1
|
Villalobos-González L, Carreras C, Beltrán MF, Figueroa F, Rubilar-Hernández C, Opazo I, Toro G, Salvatierra A, Sagredo B, Pizarro L, Fiore N, Pinto M, Arbona V, Gómez-Cadenas A, Pimentel P. Sweet Cherry Plants Prioritize Their Response to Cope with Summer Drought, Overshadowing the Defense Response to Pseudomonas syringae pv. syringae. PLANTS (BASEL, SWITZERLAND) 2024; 13:1737. [PMID: 38999578 PMCID: PMC11243571 DOI: 10.3390/plants13131737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Disease severity and drought due to climate change present significant challenges to orchard productivity. This study examines the effects of spring inoculation with Pseudomonas syringae pv. syringae (Pss) on sweet cherry plants, cvs. Bing and Santina with varying defense responses, assessing plant growth, physiological variables (water potential, gas exchange, and plant hydraulic conductance), and the levels of abscisic acid (ABA) and salicylic acid (SA) under two summer irrigation levels. Pss inoculation elicited a more pronounced response in 'Santina' compared to 'Bing' at 14 days post-inoculation (dpi), and those plants inoculated with Pss exhibited a slower leaf growth and reduced transpiration compared to control plants during 60 dpi. During differential irrigations, leaf area was reduced 14% and 44% in Pss inoculated plants of 'Bing' and 'Santina' respectively, under well-watered (WW) conditions, without changes in plant water status or gas exchange. Conversely, water-deficit (WD) conditions led to gas exchange limitations and a 43% decrease in plant biomass compared to that under WW conditions, with no differences between inoculation treatments. ABA levels were lower under WW than under WD at 90 dpi, while SA levels were significantly higher in Pss-inoculated plants under WW conditions. These findings underscore the influence on plant growth during summer in sweet cherry cultivars that showed a differential response to Pss inoculations and how the relationship between ABA and SA changes in plant drought level responses.
Collapse
Affiliation(s)
| | - Claudia Carreras
- Facultad de Ciencias Agronómicas, Departamento de Sanidad Vegetal, Universidad de Chile, La Pintana 8820808, Chile
- Programa de Doctorado en Ciencias Silvoagropecuaria y Veterinarias, Campus Sur, Universidad de Chile, La Pintana 8820808, Chile
| | - María Francisca Beltrán
- Facultad de Ciencias Agronómicas, Departamento de Sanidad Vegetal, Universidad de Chile, La Pintana 8820808, Chile
- Programa de Doctorado en Ciencias Silvoagropecuaria y Veterinarias, Campus Sur, Universidad de Chile, La Pintana 8820808, Chile
| | - Franco Figueroa
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O'Higgins, San Fernando 3070000, Chile
| | - Carlos Rubilar-Hernández
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O'Higgins, San Fernando 3070000, Chile
| | - Ismael Opazo
- Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo 2940000, Chile
| | - Guillermo Toro
- Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo 2940000, Chile
| | - Ariel Salvatierra
- Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo 2940000, Chile
| | - Boris Sagredo
- Instituto de Investigaciones Agropecuarias INIA Rayentué, Rengo 2940000, Chile
| | - Lorena Pizarro
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O'Higgins, San Fernando 3070000, Chile
- Centro de Biología de Sistemas para el Estudio de Comunidades Extremófilas de Relaves Mineros (SYSTEMIX), Universidad de O'Higgins, Rancagua 2820000, Chile
| | - Nicola Fiore
- Facultad de Ciencias Agronómicas, Departamento de Sanidad Vegetal, Universidad de Chile, La Pintana 8820808, Chile
| | - Manuel Pinto
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O'Higgins, San Fernando 3070000, Chile
| | - Vicent Arbona
- Department Ciències Agràries i del Medi Natural, Universitat de Jaume I, 12071 Castellon de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Department Ciències Agràries i del Medi Natural, Universitat de Jaume I, 12071 Castellon de la Plana, Spain
| | - Paula Pimentel
- Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo 2940000, Chile
| |
Collapse
|
2
|
Kostic I, Nikolic N, Milanovic S, Milenkovic I, Pavlovic J, Paravinja A, Nikolic M. Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1265782. [PMID: 37705706 PMCID: PMC10495579 DOI: 10.3389/fpls.2023.1265782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Beneficial effects of silicon (Si) on plants have primarily been studied in crop species under single stress. Moreover, nutrient acquisition-based responses to combination of biotic and abiotic stresses (a common situation in natural habitats) have rarely been reported, in particular in conjunction with soil amendments with Si. Pedunculate oak (Quercus robur L.), one of the ecologically and economically most important tree species in Europe, is facing a severe decline due to combined stresses, but also problems in assisted regeneration in nurseries. Here, we studied the effect of Si supply on the leaf nutriome, root traits and overall growth of 12-weeks-old oak seedlings exposed to abiotic stress [low phosphorus (P) supply], biotic stress (Phytophthora plurivora root infection), and their combination. The application of Si had the strongest ameliorative effect on growth, root health and root phenome under the most severe stress conditions (i.e., combination of P deficiency and P. plurivora root infection), where it differentially affected the uptake and leaf accumulation in 11 out of 13 analysed nutrients. Silicon supply tended to reverse the pattern of change of some, but not all, leaf nutrients affected by stresses: P, boron (B) and magnesium (Mg) under P deficiency, and P, B and sulphur (S) under pathogen attack, but also nickel (Ni) and molybdenum (Mo) under all three stresses. Surprisingly, Si affected some nutrients that were not changed by a particular stress itself and decreased leaf Mg levels under all the stresses. On the other hand, pathogen attack increased leaf accumulation of Si. This exploratory work presents the complexity of nutrient crosstalk under three stresses, and opens more questions about genetic networks that control plant physiological responses. Practically, we show a potential of Si application to improve P status and root health in oak seedlings, particularly in nurseries.
Collapse
Affiliation(s)
- Igor Kostic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Nina Nikolic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Slobodan Milanovic
- Faculty of Forestry, University of Belgrade, Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Ivan Milenkovic
- Faculty of Forestry, University of Belgrade, Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Jelena Pavlovic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ana Paravinja
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Miroslav Nikolic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Albalawi MA, Abdelaziz AM, Attia MS, Saied E, Elganzory HH, Hashem AH. Mycosynthesis of Silica Nanoparticles Using Aspergillus niger: Control of Alternaria solani Causing Early Blight Disease, Induction of Innate Immunity and Reducing of Oxidative Stress in Eggplant. Antioxidants (Basel) 2022; 11:2323. [PMID: 36552531 PMCID: PMC9774718 DOI: 10.3390/antiox11122323] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
The threats to the life and production of crops are exacerbated by climate change and the misuse of chemical pesticides. This study was designed to evaluate the effectiveness of biosynthesized silica nanoparticles (SiO2-NPs) as an alternative to pesticides against early blight disease of eggplant. Antifungal activity, disease index, photosynthetic pigments, osmolytes, oxidative stress, antioxidant enzymes activities were tested for potential tolerance of eggplant infected with Alternaria solani. Silica nanoparticles were successfully biosynthesized using Aspergillus niger through green and ecofriendly method. Results revealed that SiO2-NPs exhibited promising antifungal activity against A. solani where MIC was 62.5 µg/mL, and inhibition growth at concentration 1000 µg/mL recorded 87.8%. The disease Index (DI) as a result of infection with A. solani reached 82.5%, and as a result, a severe decrease in stem and root length and number of leaves occurred, which led to a sharp decrease in the photosynthetic pigments. However, contents of free proline, total phenol and antioxidant enzymes activity were increased in infected plants. On the other hand, the treatment with SiO2-NPs 100 ppm led to a great reduction in the disease Index (DI) by 25% and a high protection rate by 69.69%. A clear improvement in growth characteristics and a high content of chlorophyll and total carotenoids was also observed in the plants as a result of treatment with silica nanoparticles in (healthy and infected) plants. Interestingly, the noticeable rise in the content of infected and healthy plants of proline and phenols and an increase in the activity of super oxide dismutase (SOD) and polyphenol oxidase (PPO). It could be suggested that foliar application of SiO2-NPs especially 100 ppm could be commercially used as antifungal and strong inducer of plant physiological immunity against early blight disease.
Collapse
Affiliation(s)
- Marzough A. Albalawi
- Department of Chemistry, Alwajh College, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Amer M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed S. Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Hussein H. Elganzory
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
4
|
Tripathi R, Tewari R, Singh KP, Keswani C, Minkina T, Srivastava AK, De Corato U, Sansinenea E. Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection. FRONTIERS IN PLANT SCIENCE 2022; 13:883970. [PMID: 36340341 PMCID: PMC9631425 DOI: 10.3389/fpls.2022.883970] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Complete and balanced nutrition has always been the first line of plant defense due to the direct involvement of mineral elements in plant protection. Mineral elements affect plant health directly by modulating the activity of redox enzymes or improving the plant vigor indirectly by altering root exudates, and changing microflora population dynamics, rhizosphere soil nutrient content, pH fluctuation, lignin deposition, and phytoalexin biosynthesis. Nitrogen (N) is one of the most important macronutrients having a significant impact on the host-pathogen axis. N negatively affects the plant's physical defense along with the production of antimicrobial compounds, but it significantly alleviates defense-related enzyme levels that can eventually assist in systemic resistance. Potassium (K) is an essential plant nutrient, when it is present in adequate concentration, it can certainly increase the plant's polyphenolic concentrations, which play a critical role in the defense mechanism. Although no distinguished role of phosphorus (P) is observed in plant disease resistance, a high P content may increase the plant's susceptibility toward the invader. Manganese (Mn) is one of the most important micronutrients, which have a vital effect on photosynthesis, lignin biosynthesis, and other plant metabolic functions. Zinc (Zn) is a part of enzymes that are involved in auxin synthesis, infectivity, phytotoxin, and mycotoxin production in pathogenic microorganisms. Similarly, many other nutrients also have variable effects on enhancing or decreasing the host susceptibility toward disease onset and progression, thereby making integrative plant nutrition an indispensable component of sustainable agriculture. However, there are still many factors influencing the triple interaction of host-pathogen-mineral elements, which are not yet unraveled. Thereby, the present review has summarized the recent progress regarding the use of macro- and micronutrients in sustainable agriculture and their role in plant disease resistance.
Collapse
Affiliation(s)
- Ruchi Tripathi
- Department of Plant Pathology, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Rashmi Tewari
- Department of Plant Pathology, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - K. P. Singh
- Department of Plant Pathology, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | | | - Ugo De Corato
- Division of Bioenergy, Biorefinery and Green Chemistry (BBC-BIC), Department of Energy Technologies and Renewable Resources (TERIN), Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bari, Italy
| | - Estibaliz Sansinenea
- Faculty of Chemical Sciences, Benemerita, Autonomous University of Puebla, Puebla, Mexico
| |
Collapse
|
5
|
Zhou H, Hua J, Zhang J, Luo S. Negative Interactions Balance Growth and Defense in Plants Confronted with Herbivores or Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12723-12732. [PMID: 36165611 DOI: 10.1021/acs.jafc.2c04218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plants have evolved a series of defensive mechanisms against pathogens and herbivores, but the defense response always leads to decreases in growth or reproduction, which has serious implications for agricultural production. Growth and defense are negatively regulated not only through metabolic consumption but also through the antagonism of different phytohormones, such as jasmonic acid (JA) and salicylic acid (SA). Meanwhile, plants can limit the expression of defensive metabolites to reduce the costs of defense by producing constitutive defenses such as glandular trichomes or latex and accumulating specific metabolites, determining the activation of plant defense or the maintenance of plant growth. Interestingly, plant defense pathways might be prepared in advance which may be transmitted to descendants. Plants can also use external organisms to protect themselves, thus minimizing the costs of defense. In addition, plant relatives exhibit cooperation to deal with pathogens and herbivores, which is also a way to regulate growth and defense.
Collapse
Affiliation(s)
- Huiwen Zhou
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Juan Hua
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Jiaming Zhang
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Shihong Luo
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| |
Collapse
|
6
|
Günal S, Kopriva S. Measurement of flux through sulfate assimilation using [35S]sulfate. Methods Enzymol 2022; 676:197-209. [DOI: 10.1016/bs.mie.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Zhang Z, Long Y, Yin X, Yang S. Sulfur-Induced Resistance against Pseudomonas syringae pv. actinidiae via Triggering Salicylic Acid Signaling Pathway in Kiwifruit. Int J Mol Sci 2021; 22:ijms222312710. [PMID: 34884527 PMCID: PMC8657834 DOI: 10.3390/ijms222312710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Sulfur has been previously reported to modulate plant growth and exhibit significant anti-microbial activities. However, the mechanism underlying its diverse effects on plant pathogens has not been elucidated completely. The present study conducted the two-year field experiment of sulfur application to control kiwifruit canker from 2017 to 2018. For the first time, our study uncovered activation of plant disease resistance by salicylic acid after sulfur application in kiwifruit. The results indicated that when the sulfur concentration was 1.5–2.0 kg m−3, the induced effect of kiwifruit canker reached more than 70%. Meanwhile, a salicylic acid high lever was accompanied by the decline of jasmonic acid. Further analysis revealed the high expression of the defense gene, especially AcPR-1, which is a marker of the salicylic acid signaling pathway. Additionally, AcICS1, another critical gene of salicylic acid synthesis, was also highly expressed. All contributed to the synthesis of increasing salicylic acid content in kiwifruit leaves. Moreover, the first key lignin biosynthetic AcPAL gene was marked up-regulated. Thereafter, accumulation of lignin content in the kiwifruit stem and the higher deposition of lignin were visible in histochemical analysis. Moreover, the activity of the endochitinase activity of kiwifruit leaves increased significantly. We suggest that the sulfur-induced resistance against Pseudomonas syringae pv. actinidiae via salicylic activates systemic acquired resistance to enhance plant immune response in kiwifruit.
Collapse
Affiliation(s)
- Zhuzhu Zhang
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Youhua Long
- College of Agriculture, Guizhou University, Guiyang 550025, China;
- Correspondence: (Y.L.); (X.Y.)
| | - Xianhui Yin
- College of Agriculture, Guizhou University, Guiyang 550025, China;
- Correspondence: (Y.L.); (X.Y.)
| | - Sen Yang
- Kiwifruit Engineering & Technology Research Center, Guizhou University, Guiyang 550025, China;
| |
Collapse
|
8
|
Coordinated bacterial and plant sulfur metabolism in Enterobacter sp. SA187-induced plant salt stress tolerance. Proc Natl Acad Sci U S A 2021; 118:2107417118. [PMID: 34772809 PMCID: PMC8609655 DOI: 10.1073/pnas.2107417118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
Although plant growth–promoting bacteria (PGPB) enhance the performance of plants, only a few mechanisms have been identified so far. We show that the sulfur metabolisms in both PGPB Enterobacter sp. SA187 and Arabidopsis plants play a key role in plant salt stress tolerance. Salt stress induces a sulfur starvation response in plants that is attenuated by SA187. Arabidopsis sulfur metabolic mutants are hypersensitive to salt stress but can be rescued by SA187. Most plant sulfur metabolism occurs in chloroplasts and is linked to stress-induced accumulation of reactive oxygen species that is suppressed by SA187. This work reveals that plant salt stress tolerance requires the coordinated regulation of the sulfur metabolic pathways in both beneficial microbe and host plant. Enterobacter sp. SA187 is a root endophytic bacterium that maintains growth and yield of plants under abiotic stress conditions. In this work, we compared the metabolic wirings of Arabidopsis and SA187 in the free-living and endophytic interaction states. The interaction of SA187 with Arabidopsis induced massive changes in bacterial gene expression for chemotaxis, flagellar biosynthesis, quorum sensing, and biofilm formation. Besides modification of the bacterial carbon and energy metabolism, various nutrient and metabolite transporters and the entire sulfur pathway were up-regulated. Under salt stress, Arabidopsis resembled plants under sulfate starvation but not when colonized by SA187, which reprogramed the sulfur regulon of Arabidopsis. In accordance, salt hypersensitivity of multiple Arabidopsis sulfur metabolism mutants was partially or completely rescued by SA187 as much as by the addition of sulfate, L-cysteine, or L-methionine. Many components of the sulfur metabolism that are localized in the chloroplast were partially rescued by SA187. Finally, salt-induced accumulation of reactive oxygen species as well as the hypersensitivity of LSU mutants were suppressed by SA187. LSUs encode a central regulator linking sulfur metabolism to chloroplast superoxide dismutase activity. The coordinated regulation of the sulfur metabolic pathways in both the beneficial microorganism and the host plant is required for salt stress tolerance in Arabidopsis and might be a common mechanism utilized by different beneficial microbes to mitigate the harmful effects of different abiotic stresses on plants.
Collapse
|
9
|
Cao X, Wang C, Luo X, Yue L, White JC, Elmer W, Dhankher OP, Wang Z, Xing B. Elemental Sulfur Nanoparticles Enhance Disease Resistance in Tomatoes. ACS NANO 2021; 15:11817-11827. [PMID: 34148346 DOI: 10.1021/acsnano.1c02917] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In agriculture, loss of crop yield to pathogen damage seriously threatens efforts to achieve global food security. In the present work, "organic" elemental sulfur nanoparticles (SNPs) were investigated for management of the fungal pathogen Fusarium oxysporum f. sp. lycopersici on tomatoes. Foliar application and seed treatment with SNPs (30-100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 1 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30-SNPs was 1.43-fold greater than the commercially available fungicide hymexazol. Mechanistically, 30-SNPs activated the salicylic acid-dependent systemic acquired resistance pathway in tomato shoots and roots, with subsequent upregulation of the expression of pathogenesis-related and antioxidase-related genes (upregulated by 11-352%) and enhancement of the activity and content of disease-related biomolecules (enhanced by 5-49%). In addition, transmission electron microscopy imaging shows that SNPs were distributed in the tomato stem and directly inactivated in vivo pathogens. The oxidative stress in tomato shoots and roots, the root plasma membrane damage, and the growth of the pathogen in stem were all significantly decreased by SNPs. The findings highlight the significant potential of SNPs as an eco-friendly and sustainable crop protection strategy.
Collapse
Affiliation(s)
- Xuesong Cao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xing Luo
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Wade Elmer
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Xu Y, Tong Z, Zhang X, Zhang X, Luo Z, Shao W, Li L, Ma Q, Zheng X, Fang W. Plant volatile organic compound (E)-2-hexenal facilitates Botrytis cinerea infection of fruits by inducing sulfate assimilation. THE NEW PHYTOLOGIST 2021; 231:432-446. [PMID: 33792940 DOI: 10.1111/nph.17378] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 05/14/2023]
Abstract
Investigation into plant-fungal pathogen interactions is one of the most interesting fields in plant sciences. However, the roles of plant volatile organic compounds in the arms race are still largely unknown. Based on precise quantification of plant volatiles, we discovered that the plant volatile organic compound (E)-2-hexenal, at concentrations that were similar to or lower than those in tissues of strawberry and tomato fruits, upregulates sulfate assimilation in spores and hyphae of the phytopathogenic fungus Botrytis cinerea. This upregulation is independent of the types of sulfur sources in the plant and can be achieved in the presence of inorganic sulfate and organic sulfur sources. Using the fungal deletion mutants, we further found that sulfate assimilation is involved in the infection of tomato and strawberry fruits by B. cinerea, and that the severity of the disease is proportional to the sulfate content in the fruits. Both before and during the infection, (E)-2-hexenal induced utilisation of plant sulfate by B. cinerea facilitates its pathogenesis through enhancing its tolerance to oxidative stress. This work provides novel insights into the role of plant volatiles in plant-fungal pathogen interaction and highlights the importance of sulfur levels in the host in the prevention of grey mould disease.
Collapse
Affiliation(s)
- Yanqun Xu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, 315100, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang, 310058, China
| | - Zhichao Tong
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, 315100, China
| | - Xiaochen Zhang
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, 315100, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang, 310058, China
| | - Xing Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Zhejiang, 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, 315100, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang, 310058, China
- Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China
| | - Wenyong Shao
- Institute of Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, 315100, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang, 310058, China
| | - Quan Ma
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, 315100, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang, 310058, China
| | - Xiaodong Zheng
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, 315100, China
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Zhejiang, 310058, China
| |
Collapse
|
11
|
Liu H, Xue S. Interplay between hydrogen sulfide and other signaling molecules in the regulation of guard cell signaling and abiotic/biotic stress response. PLANT COMMUNICATIONS 2021; 2:100179. [PMID: 34027393 PMCID: PMC8132131 DOI: 10.1016/j.xplc.2021.100179] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
Stomatal aperture controls the balance between transpirational water loss and photosynthetic carbon dioxide (CO2) uptake. Stomata are surrounded by pairs of guard cells that sense and transduce environmental or stress signals to induce diverse endogenous responses for adaptation to environmental changes. In a recent decade, hydrogen sulfide (H2S) has been recognized as a signaling molecule that regulates stomatal movement. In this review, we summarize recent progress in research on the regulatory role of H2S in stomatal movement, including the dynamic regulation of phytohormones, ion homeostasis, and cell structural components. We focus especially on the cross talk among H2S, nitric oxide (NO), and hydrogen peroxide (H2O2) in guard cells, as well as on H2S-mediated post-translational protein modification (cysteine thiol persulfidation). Finally, we summarize the mechanisms by which H2S interacts with other signaling molecules in plants under abiotic or biotic stress. Based on evidence and clues from existing research, we propose some issues that need to be addressed in the future.
Collapse
Affiliation(s)
- Hai Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Something smells bad to plant pathogens: Production of hydrogen sulfide in plants and its role in plant defence responses. J Adv Res 2020; 27:199-209. [PMID: 33318878 PMCID: PMC7728587 DOI: 10.1016/j.jare.2020.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/18/2022] Open
Abstract
Background Sulfur and diverse sulfur-containing compounds constitute important components of plant defences against a wide array of microbial pathogens. Among them, hydrogen sulfide (H2S) occupies a prominent position as a gaseous signalling molecule that plays multiple roles in regulation of plant growth, development and plant responses to stress conditions. Although the production of H2S in plant cells has been discovered several decades ago, the underlying pathways of H2S biosynthesis, metabolism and signalling were only recently uncovered. Aim of the review Here we review the current knowledge on the biosynthesis of H2S in plant cells, with special attention to L-cysteine desulfhydrase (DES) as the key enzyme controlling H2S levels biosynthesis in the cytosol of plant cells during plant growth, development and diverse abiotic and biotic stress conditions. Key Scientific Concepts of Review Recent advances have revealed molecular mechanisms of DES properties, functions and regulation involved in modulations of H2S production during plant responses to abiotic and biotic stress stimuli. Studies on des mutants of the model plant Arabidopsis thaliana uncovered molecular mechanisms of H2S action as a signalling and defence molecule in plant-pathogen interactions. Signalling pathways of H2S include S-persulfidation of protein cysteines, a redox-based post-translational modification leading to activation of downstream components of H2S signalling. Accumulated evidence shows DES and H2S implementation into salicylic acid signalling and activation of pathogenesis-related proteins and autophagy within plant immunity. Obtained knowledge on molecular mechanisms of H2S action in plant defence responses opens new prospects in the search for crop varieties with increased resistance to bacterial and fungal pathogens.
Collapse
|
13
|
The Versatile Roles of Sulfur-Containing Biomolecules in Plant Defense-A Road to Disease Resistance. PLANTS 2020; 9:plants9121705. [PMID: 33287437 PMCID: PMC7761819 DOI: 10.3390/plants9121705] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023]
Abstract
Sulfur (S) is an essential plant macronutrient and the pivotal role of sulfur compounds in plant disease resistance has become obvious in recent decades. This review attempts to recapitulate results on the various functions of sulfur-containing defense compounds (SDCs) in plant defense responses to pathogens. These compounds include sulfur containing amino acids such as cysteine and methionine, the tripeptide glutathione, thionins and defensins, glucosinolates and phytoalexins and, last but not least, reactive sulfur species and hydrogen sulfide. SDCs play versatile roles both in pathogen perception and initiating signal transduction pathways that are interconnected with various defense processes regulated by plant hormones (salicylic acid, jasmonic acid and ethylene) and reactive oxygen species (ROS). Importantly, ROS-mediated reversible oxidation of cysteine residues on plant proteins have profound effects on protein functions like signal transduction of plant defense responses during pathogen infections. Indeed, the multifaceted plant defense responses initiated by SDCs should provide novel tools for plant breeding to endow crops with efficient defense responses to invading pathogens.
Collapse
|
14
|
Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. Int J Mol Sci 2020; 21:ijms21020572. [PMID: 31963138 PMCID: PMC7014335 DOI: 10.3390/ijms21020572] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Nitrogen (N) is one of the most important elements that has a central impact on plant growth and yield. N is also widely involved in plant stress responses, but its roles in host-pathogen interactions are complex as each affects the other. In this review, we summarize the relationship between N nutrition and plant disease and stress its importance for both host and pathogen. From the perspective of the pathogen, we describe how N can affect the pathogen’s infection strategy, whether necrotrophic or biotrophic. N can influence the deployment of virulence factors such as type III secretion systems in bacterial pathogen or contribute nutrients such as gamma-aminobutyric acid to the invader. Considering the host, the association between N nutrition and plant defence is considered in terms of physical, biochemical and genetic mechanisms. Generally, N has negative effects on physical defences and the production of anti-microbial phytoalexins but positive effects on defence-related enzymes and proteins to affect local defence as well as systemic resistance. N nutrition can also influence defence via amino acid metabolism and hormone production to affect downstream defence-related gene expression via transcriptional regulation and nitric oxide (NO) production, which represents a direct link with N. Although the critical role of N nutrition in plant defences is stressed in this review, further work is urgently needed to provide a comprehensive understanding of how opposing virulence and defence mechanisms are influenced by interacting networks.
Collapse
|
15
|
Verly C, Djoman ACR, Rigault M, Giraud F, Rajjou L, Saint-Macary ME, Dellagi A. Plant Defense Stimulator Mediated Defense Activation Is Affected by Nitrate Fertilization and Developmental Stage in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:583. [PMID: 32528493 PMCID: PMC7264385 DOI: 10.3389/fpls.2020.00583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/17/2020] [Indexed: 05/20/2023]
Abstract
Plant defense stimulators, used in crop protection, are an attractive option to reduce the use of conventional crop protection products and optimize biocontrol strategies. These products are able to activate plant defenses and thus limit infection by pathogens. However, the effectiveness of these plant defense stimulators remains erratic and is potentially dependent on many agronomic and environmental parameters still unknown or poorly controlled. The developmental stage of the plant as well as its fertilization, and essentially nitrogen nutrition, play major roles in defense establishment in the presence of pathogens or plant defense stimulators. The major nitrogen source used by plants is nitrate. In this study, we investigated the impact of Arabidopsis thaliana plant developmental stage and nitrate nutrition on its capacity to mount immune reactions in response to two plant defense stimulators triggering two major defense pathways, the salicylic acid and the jasmonic acid pathways. We show that optimal nitrate nutrition is needed for effective defense activation and protection against the pathogenic bacteria Dickeya dadantii and Pseudomonas syringae pv. tomato. Using an npr1 defense signaling mutant, we showed that nitrate dependent protection against D. dadantii requires a functional NPR1 gene. Our results indicate that the efficacy of plant defense stimulators is strongly affected by nitrate nutrition and the developmental stage. The nitrate dependent efficacy of plant defense stimulators is not only due to a metabolic effect but also invloves NPR1 mediated defense signaling. Plant defense stimulators may have opposite effects on plant resistance to a pathogen. Together, our results indicate that agronomic use of plant defense stimulators must be optimized according to nitrate fertilization and developmental stage.
Collapse
Affiliation(s)
- Camille Verly
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Staphyt-Service L&G/BIOTEAM, Martillac, France
| | - Atsin Claude Roméo Djoman
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Staphyt-Service L&G/BIOTEAM, Martillac, France
| | - Martine Rigault
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | | | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | | | - Alia Dellagi
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- *Correspondence: Alia Dellagi,
| |
Collapse
|
16
|
Eid KE, Abbas MHH, Mekawi EM, ElNagar MM, Abdelhafez AA, Amin BH, Mohamed I, Ali MM. Arbuscular mycorrhiza and environmentally biochemicals enhance the nutritional status of Helianthus tuberosus and induce its resistance against Sclerotium rolfsii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109783. [PMID: 31629192 DOI: 10.1016/j.ecoenv.2019.109783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Chemical fungicides are effective tools in controlling plant pathogens; however, these chemicals can, on the other hand, distress the ecosystem. Accordingly, the current research investigates the potentiality of substituting traditional chemical fungicides by inducing plant resistance against infection with soil-born pathogens i.e. Sclerotium rolfsii in the presence of mycorrhizae (AMF) as plant inoculants and one of the following amendments: humic acid, sulphex (a mixture of canola oil and diluted sulphuric acid) and paclobutrazol (ABZ). To attain the abovementioned objective, a field (mildly infected with S. rolfsii) was cultivated with Helianthus tuberosus (a perennial plant belongs to the Asteraceae family) for two successive seasons (2014 and 2015) and the above-mentioned treatments were tested for their feasibilities in controlling S. rolfsii infection against the chemical fungicide "Vitavax-200" either solely or in combinations in a complete randomized block design. Inoculating plants with AMF or amending soils with either humic acid, Sulphex or ABZ solely increased significantly the activities of plant defense enzymes by approximately 1.5-2.1 folds higher than the control treatment. These treatments also improved NPK availability in soil and; hence, increased their contents within plant tubers. Consequently, these treatments decreased the disease incidence and severity caused by S. rolfsii while improved shoot biomass and tuber yield. In spite of that, these results stood below the prospective of the fungicide treatment. The integrated treatments i.e. "humic acid + AMF", "Sulphex + AMF" and "ABZ + AMF" caused further significant improvements in both NPK availabilities in soil and plant areal bio-masses. This probably induced further plant resistance against the investigated soil-borne pathogen while recorded insignificant variations in disease incidence and severity when compared with the fungicide treatment. Moreover, the integrated treatments increased the tuber yields beyond those attained for the fungicide treatment. Accordingly, such integrated strategies can completely substitute the chemical fungicides; thus, minimize their negative impacts on the ecosystem.
Collapse
Affiliation(s)
- Khaled E Eid
- Benha University, Faculty of Agriculture, Plant Pathology Department, Egypt.
| | - Mohamed H H Abbas
- Benha University, Faculty of Agriculture, Soils and Water Department, Egypt.
| | - Enas M Mekawi
- Benha University, Faculty of Agriculture, Agricultural Biochemistry Department, Egypt
| | - Mahran M ElNagar
- Benha University, Faculty of Agriculture, Horticulture Department, Egypt
| | - Ahmed A Abdelhafez
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science (SAAS) , China; The New Valley University, Faculty of Agriculture, Soils and Water Department, Egypt
| | - Basma H Amin
- Al- Azhar University, The Regional Centre for Mycology and Biotechnology (RCMB) , Egypt
| | - Ibrahim Mohamed
- Benha University, Faculty of Agriculture, Soils and Water Department, Egypt.
| | - Maha M Ali
- Benha University, Faculty of Agriculture, Soils and Water Department, Egypt
| |
Collapse
|
17
|
Savchenko TV, Rolletschek H, Dehesh K. Jasmonates-Mediated Rewiring of Central Metabolism Regulates Adaptive Responses. PLANT & CELL PHYSIOLOGY 2019; 60:2613-2620. [PMID: 31529102 PMCID: PMC6896697 DOI: 10.1093/pcp/pcz181] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/03/2019] [Indexed: 05/23/2023]
Abstract
The lipid-derived hormones jasmonates (JAs) play key functions in a wide range of physiological and developmental processes that regulate growth, secondary metabolism and defense against biotic and abiotic stresses. In this connection, biosynthesis, tissue-specific distribution, metabolism, perception, signaling of JAs have been the target of extensive studies. In recent years, the involvement of JAs signaling pathway in the regulation of growth and adaptive responses to environmental challenges has been further examined. However, JAs-mediated mechanisms underlying the transition from 'growth mode' to 'adaptive mode' remain ambiguous. Combined analysis of transgenic lines deficient in JAs signaling in conjunction with the data from JAs-treated plants revealed the function of these hormones in rewiring of central metabolism. The collective data illustrate JAs-mediated decrease in the levels of metabolites associated with active growth such as sucrose, raffinose, orotate, citrate, malate, and an increase in phosphorylated hexoses, responsible for the suppression of growth and photosynthesis, concurrent with the induction of protective metabolites, such as aromatic and branched-chain amino acids, and aspartate family of metabolites. This finding provides an insight into the function of JAs in shifting the central metabolism from the production of growth-promoting metabolites to protective compounds and expands our understanding of the role of JAs in resource allocation in response to environmental challenges.
Collapse
Affiliation(s)
- Tatyana V Savchenko
- Institute of Basic Biological Problems, FRC PSCBR RAS, Institutskaya St. 2, Pushchino, Moscow Region 142290, Russian Federation
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben D-06466, Germany
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
18
|
Exogenous nitric oxide alleviates sulfur deficiency-induced oxidative damage in tomato seedlings. Nitric Oxide 2019; 94:95-107. [PMID: 31707015 DOI: 10.1016/j.niox.2019.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 11/21/2022]
Abstract
Despite numerous reports on the role of nitric oxide (NO) in regulating plants growth and mitigating different environmental stresses, its participation in sulfur (S) -metabolism remains largely unknown. Therefore, we studied the role of NO in S acquisition and S-assimilation in tomato seedlings under low S-stress conditions by supplying NO to the leaves of S-sufficient and S-deficient seedlings. S-starved plants exhibited a substantial decreased in plant growth attributes, photosynthetic pigment chlorophyll (Chl) and other photosynthetic parameters, and activity of enzymes involved in Chl biosynthesis (δ-aminolevulinic acid dehydratase), and photosynthetic processes (carbonic anhydrase and RuBisco). Also, S-deficiency enhanced reactive oxygen species (ROS) (superoxide and hydrogen peroxide) and lipid peroxidation (malondialdehyde) levels in tomato seedlings. Contrarily, foliar supplementation of NO to S-deficient seedlings resulted in considerably reduced ROS formation in leaves and roots, which alleviated low S-stress-induced lipid peroxidation. However, exogenous NO enhanced proline accumulation by increasing proline metabolizing enzyme (Δ1-pyrroline-5-carboxylate synthetase) activity and also increased NO, hydrogen sulfide (a gasotransmitter small signaling molecule) and S uptake, and content of S-containing compounds (cysteine and reduced glutathione). Under S-limited conditions, NO improved S utilization efficiency of plants by upregulating the activity of S-assimilating enzymes (ATP sulfurylase, adenosine 5-phosphosulfate reductase, sulfide reductase and O-acetylserine (thiol) lyase). Under S-deprived conditions, improved S-assimilation of seedlings receiving NO resulted in improved redox homeostasis and ascorbate content through increased NO and S uptake. Application of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (an NO scavenger) invalidated the effect of NO and again caused low S-stress-induced oxidative damage, confirming the beneficial role of NO in seedlings under S-deprived conditions. Thus, exogenous NO enhanced the tolerance of tomato seedlings to limit S-triggered oxidative stress and improved photosynthetic performance and S assimilation.
Collapse
|
19
|
Cordovez V, Schop S, Hordijk K, Dupré de Boulois H, Coppens F, Hanssen I, Raaijmakers JM, Carrión VJ. Priming of Plant Growth Promotion by Volatiles of Root-Associated Microbacterium spp. Appl Environ Microbiol 2018; 84:e01865-18. [PMID: 30194105 PMCID: PMC6210106 DOI: 10.1128/aem.01865-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/04/2018] [Indexed: 12/23/2022] Open
Abstract
Volatile compounds produced by plant-associated microorganisms represent a diverse resource to promote plant growth and health. Here, we investigated the effect of volatiles from root-associated Microbacterium species on plant growth and development. Volatiles of eight strains induced significant increases in shoot and root biomass of Arabidopsis but differed in their effects on root architecture. Microbacterium strain EC8 also enhanced root and shoot biomass of lettuce and tomato. Biomass increases were also observed for plants exposed only briefly to volatiles from EC8 prior to transplantation of the seedlings to soil. These results indicate that volatiles from EC8 can prime plants for growth promotion without direct and prolonged contact. We further showed that the induction of plant growth promotion is tissue specific; that is, exposure of roots to volatiles from EC8 led to an increase in plant biomass, whereas shoot exposure resulted in no or less growth promotion. Gas chromatography-quadrupole time of flight mass spectometry (GC-QTOF-MS) analysis revealed that EC8 produces a wide array of sulfur-containing compounds, as well as ketones. Bioassays with synthetic sulfur volatile compounds revealed that the plant growth response to dimethyl trisulfide was concentration-dependent, with a significant increase in shoot weight at 1 μM and negative effects on plant biomass at concentrations higher than 1 mM. Genome-wide transcriptome analysis of volatile-exposed Arabidopsis seedlings showed upregulation of genes involved in assimilation and transport of sulfate and nitrate. Collectively, these results show that root-associated Microbacterium primes plants, via the roots, for growth promotion, most likely via modulation of sulfur and nitrogen metabolism.IMPORTANCE In the past decade, various studies have described the effects of microbial volatiles on other (micro)organisms in vitro, but their broad-spectrum activity in vivo and the mechanisms underlying volatile-mediated plant growth promotion have not been addressed in detail. Here, we revealed that volatiles from root-associated bacteria of the genus Microbacterium can enhance the growth of different plant species and can prime plants for growth promotion without direct and prolonged contact between the bacterium and the plant. Collectively, these results provide new opportunities for sustainable agriculture and horticulture by exposing roots of plants only briefly to a specific blend of microbial volatile compounds prior to transplantation of the seedlings to the greenhouse or field. This strategy has no need for large-scale introduction or root colonization and survival of the microbial inoculant.
Collapse
Affiliation(s)
- Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Sharella Schop
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Kees Hordijk
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Hervé Dupré de Boulois
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
- R&D Department, DCM nv, Grobbendonk, Belgium
| | - Filip Coppens
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Inge Hanssen
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
- R&D Department, DCM nv, Grobbendonk, Belgium
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Víctor J Carrión
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| |
Collapse
|
20
|
Guo Q, Yoshida Y, Major IT, Wang K, Sugimoto K, Kapali G, Havko NE, Benning C, Howe GA. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E10768-E10777. [PMID: 30348775 PMCID: PMC6233084 DOI: 10.1073/pnas.1811828115] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Plant immune responses mediated by the hormone jasmonoyl-l-isoleucine (JA-Ile) are metabolically costly and often linked to reduced growth. Although it is known that JA-Ile activates defense responses by triggering the degradation of JASMONATE ZIM DOMAIN (JAZ) transcriptional repressor proteins, expansion of the JAZ gene family in vascular plants has hampered efforts to understand how this hormone impacts growth and other physiological tasks over the course of ontogeny. Here, we combined mutations within the 13-member Arabidopsis JAZ gene family to investigate the effects of chronic JAZ deficiency on growth, defense, and reproductive output. A higher-order mutant (jaz decuple, jazD) defective in 10 JAZ genes (JAZ1-7, -9, -10, and -13) exhibited robust resistance to insect herbivores and fungal pathogens, which was accompanied by slow vegetative growth and poor reproductive performance. Metabolic phenotypes of jazD discerned from global transcript and protein profiling were indicative of elevated carbon partitioning to amino acid-, protein-, and endoplasmic reticulum body-based defenses controlled by the JA-Ile and ethylene branches of immunity. Resource allocation to a strong defense sink in jazD leaves was associated with increased respiration and hallmarks of carbon starvation but no overt changes in photosynthetic rate. Depletion of the remaining JAZ repressors in jazD further exaggerated growth stunting, nearly abolished seed production and, under extreme conditions, caused spreading necrotic lesions and tissue death. Our results demonstrate that JAZ proteins promote growth and reproductive success at least in part by preventing catastrophic metabolic effects of an unrestrained immune response.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Yuki Yoshida
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Ian T Major
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Kun Wang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Koichi Sugimoto
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - George Kapali
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| | - Nathan E Havko
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| | - Christoph Benning
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Gregg A Howe
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824;
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
21
|
Tomassetti M, Garavaglia BS, Vranych CV, Gottig N, Ottado J, Gramajo H, Diacovich L. 3-methylcrotonyl Coenzyme A (CoA) carboxylase complex is involved in the Xanthomonas citri subsp. citri lifestyle during citrus infection. PLoS One 2018; 13:e0198414. [PMID: 29879157 PMCID: PMC5991677 DOI: 10.1371/journal.pone.0198414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/19/2018] [Indexed: 01/15/2023] Open
Abstract
Citrus canker is a disease caused by the phytopathogen Xanthomonas citri subsp. citri (Xcc), bacterium which is unable to survive out of the host for extended periods of time. Once established inside the plant, the pathogen must compete for resources and evade the defenses of the host cell. However, a number of aspects of Xcc metabolic and nutritional state, during the epiphytic stage and at different phases of infection, are poorly characterized. The 3-methylcrotonyl-CoA carboxylase complex (MCC) is an essential enzyme for the catabolism of the branched-chain amino acid leucine, which prevents the accumulation of toxic intermediaries, facilitates the generation of branched chain fatty acids and/or provides energy to the cell. The MCC complexes belong to a group of acyl-CoA carboxylases (ACCase) enzymes dependent of biotin. In this work, we have identified two ORFs (XAC0263 and XAC0264) encoding for the α and β subunits of an acyl-CoA carboxylase complex from Xanthomonas and demonstrated that this enzyme has MCC activity both in vitro and in vivo. We also found that this MCC complex is conserved in a group of pathogenic gram negative bacteria. The generation and analysis of an Xcc mutant strain deficient in MCC showed less canker lesions in the interaction with the host plant, suggesting that the expression of these proteins is necessary for Xcc fitness during infection.
Collapse
Affiliation(s)
- Mauro Tomassetti
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Betiana S. Garavaglia
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cecilia V. Vranych
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina Ottado
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
22
|
Kissoudis C, Sunarti S, van de Wiel C, Visser RGF, van der Linden CG, Bai Y. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5119-32. [PMID: 27436279 PMCID: PMC5014164 DOI: 10.1093/jxb/erw285] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stress conditions in agricultural ecosystems can occur at variable intensities. Different resistance mechanisms against abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effect of different levels of salt stress ranging from mild to severe (50, 100, and 150mM NaCl) on powdery mildew resistance and overall performance of tomato introgression lines with contrasting levels of partial resistance, as well as near-isogenic lines (NILs) carrying the resistance gene Ol-1 (associated with a slow hypersensitivity response; HR), ol-2 (an mlo mutant associated with papilla formation), and Ol-4 (an R gene associated with a fast HR). Powdery mildew resistance was affected by salt stress in a genotype- and stress intensity-dependent manner. In susceptible and partial resistant lines, increased susceptibility was observed under mild salt stress (50mM) which was accompanied by accelerated cell death-like senescence. In contrast, severe salt stress (150mM) reduced disease symptoms. Na(+) and Cl(-) accumulation in the leaves was linearly related to the decreased pathogen symptoms under severe stress. In contrast, complete resistance mediated by ol-2 and Ol-4 was unaffected under all treatment combinations, and was associated with a decreased growth penalty. Increased susceptibility and senescence under combined stress in NIL-Ol-1 was associated with the induction of ethylene and jasmonic acid pathway genes and the cell wall invertase gene LIN6. These results highlight the significance of stress severity and resistance type on the plant's performance under the combination of abiotic and biotic stress.
Collapse
Affiliation(s)
- Christos Kissoudis
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Sri Sunarti
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Clemens van de Wiel
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - C Gerard van der Linden
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Yuling Bai
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| |
Collapse
|
23
|
Tahir J, Dijkwel P. β-Substituting alanine synthases: roles in cysteine metabolism and abiotic and biotic stress signalling in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:307-323. [PMID: 32480463 DOI: 10.1071/fp15272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/10/2015] [Indexed: 06/11/2023]
Abstract
Cysteine is required for the synthesis of proteins and metabolites, and is therefore an indispensable compound for growth and development. The β-substituting alanine synthase (BSAS) gene family encodes enzymes known as O-acetylserine thiol lyases (OASTLs), which carry out cysteine biosynthesis in plants. The functions of the BSAS isoforms have been reported to be crucial in assimilation of S and cysteine biosynthesis, and homeostasis in plants. In this review we explore the functional variation in this classic pyridoxal-phosphate-dependent enzyme family of BSAS isoforms. We discuss how specialisation and divergence in BSAS catalytic activities makes a more dynamic set of biological routers that integrate cysteine metabolism and abiotic and biotic stress signalling in Arabidopsis thaliana (L.) Heynh. and also other species. Our review presents a universal scenario in which enzymes modulating cysteine metabolism promote survival and fitness of the species by counteracting internal and external stress factors.
Collapse
Affiliation(s)
- Jibran Tahir
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Paul Dijkwel
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
24
|
Considine MJ, Foyer CH. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): photosynthetic tissues and berries. FRONTIERS IN PLANT SCIENCE 2015; 6:60. [PMID: 25750643 PMCID: PMC4335272 DOI: 10.3389/fpls.2015.00060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/22/2015] [Indexed: 05/20/2023]
Abstract
Research on sulfur metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils. Key questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the "ambient" environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry's exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO2 fumigation may extend for several months.
Collapse
Affiliation(s)
- Michael J. Considine
- School of Plant Biology, and The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, Yorkshire, UK
- Irrigated Agriculture and Diversification, Department of Agriculture and Food Western Australia, South Perth, WA, Australia
| | - Christine H. Foyer
- School of Plant Biology, and The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, Yorkshire, UK
| |
Collapse
|
25
|
Weese A, Pallmann P, Papenbrock J, Riemenschneider A. Brassica napus L. cultivars show a broad variability in their morphology, physiology and metabolite levels in response to sulfur limitations and to pathogen attack. FRONTIERS IN PLANT SCIENCE 2015; 6:9. [PMID: 25699060 PMCID: PMC4313603 DOI: 10.3389/fpls.2015.00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/06/2015] [Indexed: 05/26/2023]
Abstract
Under adequate sulfur supply, plants accumulate sulfate in the vacuoles and use sulfur-containing metabolites as storage compounds. Under sulfur-limiting conditions, these pools of stored sulfur-compounds are depleted in order to balance the nitrogen to sulfur ratio for protein synthesis. Stress conditions like sulfur limitation and/or pathogen attack induce changes in the sulfate pool and the levels of sulfur-containing metabolites, which often depend on the ecotypes or cultivars. We are interested in investigating the influence of the genetic background of canola (Brassica napus) cultivars in sulfur-limiting conditions on the resistance against Verticillium longisporum. Therefore, four commercially available B. napus cultivars were analyzed. These high-performing cultivars differ in some characteristics described in their cultivar pass, such as several agronomic traits, differences in the size of the root system, and resistance to certain pathogens, such as Phoma and Verticillium. The objectives of the study were to examine and explore the patterns of morphological, physiological and metabolic diversity in these B. napus cultivars at different sulfur concentrations and in the context of plant defense. Results indicate that the root systems are influenced differently by sulfur deficiency in the cultivars. Total root dry mass and length of root hairs differ not only among the cultivars but also vary in their reaction to sulfur limitation and pathogen attack. As a sensitive indicator of stress, several parameters of photosynthetic activity determined by PAM imaging showed a broad variability among the treatments. These results were supported by thermographic analysis. Levels of sulfur-containing metabolites also showed large variations. The data were interrelated to predict the specific behavior during sulfur limitation and/or pathogen attack. Advice for farming are discussed.
Collapse
Affiliation(s)
| | - Philip Pallmann
- Institute of Biostatistics, Leibniz University HannoverHannover, Germany
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University HannoverHannover, Germany
| | | |
Collapse
|
26
|
Klug K, Hogekamp C, Specht A, Myint SS, Blöink D, Küster H, Horst WJ. Spatial gene expression analysis in tomato hypocotyls suggests cysteine as key precursor of vascular sulfur accumulation implicated in Verticillium dahliae defense. PHYSIOLOGIA PLANTARUM 2015; 153:253-268. [PMID: 24930426 DOI: 10.1111/ppl.12239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Verticillium dahliae is a prominent generator of plant vascular wilting disease and sulfur (S)-enhanced defense (SED) mechanisms contribute to its in-planta elimination. The accumulation of S-containing defense compounds (SDCs) including elemental S (S(0) ) has been described based on the comparison of two near-isogenic tomato (Solanum lycopersicum) lines differing in fungal susceptibility. To better understand the effect of S nutrition on V. dahliae resistance both lines were supplied with low, optimal or supraoptimal sulfate-S. An absolute quantification demonstrated a most effective fungal elimination due to luxury plant S nutrition. High-pressure liquid chromatography (HPLC) showed a strong regulation of Cys levels and an S-responsive GSH pool rise in the bulk hypocotyl. High-frequency S peak accumulations were detected in vascular bundles of resistant tomato plants after fungal colonization by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Global transcriptomic analysis suggested that early steps of the primary S metabolism did not promote the SDCs synthesis in the whole hypocotyl as gene expression was downregulated after infection. Enhanced S fertilization mostly alleviated the repressive fungal effect but did not reverse it. Upregulation of glutathione (GSH)-associated genes in bulk hypocotyls but not in vascular bundles indicated a global antioxidative role of GSH. To finally assign the contribution of S metabolism-associated genes to high S(0) accumulations exclusively found in the resistant tomato line, a spatial gene expression approach was applied. Laser microdissection of infected vascular bundles revealed a switch toward transcription of genes connected with cysteine (Cys) synthesis. The upregulation of LeOASTLp1 suggests a role for Cys as key precursor for local S accumulations (possibly S(0) ) in the vascular bundles of the V. dahliae-resistant tomato line.
Collapse
Affiliation(s)
- Katharina Klug
- Institute of Plant Nutrition, Leibniz Universität Hannover, Herrenhäuserstraße 2, 30419, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Bloem E, Haneklaus S, Schnug E. Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe. FRONTIERS IN PLANT SCIENCE 2015; 5:779. [PMID: 25642233 PMCID: PMC4295439 DOI: 10.3389/fpls.2014.00779] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/16/2014] [Indexed: 05/19/2023]
Abstract
Until the 1970's of the last century sulfur (S) was mainly regarded as a pollutant being the main contributor of acid rain, causing forest dieback in central Europe. When Clean Air Acts came into force at the start of the 1980's SO2 contaminations in the air were consequently reduced within the next years. S changed from an unwanted pollutant into a lacking plant nutrient in agriculture since agricultural fields were no longer "fertilized" indirectly by industrial pollution. S deficiency was first noticed in Brassica crops that display an especially high S demand because of its content of S-containing secondary metabolites, the glucosinolates. In Scotland, where S depositions decreased even faster than in continental Europe, an increasing disease incidence with Pyrenopeziza brassicae was observed in oilseed rape in the beginning 1990's and the concept of sulfur-induced-resistance (SIR) was developed after a relationship between the S status and the disease incidence was uncovered. Since then a lot of research was carried out to unravel the background of SIR in the metabolism of agricultural crops and to identify metabolites, enzymes and reactions, which are potentially activated by the S metabolism to combat fungal pathogens. The S status of the crop is affecting many different plant features such as color and scent of flowers, pigments in leaves, metabolite concentrations and the release of gaseous S compounds which are directly influencing the desirability of a crop for a variety of different organisms from microorganisms, over insects and slugs to the point of grazing animals. The present paper is an attempt to sum up the knowledge about the effect of the S nutritional status of agricultural crops on parameters that are directly related to their health status and by this to SIR. Milestones in SIR research are compiled, open questions are addressed and future projections were developed.
Collapse
Affiliation(s)
- Elke Bloem
- Federal Research Centre for Cultivated Plants, Julius Kühn-Institute, Institute for Crop and Soil ScienceBraunschweig, Germany
| | | | | |
Collapse
|
28
|
Cao MJ, Wang Z, Zhao Q, Mao JL, Speiser A, Wirtz M, Hell R, Zhu JK, Xiang CB. Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:604-15. [PMID: 24330104 DOI: 10.1111/tpj.12407] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 11/18/2013] [Accepted: 12/03/2013] [Indexed: 05/02/2023]
Abstract
Sulfur-containing compounds play a critical role in the response of plants to abiotic stress factors including drought. The phytohormone abscisic acid (ABA) is the key regulator of responses to drought and high-salt stress. However, our knowledge about interaction of S-metabolism and ABA biosynthesis is scarce. Here we report that sulfate supply affects synthesis and steady-state levels of ABA in Arabidopsis wild-type seedlings. By using different mutants of the sulfate uptake and reduction pathway, we confirmed the impact of sulfate supply on steady-state ABA content in Arabidopsis and demonstrated that this impact was due to cysteine availability. Loss of the chloroplast sulfate transporter3;1 function (sultr3;1) resulted in significantly decreased aldehyde oxidase (AO) activity and ABA levels in seedlings and seeds. These mutant phenotypes could be reverted by exogenous application of cysteine or ectopic expression of SULTR3;1. In addition the sultr3;1 mutant showed a decrease of xanthine dehydrogenase activity, but not of nitrate reductase, strongly indicating that in seedlings cysteine availability limits activity of the molybdenum co-factor sulfurase, ABA3, which requires cysteine as the S-donor for sulfuration. Transcription of ABA3 and NCED3, encoding another key enzyme of the ABA biosynthesis pathway, was regulated by S-supply in wild-type seedlings. In contrast, ABA up-regulated the transcript level of SULTR3;1 and other S-metabolism-related genes. Our results provide evidence for a significant co-regulation of S-metabolism and ABA biosynthesis that operates to ensure sufficient cysteine for AO maturation and highlights the importance of sulfur for stress tolerance of plants.
Collapse
Affiliation(s)
- Min-Jie Cao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zuber H, Poignavent G, Le Signor C, Aimé D, Vieren E, Tadla C, Lugan R, Belghazi M, Labas V, Santoni AL, Wipf D, Buitink J, Avice JC, Salon C, Gallardo K. Legume adaptation to sulfur deficiency revealed by comparing nutrient allocation and seed traits in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:982-96. [PMID: 24118112 DOI: 10.1111/tpj.12350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 05/11/2023]
Abstract
Reductions in sulfur dioxide emissions and the use of sulfur-free mineral fertilizers are decreasing soil sulfur levels and threaten the adequate fertilization of most crops. To provide knowledge regarding legume adaptation to sulfur restriction, we subjected Medicago truncatula, a model legume species, to sulfur deficiency at various developmental stages, and compared the yield, nutrient allocation and seed traits. This comparative analysis revealed that sulfur deficiency at the mid-vegetative stage decreased yield and altered the allocation of nitrogen and carbon to seeds, leading to reduced levels of major oligosaccharides in mature seeds, whose germination was dramatically affected. In contrast, during the reproductive period, sulfur deficiency had little influence on yield and nutrient allocation, but the seeds germinated slowly and were characterized by low levels of a biotinylated protein, a putative indicator of germination vigor that has not been previously related to sulfur nutrition. Significantly, plants deprived of sulfur at an intermediary stage (flowering) adapted well by remobilizing nutrients from source organs to seeds, ensuring adequate quantities of carbon and nitrogen in seeds. This efficient remobilization of photosynthates may be explained by vacuolar sulfate efflux to maintain leaf metabolism throughout reproductive growth, as suggested by transcript and metabolite profiling. The seeds from these plants, deprived of sulfur at the floral transition, contained normal levels of major oligosaccharides but their germination was delayed, consistent with low levels of sucrose and the glycolytic enzymes required to restart seed metabolism during imbibition. Overall, our findings provide an integrative view of the legume response to sulfur deficiency.
Collapse
Affiliation(s)
- Hélène Zuber
- Institut National de la Recherche Agronomique, UMR 1347 Agroécologie, BP 86510, F-21000, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Király L, Künstler A, Höller K, Fattinger M, Juhász C, Müller M, Gullner G, Zechmann B. Sulfate supply influences compartment specific glutathione metabolism and confers enhanced resistance to Tobacco mosaic virus during a hypersensitive response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 59:44-54. [PMID: 22122784 PMCID: PMC3458214 DOI: 10.1016/j.plaphy.2011.10.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/28/2011] [Indexed: 05/19/2023]
Abstract
Sufficient sulfate supply has been linked to the development of sulfur induced resistance or sulfur enhanced defense (SIR/SED) in plants. In this study we investigated the effects of sulfate (S) supply on the response of genetically resistant tobacco (Nicotiana tabacum cv. Samsun NN) to Tobacco mosaic virus (TMV). Plants grown with sufficient sulfate (+S plants) developed significantly less necrotic lesions during a hypersensitive response (HR) when compared to plants grown without sulfate (-S plants). In +S plants reduced TMV accumulation was evident on the level of viral RNA. Enhanced virus resistance correlated with elevated levels of cysteine and glutathione and early induction of a Tau class glutathione S-transferase and a salicylic acid-binding catalase gene. These data indicate that the elevated antioxidant capacity of +S plants was able to reduce the effects of HR, leading to enhanced virus resistance. Expression of pathogenesis-related genes was also markedly up-regulated in +S plants after TMV-inoculation. On the subcellular level, comparison of TMV-inoculated +S and -S plants revealed that +S plants contained 55-132 % higher glutathione levels in mitochondria, chloroplasts, nuclei, peroxisomes and the cytosol than -S plants. Interestingly, mitochondria were the only organelles where TMV-inoculation resulted in a decrease of glutathione levels when compared to mock-inoculated plants. This was particularly obvious in -S plants, where the development of necrotic lesions was more pronounced. In summary, the overall higher antioxidative capacity and elevated activation of defense genes in +S plants indicate that sufficient sulfate supply enhances a preexisting plant defense reaction resulting in reduced symptom development and virus accumulation.
Collapse
Key Words
- cysteine
- glutathione
- nicotiana tabacum
- salicylic acid
- sulfur induced resistance
- tobacco mosaic virus
- apr, adenosine 5′-phosphosulfate reductase
- bsa, bovine serum albumin
- catsab, salicylic acid-binding catalase
- cp, coat protein
- dpi, days post inoculation
- gsh1, γ-glutamyl cysteine synthetase
- gsh2, glutathione synthetase
- gsttau1, tau class glutathione s-transferase
- hr, hypersensitive response
- pbs, phosphate buffered saline
- pcd, programmed cell death
- ros, reactive oxygen species
- s, sulfate
- sir, sulfur induced resistance
- sed, sulfur enhanced defense
- tmv, tobacco mosaic virus
Collapse
Affiliation(s)
- Lóránt Király
- Plant Protection Institute, Hungarian Academy of Sciences, P.O. Box 102, 1525 Budapest, Hungary
| | - András Künstler
- Plant Protection Institute, Hungarian Academy of Sciences, P.O. Box 102, 1525 Budapest, Hungary
| | - Kerstin Höller
- University of Graz, Institute of Plant Sciences, Schubertstrasse 51, 8010 Graz, Austria
| | - Maria Fattinger
- University of Graz, Institute of Plant Sciences, Schubertstrasse 51, 8010 Graz, Austria
| | - Csilla Juhász
- Plant Protection Institute, Hungarian Academy of Sciences, P.O. Box 102, 1525 Budapest, Hungary
| | - Maria Müller
- University of Graz, Institute of Plant Sciences, Schubertstrasse 51, 8010 Graz, Austria
| | - Gábor Gullner
- Plant Protection Institute, Hungarian Academy of Sciences, P.O. Box 102, 1525 Budapest, Hungary
| | - Bernd Zechmann
- University of Graz, Institute of Plant Sciences, Schubertstrasse 51, 8010 Graz, Austria
| |
Collapse
|
31
|
Bloem E, Haneklaus S, Kesselmeier J, Schnug E. Sulfur fertilization and fungal infections affect the exchange of H(2)S and COS from agricultural crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7588-96. [PMID: 22812725 DOI: 10.1021/jf301912h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The emission of gaseous sulfur (S) compounds by plants is related to several factors, such as the plant S status or fungal infection. Hydrogen sulfide (H(2)S) is either released or taken up by the plant depending on the ambient air concentration and the plant demand for S. On the contrary, carbonyl sulfide (COS) is normally taken up by plants. In a greenhouse experiment, the dependence of H(2)S and COS exchange with ambient air on the S status of oilseed rape (Brassica napus L.) and on fungal infection with Sclerotinia sclerotiorum was investigated. Thiol contents were determined to understand their influence on the exchange of gaseous S compounds. The experiment revealed that H(2)S emissions were closely related to pathogen infections as well as to S nutrition. S fertilization caused a change from H(2)S consumption by S-deficient oilseed rape plants to a H(2)S release of 41 pg g(-1) (dw) min(-1) after the addition of 250 mg of S per pot. Fungal infection caused an even stronger increase of H(2)S emissions with a maximum of 1842 pg g(-1) (dw) min(-1) 2 days after infection. Healthy oilseed rape plants acted as a sink for COS. Fungal infection caused a shift from COS uptake to COS releases. The release of S-containing gases thus seems to be part of the response to fungal infection. The roles the S-containing gases may play in this response are discussed.
Collapse
Affiliation(s)
- Elke Bloem
- Institute for Crop and Soil Science, Federal Research Centre for Cultivated Plants (JKI), Bundesallee 50, D-38116 Braunschweig, Germany.
| | | | | | | |
Collapse
|
32
|
Kruse C, Haas FH, Jost R, Reiser B, Reichelt M, Wirtz M, Gershenzon J, Schnug E, Hell R. Improved sulfur nutrition provides the basis for enhanced production of sulfur-containing defense compounds in Arabidopsis thaliana upon inoculation with Alternaria brassicicola. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:740-3. [PMID: 22342657 DOI: 10.1016/j.jplph.2011.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/21/2011] [Accepted: 12/27/2011] [Indexed: 05/09/2023]
Abstract
The antifungal activities of many sulfur-containing defense compounds suggest a connection between pathogen infection, primary sulfur metabolism and sulfate nutritional status of plants. This relationship was investigated using Arabidopsis thaliana plants that were cultivated under different sulfur regimes and challenged by Alternaria brassicicola. Plants grown with 500 μM sulfate were significantly less infected compared to plants grown on 50 μM sulfate. Upon infection, the formation of the sulfur-containing defense compound camalexin and the gene expression of the sulfur-rich defense peptide defensin were clearly enhanced in plants grown with an optimal compared to a sufficient sulfate supply in the growth medium. Elevated levels of sulfite and O-acetylserine and cysteine biosynthetic enzymes after infection indicated a stimulation of sulfur metabolism under the higher sulfate supply. The results suggest that, in addition to pathogen-triggered activation of sulfur metabolism and sulfur-containing defense compound formation, the sulfate nutritional status is sensed to contribute to plant defense.
Collapse
Affiliation(s)
- Cordula Kruse
- Centre for Organismal Studies-COS Heidelberg, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Giraud E, Ivanova A, Gordon CS, Whelan J, Considine MJ. Sulphur dioxide evokes a large scale reprogramming of the grape berry transcriptome associated with oxidative signalling and biotic defence responses. PLANT, CELL & ENVIRONMENT 2012; 35:405-417. [PMID: 21689113 DOI: 10.1111/j.1365-3040.2011.02379.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The grape and wine industries are heavily reliant on sulphite preservatives. However, the view that sulphites act directly on bacterial and fungal pathogens may be simplistic. Mechanisms of sulphur-enhanced defences are largely unknown; many sulphur-rich compounds enhance plant defences and sulphite can also have oxidative consequences via production of H(2)O(2) or sulphitolysis. To investigate the effects of sulphur dioxide (SO(2) ) on fresh table grapes (Vitis vinifera L. 'Crimson Seedless'), transcriptome analysis was carried out on berries treated with SO(2) under commercial conditions for 21 d. We found a broad perturbation of metabolic processes, consistent with a large-scale stress response. Transcripts encoding putative sulphur-metabolizing enzymes indicated that sulphite was directed towards chelation and conjugation, and away from oxidation to sulphate. The results indicated that redox poise was altered dramatically by SO(2) treatment, evidenced by alterations in plastid and mitochondrial alternative electron transfer pathways, up-regulation of fermentation transcripts and numerous glutathione S-transferases, along with a down-regulation of components involved in redox homeostasis. Features of biotic stress were up-regulated, notably signalling via auxin, ethylene and jasmonates. Taken together, this inventory of transcriptional responses is consistent with a long-term cellular response to oxidative stress, similar to the effects of reactive oxygen species.
Collapse
Affiliation(s)
- Estelle Giraud
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, M316 Crawley, Western Australia 6009, Australia
| | | | | | | | | |
Collapse
|
34
|
Kaur P, Jost R, Sivasithamparam K, Barbetti MJ. Proteome analysis of the Albugo candida-Brassica juncea pathosystem reveals that the timing of the expression of defence-related genes is a crucial determinant of pathogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1285-98. [PMID: 21193577 PMCID: PMC3022411 DOI: 10.1093/jxb/erq365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
White rust, caused by Albugo candida, is a serious pathogen of Brassica juncea (Indian mustard) and poses a potential hazard to the presently developing canola-quality B. juncea industry worldwide. A comparative proteomic study was undertaken to explore the molecular mechanisms that underlie the defence responses of Brassica juncea to white rust disease caused by the biotrophic oomycete Albugo candida. Nineteen proteins showed reproducible differences in abundance between a susceptible (RH 819) and a resistant variety (CBJ 001) of B. juncea following inoculation with A. candida. The identities of all 19 proteins were successfully established through Q-TOF MS/MS. Five of these proteins were only detected in the resistant variety and showed significant differences in their abundance at various times following pathogen inoculation in comparison to mock-inoculated plants. Among these was a thaumatin-like protein (PR-5), a protein not previously associated with the resistance of B. juncea towards A. candida. One protein, peptidyl-prolyl cis/trans isomerase (PPIase) isoform CYP20-3, was only detected in the susceptible variety and increased in abundance in response to the pathogen. PPIases have recently been discovered to play an important role in pathogenesis by suppressing the host cell's immune response. For a subset of seven proteins examined in more detail, an increase in transcript abundance always preceded their induction at the proteome level. These findings are discussed within the context of the A. candida-Brassica juncea pathosystem, especially in relation to host resistance to this pathogen.
Collapse
Affiliation(s)
- Parwinder Kaur
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Ricarda Jost
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Krishnapillai Sivasithamparam
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Martin John Barbetti
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Institute of Agriculture, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
35
|
Höller K, Király L, Künstler A, Müller M, Gullner G, Fattinger M, Zechmann B. Enhanced glutathione metabolism is correlated with sulfur-induced resistance in Tobacco mosaic virus-infected genetically susceptible Nicotiana tabacum plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1448-59. [PMID: 20923352 DOI: 10.1094/mpmi-05-10-0117] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sulfur-induced resistance, also known as sulfur-enhanced defense (SIR/SED) was investigated in Nicotiana tabacum cv. Samsun nn during compatible interaction with Tobacco mosaic virus (TMV) in correlation with glutathione metabolism. To evaluate the influence of sulfur nutritional status on virus infection, tobacco plants were treated with nutrient solutions containing either sufficient sulfate (+S) or no sulfate (-S). Sufficient sulfate supply resulted in a suppressed and delayed symptom development and diminished virus accumulation over a period of 14 days after inoculation as compared with -S conditions. Expression of the defense marker gene PR-1a was markedly upregulated in sulfate-treated plants during the first day after TMV inoculation. The occurrence of SIR/SED correlated with a higher level of activity of sulfate assimilation, cysteine, and glutathione metabolism in plants treated with sulfate. Additionally, two key genes involved in cysteine and glutathione biosynthesis (encoding adenosine 5'-phosphosulfate reductase and γ-glutamylcysteine synthetase, respectively) were upregulated within the first day after TMV inoculation under +S conditions. Sulfate withdrawal from the soil was accelerated at the beginning of the infection, whereas it declined in the long term, leading to an accumulation of sulfur in the soil of plants grown with sulfate. This observation could be correlated with a decrease in sulfur contents in TMV-infected leaves in the long term. In summary, this is the first study that demonstrates a link between the activation of cysteine and glutathione metabolism and the induction of SIR/SED during a compatible plant-virus interaction in tobacco plants, indicating a general mechanism behind SIR/SED.
Collapse
Affiliation(s)
- Kerstin Höller
- University of Graz, Institute of Plant Sciences, Schubertstrasse 51, 8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
36
|
Khan MS, Haas FH, Allboje Samami A, Moghaddas Gholami A, Bauer A, Fellenberg K, Reichelt M, Hänsch R, Mendel RR, Meyer AJ, Wirtz M, Hell R. Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. THE PLANT CELL 2010; 22:1216-31. [PMID: 20424176 PMCID: PMC2879758 DOI: 10.1105/tpc.110.074088] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/18/2010] [Accepted: 04/05/2010] [Indexed: 05/18/2023]
Abstract
The role of sulfite reductase (SiR) in assimilatory reduction of inorganic sulfate to sulfide has long been regarded as insignificant for control of flux in this pathway. Two independent Arabidopsis thaliana T-DNA insertion lines (sir1-1 and sir1-2), each with an insertion in the promoter region of SiR, were isolated. sir1-2 seedlings had 14% SiR transcript levels compared with the wild type and were early seedling lethal. sir1-1 seedlings had 44% SiR transcript levels and were viable but strongly retarded in growth. In mature leaves of sir1-1 plants, the levels of SiR transcript, protein, and enzymatic activity ranged between 17 and 28% compared with the wild type. The 28-fold decrease of incorporation of (35)S label into Cys, glutathione, and protein in sir1-1 showed that the decreased activity of SiR generated a severe bottleneck in the assimilatory sulfate reduction pathway. Root sulfate uptake was strongly enhanced, and steady state levels of most of the sulfur-related metabolites, as well as the expression of many primary metabolism genes, were changed in leaves of sir1-1. Hexose and starch contents were decreased, while free amino acids increased. Inorganic carbon, nitrogen, and sulfur composition was also severely altered, demonstrating strong perturbations in metabolism that differed markedly from known sulfate deficiency responses. The results support that SiR is the only gene with this function in the Arabidopsis genome, that optimal activity of SiR is essential for normal growth, and that its downregulation causes severe adaptive reactions of primary and secondary metabolism.
Collapse
Affiliation(s)
- Muhammad Sayyar Khan
- Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Florian Heinrich Haas
- Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Arman Allboje Samami
- Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | - Andrea Bauer
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | | | - Robert Hänsch
- Technical University Braunschweig, Institute of Plant Biology, 38106 Braunschweig, Germany
| | - Ralf R. Mendel
- Technical University Braunschweig, Institute of Plant Biology, 38106 Braunschweig, Germany
| | - Andreas J. Meyer
- Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Rüdiger Hell
- Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Wittstock U, Burow M. Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. THE ARABIDOPSIS BOOK 2010; 8:e0134. [PMID: 22303260 PMCID: PMC3244901 DOI: 10.1199/tab.0134] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glucosinolates are a group of thioglucosides in plants of the Brassicales order. Together with their hydrolytic enzymes, the myrosinases, they constitute the 'mustard oil bomb' involved in plant defense. Here we summarize recent studies in Arabidopsis that have provided molecular evidence that the glucosinolate-myrosinase system is much more than a 'two-component defense system,' and started to unravel the roles of different glucosinolate breakdown pathways in the context of plant responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ute Wittstock
- Institut für Pharmazeutische Biologie, Technische Universität Braunschweig
- Address for correspondence:
| | - Meike Burow
- Department of Plant Biology and Biotechnology, VKR Research Centre Pro-Active Plants
| |
Collapse
|
38
|
|
39
|
Falk KL, Tokuhisa JG, Gershenzon J. The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:573-81. [PMID: 17853357 DOI: 10.1055/s-2007-965431] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Glucosinolates are sulfur-rich plant metabolites of the order Brassicales that function in the defense of plants against pests and pathogens. They are also important in human society as flavor components, cancer-prevention agents, and crop biofumigants. Since glucosinolates may represent up to 30 % of the total sulfur content of plant organs, their accumulation should depend intimately on the sulfur status of the entire plant. Here we review the literature on how sulfur supply affects glucosinolate content. In field and greenhouse experiments involving soil, hydroponic and tissue culture media, sulfur fertilisation usually led to an increase in glucosinolate content ranging from 25 % to more than 50-fold, depending on the plant species, amount of sulfur applied, and type of treatment. The effect was greater on glucosinolates derived from the sulfur amino acid, methionine, than on glucosinolates derived from tryptophan. These changes are regulated not by simple mass action effects, but by extensive changes in gene transcription. In sulfur-deficient plants, there is a general down-regulation of glucosinolate biosynthetic genes which accompanies an up-regulation of genes controlling sulfur uptake and assimilation. Glucosinolates may be considered a potential source of sulfur for other metabolic processes under low-sulfur conditions, since increased breakdown of glucosinolates has been reported under sulfur deficiency. However, the pathway for sulfur mobilisation from glucosinolates has not been determined. The breakdown of indolic glucosinolates to form auxin in roots under sulfur-deficient conditions may help stimulate root formation for sulfur uptake.
Collapse
Affiliation(s)
- K L Falk
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | | | | |
Collapse
|
40
|
Rausch T. When plant life gets tough sulfur gets going. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:551-5. [PMID: 17853354 DOI: 10.1055/s-2007-965435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|