1
|
Putaporntip C, Kuamsab N, Jongwutiwes S. Natural selection on apical membrane antigen 1 (AMA1) of an emerging zoonotic malaria parasite Plasmodium inui. Sci Rep 2024; 14:23637. [PMID: 39384839 PMCID: PMC11464719 DOI: 10.1038/s41598-024-74785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Apical membrane antigen 1 (AMA1) of malaria parasites plays an important role in host cell invasion. Antibodies to AMA1 can inhibit malaria merozoite invasion of erythrocytes while vaccine-induced specific cytotoxic T cell responses to this protein are associated with clinical protection. Polymorphisms in AMA1 of Plasmodium falciparum (PfAMA1) and P. vivax (PvAMA1) are of concern for vaccine development. To date, little is known about sequence diversity in ama1 of P. inui (Piama1), an emerging zoonotic malaria parasite. In this study, 80 complete Piama1 coding sequences were obtained from 57 macaques in Thailand that defined 60 haplotypes clustering in two phylogenetic lineages. In total, 74 nucleotide substitutions were identified and distributed unevenly across the gene. Blockwise analysis of the rates of synonymous (dS) and nonsynonymous (dN) nucleotide substitutions did not show a significant deviation from neutrality among Thai isolates. However, significantly negative Tajima's D values were detected in domain I and the loop region of domain II, implying purifying selection. Codon-based analysis of dN/dS has identified 12 and 14 codons under positive and negative selections, respectively. Meanwhile, 85 amino acid substitutions were identified among 80 Thai and 11 non-Thai PiAMA1 sequences. Of these, 48 substituted residues had a significant alteration in physicochemical properties, suggesting positive selection. More than half of these positively selected amino acids (32 of 48) corresponded to the predicted B-cell or T-cell epitopes, suggesting that selective pressure could be mediated by host immunity. Importantly, 14 amino acid substitutions were singletons and predicted to be deleterious that could be subject to ongoing purifying selection or elimination. Besides genetic drift and natural selection, intragenic recombination identified in domain II could generate sequence variation in Piama1. It is likely that malarial ama1 exhibits interspecies differences in evolutionary histories. Knowledge of the sequence diversity of the Piama1 locus further provides an evolutionary perspective of this important malaria vaccine candidate.
Collapse
Affiliation(s)
- Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Faculty of Health Science and Technology, Community Public Health Program, Southern College of Technology, Nakorn Si Thammarat, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Ali Albsheer MM, Hubbard A, Dieng CC, Gebremeskel EI, Ahmed S, Rougeron V, Ibrahim ME, Lo E, Abdel Hamid MM. Extensive genetic diversity in Plasmodium vivax from Sudan and its genetic relationships with other geographical isolates. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105643. [PMID: 39053565 DOI: 10.1016/j.meegid.2024.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Plasmodium vivax, traditionally overlooked has experienced a notable increase in cases in East Africa. This study investigated the geographical origin and genetic diversity of P. vivax in Sudan using 14 microsatellite markers. A total of 113 clinical P. vivax samples were collected from two different ecogeographical zones, New Halfa and Khartoum, in Sudan. Additionally, 841 geographical samples from the database were incorporated for a global genetic analysis to discern genetic relationships among P. vivax isolates on regional and worldwide scales. On the regional scale, our findings revealed 91 unique and 8 shared haplotypes among the Sudan samples, showcasing a remarkable genetic diversity compared to other geographical isolates and supporting the hypothesis that P. vivax originated from Africa. On a global scale, distinct genetic clustering of P. vivax isolates from Africa, South America, and Asia (including Papua New Guinea and Solomon Island) was observed, with limited admixture among the three clusters. Principal component analysis emphasized the substantial contribution of African isolates to the observed global genetic variation. The Sudanese populations displayed extensive genetic diversity, marked by significant multi-locus linkage disequilibrium, suggesting an ancestral source of P. vivax variation globally and frequent recombination among the isolates. Notably, the East African P. vivax exhibited similarity with some Asian isolates, indicating potential recent introductions. Overall, our results underscore the effectiveness of utilizing microsatellite markers for implementing robust control measures, given their ability to capture extensive genetic diversity and linkage disequilibrium patterns.
Collapse
Affiliation(s)
- Musab M Ali Albsheer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan; Faculty of Medical Laboratory Sciences, Sinnar University, Sudan
| | - Alfred Hubbard
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - Cheikh Cambel Dieng
- Department of Microbiology and Immunology, Drexel University, Philadelphia, PA 19129, USA
| | | | - Safaa Ahmed
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Virginie Rougeron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), CREES, 34394 Montpellier, France
| | - Muntaser E Ibrahim
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Eugenia Lo
- Department of Microbiology and Immunology, Drexel University, Philadelphia, PA 19129, USA.
| | - Muzamil M Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan.
| |
Collapse
|
3
|
Sharp PM, Plenderleith LJ, Culleton RL, Hahn BH. Origin of the human malaria parasite Plasmodium vivax. Trends Parasitol 2024; 40:562-572. [PMID: 38806300 DOI: 10.1016/j.pt.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
The geographic origin of Plasmodium vivax, a leading cause of human malaria, has been the subject of much speculation. Here we review the evolutionary history of P. vivax and P. vivax-like parasites in humans and non-human primates on three continents, providing overwhelming evidence for an African origin. This conclusion is consistent with recent reports showing that Duffy-negative humans in Africa are, in fact, susceptible to P. vivax, with parasites invading Duffy-antigen-expressing erythroid precursors. Thus, the African origin of P. vivax not only explains the distribution of the Duffy-negative genotype but also provides new insight into the history and status of P. vivax malaria in Africa and efforts geared toward its eradication.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK; Centre for Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | | | - Richard L Culleton
- Division of Parasitology, Proteo-Science Centre, Ehime University, 454 Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Kuesap J, Suphakhonchuwong N, Rungsihirunrat K. Genetic polymorphisms of Plasmodium vivax ookinete (sexual stage) surface proteins (Pvs25 and Pvs28) from Thailand. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105558. [PMID: 38244749 DOI: 10.1016/j.meegid.2024.105558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Plasmodium vivax is the most geographically widespread malaria parasite in human presently. The ookinete surface proteins of sexual stage of malaria parasites, Pvs25 and Pvs28, are candidates for the transmission blocking vaccine. The antigenic variation in population might be barrier for vaccine development. The objective of this study was to investigate the genetic diversity of Pvs25 and Pvs28 in endemic areas of Thailand. P. vivax clinical isolates collected from Thai-neighboring border areas were analyzed using polymerase chain reaction and sequencing method. Three and 14 amino acid substitutions were observed in 43 Pvs25 and 48 Pvs28 sequences, respectively. Three haplotypes in Pvs25 and 14 haplotypes with 5-7 GSGGE/D tandem repeats in Pvs28 were identified. The nucleotide diversity of pvs25 (π = 0.00059) had lower level than pvs28 (π = 0.00517). Tajima's D value for both pvs25 and pvs28 genes were negative while no significant difference was found (P > 0.10). Low genetic diversity was found in pvs25 and pvs28 genes in Thailand. The finding of the most frequent amino acid substitutions was consistent with global isolates. Therefore, the data could be helpful in developing of effective transmission blocking vaccine in malaria endemic areas.
Collapse
Affiliation(s)
- Jiraporn Kuesap
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand.
| | | | | |
Collapse
|
5
|
Cepeda AS, Mello B, Pacheco MA, Luo Z, Sullivan SA, Carlton JM, Escalante AA. The Genome of Plasmodium gonderi: Insights into the Evolution of Human Malaria Parasites. Genome Biol Evol 2024; 16:evae027. [PMID: 38376987 PMCID: PMC10901558 DOI: 10.1093/gbe/evae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
Plasmodium species causing malaria in humans are not monophyletic, sharing common ancestors with nonhuman primate parasites. Plasmodium gonderi is one of the few known Plasmodium species infecting African old-world monkeys that are not found in apes. This study reports a de novo assembled P. gonderi genome with complete chromosomes. The P. gonderi genome shares codon usage, syntenic blocks, and other characteristics with the human parasites Plasmodium ovale s.l. and Plasmodium malariae, also of African origin, and the human parasite Plasmodium vivax and species found in nonhuman primates from Southeast Asia. Using phylogenetically aware methods, newly identified syntenic blocks were found enriched with conserved metabolic genes. Regions outside those blocks harbored genes encoding proteins involved in the vertebrate host-Plasmodium relationship undergoing faster evolution. Such genome architecture may have facilitated colonizing vertebrate hosts. Phylogenomic analyses estimated the common ancestor between P. vivax and an African ape parasite P. vivax-like, within the Asian nonhuman primates parasites clade. Time estimates incorporating P. gonderi placed the P. vivax and P. vivax-like common ancestor in the late Pleistocene, a time of active migration of hominids between Africa and Asia. Thus, phylogenomic and time-tree analyses are consistent with an Asian origin for P. vivax and an introduction of P. vivax-like into Africa. Unlike other studies, time estimates for the clade with Plasmodium falciparum, the most lethal human malaria parasite, coincide with their host species radiation, African hominids. Overall, the newly assembled genome presented here has the quality to support comparative genomic investigations in Plasmodium.
Collapse
Affiliation(s)
- Axl S Cepeda
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| | - Beatriz Mello
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| | - Zunping Luo
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Steven A Sullivan
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Jane M Carlton
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| |
Collapse
|
6
|
Aoki K, Takahata N, Oota H, Wakano JY, Feldman MW. Infectious diseases may have arrested the southward advance of microblades in Upper Palaeolithic East Asia. Proc Biol Sci 2023; 290:20231262. [PMID: 37644833 PMCID: PMC10465978 DOI: 10.1098/rspb.2023.1262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
An unsolved archaeological puzzle of the East Asian Upper Palaeolithic is why the southward expansion of an innovative lithic technology represented by microblades stalled at the Qinling-Huaihe Line. It has been suggested that the southward migration of foragers with microblades stopped there, which is consistent with ancient DNA studies showing that populations to the north and south of this line had differentiated genetically by 19 000 years ago. Many infectious pathogens are believed to have been associated with hominins since the Palaeolithic, and zoonotic pathogens in particular are prevalent at lower latitudes, which may have produced a disease barrier. We propose a mathematical model to argue that mortality due to infectious diseases may have arrested the wave-of-advance of the technologically advantaged foragers from the north.
Collapse
Affiliation(s)
- Kenichi Aoki
- Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Naoyuki Takahata
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0116, Japan
| | - Hiroki Oota
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Joe Yuichiro Wakano
- School of Interdisciplinary Mathematical Sciences, Meiji University, Nakano, Tokyo 164-8525, Japan
| | | |
Collapse
|
7
|
Pacheco MA, Escalante AA. Origin and diversity of malaria parasites and other Haemosporida. Trends Parasitol 2023; 39:501-516. [PMID: 37202254 DOI: 10.1016/j.pt.2023.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/20/2023]
Abstract
Symbionts, including parasites, are ubiquitous in all world ecosystems. Understanding the diversity of symbiont species addresses diverse questions, from the origin of infectious diseases to inferring processes shaping regional biotas. Here, we review the current approaches to studying Haemosporida's species diversity and evolutionary history. Despite the solid knowledge of species linked to diseases, such as the agents of human malaria, studies on haemosporidian phylogeny, diversity, ecology, and evolution are still limited. The available data, however, indicate that Haemosporida is an extraordinarily diverse and cosmopolitan clade of symbionts. Furthermore, this clade seems to have originated with their vertebrate hosts, particularly birds, as part of complex community level processes that we are still characterizing.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA.
| | - Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA.
| |
Collapse
|
8
|
Boualam MA, Heitzmann A, Mousset F, Aboudharam G, Drancourt M, Pradines B. Use of rapid diagnostic tests for the detection of ancient malaria infections in dental pulp from the sixth century in Versailles, France. Malar J 2023; 22:151. [PMID: 37161537 PMCID: PMC10169320 DOI: 10.1186/s12936-023-04582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Paleomicrobiological data have clarified that Plasmodium spp. was circulating in the past in southern European populations, which are now devoid of malaria. The aim of this study was to evaluate the efficacy of immunodetection and, more particularly, rapid diagnostic tests (RDT), in order to further assess Plasmodium infections in ancient northern European populations. METHODS A commercially available RDT, PALUTOP® + 4 OPTIMA, which is routinely used to detect malaria, was used to detect Plasmodium antigens from proteins recovered from ancient specimens extracted from 39 dental pulp samples. These samples were collected from 39 individuals who were buried in the sixth century, near the site of the current Palace of Versailles in France. Positive and negative controls were also used. Antigens detected were quantified using chemiluminescence imaging system analysis. RESULTS Plasmodium antigens were detected in 14/39 (35.9%) individuals, including Plasmodium vivax antigens in 11 individuals and Plasmodium falciparum antigens co-detected in two individuals, while Pan-Plasmodium antigens were detected in three individuals. Controls all yielded expected results. CONCLUSIONS The data reported here showed that RDTs are a suitable tool for detecting Plasmodium spp. antigens in ancient dental pulp samples, and demonstrated the existence of malaria in Versailles, France, in the sixth century. Plasmodium vivax, which is regarded as being responsible for an attenuated form of malaria and less deadly forms, was the most prevalent species. This illustrates, for the first time in ancient populations, co-infection with P. falciparum, bringing into question the climate-driven ecosystems prevailing at that time in the Versailles area.
Collapse
Affiliation(s)
- Mahmoud A Boualam
- IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Annick Heitzmann
- Direction du Patrimoine et des Jardins, Château de Versailles, Place d'Armes, 78008, Versailles, France
| | - Florence Mousset
- Direction régionale des affaires culturelles d'Île-de-France, Service Régional de l'archéologie, 311 Rue Le Peletier, 75009, Paris, France
| | - Gérard Aboudharam
- IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Bd Jean Moulin, 13005, Marseille, France
- Ecole de Médecine Dentaire, Aix-Marseille Univ, Bd Jean Moulin, 13005, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Bruno Pradines
- IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.
- Unité parasitologie et entomologie, Département microbiologie et maladies infectieuses, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.
- Centre national de référence du paludisme, 19-21 Bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
9
|
Wang S, Tian P, Li S, Liu H, Guo X, Huang F. Genetic diversity of transmission-blocking vaccine candidate antigens Pvs25 and Pvs28 in Plasmodium vivax isolates from China. BMC Infect Dis 2022; 22:944. [PMID: 36527077 PMCID: PMC9755777 DOI: 10.1186/s12879-022-07931-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transmission-blocking vaccines (TBVs) target the sexual stages of malaria parasites to reduce or interrupt the transmission cycle in human and mosquito populations. The genetic diversity of TBVs candidate antigens, Pvs25 and Pvs28, in Plasmodium vivax could provide evidence for the development of TBVs. METHODS Dry blood spots from P. vivax patients were collected from Dandong, Suining, Hainan, Nyingchi, Tengchong, and Yingjiang in China. The pvs25 and pvs28 genes were amplified and sequenced. The genetic diversity of pvs25 and pvs28 were analyzed using DNASTAR, MEGA6, and DnaSP 5.0 programs. RESULTS A total of 377 samples were collected, among which 324 and 272 samples were successfully amplified in the pvs25 and pvs28 genes, respectively. Eight haplotypes were identified in Pvs25, for which the predominant mutation was I130T with 100% prevalence. A variety of 22 haplotypes in Pvs28 were identified. The number of GSGGE/D repeats of Pvs28 was a range of 4-8, among which, high (7-8) and low (4-5) copy numbers of tandem repeats were found in haplotypes H2 and H17, respectively. The nucleotide diversity of pvs28 (π = 0.00305 ± 0.00061) was slightly higher than that of pvs25 (π = 0.00146 ± 0.00007), thus they were not significantly different (P > 0.05). The Tajima's D value of pvs25 was positive whereas pvs28 was negative, which indicated that both genes were affected by natural selection. CONCLUSION The genetic diversity of pvs25 and pvs28 genes in China was relatively limited, which provided valuable information for TBVs design and optimization.
Collapse
Affiliation(s)
- Siqi Wang
- grid.198530.60000 0000 8803 2373National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 China ,grid.508378.1Chinese Center for Tropical Diseases Research, Shanghai, 200025 China ,grid.508378.1NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 China ,grid.508378.1WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 China
| | - Peng Tian
- grid.464500.30000 0004 1758 1139Yunnan Institute of Parasitic Diseases, Pu’er, 665000 China
| | - Shigang Li
- Yingjiang County Center for Disease Control and Prevention, Yingjiang, 679300 China
| | - Hui Liu
- grid.464500.30000 0004 1758 1139Yunnan Institute of Parasitic Diseases, Pu’er, 665000 China
| | - Xiangrui Guo
- Yingjiang County Center for Disease Control and Prevention, Yingjiang, 679300 China
| | - Fang Huang
- grid.430328.eShanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336 China
| |
Collapse
|
10
|
The evolution of primate malaria parasites: A study on the origin and diversification of Plasmodium in lemurs. Mol Phylogenet Evol 2022; 174:107551. [PMID: 35690381 DOI: 10.1016/j.ympev.2022.107551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
Among the primate malaria parasites, those found in lemurs have been neglected. Here, six Plasmodium lineages were detected in 169 lemurs. Nearly complete mitochondrial genomes (mtDNA, ≈6Kb) and apicoplast loci (≈6Kb) were obtained from these parasites and other Haemosporida species. Plasmodium spp. in lemurs are a diverse clade that shares a common ancestor with other primate parasites from continental Africa. Time-trees for the mtDNA were estimated under different scenarios, and the origin of the lemur clade coincides with the proposed time of their host species' most recent common ancestor (Lemuridae-Indriidae). A time tree with fewer taxa was estimated with mtDNA + Apicoplast loci. Those time estimates overlapped but were younger and had narrower credibility intervals than those from mtDNA alone. Importantly, the mtDNA + Apicoplast estimates that the clade including the most lethal malaria parasite in humans, Plasmodium falciparum, may have originated with Homininae (African apes). Finally, the phylogenetic congruence of the lemurs and their parasites was explored. A statistically significant scenario identified four cospeciation, two duplications, four transfer (host-switches), and zero loss events. Thus, the parasite species sampled in lemurs seem to be radiating with their hosts.
Collapse
|
11
|
Escalante AA, Cepeda AS, Pacheco MA. Why Plasmodium vivax and Plasmodium falciparum are so different? A tale of two clades and their species diversities. Malar J 2022; 21:139. [PMID: 35505356 PMCID: PMC9066883 DOI: 10.1186/s12936-022-04130-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
The global malaria burden sometimes obscures that the genus Plasmodium comprises diverse clades with lineages that independently gave origin to the extant human parasites. Indeed, the differences between the human malaria parasites were highlighted in the classical taxonomy by dividing them into two subgenera, the subgenus Plasmodium, which included all the human parasites but Plasmodium falciparum that was placed in its separate subgenus, Laverania. Here, the evolution of Plasmodium in primates will be discussed in terms of their species diversity and some of their distinct phenotypes, putative molecular adaptations, and host–parasite biocenosis. Thus, in addition to a current phylogeny using genome-level data, some specific molecular features will be discussed as examples of how these parasites have diverged. The two subgenera of malaria parasites found in primates, Plasmodium and Laverania, reflect extant monophyletic groups that originated in Africa. However, the subgenus Plasmodium involves species in Southeast Asia that were likely the result of adaptive radiation. Such events led to the Plasmodium vivax lineage. Although the Laverania species, including P. falciparum, has been considered to share “avian characteristics,” molecular traits that were likely in the common ancestor of primate and avian parasites are sometimes kept in the Plasmodium subgenus while being lost in Laverania. Assessing how molecular traits in the primate malaria clades originated is a fundamental science problem that will likely provide new targets for interventions. However, given that the genus Plasmodium is paraphyletic (some descendant groups are in other genera), understanding the evolution of malaria parasites will benefit from studying “non-Plasmodium” Haemosporida.
Collapse
Affiliation(s)
- Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA.
| | - Axl S Cepeda
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA
| |
Collapse
|
12
|
Reid MJC, Switzer WM, Alonso SK, Lowenberger CA, Schillaci MA. Evolutionary history of orangutan plasmodia revealed by phylogenetic analysis of complete mtDNA genomes and new biogeographical divergence dating calibration models. Am J Primatol 2022; 84:e23298. [PMID: 34227139 PMCID: PMC11318573 DOI: 10.1002/ajp.23298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/30/2021] [Accepted: 06/16/2021] [Indexed: 11/06/2022]
Abstract
During the past 15 years, researchers have shown a renewed interest in the study of the Plasmodium parasites that infect orangutans. Most recently, studies examined the phylogenetic relationships and divergence dates of these parasites in orangutans using complete mitochondrial DNA genomes. Questions regarding the dating of these parasites, however, remain. In the present study, we provide a new calibration model for dating the origins of Plasmodium parasites in orangutans using a modified date range for the origin of macaques in Asia. Our Bayesian phylogenetic analyses of complete Plasmodium sp. mitochondrial DNA genomes inferred two clades of plasmodia in orangutans (Pongo 1 and Pongo 2), and that these clades likely represent the previously identified species Plasmodium pitheci and Plasmodium silvaticum. However, we cannot identify which Pongo clade is representative of the morphologically described species. The most recent common ancestor of both Pongo sp. plasmodia, Plasmodium. hylobati, and Plasmodium. inui dates to 3-3.16 million years ago (mya) (95% highest posterior density [HPD]: 2.09-4.08 mya). The Pongo 1 parasite diversified 0.33-0.36 mya (95% HPD: 0.12-0.63), while the Pongo 2 parasite diversified 1.15-1.22 mya (95% HPD: 0.63-1.82 mya). It now seems likely that the monkey Plasmodium (P. inui) is the result of a host switch event from the Pongo 2 parasite to sympatric monkeys, or P. hylobati. Our new estimates for the divergence of orangutan malaria parasites, and subsequent diversification, are all several hundred thousand years later than previous Bayesian estimates.
Collapse
Affiliation(s)
- Michael J. C. Reid
- School of Interdisciplinary Studies, Durham College, Oshawa, Ontario, Canada
- Canadian Cameroon Ape Network, Toronto, Ontario, Canada
| | - William M. Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Carl A. Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael A. Schillaci
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Trájer AJ. The changing risk patterns of Plasmodium vivax malaria in Greece due to climate change. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:665-690. [PMID: 32683891 DOI: 10.1080/09603123.2020.1793918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
It has great importance to study the potential effects of climate change on Plasmodium vivax malaria in Greece because the country can be the origin of the spread of vivax malaria to the northern areas. The potential lengths of the transmission seasons of Plasmodium vivax malaria were forecasted for 2041-2060 and 2061-2080 and were combined. The potential ranges were predicted by Climate Envelope Modelling Method. The models show moderate areal increase and altitudinal shift in the malaria-endemic areas in Greece in the future. The length of the transmission season is predicted to increase by 1 to 2 months, mainly in the mid-elevation regions and the Aegean Archipelago. The combined factors also predict the decrease of vivax malaria-free area in Greece. It can be concluded that rather the elongation of the transmission season will lead to an increase of the malaria risk in Greece than the increase in the suitability values.
Collapse
Affiliation(s)
- Attila J Trájer
- Institute of Environmental Engineering, University of Pannonia, Veszprém, Hungary
- Department of Limnology, University of Pannonia, Veszprém, Hungary
| |
Collapse
|
14
|
Voinson M, Nunn CL, Goldberg A. Primate malarias as a model for cross-species parasite transmission. eLife 2022; 11:e69628. [PMID: 35086643 PMCID: PMC8798051 DOI: 10.7554/elife.69628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
Parasites regularly switch into new host species, representing a disease burden and conservation risk to the hosts. The distribution of these parasites also gives insight into characteristics of ecological networks and genetic mechanisms of host-parasite interactions. Some parasites are shared across many species, whereas others tend to be restricted to hosts from a single species. Understanding the mechanisms producing this distribution of host specificity can enable more effective interventions and potentially identify genetic targets for vaccines or therapies. As ecological connections between human and local animal populations increase, the risk to human and wildlife health from novel parasites also increases. Which of these parasites will fizzle out and which have the potential to become widespread in humans? We consider the case of primate malarias, caused by Plasmodium parasites, to investigate the interacting ecological and evolutionary mechanisms that put human and nonhuman primates at risk for infection. Plasmodium host switching from nonhuman primates to humans led to ancient introductions of the most common malaria-causing agents in humans today, and new parasite switching is a growing threat, especially in Asia and South America. Based on a wild host-Plasmodium occurrence database, we highlight geographic areas of concern and potential areas to target further sampling. We also discuss methodological developments that will facilitate clinical and field-based interventions to improve human and wildlife health based on this eco-evolutionary perspective.
Collapse
Affiliation(s)
- Marina Voinson
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Duke Global Health, Duke UniversityDurhamUnited States
| | - Amy Goldberg
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| |
Collapse
|
15
|
OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6620861. [PMID: 35767876 DOI: 10.1093/femsre/fuac015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
|
16
|
Progress in understanding the phylogeny of the Plasmodium vivax lineage. Parasitol Int 2021; 87:102507. [PMID: 34781012 DOI: 10.1016/j.parint.2021.102507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022]
Abstract
There has been some controversy about the evolutionary origin of Plasmodium vivax, particularly whether it is of Asian or African origin. Recently, a new malaria species which closely related to ape P. vivax was found in chimpanzees, in addition, the host switches of P. vivax from ape to human was confirmed. These findings support the African origin of P. vivax. Previous phylogenetic analyses have shown the position of P. vivax within the Asian primate malaria parasite clade. This suggested an Asian origin of P. vivax. Recent analyses using massive gene data, however, positioned P. vivax after the branching of the African Old World monkey parasite P. gonderi, and before the branching of the common ancestor of Asian primate malaria parasites. This position is consistent with an African origin of P. vivax. We here review the history of phylogenetic analyses on P. vivax, validate previous analyses, and finally present a definitive analysis using currently available data that indicate a tree in which P. vivax is positioned at the base of the Asian primate malaria parasite clade, and thus that is consistent with an African origin of P. vivax.
Collapse
|
17
|
Vythilingam I, Chua TH, Liew JWK, Manin BO, Ferguson HM. The vectors of Plasmodium knowlesi and other simian malarias Southeast Asia: challenges in malaria elimination. ADVANCES IN PARASITOLOGY 2021; 113:131-189. [PMID: 34620382 DOI: 10.1016/bs.apar.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plasmodium knowlesi, a simian malaria parasite of great public health concern has been reported from most countries in Southeast Asia and exported to various countries around the world. Currently P. knowlesi is the predominant species infecting humans in Malaysia. Besides this species, other simian malaria parasites such as P. cynomolgi and P. inui are also infecting humans in the region. The vectors of P. knowlesi and other Asian simian malarias belong to the Leucosphyrus Group of Anopheles mosquitoes which are generally forest dwelling species. Continual deforestation has resulted in these species moving into forest fringes, farms, plantations and human settlements along with their macaque hosts. Limited studies have shown that mosquito vectors are attracted to both humans and macaque hosts, preferring to bite outdoors and in the early part of the night. We here review the current status of simian malaria vectors and their parasites, knowledge of vector competence from experimental infections and discuss possible vector control measures. The challenges encountered in simian malaria elimination are also discussed. We highlight key knowledge gaps on vector distribution and ecology that may impede effective control strategies.
Collapse
Affiliation(s)
- Indra Vythilingam
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia.
| | - Tock Hing Chua
- Department of Pathobiology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia.
| | - Jonathan Wee Kent Liew
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia; Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Benny O Manin
- Department of Pathobiology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
18
|
Mourier T, de Alvarenga DAM, Kaushik A, de Pina-Costa A, Douvropoulou O, Guan Q, Guzmán-Vega FJ, Forrester S, de Abreu FVS, Júnior CB, de Souza Junior JC, Moreira SB, Hirano ZMB, Pissinatti A, Ferreira-da-Cruz MDF, de Oliveira RL, Arold ST, Jeffares DC, Brasil P, de Brito CFA, Culleton R, Daniel-Ribeiro CT, Pain A. The genome of the zoonotic malaria parasite Plasmodium simium reveals adaptations to host switching. BMC Biol 2021; 19:219. [PMID: 34592986 PMCID: PMC8485552 DOI: 10.1186/s12915-021-01139-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/03/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Plasmodium simium, a malaria parasite of non-human primates (NHP), was recently shown to cause zoonotic infections in humans in Brazil. We sequenced the P. simium genome to investigate its evolutionary history and to identify any genetic adaptions that may underlie the ability of this parasite to switch between host species. RESULTS Phylogenetic analyses based on whole genome sequences of P. simium from humans and NHPs reveals that P. simium is monophyletic within the broader diversity of South American Plasmodium vivax, suggesting P. simium first infected NHPs as a result of a host switch of P. vivax from humans. The P. simium isolates show the closest relationship to Mexican P. vivax isolates. Analysis of erythrocyte invasion genes reveals differences between P. vivax and P. simium, including large deletions in the Duffy-binding protein 1 (DBP1) and reticulocyte-binding protein 2a genes of P. simium. Analysis of P. simium isolated from NHPs and humans revealed a deletion of 38 amino acids in DBP1 present in all human-derived isolates, whereas NHP isolates were multi-allelic. CONCLUSIONS Analysis of the P. simium genome confirmed a close phylogenetic relationship between P. simium and P. vivax, and suggests a very recent American origin for P. simium. The presence of the DBP1 deletion in all human-derived isolates tested suggests that this deletion, in combination with other genetic changes in P. simium, may facilitate the invasion of human red blood cells and may explain, at least in part, the basis of the recent zoonotic infections.
Collapse
Affiliation(s)
- Tobias Mourier
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Denise Anete Madureira de Alvarenga
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, MG, 30190-009, Brazil
| | - Abhinav Kaushik
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Anielle de Pina-Costa
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Centro Universitário Serra dos Órgãos (UNIFESO), Teresópolis, RJ, 25964-004, Brazil
| | - Olga Douvropoulou
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Qingtian Guan
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Francisco J Guzmán-Vega
- Computational Bioscience Research Center, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sarah Forrester
- Department of Biology and York Biomedical Research Institute, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Filipe Vieira Santos de Abreu
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Cesare Bianco Júnior
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório de Pesquisa em Malária, IOC, Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Julio Cesar de Souza Junior
- Universidade Regional de Blumenau (FURB), Centro de Pesquisas Biológicas de Indaial (CEPESBI)/ Projeto bugio, Blumenau, Indaial, SC, Brazil
| | | | - Zelinda Maria Braga Hirano
- Universidade Regional de Blumenau (FURB), Centro de Pesquisas Biológicas de Indaial (CEPESBI)/ Projeto bugio, Blumenau, Indaial, SC, Brazil
| | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro (CPRJ/Inea), Guapimirim, RJ, 25940-000, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório de Pesquisa em Malária, IOC, Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Ricardo Lourenço de Oliveira
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Stefan T Arold
- Computational Bioscience Research Center, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, 34090, Montpellier, France
| | - Daniel C Jeffares
- Department of Biology and York Biomedical Research Institute, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Patrícia Brasil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Cristiana Ferreira Alves de Brito
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, MG, 30190-009, Brazil
| | - Richard Culleton
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Cláudio Tadeu Daniel-Ribeiro
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil.
- Laboratório de Pesquisa em Malária, IOC, Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil.
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo, Japan.
| |
Collapse
|
19
|
Rougeron V, Boundenga L, Arnathau C, Durand P, Renaud F, Prugnolle F. A population genetic perspective on the origin, spread and adaptation of the human malaria agents Plasmodium falciparum and Plasmodium vivax. FEMS Microbiol Rev 2021; 46:6373923. [PMID: 34550355 DOI: 10.1093/femsre/fuab047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
Malaria is considered one of the most important scourges that humanity has faced during its history, being responsible every year for numerous deaths worldwide. The disease is caused by protozoan parasites, among which two species are responsible of the majority of the burden, Plasmodium falciparum and Plasmodium vivax. For these two parasite species, the questions of their origin (how and when they appeared in humans), of their spread throughout the world, as well as how they have adapted to humans have long been of interest to the scientific community. Here, we review the current knowledge that has accumulated on these different questions, thanks in particular to the analysis of the genetic and genomic variability of these parasites and comparison with related Plasmodium species infecting other host species (like non-human primates). In this paper we review the existing body of knowledge, including current research dealing with these questions, focusing particularly on genetic analysis and genomic variability of these parasites and comparison with related Plasmodium species infecting other species of host (such as non-human primates).
Collapse
Affiliation(s)
- Virginie Rougeron
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Larson Boundenga
- CIRMF, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Céline Arnathau
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Patrick Durand
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - François Renaud
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Franck Prugnolle
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| |
Collapse
|
20
|
Abstract
African apes harbor at least twelve Plasmodium species, some of which have been a source of human infection. It is now well established that Plasmodium falciparum emerged following the transmission of a gorilla parasite, perhaps within the last 10,000 years, while Plasmodium vivax emerged earlier from a parasite lineage that infected humans and apes in Africa before the Duffy-negative mutation eliminated the parasite from humans there. Compared to their ape relatives, both human parasites have greatly reduced genetic diversity and an excess of nonsynonymous mutations, consistent with severe genetic bottlenecks followed by rapid population expansion. A putative new Plasmodium species widespread in chimpanzees, gorillas, and bonobos places the origin of Plasmodium malariae in Africa. Here, we review what is known about the origins and evolutionary history of all human-infective Plasmodium species, the time and circumstances of their emergence, and the diversity, host specificity, and zoonotic potential of their ape counterparts.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL, United Kingdom
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL, United Kingdom
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
21
|
Antinori S, Bonazzetti C, Giacomelli A, Corbellino M, Galli M, Parravicini C, Ridolfo AL. Non-human primate and human malaria: past, present and future. J Travel Med 2021; 28:6162451. [PMID: 33693917 DOI: 10.1093/jtm/taab036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Studies of the malaria parasites infecting various non-human primates (NHPs) have increased our understanding of the origin, biology and pathogenesis of human Plasmodium parasites.This review considers the major discoveries concerning NHP malaria parasites, highlights their relationships with human malaria and considers the impact that this may have on attempts to eradicate the disease. RESULTS The first description of NHP malaria parasites dates back to the early 20th century. Subsequently, experimental and fortuitous findings indicating that some NHP malaria parasites can be transmitted to humans have raised concerns about the possible impact of a zoonotic malaria reservoir on efforts to control human malaria.Advances in molecular techniques over the last 15 years have contributed greatly to our knowledge of the existence and geographical distribution of numerous Plasmodium species infecting NHPs, and extended our understanding of their close phylogenetic relationships with human malaria parasites. The clinical application of such techniques has also made it possible to document ongoing spillovers of NHP malaria parasites (Plasmodium knowlesi, P. cynomolgi, P. simium, P. brasilianum) in humans living in or near the forests of Asia and South America, thus confirming that zoonotic malaria can undermine efforts to eradicate human malaria. CONCLUSIONS Increasing molecular research supports the prophetic intuition of the pioneers of modern malariology who saw zoonotic malaria as a potential obstacle to the full success of malaria eradication programmes. It is, therefore, important to continue surveillance and research based on one-health approaches in order to improve our understanding of the complex interactions between NHPs, mosquito vectors and humans during a period of ongoing changes in the climate and the use of land, monitor the evolution of zoonotic malaria, identify the populations most at risk and implement appropriate preventive strategies.
Collapse
Affiliation(s)
- Spinello Antinori
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milano, Italy.,III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Cecilia Bonazzetti
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milano, Italy.,III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Andrea Giacomelli
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milano, Italy.,III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Mario Corbellino
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Massimo Galli
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milano, Italy.,III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Carlo Parravicini
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Anna Lisa Ridolfo
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milan, Italy
| |
Collapse
|
22
|
Cepeda AS, Andreína Pacheco M, Escalante AA, Alzate JF, Matta NE. The apicoplast of Haemoproteus columbae: A comparative study of this organelle genome in Haemosporida. Mol Phylogenet Evol 2021; 161:107185. [PMID: 33932614 DOI: 10.1016/j.ympev.2021.107185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Apicomplexa is a phylum of parasitic protozoa; among them are the order Haemosporida, vector-borne parasites that include those that cause malaria (genus Plasmodium). Most Apicomplexa species have a non-photosynthetic plastid or apicoplast. Given its unique metabolic pathways, this organelle is considered a target for malaria therapeutics. Regardless of its importance, there is a paucity of complete apicoplast genome data hindering comparative studies. Here, the Haemoproteus (Haemoproteus) columbae apicoplast genome (lineage HAECOL1) was obtained using next-generation sequencing. This genome was included in a comparative analysis with other plastids. This 29.8 kb circular genome shares the same structure found in Plasmodium parasites. It is A + T rich (87.7%), comparable but at the higher end of A + T content observed in Plasmodium species (85.5-87.2%). As expected, considering its high A + T content, the synonymous codon usage (RSCU) and the effective number of codons (ENc) showed a moderate codon bias. Several apicoplast genes have a phylogenetic signal. However, unlike mitochondrial genes, single-gene phylogenies have low support in haemosporidian clades that diverged recently. The H. columbae apicoplast genome suggests that the apicoplast function may be conserved across Haemosporida. This parasite could be a model to study this organelle in a non-mammalian system.
Collapse
Affiliation(s)
- Axl S Cepeda
- Departamento de Biología, Grupo de Investigación Caracterización Genética e Inmunología, Sede Bogotá-Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia; Department of Biology, Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, United States.
| | - M Andreína Pacheco
- Department of Biology, Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, United States
| | - Ananías A Escalante
- Department of Biology, Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, United States
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica - CNSG, SIU, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Nubia E Matta
- Departamento de Biología, Grupo de Investigación Caracterización Genética e Inmunología, Sede Bogotá-Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
23
|
Daron J, Boissière A, Boundenga L, Ngoubangoye B, Houze S, Arnathau C, Sidobre C, Trape JF, Durand P, Renaud F, Fontaine MC, Prugnolle F, Rougeron V. Population genomic evidence of Plasmodium vivax Southeast Asian origin. SCIENCE ADVANCES 2021; 7:7/18/eabc3713. [PMID: 33910900 PMCID: PMC8081369 DOI: 10.1126/sciadv.abc3713] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/10/2021] [Indexed: 05/15/2023]
Abstract
Plasmodium vivax is the most common and widespread human malaria parasite. It was recently proposed that P. vivax originates from sub-Saharan Africa based on the circulation of its closest genetic relatives (P. vivax-like) among African great apes. However, the limited number of genetic markers and samples investigated questions the robustness of this hypothesis. Here, we extensively characterized the genomic variations of 447 human P. vivax strains and 19 ape P. vivax-like strains collected worldwide. Phylogenetic relationships between human and ape Plasmodium strains revealed that P. vivax is a sister clade of P. vivax-like, not included within the radiation of P. vivax-like By investigating various aspects of P. vivax genetic variation, we identified several notable geographical patterns in summary statistics in function of the increasing geographic distance from Southeast Asia, suggesting that P. vivax may have derived from a single area in Asia through serial founder effects.
Collapse
Affiliation(s)
- Josquin Daron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France.
| | - Anne Boissière
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Larson Boundenga
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | | | - Sandrine Houze
- Service de Parasitologie-mycologie CNR du Paludisme, AP-HP Hôpital Bichat, 46 rue H. Huchard, 75877 Paris Cedex 18, France
| | - Celine Arnathau
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Christine Sidobre
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
| | - Jean-François Trape
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
| | - Patrick Durand
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - François Renaud
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Michael C Fontaine
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, Netherlands
| | - Franck Prugnolle
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Virginie Rougeron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France.
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| |
Collapse
|
24
|
Su XZ, Wu J. Zoonotic Transmissions and Host Switches of Malaria Parasites. ZOONOSES (BURLINGTON, MASS.) 2021; 1. [PMID: 35282332 DOI: 10.15212/zoonoses-2021-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Malaria is a deadly disease that affects the health of hundreds of millions of people annually. There are five Plasmodium parasite species that can naturally infect humans, including Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale and Plasmodium knowlesi. Some of the parasites can also infect various non-human primates. Parasites mainly infecting monkeys such as Plasmodium cynomolgi (in fact P. knowlesi was considered as a parasite of monkeys for years) can also be transmitted to human hosts. Recently, many new Plasmodium species were discovered in African apes, and it is possible that some of the parasites can be transmitted to humans in the future. Here, we searched PubMed and the internet via Google and selected articles concerning zoonotic transmission and evolution of selected malaria parasite species. We reviewed the current advances in the relevant topics emphasizing on transmissions of malaria parasites between humans and non-human primates. We also briefly discuss the transmissions of some avian malaria parasites between wild birds and domestic fowls. Zoonotic malaria transmissions are widespread, which poses a threat to public health. More studies on parasite species identification in non-human primates, transmission, and evolution are needed to reduce or prevent transmission of malaria parasites from non-human primates to humans.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892-8132, USA
| |
Collapse
|
25
|
Su XZ, Zhang C, Joy DA. Host-Malaria Parasite Interactions and Impacts on Mutual Evolution. Front Cell Infect Microbiol 2020; 10:587933. [PMID: 33194831 PMCID: PMC7652737 DOI: 10.3389/fcimb.2020.587933] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Malaria is the most deadly parasitic disease, affecting hundreds of millions of people worldwide. Malaria parasites have been associated with their hosts for millions of years. During the long history of host-parasite co-evolution, both parasites and hosts have applied pressure on each other through complex host-parasite molecular interactions. Whereas the hosts activate various immune mechanisms to remove parasites during an infection, the parasites attempt to evade host immunity by diversifying their genome and switching expression of targets of the host immune system. Human intervention to control the disease such as antimalarial drugs and vaccination can greatly alter parasite population dynamics and evolution, particularly the massive applications of antimalarial drugs in recent human history. Vaccination is likely the best method to prevent the disease; however, a partially protective vaccine may have unwanted consequences that require further investigation. Studies of host-parasite interactions and co-evolution will provide important information for designing safe and effective vaccines and for preventing drug resistance. In this essay, we will discuss some interesting molecules involved in host-parasite interactions, including important parasite antigens. We also discuss subjects relevant to drug and vaccine development and some approaches for studying host-parasite interactions.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cui Zhang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Deirdre A Joy
- Parasitology and International Programs Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
van Dorp L, Gelabert P, Rieux A, de Manuel M, de-Dios T, Gopalakrishnan S, Carøe C, Sandoval-Velasco M, Fregel R, Olalde I, Escosa R, Aranda C, Huijben S, Mueller I, Marquès-Bonet T, Balloux F, Gilbert MTP, Lalueza-Fox C. Plasmodium vivax Malaria Viewed through the Lens of an Eradicated European Strain. Mol Biol Evol 2020; 37:773-785. [PMID: 31697387 PMCID: PMC7038659 DOI: 10.1093/molbev/msz264] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The protozoan Plasmodium vivax is responsible for 42% of all cases of malaria outside Africa. The parasite is currently largely restricted to tropical and subtropical latitudes in Asia, Oceania, and the Americas. Though, it was historically present in most of Europe before being finally eradicated during the second half of the 20th century. The lack of genomic information on the extinct European lineage has prevented a clear understanding of historical population structuring and past migrations of P. vivax. We used medical microscope slides prepared in 1944 from malaria-affected patients from the Ebro Delta in Spain, one of the last footholds of malaria in Europe, to generate a genome of a European P. vivax strain. Population genetics and phylogenetic analyses placed this strain basal to a cluster including samples from the Americas. This genome allowed us to calibrate a genomic mutation rate for P. vivax, and to estimate the mean age of the last common ancestor between European and American strains to the 15th century. This date points to an introduction of the parasite during the European colonization of the Americas. In addition, we found that some known variants for resistance to antimalarial drugs, including Chloroquine and Sulfadoxine, were already present in this European strain, predating their use. Our results shed light on the evolution of an important human pathogen and illustrate the value of antique medical collections as a resource for retrieving genomic information on pathogens from the past.
Collapse
Affiliation(s)
- Lucy van Dorp
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Pere Gelabert
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Adrien Rieux
- CIRAD, UMR PVBMT, St. Pierre de la Réunion, France
| | - Marc de Manuel
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Toni de-Dios
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christian Carøe
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marcela Sandoval-Velasco
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rosa Fregel
- Department of Genetics, Stanford University, Stanford, CA
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Spain
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Raül Escosa
- Consorci de Polítiques Ambientals de les Terres de l'Ebre (COPATE), Deltebre, Spain
| | - Carles Aranda
- Servei de Control de Mosquits, Consell Comarcal del Baix Llobregat, Sant Feliu de Llobregat, Spain
| | - Silvie Huijben
- School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ivo Mueller
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Population Health and Immunity Division, Walter & Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Barcelona Institute of Science and Technology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - François Balloux
- UCL Genetics Institute, University College London, London, United Kingdom
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | |
Collapse
|
27
|
Abstract
Malaria is a vector-borne disease that involves multiple parasite species in a variety of ecological settings. However, the parasite species causing the disease, the prevalence of subclinical infections, the emergence of drug resistance, the scale-up of interventions, and the ecological factors affecting malaria transmission, among others, are aspects that vary across areas where malaria is endemic. Such complexities have propelled the study of parasite genetic diversity patterns in the context of epidemiologic investigations. Importantly, molecular studies indicate that the time and spatial distribution of malaria cases reflect epidemiologic processes that cannot be fully understood without characterizing the evolutionary forces shaping parasite population genetic patterns. Although broad in scope, this review in the Microbiology Spectrum Curated Collection: Advances in Molecular Epidemiology highlights the need for understanding population genetic concepts when interpreting parasite molecular data. First, we discuss malaria complexity in terms of the parasite species involved. Second, we describe how molecular data are changing our understanding of malaria incidence and infectiousness. Third, we compare different approaches to generate parasite genetic information in the context of epidemiologically relevant questions related to malaria control. Finally, we describe a few Plasmodium genomic studies as evidence of how these approaches will provide new insights into the malaria disease dynamics. *This article is part of a curated collection.
Collapse
|
28
|
Kaur H, Sehgal R, Kumar A, Sehgal A, Bharti PK, Bansal D, Mohapatra PK, Mahanta J, Sultan AA. Exploration of genetic diversity of Plasmodium vivax circumsporozoite protein (Pvcsp) and Plasmodium vivax sexual stage antigen (Pvs25) among North Indian isolates. Malar J 2019; 18:308. [PMID: 31492135 PMCID: PMC6731556 DOI: 10.1186/s12936-019-2939-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is one of the important vector-borne diseases with high fatality rates in tropical countries. The pattern of emergence and spread of novel antigenic variants, leading to escape of vaccine-induced immunity might be factors responsible for severe malaria. A high level of polymorphism has been reported among malarial antigens which are under selection pressure imposed by host immunity. There are limited reports available on comparative stage-specific genetic diversity among Plasmodium vivax candidate genes in complicated vivax malaria. The present study was planned to study genetic diversity (Pvcsp and Pvs25) among complicated and uncomplicated P. vivax isolates. METHODS Pvcsp and Pvs2-specific PCRs and DNA sequencing were performed on P. vivax PCR positive samples. Genetic diversity was analysed using appropriate software. RESULTS The present study was carried out on 143 P. vivax clinical isolates, collected from Postgraduate Institute of Medical Education and Research, Chandigarh. Among the classic and variant types of Pvcsp, the VK210 (99%; 115/116) was found to be predominant in both complicated and uncomplicated group isolates. Out of the various peptide repeat motifs (PRMs) observed, GDRADGQPA (PRM1) and GDRAAGQPA (PRM2) was the most widely distributed among the P. vivax isolates. Whereas among the Pvs25 isolates, 100% of double mutants (E97Q/I130T) in both the complicated (45/45) as well as in the uncomplicated (81/81) group was observed. CONCLUSION An analysis of genetic variability enables an understanding of the role of genetic variants in severe vivax malaria.
Collapse
Affiliation(s)
- Hargobinder Kaur
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Archit Kumar
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Sehgal
- Department of Obstt. & Gynae, Government Medical College and Hospital, Chandigarh, India
| | - Praveen K Bharti
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Nagpur Road, Garha, Jabalpur, Madhya Pradesh, India
| | - Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar.,Ministry of Public Health, Doha, Qatar
| | - Pradyumna K Mohapatra
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Post Box no.105, Dibrugarh, Assam, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Post Box no.105, Dibrugarh, Assam, India
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar
| |
Collapse
|
29
|
Harl J, Himmel T, Valkiūnas G, Weissenböck H. The nuclear 18S ribosomal DNAs of avian haemosporidian parasites. Malar J 2019; 18:305. [PMID: 31481072 PMCID: PMC6724295 DOI: 10.1186/s12936-019-2940-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/27/2019] [Indexed: 01/19/2023] Open
Abstract
Background Plasmodium species feature only four to eight nuclear ribosomal units on different chromosomes, which are assumed to evolve independently according to a birth-and-death model, in which new variants originate by duplication and others are deleted throughout time. Moreover, distinct ribosomal units were shown to be expressed during different developmental stages in the vertebrate and mosquito hosts. Here, the 18S rDNA sequences of 32 species of avian haemosporidian parasites are reported and compared to those of simian and rodent Plasmodium species. Methods Almost the entire 18S rDNAs of avian haemosporidians belonging to the genera Plasmodium (7), Haemoproteus (9), and Leucocytozoon (16) were obtained by PCR, molecular cloning, and sequencing ten clones each. Phylogenetic trees were calculated and sequence patterns were analysed and compared to those of simian and rodent malaria species. A section of the mitochondrial CytB was also sequenced. Results Sequence patterns in most avian Plasmodium species were similar to those in the mammalian parasites with most species featuring two distinct 18S rDNA sequence clusters. Distinct 18S variants were also found in Haemoproteus tartakovskyi and the three Leucocytozoon species, whereas the other species featured sets of similar haplotypes. The 18S rDNA GC-contents of the Leucocytozoon toddi complex and the subgenus Parahaemoproteus were extremely high with 49.3% and 44.9%, respectively. The 18S sequences of several species from all three genera showed chimeric features, thus indicating recombination. Conclusion Gene duplication events leading to two diverged main sequence clusters happened independently in at least six out of seven avian Plasmodium species, thus supporting evolution according to a birth-and-death model like proposed for the ribosomal units of simian and rodent Plasmodium species. Patterns were similar in the 18S rDNAs of the Leucocytozoon toddi complex and Haemoproteus tartakovskyi. However, the 18S rDNAs of the other species seem to evolve in concerted fashion like in most eukaryotes, but the presence of chimeric variants indicates that the ribosomal units rather evolve in a semi-concerted manner. The new data may provide a basis for studies testing whether differential expression of distinct 18S rDNA also occurs in avian Plasmodium species and related haemosporidian parasites.
Collapse
Affiliation(s)
- Josef Harl
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Tanja Himmel
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria
| | | | - Herbert Weissenböck
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
30
|
Chaves LB, Perce-da-Silva DDS, Totino PRR, Riccio EKP, Baptista BDO, de Souza ABL, Rodrigues-da-Silva RN, Machado RLD, de Souza RM, Daniel-Ribeiro CT, Banic DM, Pratt-Riccio LR, Lima-Junior JDC. Plasmodium vivax ookinete surface protein (Pvs25) is highly conserved among field isolates from five different regions of the Brazilian Amazon. INFECTION GENETICS AND EVOLUTION 2019; 73:287-294. [DOI: 10.1016/j.meegid.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/29/2022]
|
31
|
Casillas S, Mulet R, Villegas-Mirón P, Hervas S, Sanz E, Velasco D, Bertranpetit J, Laayouni H, Barbadilla A. PopHuman: the human population genomics browser. Nucleic Acids Res 2019; 46:D1003-D1010. [PMID: 29059408 PMCID: PMC5753332 DOI: 10.1093/nar/gkx943] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/04/2017] [Indexed: 12/17/2022] Open
Abstract
The 1000 Genomes Project (1000GP) represents the most comprehensive world-wide nucleotide variation data set so far in humans, providing the sequencing and analysis of 2504 genomes from 26 populations and reporting >84 million variants. The availability of this sequence data provides the human lineage with an invaluable resource for population genomics studies, allowing the testing of molecular population genetics hypotheses and eventually the understanding of the evolutionary dynamics of genetic variation in human populations. Here we present PopHuman, a new population genomics-oriented genome browser based on JBrowse that allows the interactive visualization and retrieval of an extensive inventory of population genetics metrics. Efficient and reliable parameter estimates have been computed using a novel pipeline that faces the unique features and limitations of the 1000GP data, and include a battery of nucleotide variation measures, divergence and linkage disequilibrium parameters, as well as different tests of neutrality, estimated in non-overlapping windows along the chromosomes and in annotated genes for all 26 populations of the 1000GP. PopHuman is open and freely available at http://pophuman.uab.cat.
Collapse
Affiliation(s)
- Sònia Casillas
- Institut de Biotecnologia i de Biomedicina and Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- To whom correspondence should be addressed. Sònia Casillas. Tel: +34 93 5868958; Fax: +34 93 5812011; . Correspondence may also be addressed to Antonio Barbadilla.
| | - Roger Mulet
- Institut de Biotecnologia i de Biomedicina and Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pablo Villegas-Mirón
- Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88 (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Sergi Hervas
- Institut de Biotecnologia i de Biomedicina and Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Esteve Sanz
- Servei de Genòmica i Bioinformàtica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Daniel Velasco
- Institut de Biotecnologia i de Biomedicina and Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jaume Bertranpetit
- Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88 (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Hafid Laayouni
- Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88 (PRBB), 08003 Barcelona, Catalonia, Spain
- Bioinformatics Studies, ESCI-UPF, Pg. Pujades 1, 08003 Barcelona, Spain
| | - Antonio Barbadilla
- Institut de Biotecnologia i de Biomedicina and Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Servei de Genòmica i Bioinformàtica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- To whom correspondence should be addressed. Sònia Casillas. Tel: +34 93 5868958; Fax: +34 93 5812011; . Correspondence may also be addressed to Antonio Barbadilla.
| |
Collapse
|
32
|
Plasmodium Genomics and Genetics: New Insights into Malaria Pathogenesis, Drug Resistance, Epidemiology, and Evolution. Clin Microbiol Rev 2019; 32:32/4/e00019-19. [PMID: 31366610 DOI: 10.1128/cmr.00019-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protozoan Plasmodium parasites are the causative agents of malaria, a deadly disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild or severe symptoms, or fatal, depending on many factors such as parasite virulence and host immune status. Malaria can be treated with various drugs, with artemisinin-based combination therapies (ACTs) being the first-line choice. Recent advances in genetics and genomics of malaria parasites have contributed greatly to our understanding of parasite population dynamics, transmission, drug responses, and pathogenesis. However, knowledge gaps in parasite biology and host-parasite interactions still remain. Parasites resistant to multiple antimalarial drugs have emerged, while advanced clinical trials have shown partial efficacy for one available vaccine. Here we discuss genetic and genomic studies of Plasmodium biology, host-parasite interactions, population structures, mosquito infectivity, antigenic variation, and targets for treatment and immunization. Knowledge from these studies will advance our understanding of malaria pathogenesis, epidemiology, and evolution and will support work to discover and develop new medicines and vaccines.
Collapse
|
33
|
Apicoplast phylogeny reveals the position of Plasmodium vivax basal to the Asian primate malaria parasite clade. Sci Rep 2019; 9:7274. [PMID: 31086239 PMCID: PMC6514274 DOI: 10.1038/s41598-019-43831-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/01/2019] [Indexed: 01/12/2023] Open
Abstract
The malaria parasite species, Plasmodium vivax infects not only humans, but also African apes. Human specific P. vivax has evolved from a single ancestor that originated from a parasite of African apes. Although previous studies have proposed phylogenetic trees positioning P. vivax (the common ancestor of human and African ape P. vivax) within the assemblages of Asian primate parasites, its position has not yet been robustly confirmed. We determined nearly complete apicoplast genome sequences from seven Asian primate parasites, Plasmodium cynomolgi (strains Ceylonensis and Berok), P. knowlesi P. fragile, P. fieldi, P. simiovale, P. hylobati, P. inui, and an African primate parasite, P. gonderi, that infects African guenon. Phylogenetic relationships of the Plasmodium species were analyzed using newly and previously determined apicoplast genome sequences. Multigene maximum likelihood analysis of 30 protein coding genes did not position P. vivax within the Asian primate parasite clade but positioned it basal to the clade, after the branching of an African guenon parasite, P. gonderi. The result does not contradict with the emerging notion that P. vivax phylogenetically originated from Africa. The result is also supported by phylogenetic analyses performed using massive nuclear genome data of seven primate Plasmodium species.
Collapse
|
34
|
Origin of the New World Plasmodium vivax: Facts and New Approaches. Int Microbiol 2019; 22:337-342. [PMID: 30810995 DOI: 10.1007/s10123-018-00053-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 01/05/2023]
Abstract
Malaria is one of the most important human diseases throughout tropical and sub-tropical regions of the world. Global distribution and ample host range have contributed to the genetic diversity of the etiological agent, Plasmodium. Phylogeographical analyses demonstrated that Plasmodium falciparum and Plasmodium vivax follow an Out of Africa (OOA) expansion, having a higher genetic diversity in African populations and a low genetic diversity in South American populations. Modeling the evolutionary rate of conserved genes for both P. falciparum and P. vivax determined the approximate arrival of human malaria in South America. Bayesian computational methods suggest that P. falciparum originated in Africa and arrived in South America through multiple independent introductions by the transatlantic African slave trade; however, in South America, P. vivax could have been introduced through an alternate migratory route. Alignments of P. vivax mitogenomes have revealed low genetic variation between the South American and Southeast Asian populations suggesting introduction through either pre-Columbian human migration or post-colonization events. To confirm the findings of these phylogeographical analyses, molecular methods were used to diagnose malaria infection in archeological remains of pre-Columbian ethnic groups. Immunohistochemistry tests were used and identified P. vivax but not P. falciparum in histologically prepared tissues from pre-Columbian Peruvian mummies, whereas shotgun metagenomics sequencing of DNA isolated from pre-Columbian Caribbean coprolites revealed Plasmodium-homologous reads; current evidence suggests that only P. vivax might have been present in pre-Columbian South America.
Collapse
|
35
|
Dixit J, Zachariah A, P. K. S, Chandramohan B, Shanmuganatham V, Karanth KP. Reinvestigating the status of malaria parasite (Plasmodium sp.) in Indian non-human primates. PLoS Negl Trop Dis 2018; 12:e0006801. [PMID: 30521518 PMCID: PMC6298686 DOI: 10.1371/journal.pntd.0006801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/18/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022] Open
Abstract
Many human parasites and pathogens have closely related counterparts among non-human primates. For example, non-human primates harbour several species of malaria causing parasites of the genus Plasmodium. Studies suggest that for a better understanding of the origin and evolution of human malaria parasites it is important to know the diversity and evolutionary relationships of these parasites in non-human primates. Much work has been undertaken on malaria parasites in wild great Apes of Africa as well as wild monkeys of Southeast Asia however studies are lacking from South Asia, particularly India. India is one of the major malaria prone regions in the world and exhibits high primate diversity which in turn provides ideal setting for both zoonoses and anthropozoonoses. In this study we report the molecular data for malaria parasites from wild populations of Indian non-human primates. We surveyed 349 fecal samples from five different Indian non-human primates, while 94 blood and tissue samples from one of the Indian non-human primate species (Macaca radiata) and one blood sample from M. mulatta. Our results confirm the presence of P. fragile, P. inui and P. cynomolgi in Macaca radiata. Additionally, we report for the first time the presence of human malarial parasite, P. falciparum, in M. mulatta and M. radiata. Additionally, our results indicate that M. radiata does not exhibit population structure probably due to human mediated translocation of problem monkeys. Human mediated transport of macaques adds an additional level of complexity to tacking malaria in human. This issue has implications for both the spread of primate as well as human specific malarias.
Collapse
Affiliation(s)
- Jyotsana Dixit
- TE-11, Centre for Ecological Sciences, Indian Institute of Sciences, Bangalore, India
- * E-mail: ,
| | - Arun Zachariah
- Department of Forests and Wildlife, Sulthan Batheri, Wayanad District, Kerala State, India
| | - Sajesh P. K.
- Scigenom Research Foundation, Cochin, Kerala, India
| | - Bathrachalam Chandramohan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneshwar, Odisha, India
| | - Vinoth Shanmuganatham
- TE-11, Centre for Ecological Sciences, Indian Institute of Sciences, Bangalore, India
| | - K. Praveen Karanth
- TE-11, Centre for Ecological Sciences, Indian Institute of Sciences, Bangalore, India
| |
Collapse
|
36
|
Camargo-Ayala PA, Garzón-Ospina D, Moreno-Pérez DA, Ricaurte-Contreras LA, Noya O, Patarroyo MA. On the Evolution and Function of Plasmodium vivax Reticulocyte Binding Surface Antigen ( pvrbsa). Front Genet 2018; 9:372. [PMID: 30250483 PMCID: PMC6139305 DOI: 10.3389/fgene.2018.00372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022] Open
Abstract
The RBSA protein is encoded by a gene described in Plasmodium species having tropism for reticulocytes. Since this protein is antigenic in natural infections and can bind to target cells, it has been proposed as a potential candidate for an anti-Plasmodium vivax vaccine. However, genetic diversity (a challenge which must be overcome for ensuring fully effective vaccine design) has not been described at this locus. Likewise, the minimum regions mediating specific parasite-host interaction have not been determined. This is why the rbsa gene’s evolutionary history is being here described, as well as the P. vivax rbsa (pvrbsa) genetic diversity and the specific regions mediating parasite adhesion to reticulocytes. Unlike what has previously been reported, rbsa was also present in several parasite species belonging to the monkey-malaria clade; paralogs were also found in Plasmodium parasites invading reticulocytes. The pvrbsa locus had less diversity than other merozoite surface proteins where natural selection and recombination were the main evolutionary forces involved in causing the observed polymorphism. The N-terminal end (PvRBSA-A) was conserved and under functional constraint; consequently, it was expressed as recombinant protein for binding assays. This protein fragment bound to reticulocytes whilst the C-terminus, included in recombinant PvRBSA-B (which was not under functional constraint), did not. Interestingly, two PvRBSA-A-derived peptides were able to inhibit protein binding to reticulocytes. Specific conserved and functionally important peptides within PvRBSA-A could thus be considered when designing a fully-effective vaccine against P. vivax.
Collapse
Affiliation(s)
- Paola Andrea Camargo-Ayala
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Microbiology Postgraduate Programme, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego Garzón-Ospina
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Darwin Andrés Moreno-Pérez
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Livestock Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia
| | | | - Oscar Noya
- Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Manuel A Patarroyo
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
37
|
Gilabert A, Otto TD, Rutledge GG, Franzon B, Ollomo B, Arnathau C, Durand P, Moukodoum ND, Okouga AP, Ngoubangoye B, Makanga B, Boundenga L, Paupy C, Renaud F, Prugnolle F, Rougeron V. Plasmodium vivax-like genome sequences shed new insights into Plasmodium vivax biology and evolution. PLoS Biol 2018; 16:e2006035. [PMID: 30142149 PMCID: PMC6130868 DOI: 10.1371/journal.pbio.2006035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/10/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
Although Plasmodium vivax is responsible for the majority of malaria infections outside Africa, little is known about its evolution and pathway to humans. Its closest genetic relative, P. vivax-like, was discovered in African great apes and is hypothesized to have given rise to P. vivax in humans. To unravel the evolutionary history and adaptation of P. vivax to different host environments, we generated using long- and short-read sequence technologies 2 new P. vivax-like reference genomes and 9 additional P. vivax-like genotypes. Analyses show that the genomes of P. vivax and P. vivax-like are highly similar and colinear within the core regions. Phylogenetic analyses clearly show that P. vivax-like parasites form a genetically distinct clade from P. vivax. Concerning the relative divergence dating, we show that the evolution of P. vivax in humans did not occur at the same time as the other agents of human malaria, thus suggesting that the transfer of Plasmodium parasites to humans happened several times independently over the history of the Homo genus. We further identify several key genes that exhibit signatures of positive selection exclusively in the human P. vivax parasites. Two of these genes have been identified to also be under positive selection in the other main human malaria agent, P. falciparum, thus suggesting their key role in the evolution of the ability of these parasites to infect humans or their anthropophilic vectors. Finally, we demonstrate that some gene families important for red blood cell (RBC) invasion (a key step of the life cycle of these parasites) have undergone lineage-specific evolution in the human parasite (e.g., reticulocyte-binding proteins [RBPs]).
Collapse
Affiliation(s)
- Aude Gilabert
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Thomas D. Otto
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Institute of Infection, Immunity and Inflammation, University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Gavin G. Rutledge
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Blaise Franzon
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Benjamin Ollomo
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Céline Arnathau
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Patrick Durand
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Nancy D. Moukodoum
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Alain-Prince Okouga
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | | | - Boris Makanga
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Larson Boundenga
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Christophe Paupy
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - François Renaud
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Franck Prugnolle
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Virginie Rougeron
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| |
Collapse
|
38
|
The global biogeography of avian haemosporidian parasites is characterized by local diversification and intercontinental dispersal. Parasitology 2018; 146:213-219. [PMID: 30009719 DOI: 10.1017/s0031182018001130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The biogeographic histories of parasites and pathogens are infrequently compared with those of free-living species, including their hosts. Documenting the frequency with which parasites and pathogens disperse across geographic regions contributes to understanding not only their evolution, but also the likelihood that they may become emerging infectious diseases. Haemosporidian parasites of birds (parasite genera Plasmodium, Haemoproteus and Leucocytozoon) are globally distributed, dipteran-vectored parasites. To date, over 2000 avian haemosporidian lineages have been designated by molecular barcoding methods. To achieve their current distributions, some lineages must have dispersed long distances, often over water. Here we quantify such events using the global avian haemosporidian database MalAvi and additional records primarily from the Americas. We scored lineages as belonging to one or more global biogeographic regions based on infection records. Most lineages were restricted to a single region but some were globally distributed. We also used part of the cytochrome b gene to create genus-level parasite phylogenies and scored well-supported nodes as having descendant lineages in regional sympatry or allopatry. Descendant sister lineages of Plasmodium, Haemoproteus and Leucocytozoon were distributed in allopatry in 11, 16 and 15% of investigated nodes, respectively. Although a small but significant fraction of the molecular variance in cytochrome b of all three genera could be explained by biogeographic region, global parasite dispersal likely contributed to the majority of the unexplained variance. Our results suggest that avian haemosporidian parasites have faced few geographic barriers to dispersal over their evolutionary history.
Collapse
|
39
|
Paleopathological Considerations on Malaria Infection in Korea before the 20th Century. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8516785. [PMID: 29854798 PMCID: PMC5966694 DOI: 10.1155/2018/8516785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/01/2018] [Indexed: 12/31/2022]
Abstract
Malaria, one of the deadliest diseases in human history, still infects many people worldwide. Among the species of the genus Plasmodium, P. vivax is commonly found in temperate-zone countries including South Korea. In this article, we first review the history of malarial infection in Korea by means of studies on Joseon documents and the related scientific data on the evolutionary history of P. vivax in Asia. According to the historical records, malarial infection was not unusual in pre-20th-century Korean society. We also found that certain behaviors of the Joseon people might have affected the host-vector-pathogen relationship, which could explain why malarial infection prevalence was so high in Korea at that time. In our review of genetic studies on P. vivax, we identified substantial geographic differentiation among continents and even between neighboring countries. Based on these, we were able to formulate a strategy for future analysis of ancient Plasmodium strains in Korea.
Collapse
|
40
|
Scully EJ, Kanjee U, Duraisingh MT. Molecular interactions governing host-specificity of blood stage malaria parasites. Curr Opin Microbiol 2017; 40:21-31. [PMID: 29096194 DOI: 10.1016/j.mib.2017.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/04/2017] [Accepted: 10/08/2017] [Indexed: 11/18/2022]
Abstract
Non-human primates harbor diverse species of malaria parasites, including the progenitors of Plasmodium falciparum and Plasmodium vivax. Cross-species transmission of some malaria parasites-most notably the macaque parasite, Plasmodium knowlesi-continues to this day, compelling the scientific community to ask whether these zoonoses could impede malaria control efforts by acting as a source of recurrent human infection. Host-restriction varies considerably among parasite species and is governed by both ecological and molecular variables. In particular, the efficiency of red blood cell invasion constitutes a prominent barrier to zoonotic emergence. Although proteins expressed upon the erythrocyte surface exhibit considerable diversity both within and among hosts, malaria parasites have adapted to this heterogeneity via the expansion of protein families associated with invasion, offering redundant mechanisms of host cell entry. This molecular toolkit may enable some parasites to circumvent host barriers, potentially yielding host shifts upon subsequent adaptation. Recent studies have begun to elucidate the molecular determinants of host-specificity, as well as the mechanisms that malaria parasites use to overcome these restrictions. We review recent studies concerning host tropism in the context of erythrocyte invasion by focusing on three malaria parasites that span the zoonotic spectrum: P. falciparum, P. knowlesi, and P. vivax.
Collapse
Affiliation(s)
- Erik J Scully
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA 02138, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 651 Huntington Ave, Boston, MA 02115, USA
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 651 Huntington Ave, Boston, MA 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 651 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Goheen MM, Campino S, Cerami C. The role of the red blood cell in host defence against falciparum malaria: an expanding repertoire of evolutionary alterations. Br J Haematol 2017; 179:543-556. [PMID: 28832963 DOI: 10.1111/bjh.14886] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The malaria parasite has co-evolved with its human host as each organism struggles for resources and survival. The scars of this war are carried in the human genome in the form of polymorphisms that confer innate resistance to malaria. Clinical, epidemiological and genome-wide association studies have identified multiple polymorphisms in red blood cell (RBC) proteins that attenuate malaria pathogenesis. These include well-known polymorphisms in haemoglobin, intracellular enzymes, RBC channels, RBC surface markers, and proteins impacting the RBC cytoskeleton and RBC morphology. A better understanding of how changes in RBC physiology impact malaria pathogenesis may uncover new strategies to combat the disease.
Collapse
Affiliation(s)
- Morgan M Goheen
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Susana Campino
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, The London School of Hygiene & Tropical Medicine, London, UK
| | - Carla Cerami
- MRC International Nutrition Group at Keneba, MRC Unit The Gambia, Banjul, The Gambia
| |
Collapse
|
42
|
Draft Genome Sequence of Plasmodium gonderi, a Malaria Parasite of African Old World Monkeys. GENOME ANNOUNCEMENTS 2017; 5:5/28/e00612-17. [PMID: 28705975 PMCID: PMC5511914 DOI: 10.1128/genomea.00612-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plasmodium gonderi is a primate parasite whose natural host is the African Old World monkeys. Here, we report the draft genome sequence for P. gonderi The data are useful not only for understanding the evolution of malaria but also for allowing the comparative genomics of malaria parasites.
Collapse
|
43
|
Baquero LA, Moreno-Pérez DA, Garzón-Ospina D, Forero-Rodríguez J, Ortiz-Suárez HD, Patarroyo MA. PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. Parasit Vectors 2017; 10:251. [PMID: 28526096 PMCID: PMC5438544 DOI: 10.1186/s13071-017-2183-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/10/2017] [Indexed: 12/11/2022] Open
Abstract
Background Adhesin proteins are used by Plasmodium parasites to bind and invade target cells. Hence, characterising molecules that participate in reticulocyte interaction is key to understanding the molecular basis of Plasmodium vivax invasion. This study focused on predicting functionally restricted regions of the P. vivax GPI-anchored micronemal antigen (PvGAMA) and characterising their reticulocyte binding activity. Results The pvgama gene was initially found in P. vivax VCG-I strain schizonts. According to the genetic diversity analysis, PvGAMA displayed a size polymorphism very common for antigenic P. vivax proteins. Two regions along the antigen sequence were highly conserved among species, having a negative natural selection signal. Interestingly, these regions revealed a functional role regarding preferential target cell adhesion. Conclusions To our knowledge, this study describes PvGAMA reticulocyte binding properties for the first time. Conserved functional regions were predicted according to natural selection analysis and their binding ability was confirmed. These findings support the notion that PvGAMA may have an important role in P. vivax merozoite adhesion to its target cells. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2183-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luis A Baquero
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá DC, Colombia
| | - Darwin A Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá DC, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá DC, Colombia
| | - Diego Garzón-Ospina
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá DC, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá DC, Colombia
| | - Johanna Forero-Rodríguez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá DC, Colombia
| | - Heidy D Ortiz-Suárez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá DC, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá DC, Colombia. .,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá DC, Colombia.
| |
Collapse
|
44
|
Muh F, Han JH, Nyunt MH, Lee SK, Jeon HY, Ha KS, Park WS, Hong SH, Ahmed MA, Na S, Takashima E, Tsuboi T, Han ET. Identification of a novel merozoite surface antigen of Plasmodium vivax, PvMSA180. Malar J 2017; 16:133. [PMID: 28351409 PMCID: PMC5369000 DOI: 10.1186/s12936-017-1760-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/28/2017] [Indexed: 02/06/2023] Open
Abstract
Background Although a number of Plasmodium vivax proteins have been identified, few have been investigated as potential vaccine candidates. This study characterized the Plasmodium vivax merozoite surface antigen 180 (PvMSA180, PVX_094920), a novel P. vivax antigenic protein. Methods The target gene was amplified as four overlapping domains (D1, D2, D3 and D4) to enable expression of the recombinant protein using cell-free and bacterial expression systems. The recombinant PvMSA180 proteins were used in protein microarrays to evaluate the humoral immune response of 72 vivax-infected patients and 24 vivax-naïve individuals. Antibodies produced in mice against the PvMSA180-D1 and -D4 domains were used to assess the subcellular localization of schizont-stage parasites with immunofluorescence assays. A total of 51 pvmsa180 sequences from 12 countries (41 sequences from PlasmoDB and 6 generated in this study) were used to determine the genetic diversity and genealogical relationships with DNAsp and NETWORK software packages, respectively. Results PvMSA180 consists of 1603 amino acids with a predicted molecular mass of 182 kDa, and has a signal peptide at the amino-terminus. A total of 70.8% of patients (51/72) showed a specific antibody response to at least one of the PvMSA180 domains, and 20.8% (15/72) exhibited a robust antibody response to at least three of the domains. These findings suggest that PvMSA180 is targeted by the humoral immune response during natural infection with P. vivax. Immunofluorescence analysis demonstrated that PvMSA180 is localized on the merozoite surface of schizont-stage parasites, and pvmsa180 sequences originating from various geographic regions worldwide showed low genetic diversity. Twenty-two haplotypes were found, and haplotype 6 (Hap_6, 77%) of pvmsa180 was detected in isolates from six countries. Conclusions A novel P. vivax surface protein, PvMSA180, was characterized in this study. Most of P. vivax-infected patients had specific antibodies against particular antigenic domains, indicating that this protein is immunogenic in naturally exposed populations. Genetic analysis of worldwide isolates showed that pvmsa180 is less polymorphic than other well-known candidates and that some haplotypes are common to several countries. However, additional studies with a larger sample size are necessary to evaluate the antibody responses in geographically separated populations, and to identify the function of PvMSA180 during parasite invasion. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1760-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fauzi Muh
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Myat Htut Nyunt
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.,Department of Medical Research, Yangon, Republic of the Union of Myanmar
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Hye-Yoon Jeon
- Department of Cellular and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Kwon-Soo Ha
- Department of Cellular and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Md Atique Ahmed
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Sunghun Na
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.
| |
Collapse
|
45
|
Nurcahyo W, Konstanzová V, Foitová I. Parasites of orangutans (primates: ponginae): An overview. Am J Primatol 2017; 79. [PMID: 28345757 DOI: 10.1002/ajp.22650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 12/22/2022]
Abstract
Wild orangutan populations exist in an increasingly fragile state. As numbers continue to decline and populations became fragmented, the overall health of remaining individuals becomes increasingly at risk. Parasitic infections can have a serious impact on the health of wild orangutans, and can be fatal. It has been reported that rehabilitated individuals demonstrate a higher prevalence of parasitic diseases, and it is possible that they may spread these infections to wild orangutans upon reintroduction. In order to ensure the success of reintroduction and conservation efforts, it is crucial to understand the potential risks by fully understanding what parasites they have been reported to be infected with. Using this knowledge, future conservation strategies can be adapted to minimize the risk and prevalence of parasite transmission in the remaining orangutan populations. There is still limited information available on orangutan parasites, with several still not identified to the species level. Based on comprehensive literature review, we found 51 parasite taxa known to infect wild, semi-wild, and captive orangutans, including newly reported species. Here, we summarize methods used to identify parasites and draw conclusions relative to their reported prevalence. We also recommend fecal sample preservation and analytical methods to obtain best result in the future.
Collapse
Affiliation(s)
- Wisnu Nurcahyo
- Faculty of Veterinary Medicine, Department of Parasitology, Gadjah Mada University, Yogyakarta, Indonesia
| | | | - Ivona Foitová
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
46
|
De Nys H, Löhrich T, Wu D, Calvignac-Spencer S, Leendertz F. Wild African great apes as natural hosts of malaria parasites: current knowledge and research perspectives. Primate Biol 2017; 4:47-59. [PMID: 32110692 PMCID: PMC7041518 DOI: 10.5194/pb-4-47-2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/24/2017] [Indexed: 11/24/2022] Open
Abstract
Humans and African great apes (AGAs) are naturally infected with several species of closely related malaria parasites. The need to understand the origins of human malaria as well as the risk of zoonotic transmissions and emergence of new malaria strains in human populations has markedly encouraged research on great ape Plasmodium parasites. Progress in the use of non-invasive methods has rendered investigations into wild ape populations possible. Present knowledge is mainly focused on parasite diversity and phylogeny, with still large gaps to fill on malaria parasite ecology. Understanding what malaria infection means in terms of great ape health is also an important, but challenging avenue of research and has been subject to relatively few research efforts so far. This paper reviews current knowledge on African great ape malaria and identifies gaps and future research perspectives.
Collapse
Affiliation(s)
- Hélène Marie De Nys
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- current address: UMI 233, Institut de Recherche pour le Développement (IRD), INSERM U1175, and University of Montpellier, Montpellier, France
| | - Therese Löhrich
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Doris Wu
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | | | - Fabian Hubertus Leendertz
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
47
|
McManus KF, Taravella AM, Henn BM, Bustamante CD, Sikora M, Cornejo OE. Population genetic analysis of the DARC locus (Duffy) reveals adaptation from standing variation associated with malaria resistance in humans. PLoS Genet 2017; 13:e1006560. [PMID: 28282382 PMCID: PMC5365118 DOI: 10.1371/journal.pgen.1006560] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 03/24/2017] [Accepted: 12/30/2016] [Indexed: 12/22/2022] Open
Abstract
The human DARC (Duffy antigen receptor for chemokines) gene encodes a membrane-bound chemokine receptor crucial for the infection of red blood cells by Plasmodium vivax, a major causative agent of malaria. Of the three major allelic classes segregating in human populations, the FY*O allele has been shown to protect against P. vivax infection and is at near fixation in sub-Saharan Africa, while FY*B and FY*A are common in Europe and Asia, respectively. Due to the combination of strong geographic differentiation and association with malaria resistance, DARC is considered a canonical example of positive selection in humans. Despite this, details of the timing and mode of selection at DARC remain poorly understood. Here, we use sequencing data from over 1,000 individuals in twenty-one human populations, as well as ancient human genomes, to perform a fine-scale investigation of the evolutionary history of DARC. We estimate the time to most recent common ancestor (TMRCA) of the most common FY*O haplotype to be 42 kya (95% CI: 34-49 kya). We infer the FY*O null mutation swept to fixation in Africa from standing variation with very low initial frequency (0.1%) and a selection coefficient of 0.043 (95% CI:0.011-0.18), which is among the strongest estimated in the human genome. We estimate the TMRCA of the FY*A mutation in non-Africans to be 57 kya (95% CI: 48-65 kya) and infer that, prior to the sweep of FY*O, all three alleles were segregating in Africa, as highly diverged populations from Asia and ≠Khomani San hunter-gatherers share the same FY*A haplotypes. We test multiple models of admixture that may account for this observation and reject recent Asian or European admixture as the cause.
Collapse
Affiliation(s)
- Kimberly F. McManus
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Angela M. Taravella
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
| | - Brenna M. Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
| | - Carlos D. Bustamante
- Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Martin Sikora
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Centre for Geogenetics, Natural History Museum Denmark, Copenhagen, Denmark
| | - Omar E. Cornejo
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Biological Sciences, Washington State University, Pullman, washington, United States of America
| |
Collapse
|
48
|
Roche B, Rougeron V, Quintana-Murci L, Renaud F, Abbate JL, Prugnolle F. Might Interspecific Interactions between Pathogens Drive Host Evolution? The Case of Plasmodium Species and Duffy-Negativity in Human Populations. Trends Parasitol 2017; 33:21-29. [DOI: 10.1016/j.pt.2016.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/06/2016] [Accepted: 09/23/2016] [Indexed: 12/27/2022]
|
49
|
A chimeric protein-based malaria vaccine candidate induces robust T cell responses against Plasmodium vivax MSP1 19. Sci Rep 2016; 6:34527. [PMID: 27708348 PMCID: PMC5052570 DOI: 10.1038/srep34527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/15/2016] [Indexed: 01/06/2023] Open
Abstract
The most widespread Plasmodium species, Plasmodium vivax, poses a significant public health threat. An effective vaccine is needed to reduce global malaria burden. Of the erythrocytic stage vaccine candidates, the 19 kDa fragment of the P. vivax Merozoite Surface Protein 1 (PvMSP119) is one of the most promising. Our group has previously defined several promiscuous T helper epitopes within the PvMSP1 protein, with features that allow them to bind multiple MHC class II alleles. We describe here a P. vivax recombinant modular chimera based on MSP1 (PvRMC-MSP1) that includes defined T cell epitopes genetically fused to PvMSP119. This vaccine candidate preserved structural elements of the native PvMSP119 and elicited cytophilic antibody responses, and CD4+ and CD8+ T cells capable of recognizing PvMSP119. Although CD8+ T cells that recognize blood stage antigens have been reported to control blood infection, CD8+ T cell responses induced by P. falciparum or P. vivax vaccine candidates based on MSP119 have not been reported. To our knowledge, this is the first time a protein based subunit vaccine has been able to induce CD8+ T cell against PvMSP119. The PvRMC-MSP1 protein was also recognized by naturally acquired antibodies from individuals living in malaria endemic areas with an antibody profile associated with protection from infection. These features make PvRMC-MSP1 a promising vaccine candidate.
Collapse
|
50
|
Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, Sharp PM, Hahn BH. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int J Parasitol 2016; 47:87-97. [PMID: 27381764 DOI: 10.1016/j.ijpara.2016.05.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/25/2016] [Accepted: 05/28/2016] [Indexed: 12/22/2022]
Abstract
Plasmodium falciparum and Plasmodium vivax account for more than 95% of all human malaria infections, and thus pose a serious public health challenge. To control and potentially eliminate these pathogens, it is important to understand their origins and evolutionary history. Until recently, it was widely believed that P. falciparum had co-evolved with humans (and our ancestors) over millions of years, whilst P. vivax was assumed to have emerged in southeastern Asia following the cross-species transmission of a parasite from a macaque. However, the discovery of a multitude of Plasmodium spp. in chimpanzees and gorillas has refuted these theories and instead revealed that both P. falciparum and P. vivax evolved from parasites infecting wild-living African apes. It is now clear that P. falciparum resulted from a recent cross-species transmission of a parasite from a gorilla, whilst P. vivax emerged from an ancestral stock of parasites that infected chimpanzees, gorillas and humans in Africa, until the spread of the protective Duffy-negative mutation eliminated P. vivax from human populations there. Although many questions remain concerning the biology and zoonotic potential of the P. falciparum- and P. vivax-like parasites infecting apes, comparative genomics, coupled with functional parasite and vector studies, are likely to yield new insights into ape Plasmodium transmission and pathogenesis that are relevant to the treatment and prevention of human malaria.
Collapse
Affiliation(s)
- Dorothy E Loy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerald H Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sesh A Sundararaman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M Sharp
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|