1
|
Wang J, Yan D, Liu R, Wang T, Lian Y, Lu Z, Hong Y, Wang Y, Li R. The Physiological and Molecular Mechanisms of Exogenous Melatonin Promote the Seed Germination of Maize ( Zea mays L.) under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2142. [PMID: 39124260 PMCID: PMC11313997 DOI: 10.3390/plants13152142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Salt stress caused by high concentrations of Na+ and Cl- in soil is one of the most important abiotic stresses in agricultural production, which seriously affects grain yield. The alleviation of salt stress through the application of exogenous substances is important for grain production. Melatonin (MT, N-acetyl-5-methoxytryptamine) is an indole-like small molecule that can effectively alleviate the damage caused by adversity stress on crops. Current studies have mainly focused on the effects of MT on the physiology and biochemistry of crops at the seedling stage, with fewer studies on the gene regulatory mechanisms of crops at the germination stage. The aim of this study was to explain the mechanism of MT-induced salt tolerance at physiological, biochemical, and molecular levels and to provide a theoretical basis for the resolution of MT-mediated regulatory mechanisms of plant adaptation to salt stress. In this study, we investigated the germination, physiology, and transcript levels of maize seeds, analyzed the relevant differentially expressed genes (DEGs), and examined salt tolerance-related pathways. The results showed that MT could increase the seed germination rate by 14.28-19.04%, improve seed antioxidant enzyme activities (average increase of 11.61%), and reduce reactive oxygen species accumulation and membrane oxidative damage. In addition, MT was involved in regulating the changes of endogenous hormones during the germination of maize seeds under salt stress. Transcriptome results showed that MT affected the activity of antioxidant enzymes, response to stress, and seed germination-related genes in maize seeds under salt stress and regulated the expression of genes related to starch and sucrose metabolism and phytohormone signal transduction pathways. Taken together, the results indicate that exogenous MT can affect the expression of stress response-related genes in salt-stressed maize seeds, enhance the antioxidant capacity of the seeds, reduce the damage induced by salt stress, and thus promote the germination of maize seeds under salt stress. The results provide a theoretical basis for the MT-mediated regulatory mechanism of plant adaptation to salt stress and screen potential candidate genes for molecular breeding of salt-tolerant maize.
Collapse
Affiliation(s)
- Jiajie Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Di Yan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Rui Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Ting Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Yijia Lian
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Zhenzong Lu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Yue Hong
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Ye Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Runzhi Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| |
Collapse
|
2
|
Ma P, Li J, Sun G, Zhu J. Comparative transcriptome analysis reveals the adaptive mechanisms of halophyte Suaeda dendroides encountering high saline environment. FRONTIERS IN PLANT SCIENCE 2024; 15:1283912. [PMID: 38419781 PMCID: PMC10899697 DOI: 10.3389/fpls.2024.1283912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Suaeda dendroides, a succulent euhalophyte of the Chenopodiaceae family, intermittently spread around northern Xinjiang, China, has the ability to grow and develop in saline and alkali environments. The objective of this study was therefore to investigate the underlying molecular mechanisms of S. dendroides response to high salt conditions. 27 sequencing libraries prepared from low salt (200 mM NaCl) and high salt (800 mM NaCl) treated plants at 5 different stages were sequenced using Illumina Hiseq 2000. A total of 133,107 unigenes were obtained, of which 4,758 were DEGs. The number of DEGs in the high salt group (3,189) was more than the low salt treatment group (733) compared with the control. GO and KEGG analysis of the DEGs at different time points of the high salt treatment group showed that the genes related to cell wall biosynthesis and modification, plant hormone signal transduction, ion homeostasis, organic osmolyte accumulation, and reactive oxygen species (ROS) detoxification were significantly expressed, which indicated that these could be the main mechanisms of S. dendroides acclimate to high salt stress. The study provides a new perspective for understanding the molecular mechanisms of halophytes adapting to high salinity. It also provides a basis for future investigations of key salt-responsive genes in S. dendroides.
Collapse
Affiliation(s)
- Panpan Ma
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jilian Li
- Key Laboratory of Cotton Biology and Genetic Breeding in Northwest Inland Region of the Ministry of Agriculture (Xinjiang), Institute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
3
|
Mann A, Lata C, Kumar N, Kumar A, Kumar A, Sheoran P. Halophytes as new model plant species for salt tolerance strategies. FRONTIERS IN PLANT SCIENCE 2023; 14:1137211. [PMID: 37251767 PMCID: PMC10211249 DOI: 10.3389/fpls.2023.1137211] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Soil salinity is becoming a growing issue nowadays, severely affecting the world's most productive agricultural landscapes. With intersecting and competitive challenges of shrinking agricultural lands and increasing demand for food, there is an emerging need to build resilience for adaptation to anticipated climate change and land degradation. This necessitates the deep decoding of a gene pool of crop plant wild relatives which can be accomplished through salt-tolerant species, such as halophytes, in order to reveal the underlying regulatory mechanisms. Halophytes are generally defined as plants able to survive and complete their life cycle in highly saline environments of at least 200-500 mM of salt solution. The primary criterion for identifying salt-tolerant grasses (STGs) includes the presence of salt glands on the leaf surface and the Na+ exclusion mechanism since the interaction and replacement of Na+ and K+ greatly determines the survivability of STGs in saline environments. During the last decades or so, various salt-tolerant grasses/halophytes have been explored for the mining of salt-tolerant genes and testing their efficacy to improve the limit of salt tolerance in crop plants. Still, the utility of halophytes is limited due to the non-availability of any model halophytic plant system as well as the lack of complete genomic information. To date, although Arabidopsis (Arabidopsis thaliana) and salt cress (Thellungiella halophila) are being used as model plants in most salt tolerance studies, these plants are short-lived and can tolerate salinity for a shorter duration only. Thus, identifying the unique genes for salt tolerance pathways in halophytes and their introgression in a related cereal genome for better tolerance to salinity is the need of the hour. Modern technologies including RNA sequencing and genome-wide mapping along with advanced bioinformatics programs have advanced the decoding of the whole genetic information of plants and the development of probable algorithms to correlate stress tolerance limit and yield potential. Hence, this article has been compiled to explore the naturally occurring halophytes as potential model plant species for abiotic stress tolerance and to further breed crop plants to enhance salt tolerance through genomic and molecular tools.
Collapse
Affiliation(s)
- Anita Mann
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Charu Lata
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pardesh, India
| | - Naresh Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- Department of Biochemistry, Eternal University, Baru Sahib, Himachal Pardesh, Ludhiana, India
| | - Ashwani Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Arvind Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Parvender Sheoran
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Agriculture Technology Application Research Center, Ludhiana, India
| |
Collapse
|
4
|
Ben Hsouna A, Michalak M, Kukula-Koch W, Ben Saad R, ben Romdhane W, Zeljković SĆ, Mnif W. Evaluation of Halophyte Biopotential as an Unused Natural Resource: The Case of Lobularia maritima. Biomolecules 2022; 12:1583. [PMID: 36358933 PMCID: PMC9687265 DOI: 10.3390/biom12111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/15/2023] Open
Abstract
Halophytes are plant species widely distributed in saline habitats, such as beaches, postindustrial wastelands, irrigated lands, salt flats, and others. Excessive salt level, known to limit plant growth, is not harmful to halophytes, which have developed a variety of defense mechanisms allowing them to colonize harsh environments. Plants under stress are known to respond with several morpho-anatomical adaptations, but also to enhance the production of secondary metabolites to better cope with difficult conditions. Owing to these adaptations, halophytes are an interesting group of undemanding plants with a high potential for application in the food and pharmaceutical industries. Therefore, this review aims to present the characteristics of halophytes, describe changes in their gene expression, and discuss their synthesized metabolites of pharmacognostic and pharmacological significance. Lobularia maritima is characterized as a widely spread halophyte that has been shown to exhibit various pharmacological properties in vitro and in vivo. It is concluded that halophytes may become important sources of natural products for the treatment of various ailments and for supplementing the human diet with necessary non-nutrients and minerals. However, extensive studies are needed to deepen the knowledge of their biological potential in vivo, so that they can be introduced to the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir-Tunisia, Monastir 5000, Tunisia
| | - Monika Michalak
- Collegium Medicum, Jan Kochanowski University, IX WiekówKielc 19, 35-317 Kielce, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
| | - Walid ben Romdhane
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha 61922, Saudi Arabia
- ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia
| |
Collapse
|
5
|
Yu W, Wu W, Zhang N, Wang L, Wang Y, Wang B, Lan Q, Wang Y. Research Advances on Molecular Mechanism of Salt Tolerance in Suaeda. BIOLOGY 2022; 11:biology11091273. [PMID: 36138752 PMCID: PMC9495733 DOI: 10.3390/biology11091273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
Plant growth and development are inevitably affected by various environmental factors. High salinity is the main factor leading to the reduction of cultivated land area, which seriously affects the growth and yield of plants. The genus Suaeda is a kind of euhalophyte herb, with seedlings that grow rapidly in moderately saline environments and can even survive in conditions of extreme salinity. Its fresh branches can be used as vegetables and the seed oil is rich in unsaturated fatty acids, which has important economic value and usually grows in a saline environment. This paper reviews the progress of research in recent years into the salt tolerance of several Suaeda species (for example, S. salsa, S. japonica, S. glauca, S. corniculata), focusing on ion regulation and compartmentation, osmotic regulation of organic solutes, antioxidant regulation, plant hormones, photosynthetic systems, and omics (transcriptomics, proteomics, and metabolomics). It helps us to understand the salt tolerance mechanism of the genus Suaeda, and provides a theoretical foundation for effectively improving crop resistance to salt stress environments.
Collapse
Affiliation(s)
- Wancong Yu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Wenwen Wu
- Department of Agronomy, Tianjin Agricultural University, Tianjin 300392, China
| | - Nan Zhang
- Department of Agronomy, Tianjin Agricultural University, Tianjin 300392, China
| | - Luping Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Yiheng Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Bo Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Qingkuo Lan
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
- Correspondence: (Q.L.); (Y.W.)
| | - Yong Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
- Correspondence: (Q.L.); (Y.W.)
| |
Collapse
|
6
|
Asghar N, Hameed M, Ahmad MSA. Ion homeostasis in differently adapted populations of Suaeda vera Forssk. ex J.F. Gmel. for phytoremediation of hypersaline soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:47-65. [PMID: 35382667 DOI: 10.1080/15226514.2022.2056134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Salt-accumulator species are of great interest for the phytoremediation of salt-affected soils to reclaim soil salinization, a major constraints causing germination retardation and growth restriction of plants as well as habitat degradation. Higher biomass production at ECe 23-36 dS m-1 indicated that this species grows better in high to moderate salinity that was linked to osmotic adjustment through higher ion accumulation (Na+, Cl‒, and Ca2+) and organic osmolytes (free amino acids and proline). Plants from highly and moderately saline habitats exhibited broader metaxylem vessels, which was associated with eased conduction of solutes leading to better growth. Leaf anatomical characteristics generally increased with increasing salinity except at the highest ECe 55 dS m-1. The increased leaf lamina thickness contributed to succulence because of increased storage parenchymatous spongy tissues (that can store high amounts of water), water contents and it is a reflection of maintaining ion homeostasis and colonizing hyper-saline soil. Reduced stomatal density and area under high salinity are critical to cope with environmental hazards. Under high salinity, compartmentalization of excessive Na+ and Cl- ions and accumulation of compatible osmolytes are directly related to high degree of salinity tolerance, and hence are useful for phyto-amelioration of salinity-impacted lands.
Collapse
Affiliation(s)
- Naila Asghar
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Mansoor Hameed
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
7
|
Li J, Liu Y, Zhang M, Xu H, Ning K, Wang B, Chen M. Melatonin increases growth and salt tolerance of Limonium bicolor by improving photosynthetic and antioxidant capacity. BMC PLANT BIOLOGY 2022; 22:16. [PMID: 34983373 PMCID: PMC8725383 DOI: 10.1186/s12870-021-03402-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/10/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Soil salinization is becoming an increasingly serious problem worldwide, resulting in cultivated land loss and desertification, as well as having a serious impact on agriculture and the economy. The indoleamine melatonin (N-acetyl-5-methoxytryptamine) has a wide array of biological roles in plants, including acting as an auxin analog and an antioxidant. Previous studies have shown that exogenous melatonin application alleviates the salt-induced growth inhibition in non-halophyte plants; however, to our knowledge, melatonin effects have not been examined on halophytes, and it is unclear whether melatonin provides similar protection to salt-exposed halophytic plants. RESULTS We exposed the halophyte Limonium bicolor to salt stress (300 mM) and concomitantly treated the plants with 5 μM melatonin to examine the effect of melatonin on salt tolerance. Exogenous melatonin treatment promoted the growth of L. bicolor under salt stress, as reflected by increasing its fresh weight and leaf area. This increased growth was caused by an increase in net photosynthetic rate and water use efficiency. Treatment of salt-stressed L. bicolor seedlings with 5 μM melatonin also enhanced the activities of antioxidants (superoxide dismutase [SOD], peroxidase [POD], catalase [CAT], and ascorbate peroxidase [APX]), while significantly decreasing the contents of hydrogen peroxide (H2O2), superoxide anion (O2•-), and malondialdehyde (MDA). To screen for L. bicolor genes involved in the above physiological processes, high-throughput RNA sequencing was conducted. A gene ontology enrichment analysis indicated that genes related to photosynthesis, reactive oxygen species scavenging, the auxin-dependent signaling pathway and mitogen-activated protein kinase (MAPK) were highly expressed under melatonin treatment. These data indicated that melatonin improved photosynthesis, decreased reactive oxygen species (ROS) and activated MAPK-mediated antioxidant responses, triggering a downstream MAPK cascade that upregulated the expression of antioxidant-related genes. Thus, melatonin improves the salt tolerance of L. bicolor by increasing photosynthesis and improving cellular redox homeostasis under salt stress. CONCLUSIONS Our results showed that melatonin can upregulate the expression of genes related to photosynthesis, reactive oxygen species scavenging and mitogen-activated protein kinase (MAPK) of L. bicolor under salt stress, which can improve photosynthesis and antioxidant enzyme activities. Thus melatonin can promote the growth of the species and maintain the homeostasis of reactive oxygen species to alleviate salt stress.
Collapse
Affiliation(s)
- Junpeng Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China
| | - Yun Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China
| | - Mingjing Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China
| | - Hualing Xu
- DongYing Academy of Agricultural Sciences, Dongying, Shandong, 257000, People's Republic of China
| | - Kai Ning
- DongYing Academy of Agricultural Sciences, Dongying, Shandong, 257000, People's Republic of China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|
8
|
Guo J, Shan C, Zhang Y, Wang X, Tian H, Han G, Zhang Y, Wang B. Mechanisms of Salt Tolerance and Molecular Breeding of Salt-Tolerant Ornamental Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:854116. [PMID: 35574092 PMCID: PMC9093713 DOI: 10.3389/fpls.2022.854116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/30/2022] [Indexed: 05/10/2023]
Abstract
As the area of salinized soils increases, and freshwater becomes more scarcer worldwide, an urgent measure for agricultural production is to use salinized land and conserve freshwater resources. Ornamental flowering plants, such as carnations, roses, chrysanthemums, and gerberas, are found around the world and have high economic, ornamental, ecological, and edible value. It is therefore prudent to improve the salt tolerance of these important horticultural crops. Here, we summarize the salt-adaptive mechanisms, genes, and molecular breeding of ornamental flowering crops. We also review the genome editing technologies that provide us with the means to obtain novel varieties with high salinity tolerance and improved utility value, and discuss future directions of research into ornamental plants like salt exclusion mechanism. We considered that the salt exclusion mechanism in ornamental flowering plants, the acquisition of flowers with high quality and novel color under salinity condition through gene editing techniques should be focused on for the future research.
Collapse
Affiliation(s)
- Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
- *Correspondence: Jianrong Guo,
| | - Changdan Shan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Yifan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Xinlei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Huaying Tian
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Ji’nan, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
- Baoshan Wang,
| |
Collapse
|
9
|
Barros NLF, Marques DN, Tadaiesky LBA, de Souza CRB. Halophytes and other molecular strategies for the generation of salt-tolerant crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:581-591. [PMID: 33773233 DOI: 10.1016/j.plaphy.2021.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/13/2021] [Indexed: 05/27/2023]
Abstract
The current increase in salinity can intensify the disparity between potential and actual crop yields, thus affecting economies and food security. One of the mitigating alternatives is plant breeding via biotechnology, where advances achieved so far are significant. Considering certain aspects when developing studies related to plant breeding can determine the success and accuracy of experimental design. Besides this strategy, halophytes with intrinsic and efficient abilities against salinity can be used as models for improving the response of crops to salinity stress. As crops are mostly glycophytes, it is crucial to point out the molecular differences between these two groups of plants, which may be the key to guiding and optimizing the transformation of glycophytes with halophytic tolerance genes. Therefore, this can broaden perspectives in the trajectory of research towards the cultivation, commercialization, and consumption of salt-tolerant crops on a large scale.
Collapse
Affiliation(s)
| | - Deyvid Novaes Marques
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, SP, CEP 13418-900, Brazil
| | - Lorene Bianca Araújo Tadaiesky
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, CEP 66075-110, Brazil; Programa de Pós-Graduação em Agronomia, Universidade Federal Rural da Amazônia, Belém, PA, CEP 66077-530, Brazil
| | | |
Collapse
|
10
|
Ali A, Raddatz N, Pardo JM, Yun D. HKT sodium and potassium transporters in Arabidopsis thaliana and related halophyte species. PHYSIOLOGIA PLANTARUM 2021; 171:546-558. [PMID: 32652584 PMCID: PMC8048799 DOI: 10.1111/ppl.13166] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 05/10/2023]
Abstract
High salinity induces osmotic stress and often leads to sodium ion-specific toxicity, with inhibitory effects on physiological, biochemical and developmental pathways. To cope with increased Na+ in soil water, plants restrict influx, compartmentalize ions into vacuoles, export excess Na+ from the cell, and distribute ions between the aerial and root organs. In this review, we discuss our current understanding of how high-affinity K+ transporters (HKT) contribute to salinity tolerance, focusing on HKT1-like family members primarily involved in long-distance transport, and in the recent research in the model plant Arabidopsis and its halophytic counterparts of the Eutrema genus. Functional characterization of the salt overly sensitive (SOS) pathway and HKT1-type transporters in these species indicate that they utilize similar approaches to deal with salinity, regardless of their tolerance.
Collapse
Affiliation(s)
- Akhtar Ali
- Institute of Glocal Disease ControlKonkuk UniversitySeoul05029South Korea
- Department of Biomedical Science & EngineeringKonkuk UniversitySeoul05029South Korea
| | - Natalia Raddatz
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC‐Universidad de SevillaAmerico Vespucio 49, Sevilla41092Spain
| | - Jose M. Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC‐Universidad de SevillaAmerico Vespucio 49, Sevilla41092Spain
| | - Dae‐Jin Yun
- Department of Biomedical Science & EngineeringKonkuk UniversitySeoul05029South Korea
| |
Collapse
|
11
|
The efficacy of different seed priming agents for promoting sorghum germination under salt stress. PLoS One 2021; 16:e0245505. [PMID: 33465130 PMCID: PMC7815140 DOI: 10.1371/journal.pone.0245505] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/31/2020] [Indexed: 11/19/2022] Open
Abstract
Sorghum [Sorghum bicolor (L.) Moench] seed germination is sensitive to salinity, and seed priming is an effective method for alleviating the negative effects of salt stress on seed germination. However, few studies have compared the effects of different priming agents on sorghum germination under salt stress. In this study, we quantified the effects of priming with distilled water (HP), sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl2), and polyethylene glycol (PEG) on sorghum seed germination under 150 mM NaCl stress. The germination potential, germination rate, germination index, vigor index, root length, shoot length, root fresh weight, shoot fresh weight, root dry weight, and shoot dry weight were significantly reduced by salt stress. Different priming treatments alleviated the germination inhibition caused by salt stress to varying degrees, and 50 mM CaCl2 was the most effective treatment. In addition, the mitigation effect of priming was stronger on root traits than on shoot traits. Mitigation efficacy was closely related to both the type of agent and the concentration of the solution. Principal component analysis showed that all concentrations of CaCl2 had higher scores and were clearly distinguished from other treatments based on their positive effects on all germination traits. The effects of the other agents varied with concentration. The priming treatments were divided into three categories based on their priming efficacy, and the 50, 100, and 150 mM CaCl2 treatments were placed in the first category. The 150 mM KCl, 10% PEG, HP, 150 mM NaCl, 30% PEG, and 50 mM KCl treatments were placed in the second category, and the 100 mM NaCl, 100 mM KCl, 20% PEG, and 50 mM NaCl treatments were least effective and were placed in the third category. Choosing appropriate priming agents and methods for future research and applications can ensure that crop seeds germinate healthily under saline conditions.
Collapse
|
12
|
Hussain MS, Naeem MS, Tanvir MA, Nawaz MF, Abd-Elrahman A. Eco-physiological evaluation of multipurpose tree species to ameliorate saline soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:969-981. [PMID: 33455421 DOI: 10.1080/15226514.2020.1871321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salinity is a widespread soil and underground water contaminant threatening food security and economic stability. Phytoremediation is an efficient and environmental-friendly solution to mitigate salinity impacts. The present study was conducted to evaluate the phytoremediation potential of five multipurpose trees: Vachellia nilotica, Concorpus erectus, Syzygium cumini, Tamarix aphylla and Eucalyptus cammaldulensis under four salinity treatments: Control, 10, 20 and 30 dS m-1. Salinity negatively impacted all the tested species. However, E. cammaldulensis and T. aphylla exhibited the lowest reduction (28%) and (35%) in plant height respectively along with a minimal reduction in leaf gas exchange while V. nilotica, S. cumini and C. erectus showed severe dieback. Similarly, the antioxidant enzymes increased significantly in E. cammaldulensis and T. aphylla as Superoxide Dismutase (87% and 79%), Catalase (66% and 67%) and Peroxidase (89% and 81%), respectively. Furthermore, both of these species maintained optimum Na/K ratio reducing the highest levels of soil ECe and SAR, suggesting the best phytoremediation potential. The present study identifies that E. cammaldulensis and T. aphylla showed effective tolerance mechanisms and the highest salt sequestration; therefore, may be used for phyto-amelioration of salinity impacted lands. Novelty statement Although previous studies evaluated the tolerance potential of many tree species, comparative and physiochemical evaluation of multipurpose tree species has been remained unexplored. In this scenario, eco-physiological characterization of multipurpose tree species may inform tree species for phytoremediation of saline soils according to the level of salinity. Optimizing tree species selection also improves the success of wood for energy and revenue generation while restoring degraded soils.
Collapse
Affiliation(s)
- Muhammad Safdar Hussain
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shahbaz Naeem
- Department of Agronomy, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ayyoub Tanvir
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Amr Abd-Elrahman
- School of Forest Resources and Conservation Institute of Food and Agriculture, Gulf Coast Research and Education Center, University of Florida, Plant City, FL, USA
| |
Collapse
|
13
|
Song Y, Yang W, Fan H, Zhang X, Sui N. TaMYB86B encodes a R2R3-type MYB transcription factor and enhances salt tolerance in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110624. [PMID: 33180704 DOI: 10.1016/j.plantsci.2020.110624] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/04/2020] [Accepted: 07/26/2020] [Indexed: 05/27/2023]
Abstract
The MYB transcription factor family is important for plant responses to abiotic stresses. In this study, we identified three wheat TaMYB86 genes encoding R2R3-type MYB transcription factors. Analyses of the phylogenetic relationships and gene structures of TaMYB86A, TaMYB86B, and TaMYB86D revealed considerable similarities in gene structures and the encoded amino acid sequences. Additionally, TaMYB86B was highly expressed in the roots, stems, and leaves, suggesting it is critical for regulating salt stress responses in wheat. Moreover, TaMYB86B expression was induced by NaCl, abscisic acid (ABA), methyl jasmonate (MeJA), gibberellin (GA), auxin and low temperature treatments. The TaMYB86B protein localized in the nucleus and exhibited transcriptional activation activity. Under salt stress, TaMYB86B-overexpressing plants had a higher biomass and potassium ion (K+) content, but lower MDA, H2O2, O2-., and sodium ion (Na+) contents, when compared with the wild-type plants. Quantitative real-time PCR results indicated that the overexpression of TaMYB86B improved the expression of many stress-related genes. These findings suggest that TaMYB86B influences the salt tolerance of wheat by regulating the ion homeostasis to maintain an appropriate osmotic balance and decrease ROS levels.
Collapse
Affiliation(s)
- Yushuang Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Wenjing Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
| |
Collapse
|
14
|
Li J, Yuan F, Liu Y, Zhang M, Liu Y, Zhao Y, Wang B, Chen M. Exogenous melatonin enhances salt secretion from salt glands by upregulating the expression of ion transporter and vesicle transport genes in Limonium bicolor. BMC PLANT BIOLOGY 2020; 20:493. [PMID: 33109099 PMCID: PMC7590734 DOI: 10.1186/s12870-020-02703-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/14/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Salt, a common environmental stress factor, inhibits plant growth and reduces yields. Melatonin is a pleiotropic molecule that regulates plant growth and can alleviate environmental stress in plants. All previous research on this topic has focused on the use of melatonin to improve the relatively low salt tolerance of glycophytes by promoting growth and enhancing antioxidant ability. It is unclear whether exogenous melatonin can increase the salt tolerance of halophytes, particularly recretohalophytes, by enhancing salt secretion from the salt glands. RESULTS To examine the mechanisms of melatonin-mediated salt tolerance, we explored the effects of exogenous applications of melatonin on the secretion of salt from the salt glands of Limonium bicolor (a kind of recretohalophyte) seedlings and on the expression of associated genes. A pretreatment with 5 μM melatonin significantly improved the growth of L. bicolor seedlings under 300 mM NaCl. Furthermore, exogenous melatonin significantly increased the dry weight and endogenous melatonin content of L. bicolor. In addition, this treatment reduced the content of Na+ and Cl- in leaves, but increased the K+ content. Both the salt secretion rate of the salt glands and the expression level of genes encoding ion transporters (LbHTK1, LbSOS1, LbPMA, and LbNHX1) and vesicular transport proteins (LbVAMP721, LbVAP27, and LbVAMP12) were significantly increased by exogenous melatonin treatment. These results indicate that melatonin improves the salt tolerance of the recretohalophyte L. bicolor via the upregulation of salt secretion by the salt glands. CONCLUSIONS Our results showed that melatonin can upregulate the expression of genes encoding ion transporters and vesicle transport proteins to enhance salt secretion from the salt glands. Combining the results of the current study with previous research, we formulated a novel mechanism by which melatonin increases salt secretion in L. bicolor. Ions in mesophyll cells are transported to the salt glands through ion transporters located at the plasma membrane. After the ions enter the salt glands, they are transported to the collecting chamber adjacent to the secretory pore through vesicle transport and ions transporter and then are secreted from the secretory pore of salt glands, which maintain ionic homeostasis in the cells and alleviate NaCl-induced growth inhibition.
Collapse
Affiliation(s)
- Junpeng Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China
| | - Yanlu Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China
| | - Mingjing Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China
| | - Yun Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China
| | - Yang Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China.
| |
Collapse
|
15
|
Transcriptomic profile analysis of the halophyte Suaeda rigida response and tolerance under NaCl stress. Sci Rep 2020; 10:15148. [PMID: 32939003 PMCID: PMC7494938 DOI: 10.1038/s41598-020-71529-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Suaeda rigida is a lignified, true haplotype that predominantly grows in the Tarim basin, China. It has significant economic and ecological value. Herein, with aim to determine the genes associated with salt tolerance, transcriptome sequencing was performed on its stem, leaves and root over three set NaCl gradients regimens at treatment intervals of 3 h and 5 days. From our findings, we identified 829,095 unigenes, with 331,394 being successfully matched to at least one annotation database. In roots, under 3 h treatment, no up-regulated DEGs were identified in 100 and 500 mM NaCl treated samples. Under 5 days treatment, 97, 60 and 242 up-regulated DEGs were identified in 100, 300, 500 mM NaCl treated samples, respectively. We identified 50, 22 and 255 down-regulated DEGs in 100, 300, 500 mM NaCl treated samples, respectively. GO biological process enrichment analysis established that down-regulated DEGs were associated with nitrogen compound transport, organic substance transport and intracellular protein transport while the up-regulated genes were enriched in cell wall biogenesis, such as plant-type cell wall biogenesis, cell wall assembly, extracellular matrix organization and plant-type cell wall organization. These findings provide valuable knowledge on genes associated with salt tolerance of Suaeda rigida, and can be applied in other downstream haplotype studies.
Collapse
|
16
|
Guo J, Du M, Tian H, Wang B. Exposure to High Salinity During Seed Development Markedly Enhances Seedling Emergence and Fitness of the Progeny of the Extreme Halophyte Suaeda salsa. FRONTIERS IN PLANT SCIENCE 2020; 11:1291. [PMID: 32973849 PMCID: PMC7472538 DOI: 10.3389/fpls.2020.01291] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/07/2020] [Indexed: 05/25/2023]
Abstract
Irrigation with 200 mM NaCl significantly increases vegetative and reproductive growth of the extreme halophyte Suaeda salsa. However, little is known about how the progeny of S. salsa plants grown under a continuous NaCl supply behave in terms of growth and seed set parameters. We investigated various plant growth and reproductive parameters of the progeny that germinated from seeds harvested from mother plants grown under 0 or 200 mM NaCl over three generations. Seedling emergence, plant height, stem diameter, total branch length, flowering branch length, flowering branch ratio, and seed production were all significantly enhanced in the progeny produced by mother plants grown with 200 mM NaCl compared to progeny of mother plants grown on low salinity conditions. Therefore, irrigation with 200 mM of NaCl is beneficial to seed development in the halophyte S. salsa and possibly contributes to population establishment in high salinity environments. Likewise, the prolonged absence of NaCl in the growth environment inhibits seed development, results in lower seed quality, and thus limits seedling growth of the progeny, thereby restricting S. salsa to a high salinity ecological niche.
Collapse
Affiliation(s)
- Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Ming Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Huaying Tian
- College of Forestry Engineering, Shandong Agriculture And Engineering University, Ji’nan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| |
Collapse
|
17
|
Li H, Wang H, Wen W, Yang G. The antioxidant system in Suaeda salsa under salt stress. PLANT SIGNALING & BEHAVIOR 2020; 15:1771939. [PMID: 32463323 PMCID: PMC8570744 DOI: 10.1080/15592324.2020.1771939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
L. is a typical euhalophyte and is widely distributed throughout the world. Suaeda plants are important halophyte resources, and the physiological and biochemical characteristics of their various organsand their response to salt stress have been intensively studied. Leaf succulence, intracellular ion localization, increased osmotic regulation and enhanced antioxidant capacities are important responses for Suaeda plants to adapt to salt stress. Among these responses, scavenging of reactive oxygen species (ROS) is an important mechanism for plants to withstand oxidative stress and improve salt tolerance. The generation and scavenging pathways of ROS, as well as the expression of scavenging enzymes change under salt stress. This article reviews the antioxidant system constitute of S. salsa, and the mechanisms by which S. salsaantioxidant capacity is improved for salt tolerance. In addition, the differences between types of antioxidant mechanisms in S. salsaare reviewed, thereby revealing the adaptation mechanisms of Suaeda to different habitats. The review provides important clues for the comprehensive understanding of the salt tolerance mechanisms of halophytes.
Collapse
Affiliation(s)
- Hua Li
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui Wang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wujun Wen
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guiwen Yang
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
18
|
Yang W, Wang F, Liu LN, Sui N. Responses of Membranes and the Photosynthetic Apparatus to Salt Stress in Cyanobacteria. FRONTIERS IN PLANT SCIENCE 2020; 11:713. [PMID: 32582247 PMCID: PMC7292030 DOI: 10.3389/fpls.2020.00713] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/05/2020] [Indexed: 05/02/2023]
Abstract
Cyanobacteria are autotrophs whose photosynthetic process is similar to that of higher plants, although the photosynthetic apparatus is slightly different. They have been widely used for decades as model systems for studying the principles of photosynthesis, especially the effects of environmental stress on photosynthetic activities. Salt stress, which is the most common abiotic stress in nature, combines ionic and osmotic stresses. High cellular ion concentrations and osmotic stress can alter normal metabolic processes and photosynthesis. Additionally, salt stress increases the intracellular reactive oxygen species (ROS) contents. Excessive amounts of ROS will damage the photosynthetic apparatus, inhibit the synthesis of photosystem-related proteins, including the D1 protein, and destroy the thylakoid membrane structure, leading to inhibited photosynthesis. In this review, we mainly introduce the effects of salt stress on the cyanobacterial membranes and photosynthetic apparatus. We also describe specific salt tolerance mechanisms. A thorough characterization of the responses of membranes and photosynthetic apparatus to salt stress may be relevant for increasing agricultural productivity.
Collapse
Affiliation(s)
- Wenjing Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lu-Ning Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
19
|
Li L, Zhao Y, Han G, Guo J, Meng Z, Chen M. Progress in the Study and Use of Seawater Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5998-6006. [PMID: 32374599 DOI: 10.1021/acs.jafc.0c00346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As global soil salinization increases, halophytes that can grow in saline soils are the primary choice for improving soil quality. Some halophytes can even be irrigated with seawater and used as vegetables. These so-called seawater vegetables include those that can be planted on saline and alkali soils and some edible halophytes and ordinary vegetables that are salt-tolerant. The cultivation of seawater vegetables on saline soil has become a matter of increasing interest. In this review, we focus on the salt-tolerance mechanisms and potential applications of some seawater vegetables. We also summarize their value to health, medicine, industry, and the economy as a whole. Further improvement and development to support the use of seawater vegetables will require in-depth research at the cellular and molecular levels.
Collapse
Affiliation(s)
- Lingyu Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Yang Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
20
|
Kiani-Pouya A, Rasouli F, Shabala L, Tahir AT, Zhou M, Shabala S. Understanding the role of root-related traits in salinity tolerance of quinoa accessions with contrasting epidermal bladder cell patterning. PLANTA 2020; 251:103. [PMID: 32372252 DOI: 10.1007/s00425-020-03395-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/26/2020] [Indexed: 05/02/2023]
Abstract
To compensate for the lack of capacity for external salt storage in the epidermal bladder cells, quinoa plants employ tissue-tolerance traits, to confer salinity stress tolerance. Our previous studies indicated that sequestration of toxic Na+ and Cl- ions into epidermal bladder cells (EBCs) is an efficient mechanism conferring salinity tolerance in quinoa. However, some halophytes do not develop EBCs but still possess superior salinity tolerance. To elucidate the possible compensation mechanism(s) underlying superior salinity tolerance in the absence of the external salt storage capacity, we have selected four quinoa accessions with contrasting patterns of EBC development. Whole-plant physiological and electrophysiological characteristics were assessed after 2 days and 3 weeks of 400 mM NaCl stress. Both accessions with low EBC volume utilised Na+ exclusion at the root level and could maintain low Na+ concentration in leaves to compensate for the inability to sequester Na+ load in EBC. These conclusions were further confirmed by electrophysiological experiments showing higher Na+ efflux from roots of these varieties (measured by a non-invasive microelectrode MIFE technique) as compared to accessions with high EBC volume. Furthermore, accessions with low EBC volume had significantly higher K+ concentration in their leaves upon long-term salinity exposures compared to plants with high EBC sequestration ability, suggesting that the ability to maintain high K+ content in the leaf mesophyll was as another important compensation mechanism.
Collapse
Affiliation(s)
- Ali Kiani-Pouya
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Australia
| | - Fatemeh Rasouli
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Australia
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Australia
| | - Ayesha T Tahir
- Department of Biosciences, COMSATS University Islamabad, Park road, Islamabad, 45550, Pakistan
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Australia.
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China.
| |
Collapse
|
21
|
Liu X, Chen C, Liu Y, Liu Y, Zhao Y, Chen M. The presence of moderate salt can increase tolerance of Elaeagnus angustifolia seedlings to waterlogging stress. PLANT SIGNALING & BEHAVIOR 2020; 15:1743518. [PMID: 32213104 PMCID: PMC7194383 DOI: 10.1080/15592324.2020.1743518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 05/19/2023]
Abstract
High salinity and waterlogging are two stress factors that often occur simultaneously in nature, particularly during the rainy season in the Yellow River Delta (YRD) of China. An attractive approach to improve the saline-alkali soil produced by waterlogging and high salt is to use plants for wetland ecosystem restoration. In this work, we examined the ecological adaptability of Elaeagnus angustifolia L. under combined waterlogging and salt stress, to evaluate the potential of this species for introduction to the YRD. We monitored the effects of salt plus waterlogging co-stress on the anatomy, physiology, and enzymatic systems in E. angustifolia seedlings. Salt alone and waterlogging alone inhibited the growth of the seedlings, while salt plus waterlogging co-stress reduced this growth inhibition. Furthermore, E. angustifolia seedlings resisted the salt plus waterlogging co-stress by increasing porosity, accumulating more inorganic ions and organic solutes, and increasing antioxidant enzyme activities to maintain high photosynthetic rates and membrane stability and thus avoid damage. These findings support the inclusion of E. angustifolia in the ecological restoration of the YRD.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong 250014, PR China
- College of political science and law, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, PR China
| | - Chunxiao Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong 250014, PR China
| | - Yun Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong 250014, PR China
| | - Yanlu Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong 250014, PR China
| | - Yang Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong 250014, PR China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong 250014, PR China
| |
Collapse
|
22
|
Song Y, Li J, Sui Y, Han G, Zhang Y, Guo S, Sui N. The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis. PLANT MOLECULAR BIOLOGY 2020; 102:603-614. [PMID: 32052233 DOI: 10.1007/s11103-020-00966-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/10/2020] [Indexed: 05/18/2023]
Abstract
The WRKY transcription factor family is involved in responding to biotic and abiotic stresses. Its members contain a typical WRKY domain and can regulate plant physiological responses by binding to W-boxes in the promoter regions of downstream target genes. We identified the sweet sorghum SbWRKY50 (Sb09g005700) gene, which encodes a typical class II of the WRKY family protein that localizes to the nucleus and has transcriptional activation activity. The expression of SbWRKY50 in sweet sorghum was reduced by salt stress, and its ectopic expression reduced the salt tolerance of Arabidopsis thaliana plants. Compared with the wild type, the germination rate, root length, biomass and potassium ion content of SbWRKY50 over-expression plants decreased significantly under salt-stress conditions, while the hydrogen peroxide, superoxide anion and sodium ion contents increased. Real-time PCR results showed that the expression levels of AtSOS1, AtHKT1 and genes related to osmotic and oxidative stresses in over-expression strains decreased under salt-stress conditions. Luciferase complementation imaging and yeast one-hybrid assays confirmed that SbWRKY50 could directly bind to the upstream promoter of the SOS1 gene in A. thaliana. However, in sweet sorghum, SbWRKY50 could directly bind to the upstream promoters of SOS1 and HKT1. These results suggest that the new WRKY transcription factor SbWRKY50 participates in plant salt response by controlling ion homeostasis. However, the regulatory mechanisms are different in sweet sorghum and Arabidopsis, which may explain their different salt tolerance levels. The data provide information that can be applied to genetically modifying salt tolerance in different crop varieties.
Collapse
Affiliation(s)
- Yushuang Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jinlu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
23
|
Zhang X, Yao Y, Li X, Zhang L, Fan S. Transcriptomic analysis identifies novel genes and pathways for salt stress responses in Suaeda salsa leaves. Sci Rep 2020; 10:4236. [PMID: 32144380 PMCID: PMC7060309 DOI: 10.1038/s41598-020-61204-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Salinity is a critical abiotic stress, which significantly impacts the agricultural yield worldwide. Identification of the molecular mechanisms underlying the salt tolerance in euhalophyte Suaeda salsa is conducive to the development of salt-resistant crops. In the present study, high-throughput RNA sequencing was performed after S. salsa leaves were exposed to 300 mM NaCl for 7 days, and 7,753 unigenes were identified as differently expressed genes (DEGs) in S. salsa, including 3,638 increased and 4,115 decreased unigenes. Moreover, hundreds of pathways were predicted to participate in salt stress response in S. salsa by Gene Ontology (GO), MapMan and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, including ion transport and sequestration as well as photoprotection of photosystem (PS) II. The GO enrichment analysis indicated that genes related to ion transport, reactive oxygen species (ROS) scavenging and transcriptional factors were highly expressed upon NaCl treatment. The excessive Na+ and Cl- ions were supposed to be absorbed into the vacuole for ion sequestration and balance adjustment by potassium transporters (such as KEA3) with high expressions. Moreover, we predicted that mutiple candidate genes associated with photosynthesis (such as PSB33 and ABA4), ROS (such as TAU9 and PHI8) and transcriptional regulation (HB-7 and MYB78) pathways could mitigate salt stress-caused damage in S. salsa.
Collapse
Affiliation(s)
- Xuejie Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yan Yao
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xiaotong Li
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Luoyan Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Shoujin Fan
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
24
|
Qi F, Zhang F. Cell Cycle Regulation in the Plant Response to Stress. FRONTIERS IN PLANT SCIENCE 2020; 10:1765. [PMID: 32082337 PMCID: PMC7002440 DOI: 10.3389/fpls.2019.01765] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 05/19/2023]
Abstract
As sessile organisms, plants face a variety of environmental challenges. Their reproduction and survival depend on their ability to adapt to these stressors, which include water, heat stress, high salinity, and pathogen infection. Failure to adapt to these stressors results in programmed cell death and decreased viability, as well as reduced productivity in the case of crop plants. The growth and development of plants are maintained by meiosis and mitosis as well as endoreduplication, during which DNA replicates without cytokinesis, leading to polyploidy. As in other eukaryotes, the cell cycle in plants consists of four stages (G1, S, G2, and M) with two major check points, namely, the G1/S check point and G2/M check point, that ensure normal cell division. Progression through these checkpoints involves the activity of cyclin-dependent kinases and their regulatory subunits known as cyclins. In order for plants to survive, cell cycle control must be balanced with adaption to dynamic environmental conditions. In this review, we summarize recent advances in our understanding of cell cycle regulation in plants, with a focus on the molecular interactions of cell cycle machinery in the context of stress tolerance.
Collapse
Affiliation(s)
- Feifei Qi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | | |
Collapse
|
25
|
Yang Z, Li JL, Liu LN, Xie Q, Sui N. Photosynthetic Regulation Under Salt Stress and Salt-Tolerance Mechanism of Sweet Sorghum. FRONTIERS IN PLANT SCIENCE 2020; 10:1722. [PMID: 32010174 PMCID: PMC6974683 DOI: 10.3389/fpls.2019.01722] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/09/2019] [Indexed: 05/18/2023]
Abstract
Sweet sorghum is a C4 crop with the characteristic of fast-growth and high-yields. It is a good source for food, feed, fiber, and fuel. On saline land, sweet sorghum can not only survive, but increase its sugar content. Therefore, it is regarded as a potential source for identifying salt-related genes. Here, we review the physiological and biochemical responses of sweet sorghum to salt stress, such as photosynthesis, sucrose synthesis, hormonal regulation, and ion homeostasis, as well as their potential salt-resistance mechanisms. The major advantages of salt-tolerant sweet sorghum include: 1) improving the Na+ exclusion ability to maintain ion homeostasis in roots under salt-stress conditions, which ensures a relatively low Na+ concentration in shoots; 2) maintaining a high sugar content in shoots under salt-stress conditions, by protecting the structures of photosystems, enhancing photosynthetic performance and sucrose synthetase activity, as well as inhibiting sucrose degradation. To study the regulatory mechanism of such genes will provide opportunities for increasing the salt tolerance of sweet sorghum by breeding and genetic engineering.
Collapse
Affiliation(s)
- Zhen Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biological Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jin-Lu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
26
|
Guo J, Dong X, Li Y, Wang B. NaCl treatment markedly enhanced pollen viability and pollen preservation time of euhalophyte Suaeda salsa via up regulation of pollen development-related genes. JOURNAL OF PLANT RESEARCH 2020; 133:57-71. [PMID: 31654246 DOI: 10.1007/s10265-019-01148-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 10/02/2019] [Indexed: 05/27/2023]
Abstract
Vegetable growth of halophytes has significantly increased through moderate salinity. However, little is known about the reproductive traits of euhalophytes. Male reproduction is pivotal for fertilization and seed production and sensitive to abiotic stressors. The pollen viability and pollen longevity of Suaeda salsa treated with 0 and 200 mM of NaCl were evaluated. It was revealed that the pollen size of S. salsa treated with NaCl was significantly bigger than that in controls. Furthermore, the pollen viability of S. salsa plants treated with NaCl was also significantly higher than that of control after 8 h of the pollens were collected (from 10 to 27 h). The pollen viability of NaCl-treated plants in the field could be maintained for 8 h (from 07:00 to 15:00) in sunny days, which was 1 h longer than that of control plants (from 07:00 to 14:00). Meanwhile, the pollen preservation time of NaCl-treated plants was 16 h at room temperature, which was 8 h longer than that of control plants. Genes related to pollen development, such as SsPRK3, SsPRK4, and SsLRX, exhibited high expression in the flowers of NaCl-treated plants. This indicated that NaCl markedly improved the pollen viability and preservation time via the increased expression of pollen development-related genes, and this benefits the population establishment of halophytes such as S. salsa in saline regions.
Collapse
Affiliation(s)
- Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Xinxiu Dong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Ying Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China.
| |
Collapse
|
27
|
Fan C. Genetic mechanisms of salt stress responses in halophytes. PLANT SIGNALING & BEHAVIOR 2019; 15:1704528. [PMID: 31868075 PMCID: PMC7012083 DOI: 10.1080/15592324.2019.1704528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 05/08/2023]
Abstract
Abiotic stress is a major threat to plant growth and development, resulting in extensive crop loss worldwide. Plants react to abiotic stresses through physiological, biochemical, molecular, and genetic adaptations that promote survival. Exploring the molecular mechanisms involved in abiotic stress responses across various plant species is essential for improving crop yields in unfavorable environments. Halophytes are characterized as plants that survive to reproduce in soils containing high salt concentrations, and thus act as an ideal model to comprehend complicated genetic and physiological mechanisms of salinity stress tolerance. Plant ecologists classify halophytes into three main groups: euhalophytes, recretohalophytes, and pseudo-halophytes. Recent genetic and molecular research has showed complicated regulatory networks by which halophytes coordinate stress adaptation and tolerance. Furthermore, investigation of natural variations in these stress responses has supplied new perspectives on the evolution of mechanisms that regulate tolerance and adaptation. This review discusses the current understanding of the genetic mechanisms that contribute to salt-stress tolerance among different classes of halophytes.
Collapse
Affiliation(s)
- Cunxian Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
28
|
Li Q, Song J. Analysis of widely targeted metabolites of the euhalophyte Suaeda salsa under saline conditions provides new insights into salt tolerance and nutritional value in halophytic species. BMC PLANT BIOLOGY 2019; 19:388. [PMID: 31492100 PMCID: PMC6729093 DOI: 10.1186/s12870-019-2006-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/30/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Suaeda salsa L. (S. salsa) is an annual euhalophyte with high salt tolerance and high value as an oil crop, traditional Chinese medicine and vegetable. However, there are few comprehensive studies on the metabolomics of S. salsa under saline conditions. RESULTS Seedlings of S. salsa were cultured with 0, 200 and 500 mM NaCl for two days. Then, widely targeted metabolites were detected with ultra performance liquid chromatography and tandem mass spectrometry. A total of 639 metabolites were annotated. Among these, 253 metabolites were differential metabolites. Salt treatment increased the content of certain metabolites, such as nucleotide and its derivates, organic acids, the content of amino acids, lipids such as α-linolenic acid, and certain antioxidants such as quercetin. These substances may be correlated to osmotic tolerance, increased antioxidant activity, and medical and nutritional value in the species. CONCLUSION This study comprehensively analyzed the metabolic response of S. salsa under salinity from the perspective of omics, and provides an important theoretical basis for understanding salt tolerance and evaluating nutritional value in the species.
Collapse
Affiliation(s)
- Qiang Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, People's Republic of China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, People's Republic of China.
| |
Collapse
|
29
|
Li J, Zhao C, Zhang M, Yuan F, Chen M. Exogenous melatonin improves seed germination in Limonium bicolor under salt stress. PLANT SIGNALING & BEHAVIOR 2019; 14:1659705. [PMID: 31460852 PMCID: PMC6804724 DOI: 10.1080/15592324.2019.1659705] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 05/22/2023]
Abstract
Melatonin involves in improving tolerance to abiotic and biotic stresses by regulating various biological processes. However, little is known about the underlying mechanism. Here, we investigated the effects of exogenous melatonin on seed germination in the halophyte Limonium bicolor under salt stress. Specifically, we examined the effect of salt stress on seed germination, melatonin concentration, and changes in the concentrations of nutrients, amylase activity, and hormones in L. bicolor seeds with and without pre-treatment with melatonin. Seed germination was significantly suppressed under a 200 mM NaCl treatment, but pre-treatment with melatonin significantly improved seed germination under salt stress. During seed germination, seeds pre-treated with melatonin contained high levels of melatonin and gibberellic acid (GA), low levels of abscisic acid (ABA), and high levels of amylase and alpha-amylase activity. Melatonin treatment upregulated the expression of key genes involved in GA biosynthesis (GA20ox and GA3ox), downregulated key genes involved in ABA biosynthesis (LbNCED1 and LbNCED3), and upregulated ABA 8'-hydroxylase genes (LbCYP707A1 and LbCYP707A2), which mediate the changes in GA and ABA levels in seeds during germination. A high melatonin concentration in seeds promotes the utilization of nutrients and the synthesis of new proteins to enhance seed germination.
Collapse
Affiliation(s)
- Junpeng Li
- College of Life Science, Shandong Normal University, Wenhua East Road 88, Jinan 250014, P.R. China
| | - Chen Zhao
- College of Life Science, Shandong Normal University, Wenhua East Road 88, Jinan 250014, P.R. China
| | - Mingjing Zhang
- College of Life Science, Shandong Normal University, Wenhua East Road 88, Jinan 250014, P.R. China
| | - Fang Yuan
- College of Life Science, Shandong Normal University, Wenhua East Road 88, Jinan 250014, P.R. China
| | - Min Chen
- College of Life Science, Shandong Normal University, Wenhua East Road 88, Jinan 250014, P.R. China
| |
Collapse
|
30
|
Liu J, Li L, Yuan F, Chen M. Exogenous salicylic acid improves the germination of Limonium bicolor seeds under salt stress. PLANT SIGNALING & BEHAVIOR 2019; 14:e1644595. [PMID: 31331225 PMCID: PMC6768418 DOI: 10.1080/15592324.2019.1644595] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 05/04/2023]
Abstract
Salicylic acid (SA) may improve plant tolerance to abiotic stresses; however, little is known about the underlying mechanisms by which this is achieved. Here, we investigated the effects of exogenous SA application on seed germination in the halophyte Limonium bicolor (Kuntze) under salt stress. Specifically, we examined the effect of salt stress on seed germination, sugar and protein contents, amylase activity, and the contents of various hormones, both in the presence and absence of exogenous SA treatments. Germination was significantly suppressed by a 200 mM NaCl treatment but was significantly improved when 0.08 mM SA was concurrently applied. During germination, the seeds treated with SA had high levels of gibberellic acid (GA) and high levels of amylase and α-amylase activity, but low abscisic acid (ABA) contents. The SA treatment upregulated the expression of key genes involved in GA biosynthesis while downregulating those involved in ABA biosynthesis, thereby triggering a favorable hormonal balance between GA and ABA that enhanced seed germination under salt stress.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Science, Shandong Normal University, Jinan, P.R. China
| | - Lingyu Li
- College of Life Science, Shandong Normal University, Jinan, P.R. China
| | - Fang Yuan
- College of Life Science, Shandong Normal University, Jinan, P.R. China
| | - Min Chen
- College of Life Science, Shandong Normal University, Jinan, P.R. China
| |
Collapse
|
31
|
Sun X, Han G, Meng Z, Lin L, Sui N. Roles of malic enzymes in plant development and stress responses. PLANT SIGNALING & BEHAVIOR 2019; 14:e1644596. [PMID: 31322479 PMCID: PMC6768271 DOI: 10.1080/15592324.2019.1644596] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 05/12/2023]
Abstract
Malic enzyme (ME) comprises a family of proteins with multiple isoforms located in different compartments of eukaryotic cells. It is a key enzyme regulating malic acid metabolism and can catalyze the reversible reaction of oxidative decarboxylation of malic acid. And it is also one of the important enzymes in plant metabolism and is involved in multiple metabolic processes. ME is widely present in plants and mainly discovered in cytoplasmic stroma, mitochondria, chloroplasts. It is involved in plant growth, development, and stress response. Plants are stressed by various environmental factors such as drought, high salt, and high temperature during plant growth, and the mechanisms of plant response to various environmental stresses are synergistic. Numerous studies have shown that ME participates in the process of coping with the above environmental factors by increasing water use efficiency, improving photosynthesis of plants, providing reducing power, and so on. In this review, we discuss the important role of ME in plant development and plant stress response, and prospects for its application. It provides a theoretical basis for the future use of ME gene for molecular resistance breeding.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| | - Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| | - Lin Lin
- Water Research Institute of Shandong Province, Jinan, PR China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| |
Collapse
|
32
|
Li J, Liu M. Biological features and regulatory mechanisms of salt tolerance in plants. J Cell Biochem 2019; 120:10914-10920. [PMID: 30784118 DOI: 10.1002/jcb.28474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/11/2019] [Indexed: 01/24/2023]
Abstract
Halophytes play a vital role in saline agriculture because these plants are necessary to increase the food supply to meet the demands of the growing world population. In addition, the transfer of salt-resistance genes from halophytes using genetic technologies has the potential to increase the salt tolerance of xerophytes. Characterization of some particularly promising halophyte model organisms has revealed the important new insights into the salt tolerance mechanisms used by plants. Numerous advances using these model systems have improved our understanding of salt tolerance regulation and salt tolerance-associated changes in gene expression, and these mechanisms have important implications for saline agriculture. Recent findings provide a basis for future studies of salt tolerance in plants, as well as the development of improved strategies for saline agriculture to increase yields of food, feed, and fuel crops.
Collapse
Affiliation(s)
- Jingrui Li
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
33
|
Ma H, Liu M. The microtubule cytoskeleton acts as a sensor for stress response signaling in plants. Mol Biol Rep 2019; 46:5603-5608. [PMID: 31098806 DOI: 10.1007/s11033-019-04872-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/13/2019] [Indexed: 01/17/2023]
Abstract
Stress tolerance pathways are protective mechanisms that have evolved to protect plant growth and increase production under various environmental stress conditions. Enhancing stress tolerance in crop plants has become an area of intense study with aims of increasing crop production and enhancing economic benefits. A growing number of studies suggest that in addition to playing vital roles in mechanical architecture and cell division, microtubules are also involved the adaptation to severe environmental conditions in plants. However, the mechanisms that integrate microtubule regulation, cellular metabolism and cell signaling in plant stress responses remain unclear. Recent studies suggest that microtubules act as sensors for different abiotic stresses and maintain mechanical stability by forming bundles. Characterizing the diverse roles of plant microtubules is vital to furthering our understanding of stress tolerance in plants.
Collapse
Affiliation(s)
- Huixian Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Min Liu
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
34
|
Li J, Han G, Sun C, Sui N. Research advances of MYB transcription factors in plant stress resistance and breeding. PLANT SIGNALING & BEHAVIOR 2019; 14:1613131. [PMID: 31084451 PMCID: PMC6619938 DOI: 10.1080/15592324.2019.1613131] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/01/2019] [Accepted: 04/22/2019] [Indexed: 05/19/2023]
Abstract
Plants face various stresses during the growth and development processes. The specific transcription factors bind to the cis-acting elements upstream of the stress resistance genes, specifically regulating the expression of the gene in plants and increasing the adaptability of plants to environmental stress. The transcription factor-mediated gene expression regulatory networks play an important role in plant stress response pathways. MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factor is one of the largest members of the transcription factor family in plants. It participates and has a great influence on all aspects of plant growth and development. It plays an important role in plant secondary metabolic regulation, hormone and environmental factor responses, cell differentiation, organ morphogenesis, and cell cycle regulation. This review mainly introduces the characteristics, structure, and classification of MYB transcription factors, as well as the abiotic stress resistance to drought, salt, temperature, and other functions in breeding, and provides a reference for the research and utilization of transcription factors in the future.
Collapse
Affiliation(s)
- Jinlu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | | | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
35
|
Li J, Liu J, Zhu T, Zhao C, Li L, Chen M. The Role of Melatonin in Salt Stress Responses. Int J Mol Sci 2019; 20:E1735. [PMID: 30965607 PMCID: PMC6479358 DOI: 10.3390/ijms20071735] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Melatonin, an indoleamine widely found in animals and plants, is considered as a candidate phytohormone that affects responses to a variety of biotic and abiotic stresses. In plants, melatonin has a similar action to that of the auxin indole-3-acetic acid (IAA), and IAA and melatonin have the same biosynthetic precursor, tryptophan. Salt stress results in the rapid accumulation of melatonin in plants. Melatonin enhances plant resistance to salt stress in two ways: one is via direct pathways, such as the direct clearance of reactive oxygen species; the other is via an indirect pathway by enhancing antioxidant enzyme activity, photosynthetic efficiency, and metabolite content, and by regulating transcription factors associated with stress. In addition, melatonin can affect the performance of plants by affecting the expression of genes. Interestingly, other precursors and metabolite molecules associated with melatonin can also increase the tolerance of plants to salt stress. This paper explores the mechanisms by which melatonin alleviates salt stress by its actions on antioxidants, photosynthesis, ion regulation, and stress signaling.
Collapse
Affiliation(s)
- Junpeng Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Jing Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Tingting Zhu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Chen Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Lingyu Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
36
|
Guo J, Dong X, Han G, Wang B. Salt-Enhanced Reproductive Development of Suaeda salsa L. Coincided With Ion Transporter Gene Upregulation in Flowers and Increased Pollen K + Content. FRONTIERS IN PLANT SCIENCE 2019; 10:333. [PMID: 30984214 PMCID: PMC6449877 DOI: 10.3389/fpls.2019.00333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/04/2019] [Indexed: 05/06/2023]
Abstract
Halophytes are adapted to saline environments and demonstrate optimal reproductive growth under high salinity. To gain insight into the salt tolerance mechanism and effects of salinity in the halophyte Suaeda salsa, the number of flowers and seeds, seed size, anther development, ion content, and flower transcript profiles, as well as the relative expression levels of genes involved in ion transport, were analyzed in S. salsa plants treated with 0 or 200 mM NaCl. The seed size, flower number, seed number per leaf axil, and anther fertility were all significantly increased by 200 mM NaCl treatment. The Na+ and Cl- contents in the leaves, stems, and pollen of NaCl-treated plants were all markedly higher, and the K+ content in the leaves and stems was significantly lower, than those in untreated control plants. By contrast, the K+ content in pollen grains did not decrease, but rather increased, upon NaCl treatment. Genes related to Na+, K+ and, Cl- transport, such as SOS1, KEA, AKT1, NHX1, and CHX, showed increased expression in the flowers of NaCl-treated plants. These results suggest that ionic homeostasis in reproductive organs, especially in pollen grains under salt-treated conditions, involves increased expression of ion transport-related genes.
Collapse
Affiliation(s)
| | | | | | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
37
|
Ali A, Maggio A, Bressan RA, Yun DJ. Role and Functional Differences of HKT1-Type Transporters in Plants under Salt Stress. Int J Mol Sci 2019; 20:E1059. [PMID: 30823627 PMCID: PMC6429402 DOI: 10.3390/ijms20051059] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 02/03/2023] Open
Abstract
Abiotic stresses generally cause a series of morphological, biochemical and molecular changes that unfavorably affect plant growth and productivity. Among these stresses, soil salinity is a major threat that can seriously impair crop yield. To cope with the effects of high salinity on plants, it is important to understand the mechanisms that plants use to deal with it, including those activated in response to disturbed Na⁺ and K⁺ homeostasis at cellular and molecular levels. HKT1-type transporters are key determinants of Na⁺ and K⁺ homeostasis under salt stress and they contribute to reduce Na⁺-specific toxicity in plants. In this review, we provide a brief overview of the function of HKT1-type transporters and their importance in different plant species under salt stress. Comparison between HKT1 homologs in different plant species will shed light on different approaches plants may use to cope with salinity.
Collapse
Affiliation(s)
- Akhtar Ali
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, Korea.
| | - Albino Maggio
- Department of Agriculture, University of Naples Federico II, Via Universita 100, I-80055 Portici, Italy.
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-2010, USA.
| | - Dae-Jin Yun
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
38
|
Yuan F, Guo J, Shabala S, Wang B. Reproductive Physiology of Halophytes: Current Standing. FRONTIERS IN PLANT SCIENCE 2019; 9:1954. [PMID: 30687356 PMCID: PMC6334627 DOI: 10.3389/fpls.2018.01954] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/17/2018] [Indexed: 05/19/2023]
Abstract
Background: Halophytes possess efficient salt-tolerance mechanisms and can complete their life cycles in naturally saline soils with NaCl contents exceeding 200 mM. While a significant progress have been made in recent decades elucidating underlying salt-tolerance mechanisms, these studies have been mostly confined to the vegetative growth stage. At the same time, the capacity to generate high-quality seeds and to survive early developmental stages under saline conditions, are both critically important for plants. Halophytes perform well in both regards, whereas non-halophytes cannot normally complete their life cycles under saline conditions. Scope: Research into the effects of salinity on plant reproductive biology has gained momentum in recent years. However, it remains unclear whether the reproductive biology of halophytes differs from that of non-halophytes, and whether their reproductive processes benefit, like their vegetative growth, from the presence of salt in the rhizosphere. Here, we summarize current knowledge of the mechanisms underlying the superior reproductive biology of halophytes, focusing on critical aspects including control of flowering time, changes in plant hormonal status and their impact on anther and pollen development and viability, plant carbohydrate status and seed formation, mechanisms behind the early germination of halophyte seeds, and the role of seed polymorphism. Conclusion: Salt has beneficial effects on halophyte reproductive growth that include late flowering, increased flower numbers and pollen vitality, and high seed yield. This improved performance is due to optimal nutrition during vegetative growth, alterations in plant hormonal status, and regulation of flowering genes. In addition, the seeds of halophytes harvested under saline conditions show higher salt tolerance than those obtained under non-saline condition, largely due to increased osmolyte accumulation, more optimal hormonal composition (e.g., high gibberellic acid and low abcisic acid content) and, in some species, seed dimorphism. In the near future, identifying key genes involved in halophyte reproductive physiology and using them to transform crops could be a promising approach to developing saline agriculture.
Collapse
Affiliation(s)
- Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan, China
- College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
39
|
Yuan F, Xu Y, Leng B, Wang B. Beneficial Effects of Salt on Halophyte Growth: Morphology, Cells, and Genes. Open Life Sci 2019; 14:191-200. [PMID: 33817151 PMCID: PMC7874760 DOI: 10.1515/biol-2019-0021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/26/2018] [Indexed: 11/17/2022] Open
Abstract
Halophytes can survive and complete their life cycle in the presence of ≥200 mM NaCl. These remarkable plants have developed various strategies to tolerate salinity and thrive in high-salt environments. At the appropriate levels, salt has a beneficial effect on the vegetative growth of halophytes but inhibits the growth of non-halophytes. In recent years, many studies have focused on elucidating the salt-tolerance mechanisms of halophytes at the molecular, physiological, and individual level. In this review, we focus on the mechanisms, from the macroscopic to the molecular, underlying the successful growth of halophytes in saline environments to explain why salt has beneficial effects on halophytes but harmful effects on non-halophytes. These mechanisms include the specialized organs of halophytes (for example, ion compartmentalization in succulent leaves), their unique structures (salt glands and hydrophobic barriers in roots), and their salt-tolerance genes. We hope to shed light on the use of halophytes for engineering salt-tolerant crops, soil conservation, and the protection of freshwater resources in the near future.
Collapse
Affiliation(s)
- Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, 250014, P.R. China
| | - Yanyu Xu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, 250014, P.R. China
| | - Bingying Leng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, 250014, P.R. China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, 250014, P.R. China
| |
Collapse
|
40
|
Chen M, Xie S. Therapeutic targeting of cellular stress responses in cancer. Thorac Cancer 2018; 9:1575-1582. [PMID: 30312004 PMCID: PMC6275842 DOI: 10.1111/1759-7714.12890] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022] Open
Abstract
Similar to bacteria, yeast, and other organisms that have evolved pathways to respond to environmental stresses, cancer cells develop mechanisms that increase genetic diversity to facilitate adaptation to a variety of stressful conditions, including hypoxia, nutrient deprivation, exposure to DNA-damaging agents, and immune responses. To survive, cancer cells trigger mechanisms that drive genomic instability and mutation, alter gene expression programs, and reprogram the metabolic pathways to evade growth inhibition signaling and immune surveillance. A deeper understanding of the molecular mechanisms that underlie the pathways used by cancer cells to overcome stresses will allow us to develop more efficacious strategies for cancer therapy. Herein, we overview several key stresses imposed on cancer cells, including oxidative, metabolic, mechanical, and genotoxic, and discuss the mechanisms that drive cancer cell responses. The therapeutic implications of these responses are also considered, as these factors pave the way for the targeting of stress adaption pathways in order to slow cancer progression and block resistance to therapy.
Collapse
Affiliation(s)
- Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical SciencesShandong Normal UniversityJinanChina
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
41
|
Sun X, Lin L, Sui N. Regulation mechanism of microRNA in plant response to abiotic stress and breeding. Mol Biol Rep 2018; 46:1447-1457. [PMID: 30465132 DOI: 10.1007/s11033-018-4511-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023]
Abstract
microRNAs (miRNAs) in plants are a class of small RNAs consisting of approximately 21-24 nucleotides. The mature miRNA binds to the target mRNA through the formation of a miRNA-induced silencing complex (MIRISC), and cleaves or inhibits translation, thereby achieving negative regulation of the target gene. Based on miRNA plays an important role in regulating plant gene expression, studies on the prediction, identification, function and evolution of plant miRNAs have been carried out. In addition, many researches prove that miRNAs are also involved in many kinds of abiotic and biotic stress, under abiotic stress, plants can express some miRNA, and act on stress-related target genes, which can make plants adapt to stress in physiological response. In this review, the synthetic pathway and mechanism of plant miRNA are briefly described, and we discuss the biological functions and regulatory mechanisms of miRNAs responding to abiotic stresses including low temperature, salt, drought stress and breeding to lay the foundation for further exploring the mechanism of action of miRNAs in stress resistance of plant. And analyze its utilization prospects in plant stress resistance research.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Lin Lin
- Water Research Institute of Shandong Province, Jinan, People's Republic of China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
42
|
Chen M, Yang Z, Liu J, Zhu T, Wei X, Fan H, Wang B. Adaptation Mechanism of Salt Excluders under Saline Conditions and Its Applications. Int J Mol Sci 2018; 19:E3668. [PMID: 30463331 PMCID: PMC6274768 DOI: 10.3390/ijms19113668] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 11/17/2022] Open
Abstract
Global soil salinization is increasingly a serious threat to agriculture worldwide. Therefore, it is imperative to improve crop salt tolerance as a means of adaptation to saline habitats. Some halophytes and most monocotyledonous crops are salt-excluders. Understanding the regulatory mechanisms of salt exclusion at the molecular level in salt-exclusion plants is critical for improving the salt tolerance of monocotyledonous crops such as maize, wheat, rice, and sorghum. In this review, we summarize recent research into salt-exclusion mechanisms and the genes that underlie them. Findings related to salt exclusion may accelerate the process of breeding tolerant cultivars by using genomic and molecular tools.
Collapse
Affiliation(s)
- Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Zhen Yang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, Shandong, China.
| | - Jing Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Tingting Zhu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Xiaocen Wei
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China.
| |
Collapse
|
43
|
Xie S, Liu M. Survival Mechanisms to Selective Pressures and Implications. Open Life Sci 2018; 13:340-347. [PMID: 33817102 PMCID: PMC7874742 DOI: 10.1515/biol-2018-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/18/2018] [Indexed: 12/02/2022] Open
Abstract
Organisms have evolved a spectrum of strategies that facilitate survival in the face of adverse environmental conditions. In order to make full use of the unfavorable resources of nature, human beings usually impose selective pressures to breed phenotypic traits that can survive in adverse environments. Animals are frequently under attack by biotic stress, such as bacterial and viral infections, while plants are more often subjected to abiotic stress, including high salinity, drought, and cold. In response to these diverse stresses, animals and plants initiate wide-ranging changes in gene expression by altering regulation of transcriptional and post-transcriptional activities. Recent studies have identified a number of key responsive components that promote survival of animals and plants in response to biotic and abiotic stresses. Importantly, with recent developments in genome-editing technology based on the CRISPR/Cas9 system, manipulation of genetic elements to generate stress-resistant animals and plants has become both feasible and cost-effective. Herein, we review important mechanisms that govern the response of organisms to biotic and abiotic stresses with the aim of applying our understanding to the agriculture and animal husbandry industries.
Collapse
Affiliation(s)
- Songbo Xie
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
44
|
Liu R, Wang L, Tanveer M, Song J. Seed Heteromorphism: An Important Adaptation of Halophytes for Habitat Heterogeneity. FRONTIERS IN PLANT SCIENCE 2018; 9:1515. [PMID: 30386364 PMCID: PMC6199896 DOI: 10.3389/fpls.2018.01515] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/26/2018] [Indexed: 05/23/2023]
Abstract
Seed germination is a very critical and important step for seedling establishment under saline environments, as high level of salinity in the soil can prevent seed germination. However halophytes exhibit an interesting mechanism to cope with salt stress. Many halophytes produce heteromorphic seeds, which have different dormancy and germination behavior under saline conditions. This characteristic is related to the structural and physiological differences among heteromorphic seeds. It was unclear that how heteromorphic seeds differently accumulate organic and inorganic substances under saline conditions, and what are the physiological and molecular mechanisms involved in the production of heteromorphic seeds, and in the development of transgenerational plasticity in heteromorphic seeds. In the current brief review, dormancy and germination and the possible role of seed coat and storage compounds in this process of heteromorphic seeds development have been discussed. Moreover, the role of maternal effects on heteromorphic seeds production under saline environments and growth and reproduction capability of the descendants from them have been highlighted.
Collapse
Affiliation(s)
- Ranran Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Mohsin Tanveer
- School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
45
|
Sun J, Cao H, Cheng J, He X, Sohail H, Niu M, Huang Y, Bie Z. Pumpkin CmHKT1;1 Controls Shoot Na⁺ Accumulation via Limiting Na⁺ Transport from Rootstock to Scion in Grafted Cucumber. Int J Mol Sci 2018; 19:E2648. [PMID: 30200653 PMCID: PMC6165489 DOI: 10.3390/ijms19092648] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/09/2023] Open
Abstract
Soil salinity adversely affects the growth and yield of crops, including cucumber, one of the most important vegetables in the world. Grafting with salt-tolerant pumpkin as the rootstock effectively improves the growth of cucumber under different salt conditions by limiting Na⁺ transport from the pumpkin rootstock to the cucumber scion. High-affinity potassium transporters (HKTs) are crucial for the long distance transport of Na⁺ in plants, but the function of pumpkin HKTs in this process of grafted cucumber plants remains unclear. In this work, we have characterized CmHKT1;1 as a member of the HKT gene family in Cucurbita moschata and observed an obvious upregulation of CmHKT1;1 in roots under NaCl stress conditions. Heterologous expression analyses in yeast mutants indicated that CmHKT1;1 is a Na⁺-selective transporter. The transient expression in tobacco epidermal cells and in situ hybridization showed CmHKT1;1 localization at plasma membrane, and preferential expression in root stele. Moreover, ectopic expression of CmHKT1;1 in cucumber decreased the Na⁺ accumulation in the plants shoots. Finally, the CmHKT1;1 transgenic line as the rootstock decreased the Na⁺ content in the wild type shoots. These findings suggest that CmHKT1;1 plays a key role in the salt tolerance of grafted cucumber by limiting Na⁺ transport from the rootstock to the scion and can further be useful for engineering salt tolerance in cucurbit crops.
Collapse
Affiliation(s)
- Jingyu Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Haishun Cao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jintao Cheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaomeng He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mengliang Niu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuan Huang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhilong Bie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
46
|
Zhao Y, Yang Y, Song Y, Li Q, Song J. Analysis of storage compounds and inorganic ions in dimorphic seeds of euhalophyte Suaeda salsa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:511-516. [PMID: 30092560 DOI: 10.1016/j.plaphy.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 05/21/2023]
Abstract
Suaeda salsa is an annual euhalophytic herb that produces dimorphic seeds, such as small black seeds and big brown seeds. In the present study, the fatty acid composition, content of total phenols, flavonoids, carotenoid and inorganic ions in dimorphic seeds of the species collected in the field were measured. There was no significant difference in total oil content between black and brown seeds. Seed total oil content was approximately 19% based on dry weight. The most abundant fatty acid was linoleic acid, and the content was 76.3 and 70.5% of total fatty acids in black and brown seeds, respectively. Furthermore, the contents of total phenols, flavonoids, carotenoids and inorganic ions in brown seeds were higher than those in black seeds, which might be the mechanism of higher salt tolerance of brown seeds than black seeds. The ecological, physiological and genetic mechanisms of the different abilities of nutrition accumulation in black and brown seeds of S. salsa are also discussed and worthy to be investigated in the future.
Collapse
Affiliation(s)
- Yuanqin Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Yang Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Yongpeng Song
- Department of Economics and Management, Qilu Normal University, Jinan, 250200, PR China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
47
|
Ali A, Khan IU, Jan M, Khan HA, Hussain S, Nisar M, Chung WS, Yun DJ. The High-Affinity Potassium Transporter EpHKT1;2 From the Extremophile Eutrema parvula Mediates Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:1108. [PMID: 30105045 PMCID: PMC6077265 DOI: 10.3389/fpls.2018.01108] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/09/2018] [Indexed: 05/23/2023]
Abstract
To survive salt stress, plants must maintain a balance between sodium and potassium ions. High-affinity potassium transporters (HKTs) play a key role in reducing Na+ toxicity through K+ uptake. Eutrema parvula (formerly known as Thellungiella parvula), a halophyte closely related to Arabidopsis, has two HKT1 genes that encode EpHKT1;1 and EpHKT1;2. In response to high salinity, the EpHKT1;2 transcript level increased rapidly; by contrast, the EpHKT1;1 transcript increased more slowly in response to salt treatment. Yeast cells expressing EpHKT1;2 were able to tolerate high concentrations of NaCl, whereas EpHKT1;1-expressing yeast cells remained sensitive to NaCl. Amino acid sequence alignment with other plant HKTs showed that EpHKT1;1 contains an asparagine residue (Asn-213) in the second pore-loop domain, but EpHKT1;2 contains an aspartic acid residue (Asp-205) at the same position. Yeast cells expressing EpHKT1;1, in which Asn-213 was substituted with Asp, were able to tolerate high concentrations of NaCl. In contrast, substitution of Asp-205 by Asn in EpHKT1;2 did not enhance salt tolerance and rather resulted in a similar function to that of AtHKT1 (Na+ influx but no K+ influx), indicating that the presence of Asn or Asp determines the mode of cation selectivity of the HKT1-type transporters. Moreover, Arabidopsis plants (Col-gl) overexpressing EpHKT1;2 showed significantly higher tolerance to salt stress and accumulated less Na+ and more K+ compared to those overexpressing EpHKT1;1 or AtHKT1. Taken together, these results suggest that EpHKT1;2 mediates tolerance to Na+ ion toxicity in E. parvula and is a major contributor to its halophytic nature.
Collapse
Affiliation(s)
- Akhtar Ali
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Irfan Ullah Khan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Masood Jan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Haris Ali Khan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Shah Hussain
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Muhammad Nisar
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Department of Botany, University of Malakand, Chakdara, Pakistan
| | - Woo Sik Chung
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| |
Collapse
|
48
|
Sun X, Wang Y, Sui N. Transcriptional regulation of bHLH during plant response to stress. Biochem Biophys Res Commun 2018; 503:397-401. [PMID: 30057319 DOI: 10.1016/j.bbrc.2018.07.123] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Basic helix-loop-helix protein (bHLH) is the most extensive class of transcription factors in eukaryotes, which can regulate gene expression through interaction with specific motif in target genes. bHLH transcription factor is not only universally involved in plant growth and metabolism, including photomorphogenesis, light signal transduction and secondary metabolism, but also plays an important role in plant response to stress. In this review, we discuss the role of bHLH in plants in response to stresses such as drought, salt and cold stress. To provide a strong evidence for the important role of bHLH in plant stress response, in order to provide new ideas and targets for the prevention and treatment of plant stress resistance.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, PR China
| | - Yu Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, PR China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, PR China.
| |
Collapse
|
49
|
Regulation mechanism of long non-coding RNA in plant response to stress. Biochem Biophys Res Commun 2018; 503:402-407. [PMID: 30055799 DOI: 10.1016/j.bbrc.2018.07.072] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022]
Abstract
Long non-coding RNA (lncRNA) is a non-coding RNA greater than 200 nucleotides in length. LncRNAs can regulate gene expression at transcription and post-transcription, epigenetic level, and plays an important role in a wide range of biological processes such as genomic imprinting, chromatin remodeling, transcriptional activation, transcriptional interference and cell cycle. It becomes the current hot topics in the study of molecular biology and genetics. Emerging evidence proposed that lncRNAs play important roles in response to both abiotic and biotic stress. In this review, we discuss the role of lncRNAs in drought resistance, salt resistance, disease resistance, and immunity of plants, providing strong evidence for exploring the important role of lncRNAs in plant resistance, in order to explore new ideas and new targets for prevention and control.
Collapse
|
50
|
Meng X, Zhou J, Sui N. Mechanisms of Salt Tolerance in Halophytes: Current Understanding and Recent Advances. Open Life Sci 2018; 13:149-154. [PMID: 33817080 PMCID: PMC7874743 DOI: 10.1515/biol-2018-0020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/31/2018] [Indexed: 12/25/2022] Open
Abstract
Halophytes are plants that exhibit high salt tolerance, allowing them to survive and thrive under extremely saline conditions. The study of halophytes advances our understanding about the important adaptations that are required for survival in high salinity conditions, including secretion of salt through the salt glands, regulation of cellular ion homeostasis and osmotic pressure, detoxification of reactive oxygen species, and alterations in membrane composition. To explore the mechanisms that contribute to tolerance to salt stress, salt-responsive genes have been isolated from halophytes and expressed in non-salt tolerant plants using targeted transgenic technologies. In this review, we discuss the mechanisms that underpin salt tolerance in different halophytes.
Collapse
Affiliation(s)
- Xiaoqian Meng
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Jun Zhou
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Na Sui
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|