1
|
Brambilla MM, Perrone S, Shulhai AM, Ponzi D, Paterlini S, Pisani F, Rollo D, Pelosi A, Street ME, Palanza P. Systematic review on Endocrine Disrupting Chemicals in breastmilk and neuro-behavioral development: Insight into the early ages of life. Neurosci Biobehav Rev 2025; 169:106028. [PMID: 39880346 DOI: 10.1016/j.neubiorev.2025.106028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Breast milk (BM) is the main nutrition source for infants that plays a key role on growth and development. Human milk composition includes endogenous and exogenous substances, including endocrine disrupting chemicals (EDCs). EDCs are man-made environmental chemicals present in everyday environment and food that can disrupt the programming of endocrine signalling pathways during development, resulting in adverse effects that may not be apparent until much later in life. The presence of single and/or mixtures of EDCs in BM has been shown to be associated with impairment of reproductive, metabolic, immunologic system and neurobehavioral developmental outcomes. This systematic review discusses the current knowledge about the presence of EDCs in BM, and their potential effects on infant outcomes during the first six years of life. Following PRISMA guidelines, we made a systematic evaluation of the literature on the effects of single and mixtures EDC on (i) mental and psychomotor development; (ii) socio-communicative and behavioral development. Negative association between EDC exposure and developmental areas considered emerged highlighting: (i) BM as a potential key matrix for the monitoring of EDC exposure (ii) the short- and long-term negative effect on infant neuro-behavioral outcomes, and (iii) the importance of public health efforts to reduce maternal and infant EDC exposure. However, heterogeneous results found emphasizes the need to further longitudinal studies to consider factors that can lower EDC exposure or exert a protective role on infant neurodevelopment, and to better understand the mechanism behind the EDCs and its effects on infant development.
Collapse
Affiliation(s)
- M Maddalena Brambilla
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy; University Hospital of Parma (AOUPR), Parma 43126, Italy.
| | - Serafina Perrone
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy; University Hospital of Parma (AOUPR), Parma 43126, Italy
| | - Anna-Mariia Shulhai
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy; University Hospital of Parma (AOUPR), Parma 43126, Italy
| | - Davide Ponzi
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
| | - Silvia Paterlini
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
| | - Francesco Pisani
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
| | - Dolores Rollo
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
| | - Annalisa Pelosi
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
| | - Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy; University Hospital of Parma (AOUPR), Parma 43126, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
| |
Collapse
|
2
|
Doi H, Furui A, Ueda R, Shimatani K, Yamamoto M, Eguchi A, Sagara N, Sakurai K, Mori C, Tsuji T. Risk of autism spectrum disorder at 18 months of age is associated with prenatal level of polychlorinated biphenyls exposure in a Japanese birth cohort. Sci Rep 2024; 14:31872. [PMID: 39738397 DOI: 10.1038/s41598-024-82908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
Prenatal exposure to polychlorinated biphenyls (PCBs) has a detrimental effect on early cognitive development. Based on these observations, some researchers suggested that prenatal exposure to PCB may be an environmental cause of autism spectrum disorder (ASD). To investigate the potential link between prenatal exposure to PCB, we analyzed the link between the level of prenatal PCB exposure and ASD risk evaluated at 18 months of age and behavioral problems at 5 years old based on longitudinal birth cohort data collected in urban areas in Japan based on the data from 115 mother-infant pairs. Logistic regression analysis revealed a significant association between ASD risk at 18 months of age and the factor scores of the principal components (PCB PCs) obtained by compressing the exposure level to PCB congeners. There was no reliable relationship between PCB PCs and problematic behaviors at 5 years of age. Furthermore, machine learning-based analysis showed the possibility that, when the information of the pattern of infants' spontaneous bodily motion, a potential marker of ASD risk, was used as the predictors together, prenatal PCB exposure levels predict ASD risk at 18 months of age. Together, these findings support the view that prenatal exposure to PCBs is associated with the later emergence of autistic behaviors and indicate the predictability of ASD risk based on the information available at the neonatal stage.
Collapse
Affiliation(s)
- Hirokazu Doi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan.
- Department of Information and Management Systems Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| | - Akira Furui
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8527, Japan
| | - Rena Ueda
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8527, Japan
| | - Koji Shimatani
- Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1, Gakuen-machi, Mihara, Hiroshima, 723-0053, Japan
| | - Midori Yamamoto
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Naoya Sagara
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kenichi Sakurai
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Toshio Tsuji
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8527, Japan
| |
Collapse
|
3
|
Barrea C, Dufour P, Catherine P, Charlier C, Brevers F, Rousselle L, Parent AS. Impact of antenatal exposure to a mixture of persistent organic pollutants on intellectual development. Int J Hyg Environ Health 2024; 261:114422. [PMID: 38981323 DOI: 10.1016/j.ijheh.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Strong experimental evidence exists that several endocrine disrupting chemicals (EDCs) have neurobehavioral toxicity. However, evidence of associations between prenatal exposure and child's cognitive development is inconsistent. Moreover, toxicants are generally analyzed one by one without considering aggregate effects. We examined here the impact of a prenatal exposure to a mixture of persistent organic pollutants (POPs) on intellectual abilities in preschool children, and compared their effects to those described in the literature. METHODS Sixty-two children were included in a longitudinal cohort. Four organochlorine pesticides, four polychlorinated biphenyls (PCBs) and seven perfluorinated compounds (PFCs) were measured in cord blood. Intellectual abilities were assessed at 6 years of age using the Wechsler Preschool and Primary Scale of Intelligence 4th ed. (WPPSI-IV). We examined the associations between a mixture of POPs and cognitive performances using principal components approach (PCA) and weighted quantile sum (WQS) regression taking sex difference into account. RESULTS No negative correlation was found when analyses were performed on boys and girls together. In sex-stratified analyses, lower scores in full scale intelligence quotient (FSIQ) and fluid reasoning index (FRI) were observed in boys most exposed to a mixture of POPs. Increase of the WQS index was also associated with lower verbal comprehension index (VCI) scores in girls only. No other negative correlation was found using both WQS and PCA models. CONCLUSION Our study suggests deleterious associations between antenatal exposure to a mixture of POPs and sex-specific cognitive level, clarifying some trends described in the literature.
Collapse
Affiliation(s)
- Christophe Barrea
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium.
| | - Patrice Dufour
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Pirard Catherine
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Fanny Brevers
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Laurence Rousselle
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Anne-Simone Parent
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium
| |
Collapse
|
4
|
Gagnon-Chauvin A, Fornasier-Bélanger M, Jacobson SW, Jacobson JL, Courtemanche Y, Ayotte P, Bélanger RE, Muckle G, Saint-Amour D. Brain gray matter volume of reward-related structures in Inuit adolescents pre- and postnatally exposed to lead, mercury and polychlorinated biphenyls. Neurotoxicology 2024; 103:162-174. [PMID: 38880197 DOI: 10.1016/j.neuro.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
This study aimed to assess associations between prenatal and postnatal exposure to lead (Pb), mercury (Hg) and polychlorinated biphenyls (PCBs) and gray matter volume of key regions of the brain reward circuit, namely the caudate nucleus, putamen, nucleus accumbens (nAcc), the amygdala, the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC). Structural magnetic resonance imaging (MRI) was conducted in 77 Inuit adolescents (mean age = 18.39) from Nunavik, Canada, who also completed the Brief Sensation Seeking Scale (BSSS-4) and Sensation Seeking - 2 (SS-2), two self-report questionnaires evaluating the tendency toward sensation seeking, which is a proxy of reward-related behaviors. Exposures to Pb, Hg and PCBs were measured in cord blood at birth, in blood samples at 11 years old and at time of testing (18 years old). Multivariate linear regressions were corrected for multiple comparisons and adjusted for potential confounders, such as participants' sociodemographic characteristics and nutrient fish intake. Results showed that higher cord blood Pb levels predicted smaller gray matter volume in the bilateral nAcc, caudate nucleus, amygdala and OFC as well as in left ACC. A moderating effect of sex was identified, indicating that the Pb-related reduction in volume in the nAcc and caudate nucleus was more pronounced in female. Higher blood Hg levels at age 11 predicted smaller right amygdala independently of sex. No significant associations were found between blood PCBs levels at all three times of exposure. This study provides scientific support for the detrimental effects of prenatal Pb and childhood Hg blood concentrations on gray matter volume in key reward-related brain structures.
Collapse
Affiliation(s)
- Avril Gagnon-Chauvin
- Département de Psychologie, Université du Québec à Montréal, 100 Sherbrooke Ouest, Montréal, Québec H2X 3P2, Canada; Centre de Recherche du CHU Sainte-Justine, 3175, Chemin de la Côte-Sainte-Catherine, Montréal, Québec H3T 1C5, Canada
| | - Mathieu Fornasier-Bélanger
- Département de Psychologie, Université du Québec à Montréal, 100 Sherbrooke Ouest, Montréal, Québec H2X 3P2, Canada; Centre de Recherche du CHU Sainte-Justine, 3175, Chemin de la Côte-Sainte-Catherine, Montréal, Québec H3T 1C5, Canada
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Drive, Detroit, MI 48201, United States
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Drive, Detroit, MI 48201, United States
| | - Yohann Courtemanche
- Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-Sacrement, 1050 Ch Ste-Foy, Québec, Québec G1S 4L8, Canada
| | - Pierre Ayotte
- Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-Sacrement, 1050 Ch Ste-Foy, Québec, Québec G1S 4L8, Canada; Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval, 1050, Avenue de la Médecine, Pavillon Ferdinand-Vandry, Québec, Québec G1V 0A6, Canada
| | - Richard E Bélanger
- Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-Sacrement, 1050 Ch Ste-Foy, Québec, Québec G1S 4L8, Canada; Département de Pédiatrie, Université Laval, Centre mère-enfant Soleil du CHU de Québec, 2705, Boulevard Laurier, Québec, Québec G1V 4G2, Canada
| | - Gina Muckle
- Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-Sacrement, 1050 Ch Ste-Foy, Québec, Québec G1S 4L8, Canada; École de Psychologie, Université Laval, 2325, rue des Bibliothèques, Québec, Québec G1V 0A6, Canada
| | - Dave Saint-Amour
- Département de Psychologie, Université du Québec à Montréal, 100 Sherbrooke Ouest, Montréal, Québec H2X 3P2, Canada; Centre de Recherche du CHU Sainte-Justine, 3175, Chemin de la Côte-Sainte-Catherine, Montréal, Québec H3T 1C5, Canada.
| |
Collapse
|
5
|
Balalian AA, Stingone JA, Kahn LG, Herbstman JB, Graeve RI, Stellman SD, Factor-Litvak P. Perinatal exposure to polychlorinated biphenyls (PCBs) and child neurodevelopment: A comprehensive systematic review of outcomes and methodological approaches. ENVIRONMENTAL RESEARCH 2024; 252:118912. [PMID: 38615789 DOI: 10.1016/j.envres.2024.118912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs), extensively used in various products, prompt ongoing concern despite reduced exposure since the 1970s. This systematic review explores prenatal PCB and hydroxylated metabolites (OH-PCBs) exposure's association with child neurodevelopment. Encompassing cognitive, motor development, behavior, attention, ADHD, and ASD risks, it also evaluates diverse methodological approaches in studies. METHODS PubMed, Embase, PsycINFO, and Web of Science databases were searched through August 23, 2023, by predefined search strings. Peer-reviewed studies published in English were included. The inclusion criteria were: (i) PCBs/OH-PCBs measured directly in maternal and cord blood, placenta or breast milk collected in the perinatal period; (ii) outcomes of cognitive development, motor development, attention, behavior, attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD) among children≤18 years old. Quality assessment followed the National Heart, Lung, and Blood Institute's tool. RESULTS Overall, 87 studies were included in this review. We found evidence for the association between perinatal PCB exposure and adverse cognitive development and attention issues in middle childhood. There appeared to be no or negligible link between perinatal PCB exposure and early childhood motor development or the risk of ADHD/ASD. There was an indication of a sex-specific association with worse cognition and attention scores among boys. Some individual studies suggested a possible association between prenatal exposure to OH-PCBs and neurodevelopmental outcomes. There was significant heterogeneity between the studies in exposure markers, exposure assessment timing, outcome assessment, and statistical analysis. CONCLUSIONS Significant methodological, clinical and statistical heterogeneity existed in the included studies. Adverse effects on cognitive development and attention were observed in middle childhood. Little or no apparent link on both motor development and risk of ADHD/ASD was observed in early childhood. Inconclusive evidence prevailed regarding other neurodevelopmental aspects due to limited studies. Future research could further explore sex-specific associations and evaluate associations at lower exposure levels post-PCB ban in the US. It should also consider OH-PCB metabolites, co-pollutants, mixtures, and their potential interactions.
Collapse
Affiliation(s)
- Arin A Balalian
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Question Driven Design and Analysis Group (QD-DAG), New York, NY, USA.
| | - Jeanette A Stingone
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Linda G Kahn
- Departments of Pediatrics and Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Julie B Herbstman
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Richard I Graeve
- Institute for Medical Sociology, Martin Luther University Halle-Wittenberg, Halle Saale, Germany
| | - Steven D Stellman
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
7
|
Ding X, Wen Y, Ma X, Zhang Y, Cheng Y, Liu Z, Hu W, Xia Y. Pyridoxal 5'-phosphate alleviates prenatal pyridaben exposure-induced anxiety-like behaviors in offspring. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100224. [PMID: 36437888 PMCID: PMC9691908 DOI: 10.1016/j.ese.2022.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Pyridaben (PY) is a widely used organochlorine acaricide, which can be detected in the peripheral blood of pregnant women. Available evidence suggests that PY has reproductive toxicity. However, it remains uncertain whether prenatal PY exposure impacts neurobehavioral development in offspring. Here, we administered PY to pregnant mice at a dose of 0.5 and 5 mg kg-1 day-1 via gavage and observed anxiety-like behaviors in PY offspring aged five weeks. We then integrated the metabolome and transcriptome of the offspring's brain to explore the underlying mechanism. Metabolome data indicated that the vitamin B6 metabolism pathway was significantly affected, and the pyridoxal 5'-phosphate (PLP) concentration and the active form of vitamin B6 was significantly reduced. Moreover, the transcriptome data showed that both PLP generation-related Pdxk and anxiety-related Gad1 were significantly down-regulated. Meanwhile, there was a decreasing trend in the concentration of GABA in the hippocampal DG region. Next, we supplemented PLP at a dose of 20 mg kg-1 day-1 to the PY offspring via intraperitoneal injection at three weeks. We found up-regulated expression of Pdxk and Gad1 and restored anxiety-like behaviors. This study suggests that prenatal exposure to PY can disrupt vitamin B6 metabolism, reduce the concentration of PLP, down-regulate the expression levels of Pdxk and Gad1, inhibit the production of GABA, and ultimately lead to anxiety-like behaviors in offspring.
Collapse
Affiliation(s)
- Xingwang Ding
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Ya Wen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Department of Chronic Non-Communicable Disease Control, Wuxi Liangxi District Center for Disease Control and Prevention, Wuxi, 214011, China
| | - Xuan Ma
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Yuepei Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Yuting Cheng
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Zhaofeng Liu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| |
Collapse
|
8
|
Sussman TJ, Baker BH, Wakhloo AJ, Gillet V, Abdelouahab N, Whittingstall K, Lepage JF, St-Cyr L, Boivin A, Gagnon A, Baccarelli AA, Takser L, Posner J. The relationship between persistent organic pollutants and Attention Deficit Hyperactivity Disorder phenotypes: Evidence from task-based neural activity in an observational study of a community sample of Canadian mother-child dyads. ENVIRONMENTAL RESEARCH 2022; 206:112593. [PMID: 34951987 PMCID: PMC9004716 DOI: 10.1016/j.envres.2021.112593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to persistent organic pollutants (POPs), widespread in North America, is associated with increased Attention Deficit/Hyperactivity Disorder (ADHD) symptoms and may be a modifiable risk for ADHD phenotypes. However, the effects of moderate exposure to POPs on task-based inhibitory control performance, related brain function, and ADHD-related symptoms remain unknown, limiting our ability to develop interventions targeting the neural impact of common levels of exposure. OBJECTIVES The goal of this study was to examine the association between prenatal POP exposure and inhibitory control performance, neural correlates of inhibitory control and ADHD-related symptoms. METHODS Prospective data was gathered in an observational study of Canadian mother-child dyads, with moderate exposure to POPs, including polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), as part of the GESTation and the Environment (GESTE) cohort in Sherbrooke, Quebec, Canada. The sample included 87 eligible children, 46 with maternal plasma samples, functional magnetic resonance imaging (fMRI) data of Simon task performance at 9-11 years, and parental report of clinical symptoms via the Behavioral Assessment System for Children 3 (BASC-3). Simon task performance was probed via drift diffusion modeling, and parameter estimates were related to POP exposure. Simon task-based fMRI data was modeled to examine the difference in incongruent vs congruent trials in regions of interest (ROIs) identified by meta analysis. RESULTS Of the 46 participants with complete data, 29 were male, and mean age was 10.42 ± 0.55 years. Increased POP exposure was associated with reduced accuracy (e.g. PCB molar sum rate ratio = 0.95; 95% CI [0.90, 0.99]), drift rate (e.g. for PCB molar sum β = -0.42; 95% CI [-0.77, -0.07]), and task-related brain activity (e.g. in inferior frontal cortex for PCB molar sum β = -0.35; 95% CI [-0.69, -0.02]), and increased ADHD symptoms (e.g. hyperactivity PCB molar sum β = 2.35; 95%CI [0.17, 4.53]), supporting the possibility that prenatal exposure to POPs is a modifiable risk for ADHD phenotypes. DISCUSSION We showed that exposure to POPs is related to task-based changes in neural activity in brain regions important for inhibitory control, suggesting a biological mechanism underlying previously documented associations between POPs and neurobehavioral deficits found in ADHD phenotypes.
Collapse
Affiliation(s)
- Tamara J Sussman
- New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Brennan H Baker
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | | | - Virginie Gillet
- Departement de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nadia Abdelouahab
- Departement de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kevin Whittingstall
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, Québec, Canada; Department of Diagnostic Radiology, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Lepage
- Departement de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lindsay St-Cyr
- Departement de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Amélie Boivin
- Departement de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Anthony Gagnon
- Departement de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Larissa Takser
- Departement de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Departement de Psychiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Jonathan Posner
- New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Does early life phthalate exposure mediate racial disparities in children’s cognitive abilities? Environ Epidemiol 2022; 6:e205. [PMID: 35434463 PMCID: PMC9005259 DOI: 10.1097/ee9.0000000000000205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
|
10
|
Sprowles JL, Monaikul S, Aguiar A, Gardiner J, Monaikul N, Kostyniak P, Schantz SL. Associations of concurrent PCB and PBDE serum concentrations with executive functioning in adolescents. Neurotoxicol Teratol 2022; 92:107092. [DOI: 10.1016/j.ntt.2022.107092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
|
11
|
Hyland C, Bradshaw P, Deardorff J, Gunier RB, Mora AM, Kogut K, Sagiv SK, Bradman A, Eskenazi B. Interactions of agricultural pesticide use near home during pregnancy and adverse childhood experiences on adolescent neurobehavioral development in the CHAMACOS study. ENVIRONMENTAL RESEARCH 2022; 204:111908. [PMID: 34425114 DOI: 10.1016/j.envres.2021.111908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Studies have documented independent adverse associations between prenatal and early-life exposure to environmental chemicals and social adversity with child neurodevelopment; however, few have considered these exposures jointly. The objective of this analysis is to examine whether associations of pesticide mixtures and adolescent neurobehavioral development are modified by early-life adversity in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort. METHODS We used linear mixed effects Bayesian Hierarchical Models (BHM) to examine the joint effect of applications of 11 agricultural pesticides within 1 km of maternal homes during pregnancy and youth-reported Adverse Childhood Experiences (ACEs) with maternal and youth-reported internalizing behaviors, hyperactivity, and attention problems assessed via the Behavior Assessment for Children (BASC) (mean = 50, standard deviation = 10) at ages 16 and 18 years (n = 458). RESULTS The median (25th-75th percentiles) of ACEs was 1 (0-3); 72.3% of participants had low ACEs (0-2 events) and 27.7% had ACEs (3+ events). Overall, there was little evidence of modification of exposure-outcome associations by ACEs. A two-fold increase in malathion use was associated with increased internalizing behaviors among those with high ACEs from both maternal- (β = 1.9; 95% Credible Interval (CrI): 0.2, 3.7 for high ACEs vs. β = -0.1; 95% CrI: 1.2, 0.9 for low ACEs) and youth-report (β = 2.1; 95% CrI: 0.4, 3.8 for high ACEs vs. β = 0.2; 95% CrI: 0.8, 1.2 for low ACEs). Applications of malathion and dimethoate were also associated with higher youth-reported hyperactivity and/or inattention among those with high ACEs. CONCLUSION We observed little evidence of effect modification of agricultural pesticide use near the home during pregnancy and adolescent behavioral problems by child ACEs. Future studies should examine critical windows of susceptibility of exposure to chemical and non-chemical stressors and should consider biomarker-based exposure assessment methods.
Collapse
Affiliation(s)
- Carly Hyland
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States; Department of Public Health and Population Science, College of Health Sciences, Boise State University, Boise, ID, United States
| | - Patrick Bradshaw
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Julianna Deardorff
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - Robert B Gunier
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - Ana M Mora
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - Katherine Kogut
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States; Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States; Department of Public Health, School of Social Sciences, Humanities, and Arts, University of California, Merced, United States
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States.
| |
Collapse
|
12
|
Bastien K, Muckle G, Ayotte P, Courtemanche Y, Dodge NC, Jacobson JL, Jacobson SW, Saint-Amour D. Associations between developmental exposure to environmental contaminants and spatial navigation in late adolescence. New Dir Child Adolesc Dev 2022; 2022:11-35. [PMID: 36044011 PMCID: PMC9590243 DOI: 10.1002/cad.20478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inuit communities in Northern Quebec (Canada) are exposed to environmental contaminants, particularly to mercury, lead and polychlorinated biphenyls (PCBs). Previous studies reported adverse associations between these neurotoxicants and memory performance. Here we aimed to determine the associations of pre- and postnatal exposures to mercury, lead and PCB-153 on spatial navigation memory in 212 Inuit adolescents (mean age = 18.5 years) using a computer task which requires learning the location of a hidden platform based on allocentric spatial representation. Contaminant concentrations were measured in cord blood at birth and blood samples at 11 years of age and at time of testing. Multivariate regression models showed that adolescent mercury and prenatal PCB-153 exposures were associated with poorer spatial learning, whereas current exposure to PCB-153 was associated with altered spatial memory retrieval at the probe test trial. These findings suggest that contaminants might be linked to different aspects of spatial navigation processing at different stages.
Collapse
Affiliation(s)
- Kevin Bastien
- Département de Psychologie, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Gina Muckle
- École de Psychologie, Université Laval, Québec, Québec, Canada
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Québec, Canada
| | - Pierre Ayotte
- Département de Médecine Sociale et Préventive, Université Laval, Québec, Québec, Canada
| | - Yohann Courtemanche
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Québec, Canada
| | - Neil C Dodge
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dave Saint-Amour
- Département de Psychologie, Université du Québec à Montréal, Montréal, Québec, Canada
- Centre de Recherche, Centre hospitalier universitaire Sainte-Justine, Montréal, Québec, Canada
| |
Collapse
|
13
|
Simeone RM, Howards PP, Anderson E, Jusko TA, Drobná B, Kočan A, Čonka K, Fabišiková A, Murínová ĽP, Canfield RL, Sonneborn D, Wimmerová S, Thevenet-Morrison K, Trnovec T, Hertz-Picciotto I, Šovčíková E. Pre- and postnatal polychlorinated biphenyl exposure and cognitive and behavioral development at age 45 Months in a cohort of Slovak children. CHEMOSPHERE 2022; 287:132375. [PMID: 34597632 PMCID: PMC8629853 DOI: 10.1016/j.chemosphere.2021.132375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Evidence of associations of pre- and postnatal exposure to polychlorinated biphenyls (PCBs) with cognitive development beyond early childhood is inconsistent. A previous report from this cohort observed adverse associations between early life PCB exposures and infant Bayley scores at age 16 months. The present study examines pre- and postnatal PCB exposures in relation to both behavior and cognitive development at age 45 months. Participants were 472 mother-child pairs residing in an area of eastern Slovakia characterized by environmental contamination with PCBs, which resulted in elevated blood serum concentrations. PCB-153 and PCB-118 concentrations were measured in maternal and in infant 6-, 16-, and 45-month serum samples. At age 45 months, children were administered five subtests of the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III), and mothers completed the Child Behavior Checklist (CBCL). Negative binomial and multiple linear regressions were used to estimate PCB-CBCL and PCB-WPPSI-III subtest score associations, respectively. Pre- and postnatal levels of PCB-153 and PCB-118 were not associated with cognitive performance on the WPPSI-III in this cohort. There was some suggestion that higher postnatal PCB concentrations were associated with more sleep problems and feelings of depression and anxiousness.
Collapse
Affiliation(s)
- Regina M Simeone
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Penelope P Howards
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elizabeth Anderson
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Todd A Jusko
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Anton Kočan
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
| | - Kamil Čonka
- Slovak Medical University, Bratislava, Slovakia
| | - Anna Fabišiková
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | | | | | - Dean Sonneborn
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - Kelly Thevenet-Morrison
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | | |
Collapse
|
14
|
Jakovljević I, Šimić I, Mendaš G, Sever Štrukil Z, Žužul S, Gluščić V, Godec R, Pehnec G, Bešlić I, Milinković A, Bakija Alempijević S, Šala M, Ogrizek M, Frka S. Pollution levels and deposition processes of airborne organic pollutants over the central Adriatic area: Temporal variabilities and source identification. MARINE POLLUTION BULLETIN 2021; 172:112873. [PMID: 34428622 DOI: 10.1016/j.marpolbul.2021.112873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 05/27/2023]
Abstract
First data on polycyclic aromatic hydrocarbons (PAHs) and nitro-aromatic compounds (NACs) in aerosols as well as of PAHs, polychlorinated biphenyls (PCBs) and NACs in bulk and wet atmospheric deposition samples were simultaneously obtained during 6-month-long field campaign at the costal central Adriatic area. Special attention was given to open-fire biomass burning episodes as extreme events common for the overall Mediterranean coastal area in order to gain a better understanding of the atmospheric variabilities and potential sources of trace organic pollutants in coastal environments. Diesel and gasoline combustion related to land and maritime traffic as well as occasional open-fire episodes (forest fires) were found to be the dominant pollution sources of PAHs in PM10 particles. NACs were determined almost exclusively in samples affected by biomass burning episodes. Open-fire episodes had a strong contribution to the overall NACs atmospheric deposition fluxes. Several chlorinated congeners of PCBs were predominantly contributed in deposition samples.
Collapse
Affiliation(s)
- Ivana Jakovljević
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Iva Šimić
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia.
| | - Gordana Mendaš
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | | | - Silva Žužul
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Valentina Gluščić
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ranka Godec
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Gordana Pehnec
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivan Bešlić
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Andrea Milinković
- Laboratory for Marine and Atmospheric Biogeochemistry, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Saranda Bakija Alempijević
- Laboratory for Marine and Atmospheric Biogeochemistry, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Martin Šala
- Analytical Chemistry Laboratory, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Monika Ogrizek
- Analytical Chemistry Laboratory, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Sanja Frka
- Laboratory for Marine and Atmospheric Biogeochemistry, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Gileadi TE, Swamy AK, Hore Z, Horswell S, Ellegood J, Mohan C, Mizuno K, Lundebye AK, Giese KP, Stockinger B, Hogstrand C, Lerch JP, Fernandes C, Basson MA. Effects of Low-Dose Gestational TCDD Exposure on Behavior and on Hippocampal Neuron Morphology and Gene Expression in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57002. [PMID: 33956508 PMCID: PMC8101924 DOI: 10.1289/ehp7352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent and toxic environmental pollutant. Gestational exposure to TCDD has been linked to cognitive and motor deficits, and increased incidence of autism spectrum disorder (ASD) traits in children. Most animal studies of these neurodevelopmental effects involve acute TCDD exposure, which does not model typical exposure in humans. OBJECTIVES The aim of the study was to establish a dietary low-dose gestational TCDD exposure protocol and performed an initial characterization of the effects on offspring behavior, neurodevelopmental phenotypes, and gene expression. METHODS Throughout gestation, pregnant C57BL/6J mice were fed a diet containing a low dose of TCDD (9 ng TCDD/kg body weight per day) or a control diet. The offspring were tested in a battery of behavioral tests, and structural brain alterations were investigated by magnetic resonance imaging. The dendritic morphology of pyramidal neurons in the hippocampal Cornu Ammonis (CA)1 area was analyzed. RNA sequencing was performed on hippocampi of postnatal day 14 TCDD-exposed and control offspring. RESULTS TCDD-exposed females displayed subtle deficits in motor coordination and reversal learning. Volumetric difference between diet groups were observed in regions of the hippocampal formation, mammillary bodies, and cerebellum, alongside higher dendritic arborization of pyramidal neurons in the hippocampal CA1 region of TCDD-exposed females. RNA-seq analysis identified 405 differentially expressed genes in the hippocampus, enriched for genes with functions in regulation of microtubules, axon guidance, extracellular matrix, and genes regulated by SMAD3. DISCUSSION Exposure to 9 ng TCDD/kg body weight per day throughout gestation was sufficient to cause specific behavioral and structural brain phenotypes in offspring. Our data suggest that alterations in SMAD3-regulated microtubule polymerization in the developing postnatal hippocampus may lead to an abnormal morphology of neuronal dendrites that persists into adulthood. These findings show that environmental low-dose gestational exposure to TCDD can have significant, long-term impacts on brain development and function. https://doi.org/10.1289/EHP7352.
Collapse
Affiliation(s)
- Talia E. Gileadi
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Abhyuday K. Swamy
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Zoe Hore
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Stuart Horswell
- Department of Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Conor Mohan
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Keiko Mizuno
- Department of Basic and Clinical Neuroscience, King’s College London, London, UK
| | | | - K. Peter Giese
- Department of Basic and Clinical Neuroscience, King’s College London, London, UK
| | | | | | - Jason P. Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - M. Albert Basson
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| |
Collapse
|
16
|
Developmental PCB Exposure Disrupts Synaptic Transmission and Connectivity in the Rat Auditory Cortex, Independent of Its Effects on Peripheral Hearing Threshold. eNeuro 2021; 8:ENEURO.0321-20.2021. [PMID: 33483323 PMCID: PMC7901149 DOI: 10.1523/eneuro.0321-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/01/2021] [Accepted: 01/06/2021] [Indexed: 12/03/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are enduring environmental toxicants and exposure is associated with neurodevelopmental deficits. The auditory system appears particularly sensitive, as previous work has shown that developmental PCB exposure causes both hearing loss and gross disruptions in the organization of the rat auditory cortex. However, the mechanisms underlying PCB-induced changes are not known, nor is it known whether the central effects of PCBs are a consequence of peripheral hearing loss. Here, we study changes in both peripheral and central auditory function in rats with developmental PCB exposure using a combination of optical and electrophysiological approaches. Female rats were exposed to an environmental PCB mixture in utero and until weaning. At adulthood, auditory brainstem responses (ABRs) were measured, and synaptic currents were recorded in slices from auditory cortex layer 2/3 neurons. Spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSCs) were more frequent in PCB-exposed rats compared with controls and the normal relationship between IPSC parameters and peripheral hearing was eliminated in PCB-exposed rats. No changes in spontaneous EPSCs were found. Conversely, when synaptic currents were evoked by laser photostimulation of caged-glutamate, PCB exposure did not affect evoked inhibitory transmission, but increased the total excitatory charge, the number and distance of sites that evoke a significant response. Together, these findings indicate that early developmental exposure to PCBs causes long-lasting changes in both inhibitory and excitatory neurotransmission in the auditory cortex that are independent of peripheral hearing changes, suggesting the effects are because of the direct impact of PCBs on the developing auditory cortex.
Collapse
|
17
|
Lowery RL, Latchney SE, Peer RP, Lamantia CE, Opanashuk L, McCall M, Majewska AK. Acute 2,3,7,8-Tetrachlorodibenzo-p-dioxin exposure in adult mice does not alter the morphology or inflammatory response of cortical microglia. Neurosci Lett 2020; 742:135516. [PMID: 33227371 DOI: 10.1016/j.neulet.2020.135516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 10/23/2022]
Abstract
Microglia, the immune cells of the brain, have a canonical role in regulating responses to neurological disease or injury, but have also recently been implicated as regulators of neurophysiological processes such as learning and memory. Given these dual immune and physiological roles, microglia are a likely mechanism by which external toxic stimuli are converted into deficits in neuronal circuitry and subsequently function. However, while it is well established that exposure to environmental toxicants negatively affects the peripheral immune system, it remains unknown whether and how such exposure causes neuroinflammation which, in turn, may negatively impact microglial functions in vivo. Here, we examined how acute 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure in adulthood, which negatively impacts immune cells in the periphery, affects microglial characteristics in the cortex of the mouse. We found that microglia density, distribution, morphology, inflammatory signaling, and response to a secondary, pathological activation were unaffected by acute TCDD exposure. These results suggest that acute, peripheral TCDD exposure in adulthood is not sufficient to induce an overt inflammatory phenotype in cortical microglia.
Collapse
Affiliation(s)
- R L Lowery
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY, 14642, United States
| | - S E Latchney
- Biology Department, St. Mary's College of Maryland, St. Mary's City, MD, 20686, United States
| | - R P Peer
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY, 14642, United States
| | - C E Lamantia
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY, 14642, United States
| | - L Opanashuk
- National Institute on Aging, Bethesda, MD, 20892, United States
| | - M McCall
- Department of Biostatistics and Computational Biology, University of Rochester, NY, 14642, United States; Department of Biomedical Genetics, University of Rochester, NY, 14642, United States
| | - A K Majewska
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY, 14642, United States.
| |
Collapse
|
18
|
Goodman M, Li J, Flanders WD, Mahood D, Anthony LG, Zhang Q, LaKind JS. Epidemiology of PCBs and neurodevelopment: Systematic assessment of multiplicity and completeness of reporting. GLOBAL EPIDEMIOLOGY 2020. [DOI: 10.1016/j.gloepi.2020.100040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Dai Q, Xu X, Eskenazi B, Asante KA, Chen A, Fobil J, Bergman Å, Brennan L, Sly PD, Nnorom IC, Pascale A, Wang Q, Zeng EY, Zeng Z, Landrigan PJ, Bruné Drisse MN, Huo X. Severe dioxin-like compound (DLC) contamination in e-waste recycling areas: An under-recognized threat to local health. ENVIRONMENT INTERNATIONAL 2020; 139:105731. [PMID: 32315892 DOI: 10.1016/j.envint.2020.105731] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/05/2023]
Abstract
Electrical and electronic waste (e-waste) burning and recycling activities have become one of the main emission sources of dioxin-like compounds (DLCs). Workers involved in e-waste recycling operations and residents living near e-waste recycling sites (EWRS) are exposed to high levels of DLCs. Epidemiological and experimental in vivo studies have reported a range of interconnected responses in multiple systems with DLC exposure. However, due to the compositional complexity of DLCs and difficulties in assessing mixture effects of the complex mixture of e-waste-related contaminants, there are few studies concerning human health outcomes related to DLC exposure at informal EWRS. In this paper, we have reviewed the environmental levels and body burdens of DLCs at EWRS and compared them with the levels reported to be associated with observable adverse effects to assess the health risks of DLC exposure at EWRS. In general, DLC concentrations at EWRS of many countries have been decreasing in recent years due to stricter regulations on e-waste recycling activities, but the contamination status is still severe. Comparison with available data from industrial sites and well-known highly DLC contaminated areas shows that high levels of DLCs derived from crude e-waste recycling processes lead to elevated body burdens. The DLC levels in human blood and breast milk at EWRS are higher than those reported in some epidemiological studies that are related to various health impacts. The estimated total daily intakes of DLCs for people in EWRS far exceed the WHO recommended total daily intake limit. It can be inferred that people living in EWRS with high DLC contamination have higher health risks. Therefore, more well-designed epidemiological studies are urgently needed to focus on the health effects of DLC pollution in EWRS. Continuous monitoring of the temporal trends of DLC levels in EWRS after actions is of highest importance.
Collapse
Affiliation(s)
- Qingyuan Dai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, China
| | - Brenda Eskenazi
- School of Public Health, University of California, Berkeley, USA
| | | | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, USA
| | - Julius Fobil
- School of Public Health, University of Ghana, Ghana
| | - Åke Bergman
- Department of Environmental Science, Stockholm University, Sweden; Department of Science and Technology, Örebro University, Sweden; College of Environmental Science and Engineering, Tongji University, China
| | - Lesley Brennan
- Department of Obstetrics and Gynaecology, University of Alberta, Canada
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, Australia
| | | | - Antonio Pascale
- Department of Toxicology, University of the Republic, Uruguay
| | - Qihua Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, China
| | | | - Marie-Noel Bruné Drisse
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Xia Huo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China.
| |
Collapse
|
20
|
Gagnon-Chauvin A, Bastien K, Saint-Amour D. Environmental toxic agents: The impact of heavy metals and organochlorides on brain development. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:423-442. [PMID: 32958188 DOI: 10.1016/b978-0-444-64150-2.00030-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Exposure to environmental toxicants can have deleterious effects on the development of physical, cognitive, and mental health. Extensive laboratory and clinical studies have demonstrated how the developing brain is uniquely sensitive to toxic agents. This chapter focuses on the main neurologic impairments linked to prenatal and postnatal exposure to lead, methylmercury, and polychlorinated biphenyls, three legacy environmental contaminants whose neurotoxic effects have been extensively studied with respect to cognitive and behavioral development. The main cognitive, emotion regulation, sensory, and motor impairments in association with these contaminants are briefly reviewed, including the underlying neural mechanisms such as neuropathologic damages, brain neurotransmission, and endocrine system alterations. The use of neuroimaging as a novel tool to better understand how the brain is affected by exposure to environmental contaminants is also discussed.
Collapse
Affiliation(s)
- Avril Gagnon-Chauvin
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada; Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Kevin Bastien
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada; Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Dave Saint-Amour
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada; Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
21
|
Pessah IN, Lein PJ, Seegal RF, Sagiv SK. Neurotoxicity of polychlorinated biphenyls and related organohalogens. Acta Neuropathol 2019; 138:363-387. [PMID: 30976975 PMCID: PMC6708608 DOI: 10.1007/s00401-019-01978-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 01/28/2023]
Abstract
Halogenated organic compounds are pervasive in natural and built environments. Despite restrictions on the production of many of these compounds in most parts of the world through the Stockholm Convention on Persistent Organic Pollutants (POPs), many "legacy" compounds, including polychlorinated biphenyls (PCBs), are routinely detected in human tissues where they continue to pose significant health risks to highly exposed and susceptible populations. A major concern is developmental neurotoxicity, although impacts on neurodegenerative outcomes have also been noted. Here, we review human studies of prenatal and adult exposures to PCBs and describe the state of knowledge regarding outcomes across domains related to cognition (e.g., IQ, language, memory, learning), attention, behavioral regulation and executive function, and social behavior, including traits related to attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). We also review current understanding of molecular mechanisms underpinning these associations, with a focus on dopaminergic neurotransmission, thyroid hormone disruption, calcium dyshomeostasis, and oxidative stress. Finally, we briefly consider contemporary sources of organohalogens that may pose human health risks via mechanisms of neurotoxicity common to those ascribed to PCBs.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Richard F Seegal
- Professor Emeritus, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
22
|
Pham NT, Nishijo M, Pham TT, Tran NN, Le VQ, Tran HA, Phan HAV, Nishino Y, Nishijo H. Perinatal dioxin exposure and neurodevelopment of 2-year-old Vietnamese children in the most contaminated area from Agent Orange in Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:217-226. [PMID: 31075589 DOI: 10.1016/j.scitotenv.2019.04.425] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 05/19/2023]
Abstract
Bien Hoa airbase is the most contaminated area of dioxin contamination from Agent Orange in Vietnam, but little is known about the neurodevelopmental effects of perinatal dioxin exposure on children living nearby. We recruited 210 mother-newborn resident pairs in 2012 and 78 pairs in 2015 and followed them for 2 years to assess the children's neurodevelopment. As a control group, we used 120 mother-child pairs recruited in 2014 in the Ha Dong district of Ha Noi City, an unexposed area. Perinatal dioxin exposure levels were indicated by levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and toxic equivalency values of polychlorodibenzodioxins, polychlorodibenzofurans, and nonortho-polychlorinated biphenyls (TEQ-PCDD/Fs/noPCBs) in maternal breast milk. The Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) were used to assess neurodevelopment, and scores in each domain were compared between children with different exposure levels using general linear regression models and stratification by sex. Decreased expressive and composite language scores in boys and gross motor scores in girls were found in children exposed to TCDD ≥ 5.5 (pg/g lipid) compared with children with TCDD < 1.8. However, in matched pair analysis between children with TCDD ≥ 5.5 and <1.8 (pg/g lipid), lower expressive and composite language scores in boys exposed to TCDD ≥ 5.5 were significant, but lower gross motor scores in girls did not reach statistical significance. In addition, significant association was found between levels of PCDD congeners other than TCDD and gross motor scores in boys. These findings suggest that perinatal exposure of TCDD and other PCDD congeners affects development of language and gross motor skills, respectively, in boys at 2 years of age exposed to dioxins originating from Agent Orange in Vietnam.
Collapse
Affiliation(s)
- Ngoc Thao Pham
- Department of Public Health, Kanazawa Medical University, Japan; Biomedical and Pharmaceutical Research Center, Vietnamese Military Medical University, Viet Nam
| | - Muneko Nishijo
- Department of Public Health, Kanazawa Medical University, Japan.
| | - The Tai Pham
- Biomedical and Pharmaceutical Research Center, Vietnamese Military Medical University, Viet Nam
| | | | - Van Quan Le
- Biomedical and Pharmaceutical Research Center, Vietnamese Military Medical University, Viet Nam
| | - Hai Anh Tran
- Biomedical and Pharmaceutical Research Center, Vietnamese Military Medical University, Viet Nam
| | - Huy Anh Vu Phan
- Department of Health, Dong Nai Prefecture Government, Bien Hoa, Viet Nam
| | | | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine, University of Toyama, Japan
| |
Collapse
|
23
|
Ramirez-Ortiz D, Almodóvar-Morales GL, Hopwood S, Kumar N. Efficacy of a school-based intervention to bring awareness about PCB contamination and exposure avoidance in Guánica, Puerto Rico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23337-23345. [PMID: 31197667 PMCID: PMC7893576 DOI: 10.1007/s11356-019-05587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Production of polychlorinated biphenyls (PCB) was banned in the US in 1970s. However, susceptible populations especially those living at/around the contaminated sites continue to be at a risk of elevated exposure to PCBs because information about the contamination (of the environment) and its associated health risks may not reach these populations. A recent study found the second highest concentration of PCBs ever recorded worldwide in the sediment samples of Guánica Bay, located in the southwestern part of Puerto Rico. PCB levels in fish from the bay were also higher than the tolerance limit of Food and Drug Administration (FDA), which motivated this research to initiate a school-based campaign to bring community awareness about the contamination of the bay and engage students in preventive strategies to reduce their exposure to PCBs. Surveys before and after the campaign were administered in the high school as well as in the communities of Guánica Municipality. The analyses of the survey data suggest that the campaign was effective in bringing awareness among schoolchildren (6.6% before versus 69.7% after the campaign; χ2 ~ 60.4; p < 0.001) and strategies to reduce PCB exposure and its toxicity such as removing adipose tissues from seafood/fish and exercising. In the community, there was a significant decline in the consumption of seafood/fish harvested from the bay after the campaign (54.6% before versus 33% after the campaign; χ2 ~ 10.85; p < 0.001). However, the awareness did not result in significant behavior modifications among schoolchildren, such as avoiding swimming and fishing in the bay. Given hazardous levels of PCBs and some students use the bay for various purposes, including one-third of community members still use seafood/fish harvested from the bay, attention of different stakeholders is warranted for clean-up efforts as well as engaging children and communities in PCB exposure avoidance strategies.
Collapse
Affiliation(s)
- Daisy Ramirez-Ortiz
- Department of Epidemiology, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | | | - Samuel Hopwood
- Department of Public Health Sciences, University of Miami, 1120 NW 14th St Suite 1063, Miami, FL, 33136, USA
| | - Naresh Kumar
- Department of Public Health Sciences, University of Miami, 1120 NW 14th St Suite 1063, Miami, FL, 33136, USA.
| |
Collapse
|
24
|
Berghuis SA, Roze E. Prenatal exposure to PCBs and neurological and sexual/pubertal development from birth to adolescence. Curr Probl Pediatr Adolesc Health Care 2019; 49:133-159. [PMID: 31147261 DOI: 10.1016/j.cppeds.2019.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several chemical compounds are resistant to degradation and end up in the food chain. One group of these chemicals is polychlorinated biphenyls (PCBs) which are used as flame retardants and plasticizers. Although PCBs were banned several decades ago, PCBs are still found in environmental media, including in the body of humans. PCBs are transferred from mother to fetus via the placenta during pregnancy. Considering that the prenatal period is a sensitive period during which essential developmental processes take place, exposure to environmental chemicals might have considerable and permanent consequences for outcomes in later life. The aim of this review is to provide an update on the latest insights on the effects of prenatal exposure to PCBs on neurological, sexual and pubertal development in children. We give an overview of recent literature, and discuss it in the light of the findings in a unique Dutch birth cohort, with data on both neurological and pubertal development into adolescence. The findings in the studies included in this review, together with the findings in the Dutch cohort, demonstrate that prenatal exposure to PCBs can interfere with normal child development, not only during the perinatal period, but up to and including adolescence. Higher prenatal exposure to PCBs was found to be both negatively and positively associated with neurodevelopmental outcomes. Regarding pubertal development, higher prenatal PCB exposure was found to be associated with more advanced pubertal development, also in the Dutch cohort, whereas other studies also found delayed pubertal development. These findings raise concern regarding the effects of man-made chemical compounds on child development. They further contribute to the awareness of how environmental chemical compounds can interfere with child development and negatively influence healthy ageing.
Collapse
Affiliation(s)
- Sietske Annette Berghuis
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9713 GZ, Groningen, the Netherlands.
| | - Elise Roze
- Division of Neonatology, Department of Pediatrics, Wilhelmina Children's Hospital, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
25
|
Granillo L, Sethi S, Keil KP, Lin Y, Ozonoff S, Iosif AM, Puschner B, Schmidt RJ. Polychlorinated biphenyls influence on autism spectrum disorder risk in the MARBLES cohort. ENVIRONMENTAL RESEARCH 2019; 171:177-184. [PMID: 30665119 PMCID: PMC6382542 DOI: 10.1016/j.envres.2018.12.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is suspected to have environmental and genetic contributions. Polychlorinated biphenyls (PCBs) are environmental risk factors of interest due to their potential as neurodevelopmental toxicants and environmental persistence despite a US production ban in the 1970s. METHODS Participants were mother-child pairs from MARBLES, a high-risk pregnancy cohort that enrolls families who have one child diagnosed with ASD and are planning to have another child. PCB concentrations were measured in maternal blood at each trimester of pregnancy using gas chromatography coupled with triple quadruple mass spectrometry. Concentrations were summed into total PCB and two categories based on function/mechanisms of action: dioxin-like (DL), and ryanodine receptor (RyR)-activating PCBs. Multinomial logistic regression assessed risk of clinical outcome classification of ASD and non-typical development (Non-TD) compared to typically developing (TD) in the children at 3 years old. RESULTS A total of 104 mother-child pairs were included. There were no significant associations for total PCB; however, there were borderline significant associations between DL-PCBs and decreased risk for Non-TD outcome classification (adjusted OR: 0.41 (95% CI 0.15-1.14)) and between RyR-activating PCBs and increased risk for ASD outcome classification (adjusted OR: 2.63 (95% CI 0.87-7.97)). CONCLUSION This study does not provide strong supporting evidence that PCBs are risk factors for ASD or Non-TD. However, these analyses suggest the need to explore more deeply into subsets of PCBs as risk factors based on their function and structure in larger cohort studies where non-monotonic dose-response patterns can be better evaluated.
Collapse
Affiliation(s)
- Lauren Granillo
- Graduate Group in Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA.
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Yanping Lin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Sally Ozonoff
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Ana-Maria Iosif
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Rebecca J Schmidt
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
26
|
Colter BT, Garber HF, Fleming SM, Fowler JP, Harding GD, Hooven MK, Howes AA, Infante SK, Lang AL, MacDougall MC, Stegman M, Taylor KR, Curran CP. Ahr and Cyp1a2 genotypes both affect susceptibility to motor deficits following gestational and lactational exposure to polychlorinated biphenyls. Neurotoxicology 2019; 65:125-134. [PMID: 29409959 DOI: 10.1016/j.neuro.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 02/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants known to cause adverse health effects and linked to neurological deficits in both human and animal studies. Children born to exposed mothers are at highest risk of learning and memory and motor deficits. We developed a mouse model that mimics human variation in the aryl hydrocarbon receptor and cytochrome P450 1A2 (CYP1A2) to determine if genetic variation increases susceptibility to developmental PCB exposure. In our previous studies, we found that high-affinity AhrbCyp1a2(-/-) and poor-affinity AhrdCyp1a2(-/-) knockout mice were most susceptible to learning and memory deficits following developmental PCB exposure compared with AhrbCyp1a2(+/+) wild type mice (C57BL/6J strain). Our follow-up studies focused on motor deficits, because human studies have identified PCBs as a potential risk factor for Parkinson's disease. Dams were treated with an environmentally relevant PCB mixture at gestational day 10 and postnatal day 5. We used a motor battery that included tests of nigrostriatal function as well as cerebellar function, because PCBs deplete thyroid hormone, which is essential to normal cerebellar development. There was a significant effect of PCB treatment in the rotarod test with impaired performance in all three genotypes, but decreased motor learning as well in the two Cyp1a2(-/-) knockout lines. Interestingly, we found a main effect of genotype with corn oil-treated control Cyp1a2(-/-) mice performing significantly worse than Cyp1a2(+/+) wild type mice. In contrast, we found that PCB-treated high-affinity Ahrb mice were most susceptible to disruption of nigrostriatal function with the greatest deficits in AhrbCyp1a2(-/-) mice. We conclude that differences in AHR affinity combined with the absence of CYP1A2 protein affect susceptibility to motor deficits following developmental PCB exposure.
Collapse
Affiliation(s)
- Breann T Colter
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Helen Frances Garber
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Sheila M Fleming
- Department of Psychology and Neurology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jocelyn Phillips Fowler
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Gregory D Harding
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Molly Kromme Hooven
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Amy Ashworth Howes
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Smitha Krishnan Infante
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Anna L Lang
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | | | - Melinda Stegman
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Kelsey Rae Taylor
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Christine Perdan Curran
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA.
| |
Collapse
|
27
|
Wahlang B. Exposure to persistent organic pollutants: impact on women's health. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:331-348. [PMID: 30110273 DOI: 10.1515/reveh-2018-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/18/2018] [Indexed: 05/23/2023]
Abstract
This literature review focuses on the causal relationship between persistent organic pollutants (POPs) exposure and women's health disorders, particularly cancer, cardio-metabolic events and reproductive health. Progressive industrialization has resulted in the production of a multitude of chemicals that are released into the environment on a daily basis. Environmental chemicals or pollutants are not only hazardous to our ecosystem but also lead to various health problems that affect the human population worldwide irrespective of gender, race or age. However, most environmental health studies that have been conducted, until recently, were exclusively biased with regard to sex and gender, beginning with exposure studies that were reported mostly in male, occupational workers and animal studies being carried out mostly in male rodent models. Health-related issues pertaining to women of all age groups have not been studied thoroughly and rather disregarded in most aspects of basic health science research and it is therefore pertinent that we address these limitations in environmental health. The review also addresses studies looking at the associations between health outcomes and exposures to POPs, particularly, polychlorinated biphenyls (PCBs), dioxins and pesticides, reported in cohort studies while accounting for gender differences. Considering that current levels of POPs in women can also impact future generations, informative guidelines related to dietary patterns and exposure history are needed for women of reproductive age. Additionally, occupational cohorts of highly exposed women worldwide, such as women working in manufacturing plants and female pesticide applicators are required to gather more information on population susceptibility and disease pathology.
Collapse
Affiliation(s)
- Banrida Wahlang
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, 505 S. Hancock Street, CTRB, Louisville, KY 40202-1617, USA
| |
Collapse
|
28
|
LaKind JS, Lehmann GM, Davis MH, Hines EP, Marchitti SA, Alcala C, Lorber M. Infant Dietary Exposures to Environmental Chemicals and Infant/Child Health: A Critical Assessment of the Literature. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:96002. [PMID: 30256157 PMCID: PMC6375563 DOI: 10.1289/ehp1954] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND The benefits of breastfeeding to the infant and mother have been well documented. It is also well known that breast milk contains environmental chemicals, and numerous epidemiological studies have explored relationships between background levels of chemicals in breast milk and health outcomes in infants and children. OBJECTIVES In this paper, we examine epidemiological literature to address the following question: Are infant exposures to background levels of environmental chemicals in breast milk and formula associated with adverse health effects? We critically review this literature a) to explore whether exposure-outcome associations are observed across studies, and b) to assess the literature quality. METHODS We reviewed literature identified from electronic literature searches. We explored whether exposure-outcome associations are observed across studies by assessing the quality (using a modified version of a previously published quality assessment tool), consistency, and strengths and weaknesses in the literature. The epidemiological literature included cohorts from several countries and examined infants/children either once or multiple times over weeks to years. Health outcomes included four broad categories: growth and maturation, morbidity, biomarkers, and neurodevelopment. RESULTS The available literature does not provide conclusive evidence of consistent or clinically relevant health consequences to infants exposed to environmental chemicals in breast milk at background levels. CONCLUSIONS It is clear that more research would better inform our understanding of the potential for health impacts from infant dietary exposures to environmental chemicals. A critical data gap is a lack of research on environmental chemicals in formula and infant/child health outcomes. https://doi.org/10.1289/EHP1954.
Collapse
Affiliation(s)
- Judy S LaKind
- 1 LaKind Associates, LLC, Catonsville, Maryland, USA
- 2 Department of Epidemiology and Public Health, University of Maryland School of Medicine , Baltimore, Maryland, USA
| | - Geniece M Lehmann
- 3 Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park , North Carolina, USA
| | - Matthew H Davis
- 4 Office of Children's Health Protection, U.S. EPA, Washington, District of Columbia, USA
| | - Erin P Hines
- 3 Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park , North Carolina, USA
| | - Satori A Marchitti
- 5 Oak Ridge Institute for Science and Education (ORISE), ORD, U.S. EPA, Athens, Georgia, USA
| | - Cecilia Alcala
- 6 Association of Schools and Programs of Public Health (ASPPH), ORD, U.S. EPA, Washington, District of Columbia, USA
| | | |
Collapse
|
29
|
Silveira LTR, de Mello Santos T, Camora LF, Pinho CF, Anselmo-Franci JA, Domeniconi RF, Justulin LA, Barbisan LF, Scarano WR. Protective effect of resveratrol on urogenital sinus and prostate development in rats exposed in utero to TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin). Reprod Toxicol 2018; 83:82-92. [PMID: 29935225 DOI: 10.1016/j.reprotox.2018.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/07/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022]
Abstract
This study evaluated the protective effects of resveratrol on the prostate development of rats exposed to TCDD. Pregnant rats received TCDD (1 μg/kg) at GD15 and/or RES (20 mg/kg/day) from GD10 to PND21. Newborn and adult males from Control, TCDD, TCDD + RES and RES groups were euthanized and the prostate was excised. On PND1, there was a reduction in the number of prostatic buds, AR-positive mesenchymal cells and proliferation index in epithelial and mesenchymal cells in TCDD group, but restored by RES. AhR immunoreactivity was greater in TCDD group than the other groups. On PND90, there was higher frequency of functional hyperplasia in the distal area of the prostate acini in TCDD group, but restored by RES. AhRR expression was higher in the TCDD while NRF2 was higher in the TCDD + RES compared to the other groups. Resveratrol was able to reduce the adverse effects of TCDD on prostate development and its long-term repercussions.
Collapse
Affiliation(s)
| | | | - Lucas Fredini Camora
- Department of Morphology, São Paulo State University - UNESP, Institute of Biosciences, Brazil
| | | | | | | | - Luis Antonio Justulin
- Department of Morphology, São Paulo State University - UNESP, Institute of Biosciences, Brazil
| | - Luis Fernando Barbisan
- Department of Morphology, São Paulo State University - UNESP, Institute of Biosciences, Brazil
| | | |
Collapse
|
30
|
Hertz-Picciotto I, Schmidt RJ, Krakowiak P. Understanding environmental contributions to autism: Causal concepts and the state of science. Autism Res 2018; 11:554-586. [PMID: 29573218 DOI: 10.1002/aur.1938] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/06/2022]
Abstract
The complexity of neurodevelopment, the rapidity of early neurogenesis, and over 100 years of research identifying environmental influences on neurodevelopment serve as backdrop to understanding factors that influence risk and severity of autism spectrum disorder (ASD). This Keynote Lecture, delivered at the May 2016 annual meeting of the International Society for Autism Research, describes concepts of causation, outlines the trajectory of research on nongenetic factors beginning in the 1960s, and briefly reviews the current state of this science. Causal concepts are introduced, including root causes; pitfalls in interpreting time trends as clues to etiologic factors; susceptible time windows for exposure; and implications of a multi-factorial model of ASD. An historical background presents early research into the origins of ASD. The epidemiologic literature from the last fifteen years is briefly but critically reviewed for potential roles of, for example, air pollution, pesticides, plastics, prenatal vitamins, lifestyle and family factors, and maternal obstetric and metabolic conditions during her pregnancy. Three examples from the case-control CHildhood Autism Risks from Genes and the Environment Study are probed to illustrate methodological approaches to central challenges in observational studies: capturing environmental exposure; causal inference when a randomized controlled clinical trial is either unethical or infeasible; and the integration of genetic, epigenetic, and environmental influences on development. We conclude with reflections on future directions, including exposomics, new technologies, the microbiome, gene-by-environment interaction in the era of -omics, and epigenetics as the interface of those two. As the environment is malleable, this research advances the goal of a productive and fulfilling life for all children, teen-agers and adults. Autism Res 2018, 11: 554-586. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY This Keynote Lecture, delivered at the 2016 meeting of the International Society for Autism Research, discusses evidence from human epidemiologic studies of prenatal factors contributing to autism, such as pesticides, maternal nutrition and her health. There is no single cause for autism. Examples highlight the features of a high-quality epidemiology study, and what comprises a compelling case for causation. Emergent research directions hold promise for identifying potential interventions to reduce disabilities, enhance giftedness, and improve lives of those with ASD.
Collapse
Affiliation(s)
- Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND Institute (Medical Investigations of Neurodevelopmental Disorders), University of California, Davis, Davis, California
| | - Rebecca J Schmidt
- Department of Public Health Sciences, MIND Institute (Medical Investigations of Neurodevelopmental Disorders), University of California, Davis, Davis, California
| | - Paula Krakowiak
- Department of Public Health Sciences, MIND Institute (Medical Investigations of Neurodevelopmental Disorders), University of California, Davis, Davis, California
| |
Collapse
|
31
|
Vorhees CV, Sprowles JN, Regan SL, Williams MT. A better approach to in vivo developmental neurotoxicity assessment: Alignment of rodent testing with effects seen in children after neurotoxic exposures. Toxicol Appl Pharmacol 2018; 354:176-190. [PMID: 29544898 DOI: 10.1016/j.taap.2018.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/27/2018] [Accepted: 03/11/2018] [Indexed: 10/17/2022]
Abstract
High throughput screens for developmental neurotoxicity (DN) will facilitate evaluation of chemicals and can be used to prioritize those designated for follow-up. DN is evaluated under different guidelines. Those for drugs generally include peri- and postnatal studies and juvenile toxicity studies. For pesticides and commercial chemicals, when triggered, include developmental neurotoxicity studies (DNT) and extended one-generation reproductive toxicity studies. Raffaele et al. (2010) reviewed 69 pesticide DNT studies and found two of the four behavioral tests underperformed. There are now many epidemiological studies on children showing adverse neurocognitive effects, yet guideline DN studies fail to assess most of the functions affected in children; nor do DN guidelines reflect the advances in brain structure-function relationships from neuroscience. By reducing the number of test ages, removing underperforming tests and replacing them with tests that assess cognitive abilities relevant to children, the value of DN protocols can be improved. Testing for the brain networks that mediate higher cognitive functions need to include assessments of working memory, attention, long-term memory (explicit, implicit, and emotional), and executive functions such as cognitive flexibility. The current DNT focus on what can be measured should be replaced with what should be measured. With the wealth of data available from human studies and neuroscience, the recommendation is made for changes to make DN studies better focused on human-relevant functions using tests of proven validity that assess comparable functions to tests used in children. Such changes will provide regulatory authorities with more relevant data.
Collapse
Affiliation(s)
- Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| | - Jenna N Sprowles
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Samantha L Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| |
Collapse
|
32
|
A Systematic Review of the Interplay Between Social Determinants and Environmental Exposures for Early-Life Outcomes. Curr Environ Health Rep 2018; 3:287-301. [PMID: 27344145 DOI: 10.1007/s40572-016-0099-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Early-life social and environmental exposures have independent effects on many child health outcomes. Increasingly, investigators have suggested that these exposures, which commonly co-occur, may have synergistic effects and have thus begun to evaluate if environmental and social factors jointly contribute to child health. This systematic review summarizes findings and methodological approaches across studies examining the interplay between environmental and social exposures in relation to commonly assessed childhood health outcomes: asthma, cognition and behavior, perinatal outcomes, and obesity. RECENT FINDINGS Forty-one studies met the search criteria and were reviewed. Of these, 37, 34, and 29 % of studies focused on asthma, cognition/behavior, and perinatal outcomes, respectively. No study focused on obesity. Across all studies reviewed, 72 % observed significant synergistic associations between social and environmental exposures. Air pollution was the most frequently studied environmental exposure, and socioeconomic status was the most commonly studied social factor. The emerging evidence suggests that social and environmental risks may jointly affect child health. Recommendations for future research are discussed, including enhancing characterization of the social environment and broadening the types of environmental risks assessed.
Collapse
|
33
|
Klinefelter K, Hooven MK, Bates C, Colter BT, Dailey A, Infante SK, Kania-Korwel I, Lehmler HJ, López-Juárez A, Ludwig CP, Curran CP. Genetic differences in the aryl hydrocarbon receptor and CYP1A2 affect sensitivity to developmental polychlorinated biphenyl exposure in mice: relevance to studies of human neurological disorders. Mamm Genome 2017; 29:112-127. [PMID: 29197979 DOI: 10.1007/s00335-017-9728-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/28/2017] [Indexed: 01/28/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that remain a human health concern with newly discovered sources of contamination and ongoing bioaccumulation and biomagnification. Children exposed during early brain development are at highest risk of neurological deficits, but highly exposed adults reportedly have an increased risk of Parkinson's disease. Our previous studies found allelic differences in the aryl hydrocarbon receptor and cytochrome P450 1A2 (CYP1A2) affect sensitivity to developmental PCB exposure, resulting in cognitive deficits and motor dysfunction. High-affinity Ahr b Cyp1a2(-/-) mice were most sensitive compared with poor-affinity Ahr d Cyp1a2(-/-) and wild-type Ahr b Cyp1a2(+/+) mice. Our follow-up studies assessed biochemical, histological, and gene expression changes to identify the brain regions and pathways affected. We also measured PCB and metabolite levels in tissues to determine if genotype altered toxicokinetics. We found evidence of AHR-mediated toxicity with reduced thymus and spleen weights and significantly reduced thyroxine at P14 in PCB-exposed pups. In the brain, the greatest changes were seen in the cerebellum where a foliation defect was over-represented in Cyp1a2(-/-) mice. In contrast, we found no difference in tyrosine hydroxylase immunostaining in the striatum. Gene expression patterns varied across the three genotypes, but there was clear evidence of AHR activation. Distribution of parent PCB congeners also varied by genotype with strikingly high levels of PCB 77 in poor-affinity Ahr d Cyp1a2(-/-) while Ahr b Cyp1a2(+/+) mice effectively sequestered coplanar PCBs in the liver. Together, our data suggest that the AHR pathway plays a role in developmental PCB neurotoxicity, but we found little evidence that developmental exposure is a risk factor for Parkinson's disease.
Collapse
Affiliation(s)
- Kelsey Klinefelter
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Molly Kromme Hooven
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Chloe Bates
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Breann T Colter
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Alexandra Dailey
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Smitha Krishnan Infante
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Izabela Kania-Korwel
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Alejandro López-Juárez
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Clare Pickering Ludwig
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Christine Perdan Curran
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA.
| |
Collapse
|
34
|
Karkaba A, Soualeh N, Soulimani R, Bouayed J. Perinatal effects of exposure to PCBs on social preferences in young adult and middle-aged offspring mice. Horm Behav 2017; 96:137-146. [PMID: 28935448 DOI: 10.1016/j.yhbeh.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023]
Abstract
In social species, social interactions between conspecifics constitute a fundamental component to establish relations, provide best chances to reproduce, and even improve survival rates. In this study, a three-chambered social approach test was used to estimate the level of sociability and level of preference for social novelty in both male and female young adult (postnatal day (PND) 50) and middle-aged (PND 330) offspring mice (n=10 per group) that were perinatally exposed to a mixture of six polychlorinated biphenyls (PCBs), 28, 52, 101, 138, 153, and 180, at environmentally low doses (10 and 1000ng/kg b.w. for dams during gestation and lactation), a profile that closely mimics human exposure to contaminated fish. Our results showed that PCBs bidirectionally modulated social preferences in offspring mice, and the effects were sex and age dependent. However, increased levels of social interactions were rather frequently detected in both assays of the three-chambered test. Reduced social interaction was only induced in 1000ng/kg PCB-exposed middle-aged males, which exhibited similar preferences to social and non-social stimuli when compared to middle-aged controls. Furthermore, results showed that plasma levels of both corticosterone and acetylcholinesterase activity were higher in all PCB-exposed middle-aged males and females than in their control counterparts. In summary, although the effects of PCBs were only of moderate magnitude, our results suggest that a PCB mixture can act as an endocrine disruptor in offspring mice, disturbing the formation of normal social habits.
Collapse
Affiliation(s)
- Alaa Karkaba
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France
| | - Nidhal Soualeh
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France
| | - Rachid Soulimani
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France
| | - Jaouad Bouayed
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France.
| |
Collapse
|
35
|
Nakajima S, Saijo Y, Miyashita C, Ikeno T, Sasaki S, Kajiwara J, Kishi R. Sex-specific differences in effect of prenatal exposure to dioxin-like compounds on neurodevelopment in Japanese children: Sapporo cohort study. ENVIRONMENTAL RESEARCH 2017; 159:222-231. [PMID: 28803151 DOI: 10.1016/j.envres.2017.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/05/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Consistent reports are not available on the effects of dioxin-like polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (PCDD)/ polychlorinated dibenzofurans (PCDF) (dioxin-like compounds [DLCs]) on child neurodevelopment. Further, the effect of background-level exposure to individual DLC isomers is not known. OBJECTIVES We carried out the Sapporo cohort study to evaluate the effect of prenatal exposure to each DLC isomer on child neurodevelopment at 6 and 18 months of age, and assessed sex-specific differences in these effects. METHODS The levels of all and each individual DLC isomers were estimated in maternal peripheral blood. Neurodevelopment was evaluated using the Bayley Scales of Infant Development-2nd Edition for 6-month-old infants (n = 190) and 18-month-old children (n = 121). RESULTS In male children, levels of 10 DLC isomers were significantly negatively associated with the Psychomotor Developmental Index (PDI) at 6 months of age after adjustment for potential confounding variables. However, at 18 months of age, these associations were absent. In female children, the level of only one DLC isomer was significantly negatively associated with PDI at 6 months of age. However, in contrast to the male children, the levels of six DLC isomers in 18-month-old female children were significantly positively associated with the Mental Developmental Index. CONCLUSIONS These findings indicate that adverse neurodevelopmental effects of prenatal background-level exposure to DLCs may be stronger in male children.
Collapse
Affiliation(s)
- Sonomi Nakajima
- School of Health Sciences, Sapporo Medical University, Minami 1, Nishi 17, Chuo-ku, Sapporo 060-8556, Japan.
| | - Yasuaki Saijo
- Department of Health Sciences, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan.
| | - Tamiko Ikeno
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan.
| | - Seiko Sasaki
- Department of Public Health, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan.
| | - Junboku Kajiwara
- Fukuoka Institute of Health and Environmental Sciences, Mukaizano 39, Dazaifu 818-0135, Japan.
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
36
|
Vieira VM, Fabian MP, Webster TF, Levy JI, Korrick SA. Spatial Variability in ADHD-Related Behaviors Among Children Born to Mothers Residing Near the New Bedford Harbor Superfund Site. Am J Epidemiol 2017; 185:924-932. [PMID: 28444119 PMCID: PMC5430935 DOI: 10.1093/aje/kww208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/25/2016] [Indexed: 12/24/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) has an uncertain etiology, with potential contributions from different risk factors such as prenatal environmental exposure to organochlorines and metals, social risk factors, and genetics. The degree to which geographic variability in ADHD is independent of, or explained by, risk factors may provide etiological insight. We investigated determinants of geographic variation in ADHD-related behaviors among children living near the polychlorinated biphenyl-contaminated New Bedford Harbor (NBH) Superfund site in Massachusetts. Participants were 573 children recruited at birth (1993-1998) who were born to mothers residing near the NBH site. We assessed ADHD-related behaviors at age 8 years using Conners' Teacher Rating Scale-Revised: Long Version. Adjusted generalized additive models were used to smooth the association of pregnancy residence with ADHD-related behaviors and assess whether prenatal organochlorine or metal exposures, sociodemographic factors, or other factors explained spatial patterns. Models that adjusted for child's age and sex displayed significantly increased ADHD-related behavior among children whose mothers resided west of the NBH site during pregnancy. These spatial patterns persisted after adjusting for prenatal exposure to organochlorines and metals but were no longer significant after controlling for sociodemographic factors. The findings underscore the value of spatial analysis in identifying high-risk subpopulations and evaluating candidate risk factors.
Collapse
Affiliation(s)
- Verónica M. Vieira
- Correspondence to Dr. Verónica M. Vieira, Program in Public Health, University of California, Irvine, 653 East Peltason Drive, AIRB 2042, Irvine, CA 92697 (e-mail: )
| | | | | | | | | |
Collapse
|
37
|
Berg V, Nøst TH, Pettersen RD, Hansen S, Veyhe AS, Jorde R, Odland JØ, Sandanger TM. Persistent Organic Pollutants and the Association with Maternal and Infant Thyroid Homeostasis: A Multipollutant Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:127-133. [PMID: 27219111 PMCID: PMC5226691 DOI: 10.1289/ehp152] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/11/2016] [Accepted: 05/09/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Disruption of thyroid homeostasis has been indicated in human studies targeting effects of persistent organic pollutants (POPs). Influence on the maternal thyroid system by POPs is of special interest during pregnancy because such effects could impair infant thyroid homeostasis. OBJECTIVES We investigated the association between POPs and thyroid-stimulating hormone (TSH) and thyroid hormones (THs) in mother and child pairs from the Northern Norway Mother-and-Child Contaminant Cohort Study (MISA). METHODS Nineteen POPs and 10 thyroid parameters were analyzed in serum from 391 pregnant women in their second trimester. In addition, TSH concentrations in heel-prick samples from the infants were analyzed by the Norwegian Newborn Screening program. Association studies with a multipollutant approach were performed using multivariate analyses; partial least squares (PLS) regression, hierarchical clustering, and principal component analysis (PCA). RESULTS Several POPs were significantly associated with TSH and THs: a) PFOS was positively associated with TSH; b) PCBs, HCB, and nonachlors were inversely associated with T3, T4, and FT4; and, c) PFDA and PFUnDA were inversely associated with T3 and FT3. After mutual adjustments for the other contaminants, only PFDA and PFUnDA remained significantly associated with T3 and FT3, respectively. Infants born to mothers within the highest TSH quartile had 10% higher mean concentrations of TSH compared with children born to mothers in the lowest TSH quartile. CONCLUSION The present results suggest that background exposures to POPs can alter maternal thyroid homeostasis. This research contributes to the understanding of multipollutant exposures using multivariate statistical approaches and highlights the complexity of investigating environmental concentrations and mixtures in regard to maternal and infant thyroid function. Citation: Berg V, Nøst TH, Pettersen RD, Hansen S, Veyhe AS, Jorde R, Odland JØ, Sandanger TM. 2017. Persistent organic pollutants and the association with maternal and infant thyroid homeostasis: a multipollutant assessment. Environ Health Perspect 125:127-133; http://dx.doi.org/10.1289/EHP152.
Collapse
Affiliation(s)
- Vivian Berg
- Diagnostic Clinic, University Hospital of North Norway, Tromsø, Norway
- NILU–Norwegian Institute of Air Research, Fram Centre, Tromsø, Norway
- Department of Community Medicine, UIT–the Arctic University of Norway, Tromsø, Norway
| | - Therese Haugdahl Nøst
- NILU–Norwegian Institute of Air Research, Fram Centre, Tromsø, Norway
- Department of Community Medicine, UIT–the Arctic University of Norway, Tromsø, Norway
| | - Rolf Dagfinn Pettersen
- Norwegian National Unit for Newborn Screening, Women and Children’s Division, Oslo University Hospital, Oslo, Norway
| | - Solrunn Hansen
- Department of Community Medicine, UIT–the Arctic University of Norway, Tromsø, Norway
| | - Anna-Sofia Veyhe
- Department of Community Medicine, UIT–the Arctic University of Norway, Tromsø, Norway
| | - Rolf Jorde
- Institute of Clinical Medicine, UIT–the Arctic University of Norway, Tromsø, Norway
| | - Jon Øyvind Odland
- Department of Community Medicine, UIT–the Arctic University of Norway, Tromsø, Norway
- Department of Public Health, University of Pretoria, Pretoria, South Africa
| | - Torkjel Manning Sandanger
- NILU–Norwegian Institute of Air Research, Fram Centre, Tromsø, Norway
- Department of Community Medicine, UIT–the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
38
|
Kyriklaki A, Vafeiadi M, Kampouri M, Koutra K, Roumeliotaki T, Chalkiadaki G, Anousaki D, Rantakokko P, Kiviranta H, Fthenou E, Bitsios P, Kyrtopoulos SA, Kogevinas M, Chatzi L. Prenatal exposure to persistent organic pollutants in association with offspring neuropsychological development at 4years of age: The Rhea mother-child cohort, Crete, Greece. ENVIRONMENT INTERNATIONAL 2016; 97:204-211. [PMID: 27666324 DOI: 10.1016/j.envint.2016.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Persistent Organic Pollutants (POPs) are highly-resistant compounds to environmental degradation and due to fat solubility they bioaccumulate through the food chain. As they cross the placenta, in utero exposure to POPs could disrupt child neurodevelopment as they are considered to be neurotoxic. AIMS We examined whether in utero exposure to levels of different POPs is associated with offspring cognitive and behavioral outcomes at 4years of age in a mother-child cohort in Crete, Greece (Rhea study). METHODS We included 689 mother-child pairs. Concentrations of several polychlorinated biphenyls (PCBs) and other organochlorine compounds (dichlorodiphenyl dichloroethene [DDE], hexachlorobenzene [HCB]) were determined in maternal serum collected in the first trimester of pregnancy by triple quadrupole mass spectrometry. Neurodevelopment at 4years was assessed by means of the McCarthy Scales of Children's Abilities. Behavioral difficulties were assessed by Strengths and Difficulties Questionnaire and Attention Deficit Hyperactivity Disorder Test. Linear regression analyses were used to estimate the associations between the exposures and outcomes of interest after adjustment for potential confounders. RESULTS Children with "high" HCB concentrations (≥90th percentile) in maternal serum, demonstrated decreased scores in perceptual performance (adjusted β=-6.07; 95% CI: -10.17, -1.97), general cognitive (adjusted β=-4.97; 95% CI: -8.99, -0.96), executive function (adjusted β=-6.24; 95% CI: -10.36, -2.11) and working memory (adjusted β=-4.71; 95% CI: -9.05, -0.36) scales at 4years of age. High exposure to PCBs (≥90th percentile) during pregnancy was associated with a 4.62 points reduction in working memory score at 4years of age (95% CI: -9.10, -0.14). Prenatal exposure to DDE, HCB and PCBs was not associated with child behavioral difficulties. CONCLUSIONS The findings suggest that prenatal exposure to HCB and PCBs may contribute to reduced cognitive development at preschool age. Our results raise the possibility that exposure to HCB may play a more important role in child cognition than previously considered.
Collapse
Affiliation(s)
- Andriani Kyriklaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece.
| | - Mariza Kampouri
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Katerina Koutra
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Georgia Chalkiadaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Despoina Anousaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Panu Rantakokko
- Department of Health Protection, National Institute for Health and Welfare, Kuopio, Finland
| | - Hannu Kiviranta
- Department of Health Protection, National Institute for Health and Welfare, Kuopio, Finland
| | - Eleni Fthenou
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Panos Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Soterios A Kyrtopoulos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - Manolis Kogevinas
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Leda Chatzi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
39
|
Parent AS, Pinson A, Woods N, Chatzi C, Vaaga CE, Bensen A, Gérard A, Thome JP, Bourguignon JP, Westbrook GL. Early exposure to Aroclor 1254 in vivo disrupts the functional synaptic development of newborn hippocampal granule cells. Eur J Neurosci 2016; 44:3001-3010. [PMID: 27740705 DOI: 10.1111/ejn.13437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 02/05/2023]
Abstract
Neurogenesis in the dentate gyrus is sensitive to endogenous and exogenous factors that influence hippocampal function. Ongoing neurogenesis and the integration of these new neurons throughout life thus may provide a sensitive indicator of environmental stress. We examined the effects of Aroclor 1254 (A1254), a mixture of polychlorinated biphenyls (PCBs), on the development and function of newly generated dentate granule cells. Early exposure to A1254 has been associated with learning impairment in children, suggesting potential impact on the development of hippocampus and/or cortical circuits. Oral A1254 (from the 6th day of gestation to postnatal day 21) produced the expected increase in PCB levels in brain at postnatal day 21, which persisted at lower levels into adulthood. A1254 did not affect the proliferation or survival of newborn neurons in immature animals nor did it cause overt changes in neuronal morphology. However, A1254 occluded the normal developmental increase in sEPSC frequency in the third post-mitotic week without altering the average sEPSC amplitude. Our results suggest that early exposure to PCBs can disrupt excitatory synaptic function during a period of active synaptogenesis, and thus could contribute to the cognitive effects noted in children exposed to PCBs.
Collapse
Affiliation(s)
- A S Parent
- Neuroendocrinology Unit, GIGA-N, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
| | - A Pinson
- Neuroendocrinology Unit, GIGA-N, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
| | - N Woods
- Vollum Institute, Portland, OR, USA
| | - C Chatzi
- Vollum Institute, Portland, OR, USA
| | | | - A Bensen
- Vollum Institute, Portland, OR, USA
| | - A Gérard
- Neuroendocrinology Unit, GIGA-N, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
| | - J P Thome
- Laboratory of Animal Ecology and Ecotoxicology, University of Liège, Liège, Belgium
| | - J P Bourguignon
- Neuroendocrinology Unit, GIGA-N, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
| | | |
Collapse
|
40
|
Distelhorst L, Bieda A, DiMarco M, Tullai-McGuinness S. Assessing Pediatric Nurses' Knowledge About Chemical Flame Retardants. J Pediatr Nurs 2016; 31:e333-e341. [PMID: 27425788 DOI: 10.1016/j.pedn.2016.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 11/28/2022]
Abstract
UNLABELLED Chemical flame retardants are routinely applied to children's products and are harmful to their health. Pediatric nurses are in a key position to provide education to caregivers on methods to decrease their children's exposure to these harmful chemicals. However, a critical barrier is the absence of any program to educate nurses about chemical flame retardants. In order to overcome this barrier, we must first assess their knowledge. This article provides key highlights every pediatric nurse should know about chemical flame retardants and reports the results of a knowledge assessment study. PURPOSE The purpose of this study was to (1) assess pediatric nurses' knowledge of chemical flame retardants, (2) determine what topic areas of chemical flame retardants pediatric nurses lack knowledge in, and (3) determine the best method to educate nurses about chemical flame retardants. DESIGN AND METHODS A single sample cross-sectional questionnaire design was used. A total sample of 417 advanced practice registered nurses and registered nurses completed an online survey about chemical flame retardants. RESULTS Pediatric nurses' knowledge of chemical flame retardants was low (M=13.4 out of 51). Articles, webinars, and e-mails were the primary preferred methods for education on the subject identified as a result of the survey. CONCLUSIONS Pediatric nurses have a large knowledge deficit related to chemical flame retardants. The data collected from this study will help structure future educational formats for pediatric nurses on chemical flame retardants to increase their knowledge.
Collapse
Affiliation(s)
- Laura Distelhorst
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH.
| | - Amy Bieda
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH
| | - Marguerite DiMarco
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
41
|
Hui LL, Lam HS, Lau EYY, Nelson EAS, Wong TW, Fielding R. Prenatal dioxin exposure and neurocognitive development in Hong Kong 11-year-old children. ENVIRONMENTAL RESEARCH 2016; 150:205-212. [PMID: 27295410 DOI: 10.1016/j.envres.2016.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVES In utero exposure to dioxins and related compounds have been associated with adverse neurocognitive development in infants. It is unclear whether neurodevelopmental deficits persist to childhood. We assessed the association of prenatal dioxin exposure with neurocognitive function in 11-year-old children, and to test whether the association is modified by duration of breastfeeding. METHODS In this prospective study of 161 children born in Hong Kong in 2002, prenatal dioxin exposure was proxied by the dioxin toxicity equivalence (TEQ) in breast milk collected during the early postnatal period as determined by the Chemical-Activated LUciferase gene eXpression (CALUX) bioassay. We used multivariate linear regression analyses to assess the association of prenatal dioxin exposure with the performance on the Wechsler Intelligence Scale for Children-IV, Hong Kong, the Hong Kong List Learning Test, the Tests for Everyday Attention for Children and the Grooved Pegboard Test, adjusting for child's sex, mother's place of birth, mother's habitual seafood consumption, mother's age at delivery and socioeconomic position. RESULTS Measures of neurocognitive and intellectual function, including full-scale IQ, fine motor coordination, verbal and non-verbal reasoning, learning ability and attention at 11 years old did not show significant variations with prenatal dioxin exposures (proxied by CALUX-TEQ total dioxin load in early breast milk). None of these associations varied by breastfeeding duration or sex. CONCLUSIONS Neurocongitive function, as measured with psychological tests, in 11-year-old children was not associated with prenatal dioxin exposure to background levels of dioxins in the 2000s in Hong Kong.
Collapse
Affiliation(s)
- Lai Ling Hui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Hugh Simon Lam
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Esther Yuet Ying Lau
- Department of Psychological Studies, The Education University of Hong Kong, Hong Kong Special Administrative Region; Centre for Psychosocial Health, The Education University of Hong Kong, Hong Kong Special Administrative Region; Department of Psychiatry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Edmund Anthony Severn Nelson
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Tze Wai Wong
- School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Richard Fielding
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
42
|
Bradley RH, Corwyn RF. Caring for children around the world: A view from HOME. INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT 2016. [DOI: 10.1177/01650250500146925] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This review examines cultural and socioeconomic variations in parenting as represented by the original and adapted versions of the HOME Inventory. There was specific focus on three aspects of the family environment where cultural models of parenting and access to resources are thought to be operative and for which there is evidence of impact on child well-being: parental responsiveness, discipline practices, and exposure to stimulating materials and experiences. Findings revealed meaningful impacts of culture and SES in all three areas. Not only did mean differences emerge across countries but different alliances between indicators, presumably representing the same parenting construct, also emerged. The review also revealed a tendency for researchers to modify the HOME consistent with local beliefs and practices concerning what children need, what families need, and the role of parents in fostering particular aspects of development. Despite differences in cultural models of parenting around the world, the studies showed rather consistent relations between exposure to stimulation and parental responsiveness and children's adaptive functioning. Associations with physical punishment were somewhat less clear.
Collapse
|
43
|
Pinson A, Bourguignon JP, Parent AS. Exposure to endocrine disrupting chemicals and neurodevelopmental alterations. Andrology 2016; 4:706-22. [PMID: 27285165 DOI: 10.1111/andr.12211] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 01/24/2023]
Abstract
The developing brain is remarkably malleable as neural circuits are formed and these circuits are strongly dependent on hormones for their development. For those reasons, the brain is very vulnerable to the effects of endocrine-disrupting chemicals (EDCs) during critical periods of development. This review focuses on three ubiquitous endocrine disruptors that are known to disrupt the thyroid function and are associated with neurobehavioral deficits: polychlorinated biphenyls, polybrominated diphenyl ethers, and bisphenol A. The human and rodent data suggesting effects of those EDCs on memory, cognition, and social behavior are discussed. Their mechanisms of action go beyond relative hypothyroidism with effects on neurotransmitter release and calcium signaling.
Collapse
Affiliation(s)
- A Pinson
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| | - J P Bourguignon
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| | - A S Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| |
Collapse
|
44
|
Rebuli ME, Patisaul HB. Assessment of sex specific endocrine disrupting effects in the prenatal and pre-pubertal rodent brain. J Steroid Biochem Mol Biol 2016; 160:148-59. [PMID: 26307491 PMCID: PMC4762757 DOI: 10.1016/j.jsbmb.2015.08.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/16/2015] [Accepted: 08/19/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Brain sex differences are found in nearly every region of the brain and fundamental to sexually dimorphic behaviors as well as disorders of the brain and behavior. These differences are organized during gestation and early adolescence and detectable prior to puberty. Endocrine disrupting compounds (EDCs) interfere with hormone action and are thus prenatal exposure is hypothesized to disrupt the formation of sex differences, and contribute to the increased prevalence of pediatric neuropsychiatric disorders that present with a sex bias. OBJECTIVE Available evidence for the ability of EDCs to impact the emergence of brain sex differences in the rodent brain was reviewed here, with a focus on effects detected at or before puberty. METHODS The peer-reviewed literature was searched using PubMed, and all relevant papers published by January 31, 2015 were incorporated. Endpoints of interest included molecular cellular and neuroanatomical effects. Studies on behavioral endpoints were not included because numerous reviews of that literature are available. RESULTS The hypothalamus was found to be particularly affected by estrogenic EDCs in a sex, time, and exposure dependent manner. The hippocampus also appears vulnerable to endocrine disruption by BPA and PCBs although there is little evidence from the pre-pubertal literature to make any conclusions about sex-specific effects. Gestational EDC exposure can alter fetal neurogenesis and gene expression throughout the brain including the cortex and cerebellum. The available literature primarily focuses on a few, well characterized EDCs, but little data is available for emerging contaminants. CONCLUSION The developmental EDC exposure literature demonstrates evidence of altered neurodevelopment as early as fetal life, with sex specific effects observed throughout the brain even before puberty.
Collapse
Affiliation(s)
- Meghan E Rebuli
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, United States; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, United States
| | - Heather B Patisaul
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, United States; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
45
|
Bell MR, Thompson LM, Rodriguez K, Gore AC. Two-hit exposure to polychlorinated biphenyls at gestational and juvenile life stages: 1. Sexually dimorphic effects on social and anxiety-like behaviors. Horm Behav 2016; 78:168-77. [PMID: 26592453 PMCID: PMC4718783 DOI: 10.1016/j.yhbeh.2015.11.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/09/2015] [Accepted: 11/20/2015] [Indexed: 11/17/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are widespread environmental contaminants that affect many neuroendocrine functions. The brain is particularly vulnerable to EDCs during critical periods of gestational development when gonadal hormones exert organizational effects on sexually dimorphic behaviors later in life. Peripubertal development is also a time of continued neural sensitivity to organizing effects of hormones, yet little is known about EDC actions at these times. We sought to determine effects of prenatal or juvenile exposures to a class of EDCs, polychlorinated biphenyls (PCBs) at human-relevant dosages on development, physiology, and social and anxiety-related behaviors later in life, and the consequences of a second juvenile "hit" following prenatal treatment. We exposed male and female Sprague-Dawley rats to PCBs (Aroclor 1221, 1mg/kg/day, ip injection) and/or vehicle during prenatal development (embryonic days 16, 18, 20), juvenile development (postnatal days 24, 26, 28), or both. These exposures had differential effects on behaviors in sex and age-dependent ways; while prenatal exposure had more effects than juvenile, juvenile exposure often modified or unmasked the effects of the first hit. Additionally, females exhibited altered social and anxiety behavior in adolescence, while males displayed small but significant changes in sociosexual preferences in adulthood. Thus, the brain continues to be sensitive to organizing effects of EDCs through juvenile development. As humans are exposed to EDCs throughout multiple periods in their life, these findings have implications for our understanding of EDC effects on physiology and behavior.
Collapse
Affiliation(s)
- Margaret R Bell
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Karla Rodriguez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Franklin College, Franklin, IN 46131, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
46
|
Gonzalez ST, Remick D, Creton R, Colwill RM. Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on anxiety-related behaviors in larval zebrafish. Neurotoxicology 2015; 53:93-101. [PMID: 26748073 DOI: 10.1016/j.neuro.2015.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 12/14/2022]
Abstract
The zebrafish (Danio rerio) is an excellent model system for assessing the effects of toxicant exposure on behavior and neurodevelopment. In the present study, we examined the effects of sub-chronic embryonic exposure to polychlorinated biphenyls (PCBs), a ubiquitous anthropogenic pollutant, on anxiety-related behaviors. We found that exposure to the PCB mixture, Aroclor (A) 1254, from 2 to 26h post-fertilization (hpf) induced two statistically significant behavioral defects in larvae at 7 days post-fertilization (dpf). First, during 135min of free swimming, larvae that had been exposed to 2ppm, 5ppm or 10ppm A1254 exhibited enhanced thigmotaxis (edge preference) relative to control larvae. Second, during the immediately ensuing 15-min visual startle assay, the 5ppm and 10ppm PCB-exposed larvae reacted differently to a visual threat, a red 'bouncing' disk, relative to control larvae. These results are consistent with the anxiogenic and attention-disrupting effects of PCB exposure documented in children, monkeys and rodents and merit further investigation.
Collapse
Affiliation(s)
- Sarah T Gonzalez
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States
| | - Dylan Remick
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Ruth M Colwill
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States.
| |
Collapse
|
47
|
Glazer L, Hahn ME, Aluru N. Delayed effects of developmental exposure to low levels of the aryl hydrocarbon receptor agonist 3,3',4,4',5-pentachlorobiphenyl (PCB126) on adult zebrafish behavior. Neurotoxicology 2015; 52:134-43. [PMID: 26616910 DOI: 10.1016/j.neuro.2015.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants. The most toxic PCBs are the non-ortho-substituted ("dioxin-like") congeners that act through the aryl hydrocarbon receptor (AHR) pathway. In humans, perinatal exposure to dioxin-like PCBs is associated with neurodevelopmental toxicity in children. Yet, the full potential for later-life neurobehavioral effects that result from early-life low level exposure to dioxin-like PCBs is not well understood. The objective of this study was to determine the effects of developmental exposure to low levels of dioxin-like PCBs on early- and later-life behavioral phenotypes using zebrafish as a model system. We exposed zebrafish embryos to either vehicle (DMSO) or low concentrations of PCB126 (0.3, 0.6, 1.2nM) for 20h (4-24h post fertilization), and then reared them to adulthood in clean water. Locomotor activity was tested at two larval stages (7 and 14 days post fertilization). Adult fish were tested for anxiety-related behavior using the novel tank and shoaling assays. Adult behavioral assays were repeated several times on the same group of fish and effects on intra- and inter-trial habituation were determined. While there was no effect of PCB126 on larval locomotor activity in response to changes in light conditions, developmental exposure to PCB126 resulted in impaired short- and long-term habituation to a novel environment in adult zebrafish. Cyp1a induction was measured as an indicator for AHR activation. Despite high induction at early stages, cyp1a expression was not induced in the brains of developmentally exposed adult fish that showed altered behavior, suggesting that AHR was not activated at this stage. Our results demonstrate the effectiveness of the zebrafish model in detecting subtle and delayed behavioral effects resulting from developmental exposure to an environmental contaminant.
Collapse
Affiliation(s)
- Lilah Glazer
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Mark E Hahn
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Neelakanteswar Aluru
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| |
Collapse
|
48
|
Šovčíková E, Wimmerová S, Strémy M, Kotianová J, Loffredo CA, Murínová ĽP, Chovancová J, Čonka K, Lancz K, Trnovec T. Simple reaction time in 8-9-year old children environmentally exposed to PCBs. Neurotoxicology 2015; 51:138-44. [PMID: 26480857 DOI: 10.1016/j.neuro.2015.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Simple reaction time (SRT) has been studied in children exposed to polychlorinated biphenyls (PCBs), with variable results. In the current work we examined SRT in 146 boys and 161 girls, aged 8.53 ± 0.65 years (mean ± SD), exposed to PCBs in the environment of eastern Slovakia. We divided the children into tertiles with regard to increasing PCB serum concentration. The mean ± SEM serum concentration of the sum of 15 PCB congeners was 191.15 ± 5.39, 419.23 ± 8.47, and 1315.12 ± 92.57 ng/g lipids in children of the first, second, and third tertiles, respectively. We created probability distribution plots for each child from their multiple trials of the SRT testing. We fitted response time distributions from all valid trials with the ex-Gaussian function, a convolution of a normal and an additional exponential function, providing estimates of three independent parameters μ, σ, and τ. μ is the mean of the normal component, σ is the standard deviation of the normal component, and τ is the mean of the exponential component. Group response time distributions were calculated using the Vincent averaging technique. A Q-Q plot comparing probability distribution of the first vs. third tertile indicated that deviation of the quantiles of the latter tertile from those of the former begins at the 40th percentile and does not show a positive acceleration. This was confirmed in comparison of the ex-Gaussian parameters of these two tertiles adjusted for sex, age, Raven IQ of the child, mother's and father's education, behavior at home and school, and BMI: the results showed that the parameters μ and τ significantly (p ≤ 0.05) increased with PCB exposure. Similar increases of the ex-Gaussian parameter τ in children suffering from ADHD have been previously reported and interpreted as intermittent attentional lapses, but were not seen in our cohort. Our study has confirmed that environmental exposure of children to PCBs is associated with prolongation of simple reaction time reflecting impairment of cognitive functions.
Collapse
Affiliation(s)
- Eva Šovčíková
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Soňa Wimmerová
- Institute of Biophysics, Informatics and Biostatistics, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Maximilián Strémy
- Research Centre of Progressive Technologies, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Hajdóczyho 1, 91724 Trnava, Slovakia
| | - Janette Kotianová
- Institute of Applied Informatics, Automatization and Mechatronics, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Hajdóczyho 1, 91724 Trnava, Slovakia
| | - Christopher A Loffredo
- Department of Oncology & Department of Biostatistics, Georgetown University, Washington, DC 20057, USA
| | | | - Jana Chovancová
- Department of Toxic Organic Pollutants, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Kamil Čonka
- Department of Toxic Organic Pollutants, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Kinga Lancz
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Tomáš Trnovec
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia.
| |
Collapse
|
49
|
Dzwilewski KLC, Schantz SL. Prenatal chemical exposures and child language development. JOURNAL OF COMMUNICATION DISORDERS 2015; 57:41-65. [PMID: 26255253 PMCID: PMC4548902 DOI: 10.1016/j.jcomdis.2015.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 07/10/2015] [Accepted: 07/16/2015] [Indexed: 05/09/2023]
Abstract
UNLABELLED The goal of this review is to summarize the evidence that prenatal and/or early postnatal exposure to certain chemicals, both manmade (insulating materials, flame retardants, pesticides) and naturally occurring (e.g., lead, mercury), may be associated with delays or impairments in language development. We focus primarily on a subset of more extensively studied chemicals-polychlorinated biphenyls (PCBs), lead, and methyl mercury-for which a reasonable body of literature on neurodevelopmental outcomes is available. We also briefly summarize the smaller body of evidence for other chemicals including polybrominated diphenyl ether flame retardants (PBDEs) and organophosphate pesticides. Very few studies have used specific assessments of language development and function. Therefore, we included discussion of aspects of cognitive development such as overall intellectual functioning and verbal abilities that rely on language, as well as aspects of cognition such as verbal and auditory working memory that are critical underpinnings of language development. A high percentage of prospective birth cohort studies of PCBs, lead, and mercury have reported exposure-related reductions in overall IQ and/or verbal IQ that persist into middle or late childhood. Given these findings, it is important that clinicians and researchers in communication sciences and disorders are aware of the potential for environmental chemicals to impact language development. LEARNING OUTCOMES The goal of this review is to summarize the evidence that prenatal and/or early postnatal exposure to certain chemicals may be associated with delays or impairments in language development. Readers will gain an understanding of the literature suggesting that early exposure to polychlorinated biphenyls (PCBs), lead, and mercury may be associated with decrements in cognitive domains that depend on language or are critical for language development. We also briefly summarize the smaller body of evidence regarding polybrominated diphenyl ether flame retardants (PBDEs) and organophosphate pesticides. Very few studies of exposure to these chemicals have used specific assessments of language development; thus, further investigation is needed before changes in clinical practice can be suggested.
Collapse
Affiliation(s)
- Kelsey L C Dzwilewski
- University of Illinois at Urbana-Champaign, Neuroscience Program, 405 North Mathews Avenue, Urbana, IL 61801, USA.
| | - Susan L Schantz
- University of Illinois at Urbana-Champaign, Department of Comparative Biosciences, 2001 South Lincoln Avenue, Urbana, IL 61802, USA.
| |
Collapse
|
50
|
Høyer BB, Ramlau-Hansen CH, Pedersen HS, Góralczyk K, Chumak L, Jönsson BA, Bonde JP, Toft G. Motor development following in utero exposure to organochlorines: a follow-up study of children aged 5-9 years in Greenland, Ukraine and Poland. BMC Public Health 2015; 15:146. [PMID: 25885170 PMCID: PMC4332728 DOI: 10.1186/s12889-015-1465-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 01/26/2015] [Indexed: 11/30/2022] Open
Abstract
Background Prior studies on the association between prenatal exposure to polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE) and child motor development have found contradicting results. Using data collected in the INUENDO cohort in Kharkiv (Ukraine), Warsaw (Poland) and Greenland (N = 1,103) between the years 2002 and 2012, we examined relations of prenatal exposure to 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p′-DDE) and 2,2′,4,4′,5,5′-hexachlorobiphenyl (CB-153) on motor development and developmental milestones; crawling, standing-up and walking. Methods CB-153 and p,p′-DDE were measured in maternal blood in second or third trimester of pregnancy. Motor development was measured in terms of the parentally assessed screening tool Developmental Coordination Disorder Questionnaire 2007 and developmental milestones were assessed via retrospective parental reports of child age at the first time of crawling, standing-up and walking. Results We saw no associations between tertiles of CB-153 and p,p′-DDE or log-transformed exposures and retrospective reports of the developmental milestones crawling, standing-up and walking in infancy or the motor skills measured as developmental coordination disorder at young school age. Conclusions In utero exposure to CB-153 and p,p′-DDE was not associated with parentally retrospectively assessed developmental milestones in infancy or parentally assessed motor skills at young school age. The use of a more sensitive outcome measure may be warranted if subtle effects should be identified. Electronic supplementary material The online version of this article (doi:10.1186/s12889-015-1465-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Birgit Bjerre Høyer
- Danish Ramazzini Centre, Department of Occupational Medicine, Aarhus University Hospital, Nørrebrogade 44, build. 2c, 8000, Aarhus C, Denmark.
| | - Cecilia Høst Ramlau-Hansen
- Department of Public Health, Section for Epidemiology, Aarhus University, Bartholins Allé 2, 8000, Aarhus C, Denmark.
| | | | - Katarzyna Góralczyk
- Department of Toxicology and Risk Assessment, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland.
| | - Lyubov Chumak
- Department of Social Medicine and Organization of Public Health, Kharkiv National Medical University, 61022, Kharkiv, Ukraine.
| | - Bo Ag Jönsson
- Division of Occupational and Environmental Medicine, Lund University, S-221 85, Lund, Sweden.
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital, Bispebjerg Bakke 23, 2400, Copenhagen NV, Denmark.
| | - Gunnar Toft
- Danish Ramazzini Centre, Department of Occupational Medicine, Aarhus University Hospital, Nørrebrogade 44, build. 2c, 8000, Aarhus C, Denmark.
| |
Collapse
|