1
|
Erickson JL, Prautsch J, Reynvoet F, Niemeyer F, Hause G, Johnston IG, Schattat MH. Stromule Geometry Allows Optimal Spatial Regulation of Organelle Interactions in the Quasi-2D Cytoplasm. PLANT & CELL PHYSIOLOGY 2024; 65:618-630. [PMID: 37658689 PMCID: PMC11094753 DOI: 10.1093/pcp/pcad098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
In plant cells, plastids form elongated extensions called stromules, the regulation and purposes of which remain unclear. Here, we quantitatively explore how different stromule structures serve to enhance the ability of a plastid to interact with other organelles: increasing the effective space for interaction and biomolecular exchange between organelles. Interestingly, electron microscopy and confocal imaging showed that the cytoplasm in Arabidopsis thaliana and Nicotiana benthamiana epidermal cells is extremely thin (around 100 nm in regions without organelles), meaning that inter-organelle interactions effectively take place in 2D. We combine these imaging modalities with mathematical modeling and new in planta experiments to demonstrate how different stromule varieties (single or multiple, linear or branching) could be employed to optimize different aspects of inter-organelle interaction capacity in this 2D space. We found that stromule formation and branching provide a proportionally higher benefit to interaction capacity in 2D than in 3D. Additionally, this benefit depends on optimal plastid spacing. We hypothesize that cells can promote the formation of different stromule architectures in the quasi-2D cytoplasm to optimize their interaction interface to meet specific requirements. These results provide new insight into the mechanisms underlying the transition from low to high stromule numbers, the consequences for interaction with smaller organelles, how plastid access and plastid to nucleus signaling are balanced and the impact of plastid density on organelle interaction.
Collapse
Affiliation(s)
- Jessica Lee Erickson
- Department of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, Halle 06120, Germany
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Weinbergweg 10, Halle 06120, Germany
| | - Jennifer Prautsch
- Department of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, Halle 06120, Germany
| | - Frisine Reynvoet
- Department of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, Halle 06120, Germany
| | - Frederik Niemeyer
- Department of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, Halle 06120, Germany
| | - Gerd Hause
- Department of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, Halle 06120, Germany
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Realfagbygget, Bergen, Vestland 5007, Norway
- Computational Biology Unit, University of Bergen, Høyteknologisenteret, Bergen, Vestland 5006, Norway
| | - Martin Harmut Schattat
- Department of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, Halle 06120, Germany
| |
Collapse
|
2
|
Voce N, Stevenson P. Experimentally Probing the Effect of Confinement Geometry on Lipid Diffusion. J Phys Chem B 2024; 128:4404-4413. [PMID: 38574293 PMCID: PMC11089508 DOI: 10.1021/acs.jpcb.3c07388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
The lateral mobility of molecules within the cell membrane is ultimately governed by the local environment of the membrane. Confined regions induced by membrane structures, such as protein aggregates or the actin meshwork, occur over a wide range of length scales and can impede or steer the diffusion of membrane components. However, a detailed picture of the origins and nature of these confinement effects remains elusive. Here, we prepare model lipid systems on substrates patterned with confined domains of varying geometries constructed with different materials to explore the influences of physical boundary conditions and specific molecular interactions on diffusion. We demonstrate a platform that is capable of significantly altering and steering the long-range diffusion of lipids by using simple oxide deposition approaches, enabling us to systematically explore how confinement size and shape impact diffusion over multiple length scales. While we find that a "boundary condition" description of the system captures underlying trends in some cases, we are also able to directly compare our systems to analytical models, revealing the unexpected breakdown of several approximate solutions. Our results highlight the importance of considering the length scale dependence when discussing properties such as diffusion.
Collapse
Affiliation(s)
- Nicole Voce
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Paul Stevenson
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Wang R, Lei H, Wang H, Qi L, Liu Y, Liu Y, Shi Y, Chen J, Shen QT. Dysregulated inter-mitochondrial crosstalk in glioblastoma cells revealed by in situ cryo-electron tomography. Proc Natl Acad Sci U S A 2024; 121:e2311160121. [PMID: 38377189 PMCID: PMC10907319 DOI: 10.1073/pnas.2311160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Glioblastomas (GBMs) are the most lethal primary brain tumors with limited survival, even under aggressive treatments. The current therapeutics for GBMs are flawed due to the failure to accurately discriminate between normal proliferating cells and distinctive tumor cells. Mitochondria are essential to GBMs and serve as potential therapeutical targets. Here, we utilize cryo-electron tomography to quantitatively investigate nanoscale details of randomly sampled mitochondria in their native cellular context of GBM cells. Our results show that compared with cancer-free brain cells, GBM cells own more inter-mitochondrial junctions of several types for communications. Furthermore, our tomograms unveil microtubule-dependent mitochondrial nanotunnel-like bridges in the GBM cells as another inter-mitochondrial structure. These quantified inter-mitochondrial features, together with other mitochondria-organelle and intra-mitochondrial ones, are sufficient to distinguish GBM cells from cancer-free brain cells under scrutiny with predictive modeling. Our findings decipher high-resolution inter-mitochondrial structural signatures and provide clues for diagnosis and therapeutic interventions for GBM and other mitochondria-related diseases.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
| | - Huan Lei
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Lei Qi
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- Biomedical Research Center for Structural Analysis, Shandong University, Jinan250012, China
| | - Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai200092, China
| | - Yunhui Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai200092, China
- Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai200092, China
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Qing-Tao Shen
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
| |
Collapse
|
4
|
Bonucci M, Shu T, Holt LJ. How it feels in a cell. Trends Cell Biol 2023; 33:924-938. [PMID: 37286396 PMCID: PMC10592589 DOI: 10.1016/j.tcb.2023.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Life emerges from thousands of biochemical processes occurring within a shared intracellular environment. We have gained deep insights from in vitro reconstitution of isolated biochemical reactions. However, the reaction medium in test tubes is typically simple and diluted. The cell interior is far more complex: macromolecules occupy more than a third of the space, and energy-consuming processes agitate the cell interior. Here, we review how this crowded, active environment impacts the motion and assembly of macromolecules, with an emphasis on mesoscale particles (10-1000 nm diameter). We describe methods to probe and analyze the biophysical properties of cells and highlight how changes in these properties can impact physiology and signaling, and potentially contribute to aging, and diseases, including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Martina Bonucci
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA
| | - Tong Shu
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA.
| |
Collapse
|
5
|
Midorikawa K, Numata K, Kodama Y. Peroxisomes undergo morphological changes in a light-dependent manner with proximity to the nucleus. FEBS Lett 2023; 597:2178-2184. [PMID: 37428521 DOI: 10.1002/1873-3468.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
The size and shape of organelles can influence the rate of biochemical reactions in cells. Previous studies have suggested that organelle morphology changes due to intra- and extracellular environmental responses, affecting the metabolic efficiency of and signal transduction emanating from neighboring organelles. In this study, we tested the possibility that intracellularly distributed organelles exhibit a heterogeneous response to intra- and extracellular environments. We detected a high correlation between peroxisome morphology and distance to the nucleus in light-exposed cells. Moreover, the proximity area between chloroplasts and peroxisomes varied with distance to the nucleus. These results indicate that peroxisome morphology varies with proximity to the nucleus, suggesting the presence of a nucleus-peroxisome signal transduction cascade mediated by chloroplasts.
Collapse
Affiliation(s)
- Keiko Midorikawa
- Center for Bioscience Research and Education, Utsunomiya University, Japan
| | - Keiji Numata
- Department of Material Chemistry, Kyoto University, Japan
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Japan
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Japan
| |
Collapse
|
6
|
Martinez-Lopez N, Mattar P, Toledo M, Bains H, Kalyani M, Aoun ML, Sharma M, McIntire LBJ, Gunther-Cummins L, Macaluso FP, Aguilan JT, Sidoli S, Bourdenx M, Singh R. mTORC2-NDRG1-CDC42 axis couples fasting to mitochondrial fission. Nat Cell Biol 2023:10.1038/s41556-023-01163-3. [PMID: 37386153 PMCID: PMC10344787 DOI: 10.1038/s41556-023-01163-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/04/2023] [Indexed: 07/01/2023]
Abstract
Fasting triggers diverse physiological adaptations including increases in circulating fatty acids and mitochondrial respiration to facilitate organismal survival. The mechanisms driving mitochondrial adaptations and respiratory sufficiency during fasting remain incompletely understood. Here we show that fasting or lipid availability stimulates mTORC2 activity. Activation of mTORC2 and phosphorylation of its downstream target NDRG1 at serine 336 sustains mitochondrial fission and respiratory sufficiency. Time-lapse imaging shows that NDRG1, but not the phosphorylation-deficient NDRG1Ser336Ala mutant, engages with mitochondria to facilitate fission in control cells, as well as in those lacking DRP1. Using proteomics, a small interfering RNA screen, and epistasis experiments, we show that mTORC2-phosphorylated NDRG1 cooperates with small GTPase CDC42 and effectors and regulators of CDC42 to orchestrate fission. Accordingly, RictorKO, NDRG1Ser336Ala mutants and Cdc42-deficient cells each display mitochondrial phenotypes reminiscent of fission failure. During nutrient surplus, mTOR complexes perform anabolic functions; however, paradoxical reactivation of mTORC2 during fasting unexpectedly drives mitochondrial fission and respiration.
Collapse
Affiliation(s)
- Nuria Martinez-Lopez
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Liver Basic Research Center at University of California Los Angeles, Los Angeles, CA, USA
| | - Pamela Mattar
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Miriam Toledo
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Henrietta Bains
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Manu Kalyani
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marie Louise Aoun
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mridul Sharma
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Leslie Gunther-Cummins
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Frank P Macaluso
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jennifer T Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mathieu Bourdenx
- UK Dementia Research Institute, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Rajat Singh
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Liver Basic Research Center at University of California Los Angeles, Los Angeles, CA, USA.
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Kumar M, Sharma S, Mazumder S. Role of UPR mt and mitochondrial dynamics in host immunity: it takes two to tango. Front Cell Infect Microbiol 2023; 13:1135203. [PMID: 37260703 PMCID: PMC10227438 DOI: 10.3389/fcimb.2023.1135203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
The immune system of a host contains a group of heterogeneous cells with the prime aim of restraining pathogenic infection and maintaining homeostasis. Recent reports have proved that the various subtypes of immune cells exploit distinct metabolic programs for their functioning. Mitochondria are central signaling organelles regulating a range of cellular activities including metabolic reprogramming and immune homeostasis which eventually decree the immunological fate of the host under pathogenic stress. Emerging evidence suggests that following bacterial infection, innate immune cells undergo profound metabolic switching to restrain and countervail the bacterial pathogens, promote inflammation and restore tissue homeostasis. On the other hand, bacterial pathogens affect mitochondrial structure and functions to evade host immunity and influence their intracellular survival. Mitochondria employ several mechanisms to overcome bacterial stress of which mitochondrial UPR (UPRmt) and mitochondrial dynamics are critical. This review discusses the latest advances in our understanding of the immune functions of mitochondria against bacterial infection, particularly the mechanisms of mitochondrial UPRmt and mitochondrial dynamics and their involvement in host immunity.
Collapse
Affiliation(s)
- Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi, India
| |
Collapse
|
8
|
Zong W, Shao X, Li J, Chai Y, Hu X, Zhang X. Synthetic Intracellular Environments: From Basic Science to Applications. Anal Chem 2023; 95:535-549. [PMID: 36625127 DOI: 10.1021/acs.analchem.2c04199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wei Zong
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| | - Xiaotong Shao
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China.,Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar161006, China
| | - Yunhe Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| | - Xinyu Hu
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou325035, China
| | - Xunan Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| |
Collapse
|
9
|
Florczyk SJ, Hotaling NA, Simon M, Chalfoun J, Horenberg AL, Schaub NJ, Wang D, Szczypiński PM, DeFelice VL, Bajcsy P, Simon CG. Measuring dimensionality of cell-scaffold contacts of primary human bone marrow stromal cells cultured on electrospun fiber scaffolds. J Biomed Mater Res A 2023; 111:106-117. [PMID: 36194510 DOI: 10.1002/jbm.a.37449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
The properties and structure of the cellular microenvironment can influence cell behavior. Sites of cell adhesion to the extracellular matrix (ECM) initiate intracellular signaling that directs cell functions such as proliferation, differentiation, and apoptosis. Electrospun fibers mimic the fibrous nature of native ECM proteins and cell culture in fibers affects cell shape and dimensionality, which can drive specific functions, such as the osteogenic differentiation of primary human bone marrow stromal cells (hBMSCs), by. In order to probe how scaffolds affect cell shape and behavior, cell-fiber contacts were imaged to assess their shape and dimensionality through a novel approach. Fluorescent polymeric fiber scaffolds were made so that they could be imaged by confocal fluorescence microscopy. Fluorescent polymer films were made as a planar control. hBSMCs were cultured on the fluorescent substrates and the cells and substrates were imaged. Two different image analysis approaches, one having geometrical assumptions and the other having statistical assumptions, were used to analyze the 3D structure of cell-scaffold contacts. The cells cultured in scaffolds contacted the fibers in multiple planes over the surface of the cell, while the cells cultured on films had contacts confined to the bottom surface of the cell. Shape metric analysis indicated that cell-fiber contacts had greater dimensionality and greater 3D character than the cell-film contacts. These results suggest that cell adhesion site-initiated signaling could emanate from multiple planes over the cell surface during culture in fibers, as opposed to emanating only from the cell's basal surface during culture on planar surfaces.
Collapse
Affiliation(s)
- Stephanie J Florczyk
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nathan A Hotaling
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.,Axle Informatics, Rockville, Maryland, USA
| | - Mylene Simon
- Software and Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Joe Chalfoun
- Software and Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Allison L Horenberg
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nicholas J Schaub
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.,Axle Informatics, Rockville, Maryland, USA
| | - Dongbo Wang
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | | | - Veronica L DeFelice
- Biochemistry and Molecular Biology Program, Georgetown University, Washington, District of Columbia, USA
| | - Peter Bajcsy
- Software and Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Carl G Simon
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
10
|
Midorikawa K, Tateishi A, Toyooka K, Sato M, Imai T, Kodama Y, Numata K. Three-dimensional nanoscale analysis of light-dependent organelle changes in Arabidopsis mesophyll cells. PNAS NEXUS 2022; 1:pgac225. [PMID: 36712360 PMCID: PMC9802074 DOI: 10.1093/pnasnexus/pgac225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
Different organelles function coordinately in numerous intracellular processes. Photorespiration incidental to photosynthetic carbon fixation is organized across three subcellular compartments: chloroplasts, peroxisomes, and mitochondria. Under light conditions, these three organelles often form a ternary organellar complex in close proximity, suggesting a connection with metabolism during photorespiration. However, due to the heterogeneity of intercellular organelle localization and morphology, organelles' responses to changes in the external environment remain poorly understood. Here, we used array tomography by field emission scanning electron microscopy to image organelles inside the whole plant cell at nanometer resolution, generating a three-dimensional (3D) spatial map of the light-dependent positioning of chloroplasts, peroxisomes, nuclei, and vacuoles. Our results show, in light-treated cells, the volume of peroxisomes increased, and mitochondria were simplified. In addition, the population of free organelles decreased, and the ternary complex centered on chloroplasts increased. Moreover, our results emphasized the expansion of the proximity area rather than the increase in the number of proximity sites interorganelles. All of these phenomena were quantified for the first time on the basis of nanoscale spatial maps. In summary, we provide the first 3D reconstruction of Arabidopsis mesophyll cells, together with nanoscale quantified organelle morphology and their positioning via proximity areas, and then evidence of their light-dependent changes.
Collapse
Affiliation(s)
- Keiko Midorikawa
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Ayaka Tateishi
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,Department of Material Chemistry, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, Kanagawa 230-0045, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, Kanagawa 230-0045, Japan
| | - Takuto Imai
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
11
|
Jiang Y, Krantz S, Qin X, Li S, Gunasekara H, Kim YM, Zimnicka A, Bae M, Ma K, Toth PT, Hu Y, Shajahan-Haq AN, Patel HH, Gentile S, Bonini MG, Rehman J, Liu Y, Minshall RD. Caveolin-1 controls mitochondrial damage and ROS production by regulating fission - fusion dynamics and mitophagy. Redox Biol 2022; 52:102304. [PMID: 35413643 PMCID: PMC9018165 DOI: 10.1016/j.redox.2022.102304] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022] Open
Abstract
As essential regulators of mitochondrial quality control, mitochondrial dynamics and mitophagy play key roles in maintenance of metabolic health and cellular homeostasis. Here we show that knockdown of the membrane-inserted scaffolding and structural protein caveolin-1 (Cav-1) and expression of tyrosine 14 phospho-defective Cav-1 mutant (Y14F), as opposed to phospho-mimicking Y14D, altered mitochondrial morphology, and increased mitochondrial matrix mixing, mitochondrial fusion and fission dynamics as well as mitophagy in MDA-MB-231 triple negative breast cancer cells. Further, we found that interaction of Cav-1 with mitochondrial fusion/fission machinery Mitofusin 2 (Mfn2) and Dynamin related protein 1 (Drp1) was enhanced by Y14D mutant indicating Cav-1 Y14 phosphorylation prevented Mfn2 and Drp1 translocation to mitochondria. Moreover, limiting mitochondrial recruitment of Mfn2 diminished formation of the PINK1/Mfn2/Parkin complex required for initiation of mitophagy resulting in accumulation of damaged mitochondria and ROS (mtROS). Thus, these studies indicate that phospho-Cav-1 may be an important switch mechanism in cancer cell survival which could lead to novel strategies for complementing cancer therapies.
Collapse
Affiliation(s)
- Ying Jiang
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA; Center for Informational Biology, University of Electronic Science and Technology of China, 610054, China
| | - Sarah Krantz
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Xiang Qin
- Center for Informational Biology, University of Electronic Science and Technology of China, 610054, China
| | - Shun Li
- Center for Informational Biology, University of Electronic Science and Technology of China, 610054, China
| | | | - Young-Mee Kim
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Adriana Zimnicka
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Misuk Bae
- Anesthesiology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ke Ma
- Research Resources Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Peter T Toth
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA; Research Resources Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ying Hu
- Chemistry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ayesha N Shajahan-Haq
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Hemal H Patel
- VA San Diego Health System and Department of Anesthesiology, University of California at San Diego, San Diego, CA, 92161, USA
| | - Saverio Gentile
- Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Marcelo G Bonini
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60614, USA
| | - Jalees Rehman
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA; Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yiyao Liu
- Center for Informational Biology, University of Electronic Science and Technology of China, 610054, China
| | - Richard D Minshall
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA; Anesthesiology, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
12
|
Malcı K, Walls LE, Rios-Solis L. Rational Design of CRISPR/Cas12a-RPA Based One-Pot COVID-19 Detection with Design of Experiments. ACS Synth Biol 2022; 11:1555-1567. [PMID: 35363475 PMCID: PMC9016756 DOI: 10.1021/acssynbio.1c00617] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Simple
and effective molecular diagnostic methods have gained importance
due to the devastating effects of the COVID-19 pandemic. Various isothermal
one-pot COVID-19 detection methods have been proposed as favorable
alternatives to standard RT-qPCR methods as they do not require sophisticated
and/or expensive devices. However, as one-pot reactions are highly
complex with a large number of variables, determining the optimum
conditions to maximize sensitivity while minimizing diagnostic cost
can be cumbersome. Here, statistical design of experiments (DoE) was
employed to accelerate the development and optimization of a CRISPR/Cas12a-RPA-based
one-pot detection method for the first time. Using a definitive screening
design, factors with a significant effect on performance were elucidated
and optimized, facilitating the detection of two copies/μL of
full-length SARS-CoV-2 (COVID-19) genome using simple instrumentation.
The screening revealed that the addition of a reverse transcription
buffer and an RNase inhibitor, components generally omitted in one-pot
reactions, improved performance significantly, and optimization of
reverse transcription had a critical impact on the method’s
sensitivity. This strategic method was also applied in a second approach
involving a DNA sequence of the N gene from the COVID-19 genome. The
slight differences in optimal conditions for the methods using RNA
and DNA templates highlight the importance of reaction-specific optimization
in ensuring robust and efficient diagnostic performance. The proposed
detection method is automation-compatible, rendering it suitable for
high-throughput testing. This study demonstrated the benefits of DoE
for the optimization of complex one-pot molecular diagnostics methods
to increase detection sensitivity.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, Edinburgh EH9 3BD, United Kingdom
| | - Laura E. Walls
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, Edinburgh EH9 3BD, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, Edinburgh EH9 3BD, United Kingdom
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
13
|
Longatte G, Lisi F, Bakthavathsalam P, Böcking T, Gaus K, Tilley RD, Gooding JJ. Biomolecular Binding under Confinement: Statistical Predictions of Steric Influence in Absence of Long-Distance Interactions. Chemphyschem 2021; 23:e202100765. [PMID: 34856050 DOI: 10.1002/cphc.202100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Indexed: 11/08/2022]
Abstract
We propose a theoretical model for the influence of confinement on biomolecular binding at the single-molecule scale at equilibrium, based on the change of the number of microstates (localization and orientation) upon reaction. Three cases are discussed: DNA sequences shorter and longer than the single strain DNA Kuhn length and spherical proteins, confined into a spherical container (liposome, droplet, etc.). The influence of confinement is found to be highly dependent on the molecular structure and significant for large molecules (relative to container size).
Collapse
Affiliation(s)
- Guillaume Longatte
- School of Chemistry, Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Fabio Lisi
- School of Chemistry, Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Padmavathy Bakthavathsalam
- School of Chemistry, Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D Tilley
- School of Chemistry, Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Abstract
Mitochondria are signaling hubs responsible for the generation of energy through oxidative phosphorylation, the production of key metabolites that serve the bioenergetic and biosynthetic needs of the cell, calcium (Ca2+) buffering and the initiation/execution of apoptosis. The ability of mitochondria to coordinate this myriad of functions is achieved through the exquisite regulation of fundamental dynamic properties, including remodeling of the mitochondrial network via fission and fusion, motility and mitophagy. In this Review, we summarize the current understanding of the mechanisms by which these dynamic properties of the mitochondria support mitochondrial function, review their impact on human cortical development and highlight areas in need of further research.
Collapse
Affiliation(s)
- Tierney Baum
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
15
|
Siedlik MJ, Yang Z, Kadam PS, Eberwine J, Issadore D. Micro- and Nano-Devices for Studying Subcellular Biology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005793. [PMID: 33345457 PMCID: PMC8258219 DOI: 10.1002/smll.202005793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/20/2020] [Indexed: 05/27/2023]
Abstract
Cells are complex machines whose behaviors arise from their internal collection of dynamically interacting organelles, supramolecular complexes, and cytoplasmic chemicals. The current understanding of the nature by which subcellular biology produces cell-level behaviors is limited by the technological hurdle of measuring the large number (>103 ) of small-sized (<1 μm) heterogeneous organelles and subcellular structures found within each cell. In this review, the emergence of a suite of micro- and nano-technologies for studying intracellular biology on the scale of organelles is described. Devices that use microfluidic and microelectronic components for 1) extracting and isolating subcellular structures from cells and lysate; 2) analyzing the physiology of individual organelles; and 3) recreating subcellular assembly and functions in vitro, are described. The authors envision that the continued development of single organelle technologies and analyses will serve as a foundation for organelle systems biology and will allow new insight into fundamental and clinically relevant biological questions.
Collapse
Affiliation(s)
- Michael J Siedlik
- Department of Bioengineering, 335 Skirkanich Hall, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA, 19104, USA
| | - Zijian Yang
- Department of Mechanical Engineering and Applied Science, 335 Skirkanich Hall, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA, 19104, USA
| | - Parnika S Kadam
- Systems Pharmacology and Translational Therapeutics, 38 John Morgan Building, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - James Eberwine
- Systems Pharmacology and Translational Therapeutics, 38 John Morgan Building, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - David Issadore
- Department of Bioengineering, 335 Skirkanich Hall, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
16
|
Thévenod F, Lee WK, Garrick MD. Iron and Cadmium Entry Into Renal Mitochondria: Physiological and Toxicological Implications. Front Cell Dev Biol 2020; 8:848. [PMID: 32984336 PMCID: PMC7492674 DOI: 10.3389/fcell.2020.00848] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Regulation of body fluid homeostasis is a major renal function, occurring largely through epithelial solute transport in various nephron segments driven by Na+/K+-ATPase activity. Energy demands are greatest in the proximal tubule and thick ascending limb where mitochondrial ATP production occurs through oxidative phosphorylation. Mitochondria contain 20-80% of the cell's iron, copper, and manganese that are imported for their redox properties, primarily for electron transport. Redox reactions, however, also lead to reactive, toxic compounds, hence careful control of redox-active metal import into mitochondria is necessary. Current dogma claims the outer mitochondrial membrane (OMM) is freely permeable to metal ions, while the inner mitochondrial membrane (IMM) is selectively permeable. Yet we recently showed iron and manganese import at the OMM involves divalent metal transporter 1 (DMT1), an H+-coupled metal ion transporter. Thus, iron import is not only regulated by IMM mitoferrins, but also depends on the OMM to intermembrane space H+ gradient. We discuss how these mitochondrial transport processes contribute to renal injury in systemic (e.g., hemochromatosis) and local (e.g., hemoglobinuria) iron overload. Furthermore, the environmental toxicant cadmium selectively damages kidney mitochondria by "ionic mimicry" utilizing iron and calcium transporters, such as OMM DMT1 or IMM calcium uniporter, and by disrupting the electron transport chain. Consequently, unraveling mitochondrial metal ion transport may help develop new strategies to prevent kidney injury induced by metals.
Collapse
Affiliation(s)
- Frank Thévenod
- Faculty of Health, Centre for Biomedical Education and Research, Institute of Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Wing-Kee Lee
- Faculty of Health, Centre for Biomedical Education and Research, Institute of Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Michael D Garrick
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
17
|
Brown JA, Sammy MJ, Ballinger SW. An evolutionary, or "Mitocentric" perspective on cellular function and disease. Redox Biol 2020; 36:101568. [PMID: 32512469 PMCID: PMC7281786 DOI: 10.1016/j.redox.2020.101568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
The incidence of common, metabolic diseases (e.g. obesity, cardiovascular disease, diabetes) with complex genetic etiology has been steadily increasing nationally and globally. While identification of a genetic model that explains susceptibility and risk for these diseases has been pursued over several decades, no clear paradigm has yet been found to disentangle the genetic basis of polygenic/complex disease development. Since the evolution of the eukaryotic cell involved a symbiotic interaction between the antecedents of the mitochondrion and nucleus (which itself is a genetic hybrid), we suggest that this history provides a rational basis for investigating whether genetic interaction and co-evolution of these genomes still exists. We propose that both mitochondrial and Mendelian, or "mito-Mendelian" genetics play a significant role in cell function, and thus disease risk. This paradigm contemplates the natural variation and co-evolution of both mitochondrial and nuclear DNA backgrounds on multiple mitochondrial functions that are discussed herein, including energy production, cell signaling and immune response, which collectively can influence disease development. At the nexus of these processes is the economy of mitochondrial metabolism, programmed by both mitochondrial and nuclear genomes.
Collapse
Affiliation(s)
- Jamelle A Brown
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Melissa J Sammy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
18
|
Harvey AJ. Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction 2020; 157:R159-R179. [PMID: 30870807 DOI: 10.1530/rep-18-0431] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
Mitochondria, originally of bacterial origin, are highly dynamic organelles that have evolved a symbiotic relationship within eukaryotic cells. Mitochondria undergo dynamic, stage-specific restructuring and redistribution during oocyte maturation and preimplantation embryo development, necessary to support key developmental events. Mitochondria also fulfil a wide range of functions beyond ATP synthesis, including the production of intracellular reactive oxygen species and calcium regulation, and are active participants in the regulation of signal transduction pathways. Communication between not only mitochondria and the nucleus, but also with other organelles, is emerging as a critical function which regulates preimplantation development. Significantly, perturbations and deficits in mitochondrial function manifest not only as reduced quality and/or poor oocyte and embryo development but contribute to post-implantation failure, long-term cell function and adult disease. A growing body of evidence indicates that altered availability of metabolic co-factors modulate the activity of epigenetic modifiers, such that oocyte and embryo mitochondrial activity and dynamics have the capacity to establish long-lasting alterations to the epigenetic landscape. It is proposed that preimplantation embryo development may represent a sensitive window during which epigenetic regulation by mitochondria is likely to have significant short- and long-term effects on embryo, and offspring, health. Hence, mitochondrial integrity, communication and metabolism are critical links between the environment, the epigenome and the regulation of embryo development.
Collapse
Affiliation(s)
- Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
20
|
Castro CM, Corciulo C, Solesio ME, Liang F, Pavlov EV, Cronstein BN. Adenosine A2A receptor (A2AR) stimulation enhances mitochondrial metabolism and mitigates reactive oxygen species-mediated mitochondrial injury. FASEB J 2020; 34:5027-5045. [PMID: 32052890 DOI: 10.1096/fj.201902459r] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/25/2022]
Abstract
In OA chondrocytes, there is diminished mitochondrial production of ATP and diminished extracellular adenosine resulting in diminished adenosine A2A receptor (A2AR) stimulation and altered chondrocyte homeostasis which contributes to the pathogenesis of OA. We tested the hypothesis that A2AR stimulation maintains or enhances mitochondrial function in chondrocytes. The effect of A2AR signaling on mitochondrial health and function was determined in primary murine chondrocytes, a human chondrocytic cell line (T/C-28a2), primary human chondrocytes, and a murine model of OA by transmission electron microscopy analysis, mitochondrial stress testing, confocal live imaging for mitochondrial inner membrane polarity, and immunohistochemistry. In primary murine chondrocytes from A2AR-/- null mice, which develop spontaneous OA by 16 weeks, there is mitochondrial swelling, dysfunction, and reduced mitochondrial content with increased reactive oxygen species (ROS) burden and diminished mitophagy, as compared to chondrocytes from WT animals. IL-1-stimulated T/C-28a2 cells treated with an A2AR agonist had reduced ROS burden with increased mitochondrial dynamic stability and function, findings which were recapitulated in primary human chondrocytes. In an obesity-induced OA mouse model, there was a marked increase in mitochondrial oxidized material which was markedly improved after intraarticular injections of liposomal A2AR agonist. These results are consistent with the hypothesis that A2AR ligation is mitoprotective in OA.
Collapse
Affiliation(s)
- Cristina M Castro
- Immunology and Inflammation Training Program at Skirball Institute of Graduate Biomolecular Sciences, NYU Grossman School of Medicine, New York, NY, USA.,Division of Translational Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Carmen Corciulo
- Division of Translational Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Fengxia Liang
- NYU Langone Health DART Microscopy Laboratory, New York, NY, USA
| | | | - Bruce N Cronstein
- Division of Translational Medicine, NYU Grossman School of Medicine, New York, NY, USA.,Department of Medicine, Division of Rheumatology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
21
|
Shimizu T, Ding W, Kameta N. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chem Rev 2020; 120:2347-2407. [PMID: 32013405 DOI: 10.1021/acs.chemrev.9b00509] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-assembled organic nanotubes made of single or multiple molecular components can be classified into soft-matter nanotubes (SMNTs) by contrast with hard-matter nanotubes, such as carbon and other inorganic nanotubes. To date, diverse self-assembly processes and elaborate template procedures using rationally designed organic molecules have produced suitable tubular architectures with definite dimensions, structural complexity, and hierarchy for expected functions and applications. Herein, we comprehensively discuss every functions and possible applications of a wide range of SMNTs as bulk materials or single components. This Review highlights valuable contributions mainly in the past decade. Fifteen different families of SMNTs are discussed from the viewpoints of chemical, physical, biological, and medical applications, as well as action fields (e.g., interior, wall, exterior, whole structure, and ensemble of nanotubes). Chemical applications of the SMNTs are associated with encapsulating materials and sensors. SMNTs also behave, while sometimes undergoing morphological transformation, as a catalyst, template, liquid crystal, hydro-/organogel, superhydrophobic surface, and micron size engine. Physical functions pertain to ferro-/piezoelectricity and energy migration/storage, leading to the applications to electrodes or supercapacitors, and mechanical reinforcement. Biological functions involve artificial chaperone, transmembrane transport, nanochannels, and channel reactors. Finally, medical functions range over drug delivery, nonviral gene transfer vector, and virus trap.
Collapse
Affiliation(s)
- Toshimi Shimizu
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
22
|
Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM. Fatty Acid Oxidation and Mitochondrial Morphology Changes as Key Modulators of the Affinity for ADP in Rat Heart Mitochondria. Cells 2020; 9:E340. [PMID: 32024170 PMCID: PMC7072426 DOI: 10.3390/cells9020340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 01/16/2023] Open
Abstract
Fatty acids are the main respiratory substrates important for cardiac function, and their oxidation is altered during various chronic disorders. We investigated the mechanism of fatty acid-oxidation-induced changes and their relations with mitochondrial morphology and ADP/ATP carrier conformation on the kinetics of the regulation of mitochondrial respiration in rat skinned cardiac fibers. Saturated and unsaturated, activated and not activated, long and medium chain, fatty acids similarly decreased the apparent KmADP. Addition of 5% dextran T-70 to mimic the oncotic pressure of the cellular cytoplasm markedly increased the low apparent KmADP value of mitochondria in cardiac fibers respiring on palmitoyl-l-carnitine or octanoyl-l-carnitine, but did not affect the high apparent KmADP of mitochondria respiring on pyruvate and malate. Electron microscopy revealed that palmitoyl-l-carnitine oxidation-induced changes in the mitochondrial ultrastructure (preventable by dextran) are similar to those induced by carboxyatractyloside. Our data suggest that a fatty acid oxidation-induced conformational change of the adenosine diphosphate (ADP)/adenosine triphosphate (ATP) carrier (M-state to C-state, condensed to orthodox mitochondria) may affect the oxidative phosphorylation affinity for ADP.
Collapse
Affiliation(s)
- Adolfas Toleikis
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (A.T.); (S.T.); (J.L.)
| | - Sonata Trumbeckaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (A.T.); (S.T.); (J.L.)
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50166 Kaunas, Lithuania
| | - Julius Liobikas
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (A.T.); (S.T.); (J.L.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Neringa Pauziene
- Institute of Anatomy, Lithuanian University of Health Sciences, Mickeviciaus 9, LT-44307 Kaunas, Lithuania;
| | - Lolita Kursvietiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
23
|
Hoffman DP, Shtengel G, Xu CS, Campbell KR, Freeman M, Wang L, Milkie DE, Pasolli HA, Iyer N, Bogovic JA, Stabley DR, Shirinifard A, Pang S, Peale D, Schaefer K, Pomp W, Chang CL, Lippincott-Schwartz J, Kirchhausen T, Solecki DJ, Betzig E, Hess HF. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 2020; 367:eaaz5357. [PMID: 31949053 PMCID: PMC7339343 DOI: 10.1126/science.aaz5357] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
Within cells, the spatial compartmentalization of thousands of distinct proteins serves a multitude of diverse biochemical needs. Correlative super-resolution (SR) fluorescence and electron microscopy (EM) can elucidate protein spatial relationships to global ultrastructure, but has suffered from tradeoffs of structure preservation, fluorescence retention, resolution, and field of view. We developed a platform for three-dimensional cryogenic SR and focused ion beam-milled block-face EM across entire vitreously frozen cells. The approach preserves ultrastructure while enabling independent SR and EM workflow optimization. We discovered unexpected protein-ultrastructure relationships in mammalian cells including intranuclear vesicles containing endoplasmic reticulum-associated proteins, web-like adhesions between cultured neurons, and chromatin domains subclassified on the basis of transcriptional activity. Our findings illustrate the value of a comprehensive multimodal view of ultrastructural variability across whole cells.
Collapse
Affiliation(s)
- David P Hoffman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Gleb Shtengel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kirby R Campbell
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Melanie Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Lei Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel E Milkie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - H Amalia Pasolli
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nirmala Iyer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - John A Bogovic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Daniel R Stabley
- Neuroimaging Laboratory, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Bioimage Analysis Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David Peale
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kathy Schaefer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Wim Pomp
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Chi-Lun Chang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Tom Kirchhausen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
24
|
Choi D, Sonkaria S, Fox SJ, Poudel S, Kim SY, Kang S, Kim S, Verma C, Ahn SH, Lee CS, Khare V. Quantum scale biomimicry of low dimensional growth: An unusual complex amorphous precursor route to TiO 2 band confinement by shape adaptive biopolymer-like flexibility for energy applications. Sci Rep 2019; 9:18721. [PMID: 31822722 PMCID: PMC6904763 DOI: 10.1038/s41598-019-55103-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/25/2019] [Indexed: 11/24/2022] Open
Abstract
Crystallization via an amorphous pathway is often preferred by biologically driven processes enabling living species to better regulate activation energies to crystal formation that are intrinsically linked to shape and size of dynamically evolving morphologies. Templated ordering of 3-dimensional space around amorphous embedded non-equilibrium phases at heterogeneous polymer─metal interfaces signify important routes for the genesis of low-dimensional materials under stress-induced polymer confinement. We report the surface induced catalytic loss of P=O ligands to bond activated aromatization of C−C C=C and Ti=N resulting in confinement of porphyrin-TiO2 within polymer nanocages via particle attachment. Restricted growth nucleation of TiO2 to the quantum scale (≤2 nm) is synthetically assisted by nitrogen, phosphine and hydrocarbon polymer chemistry via self-assembly. Here, the amorphous arrest phase of TiO2 is reminiscent of biogenic amorphous crystal growth patterns and polymer coordination has both a chemical and biomimetic significance arising from quantum scale confinement which is atomically challenging. The relative ease in adaptability of non-equilibrium phases renders host structures more shape compliant to congruent guests increasing the possibility of geometrical confinement. Here, we provide evidence for synthetic biomimicry akin to bio-polymerization mechanisms to steer disorder-to-order transitions via solvent plasticization-like behaviour. This challenges the rationale of quantum driven confinement processes by conventional processes. Further, we show the change in optoelectronic properties under quantum confinement is intrinsically related to size that affects their optical absorption band energy range in DSSC.
Collapse
Affiliation(s)
- Dahyun Choi
- Department of Materials Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sanjiv Sonkaria
- Institute of Advanced Machinery and Design, Seoul National University, Daehak-dong, Gwanak-gu, Seoul, 151-742, Republic of Korea
| | - Stephen J Fox
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 16 Science Drive, Singapore, 117558, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Shivraj Poudel
- Department of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sung-Yong Kim
- Department of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Suhee Kang
- Department of Materials Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Seheon Kim
- Department of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chandra Verma
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 16 Science Drive, Singapore, 117558, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Sung Hoon Ahn
- Institute of Advanced Machinery and Design, Seoul National University, Daehak-dong, Gwanak-gu, Seoul, 151-742, Republic of Korea. .,Department of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Caroline Sunyong Lee
- Department of Materials Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Varsha Khare
- Department of Materials Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
25
|
Abstract
Significance: In addition to their classical role in cellular ATP production, mitochondria are of key relevance in various (patho)physiological mechanisms including second messenger signaling, neuro-transduction, immune responses and death induction. Recent Advances: Within cells, mitochondria are motile and display temporal changes in internal and external structure ("mitochondrial dynamics"). During the last decade, substantial empirical and in silico evidence was presented demonstrating that mitochondrial dynamics impacts on mitochondrial function and vice versa. Critical Issues: However, a comprehensive and quantitative understanding of the bidirectional links between mitochondrial external shape, internal structure and function ("morphofunction") is still lacking. The latter particularly hampers our understanding of the functional properties and behavior of individual mitochondrial within single living cells. Future Directions: In this review we discuss the concept of mitochondrial morphofunction in mammalian cells, primarily using experimental evidence obtained within the last decade. The topic is introduced by briefly presenting the central role of mitochondria in cell physiology and the importance of the mitochondrial electron transport chain (ETC) therein. Next, we summarize in detail how mitochondrial (ultra)structure is controlled and discuss empirical evidence regarding the equivalence of mitochondrial (ultra)structure and function. Finally, we provide a brief summary of how mitochondrial morphofunction can be quantified at the level of single cells and mitochondria, how mitochondrial ultrastructure/volume impacts on mitochondrial bioreactions and intramitochondrial protein diffusion, and how mitochondrial morphofunction can be targeted by small molecules.
Collapse
Affiliation(s)
- Elianne P. Bulthuis
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Merel J.W. Adjobo-Hermans
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter H.G.M. Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Werner J.H. Koopman
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Address correspondence to: Dr. Werner J.H. Koopman, Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, P.O. Box 9101, Nijmegen NL-6500 HB, The Netherlands
| |
Collapse
|
26
|
Boyd KJ, Alder NN, May ER. Molecular Dynamics Analysis of Cardiolipin and Monolysocardiolipin on Bilayer Properties. Biophys J 2019; 114:2116-2127. [PMID: 29742405 DOI: 10.1016/j.bpj.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/04/2018] [Accepted: 04/02/2018] [Indexed: 11/29/2022] Open
Abstract
The mitochondrial lipid cardiolipin (CL) contributes to the spatial protein organization and morphological character of the inner mitochondrial membrane. Monolysocardiolipin (MLCL), an intermediate species in the CL remodeling pathway, is enriched in the multisystem disease Barth syndrome. Despite the medical relevance of MLCL, a detailed molecular description that elucidates the structural and dynamic differences between CL and MLCL has not been conducted. To this end, we performed comparative atomistic molecular dynamics studies on bilayers consisting of pure CL or MLCL to elucidate similarities and differences in their molecular and bulk bilayer properties. We describe differential headgroup dynamics and hydrogen bonding patterns between the CL variants and show an increased cohesiveness of MLCL's solvent interfacial region, which may have implications for protein interactions. Finally, using the coarse-grained Martini model, we show that substitution of MLCL for CL in bilayers mimicking mitochondrial composition induces drastic differences in bilayer mechanical properties and curvature-dependent partitioning behavior. Together, the results of this work reveal differences between CL and MLCL at the molecular and mesoscopic levels that may underpin the pathomechanisms of defects in cardiolipin remodeling.
Collapse
Affiliation(s)
- Kevin J Boyd
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
27
|
Minich JJ, Humphrey G, Benitez RAS, Sanders J, Swafford A, Allen EE, Knight R. High-Throughput Miniaturized 16S rRNA Amplicon Library Preparation Reduces Costs while Preserving Microbiome Integrity. mSystems 2018; 3:e00166-18. [PMID: 30417111 PMCID: PMC6222042 DOI: 10.1128/msystems.00166-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022] Open
Abstract
Next-generation sequencing technologies have enabled many advances across biology, with microbial ecology benefiting primarily through expanded sample sizes. Although the cost of running sequencing instruments has decreased substantially over time, the price of library preparation methods has largely remained unchanged. In this study, we developed a low-cost miniaturized (5-µl volume) high-throughput (384-sample) amplicon library preparation method with the Echo 550 acoustic liquid handler. Our method reduces costs of library preparation to $1.42 per sample, a 58% reduction compared to existing automated methods and a 21-fold reduction from commercial kits, without compromising sequencing success or distorting the microbial community composition analysis. We further validated the optimized method by sampling five body sites from 46 Pacific chub mackerel fish caught across 16 sampling events over seven months from the Scripps Institution of Oceanography pier in La Jolla, CA. Fish microbiome samples were processed with the miniaturized 5-µl reaction volume with 0.2 µl of genomic DNA (gDNA) and the standard 25-µl reaction volume with 1 µl of gDNA. Between the two methods, alpha diversity was highly correlated (R 2 > 0.95), while distances of technical replicates were much lower than within-body-site variation (P < 0.0001), further validating the method. The cost savings of implementing the miniaturized library preparation (going from triplicate 25-µl reactions to triplicate 5-µl reactions) are large enough to cover a MiSeq sequencing run for 768 samples while preserving accurate microbiome measurements. IMPORTANCE Reduced costs of sequencing have tremendously impacted the field of microbial ecology, allowing scientists to design more studies with larger sample sizes that often exceed 10,000 samples. Library preparation costs have not kept pace with sequencing prices, although automated liquid handling robots provide a unique opportunity to bridge this gap while also decreasing human error. Here, we take advantage of an acoustic liquid handling robot to develop a high-throughput miniaturized library preparation method of a highly cited and broadly used 16S rRNA gene amplicon reaction. We evaluate the potential negative effects of reducing the PCR volume along with varying the amount of gDNA going into the reaction. Our optimized method reduces sample-processing costs while continuing to generate a high-quality microbiome readout that is indistinguishable from the original method.
Collapse
Affiliation(s)
- Jeremiah J. Minich
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Greg Humphrey
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Rodolfo A. S. Benitez
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Jon Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Austin Swafford
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Eric E. Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
28
|
Pérez H, Finocchietto PV, Alippe Y, Rebagliati I, Elguero ME, Villalba N, Poderoso JJ, Carreras MC. p66 Shc Inactivation Modifies RNS Production, Regulates Sirt3 Activity, and Improves Mitochondrial Homeostasis, Delaying the Aging Process in Mouse Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8561892. [PMID: 29721150 PMCID: PMC5867558 DOI: 10.1155/2018/8561892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/17/2018] [Indexed: 01/17/2023]
Abstract
Programmed and damage aging theories have traditionally been conceived as stand-alone schools of thought. However, the p66Shc adaptor protein has demonstrated that aging-regulating genes and reactive oxygen species (ROS) are closely interconnected, since its absence modifies metabolic homeostasis by providing oxidative stress resistance and promoting longevity. p66Shc(-/-) mice are a unique opportunity to further comprehend the bidirectional relationship between redox homeostasis and the imbalance of mitochondrial biogenesis and dynamics during aging. This study shows that brain mitochondria of p66Shc(-/-) aged mice exhibit a reduced alteration of redox balance with a decrease in both ROS generation and its detoxification activity. We also demonstrate a strong link between reactive nitrogen species (RNS) and mitochondrial function, morphology, and biogenesis, where low levels of ONOO- formation present in aged p66Shc(-/-) mouse brain prevent protein nitration, delaying the loss of biological functions characteristic of the aging process. Sirt3 modulates age-associated mitochondrial biology and function via lysine deacetylation of target proteins, and we show that its regulation depends on its nitration status and is benefited by the improved NAD+/NADH ratio in aged p66Shc(-/-) brain mitochondria. Low levels of protein nitration and acetylation could cause the metabolic homeostasis maintenance observed during aging in this group, thus increasing its lifespan.
Collapse
Affiliation(s)
- Hernán Pérez
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | - Paola Vanesa Finocchietto
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
- Departamento de Medicina, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yael Alippe
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | - Inés Rebagliati
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | | | - Nerina Villalba
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | - Juan José Poderoso
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | - María Cecilia Carreras
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
29
|
Exercise and Mitochondrial Dynamics: Keeping in Shape with ROS and AMPK. Antioxidants (Basel) 2018; 7:antiox7010007. [PMID: 29316654 PMCID: PMC5789317 DOI: 10.3390/antiox7010007] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 11/25/2022] Open
Abstract
Exercise is a robust stimulus for mitochondrial adaptations in skeletal muscle which consequently plays a central role in enhancing metabolic health. Despite this, the precise molecular events that underpin these beneficial effects remain elusive. In this review, we discuss molecular signals generated during exercise leading to altered mitochondrial morphology and dynamics. In particular, we focus on the interdependence between reactive oxygen species (ROS) and redox homeostasis, the sensing of cellular bioenergetic status via 5’ adenosine monophosphate (AMP)-activated protein kinase (AMPK), and the regulation of mitochondrial fission and fusion. Precisely how exercise regulates the network of these responses and their effects on mitochondrial dynamics is not fully understood at present. We highlight the limitations that exist with the techniques currently available, and discuss novel molecular tools to potentially advance the fields of redox biology and mitochondrial bioenergetics. Ultimately, a greater understanding of these processes may lead to novel mitochondria-targeted therapeutic strategies to augment or mimic exercise in order to attenuate or reverse pathophysiology.
Collapse
|
30
|
Trantidou T, Friddin M, Elani Y, Brooks NJ, Law RV, Seddon JM, Ces O. Engineering Compartmentalized Biomimetic Micro- and Nanocontainers. ACS NANO 2017; 11:6549-6565. [PMID: 28658575 DOI: 10.1021/acsnano.7b03245] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Compartmentalization of biological content and function is a key architectural feature in biology, where membrane bound micro- and nanocompartments are used for performing a host of highly specialized and tightly regulated biological functions. The benefit of compartmentalization as a design principle is behind its ubiquity in cells and has led to it being a central engineering theme in construction of artificial cell-like systems. In this review, we discuss the attractions of designing compartmentalized membrane-bound constructs and review a range of biomimetic membrane architectures that span length scales, focusing on lipid-based structures but also addressing polymer-based and hybrid approaches. These include nested vesicles, multicompartment vesicles, large-scale vesicle networks, as well as droplet interface bilayers, and double-emulsion multiphase systems (multisomes). We outline key examples of how such structures have been functionalized with biological and synthetic machinery, for example, to manufacture and deliver drugs and metabolic compounds, to replicate intracellular signaling cascades, and to demonstrate collective behaviors as minimal tissue constructs. Particular emphasis is placed on the applications of these architectures and the state-of-the-art microfluidic engineering required to fabricate, functionalize, and precisely assemble them. Finally, we outline the future directions of these technologies and highlight how they could be applied to engineer the next generation of cell models, therapeutic agents, and microreactors, together with the diverse applications in the emerging field of bottom-up synthetic biology.
Collapse
Affiliation(s)
- Tatiana Trantidou
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Mark Friddin
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Yuval Elani
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Robert V Law
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - John M Seddon
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Oscar Ces
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
31
|
Pompano RR, Chiang AH, Kastrup CJ, Ismagilov RF. Conceptual and Experimental Tools to Understand Spatial Effects and Transport Phenomena in Nonlinear Biochemical Networks Illustrated with Patchy Switching. Annu Rev Biochem 2017; 86:333-356. [PMID: 28654324 PMCID: PMC10852032 DOI: 10.1146/annurev-biochem-060815-014207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many biochemical systems are spatially heterogeneous and exhibit nonlinear behaviors, such as state switching in response to small changes in the local concentration of diffusible molecules. Systems as varied as blood clotting, intracellular calcium signaling, and tissue inflammation are all heavily influenced by the balance of rates of reaction and mass transport phenomena including flow and diffusion. Transport of signaling molecules is also affected by geometry and chemoselective confinement via matrix binding. In this review, we use a phenomenon referred to as patchy switching to illustrate the interplay of nonlinearities, transport phenomena, and spatial effects. Patchy switching describes a change in the state of a network when the local concentration of a diffusible molecule surpasses a critical threshold. Using patchy switching as an example, we describe conceptual tools from nonlinear dynamics and chemical engineering that make testable predictions and provide a unifying description of the myriad possible experimental observations. We describe experimental microfluidic and biochemical tools emerging to test conceptual predictions by controlling transport phenomena and spatial distribution of diffusible signals, and we highlight the unmet need for in vivo tools.
Collapse
Affiliation(s)
- Rebecca R Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904;
| | - Andrew H Chiang
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637;
| | - Christian J Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada;
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
32
|
Epstein IR, Xu B. Reaction-diffusion processes at the nano- and microscales. NATURE NANOTECHNOLOGY 2016; 11:312-319. [PMID: 27045215 DOI: 10.1038/nnano.2016.41] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
The bottom-up fabrication of nano- and microscale structures from primary building blocks (molecules, colloidal particles) has made remarkable progress over the past two decades, but most research has focused on structural aspects, leaving our understanding of the dynamic and spatiotemporal aspects at a relatively primitive stage. In this Review, we draw inspiration from living cells to argue that it is now time to move beyond the generation of structures and explore dynamic processes at the nanoscale. We first introduce nanoscale self-assembly, self-organization and reaction-diffusion processes as essential features of cells. Then, we highlight recent progress towards designing and controlling these fundamental features of life in abiological systems. Specifically, we discuss examples of reaction-diffusion processes that lead to such outcomes as self-assembly, self-organization, unique nanostructures, chemical waves and dynamic order to illustrate their ubiquity within a unifying context of dynamic oscillations and energy dissipation. Finally, we suggest future directions for research on reaction-diffusion processes at the nano- and microscales that we find hold particular promise for a new understanding of science at the nanoscale and the development of new kinds of nanotechnologies for chemical transport, chemical communication and integration with living systems.
Collapse
Affiliation(s)
- Irving R Epstein
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| |
Collapse
|
33
|
Tutak W, Jyotsnendu G, Bajcsy P, Simon CG. Nanofiber scaffolds influence organelle structure and function in bone marrow stromal cells. J Biomed Mater Res B Appl Biomater 2016; 105:989-1001. [PMID: 26888543 DOI: 10.1002/jbm.b.33624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/08/2015] [Accepted: 01/10/2016] [Indexed: 12/31/2022]
Abstract
Recent work demonstrates that osteoprogenitor cell culture on nanofiber scaffolds can promote differentiation. This response may be driven by changes in cell morphology caused by the three-dimensional (3D) structure of nanofibers. We hypothesized that nanofiber effects on cell behavior may be mediated by changes in organelle structure and function. To test this hypothesis, human bone marrow stromal cells (hBMSCs) were cultured on poly(ε-caprolactone) (PCL) nanofibers scaffolds and on PCL flat spuncoat films. After 1 day-culture, hBMSCs were stained for actin, nucleus, mitochondria, and peroxisomes, and then imaged using 3D confocal microscopy. Imaging revealed that the hBMSC cell body (actin) and peroxisomal volume were reduced during culture on nanofibers. In addition, the nucleus and peroxisomes occupied a larger fraction of cell volume during culture on nanofibers than on films, suggesting enhancement of the nuclear and peroxisomal functional capacity. Organelles adopted morphologies with greater 3D-character on nanofibers, where the Z-Depth (a measure of cell thickness) was increased. Comparisons of organelle positions indicated that the nucleus, mitochondria, and peroxisomes were closer to the cell center (actin) for nanofibers, suggesting that nanofiber culture induced active organelle positioning. The smaller cell volume and more centralized organelle positioning would reduce the energy cost of inter-organelle vesicular transport during culture on nanofibers. Finally, hBMSC bioassay measurements (DNA, peroxidase, bioreductive potential, lactate, and adenosine triphosphate (ATP)) indicated that peroxidase activity may be enhanced during nanofiber culture. These results demonstrate that culture of hBMSCs on nanofibers caused changes in organelle structure and positioning, which may affect organelle functional capacity and transport. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. J Biomed Mater Res Part B: Appl Biomater, 2016. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 989-1001, 2017.
Collapse
Affiliation(s)
- Wojtek Tutak
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland.,Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Yeddumailaram, AP, India
| | - Giri Jyotsnendu
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland.,Software and Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Peter Bajcsy
- American Dental Association Foundation, Gaithersburg, Maryland
| | - Carl G Simon
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| |
Collapse
|
34
|
Cogliati S, Enriquez JA, Scorrano L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem Sci 2016; 41:261-273. [PMID: 26857402 DOI: 10.1016/j.tibs.2016.01.001] [Citation(s) in RCA: 547] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 01/30/2023]
Abstract
Mitochondrial cristae are dynamic bioenergetic compartments whose shape changes under different physiological conditions. Recent discoveries have unveiled the relation between cristae shape and oxidative phosphorylation (OXPHOS) function, suggesting that membrane morphology modulates the organization and function of the OXPHOS system, with a direct impact on cellular metabolism. As a corollary, cristae-shaping proteins have emerged as potential modulators of mitochondrial bioenergetics, a concept confirmed by genetic experiments in mouse models of respiratory chain deficiency. Here, we review our knowledge of mitochondrial ultrastructural organization and how it impacts mitochondrial metabolism.
Collapse
Affiliation(s)
- Sara Cogliati
- Centro Nacional de Investigaciònes Cardiovasculares Carlos III, Madrid, Spain
| | - Jose A Enriquez
- Centro Nacional de Investigaciònes Cardiovasculares Carlos III, Madrid, Spain; Departamento de Bioquímica, Universidad Zaragoza, Zaragoza, Spain
| | - Luca Scorrano
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, Padova, Italy; Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
35
|
Abstract
Within living cells, mitochondria are considered relevant sources of reactive oxygen species (ROS) and are exposed to reactive nitrogen species (RNS). During the last decade, accumulating evidence suggests that mitochondrial (dys)function, ROS/RNS levels, and aberrations in mitochondrial morphology are interconnected, albeit in a cell- and context-dependent manner. Here it is hypothesized that ROS and RNS are involved in the short-term regulation of mitochondrial morphology and function via non-transcriptional pathways. We review the evidence for such a mechanism and propose that it allows homeostatic control of mitochondrial function and morphology by redox signaling.
Collapse
Affiliation(s)
- Peter H G M Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands
| | - Rodrigue Rossignol
- University of Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), 330000 Bordeaux, France
| | - Cindy E J Dieteren
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | - Werner J H Koopman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands.
| |
Collapse
|
36
|
Shaali M, Lara-Avila S, Dommersnes P, Ainla A, Kubatkin S, Jesorka A. Nanopatterning of mobile lipid monolayers on electron-beam-sculpted Teflon AF surfaces. ACS NANO 2015; 9:1271-1279. [PMID: 25541906 DOI: 10.1021/nn5050867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Direct electron-beam lithography is used to fabricate nanostructured Teflon AF surfaces, which are utilized to pattern surface-supported monolayer phospholipid films with 50 nm lateral feature size. In comparison with unexposed Teflon AF coatings, e-beam-irradiated areas show reduced surface tension and surface potential. For phospholipid monolayer spreading experiments, these areas can be designed to function as barriers that enclose unexposed areas of nanometer dimensions and confine the lipid film within. We show that the effectiveness of the barrier is defined by pattern geometry and radiation dose. This surface preparation technique represents an efficient, yet simple, nanopatterning strategy supporting studies of lipid monolayer behavior in ultraconfined spaces. The generated structures are useful for imaging studies of biomimetic membranes and other specialized surface applications requiring spatially controlled formation of self-assembled, molecularly thin films on optically transparent patterned polymer surfaces with very low autofluorescence.
Collapse
Affiliation(s)
- Mehrnaz Shaali
- Department of Chemical and Biological Engineering and ‡Quantum Device Physics Laboratory, Chalmers University of Technology , 41296 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
Emergent chemical behavior in variable-volume protocells. Life (Basel) 2015; 5:181-211. [PMID: 25590570 PMCID: PMC4390847 DOI: 10.3390/life5010181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/04/2015] [Indexed: 02/03/2023] Open
Abstract
Artificial protocellular compartments and lipid vesicles have been used as model systems to understand the origins and requirements for early cells, as well as to design encapsulated reactors for biotechnology. One prominent feature of vesicles is the semi-permeable nature of their membranes, able to support passive diffusion of individual solute species into/out of the compartment, in addition to an osmotic water flow in the opposite direction to the net solute concentration gradient. Crucially, this water flow affects the internal aqueous volume of the vesicle in response to osmotic imbalances, in particular those created by ongoing reactions within the system. In this theoretical study, we pay attention to this often overlooked aspect and show, via the use of a simple semi-spatial vesicle reactor model, that a changing solvent volume introduces interesting non-linearities into an encapsulated chemistry. Focusing on bistability, we demonstrate how a changing volume compartment can degenerate existing bistable reactions, but also promote emergent bistability from very simple reactions, which are not bistable in bulk conditions. One particularly remarkable effect is that two or more chemically-independent reactions, with mutually exclusive reaction kinetics, are able to couple their dynamics through the variation of solvent volume inside the vesicle. Our results suggest that other chemical innovations should be expected when more realistic and active properties of protocellular compartments are taken into account.
Collapse
|
38
|
Abstract
Peroxisomes carry out various oxidative reactions that are tightly regulated to adapt to the changing needs of the cell and varying external environments. Accordingly, they are remarkably fluid and can change dramatically in abundance, size, shape and content in response to numerous cues. These dynamics are controlled by multiple aspects of peroxisome biogenesis that are coordinately regulated with each other and with other cellular processes. Ongoing studies are deciphering the diverse molecular mechanisms that underlie biogenesis and how they cooperate to dynamically control peroxisome utility. These important challenges should lead to an understanding of peroxisome dynamics that can be capitalized upon for bioengineering and the development of therapies to improve human health.
Collapse
Affiliation(s)
- Jennifer J Smith
- 1] Seattle Biomedical Research Institute, 307 Westlake Avenue North, 98109-5240, USA. [2] Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5219, USA
| | | |
Collapse
|
39
|
Olofsson J, Xu S, Jeffries GDM, Jesorka A, Bridle H, Isaksson I, Weber SG, Orwar O. Probing enzymatic activity inside single cells. Anal Chem 2013; 85:10126-33. [PMID: 24003961 PMCID: PMC3882690 DOI: 10.1021/ac4013122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a novel approach for determining the enzymatic activity within a single suspended cell. Using a steady-state microfluidic delivery device and timed exposure to the pore-forming agent digitonin, we controlled the plasma membrane permeation of individual NG108-15 cells. Mildly permeabilized cells (~100 pores) were exposed to a series of concentrations of fluorescein diphosphate (FDP), a fluorogenic alkaline phosphatase substrate, with and without levamisole, an alkaline phosphatase inhibitor. We generated quantitative estimates for intracellular enzyme activity and were able to construct both dose-response and dose-inhibition curves at the single-cell level, resulting in an apparent Michaelis contant Km of 15.3 μM ± 1.02 (mean ± standard error of the mean (SEM), n = 16) and an inhibition constant Ki of 0.59 mM ± 0.07 (mean ± SEM, n = 14). Enzymatic activity could be monitored just 40 s after permeabilization, and five point dose-inhibition curves could be obtained within 150 s. This rapid approach offers a new methodology for characterizing enzyme activity within single cells.
Collapse
Affiliation(s)
- Jessica Olofsson
- Department of Chemical and Biological Engineering, Chalmers University of Technology , Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) sustains organelle function and plays a central role in cellular energy metabolism. The OXPHOS system consists of 5 multisubunit complexes (CI-CV) that are built up of 92 different structural proteins encoded by the nuclear (nDNA) and mitochondrial DNA (mtDNA). Biogenesis of a functional OXPHOS system further requires the assistance of nDNA-encoded OXPHOS assembly factors, of which 35 are currently identified. In humans, mutations in both structural and assembly genes and in genes involved in mtDNA maintenance, replication, transcription, and translation induce 'primary' OXPHOS disorders that are associated with neurodegenerative diseases including Leigh syndrome (LS), which is probably the most classical OXPHOS disease during early childhood. Here, we present the current insights regarding function, biogenesis, regulation, and supramolecular architecture of the OXPHOS system, as well as its genetic origin. Next, we provide an inventory of OXPHOS structural and assembly genes which, when mutated, induce human neurodegenerative disorders. Finally, we discuss the consequences of mutations in OXPHOS structural and assembly genes at the single cell level and how this information has advanced our understanding of the role of OXPHOS dysfunction in neurodegeneration.
Collapse
|
41
|
Matsuura T, Hosoda K, Kazuta Y, Ichihashi N, Suzuki H, Yomo T. Effects of compartment size on the kinetics of intracompartmental multimeric protein synthesis. ACS Synth Biol 2012; 1:431-7. [PMID: 23651340 DOI: 10.1021/sb300041z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cell contents are encapsulated within a compartment, the volume of which is a fundamental physical parameter that may affect intracompartmental reactions. However, there have been few studies to elucidate whether and how volume changes alone can affect the reaction kinetics. It is difficult to address these questions in vivo, because forced cell volume changes, e.g., by osmotic inflation/deflation, globally alters the internal state. Here, we prepared artificial cell-like compartments with different volumes but with identical constituents, which is not possible with living cells, and synthesized two tetrameric enzymes, β-glucuronidase (GUS) and β-galactosidase (GAL), by cell-free protein synthesis. Tetrameric GUS but not GAL was synthesized more quickly in smaller compartments. The difference between the two was dependent on the rate-limiting step and the reaction order. The observed acceleration mechanism would be applicable to living cells as multimeric protein synthesis in a microcompartment is ubiquitous in vivo.
Collapse
Affiliation(s)
- Tomoaki Matsuura
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yamadaoka 1-5, Suita, Osaka, Japan
| | | | - Yasuaki Kazuta
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yamadaoka 1-5, Suita, Osaka, Japan
| | - Norikazu Ichihashi
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yamadaoka 1-5, Suita, Osaka, Japan
| | - Hiroaki Suzuki
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yamadaoka 1-5, Suita, Osaka, Japan
| | - Tetsuya Yomo
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yamadaoka 1-5, Suita, Osaka, Japan
| |
Collapse
|
42
|
Okano T, Matsuura T, Kazuta Y, Suzuki H, Yomo T. Cell-free protein synthesis from a single copy of DNA in a glass microchamber. LAB ON A CHIP 2012; 12:2704-2711. [PMID: 22622196 DOI: 10.1039/c2lc40098g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To achieve a cell-mimetic reaction environment, we fabricated and tested quartz microchambers for conducting protein synthesis using an in vitro transcription and translation system, the PURE system. By introducing a glass microchamber and blocking the surface of the chamber with amino acids, the concentration of the synthesized marker protein (green fluorescent protein, GFP) was significantly improved compared to that in the poly(dimethylsiloxane) (PDMS) microchamber. The concentration was below the detection limit in the PDMS microchambers, whereas the glass microchambers yielded 700 nM GFP, representing 41% of the bulk reaction. There was no detectable difference when the GFP synthesis was performed in microchambers with sizes ranging from 40 fL to 7 pL, indicating that the present microchamber system can serve as a cell-sized test tube with a variable reaction volume. Finally, we demonstrated that two different proteins, GFP and β-galactosidase, can be expressed from single genes in our experimental setup. Quantized and distinctive signals from proteins synthesized from 0, 1, or 2 copies of genes were obtained. The microchamber presented here can be utilized not only to study the effects of compartment volume on protein synthesis but also for the comprehensive analysis of complex biochemical reactions in cell-mimetic environments.
Collapse
Affiliation(s)
- Taiji Okano
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
43
|
Collier CP, Simpson ML. Micro/nanofabricated environments for synthetic biology. Curr Opin Biotechnol 2011; 22:516-26. [PMID: 21636262 DOI: 10.1016/j.copbio.2011.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/06/2011] [Indexed: 11/17/2022]
Abstract
A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial microfabricated and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation on biological behavior, particularly when integrated with microfluidics, through precise control in both space and time of diffusible signals and binding interactions. Examples of nanostructured interfaces for synthetic biology include the development of cell-like compartments for encapsulating biochemical reactions, nanostructured environments for fundamental studies of diffusion, molecular transport and biochemical reaction kinetics, and regulation of biomolecular interactions as functions of microfabricated and nanofabricated topological constraints.
Collapse
Affiliation(s)
- C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | |
Collapse
|
44
|
Jesorka A, Stepanyants N, Zhang H, Ortmen B, Hakonen B, Orwar O. Generation of phospholipid vesicle-nanotube networks and transport of molecules therein. Nat Protoc 2011; 6:791-805. [PMID: 21637199 DOI: 10.1038/nprot.2011.321] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe micromanipulation and microinjection procedures for the fabrication of soft-matter networks consisting of lipid bilayer nanotubes and surface-immobilized vesicles. These biomimetic membrane systems feature unique structural flexibility and expandability and, unlike solid-state microfluidic and nanofluidic devices prepared by top-down fabrication, they allow network designs with dynamic control over individual containers and interconnecting conduits. The fabrication is founded on self-assembly of phospholipid molecules, followed by micromanipulation operations, such as membrane electroporation and microinjection, to effect shape transformations of the membrane and create a series of interconnected compartments. Size and geometry of the network can be chosen according to its desired function. Membrane composition is controlled mainly during the self-assembly step, whereas the interior contents of individual containers is defined through a sequence of microneedle injections. Networks cannot be fabricated with other currently available methods of giant unilamellar vesicle preparation (large unilamellar vesicle fusion or electroformation). Described in detail are also three transport modes, which are suitable for moving water-soluble or membrane-bound small molecules, polymers, DNA, proteins and nanoparticles within the networks. The fabrication protocol requires ∼90 min, provided all necessary preparations are made in advance. The transport studies require an additional 60-120 min, depending on the transport regime.
Collapse
Affiliation(s)
- Aldo Jesorka
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Intracellular chemical reactions generally constitute reaction-diffusion systems located inside nanostructured compartments like the cytosol, nucleus, endoplasmic reticulum, Golgi, and mitochondrion. Understanding the properties of such systems requires quantitative information about solute diffusion. Here we present a novel approach that allows determination of the solvent-dependent solute diffusion constant (D(solvent)) inside cell compartments with an experimentally quantifiable nanostructure. In essence, our method consists of the matching of synthetic fluorescence recovery after photobleaching (FRAP) curves, generated by a mathematical model with a realistic nanostructure, and experimental FRAP data. As a proof of principle, we assessed D(solvent) of a monomeric fluorescent protein (AcGFP1) and its tandem fusion (AcGFP1(2)) in the mitochondrial matrix of HEK293 cells. Our results demonstrate that diffusion of both proteins is substantially slowed by barriers in the mitochondrial matrix (cristae), suggesting that cells can control the dynamics of biochemical reactions in this compartment by modifying its nanostructure.
Collapse
|
46
|
van Zutphen T, van der Klei IJ. Quantitative analysis of organelle abundance, morphology and dynamics. Curr Opin Biotechnol 2011; 22:127-32. [DOI: 10.1016/j.copbio.2010.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
|
47
|
Fleming TC, Shin JY, Lee SH, Becker E, Huang KC, Bustamante C, Pogliano K. Dynamic SpoIIIE assembly mediates septal membrane fission during Bacillus subtilis sporulation. Genes Dev 2010; 24:1160-72. [PMID: 20516200 PMCID: PMC2878653 DOI: 10.1101/gad.1925210] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
Abstract
SpoIIIE is an FtsK-related protein that transports the forespore chromosome across the Bacillus subtilis sporulation septum. We use membrane photobleaching and protoplast assays to demonstrate that SpoIIIE is required for septal membrane fission in the presence of trapped DNA, and that DNA is transported across separate daughter cell membranes, suggesting that SpoIIIE forms a channel that partitions the daughter cell membranes. Our results reveal a close correlation between septal membrane fission and the assembly of a stable SpoIIIE translocation complex at the septal midpoint. Time-lapse epifluorescence, total internal reflection fluorescence (TIRF) microscopy, and live-cell photoactivation localization microscopy (PALM) demonstrate that the SpoIIIE transmembrane domain mediates dynamic localization to active division sites, whereas the assembly of a stable focus also requires the cytoplasmic domain. The transmembrane domain fails to completely separate the membrane, and it assembles unstable foci. TIRF microscopy and biophysical modeling of fluorescence recovery after photobleaching (FRAP) data suggest that this unstable protein transitions between disassembled and assembled oligomeric states. We propose a new model for the role of SpoIIIE assembly in septal membrane fission that has strong implications for how the chromosome terminus crosses the septum.
Collapse
Affiliation(s)
- Tinya C. Fleming
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | - Jae Yen Shin
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA
| | - Sang-Hyuk Lee
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Eric Becker
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Carlos Bustamante
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
48
|
Santamaria F, Gonzalez J, Augustine GJ, Raghavachari S. Quantifying the effects of elastic collisions and non-covalent binding on glutamate receptor trafficking in the post-synaptic density. PLoS Comput Biol 2010; 6:e1000780. [PMID: 20485563 PMCID: PMC2869312 DOI: 10.1371/journal.pcbi.1000780] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 04/09/2010] [Indexed: 11/19/2022] Open
Abstract
One mechanism of information storage in neurons is believed to be determined by the strength of synaptic contacts. The strength of an excitatory synapse is partially due to the concentration of a particular type of ionotropic glutamate receptor (AMPAR) in the post-synaptic density (PSD). AMPAR concentration in the PSD has to be plastic, to allow the storage of new memories; but it also has to be stable to preserve important information. Although much is known about the molecular identity of synapses, the biophysical mechanisms by which AMPAR can enter, leave and remain in the synapse are unclear. We used Monte Carlo simulations to determine the influence of PSD structure and activity in maintaining homeostatic concentrations of AMPARs in the synapse. We found that, the high concentration and excluded volume caused by PSD molecules result in molecular crowding. Diffusion of AMPAR in the PSD under such conditions is anomalous. Anomalous diffusion of AMPAR results in retention of these receptors inside the PSD for periods ranging from minutes to several hours in the absence of strong binding of receptors to PSD molecules. Trapping of receptors in the PSD by crowding effects was very sensitive to the concentration of PSD molecules, showing a switch-like behavior for retention of receptors. Non-covalent binding of AMPAR to anchored PSD molecules allowed the synapse to become well-mixed, resulting in normal diffusion of AMPAR. Binding also allowed the exchange of receptors in and out of the PSD. We propose that molecular crowding is an important biophysical mechanism to maintain homeostatic synaptic concentrations of AMPARs in the PSD without the need of energetically expensive biochemical reactions. In this context, binding of AMPAR with PSD molecules could collaborate with crowding to maintain synaptic homeostasis but could also allow synaptic plasticity by increasing the exchange of these receptors with the surrounding extra-synaptic membrane. One of the most accepted theories of information storage in neurons is that it is partially localized in the strength of synaptic contacts. Evidence suggests that at the cellular level, in combination with other cellular mechanisms, this is implemented by increasing or decreasing the concentration of a particular type of membrane molecules. Two opposing mechanisms have to coexist in synapses to allow them to store information. On one hand, synapses have to be flexible, to allow the storage of new memories. On the other hand, synapses have to be stable to preserve previously learned information. Although much is known about the molecular identity of synapses, the biophysical mechanisms by which molecules can enter, leave and remain in the synapse are unclear. Our modeling work uses fundamental biophysical principles to quantify the effects of molecular collisions and biochemical reactions. Our results show that molecular collisions alone, between the diffusing proteins with anchored molecules in the synapse, can replicate known experimental results. Molecular collision in combination with biochemical binding can be fundamental biophysical principles used by synapses for the formation and preservation of memories.
Collapse
Affiliation(s)
- Fidel Santamaria
- Biology Department, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- Neurosciences Institute, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail: (FS); (SR)
| | - Jossina Gonzalez
- Biology Department, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - George J. Augustine
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sridhar Raghavachari
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (FS); (SR)
| |
Collapse
|
49
|
Hurtig J, Chiu DT, Önfelt B. Intercellular nanotubes: insights from imaging studies and beyond. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:260-76. [PMID: 20166114 PMCID: PMC5602582 DOI: 10.1002/wnan.80] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell-cell communication is critical to the development, maintenance, and function of multicellular organisms. Classical mechanisms for intercellular communication include secretion of molecules into the extracellular space and transport of small molecules through gap junctions. Recent reports suggest that cells also can communicate over long distances via a network of transient intercellular nanotubes. Such nanotubes have been shown to mediate intercellular transfer of organelles as well as membrane components and cytoplasmic molecules. Moreover, intercellular nanotubes have been observed in vivo and have been shown to enhance the transmission of pathogens such as human immunodeficiency virus (HIV)-1 and prions in vitro. These studies indicate that intercellular nanotubes may play a role both in normal physiology and in disease.
Collapse
Affiliation(s)
- Johan Hurtig
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Björn Önfelt
- Department of Microbiology Tumour and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Division of Cell Physics, Department of Applied Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
50
|
Willems PHGM, Swarts HG, Hink MA, Koopman WJH. Chapter 16 The use of fluorescence correlation spectroscopy to probe mitochondrial mobility and intramatrix protein diffusion. Methods Enzymol 2009; 456:287-302. [PMID: 19348895 DOI: 10.1016/s0076-6879(08)04416-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Within cells, functional changes in mitochondrial metabolic state are associated with alterations in organelle mobility, shape, and configuration of the mitochondrial matrix. Fluorescence correlation spectroscopy (FCS) is a technique that measures intensity fluctuations caused by single fluorescent molecules moving through a small detection volume. By mathematically correlating these fluctuations, information can be obtained about the concentration and rate of diffusion of the fluorescent molecules. Here we present an FCS-based approach for determining the mobility of enhanced yellow fluorescent protein (mitoEYFP) in the mitochondrial matrix of primary human skin fibroblasts. This protocol allows simultaneous quantification of intramatrix EYFP concentration and its diffusion constant, as well as the fraction of moving mitochondria and their velocity.
Collapse
Affiliation(s)
- Peter H G M Willems
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|