1
|
Ornoy A, Echefu B, Becker M. Animal Models of Autistic-like Behavior in Rodents: A Scoping Review and Call for a Comprehensive Scoring System. Int J Mol Sci 2024; 25:10469. [PMID: 39408797 PMCID: PMC11477392 DOI: 10.3390/ijms251910469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Appropriate animal models of human diseases are a cornerstone in the advancement of science and medicine. To create animal models of neuropsychiatric and neurobehavioral diseases such as autism spectrum disorder (ASD) necessitates the development of sufficient neurobehavioral measuring tools to translate human behavior to expected measurable behavioral features in animals. If possible, the severity of the symptoms should also be assessed. Indeed, at least in rodents, adequate neurobehavioral and neurological tests have been developed. Since ASD is characterized by a number of specific behavioral trends with significant severity, animal models of autistic-like behavior have to demonstrate the specific characteristic features, namely impaired social interactions, communication deficits, and restricted, repetitive behavioral patterns, with association to several additional impairments such as somatosensory, motor, and memory impairments. Thus, an appropriate model must show behavioral impairment of a minimal number of neurobehavioral characteristics using an adequate number of behavioral tests. The proper animal models enable the study of ASD-like-behavior from the etiologic, pathogenetic, and therapeutic aspects. From the etiologic aspects, models have been developed by the use of immunogenic substances like polyinosinic-polycytidylic acid (PolyIC), lipopolysaccharide (LPS), and propionic acid, or other well-documented immunogens or pathogens, like Mycobacterium tuberculosis. Another approach is the use of chemicals like valproic acid, polychlorinated biphenyls (PCBs), organophosphate pesticides like chlorpyrifos (CPF), and others. These substances were administered either prenatally, generally after the period of major organogenesis, or, especially in rodents, during early postnatal life. In addition, using modern genetic manipulation methods, genetic models have been created of almost all human genetic diseases that are manifested by autistic-like behavior (i.e., fragile X, Rett syndrome, SHANK gene mutation, neuroligin genes, and others). Ideally, we should not only evaluate the different behavioral modes affected by the ASD-like behavior, but also assess the severity of the behavioral deviations by an appropriate scoring system, as applied to humans. We therefore propose a scoring system for improved assessment of ASD-like behavior in animal models.
Collapse
Affiliation(s)
- Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
- Hadassah Academic College, Jerusalem 9101001, Israel
- Hadassah Medical School, Hebrew University, Jerusalem 9112102, Israel
| | - Boniface Echefu
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| | - Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| |
Collapse
|
2
|
Boucherie C, Alkailani M, Jossin Y, Ruiz-Reig N, Mahdi A, Aldaalis A, Aittaleb M, Tissir F. Auts2 enhances neurogenesis and promotes expansion of the cerebral cortex. J Adv Res 2024:S2090-1232(24)00296-0. [PMID: 39013538 DOI: 10.1016/j.jare.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION The AUTS2 gene is associated with various neurodevelopmental and psychiatric disorders and has been suggested to play a role in acquiring human-specific traits. Functional analyses of Auts2 knockout mice have focused on postmitotic neurons, and the reported phenotypes do not faithfully recapitulate the whole spectrum of AUTS2-related human diseases. OBJECTIVE The objective of the study is to assess the role of AUTS2 in the biology of neural progenitor cells, cortical neurogenesis and expansion; and understand how its deregulation leads to neurological disorders. METHODS We screened the literature and conducted a time point analysis of AUTS2 expression during cortical development. We used in utero electroporation to acutely modulate the expression level of AUTS2 in the developing cerebral cortex in vivo, and thoroughly characterized cortical neurogenesis and morphogenesis using immunofluorescence, cell tracing and sorting, transcriptomic profiling, and gene ontology enrichment analyses. RESULTS In addition to its expression in postmitotic neurons, we showed that AUTS2 is also expressed in neural progenitor cells at the peak of neurogenesis. Upregulation of AUTS2 dramatically altered the differentiation program and fate determination of cortical progenitors. Notably, it increased the number of basal progenitors and neurons and changed the expression of hundreds of genes, among which 444 have not been implicated in mouse brain development or function. CONCLUSION The study provides evidence that AUTS2 is expressed in germinal zones and plays a key role in fate decision of neural progenitor cells with impact on corticogenesis. It also presents comprehensive lists of AUTS2 target genes thus advancing the molecular mechanisms underlying AUTS2-associated diseases and the evolutionary expansion of the cerebral cortex.
Collapse
Affiliation(s)
- Cédric Boucherie
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Maisa Alkailani
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Yves Jossin
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Asma Mahdi
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Arwa Aldaalis
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Mohamed Aittaleb
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium; Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar.
| |
Collapse
|
3
|
Wang S, Wang B, Drury V, Drake S, Sun N, Alkhairo H, Arbelaez J, Duhn C, Bal VH, Langley K, Martin J, Hoekstra PJ, Dietrich A, Xing J, Heiman GA, Tischfield JA, Fernandez TV, Owen MJ, O'Donovan MC, Thapar A, State MW, Willsey AJ. Rare X-linked variants carry predominantly male risk in autism, Tourette syndrome, and ADHD. Nat Commun 2023; 14:8077. [PMID: 38057346 PMCID: PMC10700338 DOI: 10.1038/s41467-023-43776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2023] [Indexed: 12/08/2023] Open
Abstract
Autism spectrum disorder (ASD), Tourette syndrome (TS), and attention-deficit/hyperactivity disorder (ADHD) display strong male sex bias, due to a combination of genetic and biological factors, as well as selective ascertainment. While the hemizygous nature of chromosome X (Chr X) in males has long been postulated as a key point of "male vulnerability", rare genetic variation on this chromosome has not been systematically characterized in large-scale whole exome sequencing studies of "idiopathic" ASD, TS, and ADHD. Here, we take advantage of informative recombinations in simplex ASD families to pinpoint risk-enriched regions on Chr X, within which rare maternally-inherited damaging variants carry substantial risk in males with ASD. We then apply a modified transmission disequilibrium test to 13,052 ASD probands and identify a novel high confidence ASD risk gene at exome-wide significance (MAGEC3). Finally, we observe that rare damaging variants within these risk regions carry similar effect sizes in males with TS or ADHD, further clarifying genetic mechanisms underlying male vulnerability in multiple neurodevelopmental disorders that can be exploited for systematic gene discovery.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Vanessa Drury
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Sam Drake
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Hasan Alkhairo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Juan Arbelaez
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Clif Duhn
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Vanessa H Bal
- Graduate School of Applied and Professional Psychology, Rutgers University, New Brunswick, NJ, USA
| | - Kate Langley
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales, UK
- School of Psychology, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Joanna Martin
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Pieter J Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, The Netherlands
- Accare Child Study Center, Groningen, The Netherlands
| | - Andrea Dietrich
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, The Netherlands
- Accare Child Study Center, Groningen, The Netherlands
| | - Jinchuan Xing
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Gary A Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Jay A Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Thomas V Fernandez
- Yale Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Anita Thapar
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
4
|
Wroten M, Yoon S, Andrews P, Yamrom B, Ronemus M, Buja A, Krieger AM, Levy D, Ye K, Wigler M, Iossifov I. Sharing parental genomes by siblings concordant or discordant for autism. CELL GENOMICS 2023; 3:100319. [PMID: 37388917 PMCID: PMC10300587 DOI: 10.1016/j.xgen.2023.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/30/2022] [Accepted: 04/12/2023] [Indexed: 07/01/2023]
Abstract
Studying thousands of families, we find siblings concordant for autism share more of their parental genomes than expected by chance, and discordant siblings share less, consistent with a role of transmission in autism incidence. The excess sharing of the father is highly significant (p value of 0.0014), with less significance for the mother (p value of 0.31). To compare parental sharing, we adjust for differences in meiotic recombination to obtain a p value of 0.15 that they are shared equally. These observations are contrary to certain models in which the mother carries a greater load than the father. Nevertheless, we present models in which greater sharing of the father is observed even though the mother carries a greater load. More generally, our observations of sharing establish quantitative constraints that any complete genetic model of autism must satisfy, and our methods may be applicable to other complex disorders.
Collapse
Affiliation(s)
- Mathew Wroten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Seungtai Yoon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Peter Andrews
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Boris Yamrom
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Andreas Buja
- Department of Statistics and Data Science, the Wharton School, University of Pennsylvania, Philadelphia, PA, USA
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Abba M. Krieger
- Department of Statistics and Data Science, the Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Dan Levy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Kenny Ye
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Michael Wigler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ivan Iossifov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- New York Genome Center, New York, NY, USA
| |
Collapse
|
5
|
Aspesi D, Bass N, Kavaliers M, Choleris E. The role of androgens and estrogens in social interactions and social cognition. Neuroscience 2023:S0306-4522(23)00151-3. [PMID: 37080448 DOI: 10.1016/j.neuroscience.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Gonadal hormones are becoming increasingly recognized for their effects on cognition. Estrogens, in particular, have received attention for their effects on learning and memory that rely upon the functioning of various brain regions. However, the impacts of androgens on cognition are relatively under investigated. Testosterone, as well as estrogens, have been shown to play a role in the modulation of different aspects of social cognition. This review explores the impact of testosterone and other androgens on various facets of social cognition including social recognition, social learning, social approach/avoidance, and aggression. We highlight the relevance of considering not only the actions of the most commonly studied steroids (i.e., testosterone, 17β-estradiol, and dihydrotestosterone), but also that of their metabolites and precursors, which interact with a plethora of different receptors and signalling molecules, ultimately modulating behaviour. We point out that it is also essential to investigate the effects of androgens, their precursors and metabolites in females, as prior studies have mostly focused on males. Overall, a comprehensive analysis of the impact of steroids such as androgens on behaviour is fundamental for a full understanding of the neural mechanisms underlying social cognition, including that of humans.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph; Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph.
| |
Collapse
|
6
|
Whole Genome Analysis of Dizygotic Twins With Autism Reveals Prevalent Transposon Insertion Within Neuronal Regulatory Elements: Potential Implications for Disease Etiology and Clinical Assessment. J Autism Dev Disord 2023; 53:1091-1106. [PMID: 35759154 DOI: 10.1007/s10803-022-05636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022]
Abstract
Transposable elements (TEs) have been implicated in autism spectrum disorder (ASD). However, our understanding of their roles is far from complete. Herein, we explored de novo TE insertions (dnTEIs) and de novo variants (DNVs) across the genomes of dizygotic twins with ASD and their parents. The neuronal regulatory elements had a tendency to harbor dnTEIs that were shared between twins, but ASD-risk genes had dnTEIs that were unique to each twin. The dnTEIs were 4.6-fold enriched in enhancers that are active in embryonic stem cell (ESC)-neurons (p < 0.001), but DNVs were 1.5-fold enriched in active enhancers of astrocytes (p = 0.0051). Our findings suggest that dnTEIs and DNVs play a role in ASD etiology by disrupting enhancers of neurons and astrocytes.
Collapse
|
7
|
Sex-Related Changes in the Clinical, Genetic, Electrophysiological, Connectivity, and Molecular Presentations of ASD: A Comparison between Human and Animal Models of ASD with Reference to Our Data. Int J Mol Sci 2023; 24:ijms24043287. [PMID: 36834699 PMCID: PMC9965966 DOI: 10.3390/ijms24043287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The etiology of autism spectrum disorder (ASD) is genetic, environmental, and epigenetic. In addition to sex differences in the prevalence of ASD, which is 3-4 times more common in males, there are also distinct clinical, molecular, electrophysiological, and pathophysiological differences between sexes. In human, males with ASD have more externalizing problems (i.e., attention-deficit hyperactivity disorder), more severe communication and social problems, as well as repetitive movements. Females with ASD generally exhibit fewer severe communication problems, less repetitive and stereotyped behavior, but more internalizing problems, such as depression and anxiety. Females need a higher load of genetic changes related to ASD compared to males. There are also sex differences in brain structure, connectivity, and electrophysiology. Genetic or non-genetic experimental animal models of ASD-like behavior, when studied for sex differences, showed some neurobehavioral and electrophysiological differences between male and female animals depending on the specific model. We previously carried out studies on behavioral and molecular differences between male and female mice treated with valproic acid, either prenatally or early postnatally, that exhibited ASD-like behavior and found distinct differences between the sexes, the female mice performing better on tests measuring social interaction and undergoing changes in the expression of more genes in the brain compared to males. Interestingly, co-administration of S-adenosylmethionine alleviated the ASD-like behavioral symptoms and the gene-expression changes to the same extent in both sexes. The mechanisms underlying the sex differences are not yet fully understood.
Collapse
|
8
|
Abstract
Relative to males, women with autism spectrum disorder (ASD) have neurobiological and clinical presentation differences. Recent research suggests that the male/female ASD prevalence gap is smaller than previously reported. Sex differences in symptom presentation as well as the male bias of ASD account for delayed/missed diagnosis among women. Investigating ASD and providing psychological evaluation referrals for women who are struggling socially and present with complex mental health conditions (e.g., ADHD, depression), even when they do not show typical autistic characteristics, is important. Accurate diagnosis facilitates understanding of challenges, increases access to treatments, and alleviates the burden of ASD.
Collapse
Affiliation(s)
- Cesar Ochoa-Lubinoff
- Rush University Medical Center, 1725 West Harrison Street, Suite 710, Chicago, IL 60612, USA.
| | - Bridget A Makol
- Rush University Medical Center, 1653 West Congress Parkway, 12 Kellogg, Chicago, IL 60612, USA
| | - Emily F Dillon
- Rush University Medical Center, 1645 West Jackson Boulevard, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Singh AP, Jain VS, Yu JPJ. Diffusion radiomics for subtyping and clustering in autism spectrum disorder: A preclinical study. Magn Reson Imaging 2023; 96:116-125. [PMID: 36496097 PMCID: PMC9815912 DOI: 10.1016/j.mri.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent, heterogenous neurodevelopmental disorder. Neuroimaging methods such as functional, structural, and diffusion MRI have been used to identify candidate imaging biomarkers for ASD, but current findings remain non-specific and likely arise from the heterogeneity present in ASD. To account for this, efforts to subtype ASD have emerged as a potential strategy for both the study of ASD and advancement of tailored behavioral therapies and therapeutics. Towards these ends, to improve upon current neuroimaging methods, we propose combining biologically sensitive neurite orientation dispersion and density index (NODDI) diffusion MR imaging with radiomics image processing to create a new methodological approach that, we hypothesize, can sensitively and specifically capture neurobiology. We demonstrate this method can sensitively distinguish differences between four genetically distinct rat models of ASD (Fmr1, Pten, Nrxn1, Disc1). Further, we demonstrate diffusion radiomic analyses hold promise for subtyping in ASD as we show unsupervised clustering of NODDI radiomic data generates clusters specific to the underlying genetic differences between the animal models. Taken together, our findings suggest the unique application of radiomic analysis on NODDI diffusion MRI may have the capacity to sensitively and specifically disambiguate the neurobiological heterogeneity present in the ASD population.
Collapse
Affiliation(s)
- Ajay P Singh
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vansh S Jain
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - John-Paul J Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
10
|
Eftekhar M, Panahi Y, Eskandari MR, Pedram M. Association Study between DUF1220 Copy Number and Severity of Social Impairment in Sex-balanced Simplex Cases of Autism. Noro Psikiyatr Ars 2023; 60:43-48. [PMID: 36911566 PMCID: PMC9999218 DOI: 10.29399/npa.28020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/01/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Copy number variations (CNVs), which are genetic factors responsible for human evolution, have emerged as underlying pathogenic factors for a number of diseases such as autism spectrum disorders (ASD). DUF1220 coding sequences have been shown to be positively associated with the severity of symptoms in familial/multiplex cases of autism. However, this association has not been confirmed in simplex autism, and the potential impact of gender/sex has not been studied. Methods Using saliva samples taken from Iranian children with non-syndromic simplex autism, different ethnicity/race and genetic backgrounds from previous studies, we assessed the association between DUF1220 CNVs and Autism Diagnostic Interview-Revised (ADI-R) domain scores in both males and females. Results In the male and female combined group with autism, in line with previous reports, our findings showed that there were no significant associations between DUF1220 CNVs with either total ADI-R score, social, communication, or repetitive diagnostic scores in simplex autism cases. Interestingly, however, in sex classified groups, despite the insignificant results, our findings in girls with autism showed a negative trend between DUF1220 CNVs and severity of symptoms for the social interaction and communication domains. By contrast, in male children with autism, the results showed a positive trend. Conclusion It seems that association of DUF1220 CNV with the severity of symptoms in simplex children with autism may follow a sexually dimorphic pattern that needs to be re-examined in prospective studies.
Collapse
Affiliation(s)
- Mohammad Eftekhar
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yasin Panahi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Eskandari
- Department of Psychiatry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Pedram
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
Antaki D, Guevara J, Maihofer AX, Klein M, Gujral M, Grove J, Carey CE, Hong O, Arranz MJ, Hervas A, Corsello C, Vaux KK, Muotri AR, Iakoucheva LM, Courchesne E, Pierce K, Gleeson JG, Robinson EB, Nievergelt CM, Sebat J. A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex. Nat Genet 2022; 54:1284-1292. [PMID: 35654974 PMCID: PMC9474668 DOI: 10.1038/s41588-022-01064-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/28/2022] [Indexed: 01/21/2023]
Abstract
The genetic etiology of autism spectrum disorder (ASD) is multifactorial, but how combinations of genetic factors determine risk is unclear. In a large family sample, we show that genetic loads of rare and polygenic risk are inversely correlated in cases and greater in females than in males, consistent with a liability threshold that differs by sex. De novo mutations (DNMs), rare inherited variants and polygenic scores were associated with various dimensions of symptom severity in children and parents. Parental age effects on risk for ASD in offspring were attributable to a combination of genetic mechanisms, including DNMs that accumulate in the paternal germline and inherited risk that influences behavior in parents. Genes implicated by rare variants were enriched in excitatory and inhibitory neurons compared with genes implicated by common variants. Our results suggest that a phenotypic spectrum of ASD is attributable to a spectrum of genetic factors that impact different neurodevelopmental processes.
Collapse
Affiliation(s)
- Danny Antaki
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - James Guevara
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Marieke Klein
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Madhusudan Gujral
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Caitlin E Carey
- Harvard T.H. Chan School of Public Health, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Oanh Hong
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Maria J Arranz
- Research Laboratory Unit, Fundacio Docencia i Recerca Mutua, Terrassa, Spain
| | - Amaia Hervas
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Christina Corsello
- TEACCH Autism Program, University of North Carolina, Chapel Hill, NC, USA
| | | | - Alysson R Muotri
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics and Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny, Archealization Center, Kavli Institute for Brain and Mind, La Jolla, CA, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric Courchesne
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Autism Center of Excellence, University of California San Diego, La Jolla, CA, USA
| | - Karen Pierce
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Autism Center of Excellence, University of California San Diego, La Jolla, CA, USA
| | - Joseph G Gleeson
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Elise B Robinson
- Harvard T.H. Chan School of Public Health, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Jonathan Sebat
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Napolitano A, Schiavi S, La Rosa P, Rossi-Espagnet MC, Petrillo S, Bottino F, Tagliente E, Longo D, Lupi E, Casula L, Valeri G, Piemonte F, Trezza V, Vicari S. Sex Differences in Autism Spectrum Disorder: Diagnostic, Neurobiological, and Behavioral Features. Front Psychiatry 2022; 13:889636. [PMID: 35633791 PMCID: PMC9136002 DOI: 10.3389/fpsyt.2022.889636] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with a worldwide prevalence of about 1%, characterized by impairments in social interaction, communication, repetitive patterns of behaviors, and can be associated with hyper- or hypo-reactivity of sensory stimulation and cognitive disability. ASD comorbid features include internalizing and externalizing symptoms such as anxiety, depression, hyperactivity, and attention problems. The precise etiology of ASD is still unknown and it is undoubted that the disorder is linked to some extent to both genetic and environmental factors. It is also well-documented and known that one of the most striking and consistent finding in ASD is the higher prevalence in males compared to females, with around 70% of ASD cases described being males. The present review looked into the most significant studies that attempted to investigate differences in ASD males and females thus trying to shade some light on the peculiar characteristics of this prevalence in terms of diagnosis, imaging, major autistic-like behavior and sex-dependent uniqueness. The study also discussed sex differences found in animal models of ASD, to provide a possible explanation of the neurological mechanisms underpinning the different presentation of autistic symptoms in males and females.
Collapse
Affiliation(s)
- Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Science Department, Roma Tre University, Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- NESMOS, Neuroradiology Department, S. Andrea Hospital Sapienza University, Rome, Italy
| | - Sara Petrillo
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Bottino
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emanuela Tagliente
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisabetta Lupi
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Casula
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanni Valeri
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiorella Piemonte
- Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Science Department, Roma Tre University, Rome, Italy
| | - Stefano Vicari
- Child Neuropsychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Life Sciences and Public Health Department, Catholic University, Rome, Italy
| |
Collapse
|
13
|
Al Dera H. Cellular and molecular mechanisms underlying autism spectrum disorders and associated comorbidities: A pathophysiological review. Biomed Pharmacother 2022; 148:112688. [PMID: 35149383 DOI: 10.1016/j.biopha.2022.112688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that develop in early life due to interaction between several genetic and environmental factors and lead to alterations in brain function and structure. During the last decades, several mechanisms have been placed to explain the pathogenesis of autism. Unfortunately, these are reported in several studies and reviews which make it difficult to follow by the reader. In addition, some recent molecular mechanisms related to ASD have been unrevealed. This paper revises and highlights the major common molecular mechanisms responsible for the clinical symptoms seen in people with ASD, including the roles of common genetic factors and disorders, neuroinflammation, GABAergic signaling, and alterations in Ca+2 signaling. Besides, it covers the major molecular mechanisms and signaling pathways involved in initiating the epileptic seizure, including the alterations in the GABAergic and glutamate signaling, vitamin and mineral deficiency, disorders of metabolism, and autoimmunity. Finally, this review also discusses sleep disorder patterns and the molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Hussain Al Dera
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
Determination of molecular signatures and pathways common to brain tissues of autism spectrum disorder: Insights from comprehensive bioinformatics approach. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
15
|
Lybaek H, Robson M, de Leeuw N, Hehir-Kwa JY, Jeffries A, Haukanes BI, Berland S, de Bruijn D, Mundlos S, Spielmann M, Houge G. LRFN5 locus structure is associated with autism and influenced by the sex of the individual and locus conversions. Autism Res 2022; 15:421-433. [PMID: 35088940 PMCID: PMC9305582 DOI: 10.1002/aur.2677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
LRFN5 is a regulator of synaptic development and the only gene in a 5.4 Mb mammalian‐specific conserved topologically associating domain (TAD); the LRFN5 locus. An association between locus structural changes and developmental delay (DD) and/or autism was suggested by several cases in DECIPHER and own records. More significantly, we found that maternal inheritance of a specific LRFN5 locus haplotype segregated with an identical type of autism in distantly related males. This autism‐susceptibility haplotype had a specific TAD pattern. We also found a male/female quantitative difference in the amount histone‐3‐lysine‐9‐associated chromatin around the LRFN5 gene itself (p < 0.01), possibly related to the male‐restricted autism susceptibility. To better understand locus behavior, the prevalence of a 60 kb deletion polymorphism was investigated. Surprisingly, in three cohorts of individuals with DD (n = 8757), the number of deletion heterozygotes was 20%–26% lower than expected from Hardy–Weinberg equilibrium. This suggests allelic interaction, also because the conversions from heterozygosity to wild‐type or deletion homozygosity were of equal magnitudes. Remarkably, in a control group of medical students (n = 1416), such conversions were three times more common (p = 0.00001), suggesting a regulatory role of this allelic interaction. Taken together, LRFN5 regulation appears unusually complex, and LRFN5 dysregulation could be an epigenetic cause of autism.
Collapse
Affiliation(s)
- Helle Lybaek
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Michael Robson
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | | | | | - Bjørn Ivar Haukanes
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Diederik de Bruijn
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.,Institute of Clinical Medicine K2, Faculty of Medicine, University of Bergen, Bergen, Norway.,Honorary Chair of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Takahashi E, Allan N, Peres R, Ortug A, van der Kouwe AJW, Valli B, Ethier E, Levman J, Baumer N, Tsujimura K, Vargas-Maya NI, McCracken TA, Lee R, Maunakea AK. Integration of structural MRI and epigenetic analyses hint at linked cellular defects of the subventricular zone and insular cortex in autism: Findings from a case study. Front Neurosci 2022; 16:1023665. [PMID: 36817099 PMCID: PMC9935943 DOI: 10.3389/fnins.2022.1023665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, communication and repetitive, restrictive behaviors, features supported by cortical activity. Given the importance of the subventricular zone (SVZ) of the lateral ventrical to cortical development, we compared molecular, cellular, and structural differences in the SVZ and linked cortical regions in specimens of ASD cases and sex and age-matched unaffected brain. Methods We used magnetic resonance imaging (MRI) and diffusion tractography on ex vivo postmortem brain samples, which we further analyzed by Whole Genome Bisulfite Sequencing (WGBS), Flow Cytometry, and RT qPCR. Results Through MRI, we observed decreased tractography pathways from the dorsal SVZ, increased pathways from the posterior ventral SVZ to the insular cortex, and variable cortical thickness within the insular cortex in ASD diagnosed case relative to unaffected controls. Long-range tractography pathways from and to the insula were also reduced in the ASD case. FACS-based cell sorting revealed an increased population of proliferating cells in the SVZ of ASD case relative to the unaffected control. Targeted qPCR assays of SVZ tissue demonstrated significantly reduced expression levels of genes involved in differentiation and migration of neurons in ASD relative to the control counterpart. Finally, using genome-wide DNA methylation analyses, we identified 19 genes relevant to neurological development, function, and disease, 7 of which have not previously been described in ASD, that were significantly differentially methylated in autistic SVZ and insula specimens. Conclusion These findings suggest a hypothesis that epigenetic changes during neurodevelopment alter the trajectory of proliferation, migration, and differentiation in the SVZ, impacting cortical structure and function and resulting in ASD phenotypes.
Collapse
Affiliation(s)
- Emi Takahashi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nina Allan
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Rafael Peres
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Alpen Ortug
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Andre J W van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Briana Valli
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States
| | - Elizabeth Ethier
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States
| | - Jacob Levman
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Nicole Baumer
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Keita Tsujimura
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nauru Idalia Vargas-Maya
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Trevor A McCracken
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Rosa Lee
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Alika K Maunakea
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
17
|
Quinde-Zlibut JM, Williams ZJ, Gerdes M, Mash LE, Heflin BH, Cascio C. Multifaceted empathy differences in children and adults with autism. Sci Rep 2021; 11:19503. [PMID: 34593865 PMCID: PMC8484273 DOI: 10.1038/s41598-021-98516-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Although empathy impairments have been reported in autistic individuals, there is no clear consensus on how emotional valence influences this multidimensional process. In this study, we use the Multifaceted Empathy Test for juveniles (MET-J) to interrogate emotional and cognitive empathy in 184 participants (ages 8-59 years, 83 autistic) under the robust Bayesian inference framework. Group comparisons demonstrate previously unreported interaction effects between: (1) valence and autism diagnosis in predictions of emotional resonance, and (2) valence and age group in predictions of arousal to images portraying positive and negative facial expressions. These results extend previous studies using the MET by examining differential effects of emotional valence in a large sample of autistic children and adults with average or above-average intelligence. We report impaired cognitive empathy in autism, and subtle differences in emotional empathy characterized by less distinction between emotional resonance to positive vs. negative facial expressions in autism compared to neurotypicals. Reduced emotional differentiation between positive and negative affect in others could be a mechanism for diminished social reciprocity that poses a universal challenge for people with autism. These component- and valence- specific findings are of clinical relevance for the development and implementation of target-specific social interventions in autism.
Collapse
Affiliation(s)
- Jennifer M Quinde-Zlibut
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA.
| | - Zachary J Williams
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Madison Gerdes
- Graduate Program in Criminology and Justice Policy, Northeastern University, Boston, MA, USA
| | - Lisa E Mash
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, USA
| | - Brynna H Heflin
- Graduate Program in Clinical Psychology, Florida International University, Miami, FL, USA
| | - Carissa Cascio
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
18
|
Yoon S, Munoz A, Yamrom B, Lee YH, Andrews P, Marks S, Wang Z, Reeves C, Winterkorn L, Krieger AM, Buja A, Pradhan K, Ronemus M, Baldwin KK, Levy D, Wigler M, Iossifov I. Rates of contributory de novo mutation in high and low-risk autism families. Commun Biol 2021; 4:1026. [PMID: 34471188 PMCID: PMC8410909 DOI: 10.1038/s42003-021-02533-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Autism arises in high and low-risk families. De novo mutation contributes to autism incidence in low-risk families as there is a higher incidence in the affected of the simplex families than in their unaffected siblings. But the extent of contribution in low-risk families cannot be determined solely from simplex families as they are a mixture of low and high-risk. The rate of de novo mutation in nearly pure populations of high-risk families, the multiplex families, has not previously been rigorously determined. Moreover, rates of de novo mutation have been underestimated from studies based on low resolution microarrays and whole exome sequencing. Here we report on findings from whole genome sequence (WGS) of both simplex families from the Simons Simplex Collection (SSC) and multiplex families from the Autism Genetic Resource Exchange (AGRE). After removing the multiplex samples with excessive cell-line genetic drift, we find that the contribution of de novo mutation in multiplex is significantly smaller than the contribution in simplex. We use WGS to provide high resolution CNV profiles and to analyze more than coding regions, and revise upward the rate in simplex autism due to an excess of de novo events targeting introns. Based on this study, we now estimate that de novo events contribute to 52-67% of cases of autism arising from low risk families, and 30-39% of cases of all autism.
Collapse
Affiliation(s)
- Seungtai Yoon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Adriana Munoz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Boris Yamrom
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Yoon-Ha Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Peter Andrews
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Steven Marks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Zihua Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | | | | | - Abba M Krieger
- Statistics Department, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Andreas Buja
- Statistics Department, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Kith Pradhan
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Michael Ronemus
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Kristin K Baldwin
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Dan Levy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Michael Wigler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ivan Iossifov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| |
Collapse
|
19
|
Chiang AH, Chang J, Wang J, Vitkup D. Exons as units of phenotypic impact for truncating mutations in autism. Mol Psychiatry 2021; 26:1685-1695. [PMID: 33110259 DOI: 10.1038/s41380-020-00876-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorders (ASD) are a group of related neurodevelopmental diseases displaying significant genetic and phenotypic heterogeneity. Despite recent progress in understanding ASD genetics, the nature of phenotypic heterogeneity across probands remains unclear. Notably, likely gene-disrupting (LGD) de novo mutations affecting the same gene often result in substantially different ASD phenotypes. Nevertheless, we find that truncating mutations affecting the same exon frequently lead to strikingly similar intellectual phenotypes in unrelated ASD probands. Analogous patterns are observed for two independent proband cohorts and several other important ASD-associated phenotypes. We find that exons biased toward prenatal and postnatal expression preferentially contribute to ASD cases with lower and higher IQ phenotypes, respectively. These results suggest that exons, rather than genes, often represent a unit of effective phenotypic impact for truncating mutations in autism. The observed phenotypic patterns are likely mediated by nonsense-mediated decay (NMD) of splicing isoforms, with autism phenotypes usually triggered by relatively mild (15-30%) decreases in overall gene dosage. We find that each ASD gene with recurrent mutations can be characterized by a parameter, phenotype dosage sensitivity (PDS), which quantifies the relationship between changes in a gene's dosage and changes in a given disease phenotype. We further demonstrate analogous relationships between exon LGDs and gene expression changes in multiple human tissues. Therefore, similar phenotypic patterns may be also observed in other human genetic disorders.
Collapse
Affiliation(s)
- Andrew H Chiang
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Jonathan Chang
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Jiayao Wang
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Dennis Vitkup
- Department of Biomedical Informatics, Columbia University, New York, NY, USA. .,Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Gualtieri CT. Genomic Variation, Evolvability, and the Paradox of Mental Illness. Front Psychiatry 2021; 11:593233. [PMID: 33551865 PMCID: PMC7859268 DOI: 10.3389/fpsyt.2020.593233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
Twentieth-century genetics was hard put to explain the irregular behavior of neuropsychiatric disorders. Autism and schizophrenia defy a principle of natural selection; they are highly heritable but associated with low reproductive success. Nevertheless, they persist. The genetic origins of such conditions are confounded by the problem of variable expression, that is, when a given genetic aberration can lead to any one of several distinct disorders. Also, autism and schizophrenia occur on a spectrum of severity, from mild and subclinical cases to the overt and disabling. Such irregularities reflect the problem of missing heritability; although hundreds of genes may be associated with autism or schizophrenia, together they account for only a small proportion of cases. Techniques for higher resolution, genomewide analysis have begun to illuminate the irregular and unpredictable behavior of the human genome. Thus, the origins of neuropsychiatric disorders in particular and complex disease in general have been illuminated. The human genome is characterized by a high degree of structural and behavioral variability: DNA content variation, epistasis, stochasticity in gene expression, and epigenetic changes. These elements have grown more complex as evolution scaled the phylogenetic tree. They are especially pertinent to brain development and function. Genomic variability is a window on the origins of complex disease, neuropsychiatric disorders, and neurodevelopmental disorders in particular. Genomic variability, as it happens, is also the fuel of evolvability. The genomic events that presided over the evolution of the primate and hominid lineages are over-represented in patients with autism and schizophrenia, as well as intellectual disability and epilepsy. That the special qualities of the human genome that drove evolution might, in some way, contribute to neuropsychiatric disorders is a matter of no little interest.
Collapse
|
21
|
Worsham W, Dalton S, Bilder DA. The Prenatal Hormone Milieu in Autism Spectrum Disorder. Front Psychiatry 2021; 12:655438. [PMID: 34276434 PMCID: PMC8280339 DOI: 10.3389/fpsyt.2021.655438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
Though the etiology of autism spectrum disorder (ASD) remains largely unknown, recent findings suggest that hormone dysregulation within the prenatal environment, in conjunction with genetic factors, may alter fetal neurodevelopment. Early emphasis has been placed on the potential role of in utero exposure to androgens, particularly testosterone, to theorize ASD as the manifestation of an "extreme male brain." The relationship between autism risk and obstetric conditions associated with inflammation and steroid dysregulation merits a much broader understanding of the in utero steroid environment and its potential influence on fetal neuroendocrine development. The exploration of hormone dysregulation in the prenatal environment and ASD development builds upon prior research publishing associations with obstetric conditions and ASD risk. The insight gained may be applied to the development of chronic adult metabolic diseases that share prenatal risk factors with ASD. Future research directions will also be discussed.
Collapse
Affiliation(s)
- Whitney Worsham
- University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Susan Dalton
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, United States
| | - Deborah A Bilder
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
22
|
Fóthi Á, Soorya L, Lőrincz A. The Autism Palette: Combinations of Impairments Explain the Heterogeneity in ASD. Front Psychiatry 2020; 11:503462. [PMID: 33343403 PMCID: PMC7738611 DOI: 10.3389/fpsyt.2020.503462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neuropsychiatric condition traditionally defined by core symptoms in social behavior, speech/communication, repetitive behavior, and restricted interests. Beyond the core symptoms, autism has strong association with other disorders such as intellectual disability (ID), epilepsy, schizophrenia among many others. This paper outlines a theory of ASD with capacity to connect heterogeneous "core" symptoms, medical and psychiatric comorbidities as well as other etiological theories of autism in a unifying cognitive framework rooted in neuroscience and genetics. Cognition is embedded into an ever-developing structure modified by experiences, including the outcomes of environment influencing behaviors. The key constraint of cognition is that the brain can handle only 7±2 relevant variables at a time, whereas sensory variables, i.e., the number of sensory neurons is orders of magnitude larger. As a result, (a) the extraction, (b) the encoding, and (c) the capability for the efficient cognitive manipulation of the relevant variables, and (d) the compensatory mechanisms that counteract computational delays of the distributed components are critical. We outline our theoretical model to describe a Cartesian Factor (CF) forming, autoencoder-like cognitive mechanism which breaks combinatorial explosion and is accelerated by internal reinforcing machineries and discuss the neural processes that support CF formation. Impairments in any of these aspects may disrupt learning, cognitive manipulation, decisions on interactions, and execution of decisions. We suggest that social interactions are the most susceptible to combinations of diverse small impairments and can be spoiled in many ways that pile up. Comorbidity is experienced, if any of the many potential impairments is relatively strong. We consider component spoiling impairments as the basic colors of autism, whereas the combinations of individual impairments make the palette of autism. We put forth arguments on the possibility of dissociating the different main elements of the impairments that can appear together. For example, impairments of generalization (domain general learning) and impairments of dealing with many variable problems, such as social situations may appear independently and may mutually enhance their impacts. We also consider mechanisms that may lead to protection.
Collapse
Affiliation(s)
- Ábel Fóthi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Artificial Intelligence, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
| | - Latha Soorya
- Department of Psychiatry and Behavioral Sciences, Rush Medical College, Chicago, IL, United States
| | - András Lőrincz
- Department of Artificial Intelligence, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
23
|
Male preconception antioxidant supplementation may lower autism risk: a call for studies. J Assist Reprod Genet 2020; 37:2955-2962. [PMID: 32949003 DOI: 10.1007/s10815-020-01949-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/13/2020] [Indexed: 01/09/2023] Open
Abstract
Current research indicates that a sizable number of autism spectrum disorder (ASD) cases arise from de novo mutations (DNMs) occurring within the paternal germline, usually in an age-dependent manner. Andrologists have reported that somatic cells and gametes share the same pathologies that generate these DNMs-specifically, DNA hypomethylation caused by oxidative nucleoside base damage. Because many ASD researchers seek to identify genetic risk factors, teams are developing methods of assessing aberrant DNA patterns, such as parental gonadal mosaicism. Several studies propose antioxidant supplementation as a strategy to lower autism risk, and/or suggest connections between childhood neurodevelopmental disorders such as autism and paternally-derived DNMs. Actual data, however, are currently not available to determine whether male preconception antioxidant supplementation effectively lowers autism risk. The purpose of this paper is to (1) explore the mechanisms causing DNMs, specifically DNA hypomethylation; (2) explain how antioxidant supplementation may lower the risk of having a child with ASD; and, (3) advocate for the implementation of large prospective studies testing (2). These studies may very well find that male preconception supplementation with antioxidants prevents neurodevelopmental disorders in offspring, in much the same way that female prenatal consumption of folate was found to decrease the risk of birth defects. If this is indeed the case, the alarming rise in autism prevalence rates of the past few decades will slow-or even cease-upon the initiation of public awareness campaigns.
Collapse
|
24
|
Matoba N, Liang D, Sun H, Aygün N, McAfee JC, Davis JE, Raffield LM, Qian H, Piven J, Li Y, Kosuri S, Won H, Stein JL. Common genetic risk variants identified in the SPARK cohort support DDHD2 as a candidate risk gene for autism. Transl Psychiatry 2020; 10:265. [PMID: 32747698 PMCID: PMC7400671 DOI: 10.1038/s41398-020-00953-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder. Large genetically informative cohorts of individuals with ASD have led to the identification of a limited number of common genome-wide significant (GWS) risk loci to date. However, many more common genetic variants are expected to contribute to ASD risk given the high heritability. Here, we performed a genome-wide association study (GWAS) on 6222 case-pseudocontrol pairs from the Simons Foundation Powering Autism Research for Knowledge (SPARK) dataset to identify additional common genetic risk factors and molecular mechanisms underlying risk for ASD. We identified one novel GWS locus from the SPARK GWAS and four significant loci, including an additional novel locus from meta-analysis with a previous GWAS. We replicated the previous observation of significant enrichment of ASD heritability within regulatory regions of the developing cortex, indicating that disruption of gene regulation during neurodevelopment is critical for ASD risk. We further employed a massively parallel reporter assay (MPRA) and identified a putative causal variant at the novel locus from SPARK GWAS with strong impacts on gene regulation (rs7001340). Expression quantitative trait loci data demonstrated an association between the risk allele and decreased expression of DDHD2 (DDHD domain containing 2) in both adult and prenatal brains. In conclusion, by integrating genetic association data with multi-omic gene regulatory annotations and experimental validation, we fine-mapped a causal risk variant and demonstrated that DDHD2 is a novel gene associated with ASD risk.
Collapse
Affiliation(s)
- Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Huaigu Sun
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jessica C McAfee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jessica E Davis
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Quantitative and Computational Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Huijun Qian
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph Piven
- Department of Psychiatry and the Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sriam Kosuri
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Quantitative and Computational Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
25
|
Chan WK, Griffiths R, Price DJ, Mason JO. Cerebral organoids as tools to identify the developmental roots of autism. Mol Autism 2020; 11:58. [PMID: 32660622 PMCID: PMC7359249 DOI: 10.1186/s13229-020-00360-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Some autism spectrum disorders (ASD) likely arise as a result of abnormalities during early embryonic development of the brain. Studying human embryonic brain development directly is challenging, mainly due to ethical and practical constraints. However, the recent development of cerebral organoids provides a powerful tool for studying both normal human embryonic brain development and, potentially, the origins of neurodevelopmental disorders including ASD. Substantial evidence now indicates that cerebral organoids can mimic normal embryonic brain development and neural cells found in organoids closely resemble their in vivo counterparts. However, with prolonged culture, significant differences begin to arise. We suggest that cerebral organoids, in their current form, are most suitable to model earlier neurodevelopmental events and processes such as neurogenesis and cortical lamination. Processes implicated in ASDs which occur at later stages of development, such as synaptogenesis and neural circuit formation, may also be modeled using organoids. The accuracy of such models will benefit from continuous improvements to protocols for organoid differentiation.
Collapse
Affiliation(s)
- Wai Kit Chan
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - Rosie Griffiths
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - David J Price
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - John O Mason
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
26
|
Carroll L, Braeutigam S, Dawes JM, Krsnik Z, Kostovic I, Coutinho E, Dewing JM, Horton CA, Gomez-Nicola D, Menassa DA. Autism Spectrum Disorders: Multiple Routes to, and Multiple Consequences of, Abnormal Synaptic Function and Connectivity. Neuroscientist 2020; 27:10-29. [PMID: 32441222 PMCID: PMC7804368 DOI: 10.1177/1073858420921378] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of
neurodevelopmental disorders of genetic and environmental etiologies.
Some ASD cases are syndromic: associated with clinically defined
patterns of somatic abnormalities and a neurobehavioral phenotype
(e.g., Fragile X syndrome). Many cases, however, are idiopathic or
non-syndromic. Such disorders present themselves during the early
postnatal period when language, speech, and personality start to
develop. ASDs manifest by deficits in social communication and
interaction, restricted and repetitive patterns of behavior across
multiple contexts, sensory abnormalities across multiple modalities
and comorbidities, such as epilepsy among many others. ASDs are
disorders of connectivity, as synaptic dysfunction is common to both
syndromic and idiopathic forms. While multiple theories have been
proposed, particularly in idiopathic ASDs, none address why certain
brain areas (e.g., frontotemporal) appear more vulnerable than others
or identify factors that may affect phenotypic specificity. In this
hypothesis article, we identify possible routes leading to, and the
consequences of, altered connectivity and review the evidence of
central and peripheral synaptic dysfunction in ASDs. We postulate that
phenotypic specificity could arise from aberrant experience-dependent
plasticity mechanisms in frontal brain areas and peripheral sensory
networks and propose why the vulnerability of these areas could be
part of a model to unify preexisting pathophysiological theories.
Collapse
Affiliation(s)
- Liam Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Sven Braeutigam
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, Oxfordshire, UK
| | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivica Kostovic
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ester Coutinho
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Jennifer M Dewing
- Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Christopher A Horton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, UK
| | - Diego Gomez-Nicola
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - David A Menassa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK.,Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
27
|
Cukier HN, Griswold AJ, Hofmann NK, Gomez L, Whitehead PL, Abramson RK, Gilbert JR, Cuccaro ML, Dykxhoorn DM, Pericak-Vance MA. Three Brothers With Autism Carry a Stop-Gain Mutation in the HPA-Axis Gene NR3C2. Autism Res 2020; 13:523-531. [PMID: 32064789 DOI: 10.1002/aur.2269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/20/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022]
Abstract
Whole exome sequencing and copy-number variant analysis was performed on a family with three brothers diagnosed with autism. Each of the siblings shares an alteration in the nuclear receptor subfamily 3 group C member 2 (NR3C2) gene that is predicted to result in a stop-gain mutation (p.Q919X) in the mineralocorticoid receptor (MR) protein. This variant was maternally inherited and provides further evidence for a connection between the NR3C2 and autism. Interestingly, the NR3C2 gene encodes the MR protein, a steroid hormone-regulated transcription factor that acts in the hypothalamic-pituitary-adrenal axis and has been connected to stress and anxiety, both of which are features often seen in individuals with autism. Autism Res 2020, 13: 523-531. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Given the complexity of the genetics underlying autism, each gene contributes to risk in a relatively small number of individuals, typically less than 1% of all autism cases. Whole exome sequencing of three brothers with autism identified a rare variant in the nuclear receptor subfamily 3 group C member 2 gene that is predicted to strongly interfere with its normal function. This gene encodes the mineralocorticoid receptor protein, which plays a role in how the body responds to stress and anxiety, features that are often elevated in people diagnosed with autism. This study adds further support to the relevance of this gene as a risk factor for autism.
Collapse
Affiliation(s)
- Holly N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Natalia K Hofmann
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Patrice L Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Ruth K Abramson
- University of South Carolina School of Medicine, Columbia, South Carolina
| | - John R Gilbert
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
28
|
Zhang Y, Li N, Li C, Zhang Z, Teng H, Wang Y, Zhao T, Shi L, Zhang K, Xia K, Li J, Sun Z. Genetic evidence of gender difference in autism spectrum disorder supports the female-protective effect. Transl Psychiatry 2020; 10:4. [PMID: 32066658 PMCID: PMC7026157 DOI: 10.1038/s41398-020-0699-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 12/07/2019] [Accepted: 12/30/2019] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a male-to-female prevalence of 4:1. However, the genetic mechanisms underlying this gender difference remain unclear. Mutation burden analysis, a TADA model, and co-expression and functional network analyses were performed on de novo mutations (DNMs) and corresponding candidate genes. We found that the prevalence of putative functional DNMs (loss-of-function and predicted deleterious missense mutations) in females was significantly higher than that in males, suggesting that a higher genetic load was required in females to reach the threshold for a diagnosis. We then prioritized 174 candidate genes, including 60 shared genes, 91 male-specific genes, and 23 female-specific genes. All of the three subclasses of candidate genes were significantly more frequently co-expressed in female brains than male brains, suggesting that compensation effects of the deficiency of ASD candidate genes may be more likely in females. Nevertheless, the three subclasses of candidate genes were co-expressed with each other, suggesting a convergent functional network of male and female-specific genes. Our analysis of different aspects of genetic components provides suggestive evidence supporting the female-protective effect in ASD. Moreover, further study is needed to integrate neuronal and hormonal data to elucidate the underlying gender difference in ASD.
Collapse
Affiliation(s)
- Yi Zhang
- grid.268099.c0000 0001 0348 3990Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025 China ,grid.216417.70000 0001 0379 7164National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Na Li
- grid.268099.c0000 0001 0348 3990Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025 China
| | - Chao Li
- grid.268099.c0000 0001 0348 3990Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025 China
| | - Ze Zhang
- grid.268099.c0000 0001 0348 3990Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025 China
| | - Huajing Teng
- grid.9227.e0000000119573309Beijing Institutes of Life Science, Chinese Academy of Science, Beijing, 100101 China
| | - Yan Wang
- grid.9227.e0000000119573309Beijing Institutes of Life Science, Chinese Academy of Science, Beijing, 100101 China
| | - Tingting Zhao
- grid.268099.c0000 0001 0348 3990Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025 China
| | - Leisheng Shi
- grid.268099.c0000 0001 0348 3990Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025 China ,grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Kun Zhang
- grid.268099.c0000 0001 0348 3990Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025 China
| | - Kun Xia
- grid.216417.70000 0001 0379 7164Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008 China
| | - Jinchen Li
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China.
| | - Zhongsheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325025, China. .,Beijing Institutes of Life Science, Chinese Academy of Science, Beijing, 100101, China.
| |
Collapse
|
29
|
Talmi Z, Mankuta D, Raz R. Birth weight and autism spectrum disorder: A population‐based nested case–control study. Autism Res 2020; 13:655-665. [DOI: 10.1002/aur.2260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Ziv Talmi
- Braun School of Public Health and Community Medicine The Hebrew University Hadassah Jerusalem Israel
- The Hebrew University Hadassah Medical School Jerusalem Israel
| | - David Mankuta
- The Hebrew University Hadassah Medical School Jerusalem Israel
- Department of Obstetrics and Gynecology Hadassah Ein‐Kerem Hospital Jerusalem Israel
| | - Raanan Raz
- Braun School of Public Health and Community Medicine The Hebrew University Hadassah Jerusalem Israel
| |
Collapse
|
30
|
The Empathizing–Systemizing Theory and ‘Extreme Male Brain’ (EMB) Theory in Parents of Children with Autism Spectrum Disorders (ASD): An Explorative, Cross-Sectional Study. J Autism Dev Disord 2019; 49:4067-4078. [DOI: 10.1007/s10803-019-04114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Davis JM, Heft I, Scherer SW, Sikela JM. A Third Linear Association Between Olduvai (DUF1220) Copy Number and Severity of the Classic Symptoms of Inherited Autism. Am J Psychiatry 2019; 176:643-650. [PMID: 30764650 PMCID: PMC6675654 DOI: 10.1176/appi.ajp.2018.18080993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The authors previously reported that the copy number of sequences encoding an Olduvai protein domain subtype (CON1) shows a linear association with the severity of social deficits and communication impairment in individuals with autism. In this study, using an improved measurement method, the authors replicated this association in an independent population. METHOD The authors obtained whole genome sequence (WGS) data and phenotype data on 215 individuals from the Autism Speaks MSSNG project. They derived copy number from WGS data using a modified sequence read-depth technique. A linear mixed-effects model was used to test the association between Olduvai CON1 copy number and symptom severity as measured by the Autism Diagnostic Interview-Revised. The authors then combined data from previous studies (N=524) for final analyses. RESULTS A significant linear association was observed between CON1 copy number and social diagnostic score (SDS) (β=0.24) and communicative diagnostic score (CDS) (β=0.23). Using the combined data, the authors present strong significant associations of CON1 dosage with SDS (β=0.18) and CDS (β=0.13). The authors also implicate Olduvai subtypes found in two genes, NBPF1 and NBPF14 (R2=6.2%). Associations were preferentially found in multiplex versus simplex families. CONCLUSIONS The finding of a third dose-dependent association between Olduvai sequences and autism severity, preferentially in multiplex families, provides strong evidence that this highly duplicated and underexamined protein domain family plays an important role in inherited autism.
Collapse
Affiliation(s)
- Jonathan M. Davis
- Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Genomics Program and Neuroscience Program, University of Colorado School of Medicine
| | - Ilea Heft
- Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Genomics Program and Neuroscience Program, University of Colorado School of Medicine
| | - Stephen W. Scherer
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto,The Centre for Applied Genomics and Program in Genetics and Genome Biology, Hospital for Sick Children
| | - James M. Sikela
- Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Genomics Program and Neuroscience Program, University of Colorado School of Medicine
| |
Collapse
|
32
|
Camodeca A, Todd KQ, Hosack A. Intact verbal fluency abilities in the Broad Autism Phenotype. Psychiatry Res 2018; 270:443-452. [PMID: 30316172 DOI: 10.1016/j.psychres.2018.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
Abstract
This study attempted to replicate the findings of Camodeca and Voelker (2016), who demonstrated that controlled processing weaknesses were evident in the Broad Autism Phenotype (BAP), and that these weaknesses were predictive of real-world pragmatic language problems. One hundred eighty-two undergraduates completed the Delis-Kaplan Executive Function System Verbal Fluency (D-KEFS-VF) test and the Broad Autism Phenotype Questionnaire (BAPQ). Results were partially replicated. Contrary to the previous study, the BAP group (n = 31) did not demonstrate comparative weaknesses in controlled processing, nor were controlled processing abilities predictive of BAPQ Pragmatic Language score. Similar to the previous study, controlled processing did not predict pragmatic language abilities for Non-BAP (n = 151) subjects. For each group, letter fluency score predicted 2nd 15″ interval score (controlled processing abilities); automatic processing (1st 15″ interval) did not. Results suggest that verbal fluency skills in the BAP are similar to controls, and that controlled processing does not account for significant variance in real-world social language in the BAP.
Collapse
Affiliation(s)
- Amy Camodeca
- The Pennsylvania State University, 100 University Drive, Monaca, PA 15061, USA.
| | - Kylie Q Todd
- The Pennsylvania State University, 100 University Drive, Monaca, PA 15061, USA
| | - Alexandra Hosack
- The Pennsylvania State University, 100 University Drive, Monaca, PA 15061, USA
| |
Collapse
|
33
|
Wang L, Li J, Shuang M, Lu T, Wang Z, Zhang T, Yue W, Jia M, Ruan Y, Liu J, Wu Z, Zhang D, Wang L. Association study and mutation sequencing of genes on chromosome 15q11-q13 identified GABRG3 as a susceptibility gene for autism in Chinese Han population. Transl Psychiatry 2018; 8:152. [PMID: 30108208 PMCID: PMC6092396 DOI: 10.1038/s41398-018-0197-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/25/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022] Open
Abstract
Cytogenetic studies suggested that chromosome 15q11-q13 might be a candidate region that increases the risk of autism. Previous association studies in Caucasian populations identified the risk variants of genes in this region. However, the association of these genes with autism in Chinese Han population remains unclear. Herein, 512 autism trios were utilized for a family-based association study of 41 tag single nucleotide polymorphisms (SNPs) in this region to explore the association between protein-coding genes on chromosome 15q11-q13 and autism in Chinese Han population. Furthermore, we sequenced these autism-related genes to detect rare variants in 512 autism trios and 575 healthy controls. Our results showed that the C allele of rs7180500 in GABRG3 was a risk variant for autism (p = 0.00057). The expression quantitative trait loci (eQTL) analysis revealed that the C allele of rs7180500 might be associated with the expression of GABRG3 in the cerebellum (Braineac: p = 0.0048; GTEx: p = 0.0010). Moreover, the sequencing identified two rare variants rs201602655 (p.Val233Met) and rs201427468 (p.Pro365Ser) in GABRG3 and six rare variants in GABRB3 in autistic patients. Among these variants, rs201602655 (p.Val233Met) in GABRG3 were observed in 9 of 512 autistic children and 2 of 575 healthy controls (Pearson χ2-test, χ2 = 5.375, p = 0.020). The functional prediction indicated that rs201602655 (p.Val233Met) might be deleterious. Thus, these findings demonstrated that GABRG3 might contribute to the pathogenesis of autism in Chinese Han population.
Collapse
Affiliation(s)
- Linyan Wang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Jun Li
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Mei Shuang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Tianlan Lu
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Ziqi Wang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Tian Zhang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Weihua Yue
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Meixiang Jia
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Yanyan Ruan
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Jing Liu
- Peking University Sixth Hospital, Beijing, 100191, China. .,Peking University Institute of Mental Health, Beijing, 100191, China. .,Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Zhiliu Wu
- Peking University Sixth Hospital, Beijing, 100191, China. .,Peking University Institute of Mental Health, Beijing, 100191, China. .,Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191, China. .,The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China.
| | - Dai Zhang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China ,0000 0001 2256 9319grid.11135.37PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Lifang Wang
- Peking University Sixth Hospital, Beijing, 100191, China. .,Peking University Institute of Mental Health, Beijing, 100191, China. .,Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
34
|
Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice. Nat Neurosci 2018; 21:1218-1228. [DOI: 10.1038/s41593-018-0208-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022]
|
35
|
Brandler WM, Antaki D, Gujral M, Kleiber ML, Whitney J, Maile MS, Hong O, Chapman TR, Tan S, Tandon P, Pang T, Tang SC, Vaux KK, Yang Y, Harrington E, Juul S, Turner DJ, Thiruvahindrapuram B, Kaur G, Wang Z, Kingsmore SF, Gleeson JG, Bisson D, Kakaradov B, Telenti A, Venter JC, Corominas R, Toma C, Cormand B, Rueda I, Guijarro S, Messer KS, Nievergelt CM, Arranz MJ, Courchesne E, Pierce K, Muotri AR, Iakoucheva LM, Hervas A, Scherer SW, Corsello C, Sebat J. Paternally inherited cis-regulatory structural variants are associated with autism. Science 2018; 360:327-331. [PMID: 29674594 DOI: 10.1126/science.aan2261] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/07/2017] [Accepted: 02/27/2018] [Indexed: 12/15/2022]
Abstract
The genetic basis of autism spectrum disorder (ASD) is known to consist of contributions from de novo mutations in variant-intolerant genes. We hypothesize that rare inherited structural variants in cis-regulatory elements (CRE-SVs) of these genes also contribute to ASD. We investigated this by assessing the evidence for natural selection and transmission distortion of CRE-SVs in whole genomes of 9274 subjects from 2600 families affected by ASD. In a discovery cohort of 829 families, structural variants were depleted within promoters and untranslated regions, and paternally inherited CRE-SVs were preferentially transmitted to affected offspring and not to their unaffected siblings. The association of paternal CRE-SVs was replicated in an independent sample of 1771 families. Our results suggest that rare inherited noncoding variants predispose children to ASD, with differing contributions from each parent.
Collapse
Affiliation(s)
- William M Brandler
- Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA 92093, USA.,Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine and Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Human Longevity, Inc., San Diego, CA 92121, USA
| | - Danny Antaki
- Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA 92093, USA.,Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine and Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Madhusudan Gujral
- Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA 92093, USA.,Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine and Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Morgan L Kleiber
- Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA 92093, USA.,Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine and Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Whitney
- The Centre for Applied Genomics, Genetics, and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Michelle S Maile
- Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA 92093, USA.,Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine and Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Oanh Hong
- Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA 92093, USA.,Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine and Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Timothy R Chapman
- Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA 92093, USA.,Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine and Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Shirley Tan
- Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA 92093, USA.,Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine and Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Prateek Tandon
- Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA 92093, USA.,Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine and Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Timothy Pang
- Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA 92093, USA.,Rady Children's Hospital, San Diego, CA 92123, USA
| | - Shih C Tang
- Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA 92093, USA.,Rady Children's Hospital, San Diego, CA 92123, USA
| | - Keith K Vaux
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yan Yang
- Oxford Nanopore Technologies, Inc., NY 10013, USA
| | | | - Sissel Juul
- Oxford Nanopore Technologies, Inc., NY 10013, USA
| | | | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, Genetics, and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Gaganjot Kaur
- The Centre for Applied Genomics, Genetics, and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Zhuozhi Wang
- The Centre for Applied Genomics, Genetics, and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Stephen F Kingsmore
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA 92123, USA
| | - Joseph G Gleeson
- Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | - J Craig Venter
- Human Longevity, Inc., San Diego, CA 92121, USA.,J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Roser Corominas
- Genetics Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Claudio Toma
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Bru Cormand
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues, Catalonia, Spain
| | - Isabel Rueda
- Department of Psychiatry, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Silvina Guijarro
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Karen S Messer
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Maria J Arranz
- Research Laboratory Unit, Fundacio Docencia I Recerca Mutua Terrassa, Barcelona, Spain
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- Department of Cellular and Molecular Medicine and Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Amaia Hervas
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Stephen W Scherer
- The Centre for Applied Genomics, Genetics, and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,McLaughlin Centre, University of Toronto, Toronto, Canada
| | - Christina Corsello
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA.,Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jonathan Sebat
- Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA 92093, USA. .,Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine and Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
36
|
Klein-Tasman BP, Mervis CB. Autism Spectrum Symptomatology Among Children with Duplication 7q11.23 Syndrome. J Autism Dev Disord 2018; 48:1982-1994. [PMID: 29307037 PMCID: PMC6003247 DOI: 10.1007/s10803-017-3439-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gold-standard diagnostic assessments of autism spectrum disorder (ASD) symptomatology were conducted on 63 children (mean CA: 8.81 years) with 7q11.23 duplication syndrome, one of the copy number variants identified by Sanders et al. (Neuron 70:863-885, 2011a) as associated with ASD. ASD classification rate was 39.6% for the Autism Diagnostic Interview-Revised and 25.4% for the Autism Diagnostic Observation Schedule-2 (ADOS-2). Based on these assessments combined with clinical judgment, 19.0% of children were diagnosed with ASD. Reasons for these discrepancies are discussed, as are differences in rate of diagnosis as a function of sex, age, and ADOS-2 module administered and differences in intellectual and adaptive behavior abilities as a function of presence or absence of ASD diagnosis and ADOS-2 module administered. Implications are addressed.
Collapse
Affiliation(s)
- Bonita P Klein-Tasman
- Department of Psychology, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI, 53201, USA.
| | - Carolyn B Mervis
- Department of Psychological and Brain Sciences, University of Louisville, 317 Life Sciences Building, Louisville, KY, 40292, USA
| |
Collapse
|
37
|
Pei L, Wallace DC. Mitochondrial Etiology of Neuropsychiatric Disorders. Biol Psychiatry 2018; 83:722-730. [PMID: 29290371 PMCID: PMC5891364 DOI: 10.1016/j.biopsych.2017.11.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022]
Abstract
The brain has the highest mitochondrial energy demand of any organ. Therefore, subtle changes in mitochondrial energy production will preferentially affect the brain. Considerable biochemical evidence has accumulated revealing mitochondrial defects associated with neuropsychiatric diseases. Moreover, the mitochondrial genome encompasses over a thousand nuclear DNA genes plus hundreds to thousands of copies of the maternally inherited mitochondrial DNA (mtDNA). Therefore, partial defects in either the nuclear DNA or mtDNA genes or combinations of the two can be sufficient to cause neuropsychiatric disorders. Inherited and acquired mtDNA mutations have recently been associated with autism spectrum disorder, which parallels previous evidence of mtDNA variation in other neurological diseases. Therefore, mitochondrial dysfunction may be central to the etiology of a wide spectrum of neurological diseases. The mitochondria and the nucleus communicate to coordinate energy production and utilization, providing the potential for therapeutics by manipulating nuclear regulation of mitochondrial gene expression.
Collapse
|
38
|
Investigation of Broad Autism Phenotype Traits as Measured by the 26-Item Autism Quotient. JOURNAL OF PSYCHOEDUCATIONAL ASSESSMENT 2018. [DOI: 10.1177/0734282918768706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The extant literature regarding psychometric properties of measures of subclinical adult autism traits is sparse. The current study investigated the validity and internal consistency reliability of the 26-item Autism Quotient (AQ-26), a self-report measure of autism traits, in a nonclinical young adult sample. Results indicated significantly better model fit with an 18-item measure (AQ-18), with optimal fit indices. Otherwise, AQ-18 and AQ-26 findings were similar and are discussed together. A three-factor model best fit the data. Scores demonstrated similar correlations in expected directions with the Empathy Quotient and Broad Autism Phenotype (BAP) Questionnaire. Expected differences were also observed when college major, gender, and BAP/non-BAP groups were compared. Despite somewhat weaker evidence for the 26/18-Details/Patterns factor, findings indicate that the AQ-26 and AQ-18 are promising measures of the three traits of subclinical autism spectrum symptomatology.
Collapse
|
39
|
Dickerson AS, Rotem RS, Christian MA, Nguyen VT, Specht AJ. Potential Sex Differences Relative to Autism Spectrum Disorder and Metals. Curr Environ Health Rep 2018; 4:405-414. [PMID: 28988324 DOI: 10.1007/s40572-017-0164-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW This study aims to summarize the current body of literature on the relationship between various toxic metals exposures (i.e., aluminum, antimony, arsenic, beryllium, cadmium, chromium, lead, manganese, and nickel) and autism spectrum disorder (ASD), with a focus on potential sex differences in these associations. RECENT FINDINGS Sex differences in ASD diagnosis and mutagenic effects of toxic exposures indicate that sex differences may play a major part in the causal relationship of any potential associations seen; however, we were only able to find three studies that reported on sex differences in observed associations with toxic metals exposure and ASD. We also found several studies investigating associations between ASD and metals exposures, including 11 on aluminum, 6 on antimony, 15 on arsenic, 5 on beryllium, 17 on cadmium, 11 on chromium, 25 on lead, 14 on manganese, and 13 on nickel with markers of exposure in hair, urine, blood, teeth, fingernails, and air pollution. Results for each metal were conflicting, but studies on cadmium and lead yielded the highest proportion of studies with positive results (72% and 36%, respectively). Based on our examination of existing literature, the current evidence warrants a considerable need for evaluations of sex differences in future studies assessing the association between metals exposures and ASD. Additionally, failure to account for potential sex differences could result in bias and misinterpretation of exposure-disease relationships.
Collapse
Affiliation(s)
- Aisha S Dickerson
- Departments of Epidemiology and Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA. .,Environmental and Occupation Medicine and Epidemiology Division of the Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Street, Landmark Center L3-125, Boston, MA, USA.
| | - Ran S Rotem
- Department Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - MacKinsey A Christian
- Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, and Center for Clinical and Translational Sciences (CCTS), University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Vy T Nguyen
- Department Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Aaron J Specht
- Department Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| |
Collapse
|
40
|
Abstract
Examining sex differences in the brain has been historically contentious but is nonetheless important for advancing mental health for both girls and boys. Unfortunately, females in biomedical research remain underrepresented in most mental health conditions including autism spectrum disorders (ASD), even though equal inclusion of females would improve treatment for girls and yield benefits to boys. This review examines sex differences in the relationship between neuroanatomy and neurogenetics of ASD. Recent findings reveal that girls diagnosed with ASD exhibit more intellectual and behavioral problems compared to their male counterparts, suggesting that girls may be less likely diagnosed in the absence of such problems or that they require a higher mutational load to meet the diagnostic criteria. Thus far, the female biased effect of chromosome 4, 5p15.33, 8p, 9p24.1, 11p12-13, 15q, and Xp22.3 and the male biased effect of 1p31.3, 5q12.3, 7q, 9q33.3, 11q13.4, 13q33.3, 16p11.2, 17q11-21, Xp22.33/Yp11.31, DRD1, NLGN3, MAOA, and SHANK1 deletion have been discovered in ASD. The SNPs of genes such as RYR2, UPP2, and the androgen receptor gene have been shown to have sex-biasing factors in both girls and boys diagnosed with ASD. These sex-related genetic factors may drive sex differences in the neuroanatomy of these girls and boys, including abnormal enlargement in temporal gray and white matter volumes, and atypical reduction in cerebellar gray matter volumes and corpus callosum fibers projecting to the anterior frontal cortex in ASD girls relative to boys. Such factors may also be responsible for the attenuation of brain sexual differentiation in adult men and women with ASD; however, much remains to be uncovered or replicated. Future research should leverage further the association between neuroanatomy and genetics in girls for an integrated and interdisciplinary understanding of ASD.
Collapse
|
41
|
Shivers CM, McGregor C, Hough A. Self-reported stress among adolescent siblings of individuals with autism spectrum disorder and Down syndrome. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2017; 23:112-122. [PMID: 29100478 DOI: 10.1177/1362361317722432] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite the prevalence of studies showing increased stress among mothers of individuals with autism spectrum disorders, few studies have examined general stress among typically developing siblings. This study used an online survey to compare the levels of self-reported stress between adolescent siblings of individuals with autism spectrum disorder and Down syndrome. Sibling of individuals with autism reported significantly more overall stress than did siblings of individuals with Down syndrome, as well as more stress specifically attributed to the brother/sister with autism. The two groups did not differ on perceived social support from family and friends. In linear regression models, the disability group (autism vs Down syndrome) was significantly related to sibling stress above and beyond target child behavior problems, perceived social support, and demographic factors. These results help shed light on the daily experiences of adolescent siblings of individuals with autism and call for more research into potential interventions to address increased stress levels.
Collapse
|
42
|
Chalkia D, Singh LN, Leipzig J, Lvova M, Derbeneva O, Lakatos A, Hadley D, Hakonarson H, Wallace DC. Association Between Mitochondrial DNA Haplogroup Variation and Autism Spectrum Disorders. JAMA Psychiatry 2017; 74:1161-1168. [PMID: 28832883 PMCID: PMC5710217 DOI: 10.1001/jamapsychiatry.2017.2604] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Autism spectrum disorders (ASD) are characterized by impairments in social interaction, communication, and repetitive or restrictive behavior. Although multiple physiologic and biochemical studies have reported defects in mitochondrial oxidative phosphorylation in patients with ASD, the role of mitochondrial DNA (mtDNA) variation has remained relatively unexplored. OBJECTIVE To assess what impact mitochondrial lineages encompassing ancient mtDNA functional polymorphisms, termed haplogroups, have on ASD risk. DESIGN, SETTING, AND PARTICIPANTS In this cohort study, individuals with autism and their families were studied using the Autism Genetic Resource Exchange cohort genome-wide association studies data previously generated at the Children's Hospital of Philadelphia. From October 2010 to January 2017, we analyzed the data and used the mtDNA single-nucleotide polymorphisms interrogated by the Illumina HumanHap 550 chip to determine the mtDNA haplogroups of the individuals. Taking into account the familial structure of the Autism Genetic Resource Exchange data, we then determined whether the mtDNA haplogroups correlate with ASD risk. MAIN OUTCOMES AND MEASURES Odds ratios of mitochondrial haplogroup as predictors of ASD risk. RESULTS Of 1624 patients with autism included in this study, 1299 were boys (80%) and 325 were girls (20%). Families in the Autism Genetic Resource Exchange collection (933 families, encompassing 4041 individuals: 1624 patients with ASD and 2417 healthy parents and siblings) had been previously recruited in the United States with no restrictions on age, sex, race/ethnicity, or socioeconomic status. Relative to the most common European haplogroup HHV, European haplogroups I, J, K, O-X, T, and U were associated with increased risk of ASD, as were Asian and Native American haplogroups A and M, with odds ratios ranging from 1.55 (95% CI, 1.16-2.06) to 2.18 (95% CI, 1.59-3) (adjusted P < .04). Hence, mtDNA haplogroup variation is an important risk factor for ASD. CONCLUSIONS AND RELEVANCE Because haplogroups I, J, K, O-X, T, and U encompass 55% of the European population, mtDNA lineages must make a significant contribution to overall ASD risk.
Collapse
Affiliation(s)
- Dimitra Chalkia
- Center for Mitochondrial and Epigenomic Medicine,
Children’s Hospital of Philadelphia Research Institute, Philadelphia,
Pennsylvania,Center for Systems Biomedicine, Division of Digestive
Diseases, School of Medicine, University of California, Los Angeles
| | - Larry N. Singh
- Center for Mitochondrial and Epigenomic Medicine,
Children’s Hospital of Philadelphia Research Institute, Philadelphia,
Pennsylvania
| | - Jeremy Leipzig
- Department of Biomedical and Health Informatics,
Children’s Hospital of Philadelphia Research Institute, Philadelphia,
Pennsylvania
| | - Maria Lvova
- Center for Mitochondrial and Epigenomic Medicine,
Children’s Hospital of Philadelphia Research Institute, Philadelphia,
Pennsylvania
| | - Olga Derbeneva
- Center for Mitochondrial and Epigenomic Medicine,
Children’s Hospital of Philadelphia Research Institute, Philadelphia,
Pennsylvania
| | - Anita Lakatos
- Institute of Memory Impairments and Neurological
Disorders, Department of Neurobiology and Behavior, University of California, Irvine
| | - Dexter Hadley
- Center for Applied Genomics, Department of Pediatrics,
Children’s Hospital of Philadelphia Research Institute, Philadelphia,
Pennsylvania
| | - Hakon Hakonarson
- Center for Applied Genomics, Department of Pediatrics,
Children’s Hospital of Philadelphia Research Institute, Philadelphia,
Pennsylvania
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine,
Children’s Hospital of Philadelphia Research Institute, Philadelphia,
Pennsylvania,Department of Pathology and Laboratory Medicine,
University of Pennsylvania, Philadelphia
| |
Collapse
|
43
|
Abstract
Sotos syndrome is a congenital overgrowth disorder with an incidence of approximately 1 in 14,000. This study investigated behavioural characteristics of ASD within a large cohort of individuals with Sotos syndrome (n = 78). As measured by the Social Responsiveness Scale, second edition (SRS-2), 65 participants (83.33 %) met clinical cut-off (T-score ≥60). There was no significant gender difference in symptom severity. There was a significant effect of age, with lower scores observed in early childhood and adulthood, compared to childhood. Furthermore, individuals with Sotos syndrome appear to display a trait profile that is similar to that identified in ASD. Overall, these findings indicate that the majority of individuals with Sotos syndrome display clinically significant behavioural symptomatology associated with ASD.
Collapse
Affiliation(s)
- Chloe Lane
- Department of Psychology, The University of Sheffield, Western Bank, Sheffield, S10 2TP, UK.
| | - Elizabeth Milne
- Department of Psychology, The University of Sheffield, Western Bank, Sheffield, S10 2TP, UK
| | - Megan Freeth
- Department of Psychology, The University of Sheffield, Western Bank, Sheffield, S10 2TP, UK
| |
Collapse
|
44
|
Ouyang M, Kang H, Detre JA, Roberts TPL, Huang H. Short-range connections in the developmental connectome during typical and atypical brain maturation. Neurosci Biobehav Rev 2017; 83:109-122. [PMID: 29024679 DOI: 10.1016/j.neubiorev.2017.10.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/09/2017] [Accepted: 10/06/2017] [Indexed: 01/10/2023]
Abstract
The human brain is remarkably complex with connectivity constituting its basic organizing principle. Although long-range connectivity has been focused on in most research, short-range connectivity is characterized by unique and spatiotemporally heterogeneous dynamics from infancy to adulthood. Alterations in the maturational dynamics of short-range connectivity has been associated with neuropsychiatric disorders, such as autism and schizophrenia. Recent advances in neuroimaging techniques, especially diffusion magnetic resonance imaging (dMRI), resting-state functional MRI (rs-fMRI), electroencephalography (EEG) and magnetoencephalography (MEG), have made quantification of short-range connectivity possible in pediatric populations. This review summarizes findings on the development of short-range functional and structural connections at the macroscale. These findings suggest an inverted U-shaped pattern of maturation from primary to higher-order brain regions, and possible "hyper-" and "hypo-" short-range connections in autism and schizophrenia, respectively. The precisely balanced short- and long-range connections contribute to the integration and segregation of the connectome during development. The mechanistic relationship among short-range connectivity maturation, the developmental connectome and emerging brain functions needs further investigation, including the refinement of methodological approaches.
Collapse
Affiliation(s)
- Minhui Ouyang
- Radiology Research, Children's Hospital of Philadelphia, PA, United States
| | - Huiying Kang
- Radiology Research, Children's Hospital of Philadelphia, PA, United States; Department of Radiology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - John A Detre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Timothy P L Roberts
- Radiology Research, Children's Hospital of Philadelphia, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Hao Huang
- Radiology Research, Children's Hospital of Philadelphia, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, United States.
| |
Collapse
|
45
|
Beaudet AL. Brain carnitine deficiency causes nonsyndromic autism with an extreme male bias: A hypothesis. Bioessays 2017; 39. [PMID: 28703319 DOI: 10.1002/bies.201700012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Could 10-20% of autism be prevented? We hypothesize that nonsyndromic or "essential" autism involves extreme male bias in infants who are genetically normal, but they develop deficiency of carnitine and perhaps other nutrients in the brain causing autism that may be amenable to early reversal and prevention. That brain carnitine deficiency might cause autism is suggested by reports of severe carnitine deficiency in autism and by evidence that TMLHE deficiency - a defect in carnitine biosynthesis - is a risk factor for autism. A gene on the X chromosome (SLC6A14) likely escapes random X-inactivation (a mixed epigenetic and genetic regulation) and could limit carnitine transport across the blood-brain barrier in boys compared to girls. A mixed, common gene variant-environment hypothesis is proposed with diet, minor illnesses, microbiome, and drugs as possible risk modifiers. The hypothesis can be tested using animal models and by a trial of carnitine supplementation in siblings of probands. Perhaps the lack of any Recommended Dietary Allowance for carnitine in infants should be reviewed. Also see the video abstract here: https://youtu.be/BuRH_jSjX5Y.
Collapse
Affiliation(s)
- Arthur L Beaudet
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
46
|
Reilly J, Gallagher L, Chen JL, Leader G, Shen S. Bio-collections in autism research. Mol Autism 2017; 8:34. [PMID: 28702161 PMCID: PMC5504648 DOI: 10.1186/s13229-017-0154-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental disorders with diverse clinical manifestations and symptoms. In the last 10 years, there have been significant advances in understanding the genetic basis for ASD, critically supported through the establishment of ASD bio-collections and application in research. Here, we summarise a selection of major ASD bio-collections and their associated findings. Collectively, these include mapping ASD candidate genes, assessing the nature and frequency of gene mutations and their association with ASD clinical subgroups, insights into related molecular pathways such as the synapses, chromatin remodelling, transcription and ASD-related brain regions. We also briefly review emerging studies on the use of induced pluripotent stem cells (iPSCs) to potentially model ASD in culture. These provide deeper insight into ASD progression during development and could generate human cell models for drug screening. Finally, we provide perspectives concerning the utilities of ASD bio-collections and limitations, and highlight considerations in setting up a new bio-collection for ASD research.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| | - Louise Gallagher
- Trinity Translational Medicine Institute and Department of Psychiatry, Trinity Centre for Health Sciences, St. James Hospital Street, Dublin 8, Ireland
| | - June L Chen
- Department of Special Education, Faculty of Education, East China Normal University, Shanghai, 200062 China
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland Galway, University Road, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| |
Collapse
|
47
|
Copy number variations independently induce autism spectrum disorder. Biosci Rep 2017; 37:BSR20160570. [PMID: 28533427 PMCID: PMC6434077 DOI: 10.1042/bsr20160570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/22/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
The examination of copy number variation (CNV) is critical to understand the etiology of the CNV-related autism spectrum disorders (ASD). DNA samples were obtained from 64 ASD probands, which were genotyped on an Affymetrix CytoScan HD platform. qPCR or FISH were used as a validation for some novel recurrent CNVs. We further compared the clinical phenotypes of the genes in the Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources (DECIPHER) database with these overlapping genes. Using vast, readily available databases with previously reported clinically relevant CNVs from human populations, the genes were evaluated using Enrichment Analysis and GO Slim Classification. By using the Ploysearch2 software, we identified the interaction relationship between significant genes and known ASD genes. A total of 29 CNVs, overlapping with 520 genes, including 315 OMIM genes, were identified. Additionally, myocyte enhancer factor 2 family (MEF2C) with two cases of CNV overlapping were also identified. Enrichment analysis showed that the 520 genes are most likely to be related to membrane components with protein-binding functions involved in metabolic processes. In the interaction network of those genes, the known ASD genes are mostly at the core position and the significant genes found in our samples are closely related to the known ASD genes. CNVs should be an independent factor to induce autism. With the strategy of our study, we could find the ASDs candidate genes by CNV data and review certain pathogenesis of this disorder. Those CNVs were associated with ASD and they may contribute to ASD by affecting the ASD-related genes.
Collapse
|
48
|
Klein M, van Donkelaar M, Verhoef E, Franke B. Imaging genetics in neurodevelopmental psychopathology. Am J Med Genet B Neuropsychiatr Genet 2017; 174:485-537. [PMID: 29984470 PMCID: PMC7170264 DOI: 10.1002/ajmg.b.32542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 03/10/2017] [Indexed: 01/27/2023]
Abstract
Neurodevelopmental disorders are defined by highly heritable problems during development and brain growth. Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), and intellectual disability (ID) are frequent neurodevelopmental disorders, with common comorbidity among them. Imaging genetics studies on the role of disease-linked genetic variants on brain structure and function have been performed to unravel the etiology of these disorders. Here, we reviewed imaging genetics literature on these disorders attempting to understand the mechanisms of individual disorders and their clinical overlap. For ADHD and ASD, we selected replicated candidate genes implicated through common genetic variants. For ID, which is mainly caused by rare variants, we included genes for relatively frequent forms of ID occurring comorbid with ADHD or ASD. We reviewed case-control studies and studies of risk variants in healthy individuals. Imaging genetics studies for ADHD were retrieved for SLC6A3/DAT1, DRD2, DRD4, NOS1, and SLC6A4/5HTT. For ASD, studies on CNTNAP2, MET, OXTR, and SLC6A4/5HTT were found. For ID, we reviewed the genes FMR1, TSC1 and TSC2, NF1, and MECP2. Alterations in brain volume, activity, and connectivity were observed. Several findings were consistent across studies, implicating, for example, SLC6A4/5HTT in brain activation and functional connectivity related to emotion regulation. However, many studies had small sample sizes, and hypothesis-based, brain region-specific studies were common. Results from available studies confirm that imaging genetics can provide insight into the link between genes, disease-related behavior, and the brain. However, the field is still in its early stages, and conclusions about shared mechanisms cannot yet be drawn.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Ellen Verhoef
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Abstract
Epileptic encephalopathies represent a particularly severe form of epilepsy, associated with cognitive and behavioral deficits, including impaired social-communication and restricted, repetitive behaviors that are the hallmarks of autism spectrum disorder (ASD). With the advent of next-generation sequencing, the genetic landscape of epileptic encephalopathies is growing and demonstrates overlap with genes separately implicated in ASD. However, many questions remain about this connection, including whether epileptiform activity itself contributes to the development of ASD symptomatology. In this review, we compiled a database of genes associated with both epileptic encephalopathy and ASD, limiting our purview to Mendelian disorders not including inborn errors of metabolism, and we focused on the connection between ASD and epileptic encephalopathy rather than epilepsy broadly. Our review has four goals: to (1) discuss the overlapping presentations of ASD and monogenic epileptic encephalopathies; (2) examine the impact of the epilepsy itself on neurocognitive features, including ASD, in monogenic epileptic encephalopathies; (3) outline many of the genetic causes responsible for both ASD and epileptic encephalopathy; (4) provide an illustrative example of a final common pathway that may be implicated in both ASD and epileptic encephalopathy. We demonstrate that autistic features are a common association with monogenic epileptic encephalopathies. Certain epileptic encephalopathy syndromes, like infantile spasms, are especially linked to the development of ASD. The connection between seizures themselves and neurobehavioral deficits in these monogenic encephalopathies remains open to debate. Finally, advances in genetics have revealed many genes that overlap in ties to both ASD and epileptic encephalopathy and that play a role in diverse central nervous system processes. Increased attention to the autistic features of monogenic epileptic encephalopathies is warranted for both researchers and clinicians alike.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|
50
|
Measuring shared variants in cohorts of discordant siblings with applications to autism. Proc Natl Acad Sci U S A 2017. [PMID: 28630308 DOI: 10.1073/pnas.1700439114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We develop a method of analysis [affected to discordant sibling pairs (A2DS)] that tests if shared variants contribute to a disorder. Using a standard measure of genetic relation, test individuals are compared with a cohort of discordant sibling pairs (CDS) to derive a comparative similarity score. We ask if a test individual is more similar to an unrelated affected than to the unrelated unaffected sibling from the CDS and then, sum over such individuals and pairs. Statistical significance is judged by randomly permuting the affected status in the CDS. In the analysis of published genotype data from the Simons Simplex Collection (SSC) and the Autism Genetic Resource Exchange (AGRE) cohorts of children with autism spectrum disorder (ASD), we find strong statistical significance that the affected are more similar to the affected than to the unaffected of the CDS (P value ∼ 0.00001). Fathers in multiplex families have marginally greater similarity (P value = 0.02) to unrelated affected individuals. These results do not depend on ethnic matching or gender.
Collapse
|