1
|
Xu T, Liu L, Shi C, Liu W, Wang M, Tian L, Zheng Y, Wang H, Zheng W, He H, Xia X, Zheng X. A recombinant rabies virus expressing Echinococcus granulosus EG95 induces protective immunity in mice. Transbound Emerg Dis 2022; 69:e254-e266. [PMID: 34403194 DOI: 10.1111/tbed.14292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
Cystic echinococcosis (CE), caused by Echinococcus granulosus (E, is a zoonosis with a worldwide distribution, resulting in heavy impact to public health and social economics. In this study, we generated a recombinant rabies virus (RABV) expressing EG95 protein of E. granulosus (LBNSE-EG95) as a bivalent candidate vaccine for use in sheep and cattle against CE and rabies, which is another severe health threat in CE-endemic areas. It was found that EG95 was successfully expressed without altering the pathogenicity of parent LBNSE vector. Further study showed that LBNSE-EG95 immunization in mice elicited activation of dendric cells (DCs) and B cells and induced Th1-/Th2-mediated cellular immune responses, leading to robust production of RABV neutralizing antibodies and high level of EG95-sepecific antibodies with more than 90% protection against CE. In addition, single dose of LBNSE-EG95 conferred full protection against lethal RABV challenge in mice. Collectively, these results suggest that the recombinant LBNSE-EG95 has the potential to be developed as an efficient bivalent vaccine for sheep and cattle use in endemic areas of CE and rabies.
Collapse
Affiliation(s)
- Tong Xu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lele Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenjuan Shi
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenkai Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Wang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Tian
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ye Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongmei Wang
- Department of Biological Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenwen Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongbin He
- Department of Biological Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xianzhu Xia
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Lundstrom K. Self-replicating vehicles based on negative strand RNA viruses. Cancer Gene Ther 2022:10.1038/s41417-022-00436-7. [PMID: 35169298 PMCID: PMC8853047 DOI: 10.1038/s41417-022-00436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 11/10/2022]
Abstract
Self-replicating RNA viruses have been engineered as efficient expression vectors for vaccine development for infectious diseases and cancers. Moreover, self-replicating RNA viral vectors, particularly oncolytic viruses, have been applied for cancer therapy and immunotherapy. Among negative strand RNA viruses, measles viruses and rhabdoviruses have been frequently applied for vaccine development against viruses such as Chikungunya virus, Lassa virus, Ebola virus, influenza virus, HIV, Zika virus, and coronaviruses. Immunization of rodents and primates has elicited strong neutralizing antibody responses and provided protection against lethal challenges with pathogenic viruses. Several clinical trials have been conducted. Ervebo, a vaccine based on a vesicular stomatitis virus (VSV) vector has been approved for immunization of humans against Ebola virus. Different types of cancers such as brain, breast, cervical, lung, leukemia/lymphoma, ovarian, prostate, pancreatic, and melanoma, have been the targets for cancer vaccine development, cancer gene therapy, and cancer immunotherapy. Administration of measles virus and VSV vectors have demonstrated immune responses, tumor regression, and tumor eradication in various animal models. A limited number of clinical trials have shown well-tolerated treatment, good safety profiles, and dose-dependent activity in cancer patients.
Collapse
|
3
|
Vrba SM, Kirk NM, Brisse ME, Liang Y, Ly H. Development and Applications of Viral Vectored Vaccines to Combat Zoonotic and Emerging Public Health Threats. Vaccines (Basel) 2020; 8:E680. [PMID: 33202961 PMCID: PMC7712223 DOI: 10.3390/vaccines8040680] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Vaccination is arguably the most cost-effective preventative measure against infectious diseases. While vaccines have been successfully developed against certain viruses (e.g., yellow fever virus, polio virus, and human papilloma virus HPV), those against a number of other important public health threats, such as HIV-1, hepatitis C, and respiratory syncytial virus (RSV), have so far had very limited success. The global pandemic of COVID-19, caused by the SARS-CoV-2 virus, highlights the urgency of vaccine development against this and other constant threats of zoonotic infection. While some traditional methods of producing vaccines have proven to be successful, new concepts have emerged in recent years to produce more cost-effective and less time-consuming vaccines that rely on viral vectors to deliver the desired immunogens. This review discusses the advantages and disadvantages of different viral vaccine vectors and their general strategies and applications in both human and veterinary medicines. A careful review of these issues is necessary as they can provide important insights into how some of these viral vaccine vectors can induce robust and long-lasting immune responses in order to provide protective efficacy against a variety of infectious disease threats to humans and animals, including those with zoonotic potential to cause global pandemics.
Collapse
Affiliation(s)
- Sophia M. Vrba
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA; (S.M.V.); (Y.L.)
| | - Natalie M. Kirk
- Comparative Molecular Biosciences Graduate Program, Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA;
| | - Morgan E. Brisse
- Biochemistry, Molecular Biology and Biophysics Graduate Program, Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA;
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA; (S.M.V.); (Y.L.)
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA; (S.M.V.); (Y.L.)
| |
Collapse
|
4
|
Stefano ML, Kream RM, Stefano GB. A Novel Vaccine Employing Non-Replicating Rabies Virus Expressing Chimeric SARS-CoV-2 Spike Protein Domains: Functional Inhibition of Viral/Nicotinic Acetylcholine Receptor Complexes. Med Sci Monit 2020; 26:e926016. [PMID: 32463026 PMCID: PMC7278327 DOI: 10.12659/msm.926016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022] Open
Abstract
The emergence of the novel ß-coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic of coronavirus disease 2019 (COVID-19). Clinical studies have documented that potentially severe neurological symptoms are associated with SARS-CoV-2 infection, thereby suggesting direct CNS penetration by the virus. Prior studies have demonstrated that the destructive neurological effects of rabies virus (RABV) infections are mediated by CNS transport of the virus tightly bound to the nicotinic acetylcholine receptor (nAChR). By comparison, it has been hypothesized that a similar mechanism exists to explain the multiple neurological effects of SARS-CoV-2 via binding to peripheral nAChRs followed by orthograde or retrograde transport into the CNS. Genetic engineering of the RABV has been employed to generate novel vaccines consisting of non-replicating RABV particles expressing chimeric capsid proteins containing human immunodeficiency virus 1 (HIV-1), Middle East respiratory syndrome (MERS-CoV), Ebolavirus, and hepatitis C virus (HCV) sequences. Accordingly, we present a critical discussion that integrates lessons learned from prior RABV research and vaccine development into a working model of a SARS-CoV-2 vaccine that selectively targets and neutralizes CNS penetration of a tightly bound viral nAChR complex.
Collapse
Affiliation(s)
| | - Richard M. Kream
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Prague, Czech Republic
- International Scientific Information, Inc., Melville, NY, U.S.A
| | - George B. Stefano
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Prague, Czech Republic
- International Scientific Information, Inc., Melville, NY, U.S.A
| |
Collapse
|
5
|
Incorporating B cell activating factor (BAFF) into the membrane of rabies virus (RABV) particles improves the speed and magnitude of vaccine-induced antibody responses. PLoS Negl Trop Dis 2019; 13:e0007800. [PMID: 31725816 PMCID: PMC6855436 DOI: 10.1371/journal.pntd.0007800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/20/2019] [Indexed: 12/25/2022] Open
Abstract
B cell activating factor (BAFF) is a member of the tumor necrosis factor (TNF) superfamily of cytokines that links innate with adaptive immunity. BAFF signals through receptors on B cells, making it an attractive molecule to potentiate vaccine-induced B cell responses. We hypothesized that a rabies virus (RABV)-based vaccine displaying both antigen and BAFF on the surface of the same virus particle would target antigen-specific B cells for activation and improve RABV-specific antibody responses. To test this hypothesis, we constructed a recombinant RABV-based vector expressing virus membrane-anchored murine BAFF (RABV-ED51-mBAFF). BAFF was incorporated into the RABV particle and determined to be biologically functional, as demonstrated by increased B cell survival of primary murine B cells treated ex-vivo with RABV-ED51-mBAFF. B cell survival was inhibited by pre-treating RABV-ED51-mBAFF with an antibody that blocks BAFF functions. RABV-ED51-mBAFF also activated primary murine B cells ex-vivo more effectively than RABV as shown by significant upregulation of CD69, CD40, and MHCII on the surface of infected B cells. In-vivo, RABV-ED51-mBAFF induced significantly faster and higher virus neutralizing antibody (VNA) titers than RABV while not adversely affecting the longevity of the vaccine-induced antibody response. Since BAFF was incorporated into the virus particle and genome replication was not required for BAFF expression in-vivo, we hypothesized that RABV-ED51-mBAFF would be effective as an inactivated vaccine. Mice immunized with 250 ng/mouse of β-propriolactone-inactivated RABV-ED51-mBAFF showed faster and higher anti-RABV VNA titers compared to mice immunized with inactivated RABV. Together, this model stands as a potential foundation for exploring other virus membrane-anchored molecular adjuvants to make safer, more effective inactivated RABV-based vaccines.
Collapse
|
6
|
Kato H, Takayama-Ito M, Iizuka-Shiota I, Fukushi S, Posadas-Herrera G, Horiya M, Satoh M, Yoshikawa T, Yamada S, Harada S, Fujii H, Shibamura M, Inagaki T, Morimoto K, Saijo M, Lim CK. Development of a recombinant replication-deficient rabies virus-based bivalent-vaccine against MERS-CoV and rabies virus and its humoral immunogenicity in mice. PLoS One 2019; 14:e0223684. [PMID: 31589656 PMCID: PMC6779238 DOI: 10.1371/journal.pone.0223684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022] Open
Abstract
Middle East respiratory syndrome-coronavirus (MERS-CoV) is an emerging virus that causes severe disease with fatal outcomes; however, there are currently no approved vaccines or specific treatments against MERS-CoV. Here, we developed a novel bivalent vaccine against MERS-CoV and rabies virus (RV) using the replication-incompetent P-gene-deficient RV (RVΔP), which has been previously established as a promising and safe viral vector. MERS-CoV spike glycoprotein comprises S1 and S2 subunits, with the S1 subunit being a primary target of neutralizing antibodies. Recombinant RVΔP, which expresses S1 fused with transmembrane and cytoplasmic domains together with 14 amino acids from the ectodomains of the RV-glycoprotein (RV-G), was developed using a reverse genetics method and named RVΔP-MERS/S1. Following generation of RVΔP-MERS/S1 and RVΔP, our analysis revealed that they shared similar growth properties, with the expression of S1 in RVΔP-MERS/S1-infected cells confirmed by immunofluorescence and western blot, and the immunogenicity and pathogenicity evaluated using mouse infection experiments. We observed no rabies-associated signs or symptoms in mice inoculated with RVΔP-MERS/S1. Moreover, virus-specific neutralizing antibodies against both MERS-CoV and RV were induced in mice inoculated intraperitoneally with RVΔP-MERS/S1. These findings indicate that RVΔP-MERS/S1 is a promising and safe bivalent-vaccine candidate against both MERS-CoV and RV.
Collapse
Affiliation(s)
- Hirofumi Kato
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Mutsuyo Takayama-Ito
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- * E-mail: (MT); (CL)
| | - Itoe Iizuka-Shiota
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | | | - Madoka Horiya
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Masaaki Satoh
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Souichi Yamada
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Shizuko Harada
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hikaru Fujii
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Miho Shibamura
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takuya Inagaki
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Kinjiro Morimoto
- Department of Pharmacy, Yasuda Women’s University, Hiroshima, Hiroshima, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- * E-mail: (MT); (CL)
| |
Collapse
|
7
|
Wilmschen S, Schmitz JE, Kimpel J. Viral Vectors for the Induction of Broadly Neutralizing Antibodies against HIV. Vaccines (Basel) 2019; 7:vaccines7030119. [PMID: 31546894 PMCID: PMC6789710 DOI: 10.3390/vaccines7030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/10/2023] Open
Abstract
Extensive research on generating an efficient HIV vaccine is ongoing. A major aim of HIV vaccines is the induction of long-lasting, broadly neutralizing antibodies (bnAbs) that can confer sterile immunity for a prolonged period of time. Several strategies have been explored to reach this goal, i.e. protein immunization, DNA, or viral vectors, or a combination thereof. In this review, we give an overview of approaches using viral vectors for the induction of HIV-specific bnAbs. Many pre-clinical studies were performed using various replication-competent and -incompetent vectors. Amongst them, poxviral and adenoviral vectors were the most prevalent ones. In many studies, viral vectors were combined with a DNA prime or a protein boost. However, neutralizing antibodies were mainly induced against the homologous HIV-1 vaccine strain or tier 1 viruses, and in rare cases, against tier 2 viruses, indicating the need for improved antigens and vaccination strategies. Furthermore, we also review next generation Env antigens that are currently being used in protein vaccination approaches and point out how they could be utilized in viral vectors.
Collapse
Affiliation(s)
- Sarah Wilmschen
- Division of Virology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
8
|
Keshwara R, Shiels T, Postnikova E, Kurup D, Wirblich C, Johnson RF, Schnell MJ. Rabies-based vaccine induces potent immune responses against Nipah virus. NPJ Vaccines 2019; 4:15. [PMID: 31016033 PMCID: PMC6465360 DOI: 10.1038/s41541-019-0109-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/04/2019] [Indexed: 12/25/2022] Open
Abstract
Nipah Virus (NiV) is a re-emerging zoonotic pathogen in the genus Henipavirus of the Paramyxoviridae family of viruses. NiV is endemic to Bangladesh and Malaysia and is highly fatal to both livestock and humans (human case fatality rate = 74.5%). Currently, there is no approved vaccine against NiV on the market. The goal of this study was to use a recombinant RABV vector expressing NiV glycoprotein (NiV G) to develop a bivalent candidate vaccine against NiV disease and rabies virus (RABV) disease, which is also a significant health burden in the regions where NiV is endemic. The rabies vector is a well-established vaccine strain that lacks neurovirulence and can stably expresses foreign antigens that are immunogenic in various animal models. Mice inoculated intranasally with the live recombinant RABV/NiV vaccine (NIPARAB) showed no signs of disease. To test the immunogenicity of the vaccine candidate, groups of C57BL/6 mice were immunized intramuscularly with a single dose of live vaccine particles or two doses of chemically inactivated viral particles. Both vaccination groups showed NiV G-specific seroconversion, and the inactivated (INAC) vaccine group yielded higher titers of NiV G-specific antibodies. Furthermore, cross-reactivity of NiV G-specific immune sera against Hendra virus (HeV), was confirmed by immunofluorescence (IF) and indirect ELISA against soluble recombinant HeV glycoprotein (HeV G). Both live and killed vaccines induced neutralizing antibodies. These results indicate that NIPARAB may be used as a killed virus vaccine to protect humans against NiV and RABV, and possibly as a preventative measure against HeV as well.
Collapse
Affiliation(s)
- Rohan Keshwara
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Thomas Shiels
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Elena Postnikova
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 USA
| | - Drishya Kurup
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Reed F. Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Matthias J. Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
- Jefferson Vaccine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
9
|
Haley SL, Tzvetkov EP, Lytle AG, Alugupalli KR, Plummer JR, McGettigan JP. APRIL:TACI axis is dispensable for the immune response to rabies vaccination. Antiviral Res 2017; 144:130-137. [PMID: 28619678 DOI: 10.1016/j.antiviral.2017.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/25/2022]
Abstract
There is significant need to develop a single-dose rabies vaccine to replace the current multi-dose rabies vaccine regimen and eliminate the requirement for rabies immune globulin in post-exposure settings. To accomplish this goal, rabies virus (RABV)-based vaccines must rapidly activate B cells to secrete antibodies which neutralize pathogenic RABV before it enters the CNS. Increased understanding of how B cells effectively respond to RABV-based vaccines may improve efforts to simplify post-exposure prophylaxis (PEP) regimens. Several studies have successfully employed the TNF family cytokine a proliferation-inducing ligand (APRIL) as a vaccine adjuvant. APRIL binds to the receptors TACI and B cell maturation antigen (BCMA)-expressed by B cells in various stages of maturation-with high affinity. We discovered that RABV-infected primary murine B cells upregulate APRIL ex vivo. Cytokines present at the time of antigen exposure affect the outcome of vaccination by influencing T and B cell activation and GC formation. Therefore, we hypothesized that the presence of APRIL at the time of RABV-based vaccine antigen exposure would support the generation of protective antibodies against RABV glycoprotein (G). In an effort to improve the response to RABV vaccination, we constructed and characterized a live recombinant RABV-based vaccine vector which expresses murine APRIL (rRABV-APRIL). Immunogenicity testing in mice demonstrated that expressing APRIL from the RABV genome does not impact the primary antibody response against RABV G compared to RABV alone. In order to evaluate the necessity of APRIL for the response to rabies vaccination, we compared the responses of APRIL-deficient and wild-type mice to immunization with rRABV. APRIL deficiency does not affect the primary antibody response to vaccination. Furthermore, APRIL expression by the vaccine did not improve the generation of long-lived antibody-secreting plasma cells (PCs) as serum antibody levels were equivalent in response to rRABV-APRIL and the vector eight weeks after immunization. Moreover, APRIL is dispensable for the long-lived antibody-secreting PC response to rRABV vaccination as anti-RABV G IgG levels were similar in APRIL-deficient and wild-type mice six months after vaccination. Mice lacking the APRIL receptor TACI demonstrated primary anti-RABV G antibody responses similar to wild-type mice following immunization with the vaccine vector indicating that this response is independent of TACI-mediated signals. Collectively, our findings demonstrate that APRIL and associated TACI signaling is dispensable for the immune response to RABV-based vaccination.
Collapse
Affiliation(s)
- Shannon L Haley
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Evgeni P Tzvetkov
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrew G Lytle
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kishore R Alugupalli
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joseph R Plummer
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - James P McGettigan
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States; Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
10
|
Targeting Vaccine-Induced Extrafollicular Pathway of B Cell Differentiation Improves Rabies Postexposure Prophylaxis. J Virol 2017; 91:JVI.02435-16. [PMID: 28148792 DOI: 10.1128/jvi.02435-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/25/2017] [Indexed: 12/25/2022] Open
Abstract
Vaccine-induced B cells differentiate along two pathways. The follicular pathway gives rise to germinal centers (GCs) that can take weeks to fully develop. The extrafollicular pathway gives rise to short-lived plasma cells (PCs) that can rapidly secrete protective antibodies within days of vaccination. Rabies virus (RABV) postexposure prophylaxis (PEP) requires rapid vaccine-induced humoral immunity for protection. Therefore, we hypothesized that targeting extrafollicular B cell responses for activation would improve the speed and magnitude of RABV PEP. To test this hypothesis, we constructed, recovered, and characterized a recombinant RABV-based vaccine expressing murine B cell activating factor (BAFF) (rRABV-mBAFF). BAFF is an ideal molecule to improve early pathways of B cell activation, as it links innate and adaptive immunity, promoting potent B cell responses. Indeed, rRABV-mBAFF induced a faster, higher antibody response in mice and enhanced survivorship in PEP settings compared to rRABV. Interestingly, rRABV-mBAFF and rRABV induced equivalent numbers of GC B cells, suggesting that rRABV-mBAFF augmented the extrafollicular B cell pathway. To confirm that rRABV-mBAFF modulated the extrafollicular pathway, we used a signaling lymphocytic activation molecule (SLAM)-associated protein (SAP)-deficient mouse model. In response to antigen, SAP-deficient mice form extrafollicular B cell responses but do not generate GCs. rRABV-mBAFF induced similar anti-RABV antibody responses in SAP-deficient and wild-type mice, demonstrating that BAFF modulated immunity through the extrafollicular and not the GC B cell pathway. Collectively, strategies that manipulate pathways of B cell activation may facilitate the development of a single-dose RABV vaccine that replaces current complicated and costly RABV PEP.IMPORTANCE Effective RABV PEP is currently resource- and cost-prohibitive in regions of the world where RABV is most prevalent. In order to diminish the requirements for rabies immunoglobulin (RIG) and multiple vaccinations for effective prevention of clinical rabies, a more rapidly protective vaccine is needed. This work presents a successful approach to rapidly generate antibody-secreting PCs in response to vaccination by targeting the extrafollicular B cell pathway. We demonstrate that the improved early antibody responses induced by rRABV-mBAFF confer improved protection against RABV in a PEP model. Significantly, activation of the early extrafollicular B cell pathway, such as that demonstrated here, could improve the efficacy of vaccines targeting other pathogens against which rapid protection would decrease morbidity and mortality.
Collapse
|
11
|
Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens. J Virol 2017; 91:JVI.02077-16. [PMID: 28148801 DOI: 10.1128/jvi.02077-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/25/2017] [Indexed: 12/25/2022] Open
Abstract
The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains.IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received recombinant rabies viruses carrying only the CDV attachment protein according to the same immunization scheme died. Irrespective of the CDV antigens used, all animals developed protective titers against rabies virus, illustrating that a bivalent rabies virus-based vaccine against CDV induces protective immune responses against both pathogens.
Collapse
|
12
|
Wirblich C, Coleman CM, Kurup D, Abraham TS, Bernbaum JG, Jahrling PB, Hensley LE, Johnson RF, Frieman MB, Schnell MJ. One-Health: a Safe, Efficient, Dual-Use Vaccine for Humans and Animals against Middle East Respiratory Syndrome Coronavirus and Rabies Virus. J Virol 2017; 91:e02040-16. [PMID: 27807241 PMCID: PMC5215356 DOI: 10.1128/jvi.02040-16] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/30/2016] [Indexed: 12/16/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 and is a highly pathogenic respiratory virus. There are no treatment options against MERS-CoV for humans or animals, and there are no large-scale clinical trials for therapies against MERS-CoV. To address this need, we developed an inactivated rabies virus (RABV) that contains the MERS-CoV spike (S) protein expressed on its surface. Our initial recombinant vaccine, BNSP333-S, expresses a full-length wild-type MERS-CoV S protein; however, it showed significantly reduced viral titers compared to those of the parental RABV strain and only low-level incorporation of full-length MERS-CoV S into RABV particles. Therefore, we developed a RABV-MERS vector that contained the MERS-CoV S1 domain of the MERS-CoV S protein fused to the RABV G protein C terminus (BNSP333-S1). BNSP333-S1 grew to titers similar to those of the parental vaccine vector BNSP333, and the RABV G-MERS-CoV S1 fusion protein was efficiently expressed and incorporated into RABV particles. When we vaccinated mice, chemically inactivated BNSP333-S1 induced high-titer neutralizing antibodies. Next, we challenged both vaccinated mice and control mice with MERS-CoV after adenovirus transduction of the human dipeptidyl peptidase 4 (hDPP4) receptor and then analyzed the ability of mice to control MERS-CoV infection. Our results demonstrated that vaccinated mice were fully protected from the MERS-CoV challenge, as indicated by the significantly lower MERS-CoV titers and MERS-CoV and mRNA levels in challenged mice than those in unvaccinated controls. These data establish that an inactivated RABV-MERS S-based vaccine may be effective for use in animals and humans in areas where MERS-CoV is endemic. IMPORTANCE Rabies virus-based vectors have been proven to be efficient dual vaccines against rabies and emergent infectious diseases such as Ebola virus. Here we show that inactivated rabies virus particles containing the MERS-CoV S1 protein induce potent immune responses against MERS-CoV and RABV. This novel vaccine is easy to produce and may be useful to protect target animals, such as camels, as well as humans from deadly MERS-CoV and RABV infections. Our results indicate that this vaccine approach can prevent disease, and the RABV-based vaccine platform may be a valuable tool for timely vaccine development against emerging infectious diseases.
Collapse
Affiliation(s)
- Christoph Wirblich
- Department of Microbiology and Immunology, Sydney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher M Coleman
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Drishya Kurup
- Department of Microbiology and Immunology, Sydney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Tara S Abraham
- Department of Microbiology and Immunology, Sydney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - John G Bernbaum
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, USA
| | - Peter B Jahrling
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, USA
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, USA
| | - Lisa E Hensley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sydney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Nolden T, Pfaff F, Nemitz S, Freuling CM, Höper D, Müller T, Finke S. Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof. Sci Rep 2016; 6:23887. [PMID: 27046474 PMCID: PMC4820695 DOI: 10.1038/srep23887] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/14/2016] [Indexed: 01/15/2023] Open
Abstract
Reverse genetics approaches are indispensable tools for proof of concepts in virus replication and pathogenesis. For negative strand RNA viruses (NSVs) the limited number of infectious cDNA clones represents a bottleneck as clones are often generated from cell culture adapted or attenuated viruses, with limited potential for pathogenesis research. We developed a system in which cDNA copies of complete NSV genomes were directly cloned into reverse genetics vectors by linear-to-linear RedE/T recombination. Rapid cloning of multiple rabies virus (RABV) full length genomes and identification of clones identical to field virus consensus sequence confirmed the approache's reliability. Recombinant viruses were recovered from field virus cDNA clones. Similar growth kinetics of parental and recombinant viruses, preservation of field virus characters in cell type specific replication and virulence in the mouse model were confirmed. Reduced titers after reporter gene insertion indicated that the low level of field virus replication is affected by gene insertions. The flexibility of the strategy was demonstrated by cloning multiple copies of an orthobunyavirus L genome segment. This important step in reverse genetics technology development opens novel avenues for the analysis of virus variability combined with phenotypical characterization of recombinant viruses at a clonal level.
Collapse
Affiliation(s)
- T. Nolden
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, D-17493 Greifswald – Insel Riems, Germany
| | - F. Pfaff
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, D-17493 Greifswald – Insel Riems, Germany
| | - S. Nemitz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, D-17493 Greifswald – Insel Riems, Germany
| | - C. M. Freuling
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, D-17493 Greifswald – Insel Riems, Germany
| | - D. Höper
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, D-17493 Greifswald – Insel Riems, Germany
| | - T. Müller
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, D-17493 Greifswald – Insel Riems, Germany
| | - Stefan Finke
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, D-17493 Greifswald – Insel Riems, Germany
| |
Collapse
|
14
|
Dunkel A, Shen S, LaBranche CC, Montefiori D, McGettigan JP. A Bivalent, Chimeric Rabies Virus Expressing Simian Immunodeficiency Virus Envelope Induces Multifunctional Antibody Responses. AIDS Res Hum Retroviruses 2015; 31:1126-38. [PMID: 25848984 DOI: 10.1089/aid.2014.0319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We previously showed that a matrix (M) gene-deleted rabies virus (RABV)-based vaccine (RABV-ΔM) is highly immunogenic and induces potent B cell responses in the context of RABV infection. We speculated that RABV-ΔM expressing HIV proteins would also induce potent B cell responses against HIV antigens. As a prerequisite to future studies in nonhuman primates, we completed immunogenicity studies in mice to confirm the ability of RABV-ΔM to induce polyfunctional B cell responses in the context of HIV. To that end, the envelope protein from the mac239 strain of SIV (SIVmac239Env) was cloned into RABV-ΔM, resulting in RABV-ΔM-Env. Infectious virus was recovered following standard methods and propagated on baby hamster kidney cells stably expressing RABV M [>10(7) focus forming units (ffu)/ml]. Western blot analysis of cell lysates or of purified virions confirmed Env expression on the surface of infected cells and within virus particles, respectively. Positive neutralization activity against a neutralization-sensitive SIV strain and to a lesser extent against a neutralization-resistant SIV strain was detected in mice after a single intramuscular inoculation with RABV-ΔM-Env. The quality, but not quantity, of the antibody response was enhanced via boosting with recombinant gp130 or RABV-ΔM-Env as measured by an increase in antibody avidity and a skewing toward a Th1-type antibody response. We also show that an intradermal inoculation induces higher antibodies than an intramuscular or intranasal inoculation. An intradermal inoculation of RABV-ΔM-Env followed by a boost inoculation with recombinant gp130 produced anti-SIV antibodies with neutralizing and nonneutralizing antibody (nNAb) effector functions. Together, RABV-ΔM-Env induces B cells to secrete antibodies against SIV with the potential to clear both "free" and cell-associated virus. Strategies capable of eliciting both NAbs as well as nNAbs might help to improve the efficacy of HIV-1 vaccines.
Collapse
Affiliation(s)
- Amber Dunkel
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shixue Shen
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | - James P. McGettigan
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Willet M, Kurup D, Papaneri A, Wirblich C, Hooper JW, Kwilas SA, Keshwara R, Hudacek A, Beilfuss S, Rudolph G, Pommerening E, Vos A, Neubert A, Jahrling P, Blaney JE, Johnson RF, Schnell MJ. Preclinical Development of Inactivated Rabies Virus-Based Polyvalent Vaccine Against Rabies and Filoviruses. J Infect Dis 2015; 212 Suppl 2:S414-24. [PMID: 26063224 PMCID: PMC4564550 DOI: 10.1093/infdis/jiv251] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We previously described the generation of a novel Ebola virus (EBOV) vaccine based on inactivated rabies virus (RABV) containing EBOV glycoprotein (GP) incorporated in the RABV virion. Our results demonstrated safety, immunogenicity, and protective efficacy in mice and nonhuman primates (NHPs). Protection against viral challenge depended largely on the quality of the humoral immune response against EBOV GP.Here we present the extension and improvement of this vaccine by increasing the amount of GP incorporation into virions via GP codon-optimization as well as the addition of Sudan virus (SUDV) and Marburg virus (MARV) GP containing virions. Immunogenicity studies in mice indicate similar immune responses for both SUDV GP and MARV GP compared to EBOV GP. Immunizing mice with multiple antigens resulted in immune responses similar to immunization with a single antigen. Moreover, immunization of NHP with the new inactivated RABV EBOV vaccine resulted in high titer neutralizing antibody levels and 100% protection against lethal EBOV challenge when applied with adjuvant.Our results indicate that an inactivated polyvalent vaccine against RABV filoviruses is achievable. Finally, the novel vaccines are produced on approved VERO cells and a clinical grade RABV/EBOV vaccine for human trials has been produced.
Collapse
Affiliation(s)
| | | | - Amy Papaneri
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
| | | | - Jay W. Hooper
- US Army Medical Research Institute of Infectious Diseases
| | | | | | | | | | - Grit Rudolph
- IDT Biologika GmbH, Am Pharmapark, Dessau-Rosslau, Germany
| | | | - Adriaan Vos
- IDT Biologika GmbH, Am Pharmapark, Dessau-Rosslau, Germany
| | | | - Peter Jahrling
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland
| | - Joseph E. Blaney
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
| | - Reed F. Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
| | - Matthias J. Schnell
- Department of Microbiology and Immunology
- Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Abstract
UNLABELLED The emerging zoonotic pathogens Hendra virus (HeV) and Nipah virus (NiV) are in the genus Henipavirus in the family Paramyxoviridae. HeV and NiV infections can be highly fatal to humans and livestock. The goal of this study was to develop candidate vaccines against henipaviruses utilizing two well-established rhabdoviral vaccine vector platforms, recombinant rabies virus (RABV) and recombinant vesicular stomatitis virus (VSV), expressing either the codon-optimized or the wild-type (wt) HeV glycoprotein (G) gene. The RABV vector expressing the codon-optimized HeV G showed a 2- to 3-fold increase in incorporation compared to the RABV vector expressing wt HeV G. There was no significant difference in HeV G incorporation in the VSV vectors expressing either wt or codon-optimized HeV G. Mice inoculated intranasally with any of these live recombinant viruses showed no signs of disease, including weight loss, indicating that HeV G expression and incorporation did not increase the neurotropism of the vaccine vectors. To test the immunogenicity of the vaccine candidates, we immunized mice intramuscularly with either one dose of the live vaccines or 3 doses of 10 μg chemically inactivated viral particles. Increased codon-optimized HeV G incorporation into RABV virions resulted in higher antibody titers against HeV G compared to inactivated RABV virions expressing wt HeV G. The live VSV vectors induced more HeV G-specific antibodies as well as higher levels of HeV neutralizing antibodies than the RABV vectors. In the case of killed particles, HeV neutralizing serum titers were very similar between the two platforms. These results indicated that killed RABV with codon-optimized HeV G should be the vector of choice as a dual vaccine in areas where rabies is endemic. IMPORTANCE Scientists have been tracking two new viruses carried by the Pteropid fruit bats: Hendra virus (HeV) and Nipah virus (NiV). Both viruses can be fatal to humans and also pose a serious risk to domestic animals. A recent escalation in the frequency of outbreaks has increased the need for a vaccine that prevents HeV and NiV infections. In this study, we performed an extensive comparison of live and killed particles of two recombinant rhabdoviral vectors, rabies virus and vesicular stomatitis virus (VSV), expressing wild-type or codon-optimized HeV glycoprotein, with the goal of developing a candidate vaccine against HeV. Based on our data from the presented mouse immunogenicity studies, we conclude that a killed RABV vaccine would be highly effective against HeV infections and would make an excellent vaccine candidate in areas where both RABV and henipaviruses pose a threat to human health.
Collapse
|
17
|
Norton JE, Lytle AG, Shen S, Tzvetkov EP, Dorfmeier CL, McGettigan JP. ICAM-1-based rabies virus vaccine shows increased infection and activation of primary murine B cells in vitro and enhanced antibody titers in-vivo. PLoS One 2014; 9:e87098. [PMID: 24489846 PMCID: PMC3906113 DOI: 10.1371/journal.pone.0087098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/18/2013] [Indexed: 12/25/2022] Open
Abstract
We have previously shown that live-attenuated rabies virus (RABV)-based vaccines infect and directly activate murine and human primary B cells in-vitro, which we propose can be exploited to help develop a single-dose RABV-based vaccine. Here we report on a novel approach to utilize the binding of Intracellular Adhesion Molecule-1 (ICAM-1) to its binding partner, Lymphocyte Function-associated Antigen-1 (LFA-1), on B cells to enhance B cell activation and RABV-specific antibody responses. We used a reverse genetics approach to clone, recover, and characterize a live-attenuated recombinant RABV-based vaccine expressing the murine Icam1 gene (rRABV-mICAM-1). We show that the murine ICAM-1 gene product is incorporated into virus particles, potentially exposing ICAM-1 to extracellular binding partners. While rRABV-mICAM-1 showed 10-100-fold decrease in viral titers on baby hamster kidney cells compared to the parental virus (rRABV), rRABV-mICAM-1 infected and activated primary murine B cells in-vitro more efficiently than rRABV, as indicated by significant upregulation of CD69, CD40, and MHCII on the surface of infected B cells. ICAM-1 expression on the virus surface was responsible for enhanced B cell infection since pre-treating rRABV-mICAM-1 with a neutralizing anti-ICAM-1 antibody reduced B cell infection to levels observed with rRABV alone. Furthermore, 100-fold less rRABV-mICAM-1 was needed to induce antibody titers in immunized mice equivalent to antibody titers observed in rRABV-immunized mice. Of note, only 103 focus forming units (ffu)/mouse of rRABV-mICAM-1 was needed to induce significant anti-RABV antibody titers as early as five days post-immunization. As both speed and potency of antibody responses are important in controlling human RABV infection in a post-exposure setting, these data show that expression of Icam1 from the RABV genome, which is then incorporated into the virus particle, is a promising strategy for the development of a single-dose RABV vaccine that requires only a minimum of virus.
Collapse
Affiliation(s)
- James E. Norton
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Andrew G. Lytle
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Shixue Shen
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Evgeni P. Tzvetkov
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Corin L. Dorfmeier
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - James P. McGettigan
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Dorfmeier CL, Shen S, Tzvetkov EP, McGettigan JP. Reinvestigating the role of IgM in rabies virus postexposure vaccination. J Virol 2013; 87:9217-22. [PMID: 23760250 PMCID: PMC3754079 DOI: 10.1128/jvi.00995-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/09/2013] [Indexed: 12/25/2022] Open
Abstract
B cells secreting IgG antibodies, but not IgM, are thought to be solely responsible for vaccine-induced protection against rabies virus (RABV) infections in postexposure settings. In this report, we reinvestigated the potential for IgM to mediate protection in a mouse model of RABV vaccination. Immunocompetent mice immunized with an experimental live replication-deficient RABV-based vaccine produced virus neutralizing antibodies (VNAs) within 3 days of vaccination. However, mice unable to produce soluble IgM (sIgM(-/-)) did not produce VNAs until 7 days postimmunization. Furthermore, sIgM(-/-) mice were not protected against RABV infection when challenged 3 days postimmunization, while all wild-type mice survived challenge. Consistent with the lack of protection against pathogenic RABV challenge, approximately 50- to 100-fold higher viral loads of challenge virus were detected in the muscle, spinal cord, and brain of immunized sIgM(-/-) mice compared to control mice. In addition, IgG antibody titers in vaccinated wild-type and sIgM(-/-) mice were similar at all time points postimmunization, suggesting that protection against RABV challenge is due to the direct effects of IgM and not the influence of IgM on the development of effective IgG antibody titers. In all, early vaccine-induced IgM can limit dissemination of pathogenic RABV to the central nervous system and mediate protection against pathogenic RABV challenge. Considering the importance for the rapid induction of VNAs to protect against RABV infections in postexposure prophylaxis settings, these findings may help guide the development of a single-dose human rabies vaccine.
Collapse
Affiliation(s)
| | | | | | - James P. McGettigan
- Department of Microbiology and Immunology
- Jefferson Vaccine Center
- Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Abstract
Rabies viruses, negative-strand RNA viruses, infect neurons through axon terminals and spread trans-synaptically in a retrograde direction between neurons. Rabies viruses whose glycoprotein (G) gene is deleted from the genome cannot spread across synapses. Complementation of G in trans, however, enables trans-synaptic spreading of G-deleted rabies viruses to directly connected, presynaptic neurons. Recombinant rabies viruses can encode genes of interest for labeling cells, controlling gene expression and monitoring or manipulating neural activity. Cre-dependent or bridge protein-mediated transduction and single-cell electroporation via the EnvA-TVA or EnvB-TVB (envelope glycoprotein and its specific receptor for avian sarcoma leukosis virus subgroup A or B) system allow cell type-specific or single cell-specific targeting. These rabies virus-based approaches permit the linking of connectivity to cell morphology and circuit function for particular cell types or single cells. Here we describe methods for construction of rabies viral vectors, recovery of G-deleted rabies viruses from cDNA, amplification of the viruses, pseudotyping them with EnvA or EnvB and concentration and titration of the viruses. The entire protocol takes 6-8 weeks.
Collapse
|
20
|
Dorfmeier CL, Lytle AG, Dunkel AL, Gatt A, McGettigan JP. Protective vaccine-induced CD4(+) T cell-independent B cell responses against rabies infection. J Virol 2012; 86:11533-40. [PMID: 22896601 PMCID: PMC3486289 DOI: 10.1128/jvi.00615-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 08/06/2012] [Indexed: 12/17/2022] Open
Abstract
A major goal in rabies virus (RV) research is to develop a single-dose postexposure prophylaxis (PEP) that would simplify vaccination protocols, reduce costs associated with rabies prevention in humans, and save lives. Live replication-deficient RV-based vaccines are emerging as promising single-dose vaccines to replace currently licensed inactivated RV-based vaccines. Nonetheless, little is known about how effective B cells develop in response to live RV-based vaccination. Understanding this fundamental property of rabies immunology may help in developing a single-dose RV vaccine. Typically, vaccines induce B cells secreting high-affinity, class-switched antibodies during germinal center (GC) reactions; however, there is a lag time between vaccination and the generation of GC B cells. In this report, we show that RV-specific antibodies are detected in mice immunized with live but not inactivated RV-based vaccines before B cells displaying a GC B cell phenotype (B220(+)GL7(hi)CD95(hi)) are formed, indicating a potential role for T cell-independent and early extrafollicular T cell-dependent antibody responses in the protection against RV infection. Using two mouse models of CD4(+) T cell deficiency, we show that B cells secreting virus-neutralizing antibodies (VNAs) are induced via T cell-independent mechanisms within 4 days postimmunization with a replication-deficient RV-based vaccine. Importantly, mice that are completely devoid of T cells (B6.129P2-Tcrβ(tm1Mom) Tcrδ(tm1Mom)/J) show protection against pathogenic challenge shortly after immunization with a live replication-deficient RV-based vaccine. We show that vaccines that can exploit early pathways of B cell activation and development may hold the key for the development of a single-dose RV vaccine wherein the rapid induction of VNA is critical.
Collapse
Affiliation(s)
| | | | | | | | - James P. McGettigan
- Department of Microbiology and Immunology
- Jefferson Vaccine Center
- Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Osakada F, Mori T, Cetin AH, Marshel JH, Virgen B, Callaway EM. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 2011; 71:617-31. [PMID: 21867879 DOI: 10.1016/j.neuron.2011.07.005] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2011] [Indexed: 01/12/2023]
Abstract
Glycoprotein-deleted (ΔG) rabies virus is a powerful tool for studies of neural circuit structure. Here, we describe the development and demonstrate the utility of new resources that allow experiments directly investigating relationships between the structure and function of neural circuits. New methods and reagents allowed efficient production of 12 novel ΔG rabies variants from plasmid DNA. These new rabies viruses express useful neuroscience tools, including the Ca(2+) indicator GCaMP3 for monitoring activity; Channelrhodopsin-2 for photoactivation; allatostatin receptor for inactivation by ligand application; and rtTA, ER(T2)CreER(T2), or FLPo, for control of gene expression. These new tools allow neurons targeted on the basis of their connectivity to have their function assayed or their activity or gene expression manipulated. Combining these tools with in vivo imaging and optogenetic methods and/or inducible gene expression in transgenic mice will facilitate experiments investigating neural circuit development, plasticity, and function that have not been possible with existing reagents.
Collapse
Affiliation(s)
- Fumitaka Osakada
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Until recently, single-stranded negative sense RNA viruses (ssNSVs) were one of only a few important human viral pathogens, which could not be created from cDNA. The inability to manipulate their genomes hindered their detailed genetic analysis. A key paper from Conzelmann's laboratory in 1994 changed this with the publication of a method to recover rabies virus (RABV) from cDNA. This discovery not only dramatically changed the broader field of ssNSV biology but also opened a whole new avenue for studying RABV pathogenicity, developing novel RABV vaccines as well a new generation of RABV-based vaccine vectors, and creating research tools important in neuroscience such as neuronal tracing.
Collapse
Affiliation(s)
- Emily A Gomme
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
23
|
Mustafa W, Al-Saleem FH, Nasser Z, Olson RM, Mattis JA, Simpson LL, Schnell MJ. Immunization of mice with the non-toxic HC50 domain of botulinum neurotoxin presented by rabies virus particles induces a strong immune response affording protection against high-dose botulinum neurotoxin challenge. Vaccine 2011; 29:4638-45. [PMID: 21549784 DOI: 10.1016/j.vaccine.2011.04.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 04/07/2011] [Accepted: 04/16/2011] [Indexed: 11/16/2022]
Abstract
We previously showed that rabies virus (RABV) virions are excellent vehicles for antigen presentation. Here, a reverse genetic approach was applied to generate recombinant RABV that express a chimeric protein composed of the heavy chain carboxyterminal half (HC50) of botulinum neurotoxin type A (BoNT/A) and RABV glycoprotein (G). To promote surface expression and incorporation of HC50/A into RABV virions, the RABV glycoprotein (G) ER translocation sequence, various fragments of RABV ectodomain (ED) and cytoplasmic domain were fused to HC50/A. The HC50/A chimeric proteins were expressed on the surface of cells infected with all of the recombinant RABVs, however, the highest level of surface expression was detected by utilizing 30 amino acids of the RABV G ED (HV50/A-E30). Our results also indicated that this chimeric protein was effectively incorporated into RABV virions. Immunization of mice with inactivated RABV-HC50/A-E30 virions induced a robust anti-HC50/A IgG antibody response that efficiently neutralized circulating BoNT/A in vivo, and protected mice against 1000 fold the lethal dose of BoNT/A.
Collapse
Affiliation(s)
- Waleed Mustafa
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | | | | | | | | | | | | |
Collapse
|
24
|
Wanjalla CN, Faul EJ, Gomme EA, Schnell MJ. Dendritic cells infected by recombinant rabies virus vaccine vector expressing HIV-1 Gag are immunogenic even in the presence of vector-specific immunity. Vaccine 2010; 29:130-40. [PMID: 20728525 DOI: 10.1016/j.vaccine.2010.08.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 08/02/2010] [Accepted: 08/06/2010] [Indexed: 11/28/2022]
Abstract
Dendritic cells (DC) are the most potent antigen presenting cells whose ability to interact with T cells, B cells and NK cells has led to their extensive use in vaccine design. Here, we designed a DC-based HIV-1 vaccine using an attenuated rabies virus vector expressing HIV-1 Gag (RIDC-Gag). To test this, BALB/c mice were immunized with RIDC-Gag, and the primary, secondary as well as humoral immune responses were monitored. Our results indicate that RIDC-Gag stimulated HIV-1 Gag-specific immune responses in mice. When challenged with vaccinia virus (VV) expressing HIV-1 Gag, they elicited a potent Gag-specific recall response characterized by CD8+ T cells expressing multiple cytokines that were capable of specifically lysing Gag-pulsed target cells. Moreover, RIDC-Gag also enhanced CD8+ T cell responses via a homologous prime-boost regimen. These results show that a DC-based vaccine using live RV is immunogenic and a potential candidate for a therapeutic HIV-1 vaccine.
Collapse
Affiliation(s)
- Celestine N Wanjalla
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Rabies virus, the prototypical neurotropic virus, causes one of the most lethal zoonotic diseases. According to official estimates, over 55,000 people die of the disease annually, but this is probably a severe underestimation. A combination of virulence factors enables the virus to enter neurons at peripheral sites and travel through the spinal cord to the brain of the infected host, where it often induces aggression that facilitates the transfer of the virus to a new host. This Review summarizes the current knowledge of the replication cycle of rabies virus and virus- host cell interactions, both of which are fundamental elements in our quest to understand the life cycle of rabies virus and the pathogenesis of rabies.
Collapse
|
26
|
Cenna J, Hunter M, Tan GS, Papaneri AB, Ribka EP, Schnell MJ, Marx PA, McGettigan JP. Replication-deficient rabies virus-based vaccines are safe and immunogenic in mice and nonhuman primates. J Infect Dis 2009; 200:1251-60. [PMID: 19764884 DOI: 10.1086/605949] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although current postexposure prophylaxis rabies virus (RV) vaccines are effective, approximately 40,000-70,000 rabies-related deaths are reported annually worldwide. The development of effective formulations requiring only 1-2 applications would significantly reduce mortality. We assessed in mice and nonhuman primates the efficacy of replication-deficient RV vaccine vectors that lack either the matrix (M) or phosphoprotein (P) gene. A single dose of M gene-deficient RV induced a more rapid and efficient anti-RV response than did P gene-deficient RV immunization. Furthermore, the M gene-deleted RV vaccine induced 4-fold higher virus-neutralizing antibody (VNA) levels in rhesus macaques than did a commercial vaccine within 10 days after inoculation, and at 180 days after immunization rhesus macaques remained healthy and had higher-avidity antibodies, higher VNA titers, and a more potent antibody response typical of a type 1 T helper response than did animals immunized with a commercial vaccine. The data presented in this article suggest that the M gene-deleted RV vaccine is safe and effective and holds the potential of replacing current pre- and postexposure RV vaccines.
Collapse
Affiliation(s)
- Jonathan Cenna
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abe S, Okuda K, Ura T, Kondo A, Yoshida A, Yoshizaki S, Mizuguchi H, Klinman D, Shimada M. Adenovirus type 5 with modified hexons induces robust transgene-specific immune responses in mice with pre-existing immunity against adenovirus type 5. J Gene Med 2009; 11:570-9. [PMID: 19391169 PMCID: PMC7385988 DOI: 10.1002/jgm.1332] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Adenovirus type 5 (Ad5) is widely used as a vehicle for vaccine delivery in the treatment of infectious disease and cancer. However, the efficacy of Ad5 vectors has been limited in humans because exposure to Ad5 infections results in most adults having neutralizing antibodies against Ad5. To overcome this limitation, the hexon epitope present in the fifth hypervariable region of Ad5 was modified. METHODS To evaluate the ability of Ad5 vectors encoding the HIV env protein to induce Ag-specific immune responses in the face of pre-existing anti-Ad5 immunity, mice were administrated intramuscularly with the Ad-Luc vector, and then vaccinated with parental or hexon-modified Ad5 vectors (Ad-HisHIV, Ad-END/AAAHIV or Ad-HIV) at week 8. HIV-specific cell-mediated immune responses were detected through a combination of tetramer assays and intracellular cytokine staining from weeks 8-23. RESULTS The hexon-modified Ad vector was able to escape from anti-Ad5 neutralizing antibody, and mice with the modified vector generated significantly lower individual neutralizing antibody than those immunized with the parental vector. Furthermore, mice with pre-existing anti-Ad immunity immunized with the modified vector generated significantly stronger cell-mediated anti-env responses than those immunized with the parental vector. CONCLUSIONS These data demonstrate that Ad5 vector with hexon modification reduce their sensitivity to pre-existing anti-Ad immunity and improve their clinical utility.
Collapse
Affiliation(s)
- Shinya Abe
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takehiro Ura
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asami Kondo
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Yoshida
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shinji Yoshizaki
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka, Japan
| | - Dennis Klinman
- National Cancer institute, National Institute of Health, Frederick, MD, USA
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
28
|
Billeter MA, Naim HY, Udem SA. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses. Curr Top Microbiol Immunol 2009; 329:129-62. [PMID: 19198565 PMCID: PMC7120638 DOI: 10.1007/978-3-540-70523-9_7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses ( Mononegavirales ), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.
Collapse
Affiliation(s)
- M A Billeter
- University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | |
Collapse
|
29
|
Cenna J, Tan GS, Papaneri AB, Dietzschold B, Schnell MJ, McGettigan JP. Immune modulating effect by a phosphoprotein-deleted rabies virus vaccine vector expressing two copies of the rabies virus glycoprotein gene. Vaccine 2008; 26:6405-14. [PMID: 18804506 DOI: 10.1016/j.vaccine.2008.08.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/22/2008] [Accepted: 08/25/2008] [Indexed: 12/25/2022]
Abstract
The type of immune response induced by a vaccine is a critical factor that determines its effectiveness in preventing infection or disease. Inactivated and live rabies virus (RV) vaccine strains elicit an IgG1-biased and IgG1/IgG2a-balanced antibody response, respectively. However, IgG2a antibodies are potent inducers of anti-viral effector functions, and therefore, a viral vaccine vector that can elicit an IgG2a-biased antibody response may be more effective against RV infection. Here we describe the humoral immune response of a live replication-deficient phosphoprotein (P)-deleted RV vector (SPBN-DeltaP), or a recombinant P-deleted virus that expresses two copies of the RV glycoprotein (G) gene (SPBN-DeltaP-RVG), and compare it to a UV-inactivated RV. Mice inoculated with UV-inactivated RV induced predominantly an IgG1-specific antibody response, while live recombinant SPBN-DeltaP exhibited a mixed IgG1/IgG2a antibody response, which is consistent with the isotype profiles from the replication-competent parental viruses. Survivorship in mice after pathogenic RV challenge indicates a 10-fold higher efficiency of live SPBN-DeltaP compared to UV-inactivated SPBN-DeltaP. In addition, SPBN-DeltaP-RVG induced a more rapid and robust IgG2a response that protected mice more effectively than SPBN-DeltaP. Of note, 10(3)ffu of SPBN-DeltaP-RVG-induced anti-RV antibodies that were 100% protective in mice against pathogenic RV challenge. The increased immune response was directed not only against RV G but also against the ribonucleoprotein (RNP), indicating that the expression of two RV G genes from SPBN-DeltaP-RVG enhances the immune response to other RV antigens as well. In addition, Rag2 mice inoculated intramuscularly with 10(5)ffu/mouse of SPBN-DeltaP showed no clinical signs of rabies, and no viral RNA was detected in the spinal cord or brain of inoculated mice. Therefore, the safety of the P-deleted vectors along with the onset and magnitude of the IgG2a-induced immune response by SPBN-DeltaP-RVG indicate that this vector holds great promise as either a therapeutic or preventative vaccine against RV or other infectious diseases.
Collapse
Affiliation(s)
- Jonathan Cenna
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107-6799, USA
| | | | | | | | | | | |
Collapse
|
30
|
PPEY motif within the rabies virus (RV) matrix protein is essential for efficient virion release and RV pathogenicity. J Virol 2008; 82:9730-8. [PMID: 18667490 DOI: 10.1128/jvi.00889-08] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Late (L) domains containing the highly conserved sequence PPXY were first described for retroviruses, and later research confirmed their conservation and importance for efficient budding of several negative-stranded RNA viruses. Rabies virus (RV), a member of the Rhabdoviridae family, contains the sequence PPEY (amino acids 35 to 38) within the N terminus of the matrix (M) protein, but the functions of this potential L-domain in the viral life cycle, viral pathogenicity, and immunogenicity have not been established. Here we constructed a series of recombinant RVs containing mutations within the PPEY motif and analyzed their effects on viral replication and RV pathogenicity. Our results indicate that the first proline at position 35 is the most important for viral replication, whereas P36 and Y38 have a lesser but still noticeable impact. The reduction in viral replication was most likely due to inhibition of virion release, because initially no major impact on RV RNA synthesis was observed. In addition, results from electron microscopy demonstrated that the M4A mutant virus (PPEY-->SAEA) displayed a more cell-associated phenotype than that of wild-type RV. Furthermore, all mutations within the PPEY motif resulted in reduced spread of the recombinant RVs as indicated by a reduction in focus size. Importantly, recombinant PPEY L-domain mutants were highly attenuated in mice yet still elicited potent antibody responses against RV G protein that were as high as those observed after infection with wild-type virus. Our data indicate that the RV PPEY motif has L-domain activity essential for efficient virus production and pathogenicity but is not essential for immunogenicity and thus can be targeted to increase the safety of rabies vaccine vectors.
Collapse
|
31
|
Du J, Zhang Q, Tang Q, Li H, Tao X, Morimoto K, Nadin-Davis SA, Liang G. Characterization of human rabies virus vaccine strain in China. Virus Res 2008; 135:260-6. [PMID: 18501987 DOI: 10.1016/j.virusres.2008.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/31/2008] [Accepted: 04/01/2008] [Indexed: 11/25/2022]
Abstract
Human rabies virus vaccine strain CTN181 from China was sequenced. The overall length of the genome was 11,923 nucleotides (nt), comprising a leader sequence of 58 nt, nucleoprotein (N) gene of 1353 nt, phosphoprotein (P) gene of 894 nt, matrix protein (M) gene of 609 nt, glycoprotein (G) gene of 1575 nt, RNA-dependent RNA polymerase (RdRp, L) gene of 6387 nt, and a trailer region of 70 nt. The five monocistrons are separated by intergenic regions (IGRs) of 2, 5, 5 and 24 nucleotides (nt), respectively. Two obvious differences between CTN181 and the other rabies virus vaccine strains were (1) the putative stop/polyadenylation signal of the G gene has only one poly (A) tract for CTN181, and (2) the start of the open reading frame for L has two repeats of ATG for CTN181. Both were similar to the SHBRV-18 (silver-haired bat-associated RV strain 18) strain. In addition, some mutations and new functional regions were discovered that are presumed crucial to the function of leader region and L protein. There is an equal role for all five genes in the phylogenetics of rabies virus.
Collapse
Affiliation(s)
- Jialiang Du
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention and State Key Laboratory for Infectious Disease Prevention and Control, Xuan Wu District, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Establishment of reverse genetics system of betanodavirus for the efficient recovery of infectious particles. J Virol Methods 2008; 151:271-276. [PMID: 18508134 DOI: 10.1016/j.jviromet.2008.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 03/29/2008] [Accepted: 04/03/2008] [Indexed: 11/21/2022]
Abstract
Betanodaviruses, a member of the family Nodaviridae, have small positive-stranded bipartite RNA genomes and are the causal agent of viral nervous necrosis in marine-farmed fish. To facilitate the study of betanodavirus, infectious cDNA clones of its two genomic RNAs were generated. The full-length cDNA of the new Redspotted grouper nervous necrosis virus strain (SG2001Nag) RNA1 and RNA2 were co-transcribed by T7 RNA polymerase in baby hamster kidney cells expressing T7 RNA polymerase. The transcription of precise viral RNAs from cDNAs neither lead to viral protein synthesis nor the production of infectious particles. However, the additional two guanine residues following T7 promoter increased the transcription of viral RNAs from cDNAs, and 1.0 x 10(6)TCID(50)/ml of infectious particles was collected from the transfected cells. The ability to reproduce the entire life cycle of betanodavirus from cDNA clones by this reverse genetics system would therefore facilitate a further analysis of the mechanism of betanodavirus RNA replication, structure, and assembly. These findings may thus help in the future development of a betanodavirus vaccine.
Collapse
|
33
|
Abstract
Various technological developments have revitalized the approaches employed to study the disease of rabies. In particular, reverse genetics has facilitated the generation of novel viruses used to improve our understanding of the fundamental aspects of rabies virus (RABV) biology and pathogenicity and yielded novel constructs potentially useful as vaccines against rabies and other diseases. Other techniques such as high throughput methods to examine the impact of rabies virus infection on host cell gene expression and two hybrid systems to explore detailed protein-protein interactions also contribute substantially to our understanding of virus-host interactions. This review summarizes much of the increased knowledge about rabies that has resulted from such studies but acknowledges that this is still insufficient to allow rational attempts at curing those who present with clinical disease.
Collapse
Affiliation(s)
- Susan A Nadin-Davis
- Centre of Expertise for Rabies, Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | | |
Collapse
|
34
|
Xin KQ, Sekimoto Y, Takahashi T, Mizuguchi H, Ichino M, Yoshida A, Okuda K. Chimeric adenovirus 5/35 vector containing the clade C HIV gag gene induces a cross-reactive immune response against HIV. Vaccine 2007; 25:3809-15. [PMID: 17386962 DOI: 10.1016/j.vaccine.2007.01.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 01/26/2007] [Accepted: 01/30/2007] [Indexed: 01/07/2023]
Abstract
Most of the recent HIV studies have focused on the clade B virus subtype. However, it is estimated that half the HIV patients in developing countries are infected with virus belonging to clade C. Therefore, a vaccine against HIV clade C is urgently required. In this study, we evaluate the immunogenicity and protective immunity of an adenovirus vector (Ad) in BALB/c mice and cynomolgus monkeys. We developed an HIV vaccine containing the HIV clade C gag gene using a replication-defective chimeric adenovirus type 5 (Ad5) vector incorporating Ad35 fiber (Ad5/35); this vector has exhibited low hepatotoxicity in animal models. We observed that immunization with the Ad5/35 vaccine generated heightened HIV-specific immune responses in both mice and monkeys. Furthermore, the Ad5/35 vector vaccine produced a cross-immunity against challenge with recombinant vaccinia viruses expressing HIV clade B gag. These results demonstrate that Ad5/35 vaccines expressing HIV clade C gag may be promising candidates for clinical trials.
Collapse
Affiliation(s)
- Ke-Qin Xin
- Department of Molecular Biodefense Research, Yokohama City University, Yokohama 236-0004, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Bukreyev A, Skiadopoulos MH, Murphy BR, Collins PL. Nonsegmented negative-strand viruses as vaccine vectors. J Virol 2006; 80:10293-306. [PMID: 17041210 PMCID: PMC1641758 DOI: 10.1128/jvi.00919-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Alexander Bukreyev
- Building 50, Room 6505, NIAID, NIH, 50 South Dr., MSC 8007, Bethesda, MD 20892-8007, USA.
| | | | | | | |
Collapse
|
36
|
Plesa G, McKenna PM, Schnell MJ, Eisenlohr LC. Immunogenicity of cytopathic and noncytopathic viral vectors. J Virol 2006; 80:6259-66. [PMID: 16775313 PMCID: PMC1488949 DOI: 10.1128/jvi.00084-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The impact of cytolytic versus noncytolytic viral infections on host responses is not well understood, due to limitations of the systems that have been used to address this issue. Using paired cytopathic and noncytopathic rabies viruses that differ by only two amino acids, we investigated several fundamental aspects of the immune response to these viral vectors. Greater cytopathic capacity translated into a greater degree of cross-priming to CD8(+) T cells (T(CD8)(+)) and more-robust short-term humoral and cellular responses. However, long-term responses to the two viruses were similar, suggesting that direct priming drives the bulk of the T(CD8)(+) antirabies response and that enhanced acute responses associated with greater virally mediated cellular destruction were balanced by other factors, such as prolonged antigen expression associated with noncytopathic virus. Such compensatory mechanisms may be in place to ensure comparable immunologic memories to various pathogens.
Collapse
Affiliation(s)
- Gabriela Plesa
- Thomas Jefferson University, Kimmel Cancer Center, 233 S. 10th Street, BLSB 730, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
37
|
Smith ME, Koser M, Xiao S, Siler C, McGettigan JP, Calkins C, Pomerantz RJ, Dietzschold B, Schnell MJ. Rabies virus glycoprotein as a carrier for anthrax protective antigen. Virology 2006; 353:344-56. [PMID: 16820183 PMCID: PMC1576297 DOI: 10.1016/j.virol.2006.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 04/21/2006] [Accepted: 05/09/2006] [Indexed: 11/26/2022]
Abstract
Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen was also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems.
Collapse
Affiliation(s)
- Mary Ellen Smith
- Departments of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Martin Koser
- Departments of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sa Xiao
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Catherine Siler
- Departments of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - James P. McGettigan
- Departments of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Catherine Calkins
- Departments of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Roger J. Pomerantz
- Departments of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Institute of Human Virology and Biodefense, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bernhard Dietzschold
- Departments of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthias J. Schnell
- Departments of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Departments of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Corresponding author. 233 South 10th Street, Suite 331 BLSB, Philadelphia, PA 19107-5541, USA. Fax: +1 215 503 5393.
| |
Collapse
|
38
|
Witko SE, Kotash CS, Nowak RM, Johnson JE, Boutilier LAC, Melville KJ, Heron SG, Clarke DK, Abramovitz AS, Hendry RM, Sidhu MS, Udem SA, Parks CL. An efficient helper-virus-free method for rescue of recombinant paramyxoviruses and rhadoviruses from a cell line suitable for vaccine development. J Virol Methods 2006; 135:91-101. [PMID: 16569439 DOI: 10.1016/j.jviromet.2006.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 02/13/2006] [Accepted: 02/20/2006] [Indexed: 11/18/2022]
Abstract
Recovery of recombinant, negative-strand, nonsegmented RNA viruses from a genomic cDNA clone requires a rescue system that promotes de novo assembly of a functional ribonucleoprotein (RNP) complex in the cell cytoplasm. This is accomplished typically by cotransfecting permissive cells with multiple plasmids that encode the positive-sense genomic RNA, the nucleocapsid protein (N or NP), and the two subunits of the viral RNA-dependent RNA polymerase (L and P). The transfected plasmids are transcribed in the cell cytoplasm by phage T7 RNA polymerase (T7 RNAP), which usually is supplied by infection with a recombinant vaccinia virus or through use of a stable cell line that expresses the polymerase. Although both methods of providing T7 RNAP are effective neither is ideal for viral vaccine development for a number of reasons. Therefore, it was necessary to modify existing technology to make it possible to routinely rescue a variety of recombinant viruses when T7 RNAP was provided by a cotransfected expression plasmid. Development of a broadly applicable procedure required optimization of the helper-virus-free methodology, which resulted in several modifications that improved rescue efficiency such as inclusion of plasmids encoding viral glycoproteins and matrix protein, heat shock treatment, and use of electroporation. The combined effect of these enhancements produced several important benefits including: (1) a helper-virus-free methodology capable of rescuing a diverse variety of paramyxoviruses and recombinant vesicular stomatitis virus (rVSV); (2) methodology that functioned effectively when using Vero cells, a suitable substrate for vaccine production; and (3) a method that enabled rescue of highly attenuated recombinant viruses, which had proven refractory to rescue using published procedures.
Collapse
Affiliation(s)
- Susan E Witko
- Wyeth Vaccines Research, 401 North Middletown Road, Pearl River, NY 10965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Finke S, Conzelmann KK. Recombinant rhabdoviruses: vectors for vaccine development and gene therapy. Curr Top Microbiol Immunol 2005; 292:165-200. [PMID: 15981472 DOI: 10.1007/3-540-27485-5_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The establishment of methods to recover rhabdoviruses from cDNA, so-called reverse genetics systems, has made it possible to genetically engineer rhabdoviruses and to study all aspects of the virus life cycle by introducing defined mutations into the viral genomes. It has also opened the way to make use of the viruses in biomedical applications such as vaccination, gene therapy, or oncolytic virotherapy. The typical gene expression mode of rhabdoviruses, a high genetic stability, and the propensity to tolerate changes in the virus envelope have made rhabdoviruses attractive, targetable gene expression vectors. This chapter provides an overview on the possibilities to manipulate biological properties of the rhabdoviruses that may be important for further development of vaccine vectors and examples of recombinant rhabdoviruses expressing foreign genes and antigens.
Collapse
Affiliation(s)
- S Finke
- Max von Pettenkofer-Institut & Genzentrum, Ludwig-Maximilians-Universität, Feodor-Lynen-Str. 25, 81377 Munich, Germany.
| | | |
Collapse
|
40
|
Faber M, Lamirande EW, Roberts A, Rice AB, Koprowski H, Dietzschold B, Schnell MJ. A single immunization with a rhabdovirus-based vector expressing severe acute respiratory syndrome coronavirus (SARS-CoV) S protein results in the production of high levels of SARS-CoV-neutralizing antibodies. J Gen Virol 2005; 86:1435-1440. [PMID: 15831955 PMCID: PMC1361274 DOI: 10.1099/vir.0.80844-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Foreign viral proteins expressed by rabies virus (RV) have been shown to induce potent humoral and cellular immune responses in immunized animals. In addition, highly attenuated and, therefore, very safe RV-based vectors have been constructed. Here, an RV-based vaccine vehicle was utilized as a novel vaccine against severe acute respiratory syndrome coronavirus (SARS-CoV). For this approach, the SARS-CoV nucleocapsid protein (N) or envelope spike protein (S) genes were cloned between the RV glycoprotein G and polymerase L genes. Recombinant vectors expressing SARS-CoV N or S protein were recovered and their immunogenicity was studied in mice. A single inoculation with the RV-based vaccine expressing SARS-CoV S protein induced a strong SARS-CoV-neutralizing antibody response. The ability of the RV-SARS-CoV S vector to confer immunity after a single inoculation makes this live vaccine a promising candidate for eradication of SARS-CoV in animal reservoirs, thereby reducing the risk of transmitting the infection to humans.
Collapse
Affiliation(s)
| | - Elaine W. Lamirande
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, MSC-8007, 50 South Drive, Bethesda, MD 20892-8007, USA
| | - Anjeanette Roberts
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, MSC-8007, 50 South Drive, Bethesda, MD 20892-8007, USA
| | - Amy B. Rice
- Departments of Microbiology and Immunology and
| | | | | | - Matthias J. Schnell
- Biochemistry and Molecular Pharmacology, Thomas Jefferson University, 233 South 10th Street, Suite 350 BLSB, Philadelphia, PA 19107-5541, USA
| |
Collapse
|
41
|
Nakamichi K, Inoue S, Takasaki T, Morimoto K, Kurane I. Rabies virus stimulates nitric oxide production and CXC chemokine ligand 10 expression in macrophages through activation of extracellular signal-regulated kinases 1 and 2. J Virol 2004; 78:9376-88. [PMID: 15308732 PMCID: PMC506932 DOI: 10.1128/jvi.78.17.9376-9388.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Macrophages represent an essential part of innate immunity, and the viral infection of macrophages results in the release of multiple proinflammatory mediators, such as nitric oxide (NO), cytokines, and chemokines. This study was undertaken to define the molecular mechanism of macrophage activation in response to rabies virus (RV) infection. In RAW264 murine macrophage cells, a well-characterized macrophage model, RV replication was strictly restricted, whereas cell proliferation was significantly enhanced upon RV inoculation. Transcriptional analyses for the expression of inducible forms of NO synthase (iNOS), cytokines, and chemokines revealed that RV virions potentiate the gene expression of iNOS and CXC chemokine ligand 10 (CXCL10), a major chemoattractant of T helper cell type 1. However, RV stimulation had little or no effect on the expression profiles of proinflammatory cytokines and other types of chemokines. In macrophages stimulated with UV-inactivated RV virions, as well as infectious viruses, the phosphorylation of extracellular signal-regulated kinase (ERK) 1 and 2, members of the mitogen-activated protein kinase family, was significantly induced. Specific inhibitors of MAPK/ERK kinase reduced the RV-induced production of NO and CXCL10. Furthermore, the RV-induced activation of the ERK1/2 pathway was severely impaired by the neutralization of the endosomal and lysosomal pH environment with lysosomotropic agents, indicating that endocytosis is a key step leading to the activation of ERK1/2 signaling. Taken together, these results suggest that the ERK1/2-mediated signaling pathway plays a cardinal role in the selective activation of macrophages in response to RV virions, thereby regulating cellular functions during virus infection.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Department of Virology I, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
42
|
Koser ML, McGettigan JP, Tan GS, Smith ME, Koprowski H, Dietzschold B, Schnell MJ. Rabies virus nucleoprotein as a carrier for foreign antigens. Proc Natl Acad Sci U S A 2004; 101:9405-10. [PMID: 15197258 PMCID: PMC438989 DOI: 10.1073/pnas.0403060101] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rabies virus (RV) nucleoprotein (N) tightly encapsidates the genomic and antigenomic RNA of RV to form the viral ribonucleoprotein (RNP) complex. Antigens, such as N, presented in a highly organized structure are sufficient and even desirable to activate B cells to proliferate and produce antibodies. In addition to activating B cells to proliferate, it has been shown that RV N in the RNP complex induces potent T helper cell responses resulting in long-lasting and strong humoral immune responses against RV. The possibility to systematically incorporate foreign genes into the genome of RV and produce a recombinant virus allows us to examine whether the immunogenicity of foreign antigens can be enhanced by incorporation into the RV RNP structure. To test this hypothesis we constructed a recombinant RV expressing a RV N-GFP fusion protein. The chimeric N-GFP fusion protein was efficiently expressed and incorporated into RV RNP and virions. Moreover, the recombinant RNP induces a strong humoral immune response against GFP in mice. In contrast, mice inoculated with GFP alone or a combination of wild-type RV RNPs and GFP did not trigger any GFP-specific humoral responses using the same immunization schedule. These data indicate the usefulness of RV-based vectors as killed vaccines against other infectious diseases.
Collapse
Affiliation(s)
- Martin L Koser
- Department of Biochemistry and Molecular Pharmacology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107-5541, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Irie T, Licata JM, McGettigan JP, Schnell MJ, Harty RN. Budding of PPxY-containing rhabdoviruses is not dependent on host proteins TGS101 and VPS4A. J Virol 2004; 78:2657-65. [PMID: 14990685 PMCID: PMC353768 DOI: 10.1128/jvi.78.6.2657-2665.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Viral matrix proteins of several enveloped RNA viruses play important roles in virus assembly and budding and are by themselves able to bud from the cell surface in the form of lipid-enveloped, virus-like particles (VLPs). Three motifs (PT/SAP, PPxY, and YxxL) have been identified as late budding domains (L-domains) responsible for efficient budding. L-domains can functionally interact with cellular proteins involved in vacuolar sorting (VPS4A and TSG101) and endocytic pathways (Nedd4), suggesting involvement of these pathways in virus budding. Ebola virus VP40 has overlapping PTAP and PPEY motifs, which can functionally interact with TSG101 and Nedd4, respectively. As for vesicular stomatitis virus (VSV), a PPPY motif within M protein can interact with Nedd4. In addition, M protein has a PSAP sequence downstream of the PPPY motif, but the function of PSAP in budding is not clear. In this study, we compared L-domain functions between Ebola virus and VSV by constructing a chimeric M protein (M40), in which the PPPY motif of VSV M is replaced by the L domains of VP40. The budding efficiency of M40 was 10-fold higher than that of wild-type (wt) M protein. Overexpression of a dominant negative mutant of VPS4A or depletion of cellular TSG101 reduced the budding of only M40-containing VLPs but not that of wt M VLPs or live VSV. These findings suggest that the PSAP motif of M protein is not critical for budding and that there are fundamental differences between PTAP-containing viruses (Ebola virus and human immunodeficiency virus type 1) and PPPY-containing viruses (VSV and rabies virus) regarding their dependence on specific host factors for efficient budding.
Collapse
Affiliation(s)
- Takashi Irie
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
44
|
McKenna PM, Pomerantz RJ, Dietzschold B, McGettigan JP, Schnell MJ. Covalently linked human immunodeficiency virus type 1 gp120/gp41 is stably anchored in rhabdovirus particles and exposes critical neutralizing epitopes. J Virol 2004; 77:12782-94. [PMID: 14610200 PMCID: PMC262580 DOI: 10.1128/jvi.77.23.12782-12794.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rabies virus (RV) vaccine strain-based vectors show significant promise as potential live-attenuated vaccines against human immunodeficiency virus type 1 (HIV-1). Here we describe a new RV construct that will also likely have applications as a live-attenuated or killed-particle immunogen. We have created a RV containing a chimeric HIV-1 Env protein, which contains introduced cysteine residues that give rise to an intermolecular disulfide bridge between gp120 and the ectodomain of gp41. This covalently linked gp140 (gp140 SOS) is fused in frame to the cytoplasmic domain of RV G glycoprotein and is efficiently incorporated into the RV virion. On the HIV-1 virion, the gp120 and gp41 moieties are noncovalently associated, which leads to extensive shedding of gp120 from virions and virus-infected cells. The ability to use HIV-1 particles as purified, inactivated immunogens has been confounded by the loss of gp120 during preparation. Additionally, monomeric gp120 and uncleaved gp160 molecules have been shown to be poor antigenic representations of virion-associated gp160. Because the gp120 and gp41 portions are covalently attached in the gp140 SOS molecule, the protein is maintained on the surface of the RV virion throughout purification. Surface immunostaining and fluorescence-activated cell sorting analysis with anti-envelope antibodies show that the gp140 SOS protein is stably expressed on the surface of infected cells and maintains CD4 binding capabilities. Furthermore, Western blot and immunoprecipitation experiments with infected-cell lysates and purified virions show that a panel of neutralizing anti-envelope antibodies efficiently recognize the gp140 SOS protein. The antigenic properties of this recombinant RV particle containing covalently attached Env, as well as the ability to present Env in a membrane-bound form, suggest that this approach could be a useful component of a HIV-1 vaccine strategy.
Collapse
Affiliation(s)
- Philip M McKenna
- Department of Microbiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
45
|
Pinto AR, Fitzgerald JC, Giles-Davis W, Gao GP, Wilson JM, Ertl HCJ. Induction of CD8+T Cells to an HIV-1 Antigen through a Prime Boost Regimen with Heterologous E1-Deleted Adenoviral Vaccine Carriers. THE JOURNAL OF IMMUNOLOGY 2003; 171:6774-9. [PMID: 14662882 DOI: 10.4049/jimmunol.171.12.6774] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
E1-deleted adenoviral recombinants most commonly based on the human serotype 5 (AdHu5) have been shown thus far to induce unsurpassed transgene product-specific CD8(+) T cell responses. A large percentage of the adult human population carries neutralizing Abs due to natural exposures to AdHu5 virus. To circumvent reduction of the efficacy of adenovirus (Ad) vector-based vaccines by neutralizing Abs to the vaccine carrier, we developed E1-deleted adenoviral vaccine carriers based on simian serotypes. One of these carriers, termed AdC68, expressing a codon-optimized truncated form of gag of HIV-1 was shown previously to induce a potent transgene product-specific CD8(+) T cell response in mice. We constructed a second chimpanzee adenovirus vaccine vector, termed AdC6, also expressing the truncated gag of HIV-1. This vector, which belongs to a different serotype than the AdC68 virus, induces high frequencies of gag-specific CD8(+) T cells in mice including those pre-exposed to AdHu5 virus. Generation of an additional E1-deleted adenoviral vector of chimpanzee origin allows for sequential booster immunizations with heterologous vaccine carriers. In this study, we show that such heterologous prime boost regimens based on E1-deleted adenoviral vectors of different serotypes expressing the same transgene product are highly efficient in increasing the transgene product-specific CD8(+) T cell response. They are equivalent to sequential vaccinations with an E1-deleted Ad vector followed by booster immunization with a poxvirus vector and they surpass regimens based on DNA vaccine prime followed by a recombinant adenoviral vector boost.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Adenovirus E1 Proteins/genetics
- Adenovirus E1 Proteins/immunology
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Cell Line
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Gene Products, gag/administration & dosage
- Gene Products, gag/biosynthesis
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genetic Vectors
- HIV Antigens/administration & dosage
- HIV Antigens/genetics
- HIV Antigens/immunology
- HeLa Cells
- Humans
- Immunization Schedule
- Immunization, Secondary/methods
- Injections, Intramuscular
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Pan troglodytes
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
Collapse
Affiliation(s)
- Arguinaldo R Pinto
- The Wistar Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
46
|
McGettigan JP, Naper K, Orenstein J, Koser M, McKenna PM, Schnell MJ. Functional human immunodeficiency virus type 1 (HIV-1) Gag-Pol or HIV-1 Gag-Pol and env expressed from a single rhabdovirus-based vaccine vector genome. J Virol 2003; 77:10889-99. [PMID: 14512539 PMCID: PMC224996 DOI: 10.1128/jvi.77.20.10889-10899.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant rabies virus (RV) vaccine strain-based vectors have been successfully developed as vaccines against other viral diseases (J. P. McGettigan et al., J. Virol. 75:4430-4434, 2001; McGettigan et al., J. Virol. 75:8724-8732, 2001; C. A. Siler et al., Virology 292:24-34, 2002), and safety concerns have recently been addressed (McGettigan et al., J. Virol. 77:237-244, 2003). However, size limitations of the vectors may restrict their use for development of vaccine applications that require the expression of large and multiple foreign antigens. Here we describe a new RV-based vaccine vehicle expressing 4.4 kb of the human immunodeficiency virus type 1 (HIV-1) Gag-Pol precursor Pr160. Our results indicate that Pr160 is expressed and processed, as demonstrated by immunostaining and Western blotting. Electron microscopy studies showed both immature and mature HIV-1 virus-like particles (VLPs), indicating that the expressed HIV-1 Gag Pr55 precursor was processed properly by the HIV-1 protease. A functional assay also confirmed the cleavage and functional expression of the HIV-1 reverse transcriptase (RT) from the modified RV genome. In the next step, we constructed and recovered a new RV vaccine strain-based vector expressing a chimeric HIV-1(89.6P) RV envelope protein from an additional RV transcription unit located between the RV nucleoprotein (N) and phosphoprotein (P) in addition to HIV-1 Pr160. The 2.2-kb chimeric HIV-1/RV envelope protein is composed of the HIV-1 Env ectodomain (ED) and transmembrane domain (TD) fused to RV glycoprotein (G) cytoplasmic domain (CD), which is required for efficient incorporation of HIV-1 Env into RV particles. Of note, the expression of both HIV-1 Env and HIV-1 Pr160 resulted in an increase in the rhabdoviral genome of >55%. Both rhabdovirus-expressed HIV-1 precursor proteins were functional, as indicated by RT activity and Env-based fusion assays. These findings demonstrate that both multiple and very large foreign genes can be effectively expressed by RV-based vectors. This research opens up the possibility for the further improvement of rhabdovirus-based HIV-1 vaccines and their use to express large foreign proteins, perhaps from multiple human pathogens.
Collapse
Affiliation(s)
- James P McGettigan
- Department of Biochemistry and Molecular Pharmacology. Center for Human Virology and Biodefense, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
47
|
McKee HJ, Strayer DS. Immune responses against SIV envelope glycoprotein, using recombinant SV40 as a vaccine delivery vector. Vaccine 2003; 20:3613-25. [PMID: 12297408 DOI: 10.1016/s0264-410x(02)00243-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vaccination protocols using viral gene delivery vectors have often generated relatively weak responses, largely owing to difficulties in boosting immune responses effectively following the primary injection. Because recombinant gene delivery vectors derived from SV40 permit multiple inoculations, to yield incremental immune responses, we tested the use of rSV40s to deliver lentiviral envelope antigens for immunization. An rSV40 carrying SIVmac239 envelope glycoprotein gp130 cDNA (SV(gp130)) was given multiple times to BALB/c mice, with or without a prior priming inoculation using vaccinia virus carrying the same SIV envelope cDNA (VVenvSIV). Sera from these mice were tested for antibodies binding gp130, applying a novel cell-based ELISA protocol that used as targets cloned P815 cells stably transfected with plasmid-derived gp130 cDNA. The same gp130-expressing clone of P815 cells, labeled with 51Cr was used as targets for direct lymphocyte-mediated cytolytic assays using spleen and popliteal lymph node cells as effectors. After six inoculations with SV(gp130), mice made detectable anti-gp130 antibody responses, but high levels of splenic and popliteal lymph node cytotoxic activity were apparent after as few as three injections of SV(gp130) (>40% specific lysis). A single primary inoculation with VVenvSIV preceding SV(gp130) boosts significantly enhanced antibody responses against SIV gp130, but had little effect on cytotoxic lymphocyte responses. Thus, rSV40 vectors may be useful vehicles for delivering lentiviral envelope antigens to elicit protective humoral and cell-mediated immune responses.
Collapse
Affiliation(s)
- Hayley J McKee
- Department of Pathology and Cell Biology, Jefferson Medical College, 251 Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
48
|
Abstract
This article gives an overview about the development of an HIV-1 vaccine. Tremendous numbers of papers have been published on this topic during the last 10 years, and this article can only touch on the different directions taken toward the development of an HIV-1 vaccine, and not give a complete overview of the entire field.
Collapse
Affiliation(s)
- James P McGettigan
- Department of Biochemistry and Molecular Pharmacology, Dorrance H. Hamilton Laboratories, Center for Human Virology, Philadelphia, PA 19107-6799, USA
| | | | | |
Collapse
|
49
|
McGettigan JP, Pomerantz RJ, Siler CA, McKenna PM, Foley HD, Dietzschold B, Schnell MJ. Second-generation rabies virus-based vaccine vectors expressing human immunodeficiency virus type 1 gag have greatly reduced pathogenicity but are highly immunogenic. J Virol 2003; 77:237-44. [PMID: 12477829 PMCID: PMC140592 DOI: 10.1128/jvi.77.1.237-244.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rabies virus (RV) vaccine strain-based vectors show great promise as vaccines against other viral diseases such as human immunodeficiency virus type 1 (HIV-1) infection and hepatitis C, but a low residual pathogenicity remains a concern for their use. Here we describe several highly attenuated second-generation RV-based vaccine vehicles expressing HIV-1 Gag. For this approach, we modified the previously described RV vaccine vector SPBN by replacing the arginine at position 333 (R333) within the RV glycoprotein (G) with glutamic acid (E333), deleting 43 amino acids of the RV G cytoplasmic domain (CD), or combining the R333 exchange and the CD deletion. In addition, we constructed a new RV vector that expresses HIV-1 Gag from an RV transcription unit upstream of the RV phosphoprotein gene (BNSP-Gag) instead of upstream of the G gene. As expected and as demonstrated for SPBN-Gag, all vaccine vehicles were apathogenic after peripheral administration. However, the new, second-generation vaccine vectors containing modifications in the RV G were also apathogenic after intracranial infection with 10(5) infectious particles, and BNSP-Gag produced a 50%-reduced mortality in mice. Of note, the observed attenuation of pathogenicity did not result in either the attenuation of the humoral response against the RV G or the previously observed robust cellular response against HIV-1 Gag. These findings demonstrate that very safe and highly effective RV-based vaccines can be constructed and further emphasize their potential utility as efficacious antiviral vaccines.
Collapse
Affiliation(s)
- James P McGettigan
- The Dorrance H. Hamilton Laboratories, Center for Human Virology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Vaccines for human use have been produced for decades using classical manufacturing methods including culture of viruses and bacteria followed by various concentration-, inactivation-, detoxification-, conjugation production processes. Availability of techniques for molecular biology and for the complete chemical synthesis of genes provides prospects of genetic engineering of microorganisms so as to generate novel biotechnological/biological-derived vaccines. The potential large-scale availability of biotechnology-derived vaccines makes feasible their evaluation in the prevention and/or treatment of various infectious, chronic, degenerative and cancer human diseases. There are potential safety concerns that arise from the novel manufacturing processes and from the complex structural and biological characteristics of the products. These products have distinguishing characteristics to which consideration should be given in a well-defined quality control testing programme. The evaluation of their quality, safety, efficacy and stability necessitate complex analytical methods and appropriate physicochemical, biochemical and immunochemical methods for the analysis of the molecular entity. A flexible approach to the control of these novel products is being developed by regulatory authorities so that recommendations can be modified in the light of experience of research and development in vaccinology, production and use of biotechnology products and with the further development of new technologies.
Collapse
Affiliation(s)
- Florence Fuchs
- Agence Française de Sécurité Sanitaire des Produits de Santé, Site de Lyon, 321, avenue Jean-Jaurès, France.
| |
Collapse
|