treatment of patients.
Collapse
Affiliation(s)
- Corlia Grobler
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - Siphosethu C. Maphumulo
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - L. Mireille Grobbelaar
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - Jhade C. Bredenkamp
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - Gert J. Laubscher
- Elsie du Toit Street, Stellenbosch MediClinic, Stellenbosch 7600, South Africa; (G.J.L.); (P.J.L.)
| | - Petrus J. Lourens
- Elsie du Toit Street, Stellenbosch MediClinic, Stellenbosch 7600, South Africa; (G.J.L.); (P.J.L.)
| | - Janami Steenkamp
- PathCare Laboratories, PathCare Business Centre, Neels Bothma Street, N1 City, Cape Town 7460, South Africa;
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Kemitorve Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (D.B.K.); (E.P.)
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
- Correspondence: (D.B.K.); (E.P.)
| |
Collapse
|
46
|
Harenberg J, Favaloro E. COVID-19: progression of disease and intravascular coagulation - present status and future perspectives. Clin Chem Lab Med 2020; 58:1029-1036. [PMID: 32406381 DOI: 10.1515/cclm-2020-0502] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
The timely and accurate diagnosis of infection with severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), remains the cornerstone of efforts to provide appropriated treatment for patients, to limit further spread of the virus and ultimately to eliminate the virus from the human society. We focus this article on (a) developments for improvement of diagnosis of specific SARS-CoV-2 virus, (b) laboratory changes in the immunologic and coagulation system, (c) therapeutic options for anticoagulant treatment of seriously affected patients and (d) on the perspectives through improvement of diagnostic and therapeutic medical procedures.
Collapse
Affiliation(s)
- Job Harenberg
- University of Heidelberg, DOASENSE GmbH, Waldhofer Str. 102, 69123 Heidelberg, Germany
| | - Emmanuel Favaloro
- Department of Haematology, Sydney Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
47
|
Kell DB, Heyden EL, Pretorius E. The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria. Front Immunol 2020; 11:1221. [PMID: 32574271 PMCID: PMC7271924 DOI: 10.3389/fimmu.2020.01221] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Lactoferrin is a nutrient classically found in mammalian milk. It binds iron and is transferred via a variety of receptors into and between cells, serum, bile, and cerebrospinal fluid. It has important immunological properties, and is both antibacterial and antiviral. In particular, there is evidence that it can bind to at least some of the receptors used by coronaviruses and thereby block their entry. Of importance are Heparan Sulfate Proteoglycans (HSPGs) and the host receptor angiotensin-converting enzyme 2 (ACE2), as based on other activities lactoferrin might prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from attaching to the host cells. Lactoferrin (and more specifically enteric-coated LF because of increased bioavailability) may consequently be of preventive and therapeutic value during the present COVID-19 pandemic.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Faculty of Health and Life Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | | | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
48
|
Kowalik MM, Trzonkowski P, Łasińska-Kowara M, Mital A, Smiatacz T, Jaguszewski M. COVID-19 - Toward a comprehensive understanding of the disease. Cardiol J 2020; 27:99-114. [PMID: 32378729 PMCID: PMC8016030 DOI: 10.5603/cj.a2020.0065] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/07/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
The evidence on the pathophysiology of the novel coronavirus SARS-CoV-2 infection is rapidly growing. Understanding why some patients suffering from COVID-19 are getting so sick, while others are not, has become an informal imperative for researchers and clinicians around the globe. The answer to this question would allow rationalizing the fear surrounding this pandemic. Understanding of the pathophysiology of COVID-19 relies on an understanding of interplaying mechanisms, including SARS-CoV-2 virulence, human immune response, and complex inflammatory reactions with coagulation playing a major role. An interplay with bacterial co-infections, as well as the vascular system and microcirculation affected throughout the body should also be examined. More importantly, a compre-hensive understanding of pathological mechanisms of COVID-19 will increase the efficacy of therapy and decrease mortality. Herewith, presented is the current state of knowledge on COVID-19: beginning from the virus, its transmission, and mechanisms of entry into the human body, through the pathological effects on the cellular level, up to immunological reaction, systemic and organ presentation. Last but not least, currently available and possible future therapeutic and diagnostic options are briefly commented on.
Collapse
Affiliation(s)
- Maciej M Kowalik
- Department of Cardiac Anesthesiology, Medical University of Gdańsk, Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland.
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Dębinki 1, 80-209 Gdańsk, Poland
| | - Magdalena Łasińska-Kowara
- Department of Cardiac Anesthesiology, Medical University of Gdańsk, Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Andrzej Mital
- Department of Hematology and Transplantology, Medical University of Gdansk, Poland
| | | | - Miłosz Jaguszewski
- 1st Department of Cardiology, University Catheterization Laboratories, Medical University of Gdansk, Poland
| |
Collapse
|
49
|
Favaloro EJ, Lippi G. Recommendations for Minimal Laboratory Testing Panels in Patients with COVID-19: Potential for Prognostic Monitoring. Semin Thromb Hemost 2020; 46:379-382. [PMID: 32279286 PMCID: PMC7295306 DOI: 10.1055/s-0040-1709498] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Emmanuel J. Favaloro
- Department of Haematology, Sydney Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Neuroscience, Biomedicine, and Movement, University of Verona, Verona, Italy
| |
Collapse
|