1
|
Brasil P, Drexler JF. Vaccine and surveillance implications of dengue underdetection. THE LANCET. INFECTIOUS DISEASES 2025; 25:255-256. [PMID: 39489897 DOI: 10.1016/s1473-3099(24)00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Patrícia Brasil
- Laboratory of Clinical Research on Acute Febrile Illness, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, 21050-360 Rio de Janeiro, Brazil.
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; German Centre for Infection Research (DZIF), Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
2
|
Lackritz EM, Ng LC, Marques ETA, Rabe IB, Bourne N, Staples JE, Méndez-Rico JA, Harris E, Brault AC, Ko AI, Beasley DWC, Leighton T, Wilder-Smith A, Ostrowsky JT, Mehr AJ, Ulrich AK, Velayudhan R, Golding JP, Fay PC, Cehovin A, Moua NM, Moore KA, Osterholm MT, Barrett ADT. Zika virus: advancing a priority research agenda for preparedness and response. THE LANCET. INFECTIOUS DISEASES 2025:S1473-3099(24)00794-1. [PMID: 40024263 DOI: 10.1016/s1473-3099(24)00794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 03/04/2025]
Abstract
The 2015-16 Zika virus epidemic emerged in the Americas and rapidly spread throughout the region and beyond, showing the epidemic potential of this mosquito-borne Orthoflavivirus and its capacity to cause severe congenital malformations and neurological sequelae. WHO declared the Zika virus epidemic a public health emergency of international concern in 2016. Despite this declaration, there are no licensed Zika virus vaccines, therapeutics, or diagnostic tests appropriate for routine antenatal screening. To address this absence of essential tools to detect and mitigate the threat of future Zika virus outbreaks, a group of global experts developed a priority agenda for Zika virus research and development. This Series paper summarises crucial challenges and knowledge gaps and outlines a comprehensive strategy to advance research, surveillance, global capacity, policy, and investment for Zika virus preparedness and response.
Collapse
Affiliation(s)
- Eve M Lackritz
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA.
| | - Lee-Ching Ng
- National Environment Agency, Environmental Health Institute, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Ernesto T A Marques
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Virology and Experimental Therapeutics, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | | | - Nigel Bourne
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - J Erin Staples
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Jairo A Méndez-Rico
- Pan American Health Organization, WHO Region of the Americas, Washington, DC, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Albert I Ko
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA; Ministry of Health, Salvador, Brazil
| | - David W C Beasley
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tabitha Leighton
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | | | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela K Ulrich
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Petra C Fay
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | - Ana Cehovin
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | - Nicolina M Moua
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Alan D T Barrett
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
3
|
Harrell T, Basak S, Sultana H, Neelakanta G. Zika virus modulates arthropod histone methylation for its survival in mosquito cells. PLoS One 2025; 20:e0319290. [PMID: 39946368 PMCID: PMC11824992 DOI: 10.1371/journal.pone.0319290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/27/2024] [Indexed: 02/16/2025] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne human pathogen that causes mild febrile illness in adults and severe neurological complications and microcephaly in newborns. Studies have reported that ZIKV modulates methylation of human and viral RNA critical for its replication in vertebrate cells. In this study, we show that ZIKV modulates mosquito S-adenosyl methionine (SAMe)-synthase, an enzyme involved in the production of SAMe (methyl donor), and histone methylation for its survival in mosquito cells. Reverse transcription quantitative PCR followed by immunoblotting analysis showed increased amounts of SAMe synthase at both RNA and protein levels, respectively, in C6/36 mosquito cells infected with ZIKV at day 1 post infection (p.i.). Increased levels of SAMe was noted upon ZIKV infection at day 1 p.i in mosquito cells. In addition, increased EZH2 histone methyl transferase-like gene transcripts and methylated histone (H3K27me3) levels were evident in mosquito cells upon ZIKV infection. Exogenous addition of SAMe to mosquito cells showed increased ZIKV loads and EZH2 histone methyl transferase-like gene transcript levels. Furthermore, treatment of mosquito cells with EZH2 inhibitor resulted in reduced histone methylation and ZIKV loads. Collectively, our study provides novel information in understanding the importance of SAMe and histone methylation in the survival of ZIKV in its arthropod vector.
Collapse
Affiliation(s)
- Telvin Harrell
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
| | - Swarnendu Basak
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
4
|
Bohm EK, Castañeda D, Lu Q, Cameron MD, Aliota MT. Zika virus-induced fetal demise is driven by strain- and dose-specific RLR-driven activation of the interferon response in the decidua, placenta, and fetus in Ifnar1 -/- mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637947. [PMID: 39990459 PMCID: PMC11844458 DOI: 10.1101/2025.02.12.637947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Congenital Zika syndrome (CZS), the set of fetal and neonatal complications associated with Zika virus (ZIKV) infection in pregnancy, was first noted during the outbreak in the Americas in 2015-16. However, there was an unequal distribution of ZIKV cases and severe outcomes in all areas where ZIKV emerged in the Americas, demonstrating that the risk of CZS varied over space and time. Recently, we demonstrated that phenotypic heterogeneity existed between closely-related ZIKV strains. All ZIKV strains tested infected the placenta but varied in their capacity to cause overt fetal harm. Here, we further characterized the relative contributions of virus genotype and infecting dose of two phenotypically distinct ZIKV strains across multiple timepoints in gestation in pregnant mice that lack type-I interferon receptor function ( Ifnar1 -/- ). To better understand the underlying causes of adverse fetal outcomes, we used RNA sequencing to compare ZIKV-infected and uninfected tissues. We found that ZIKV infection triggers retinoic acid-inducible gene I (RIG-I)-like receptor-mediated activation of the interferon response at the maternal-fetal interface. However, modest chemical inhibition of RIG-I activation in the decidua and placenta did not protect against fetal demise. Instead, the fetal interferon response was significantly associated with fetal demise. Together, these findings suggest that the response to ZIKV at the maternal-fetal interface can vary depending on the infecting ZIKV genotype and dose, and that the fetal immune response is an important mediator of fetal harm. IMPORTANCE Previously, we used a mouse model of ZIKV infection during pregnancy to assess the pathogenic potential to the fetus of a panel of five, low-passage ZIKV strains representing the viral genetic diversity in the Americas. We found that phenotypic heterogeneity existed between these closely-related ZIKV strains. Here, we show that this heterogeneity is driven by retinoic acid-inducible gene I (RIG-I)-like receptor-mediated activation of the interferon response at the maternal-fetal interface. We used chemical inhibition of the RIG-I pathway and measured the transcriptional activity of interferon stimulated genes in fetuses to demonstrate that the fetal immune response may contribute to fetal demise.
Collapse
|
5
|
Donaldson MK, Zanders LA, Jose J. Functional Roles and Host Interactions of Orthoflavivirus Non-Structural Proteins During Replication. Pathogens 2025; 14:184. [PMID: 40005559 PMCID: PMC11858440 DOI: 10.3390/pathogens14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Orthoflavivirus, a genus encompassing arthropod-borne, positive-sense, single-stranded RNA viruses in the Flaviviridae family, represents clinically relevant viruses that pose significant threats to human and animal health worldwide. With warming climates and persistent urbanization, arthropod vectors and the viruses they transmit continue to widen their geographic distribution, expanding endemic zones. Flaviviruses such as dengue virus, Zika virus, West Nile virus, and tick-borne encephalitis virus cause debilitating and fatal infections globally. In 2024, the World Health Organization and the Pan American Health Organization declared the current dengue situation a Multi-Country Grade 3 Outbreak, the highest level. FDA-approved treatment options for diseases caused by flaviviruses are limited or non-existent, and vaccines are suboptimal for many flaviviruses. Understanding the molecular characteristics of the flavivirus life cycle, virus-host interactions, and resulting pathogenesis in various cells and model systems is critical for developing effective therapeutic intervention strategies. This review will focus on the virus-host interactions of mosquito- and tick-borne flaviviruses from the virus replication and assembly perspective, emphasizing the interplay between viral non-structural proteins and host pathways that are hijacked for their advantage. Highlighting interaction pathways, including innate immunity, intracellular movement, and membrane modification, emphasizes the need for rigorous and targeted antiviral research and development against these re-emerging viruses.
Collapse
Affiliation(s)
- Meghan K. Donaldson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
| | - Levi A. Zanders
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Martins MM, Guastavino AB, de Magalhães-Barbosa MC, de Magalhães-Barbosa MH, Garcia CFD, Amaral BKG, Barbosa AC, Ferreira HC, Robaina JR, de Oliveira MBG, Tovar-Moll FF, de Andrade Medronho R, da Cunha AJLA, Amim J, Prata-Barbosa A. Neurological, Radiological, Visual, and Auditory Findings in Children with Intrauterine Exposure to the Zika Virus. Viruses 2025; 17:238. [PMID: 40006993 PMCID: PMC11861632 DOI: 10.3390/v17020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
This study aims to describe neurological, visual, and auditory findings in children whose mothers had confirmed Zika virus (ZIKV) infection during pregnancy, with most of these children not presenting congenital microcephaly; Methods: an observational, longitudinal, and prospective study was conducted in Rio de Janeiro, Brazil, from March 2015 to January 2017, involving children with in utero exposure to Zika virus, following from birth up to 30 months of age. Results: Of the 2882 pregnant women admitted, 116 had a suspected ZIKV infection, of whom 33 had laboratory confirmation. Only one child presented with congenital microcephaly. Despite this, neurodevelopment delay was observed in 36.4% of children evaluated, radiological abnormalities in 29.1%, auditory abnormalities in 8.3%, and ophthalmological abnormalities in 10%. Conclusions: Newborns of mothers with confirmed ZIKV infection during pregnancy may present with varying degrees of visual, auditory, and neurological impairment, despite the presence of congenital microcephaly.
Collapse
Affiliation(s)
- Marlos Melo Martins
- Division of Pediatric Neurology, Martagão Gesteira Institute of Childcare and Pediatrics (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil;
- Neonatal Unit, Maternity School Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 22240-001, RJ, Brazil;
| | - Andréa Bittencourt Guastavino
- Neonatal Unit, Maternity School Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 22240-001, RJ, Brazil;
- Postgraduate Program, Maternity School Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 22240-001, RJ, Brazil;
| | - Maria Clara de Magalhães-Barbosa
- Department of Pediatrics, D’Or Institute for Research and Education (IDOR), Rio de Janeiro 22281-100, RJ, Brazil; (M.C.d.M.-B.); (J.R.R.); (M.B.G.d.O.); (A.J.L.A.d.C.)
| | - Maria Helena de Magalhães-Barbosa
- Phonoaudiology Unit, Maternity School Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 22240-001, RJ, Brazil; (M.H.d.M.-B.); (C.F.D.G.)
| | - Cristiane Fregonesi Dutra Garcia
- Phonoaudiology Unit, Maternity School Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 22240-001, RJ, Brazil; (M.H.d.M.-B.); (C.F.D.G.)
- Department of Phonoaudiology, School of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21044-020, RJ, Brazil
| | - Bárbara Karine Gonet Amaral
- Department of Ophthalmology, Maternity School Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 22240-001, RJ, Brazil;
| | - Annamaria Ciminelli Barbosa
- Department of Ophthalmology, Gaffree and Guinle University Hospital, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 20270-004, RJ, Brazil;
| | - Halina Cidrini Ferreira
- Department of Physiotherapy, Maternity School Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 22240-001, RJ, Brazil;
| | - Jaqueline Rodrigues Robaina
- Department of Pediatrics, D’Or Institute for Research and Education (IDOR), Rio de Janeiro 22281-100, RJ, Brazil; (M.C.d.M.-B.); (J.R.R.); (M.B.G.d.O.); (A.J.L.A.d.C.)
| | - Mariana Barros Genuino de Oliveira
- Department of Pediatrics, D’Or Institute for Research and Education (IDOR), Rio de Janeiro 22281-100, RJ, Brazil; (M.C.d.M.-B.); (J.R.R.); (M.B.G.d.O.); (A.J.L.A.d.C.)
| | - Fernanda Freire Tovar-Moll
- Department of Radiology, D’Or Institute for Research and Education (IDOR), Rio de Janeiro 22281-100, RJ, Brazil;
| | - Roberto de Andrade Medronho
- Department of Epidemiology and Public Health, School of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21044-020, RJ, Brazil;
| | - Antonio José Ledo Alves da Cunha
- Department of Pediatrics, D’Or Institute for Research and Education (IDOR), Rio de Janeiro 22281-100, RJ, Brazil; (M.C.d.M.-B.); (J.R.R.); (M.B.G.d.O.); (A.J.L.A.d.C.)
- Department of Pediatrics, School of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21044-020, RJ, Brazil
| | - Joffre Amim
- Postgraduate Program, Maternity School Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 22240-001, RJ, Brazil;
- Department of Gynecology and Obstetrics, School of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21044-020, RJ, Brazil
| | - Arnaldo Prata-Barbosa
- Postgraduate Program, Maternity School Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 22240-001, RJ, Brazil;
- Department of Pediatrics, D’Or Institute for Research and Education (IDOR), Rio de Janeiro 22281-100, RJ, Brazil; (M.C.d.M.-B.); (J.R.R.); (M.B.G.d.O.); (A.J.L.A.d.C.)
| |
Collapse
|
7
|
Hajari N, Knoll M, Lu A, Barber-Axthelm I, Gale M. The Zika virus NS5 protein binds HSP90 to suppress EGF-induced Akt signaling and trophoblast cell migration. Virology 2025; 603:110370. [PMID: 39765020 PMCID: PMC11832110 DOI: 10.1016/j.virol.2024.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025]
Abstract
Zika virus (ZIKV) infection during pregnancy can cause congenital Zika virus syndrome (CZV), including fetal growth restriction and death. In the developing placenta, trophoblast cells respond to epidermal growth factor (EGF) to migrate into the decidua to facilitate implantation and fetal development. EGF activates the Akt protein kinase, a master regulator of trophoblast cell migration. Akt signaling and stability are dependent on heat shock protein 90 (HSP90), which mediates the maturation of proteins necessary for EGF/Akt signaling. Here we show that ZIKV infection inhibits EGF-mediated Akt activation and downstream signaling to suppress trophoblast migration. The ZIKV non-structural protein 5 (NS5) is sufficient to inhibit trophoblast migration through its binding interaction with HSP90, leading to suppression of Akt phosphorylation and inhibition of EGF-induced trophoblast migration. Thus, ZIKV NS5/HSP90 interactions play a key role in disruption of trophoblast function, revealing an underlying cause of improper placental development and fetal disease.
Collapse
Affiliation(s)
- Nika Hajari
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Megan Knoll
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, USA
| | - Amy Lu
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | | | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA; Institute on Infectious Diseases, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Venancio FA, Quilião ME, de Oliveira Gabeira SC, de Carvalho AT, dos Santos Leite SH, de Lima SMB, dos Santos Alves N, da Cruz Moura L, Schwarcz WD, de Souza Azevedo A, Demarchi LHF, Zardin MCSU, de Castro Lichs GG, Taira DL, de Souza Fernandes W, Alves NO, Arrua AEC, do Nascimento AI, Mareto LK, de Azevedo MV, Maciel CG, de Medeiros MJ, de Souza Rodrigues MM, Vasconcelos Z, Nielsen-Saines K, da Cunha RV, Du Bocage Santos-Pinto C, de Oliveira EF. Early and Long-Term Adverse Outcomes of In Utero Zika Exposure. Pediatrics 2025; 155:e2024067552. [PMID: 39814049 PMCID: PMC11832048 DOI: 10.1542/peds.2024-067552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/31/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Zika virus (ZIKV) infection during pregnancy can lead to congenital Zika syndrome (CZS) and may result in neurodevelopmental alterations in exposed children, with and without CZS. This study aimed to evaluate ZIKV infection during pregnancy as a risk factor for early and long-term adverse outcomes. METHODS This retrospective-prospective, matched cohort study was conducted in Mato Grosso do Sul, Brazil. Mother-infant pairs exposed and unexposed to ZIKV during pregnancy were enrolled in the study from 2018 to 2022. Clinical and epidemiological data from the gestational period and neonatal evaluations were obtained from the Brazilian health surveillance system. Children were assessed for early (congenital anomalies) and long-term adverse outcomes (neurodevelopmental delay). Incidence risk ratio (IRR) and crude odds ratio (OR) were used to assess associations. RESULTS The risk of adverse outcomes in exposed children was nearly 3-fold higher (IRR, 2.7; 95% CI, 1.4-5.1) compared with the control group. The risk of motor (IRR, 3.4; 95% CI, 1.2-9.6) and cognitive delay (IRR, 4.7; 95% CI, 1.7-13.0) was significantly higher in exposed children. In 44% of pregnancies wherein maternal infection occurred in the first trimester, at least 1 adverse event was identified in the child, with 11.2-fold greater odds of adverse outcomes (OR, 11.2; 95% CI, 3.6-35.0) compared with children of mothers infected in the third trimester. CONCLUSIONS Children exposed to ZIKV in utero, even without CZS, demonstrate a greater risk for neurodevelopmental delay in early childhood, with the timing of maternal infection being a significant predictive risk factor.
Collapse
Affiliation(s)
- Fabio Antonio Venancio
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
- Faculdade de Medicina, Universidade Estadual de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Maria Eulina Quilião
- Centro Especializado em Reabilitação da Associação de Pais e Amigos dos Excepcionais, Campo Grande, Mato Grosso do Sul, Brazil
| | - Sanny Cerqueira de Oliveira Gabeira
- Laboratório de Alta Complexidade, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Amanda Torrentes de Carvalho
- Laboratório de Imunobiologia das Doenças Infecciosas, Departamento de Imunonologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Silvia Helena dos Santos Leite
- Laboratório de Alta Complexidade, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | | | | | - Luma da Cruz Moura
- Laboratório de Análise Imunomolecular, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Waleska Dias Schwarcz
- Laboratório de Análise Imunomolecular, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | | | - Luiz Henrique Ferraz Demarchi
- Laboratório Central de Saúde Pública de Mato Grosso do Sul, Secretaria de Estado de Saúde de Mato Grosso do Sul, Campo Grande, Brazil
| | | | - Gislene Garcia de Castro Lichs
- Laboratório Central de Saúde Pública de Mato Grosso do Sul, Secretaria de Estado de Saúde de Mato Grosso do Sul, Campo Grande, Brazil
| | - Deborah Ledesma Taira
- Laboratório Central de Saúde Pública de Mato Grosso do Sul, Secretaria de Estado de Saúde de Mato Grosso do Sul, Campo Grande, Brazil
| | - Wagner de Souza Fernandes
- Instituto de Biociências, Laboratório de Parasitologia Humana, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Natália Oliveira Alves
- Instituto de Biociências, Laboratório de Parasitologia Humana, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Aline Etelvina Casaril Arrua
- Instituto de Biociências, Laboratório de Parasitologia Humana, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Ana Isabel do Nascimento
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Lisany Krug Mareto
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Micael Viana de Azevedo
- Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Camila Guadeluppe Maciel
- Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | | | - Zilton Vasconcelos
- Laboratório de Alta Complexidade, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Karin Nielsen-Saines
- David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California
| | - Rivaldo Venâncio da Cunha
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
- Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Everton Falcão de Oliveira
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
- Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
9
|
Suleri A, Rommel AS, Dmitrichenko O, Muetzel RL, Cecil CAM, de Witte L, Bergink V. The association between maternal immune activation and brain structure and function in human offspring: a systematic review. Mol Psychiatry 2025; 30:722-735. [PMID: 39342040 PMCID: PMC11750624 DOI: 10.1038/s41380-024-02760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Maternal immune activation (MIA) during pregnancy, as a result of infectious or inflammatory stimuli, has gained increasing attention for its potential role in adverse child neurodevelopment, with studies focusing on associations in children born preterm. This systematic review summarizes research on the link between several types of prenatal MIA and subsequent child structural and/or functional brain development outcomes. We identified 111 neuroimaging studies in five MIA areas: inflammatory biomarkers (n = 13), chorioamnionitis (n = 18), other types of infections (n = 18), human immunodeficiency virus (HIV) (n = 42), and Zika virus (n = 20). Overall, there was large heterogeneity in the type of MIA exposure examined and in study methodology. Most studies had a prospective single cohort design and mainly focused on potential effects on the brain up to one year after birth. The median sample size was 53 participants. Severe infections, i.e., HIV and Zika virus, were associated with various types of cerebral lesions (e.g., microcephaly, atrophy, or periventricular leukomalacia) that were consistently identified across studies. For less severe infections and chronic inflammation, findings were generally inconsistent and mostly included deviations in white matter structure/function. Current findings have been mainly observed in the infants' brain, presenting an opportunity for future studies to investigate whether these associations persist throughout development. Additionally, the inconsistent findings, encompassing both regions of interest and null results, call into question whether prenatal exposure to less severe infections and chronic inflammation exerts a small effect or no effect on child brain development.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anna-Sophie Rommel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olga Dmitrichenko
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lot de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Radboud UMC, Nijmegen, The Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Pagani I, Ghezzi S, Aimola G, Podini P, Genova F, Vicenzi E, Poli G. Restriction of Zika Virus Replication in Human Monocyte-Derived Macrophages by Pro-Inflammatory (M1) Polarization. Int J Mol Sci 2025; 26:951. [PMID: 39940721 PMCID: PMC11816608 DOI: 10.3390/ijms26030951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Zika virus (ZIKV), a member of the Flaviviridae family, is primarily transmitted through mosquito bites, but can also spread via sexual contact and from mother to fetus. While often asymptomatic, ZIKV can lead to severe neurological conditions, including microcephaly in fetuses and Guillain-Barré Syndrome in adults. ZIKV can infect placental macrophages and fetal microglia in vivo as well as human monocytes and monocyte-derived macrophages (MDMs) in vitro. Here, we observed that both human monocytes, and MDM particularly, supported ZIKV replication without evident cytopathicity, with virions accumulating in cytoplasmic vacuoles. We also investigated whether the cytokine-induced polarization of MDMs into M1 or M2 cells affected ZIKV replication. The stimulation of MDMs with pro-inflammatory cytokines (interferon-γ and tumor necrosis factor-α) polarized MDMs into M1 cells, significantly reducing ZIKV replication, akin to previous observations with a human immunodeficiency virus type-1 infection. In contrast, M2 polarization, induced by interleukin-4, did not affect ZIKV replication in MDMs. M1 polarization selectively reduced the expression of MERTK, a TAM family putative entry receptor, and increased the expression of several interferon-stimulated genes (ISGs) previously associated with the containment of ZIKV infection; of interest, ZIKV infection transiently boosted the expression of some ISGs in M1-MDMs. These findings suggest a dual mechanism of ZIKV restriction in M1-MDMs and highlight potential antiviral strategies targeting innate immune responses.
Collapse
Affiliation(s)
- Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; (I.P.); (S.G.); (E.V.)
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; (I.P.); (S.G.); (E.V.)
| | - Giulia Aimola
- Human Immuno-Virology (H.I.V.) Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy;
| | - Paola Podini
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy;
| | - Francesca Genova
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy;
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; (I.P.); (S.G.); (E.V.)
| | - Guido Poli
- Human Immuno-Virology (H.I.V.) Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy;
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
11
|
Gales M, Yonally Phillips EL, Zilversmit Pao L, Dubray C, Rodriguez Ribas Elizalde C, Heidari S, Degail MA, Meudec M, Siddiqui MR, Carter SE. Beyond COVID-19, the case for collecting, analysing and using sex-disaggregated data and gendered data to inform outbreak response: a scoping review. BMJ Glob Health 2025; 10:e015900. [PMID: 39828430 PMCID: PMC11749539 DOI: 10.1136/bmjgh-2024-015900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Understanding sex and gender differences during outbreaks is critical to delivering an effective response. Although recommendations and minimum requirements exist, the incorporation of sex-disaggregated data and gender analysis into outbreak analytics and response for informed decision-making remains infrequent. A scoping review was conducted to provide an overview of the extent of sex-disaggregated data and gender analysis in outbreak response within low- and middle-income countries (LMICs). METHODS Five databases were searched for peer-reviewed literature examining sex- and gender-specific outcomes for communicable disease outbreaks published in English between 1 January 2012 and 12 April 2022. An adapted version of the WHO's Gender Analysis Matrix was used to synthesise evidence, which was then mapped across four phases of the outbreak timeline: prevention, detection, treatment/management and recovery. RESULTS 71 articles met inclusion criteria and were included in this review. Sex-, gender-, and pregnancy-related disparities were identified throughout all four phases of the outbreak timeline. These disparities encompassed a wide range of risk factors for disease, vulnerability, access to and use of services, health-seeking behaviour, healthcare options, as well as experiences in healthcare settings and health and social outcomes and consequences. CONCLUSION Significant gender-evidence gaps remain in outbreak response. Evidence that is available illustrates that sex and gender disparities in outbreaks vary by disease, setting and population, and these differences play significant roles in shaping outbreak dynamics. As such, failing to collect, analyse or use sex-disaggregated data and gendered data during outbreaks results in less effective responses, differential adverse health outcomes, increased vulnerability among certain groups and insufficient evidence for effective prevention and response efforts. Systematic sex- and gender-based analyses to ensure gender-responsive outbreak prevention, detection, treatment/management and recovery are urgently needed.
Collapse
Affiliation(s)
- McKinzie Gales
- Global Health Center, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Christine Dubray
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Shirin Heidari
- Graduate Institute of International and Development Studies, Geneve, GE, Switzerland
| | - Marie-Amelie Degail
- Health Emergencies Programme, World Health Organization, Geneve, GE, Switzerland
| | - Marie Meudec
- Public Health, Institute of Tropical Medicine, Antwerpen, Antwerpen, Belgium
| | | | - Simone E Carter
- PUBLIC HEALTH EMERGENCIES, UNICEF, Kinshasa, Congo (the Democratic Republic of the)
| |
Collapse
|
12
|
Kennedy SH, MacDonald NE, Costa Clemens SA. Vaccination in pregnancy. Front Glob Womens Health 2025; 5:1523117. [PMID: 39872629 PMCID: PMC11770015 DOI: 10.3389/fgwh.2024.1523117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Affiliation(s)
- Stephen H. Kennedy
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Noni E. MacDonald
- Department of Paediatrics, Dalhousie University, Halifax, NS, Canada
| | - Sue Ann Costa Clemens
- Institute for Global Health, University of Siena, Siena, Italy
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Bishnoi A, Sharma A, Mehta H, Vinay K. Emerging and re-emerging viral exanthems among children: what a physician should know. Trans R Soc Trop Med Hyg 2025; 119:13-26. [PMID: 39540239 DOI: 10.1093/trstmh/trae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/16/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Viral exanthems can present with diverse morphologies of rash, including macular, maculopapular, papular, urticarial and vesicular, or sometimes a combination of these. There has been an increasing trend towards emerging and re-emerging viral exanthems in recent years, the cause of which is multifactorial, including changing environmental conditions and altered host-vector-agent interaction. The significant temperature variations brought on by climate change and ever-increasing international travel has modified the host-agent interactions, and many re-emerging viral illnesses are now presenting with atypical presentations, including an increased frequency of affliction across broader age groups and heightened manifestations often posing as 'great imitators' mimicking a myriad of other dermatoses. Although final diagnosis often relies on serological and molecular tests, certain cutaneous clues can help arrive at a probable clinical diagnosis and help the clinicians order specific and relevant investigations, especially in resource-poor settings where access to laboratory diagnostic tests is likely to be limited. In this review we explore the changing disease dynamics of common viral infections, especially in resource-poor settings, including coronavirus disease 2019, chikungunya, hand-foot-and-mouth disease and some newly emerging ones like mpox (previously referred to as monkeypox), and highlight recent developments in our understanding of the clinical variations seen in their presentations.
Collapse
Affiliation(s)
- Anuradha Bishnoi
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Apoorva Sharma
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Hitaishi Mehta
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Keshavamurthy Vinay
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
14
|
Agner SC, Brier LM, Hill JD, Liu EY, Bice A, Rahn RM, Chen S, Culver JP, Klein RS. Zika virus encephalitis causes transient reduction of functional cortical connectivity. NEUROPHOTONICS 2025; 12:S14603. [PMID: 39610883 PMCID: PMC11603678 DOI: 10.1117/1.nph.12.s1.s14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
Significance Determining the long-term cognitive impact of infections is clinically challenging. Using functional cortical connectivity, we demonstrate that interhemispheric cortical connectivity is decreased in individuals with acute Zika virus (ZIKV) encephalitis. This correlates with decreased presynaptic terminals in the somatosensory cortex. During recovery from ZIKV infection, presynaptic terminals recover, which is associated with recovered interhemispheric connectivity. This supports the contribution of synapses in the cortex to functional networks in the brain, which can be detected by widefield optical imaging. Although myeloid cell and astrocyte numbers are still increased during recovery, RNA transcription of multiple proinflammatory cytokines that increase during acute infection decreases to levels comparable to mock-infected mice during recovery. These findings also suggest that the immune response and cytokine-mediated neuroinflammation play significant roles in the integrity of brain networks during and after viral encephalitis. Aim We hypothesized that widefield optical imaging would allow us to assess functional cortical network disruption by ZIKV, including hippocampal-cortical networks. Approach We use widefield optical imaging to measure cortical functional connectivity (FC) in mice during acute infection with, and recovery from, intracranial infection with a mouse-adapted strain of ZIKV. Results Acute ZIKV infection leads to high levels of myeloid cell activation, with loss of neurons and presynaptic termini in the cerebral cortex and associated loss of FC primarily within the somatosensory cortex. During recovery, neuron numbers, synapses, and FC recover to levels near those of healthy mice. However, hippocampal injury and impaired spatial cognition persist. The magnitude of activated myeloid cells during acute infection predicted both recovery of synapses and the degree of FC recovery after recovery from ZIKV infection. Conclusions These findings suggest that a robust inflammatory response may contribute to the health of functional brain networks after recovery from infection.
Collapse
Affiliation(s)
- Shannon C. Agner
- Washington University School of Medicine, Center for Neuroimmunology and Neuroinfectious Diseases, St. Louis, Missouri, United States
- Washington University School of Medicine, Department of Neurology, St. Louis, Missouri, United States
| | - Lindsey M. Brier
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Jeremy D. Hill
- Washington University School of Medicine, Center for Neuroimmunology and Neuroinfectious Diseases, St. Louis, Missouri, United States
- Washington University School of Medicine, Department of Medicine, St. Louis, Missouri, United States
| | - Ethan Y. Liu
- Washington University School of Medicine, Department of Neurology, St. Louis, Missouri, United States
| | - Annie Bice
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Rachel M. Rahn
- Washington University School of Medicine, St. Louis, Missouri, United States
| | - Shengxuan Chen
- Washington University School of Medicine, St. Louis, Missouri, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
- Washington University School of Medicine, St. Louis, Missouri, United States
- Washington University School of Medicine, Departments of Physics, Biomedical Engineering, and Electrical and Systems Engineering, St. Louis, Missouri, United States
| | - Robyn S. Klein
- Washington University School of Medicine, Center for Neuroimmunology and Neuroinfectious Diseases, St. Louis, Missouri, United States
- Western University, Departments of Medicine, Microbiology & Immunology, Western Institute of Neuroscience, London, Ontario, Canada
| |
Collapse
|
15
|
Sharma PK, Kim NY, Ganbold E, Seong RS, Kim YM, Park JS, Shin YK, Han HS, Kim ES, Kim ST. SARS-CoV-2 detection in COVID-19 patients' sample using Wooden quoit conformation structural aptamer (WQCSA)-Based electronic bio-sensing system. Biosens Bioelectron 2025; 267:116506. [PMID: 39277919 DOI: 10.1016/j.bios.2024.116506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 09/17/2024]
Abstract
The COVID-19 epidemic and its continuous spread pose a serious threat to public health. Coronavirus strains known as SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) variants have undergone genomic changes. The severity of the symptoms, the efficiency of vaccinations, and the transmission capacity of the virus can be impacted by these alterations. Point-of-care diagnostic assays can identify particular genetic or protein sequences that are exclusive to each variety. Currently, ultrafast, responsive, and accurate antibody detection faces several challenges. Here, we outline the fabrication, implementation, and sensing performance benchmarking of an ultrafast (5 s) and inexpensive (0.15 USD) assay with label-free sensing of SARS-CoV-2 S (Spike)/N (Nucleocapsid) protein and other variants in real patient samples. A label-free DNA aptameric capacitive bio-sensing device was used to detect SARS-CoV-2 variants. Our novel, cutting-edge bio-sensing device contains a Wooden quoits conformation structural aptamer (WQCSA)-based inter-digitated capacitor electronic (WQCSA-IDCE) system. WQCSA-aptamer was used as a switch-turn on response to achieve ultrasensitivity in the variable area of the SARS-CoV-2. The molecular beacon (MB) method was also used to measure the fluorescently colored SARS-CoV-2 S/N protein. These sensors can be used with several types of label-free DNA aptamers to act as rapid, affordable, and label-free biosensors for a variety of critical acute respiratory virus syndrome disorders.
Collapse
Affiliation(s)
- Parshant Kumar Sharma
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea.
| | - Nam-Young Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea.
| | - Enkhzaya Ganbold
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea
| | - Ryun-Sang Seong
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea
| | - Yu Mi Kim
- Bioscience & Biotechnology Research Institute, Healthcare Innovation Park, Seoul National University College of Medicine, Goomi-ro, Bundanggu Seongnam City, Geonggeedo, 13605, South Korea
| | - Jeong Su Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital 82, Goomi-ro, Bundanggu Seongnam City, Geonggeedo, 13620, South Korea
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea; Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Ho Seong Han
- Bioscience & Biotechnology Research Institute, Healthcare Innovation Park, Seoul National University College of Medicine, Goomi-ro, Bundanggu Seongnam City, Geonggeedo, 13605, South Korea
| | - Eun-Seong Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea.
| | - Sang Tae Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Bioscience & Biotechnology Research Institute, Healthcare Innovation Park, Seoul National University College of Medicine, Goomi-ro, Bundanggu Seongnam City, Geonggeedo, 13605, South Korea; Department of Surgery, Seoul National University Bundang Hospital 82, Goomi-ro, Bundanggu Seongnam City, Geonggeedo, 13620, South Korea
| |
Collapse
|
16
|
Fazecas T, Lopes FPPL, Guedes B, Castro P, Nogueira R, Werner H. Zika virus as a new pathogenic agent within the Toxoplasma gondii, Rubella virus, Cytomegalovirus, and Herpes simplex (TORCH) virus family: where do we stand? Pediatr Radiol 2025; 55:65-74. [PMID: 38822063 DOI: 10.1007/s00247-024-05944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Viral infections in low-income countries such as Brazil pose a significant challenge for medical authorities, with epidemics such as Zika virus infection having lasting effects. The increase in microcephaly among newborns has prompted investigations into the association between Zika virus and this congenital syndrome. The severity and prevalence of microcephaly led to the declaration of national and international emergencies. Extensive research has been conducted to understand the teratogenic effects of Zika virus, particularly its impact on neural progenitor cells in the fetal brain. Various pre- and postnatal imaging techniques, such as ultrasound, magnetic resonance imaging (MRI), and postnatal computed tomography (CT), have played crucial roles in diagnosing and monitoring malformations linked to congenital Zika virus infection in the central nervous system (CNS). These modalities can detect brain parenchymal abnormalities, calcifications, cerebral atrophy, and callosal anomalies. Additionally, three-dimensional ultrasound and fetal MRI provide detailed anatomical images, while CT can identify calcifications that are not easily detected by other methods. Despite advancements in imaging, there are still unanswered questions and ongoing challenges in comprehending the long-term effects and developmental impairments in children affected by Zika virus. Radiologists continue to play a crucial role in diagnosing and assisting in the management of these cases.
Collapse
Affiliation(s)
- Tatiana Fazecas
- Radiology Department, Dasa, Rio de Janeiro, RJ, Brazil.
- Imaging Department, Hospital Municipal Jesus, Rio de Janeiro, RJ, Brazil.
| | | | - Bianca Guedes
- Radiology Department, Dasa, Rio de Janeiro, RJ, Brazil
| | - Pedro Castro
- Radiology Department, Dasa, Rio de Janeiro, RJ, Brazil
| | | | - Heron Werner
- Radiology Department, Dasa, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Corsi-Zuelli F. The journey of young scientists in Brazil: challenges and perspectives. Immunol Cell Biol 2025; 103:22-26. [PMID: 39520178 DOI: 10.1111/imcb.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
As a young scientist in Brazil, my journey began with a modest education in a public school system that often lacked the resources needed to provide students with comprehensive support. However, with persistence and determination, I successfully gained admission to the University of São Paulo, a prestigious institution and one of the top universities in Latin America. My research focuses on the relationship between the nervous and immune systems in psychosis, a topic I am deeply passionate about. In this piece, I will discuss the systemic issues within the Brazilian education and research systems and delve deeper into my own challenges and achievements as a young scientist in Brazil, sharing insights that can inspire others in similar situations.
Collapse
Affiliation(s)
- Fabiana Corsi-Zuelli
- Ribeirão Preto Medical School, Department of Neuroscience and Behaviour, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
18
|
Darmuzey M, Touret F, Slowikowski E, Gladwyn-Ng I, Ahuja K, Sanchez-Felipe L, de Lamballerie X, Verfaillie C, Marques PE, Neyts J, Kaptein SJF. Epidemic Zika virus strains from the Asian lineage induce an attenuated fetal brain pathogenicity. Nat Commun 2024; 15:10870. [PMID: 39738084 DOI: 10.1038/s41467-024-55155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
The 2015-2016 Zika virus (ZIKV) outbreak in the Americas revealed the ability of ZIKV from the Asian lineage to cause birth defects, generically called congenital Zika syndrome (CZS). Notwithstanding the long circulation history of Asian ZIKV, no ZIKV-associated CZS cases were reported prior to the outbreaks in French Polynesia (2013) and Brazil (2015). Whether the sudden emergence of CZS resulted from an evolutionary event of Asian ZIKV has remained unclear. We performed a comparative analysis of the pathogenicity of pre-epidemic and epidemic Asian ZIKV strains in mouse embryonic brains using a female immunocompetent intraplacental infection mouse model. All studied Asian ZIKV strains are neurovirulent, but pre-epidemic strains are consistently more pathogenic in the embryos than their epidemic equivalents. Pathogenicity is not directly linked to viral replication. By contrast, an influx of macrophages/microglial cells is noted in infected fetal brains for both pre-epidemic and epidemic ZIKV strains. Moreover, all tested ZIKV strains trigger an immunological response, whereby the intensity of the response differs between strains, and with epidemic ZIKV strains generally mounting a more attenuated immunostimulatory response. Our study reveals that Asian ZIKV strains evolved towards pathogenic attenuation, potentially resulting in CZS emergence in neonates rather than premature death in utero.
Collapse
Affiliation(s)
- Maïlis Darmuzey
- Virology and Immunology Unit, GIGA-Infection, Immunity and Inflammation, University of Liège, Liège, Belgium
- KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium
| | - Franck Touret
- Unité Des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), Marseille, France
| | - Emily Slowikowski
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Ivan Gladwyn-Ng
- Department of Application Scientists, Taconic Biosciences, Leverkusen, Germany
| | - Karan Ahuja
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium
| | - Xavier de Lamballerie
- Unité Des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), Marseille, France
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Pedro E Marques
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium.
| | - Suzanne J F Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium.
| |
Collapse
|
19
|
Cong H, Wang J, Du N, Song L, Wang R, Yang Y, Lei R, Tang TS, Liu CM, Zhu S, Han X. ITGB4/CD104 mediates zika virus attachment and infection. Nat Commun 2024; 15:10729. [PMID: 39737945 DOI: 10.1038/s41467-024-54479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
Zika virus (ZIKV) infection can result in a birth defect of the brain called microcephaly and other severe fetal brain defects. ZIKV enters the susceptible host cells by endocytosis, which is mediated by the interaction of the envelope (E) glycoprotein with cellular surface receptor molecules. However, the cellular factors that used by the ZIKV to gain access to host cells remains elusive. Here, we report that the extracellular domain of integrin beta 4 (ITGB4) is an entry factor of ZIKV. ITGB4 mediates ZIKV infection by directly interacting with the E glycoprotein of ZIKV, and ITGB4 knockout hampers the binding and replication of ZIKV to host cells. A functional monoclonal antibody against ITGB4 or the soluble forms of ITGB4 could decrease the binding and infection of ZIKV to permissive cell lines. Importantly, the ITGB4 antibody blocks the infection of ZIKV to mouse placenta, thus protecting the fetuses from ZIKV infection. Together, our study has demonstrated that ZIKV infection involves ITGB4 dependent binding.
Collapse
Affiliation(s)
- Haolong Cong
- Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiuqiang Wang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, P. R. China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Ning Du
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- Sinovac Life Sciences Co., Ltd., Beijing, P. R. China
| | - Lei Song
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Ruigang Wang
- College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, P. R. China
| | - Yang Yang
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Rong Lei
- Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P. R. China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, P. R. China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China.
| | - Chang-Mei Liu
- University of Chinese Academy of Sciences, Beijing, P. R. China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P. R. China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, P. R. China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China.
| | - Shuifang Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, P. R. China.
| | - Xiaodong Han
- College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, P. R. China.
| |
Collapse
|
20
|
Song BH, Frank JC, Yun SI, Julander JG, Mason JB, Polejaeva IA, Davies CJ, White KL, Dai X, Lee YM. Comparison of Three Chimeric Zika Vaccine Prototypes Developed on the Genetic Background of the Clinically Proven Live-Attenuated Japanese Encephalitis Vaccine SA 14-14-2. Int J Mol Sci 2024; 26:195. [PMID: 39796052 PMCID: PMC11720029 DOI: 10.3390/ijms26010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Zika virus (ZIKV) is a medically important mosquito-borne orthoflavivirus, but no vaccines are currently available to prevent ZIKV-associated disease. In this study, we compared three recombinant chimeric viruses developed as candidate vaccine prototypes (rJEV/ZIKVMR-766, rJEV/ZIKVP6-740, and rJEV/ZIKVPRVABC-59), in which the two neutralizing antibody-inducing prM and E genes from each of three genetically distinct ZIKV strains were used to replace the corresponding genes of the clinically proven live-attenuated Japanese encephalitis virus vaccine SA14-14-2 (rJEV). In WHO-certified Vero cells (a cell line suitable for vaccine production), rJEV/ZIKVP6-740 exhibited the slowest viral growth, formed the smallest plaques, and displayed a unique protein expression profile with the highest ratio of prM to cleaved M when compared to the other two chimeric viruses, rJEV/ZIKVMR-766 and rJEV/ZIKVPRVABC-59, as well as their vector, rJEV. In IFNAR-/- mice, an animal model of ZIKV infection, subcutaneous inoculation of rJEV/ZIKVP6-740 caused a low-level localized infection limited to the spleen, with no clinical signs of infection, weight loss, or mortality; in contrast, the other two chimeric viruses and their vector caused high-level systemic infections involving multiple organs, consistently leading to clear clinical signs of infection, rapid weight loss, and 100% mortality. Subsequently, subcutaneous immunization with rJEV/ZIKVP6-740 proved highly effective, offering complete protection against a lethal intramuscular ZIKV challenge 28 days after a single-dose immunization. This protection was specific to ZIKV prM/E and likely mediated by neutralizing antibodies targeting ZIKV prM/E. Therefore, our data indicate that the chimeric virus rJEV/ZIKVP6-740 is a highly promising vaccine prototype for developing a safe and effective vaccine for inducing neutralizing antibody-mediated protective immunity against ZIKV.
Collapse
Affiliation(s)
- Byung-Hak Song
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
| | - Jordan C. Frank
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
| | - Sang-Im Yun
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
| | - Justin G. Julander
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Jeffrey B. Mason
- Department of Veterinary Clinical and Life Sciences, College of Veterinary Medicine, Center for Integrated BioSystems, Utah State University, Logan, UT 84322, USA;
| | - Irina A. Polejaeva
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
| | - Christopher J. Davies
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
| | - Kenneth L. White
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
| | - Xin Dai
- Utah Agricultural Experiment Station, Utah State University, Logan, UT 84322, USA;
| | - Young-Min Lee
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
| |
Collapse
|
21
|
Abdelbasset M, Saron WAA, Ma D, Rathore APS, Kozaki T, Zhong C, Mantri CK, Tan Y, Tung CC, Tey HL, Chu JJH, Chen J, Ng LG, Wang H, Ginhoux F, St John AL. Differential contributions of fetal mononuclear phagocytes to Zika virus neuroinvasion versus neuroprotection during congenital infection. Cell 2024; 187:7511-7532.e20. [PMID: 39532096 DOI: 10.1016/j.cell.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Fetal immune cell functions during congenital infections are poorly understood. Zika virus (ZIKV) can vertically transmit from mother to fetus, causing nervous system infection and congenital ZIKV syndrome (CZS). We identified differential functional roles for fetal monocyte/macrophage cell types and microglia in ZIKV dissemination versus clearance using mouse models. Trafficking of ZIKV-infected primitive macrophages from the yolk sac allowed initial fetal virus inoculation, while recruited monocytes promoted non-productive neuroinflammation. Conversely, brain-resident differentiated microglia were protective, limiting infection and neuronal death. Single-cell RNA sequencing identified transcriptional profiles linked to the protective versus detrimental contributions of mononuclear phagocyte subsets. In human brain organoids, microglia also promoted neuroprotective transcriptional changes and infection clearance. Thus, microglia are protective before birth, contrasting with the disease-enhancing roles of primitive macrophages and monocytes. Differential modulation of myeloid cell phenotypes by genetically divergent ZIKVs underscores the potential of immune cells to regulate diverse outcomes during fetal infections.
Collapse
Affiliation(s)
- Muhammad Abdelbasset
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wilfried A A Saron
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Dongliang Ma
- Neuroscience & Behavioral Disorders Programme, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Abhay P S Rathore
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Chengwei Zhong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Chinmay Kumar Mantri
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Chi-Ching Tung
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Hong Liang Tey
- National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine affiliated Renji Hospital, Shanghai, China
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA; SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
22
|
Vijayan K. K. V, De Paris K. Nonhuman primate models of pediatric viral diseases. Front Cell Infect Microbiol 2024; 14:1493885. [PMID: 39691699 PMCID: PMC11649651 DOI: 10.3389/fcimb.2024.1493885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Infectious diseases are the leading cause of death in infants and children under 5 years of age. In utero exposure to viruses can lead to spontaneous abortion, preterm birth, congenital abnormalities or other developmental defects, often resulting in lifelong health sequalae. The underlying biological mechanisms are difficult to study in humans due to ethical concerns and limited sample access. Nonhuman primates (NHP) are closely related to humans, and pregnancy and immune ontogeny in infants are very similar to humans. Therefore, NHP are a highly relevant model for understanding fetal and postnatal virus-host interactions and to define immune mechanisms associated with increased morbidity and mortality in infants. We will discuss NHP models of viruses causing congenital infections, respiratory diseases in early life, and HIV. Cytomegalovirus (CMV) remains the most common cause of congenital defects worldwide. Measles is a vaccine-preventable disease, yet measles cases are resurging. Zika is an example of an emerging arbovirus with devastating consequences for the developing fetus and the surviving infant. Among the respiratory viruses, we will discuss influenza and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We will finish with HIV as an example of a lifelong infection without a cure or vaccine. The review will highlight (i) the impact of viral infections on fetal and infant immune development, (ii) how differences in infant and adult immune responses to infection alter disease outcome, and emphasize the invaluable contribution of pediatric NHP infection models to the design of effective treatment and prevention strategies, including vaccines, for human infants.
Collapse
Affiliation(s)
- Vidya Vijayan K. K.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Center for AIDS Research, University of North Carolina, Chapel Hill, NC, United States
- Children’s Research Institute, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
23
|
Nieves C, Victoria da Costa Ghignatti P, Aji N, Bertagnolli M. Immune Cells and Infectious Diseases in Preeclampsia Susceptibility. Can J Cardiol 2024; 40:2340-2355. [PMID: 39304126 DOI: 10.1016/j.cjca.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
Preeclampsia is a severe pregnancy disorder, affecting approximately 10% of pregnancies worldwide, characterised by hypertension and proteinuria after the 20th week of gestation. The condition poses significant risks to both maternal and fetal health, including cardiovascular complications and impaired fetal development. Recent trends indicate a rising incidence of preeclampsia, correlating with factors such as advanced maternal age and cardiovascular comorbidities. Emerging evidence also highlights a notable increase in the association between autoimmune and infectious diseases with preeclampsia. Autoimmune conditions, such as type 1 diabetes and systemic lupus erythematosus, and infections triggered by global health challenges, including leptospirosis, Zika, toxoplasmosis, and Chagas disease, are now recognised as significant contributors to preeclampsia susceptibility by affecting placental formation and function. This review focuses on the immunologic mechanisms underpinning preeclampsia, exploring how immune system dysregulation and infectious triggers exacerbate the condition. It also discusses the pathologic mechanisms, including galectins, that preeclampsia shares with autoimmune and infectious diseases, and their significant risk for adverse pregnancy outcomes. We emphasise the necessity for accurate diagnosis and vigilant monitoring of immune and infectious diseases during pregnancy to optimise management and reduce risks. By raising awareness about these evolving risks and their impact on pregnancy, we aim to enhance diagnostic practices and preventive strategies, ultimately improving outcomes for pregnant women, especially in regions affected by environmental changes and endemic diseases.
Collapse
Affiliation(s)
- Cecilia Nieves
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| | - Paola Victoria da Costa Ghignatti
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Narjiss Aji
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Mariane Bertagnolli
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
24
|
Hassaan NA, Xing L. The mechanisms of Zika virus-induced neuropathogenesis. Braz J Microbiol 2024; 55:3933-3943. [PMID: 39422868 PMCID: PMC11711583 DOI: 10.1007/s42770-024-01543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024] Open
Abstract
Zika virus (ZIKV), a flavivirus, is one of the most serious re-emerging pathogens. Growing outbreaks in the Americas have linked ZIKV to significant clinical symptoms including Guillain-Barré syndrome in adults and congenital anomalies in newborns. ZIKV affects brain cells in a variety of ways, mostly apoptosis and cell cycle delays. Modulation of the host's immune reaction and the inflammatory process has also been shown to be involved in ZIKV-induced neurological disorders. This review summarized and discussed the latest advances in ZIKV research to shed fresh light on the multiple mechanisms incolved in ZIKV-induced neuropathogenesis.
Collapse
Affiliation(s)
- Nahla Ahmed Hassaan
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi province, 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi province, 030006, China.
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.
| |
Collapse
|
25
|
Wu Z, He Y, Wang T, Wang M, Cheng A, Chen S. DENV and ZIKV infection: Species specificity and broad cell tropism. Virology 2024; 600:110276. [PMID: 39467358 DOI: 10.1016/j.virol.2024.110276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Nearly one-third of countries worldwide have reported cases of Dengue virus (DENV) and Zika virus (ZIKV) infections, highlighting the significant threat these viruses pose to global public health. As members of the Flavivirus genus within the Flaviviridae family, DENV and ZIKV have demonstrated the ability to infect a wide range of cell lines from multiple species in vitro. However, the range of susceptible animal models is notably limited, and field studies indicate that their capacity to infect host organisms is highly restricted, with a very narrow range of target cells in vivo. The virus's ability to hijack host cellular machinery plays a crucial role in determining its cellular and species specificity. In this review, we examine how DENV and ZIKV exploit host cells to facilitate their replication, offering new insights that could inform the development of antiviral drugs and therapeutic targets.
Collapse
Affiliation(s)
- Zhen Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tao Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
26
|
Pastor AF, Mahaney SM, Garcia J, Morales M, Quintanilla O, Arriaga MA, Thomas JM, VandeBerg JL. The Laboratory Opossum ( Monodelphis domestica) Is a Unique Model for Research on Zika Virus: Robust Immune Response, Widespread Dissemination, and Long-Term Persistence. Viruses 2024; 16:1847. [PMID: 39772157 PMCID: PMC11680235 DOI: 10.3390/v16121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
The Zika virus (ZIKV) epidemic elicited a rapid commitment to the development of animal models for ZIKV research. Non-human primates (NHPs) and mice have made significant contributions to this research, but NHPs are expensive, have a long gestation period, and are available only in small numbers; non-genetically modified mice are resistant to infection. To address these deficiencies, we have established the laboratory opossum, Monodelphis domestica, as a small animal model that complements the mouse and monkey models. We developed and validated an indirect ELISA for measuring antibodies to ZIKV in opossums, as well as an immunohistochemistry (IHC) method to detect ZIKV NS1 protein in tissue samples. Opossum pups inoculated intracerebrally as embryos, juveniles inoculated by several routes, and mothers that cannibalized inoculated pups became persistently infected with ZIKV. The virus spread to multiple organs and persisted for up to 38 weeks (the latest endpoint of the experiments). A robust humoral immune response was mounted, and high titers of antibodies also persisted for 38 weeks. The results establish M. domestica as a natural, non-genetically modified animal model in which ZIKV persists long-term after experimental exposure and as a unique animal model for research on the immune response to ZIKV.
Collapse
Affiliation(s)
- André Filipe Pastor
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA; (S.M.M.); (M.A.A.); (J.M.T.III)
- Center for Vector-Borne Disease, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA
- Sertão Pernambucano Federal Institute of Education, Science, and Technology, Floresta 56400000, Pernambuco, Brazil
| | - Susan M. Mahaney
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA; (S.M.M.); (M.A.A.); (J.M.T.III)
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA
| | - Juan Garcia
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA (O.Q.)
| | - Marisol Morales
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA (O.Q.)
| | - Oscar Quintanilla
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA (O.Q.)
| | - Marco A. Arriaga
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA; (S.M.M.); (M.A.A.); (J.M.T.III)
| | - John M. Thomas
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA; (S.M.M.); (M.A.A.); (J.M.T.III)
- Center for Vector-Borne Disease, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA (O.Q.)
| | - John L. VandeBerg
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA; (S.M.M.); (M.A.A.); (J.M.T.III)
- Center for Vector-Borne Disease, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA
| |
Collapse
|
27
|
Yuan M, Tian X, Ma W, Zhang R, Zou X, Jin Y, Zheng N, Wu Z, Wang Y. miRNA-431-5p enriched in EVs derived from IFN-β stimulated MSCs potently inhibited ZIKV through CD95 downregulation. Stem Cell Res Ther 2024; 15:435. [PMID: 39563434 PMCID: PMC11575116 DOI: 10.1186/s13287-024-04040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/03/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Zika virus (ZIKV) primarily spreads through mosquito bites and can lead to microcephaly in infants and Guillain-Barre syndrome in adults. It is noteworthy that ZIKV can persist in the semen of infected males for extended periods and can be sexually transmitted. Infection with ZIKV has severe pathological manifestations on the testicular tissues of male mice, resulting in reduced sperm motility and fertility. However, there are no approved prophylactic vaccines or therapeutics available to treat Zika virus infection. METHODS Using a male type I and II interferon receptor-deficient (ifnar1(-/-) ifngr1(-/-)) C57BL/6 (AG6) mouse model infected with ZIKV as a representative model, we evaluated the degree of testicular damage and viral replication in various organs in mice treated with EVs derived from MSC-stimulated with IFN-β (IFNβ-EVs) and treated with controls. We measured testicle size, detected viral load in various organs, and analyzed gene expression to assess treatment efficacy. RESULTS Our findings demonstrated that intravenous administration of IFNβ-EVs effectively suppressed ZIKV replication in the testes. Investigation with in-depth RNA sequencing analysis found that IFN-β treatment changed the cargo miRNA of EVs. Notably, miR-431-5p was identified to be significantly enriched in IFNβ-EVs and exhibited potent antiviral activity in vitro. We showed that CD95 was a direct downstream target for miR-431-5p and played a role in facilitating ZIKV replication. miR-431-5p effectively downregulated the expression of CD95 protein, consequently promoted the phosphorylation and nuclear localization of NF-kB, which resulted in the activation of anti-viral status, leading to the suppression of viral replication. CONCLUSIONS Our study demonstrated that the EVs produced by IFNβ-treated MSCs could effectively convey antiviral activity.
Collapse
Affiliation(s)
- Meng Yuan
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, 210093, China
| | - Xiaoyan Tian
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, 210093, China
| | - Wenyuan Ma
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, 210093, China
| | - Rui Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, PR China
| | - Xue Zou
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Yu Jin
- Department of Clinical Medicine, Medical School of Nanjing University , Nanjing, 210093, China.
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Nan Zheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, 210093, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, People's Republic of China.
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School,Nanjing University, Yangzhou, China.
| |
Collapse
|
28
|
Melo CL, Mageste LR, Guaraldo L, Paula DP, Wakimoto MD. Use of Digital Tools in Arbovirus Surveillance: Scoping Review. J Med Internet Res 2024; 26:e57476. [PMID: 39556803 PMCID: PMC11612576 DOI: 10.2196/57476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/10/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The development of technology and information systems has led to important changes in public health surveillance. OBJECTIVE This scoping review aimed to assess the available evidence and gather information about the use of digital tools for arbovirus (dengue virus [DENV], zika virus [ZIKV], and chikungunya virus [CHIKV]) surveillance. METHODS The databases used were MEDLINE, SCIELO, LILACS, SCOPUS, Web of Science, and EMBASE. The inclusion criterion was defined as studies that described the use of digital tools in arbovirus surveillance. The exclusion criteria were defined as follows: letters, editorials, reviews, case reports, series of cases, descriptive epidemiological studies, laboratory and vaccine studies, economic evaluation studies, and studies that did not clearly describe the use of digital tools in surveillance. Results were evaluated in the following steps: monitoring of outbreaks or epidemics, tracking of cases, identification of rumors, decision-making by health agencies, communication (cases and bulletins), and dissemination of information to society). RESULTS Of the 2227 studies retrieved based on screening by title, abstract, and full-text reading, 68 (3%) studies were included. The most frequent digital tools used in arbovirus surveillance were apps (n=24, 35%) and Twitter, currently called X (n=22, 32%). These were mostly used to support the traditional surveillance system, strengthening aspects such as information timeliness, acceptability, flexibility, monitoring of outbreaks or epidemics, detection and tracking of cases, and simplicity. The use of apps to disseminate information to society (P=.02), communicate (cases and bulletins; P=.01), and simplicity (P=.03) and the use of Twitter to identify rumors (P=.008) were statistically relevant in evaluating scores. This scoping review had some limitations related to the choice of DENV, ZIKV, and CHIKV as arboviruses, due to their clinical and epidemiological importance. CONCLUSIONS In the contemporary scenario, it is no longer possible to ignore the use of web data or social media as a complementary strategy to health surveillance. However, it is important that efforts be combined to develop new methods that can ensure the quality of information and the adoption of systematic measures to maintain the integrity and reliability of digital tools' data, considering ethical aspects.
Collapse
Affiliation(s)
- Carolina Lopes Melo
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Larissa Rangel Mageste
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lusiele Guaraldo
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Mayumi Duarte Wakimoto
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Kays I, Chen BE. Tracking and measuring local protein synthesis in vivo. Development 2024; 151:dev202908. [PMID: 39373391 DOI: 10.1242/dev.202908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Detecting when and how much of a protein molecule is synthesized is important for understanding cell function, but current methods either cannot be performed in vivo or have poor temporal resolution. Here, we developed a technique to detect and quantify subcellular protein synthesis events in real time in vivo. This Protein Translation Reporting (PTR) technique uses a genetic tag that produces a stoichiometric ratio of a small peptide portion of a split fluorescent protein and the protein of interest during protein synthesis. We show that the split fluorescent protein peptide can generate fluorescence within milliseconds upon binding the larger portion of the fluorescent protein, and that the fluorescence intensity is directly proportional to the number of molecules of the protein of interest synthesized. Using PTR, we tracked and measured protein synthesis events in single cells over time in vivo. We use different color split fluorescent proteins to detect multiple genes or alleles in single cells simultaneously. We also split a photoswitchable fluorescent protein to photoconvert the reconstituted fluorescent protein to a different channel to continually reset the time of detection of synthesis events.
Collapse
Affiliation(s)
- Ibrahim Kays
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montréal, Québec, H3G 1A4, Canada
| | - Brian E Chen
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montréal, Québec, H3G 1A4, Canada
- Departments of Medicine and Neurology & Neurosurgery, McGill University, Montréal, Québec, H3G 1A4, Canada
| |
Collapse
|
30
|
Tajik S, Farahani AV, Ardekani OS, Seyedi S, Tayebi Z, Kami M, Aghaei F, Hosseini TM, Nia MMK, Soheili R, Letafati A. Zika virus tropism and pathogenesis: understanding clinical impacts and transmission dynamics. Virol J 2024; 21:271. [PMID: 39472938 PMCID: PMC11523830 DOI: 10.1186/s12985-024-02547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
The Zika virus (ZIKV) is classified within the Flavivirus genus of the Flaviviridae family and is categorized as an arbovirus. The virus was initially identified in a rhesus monkey in Uganda in 1947 and later in a human in Nigeria in 1952. Since 2007, the prevalence of the virus has been on the rise, culminating in a major outbreak in the United States (US) in 2015. During this outbreak, the adult population was severely impacted, experiencing a range of symptoms, including organ failure, microcephaly, fetal death, and Guillain-Barré syndrome (GBS). Additionally, skin rash, limb swelling, fever, headache, and heightened sensitivity are found in most adults with Zika syndrome. Although the virus can be transmitted through blood, vertical transmission from mother to child, and sexual contact, the primary way of transmission of the virus is through the Aedes mosquito. Cells such as neurons, macrophages, peripheral dendritic cells, and placental cells are among the target cells that the virus can infect. The TAM AXL receptor plays a crucial role in infection. After the virus enters the body through the bloodstream, it spreads in the body with a latent period of 3 to 12 days. Currently, there is no specific treatment or publicly available vaccine for the ZIKV. Limited laboratory testing has been conducted, and existing drugs originally designed for other pathogens have been repurposed for treatment. Given the Aedes mosquito's role as a vector and the wide geographical impact of the virus, this study aims to comprehensively investigate Zika's pathogenesis and clinical symptoms based on existing knowledge and research. By doing so, we seek to enhance our understanding of the virus and inform future prevention and treatment strategies.
Collapse
Affiliation(s)
- Saeed Tajik
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Vasheghani Farahani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Saba Seyedi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Tayebi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Kami
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Pathology, Faculty of Veterinary Medicine, Babol Branch, Islamic Azad University, Babol, Iran
| | - Faezeh Aghaei
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Mohammad Mahdi Khosravi Nia
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Student Research Committee, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Roben Soheili
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Arash Letafati
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Wressnigg NV, Hochreiter R, Schneider M, Obersriebnig MJ, Bézay NI, Lingnau K, Ramljak IČ, Dubischar KL, Eder-Lingelbach S. A randomized, placebo-controlled, blinded phase 1 study investigating a novel inactivated, Vero cell-culture derived Zika virus vaccine. J Travel Med 2024; 31:taac127. [PMID: 36377643 DOI: 10.1093/jtm/taac127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Zika virus (ZIKV) is an emerging public health threat, rendering development of a safe and effective vaccine against the virus a high priority to face this unmet medical need. Our vaccine candidate has been developed on the same platform used for the licensed vaccine IXIARO®, a vaccine against Japanese Encephalitis virus, another closely related member of the Flaviviridae family. METHODS Between 24 February 2018 and 16 November 2018, we conducted a randomized, observer-blinded, placebo controlled, single center phase 1 study to assess the safety and immunogenicity of an adjuvanted, inactivated, purified whole-virus Zika vaccine candidate in the USA. A total of 67 healthy flavivirus-naïve adults aged 18-49 years were randomly assigned to one of five study arms to receive two immunizations of either high dose or low dose (6 antigen units or 3 antigen units) with both dose levels applied in two different immunization regimens or placebo as control. RESULTS Our vaccine candidate showed an excellent safety profile independent of dose and vaccination regimen with predominantly mild adverse events (AEs). No serious AE has been reported. The ZIKV vaccine induced neutralizing antibodies in all tested doses and regimens with seroconversion rates up to 85.7% (high dose), which remained up to 40% (high dose) at 6 months follow-up. Of note, the rapid regimen triggered a substantial immune response within days. CONCLUSIONS The rapid development and production of a ZIKV vaccine candidate building on a commercial Vero-cell manufacturing platform resulted in a safe and immunogenic vaccine suitable for further clinical development. To optimize antibody persistence, higher doses and a booster administration might be considered.
Collapse
|
32
|
Taufer NP, Santos-Souza C, Larentis LT, Santos CND, Creuzet SE, Garcez RC. Integrative analysis of molecular pathways and morphological anomalies associated with congenital Zika syndrome. J Neurol Sci 2024; 465:123190. [PMID: 39182423 DOI: 10.1016/j.jns.2024.123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Congenital Zika syndrome (CZS) comprises a set of clinical manifestations that can be presented by neonates born to mothers infected by the Zika virus (ZIKV). CZS-associated phenotypes include neurological, skeletal, and systemic alterations and long-term developmental sequelae. One of the most frequently reported clinical conditions is microcephaly characterized by a reduction in head circumference and cognitive complications. Nevertheless, the associations among the diverse signaling pathways underlying CZS phenotypes remain to be elucidated. To shed light on CZS, we have extensively reviewed the morphological anomalies resulting from ZIKV infection, as well as genes and proteins of interest obtained from the published literature. With this list of genes or proteins, we performed computational analyses to explore the cellular processes, molecular mechanisms, and molecular pathways related to ZIKV infection. Therefore, in this review, we comprehensively describe the morphological abnormalities caused by congenital ZIKV infection and, through the analysis noted above, propose common molecular pathways altered by ZIKV that could explain both central nervous system and craniofacial skeletal alterations.
Collapse
Affiliation(s)
- Nathali Parise Taufer
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Camila Santos-Souza
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Lucas Trentin Larentis
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Sophie Emmanuelle Creuzet
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique UMR 9197, Saclay, France.
| | - Ricardo Castilho Garcez
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
33
|
Chaudhary N, Newby AN, Whitehead KA. Non-Viral RNA Delivery During Pregnancy: Opportunities and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306134. [PMID: 38145340 PMCID: PMC11196389 DOI: 10.1002/smll.202306134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/25/2023] [Indexed: 12/26/2023]
Abstract
During pregnancy, the risk of maternal and fetal adversities increases due to physiological changes, genetic predispositions, environmental factors, and infections. Unfortunately, treatment options are severely limited because many essential interventions are unsafe, inaccessible, or lacking in sufficient scientific data to support their use. One potential solution to this challenge may lie in emerging RNA therapeutics for gene therapy, protein replacement, maternal vaccination, fetal gene editing, and other prenatal treatment applications. In this review, the current landscape of RNA platforms and non-viral RNA delivery technologies that are under active development for administration during pregnancy is explored. Advancements of pregnancy-specific RNA drugs against SARS-CoV-2, Zika, influenza, preeclampsia, and for in-utero gene editing are discussed. Finally, this study highlights bottlenecks that are impeding translation efforts of RNA therapies, including the lack of accurate cell-based and animal models of human pregnancy and concerns related to toxicity and immunogenicity during pregnancy. Overcoming these challenges will facilitate the rapid development of this new class of pregnancy-safe drugs.
Collapse
Affiliation(s)
- Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Alexandra N. Newby
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Kathryn A. Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
34
|
Rothen DA, Dutta SK, Krenger PS, Pardini A, Vogt ACS, Josi R, Lieknina I, Osterhaus ADME, Mohsen MO, Vogel M, Martina B, Tars K, Bachmann MF. Preclinical Development of a Novel Zika Virus-like Particle Vaccine in Combination with Tetravalent Dengue Virus-like Particle Vaccines. Vaccines (Basel) 2024; 12:1053. [PMID: 39340083 PMCID: PMC11435730 DOI: 10.3390/vaccines12091053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Declared as a Public Health Emergency in 2016 by the World Health Organization (WHO), the Zika virus (ZIKV) continues to cause outbreaks that are linked to increased neurological complications. Transmitted mainly by Aedes mosquitoes, the virus is spread mostly amongst several tropical regions with the potential of territorial expansion due to environmental and ecological changes. The ZIKV envelope protein's domain III, crucial for vaccine development due to its role in receptor binding and neutralizing antibody targeting, was integrated into sterically optimized AP205 VLPs to create an EDIII-based VLP vaccine. To increase the potential size of domains that can be accommodated by AP205, two AP205 monomers were fused into a dimer, resulting in 90 rather than 180 N-/C- termini amenable for fusion. EDIII displayed on AP205 VLPs has several immunological advantages, like a repetitive surface, a size of 20-200 nm (another PASP), and packaged bacterial RNA as adjuvants (a natural toll-like receptor 7/8 ligand). In this study, we evaluated a novel vaccine candidate for safety and immunogenicity in mice, demonstrating its ability to induce high-affinity, ZIKV-neutralizing antibodies without significant disease-enhancing properties. Due to the close genetical and structural characteristics, the same mosquito vectors, and the same ecological niche of the dengue virus and Zika virus, a vaccine covering all four Dengue viruses (DENV) serotypes as well as ZIKV would be of significant interest. We co-formulated the ZIKV vaccine with recently developed DENV vaccines based on the same AP205 VLP platform and tested the vaccine mix in a murine model. This combinatory vaccine effectively induced a strong humoral immune response and neutralized all five targeted viruses after two doses, with no significant antibody-dependent enhancement (ADE) observed. Overall, these findings highlight the potential of the AP205 VLP-based combinatory vaccine as a promising approach for providing broad protection against DENV and ZIKV infections. Further investigations and preclinical studies are required to advance this vaccine candidate toward potential use in human populations.
Collapse
Affiliation(s)
- Dominik A. Rothen
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | - Pascal S. Krenger
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Alessandro Pardini
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Anne-Cathrine S. Vogt
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Romano Josi
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Ilva Lieknina
- Latvian Biomedical Research & Study Centre, Ratsupites iela 1, 1067 Riga, Latvia
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Mona O. Mohsen
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
| | - Monique Vogel
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
| | - Byron Martina
- Artemis Bio-Services, 2629 JD Delft, The Netherlands
| | - Kaspars Tars
- Latvian Biomedical Research & Study Centre, Ratsupites iela 1, 1067 Riga, Latvia
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
35
|
Schöbel A, Pinho Dos Reis V, Burkhard R, Hehner J, Schneider L, Schauflinger M, Vieyres G, Herker E. Inhibition of sterol O-acyltransferase 1 blocks Zika virus infection in cell lines and cerebral organoids. Commun Biol 2024; 7:1089. [PMID: 39237833 PMCID: PMC11377701 DOI: 10.1038/s42003-024-06776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024] Open
Abstract
Viruses depend on host metabolic pathways and flaviviruses are specifically linked to lipid metabolism. During dengue virus infection lipid droplets are degraded to fuel replication and Zika virus (ZIKV) infection depends on triglyceride biosynthesis. Here, we systematically investigated the neutral lipid-synthesizing enzymes diacylglycerol O-acyltransferases (DGAT) and the sterol O-acyltransferase (SOAT) 1 in orthoflavivirus infection. Downregulation of DGAT1 and SOAT1 compromises ZIKV infection in hepatoma cells but only SOAT1 and not DGAT inhibitor treatment reduces ZIKV infection. DGAT1 interacts with the ZIKV capsid protein, indicating that protein interaction might be required for ZIKV replication. Importantly, inhibition of SOAT1 severely impairs ZIKV infection in neural cell culture models and cerebral organoids. SOAT1 inhibitor treatment decreases extracellular viral RNA and E protein level and lowers the specific infectivity of virions, indicating that ZIKV morphogenesis is compromised, likely due to accumulation of free cholesterol. Our findings provide insights into the importance of cholesterol and cholesterol ester balance for efficient ZIKV replication and implicate SOAT1 as an antiviral target.
Collapse
Affiliation(s)
- Anja Schöbel
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | | | - Rabea Burkhard
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Julia Hehner
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Laura Schneider
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | | | - Gabrielle Vieyres
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Eva Herker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
36
|
Alippe Y, Wang L, Coskun R, Muraro SP, Zhao FR, Elam-Noll M, White JM, Vota DM, Hauk VC, Gordon JI, Handley SA, Diamond MS. Fetal MAVS and type I IFN signaling pathways control ZIKV infection in the placenta and maternal decidua. J Exp Med 2024; 221:e20240694. [PMID: 39042188 PMCID: PMC11270594 DOI: 10.1084/jem.20240694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
The contribution of placental immune responses to congenital Zika virus (ZIKV) syndrome remains poorly understood. Here, we leveraged a mouse model of ZIKV infection to identify mechanisms of innate immune restriction exclusively in the fetal compartment of the placenta. ZIKV principally infected mononuclear trophoblasts in the junctional zone, which was limited by mitochondrial antiviral-signaling protein (MAVS) and type I interferon (IFN) signaling mechanisms. Single nuclear RNA sequencing revealed MAVS-dependent expression of IFN-stimulated genes (ISGs) in spongiotrophoblasts but not in other placental cells that use alternate pathways to induce ISGs. ZIKV infection of Ifnar1-/- or Mavs-/- placentas was associated with greater infection of the adjacent immunocompetent decidua, and heterozygous Mavs+/- or Ifnar1+/- dams carrying immunodeficient fetuses sustained greater maternal viremia and tissue infection than dams carrying wild-type fetuses. Thus, MAVS-IFN signaling in the fetus restricts ZIKV infection in junctional zone trophoblasts, which modulates dissemination and outcome for both the fetus and the pregnant mother.
Collapse
MESH Headings
- Female
- Animals
- Pregnancy
- Interferon Type I/metabolism
- Interferon Type I/immunology
- Signal Transduction/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Placenta/immunology
- Placenta/virology
- Placenta/metabolism
- Zika Virus Infection/immunology
- Zika Virus Infection/virology
- Zika Virus/immunology
- Zika Virus/physiology
- Mice
- Decidua/immunology
- Decidua/virology
- Decidua/metabolism
- Fetus/immunology
- Fetus/virology
- Trophoblasts/immunology
- Trophoblasts/virology
- Trophoblasts/metabolism
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Immunity, Innate
- Pregnancy Complications, Infectious/immunology
- Pregnancy Complications, Infectious/virology
- Disease Models, Animal
Collapse
Affiliation(s)
- Yael Alippe
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Reyan Coskun
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stéfanie P. Muraro
- Campinas State University, Laboratory of Emerging Viruses, Campinas, Brazil
| | - Fang R. Zhao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michelle Elam-Noll
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - J. Michael White
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Daiana M. Vota
- Universidad de Buenos Aires—CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Vanesa C. Hauk
- Universidad de Buenos Aires—CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Jeffrey I. Gordon
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott A. Handley
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
37
|
Martinot AJ, Cox F, Abbink P, Hecht JL, Bronson R, Borducchi EN, Rinaldi WJ, Ferguson MJ, De La Barrera RA, Zahn R, van der Fits L, Barouch DH. Ad26.M.Env ZIKV vaccine protects pregnant rhesus macaques and fetuses against Zika virus infection. NPJ Vaccines 2024; 9:157. [PMID: 39198466 PMCID: PMC11358461 DOI: 10.1038/s41541-024-00927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
At the start of the Zika virus (ZIKV) epidemic in 2015, ZIKV spread across South and Central America, and reached parts of the southern United States placing pregnant women at risk for fetal microcephaly, fetal loss, and other adverse pregnancy outcomes associated with congenital ZIKA syndrome (CZS). For this reason, testing of a safe and efficacious ZIKV vaccine remains a global health priority. Here we report that a single immunization with Ad26.M.Env ZIKV vaccine, when administered prior to conception, fully protects pregnant rhesus macaques from ZIKV viral RNA in blood and tissues with no adverse effects in dams and fetuses. Furthermore, vaccination prevents ZIKV distribution to fetal tissues including the brain. ZIKV associated neuropathology was absent in offspring of Ad26.M.Env vaccinated dams, although pathology was limited in fetuses from non-immunized, challenged dams. Vaccine efficacy is associated with induction of ZIKV neutralizing antibodies in pregnant rhesus macaques. These data suggest the feasibility of vaccine prevention of CZS in humans.
Collapse
Affiliation(s)
- Amanda J Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Departments of Infectious Disease and Global Health and Comparative Pathobiology, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| | - Freek Cox
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan L Hecht
- Division of Anatomic Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Roland Zahn
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
38
|
Foo SS, Chen W, Azamor T, Jung KL, Cambou MC, Familiar-Macedo D, Salem GM, Melano I, Sim MS, Moreira ME, Brasil P, Vasconcelos Z, Nielsen-Saines K, Jung JU. Sustained chronic inflammation and altered childhood vaccine responses in children exposed to Zika virus. EBioMedicine 2024; 106:105249. [PMID: 39024898 PMCID: PMC11304698 DOI: 10.1016/j.ebiom.2024.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Congenital Zika virus (ZIKV) infection leads to severe newborn abnormalities, but its long-term impact on childhood immunity is not well understood. This study aims to investigate the serum proteomics in children exposed to ZIKV during pregnancy to understand potential immunological consequences during early childhood. METHODS The study included ZIKV-exposed infants (ZEI) at birth (n = 42) and children exposed to ZIKV (ZEC) at two years of age (n = 20) exposed to ZIKV during pregnancy, as well as healthy controls. Serum proteomic analysis was performed on these groups to assess inflammation and immune profiles. Additionally, antibody titres against two common childhood vaccines, DTaP and MMR, were measured in healthy controls (n = 50) and ZEC (n = 92) to evaluate vaccine-induced immunity. FINDINGS Results showed elevated inflammation in ZEI with birth abnormalities. Among ZEC, despite most having normal clinical outcomes at two years, their serum proteomics indicated a bias towards Th1-mediated immune responses. Notably, ZEC displayed reduced anti-Diphtheria toxin and anti-Clostridium tetani IgG levels against DTaP and MMR vaccines. They also exhibited lower antibody titres particularly against Th2-biased DTaP vaccines, but not Th1-biased MMR vaccines. INTERPRETATION In conclusion, the study highlights the long-term immunological consequences of congenital ZIKV exposure. Heightened inflammation was observed in ZEI with abnormalities at birth, while ZEC maintained a chronic Th1-biased immune profile. The impaired response to Th2-biased vaccines raises concerns about lasting effects of ZIKV exposure on immune responses. Consequently, there is a need for continued longitudinal clinical monitoring to identify potential immune-related complications arising from prenatal exposure to ZIKV. FUNDING This work was partially funded by the National Institute of Allergy and Infectious Diseases (NIAID) and National Institute of Dental and Craniofacial Research (NIDCR).
Collapse
Affiliation(s)
- Suan-Sin Foo
- Department of Infection Biology and Global Centre for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Weiqiang Chen
- Department of Infection Biology and Global Centre for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tamiris Azamor
- Department of Infection Biology and Global Centre for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kyle L Jung
- Department of Infection Biology and Global Centre for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mary Catherine Cambou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Débora Familiar-Macedo
- Department of Infection Biology and Global Centre for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gielenny M Salem
- Department of Infection Biology and Global Centre for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ivonne Melano
- Department of Infection Biology and Global Centre for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Myung-Shin Sim
- Department of Medicine, Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Zilton Vasconcelos
- Department of Medicine, Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Karin Nielsen-Saines
- Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Department of Paediatrics, Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jae U Jung
- Department of Infection Biology and Global Centre for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
39
|
Martelli CMT, Cortes F, Brandão-Filho SP, Turchi MD, de Souza WV, de Araújo TVB, Ximenes RADA, Miranda-Filho DDB. Clinical spectrum of congenital Zika virus infection in Brazil: Update and issues for research development. Rev Soc Bras Med Trop 2024; 57:e00301. [PMID: 39082517 PMCID: PMC11290870 DOI: 10.1590/0037-8682-0153-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
This review aimed to provide an update on the morphological and/or functional abnormalities related to congenital Zika virus (ZIKV) infection, based on primary data from studies conducted in Brazil since 2015. During the epidemic years (2015-2016), case series and pediatric cohort studies described several birth defects, including severe and/or disproportionate microcephaly, cranial bone overlap, skull collapse, congenital contractures (arthrogryposis and/or clubfoot), and visual and hearing abnormalities, as part of the spectrum of Congenital Zika Syndrome (CZS). Brain imaging abnormalities, mainly cortical atrophy, ventriculomegaly, and calcifications, serve as structural markers of CZS severity. Most case series and cohorts of microcephaly have reported the co-occurrence of epilepsy, dysphagia, orthopedic deformities, motor function impairment, cerebral palsy, and urological impairment. A previous large meta-analysis conducted in Brazil revealed that a confirmed ZIKV infection during pregnancy was associated with a 4% risk of microcephaly. Additionally, one-third of children showed at least one abnormality, predominantly identified in isolation. Studies examining antenatally ZIKV-exposed children without detectable abnormalities at birth reported conflicting neurodevelopmental results. Therefore, long-term follow-up studies involving pediatric cohorts with appropriate control groups are needed to address this knowledge gap. We recognize the crucial role of a national network of scientists collaborating with international research institutions in understanding the lifelong consequences of congenital ZIKV infection. Additionally, we highlight the need to provide sustainable resources for research and development to reduce the risk of future Zika outbreaks.
Collapse
Affiliation(s)
| | - Fanny Cortes
- Universidade de Pernambuco, Pós-Graduação em Ciências da Saúde, Recife, PE, Brasil
| | | | - Marilia Dalva Turchi
- Universidade Federal de Goiás, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Goiânia, GO, Brasil
| | - Wayner Vieira de Souza
- Instituto Aggeu Magalhães, Programa de Pós-Graduação em Saúde Pública, Recife, PE, Brasil
| | | | - Ricardo Arraes de Alencar Ximenes
- Universidade de Pernambuco, Pós-Graduação em Ciências da Saúde, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Medicina Tropical, Recife, PE, Brasil
| | | |
Collapse
|
40
|
Metzler AD, Tang H. Zika Virus Neuropathogenesis-Research and Understanding. Pathogens 2024; 13:555. [PMID: 39057782 PMCID: PMC11279898 DOI: 10.3390/pathogens13070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with microcephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each cell type infected by ZIKV-neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes, microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)-displays its own characteristic changes to their cell physiology and has various impacts on disease. Here, we provide an in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge of how infections cause neuropathologies, as well as what approaches researchers are currently taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells and co-cultures, transwells to simulate blood-tissue barriers, brain-region-specific organoids, and animal models have been developed for ZIKV research.
Collapse
Affiliation(s)
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
41
|
Aguiar GRF, da Silva GB, Ramalho JDAM, Srisawat N, Daher EDF. Common arboviruses and the kidney: a review. J Bras Nefrol 2024; 46:e20230168. [PMID: 39074252 PMCID: PMC11287847 DOI: 10.1590/2175-8239-jbn-2023-0168en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/17/2024] [Indexed: 07/31/2024] Open
Abstract
Arboviruses are endemic in several countries and represent a worrying public health problem. The most important of these diseases is dengue fever, whose numbers continue to rise and have reached millions of annual cases in Brazil since the last decade. Other arboviruses of public health concern are chikungunya and Zika, both of which have caused recent epidemics, and yellow fever, which has also caused epidemic outbreaks in our country. Like most infectious diseases, arboviruses have the potential to affect the kidneys through several mechanisms. These include the direct action of the viruses, systemic inflammation, hemorrhagic phenomena and other complications, in addition to the toxicity of the drugs used in treatment. In this review article, the epidemiological aspects of the main arboviruses in Brazil and other countries where these diseases are endemic, clinical aspects and the main laboratory changes found, including changes in renal function, are addressed. It also describes how arboviruses behave in kidney transplant patients. The pathophysiological mechanisms of kidney injury associated with arboviruses are described and finally the recommended treatment for each disease and recommendations for kidney support in this context are given.
Collapse
Affiliation(s)
- Gabriel Rotsen Fortes Aguiar
- Universidade Federal do Ceará, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Departamento de Medicina Interna, Fortaleza, CE, Brazil
| | - Geraldo Bezerra da Silva
- Universidade de Fortaleza, Centro de Ciências da Saúde, Curso de Medicina, Fortaleza, CE, Brazil
| | - Janaína de Almeida Mota Ramalho
- Universidade Federal do Ceará, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Departamento de Medicina Interna, Fortaleza, CE, Brazil
- Universidade de Fortaleza, Centro de Ciências da Saúde, Curso de Medicina, Fortaleza, CE, Brazil
| | - Nattachai Srisawat
- Chulalongkorn University, Faculty of Medicine, Department of Medicine, Division of Nephrology, Center of Excellence for Critical Care Nephrology, and Tropical Medicine Cluster, Bangkok, Tailândia
| | - Elizabeth de Francesco Daher
- Universidade Federal do Ceará, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Departamento de Medicina Interna, Fortaleza, CE, Brazil
| |
Collapse
|
42
|
Tisoncik-Go J, Stokes C, Whitmore LS, Newhouse DJ, Voss K, Gustin A, Sung CJ, Smith E, Stencel-Baerenwald J, Parker E, Snyder JM, Shaw DW, Rajagopal L, Kapur RP, Adams Waldorf KM, Gale M. Disruption of myelin structure and oligodendrocyte maturation in a macaque model of congenital Zika infection. Nat Commun 2024; 15:5173. [PMID: 38890352 PMCID: PMC11189406 DOI: 10.1038/s41467-024-49524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and neurodevelopmental delay in infants, of which the pathogenesis remains poorly understood. We utilize an established female pigtail macaque maternal-to-fetal ZikV infection/exposure model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure in utero. We find prenatal ZikV exposure leads to profound disruption of fetal myelin, with extensive downregulation in gene expression for key components of oligodendrocyte maturation and myelin production. Immunohistochemical analyses reveal marked decreases in myelin basic protein intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin sheath in ZikV-exposed animals shows multi-focal decompaction, occurring concomitant with dysregulation of oligodendrocyte gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked brain injury underlying CZS resulting from ZikV exposure in utero. Because myelin is critical for cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term consequences on childhood neurodevelopment, even in the absence of overt microcephaly.
Collapse
Affiliation(s)
- Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
| | - Caleb Stokes
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Leanne S Whitmore
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Daniel J Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kathleen Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Andrew Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Cheng-Jung Sung
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Elise Smith
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Jennifer Stencel-Baerenwald
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Edward Parker
- Department of Ophthalmology, NEI Core for Vision Research, University of Washington, Seattle, WA, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Dennis W Shaw
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Lakshmi Rajagopal
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Raj P Kapur
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | - Kristina M Adams Waldorf
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
43
|
Fan M, Wu H, Sferruzzi-Perri AN, Wang YL, Shao X. Endocytosis at the maternal-fetal interface: balancing nutrient transport and pathogen defense. Front Immunol 2024; 15:1415794. [PMID: 38957469 PMCID: PMC11217186 DOI: 10.3389/fimmu.2024.1415794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles. Pregnancy is one such physiological state during which endocytosis may play critical roles. A successful pregnancy necessitates ongoing communication between maternal and fetal cells at the maternal-fetal interface to ensure immunologic tolerance for the semi-allogenic fetus whilst providing adequate protection against infection from pathogens, such as viruses and bacteria. It also requires transport of nutrients across the maternal-fetal interface, but restriction of potentially harmful chemicals and drugs to allow fetal development. In this context, trogocytosis, a specific form of endocytosis, plays a crucial role in immunological tolerance and infection prevention. Endocytosis is also thought to play a significant role in nutrient and toxin handling at the maternal-fetal interface, though its mechanisms remain less understood. A comprehensive understanding of endocytosis and its mechanisms not only enhances our knowledge of maternal-fetal interactions but is also essential for identifying the pathogenesis of pregnancy pathologies and providing new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mingming Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Acosta CJ, Nordio F, Boltz DA, Baldwin WR, Hather G, Kpamegan E. Predicting Efficacy of a Purified Inactivated Zika Virus Vaccine in Flavivirus-Naïve Humans Using an Immunological Correlate of Protection in Non-Human Primates. Microorganisms 2024; 12:1177. [PMID: 38930559 PMCID: PMC11206130 DOI: 10.3390/microorganisms12061177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
A traditional phase 3 clinical efficacy study for a Zika vaccine may be unfeasible because of the current low transmission of Zika virus (ZIKV). An alternative clinical development approach to evaluate Zika vaccine efficacy (VE) is therefore required, delineated in the US FDA's Accelerated Approval Program for licensure, which utilizes an anti-Zika neutralizing antibody (Zika NAb) titer correlated with non-human primate (NHP) protection as a surrogate endpoint. In this accelerated approval approach, the estimation of VE would be inferred from the percentage of phase 3 trial participants achieving the established surrogate endpoint. We provide a statistical framework to predict the probability of protection for human participants vaccinated with a purified inactivated ZIKV vaccine (TAK-426), in the absence of VE measurements, using NHP data under a single-correlate model. Based on a logistic regression (LR) with bias-reduction model, a probability of 90% protection in humans is expected with a ZIKV NAb geometric mean titer (GMT) ≥ 3.38 log10 half-maximal effective concentration (EC50). The predicted probability of protection of TAK-426 against ZIKV infection was determined using the two-parameter LR model that fit the calculated VE in rhesus macaques and the flavivirus-naïve phase 1 trial participants' ZIKV NAb GMTs log10 EC50, measured by a ZIKV reporter virus particle assay, at 1 month post dose 2. The TAK-426 10 µg dose predicted a probability of protection from infection of 98% among flavivirus-naïve phase 1 trial participants.
Collapse
Affiliation(s)
- Camilo J. Acosta
- Takeda Vaccines Inc., Cambridge, MA 02142, USA; (F.N.); (D.A.B.); (W.R.B.); (G.H.); (E.K.)
| | | | | | | | | | | |
Collapse
|
45
|
Oberholster L, Du Pasquier R, Mathias A. Exploring the role of brain-derived extracellular vesicles in viral infections: from pathological insights to biomarker potential. Front Cell Infect Microbiol 2024; 14:1423394. [PMID: 38887492 PMCID: PMC11181307 DOI: 10.3389/fcimb.2024.1423394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles secreted by all cell types that play a central role in cell-to-cell communication. Since these vesicles serve as vehicles of cellular content (nucleic acids, proteins and lipids) with the potential to cross biological barriers, they represent a novel attractive window into an otherwise inaccessible organ, such as the brain. The composition of EVs is cell-type specific and mirrors the physiological condition of the cell-of-origin. Consequently, during viral infection, EVs undergo significant changes in their content and morphology, thereby reflecting alterations in the cellular state. Here, we briefly summarize the potential of brain-derived EVs as a lens into viral infection in the central nervous system, thereby: 1) uncovering underlying pathophysiological processes at play and 2) serving as liquid biopsies of the brain, representing a non-invasive source of biomarkers for monitoring disease activity. Although translating the potential of EVs from research to diagnosis poses complexities, characterizing brain-derived EVs in the context of viral infections holds promise to enhance diagnostic and therapeutic strategies, offering new avenues for managing infectious neurological diseases.
Collapse
Affiliation(s)
- Larise Oberholster
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Amandine Mathias
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
46
|
Cuellar-Quimbaya AF, Muñoz AL, Yepez-Perez Y, C IDJ, Rodríguez AK, Segura NA, Bello F, Losada-Barragán M. Quantitative detection of chikungunya, Zika, and dengue viruses by one-step real-time PCR in different cell substrates. Braz J Microbiol 2024; 55:1083-1090. [PMID: 38424268 PMCID: PMC11153482 DOI: 10.1007/s42770-023-01226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/20/2023] [Indexed: 03/02/2024] Open
Abstract
Chikungunya (CHIKV), Zika (ZIKV), and dengue viruses (DENV) are vector-borne pathogens that cause emerging and re-emerging epidemics throughout tropical and subtropical countries. The symptomatology is similar among these viruses and frequently co-circulates in the same areas, making the diagnosis arduous. Although there are different methods for detecting and quantifying pathogens, real-time reverse transcription-polymerase chain reaction (real-time RT-qPCR) has become a leading technique for detecting viruses. However, the currently developed assays frequently involve probes and high-cost reagents, limiting access in low-income countries. Therefore, this study aims to design and evaluate a quantitative one-step RT-qPCR assay to detect CHIKV, ZIKV, and DENV with high specificity, reproducibility, and low cost in multiple cell substrates. We established a DNA intercalating green dye-based RT-qPCR test that targets nsP1 of CHIKV, and NS5 gene of ZIKV, and DENV for the amplification reaction. The assay exhibited a high specificity confirmed by the melting curve analysis. No cross-reactivity was observed between the three viruses or unspecific amplification of host RNA. The sensitivity of the reaction was evaluated for each virus assay, getting a limit of detection of one RNA copy per virus. Standard curves were constructed, obtaining a reaction efficiency of ~ 100%, a correlation coefficient (R2) of ~ 0.97, and a slope of -3.3. The coefficient of variation (CV) ranged from 0.02 to 1.43. In addition, the method was optimized for viral quantification and tested in Vero, BHK-21, C6/36, LULO, and the Aedes cell lines. Thus, the DNA intercalating green dye-based RT-qPCR assay was a highly specific, sensitive, reproducible, and effective method for detecting and quantifying CHIKV, ZIKV, and DENV in different cell substrates that could also be applied in clinical samples.
Collapse
Affiliation(s)
- Andrés F Cuellar-Quimbaya
- Faculty of Science, Universidad Antonio Nariño (UAN), Sede Circunvalar. Cra. 3 Este # 47A - 15, 110231, Bogotá, Colombia
| | - Ana Luisa Muñoz
- Faculty of Science, Universidad Antonio Nariño (UAN), Sede Circunvalar. Cra. 3 Este # 47A - 15, 110231, Bogotá, Colombia
- Fundación Banco Nacional de Sangre Hemolife, Bogotá, Colombia
| | - Yoelis Yepez-Perez
- PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, 111321, Bogotá, Colombia
| | - Ingrid DJiménez C
- Faculty of Science, Universidad Pedagógica y Tecnológica de Colombia (UPTC), 150003, Tunja, Colombia
| | - Anny K Rodríguez
- Faculty of Science, Universidad Antonio Nariño (UAN), Sede Circunvalar. Cra. 3 Este # 47A - 15, 110231, Bogotá, Colombia
| | - Nidya Alexandra Segura
- Faculty of Science, Universidad Pedagógica y Tecnológica de Colombia (UPTC), 150003, Tunja, Colombia
| | - Felio Bello
- Faculty of Agricultural and Livestock Sciences, Program of Veterinary Medicine, Universidad de La Salle, 110141, Bogotá, Colombia
| | - Mónica Losada-Barragán
- Faculty of Science, Universidad Antonio Nariño (UAN), Sede Circunvalar. Cra. 3 Este # 47A - 15, 110231, Bogotá, Colombia.
| |
Collapse
|
47
|
Wu X, Zhang L, Liu C, Cheng Q, Zhao W, Chen P, Qin Y, Chen M. The NS2B-PP1α-eIF2α axis: Inhibiting stress granule formation and Boosting Zika virus replication. PLoS Pathog 2024; 20:e1012355. [PMID: 38935808 PMCID: PMC11236161 DOI: 10.1371/journal.ppat.1012355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/10/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Stress granules (SGs), formed by untranslated messenger ribonucleoproteins (mRNPs) during cellular stress in eukaryotes, have been linked to flavivirus interference without clear understanding. This study reveals the role of Zika virus (ZIKV) NS2B as a scaffold protein mediating interaction between protein phosphatase 1α (PP1α) and eukaryotic initiation factor 2α (eIF2α). This interaction promotes eIF2α dephosphorylation by PP1α, inhibiting SG formation. The NS2B-PP1α complex exhibits remarkable stability, resisting ubiquitin-induced degradation and amplifying eIF2α dephosphorylation, thus promoting ZIKV replication. In contrast, the NS2BV35A mutant, interacting exclusively with eIF2α, fails to inhibit SG formation, resulting in reduced viral replication and diminished impact on brain organoid growth. These findings reveal PP1α's dual role in ZIKV infection, inducing interferon production as an antiviral factor and suppressing SG formation as a viral promoter. Moreover, we found that NS2B also serves as a versatile mechanism employed by flaviviruses to counter host antiviral defenses, primarily by broadly inhibiting SG formation. This research advances our comprehension of the complex interplay in flavivirus-host interactions, offering potential for innovative therapeutic strategies against flavivirus infections.
Collapse
Affiliation(s)
- Xiaoyan Wu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Linliang Zhang
- College of Life Sciences, Hubei University, Wuhan, China
| | - Cong Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Cheng
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Wen Zhao
- Tissue Engineering and Organ Manufacturing (TEOM) lab, Department of Biomedical Engineering, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Pu Chen
- Tissue Engineering and Organ Manufacturing (TEOM) lab, Department of Biomedical Engineering, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Hubei University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Hubei University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
48
|
Abdelmalek CM, Singh S, Fasil B, Horvath AR, Mulkey SB, Curé C, Campos M, Cavalcanti DP, Tong VT, Mercado M, Daza M, Marcela Benavides M, Acosta J, Gilboa S, Valencia D, Sancken CL, Newton S, Scalabrin DMF, Mussi-Pinhata MM, Vasconcelos Z, Chakhtoura N, Moye J, Leslie EJ, Bulas D, Vezina G, Marques FJP, Leyser M, Del Campo M, Vilain E, DeBiasi RL, Wang T, Nath A, Haydar T, Muenke M, Mansour TA, du Plessis AJ, Murray JC, Cordero JF, Kousa YA. Building a growing genomic data repository for maternal and fetal health through the PING Consortium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.24.24307899. [PMID: 38826415 PMCID: PMC11142296 DOI: 10.1101/2024.05.24.24307899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Prenatally transmitted viruses can cause severe damage to the developing brain. There is unexplained variability in prenatal brain injury and postnatal neurodevelopmental outcomes, suggesting disease modifiers. Discordant outcomes among dizygotic twins could be explained by genetic susceptibly or protection. Among several well-recognized threats to the developing brain, Zika is a mosquito-borne, positive-stranded RNA virus that was originally isolated in Uganda and spread to cause epidemics in Africa, Asia, and the Americas. In the Americas, the virus caused congenital Zika syndrome and a multitude of neurodevelopmental disorders. As of now, there is no preventative treatment or cure for the adverse outcomes caused by prenatal Zika infection. The Prenatal Infection and Neurodevelopmental Genetics (PING) Consortium was initiated in 2016 to identify factors modulating prenatal brain injury and postnatal neurodevelopmental outcomes for Zika and other prenatal viral infections. Methods The Consortium has pooled information from eight multi-site studies conducted at 23 research centers in six countries to build a growing clinical and genomic data repository. This repository is being mined to search for modifiers of virally induced brain injury and developmental outcomes. Multilateral partnerships include commitments with Children's National Hospital (USA), Instituto Nacional de Salud (Colombia), the Natural History of Zika Virus Infection in Gestation program (Brazil), and Zika Instituto Fernandes Figueira (Brazil), in addition to the Centers for Disease Control and Prevention and the National Institutes of Health. Discussion Our goal in bringing together these sets of patient data was to test the hypothesis that personal and populational genetic differences affect the severity of brain injury after a prenatal viral infection and modify neurodevelopmental outcomes. We have enrolled 4,102 mothers and 3,877 infants with 3,063 biological samples and clinical data covering over 80 phenotypic fields and 5,000 variables. There were several notable challenges in bringing together cohorts enrolled in different studies, including variability in the timepoints evaluated and the collected clinical data and biospecimens. Thus far, we have performed whole exome sequencing on 1,226 participants. Here, we present the Consortium's formation and the overarching study design. We began our investigation with prenatal Zika infection with the goal of applying this knowledge to other prenatal infections and exposures that can affect brain development.
Collapse
|
49
|
Woodson SE, Morabito KM. Continuing development of vaccines and monoclonal antibodies against Zika virus. NPJ Vaccines 2024; 9:91. [PMID: 38789469 PMCID: PMC11126562 DOI: 10.1038/s41541-024-00889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Affiliation(s)
- Sara E Woodson
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlyn M Morabito
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
50
|
Fajardo-Martinez V, Ferreira F, Fuller T, Cambou MC, Kerin T, Paiola S, Mok T, Rao R, Mohole J, Paravastu R, Zhang D, Marschik P, Iyer S, Kesavan K, Borges Lopes MDC, Britto JAA, Moreira ME, Brasil P, Nielsen-Saines K. Neurodevelopmental delay in children exposed to maternal SARS-CoV-2 in-utero. Sci Rep 2024; 14:11851. [PMID: 38789553 PMCID: PMC11126599 DOI: 10.1038/s41598-024-61918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
It is unclear if SARS CoV-2 infection during pregnancy is associated with adverse neurodevelopmental repercussions to infants. We assessed pediatric neurodevelopmental outcomes in children born to mothers with laboratory-confirmed SARS CoV-2 infection during pregnancy. Neurodevelopmental outcomes of in-utero exposed children were compared to that of pre-pandemic control children in Los Angeles (LA), CA, USA and Rio de Janeiro, Brazil. Bayley Scales of Infant and Toddler Development, 3rd edition (Bayley-III), the gold standard tool for evaluating neurodevelopment until 36 months of age and Ages and Stages Questionnaires (ASQ-3), a frequently used screening instrument for evaluating neurodevelopment in this same age group were the assessment tools used. Developmental delay (DD) was defined as having a score < - 2 SD below the norm (< 70) in at least one of three Bayley-III domains, (cognitive, motor or language) or a score below the cut-off (dark zone) in at least one of five ASQ-3 domains (communication, gross motor, fine motor, problem solving, personal-social). Exposed children were born between April 2020 and December 2022 while control children were born between January 2016 to December 2019. Neurodevelopmental testing was performed in 300 children total: 172 COVID-19 exposed children between 5-30 months of age and 128 control children between 6-38 months of age. Bayley-III results demonstrated that 12 of 128 exposed children (9.4%) had DD versus 2 of 128 controls (1.6%), p = 0.0007. Eight of 44 additional exposed children had DD on ASQ-3 testing. Fully, 20 of 172 exposed children (11.6%) and 2 of 128 control children (1.6%), p = 0.0006 had DD. In Rio, 12% of exposed children versus 2.6% of controls, p = 0.02 had DD. In LA, 5.7% of exposed children versus 0 controls, p = 0.12 had DD. Severe/critical maternal COVID-19 predicted below average neurodevelopment in the exposed cohort (OR 2.6, 95% CI 1.1-6.4). Children exposed to antenatal COVID-19 have a tenfold higher frequency of DD as compared to controls and should be offered neurodevelopmental follow-up.
Collapse
Affiliation(s)
| | | | - Trevon Fuller
- UCLA Institute for the Environment and Sustainability, Los Angeles, CA, USA.
| | | | - Tara Kerin
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Sophia Paiola
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Thalia Mok
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Rashmi Rao
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Jyodi Mohole
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | | | - Dajie Zhang
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
- Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- Interdisciplinary Developmental Neuroscience (IDN), Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Peter Marschik
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
- Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- Interdisciplinary Developmental Neuroscience (IDN), Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Sai Iyer
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|