1
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Xiao ZX, Liang R, Olsen N, Zheng SG. Roles of IRF4 in various immune cells in systemic lupus erythematosus. Int Immunopharmacol 2024; 133:112077. [PMID: 38615379 DOI: 10.1016/j.intimp.2024.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Interferon regulatory factor 4 (IRF4) is a member of IRF family of transcription factors which mainly regulates the transcription of IFN. IRF4 is restrictively expressed in immune cells such as T and B cells, macrophages, as well as DC. It is essential for the development and function of these cells. Since these cells take part in the homeostasis of the immune system and dysfunction of them contributes to the initiation and progress of systemic lupus erythematosus (SLE), the roles of IRF4 in the SLE development becomes an important topic. Here we systemically discuss the biological characteristics of IRF4 in various immune cells and analyze the pathologic effects of IRF4 alteration in SLE and the potential targeting therapeutics of SLE.
Collapse
Affiliation(s)
- Ze Xiu Xiao
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China; Department of Clinical Immunology, the Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou 510630, China
| | - Rongzhen Liang
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Song Guo Zheng
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China.
| |
Collapse
|
3
|
Zou D, Yin Z, Yi SG, Wang G, Guo Y, Xiao X, Li S, Zhang X, Gonzalez NM, Minze LJ, Wang L, Wong STC, Osama Gaber A, Ghobrial RM, Li XC, Chen W. CD4 + T cell immunity is dependent on an intrinsic stem-like program. Nat Immunol 2024; 25:66-76. [PMID: 38168955 PMCID: PMC11064861 DOI: 10.1038/s41590-023-01682-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024]
Abstract
CD4+ T cells are central to various immune responses, but the molecular programs that drive and maintain CD4+ T cell immunity are not entirely clear. Here we identify a stem-like program that governs the CD4+ T cell response in transplantation models. Single-cell-transcriptomic analysis revealed that naive alloantigen-specific CD4+ T cells develop into TCF1hi effector precursor (TEP) cells and TCF1-CXCR6+ effectors in transplant recipients. The TCF1-CXCR6+CD4+ effectors lose proliferation capacity and do not reject allografts upon adoptive transfer into secondary hosts. By contrast, the TCF1hiCD4+ TEP cells have dual features of self-renewal and effector differentiation potential, and allograft rejection depends on continuous replenishment of TCF1-CXCR6+ effectors from TCF1hiCD4+ TEP cells. Mechanistically, TCF1 sustains the CD4+ TEP cell population, whereas the transcription factor IRF4 and the glycolytic enzyme LDHA govern the effector differentiation potential of CD4+ TEP cells. Deletion of IRF4 or LDHA in T cells induces transplant acceptance. These findings unravel a stem-like program that controls the self-renewal capacity and effector differentiation potential of CD4+ TEP cells and have implications for T cell-related immunotherapies.
Collapse
Affiliation(s)
- Dawei Zou
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zheng Yin
- Systems Medicine and Bioengineering Department, Houston Methodist Neal Cancer Center, Houston, TX, USA
- Department of Radiology, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX, USA
| | - Stephanie G Yi
- Department of Surgery, J. C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, TX, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Guohua Wang
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Yang Guo
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Xiang Xiao
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Shuang Li
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Xiaolong Zhang
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Nancy M Gonzalez
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Laurie J Minze
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Lin Wang
- Systems Medicine and Bioengineering Department, Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - Stephen T C Wong
- Systems Medicine and Bioengineering Department, Houston Methodist Neal Cancer Center, Houston, TX, USA
- Department of Radiology, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX, USA
| | - A Osama Gaber
- Department of Surgery, J. C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, TX, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Rafik M Ghobrial
- Department of Surgery, J. C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, TX, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Xian C Li
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
4
|
Frueh JT, Campe J, Sunaga-Franze DY, Verheyden NA, Ghimire S, Meedt E, Haslinger D, Harenkamp S, Staudenraus D, Sauer S, Kreft A, Schubert R, Lohoff M, Krueger A, Bonig H, Chiocchetti AG, Zeiser R, Holler E, Ullrich E. Interferon regulatory factor 4 plays a pivotal role in the development of aGVHD-associated colitis. Oncoimmunology 2023; 13:2296712. [PMID: 38170159 PMCID: PMC10761041 DOI: 10.1080/2162402x.2023.2296712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Interferon regulatory factor 4 (IRF4) is a master transcription factor that regulates T helper cell (Th) differentiation. It interacts with the Basic leucine zipper transcription factor, ATF-like (BATF), depletion of which in CD4+ T cells abrogates acute graft-versus-host disease (aGVHD)-induced colitis. Here, we investigated the immune-regulatory role of Irf4 in a mouse model of MHC-mismatched bone marrow transplantation. We found that recipients of allogenic Irf4-/- CD4+ T cells developed less GVHD-related symptoms. Transcriptome analysis of re-isolated donor Irf4-/- CD4+ T helper (Th) cells, revealed gene expression profiles consistent with loss of effector T helper cell signatures and enrichment of a regulatory T cell (Treg) gene expression signature. In line with these findings, we observed a high expression of the transcription factor BTB and CNC homolog 2; (BACH2) in Irf4-/- T cells, which is associated with the formation of Treg cells and suppression of Th subset differentiation. We also found an association between BACH2 expression and Treg differentiation in patients with intestinal GVHD. Finally, our results indicate that IRF4 and BACH2 act as counterparts in Th cell polarization and immune homeostasis during GVHD. In conclusion, targeting the BACH2/IRF4-axis could help to develop novel therapeutic approaches against GVHD.
Collapse
Affiliation(s)
- Jochen T. Frueh
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Julia Campe
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Daniele Yumi Sunaga-Franze
- Genomics Platform, Max Delbrueck Center for Molecular Medicine, Berlin Institute of Health, Berlin, Germany
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Molecular Immunology, Justus Liebig University Giessen, Giessen, Germany
| | - Sakhila Ghimire
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Elisabeth Meedt
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Denise Haslinger
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Sabine Harenkamp
- German Red Cross Blood Service BaWüHe, Frankfurt am Main, Germany
| | | | - Sascha Sauer
- Genomics Platform, Max Delbrueck Center for Molecular Medicine, Berlin Institute of Health, Berlin, Germany
| | - Andreas Kreft
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Ralf Schubert
- Department of Pediatric Medicine, Division of Pneumology, Allergology, Infectious diseaes und Gastroenterology. Frankfurt am Main, Goethe University Frankfurt, Frankfurt, Germany
| | - Michael Lohoff
- Institute for Microbiology, Philipps University, Marburg, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Molecular Immunology, Justus Liebig University Giessen, Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Halvard Bonig
- German Red Cross Blood Service BaWüHe, Frankfurt am Main, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt am Main, Germany
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Robert Zeiser
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ernst Holler
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Evelyn Ullrich
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ, University Hospital Frankfurt, Frankfurt, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| |
Collapse
|
5
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Kim SB, Seo YS, Kim HS, Lee AY, Chun JM, Kim WJ, Moon BC, Kwon BI. Root extract of Angelica reflexa B.Y.Lee reduces allergic lung inflammation by regulating Th2 cell activation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113752. [PMID: 33359858 DOI: 10.1016/j.jep.2020.113752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditionally, the roots of Angelica reflexa B.Y.Lee (AR) have been used to treat cough, phlegm, neuralgia, and arthralgia in Northeast Asia. AIM OF THE STUDY The anti-asthmatic effect of AR root extract (ARE) was determined using a murine airway allergic inflammation model and the primary T cell polarization assay. MATERIALS AND METHODS To evaluate the anti-asthmatic effect of ARE, inflammatory cell infiltration was determined histologically and inflammatory mediators were measured in bronchoalveolar lavage fluid (BALF). Furthermore, the effects of AREs on Th2 cell differentiation and activation were determined by western blotting and flow cytometry. RESULTS Asthmatic phenotypes were alleviated by ARE treatment, which reduced mucus production, inflammatory cell infiltration (especially eosinophilia), and type 2 cytokine levels in BALF. ARE administration to mice reduced the number of activated Th2 (CD4+CD25+) cells and level of GATA3 in the lungs. Furthermore, ARE treatment inhibited the differentiation of Th2 cells in primary cell culture systems via interferon regulatory factor 4 (IRF4) signaling. CONCLUSIONS Our findings indicate that the anti-asthmatic effect of AREs is mediated by the reduction in Th2 cell activation by regulating IRF4.
Collapse
Affiliation(s)
- Sung Bae Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do, 58245, Republic of Korea; Bio Technology Division, Korea Conformity Laboratories (KCL), Incheon, 21999, Republic of Korea
| | - Yun-Soo Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Hyo Seon Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - A Yeong Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Jin Mi Chun
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Wook Jin Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Bo-In Kwon
- Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea; Research Institute of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| |
Collapse
|
7
|
Kim SB, Lee AY, Chun JM, Lee AR, Kim HS, Seo YS, Moon BC, Kwon BI. Anthriscus sylvestris root extract reduces allergic lung inflammation by regulating interferon regulatory factor 4-mediated Th2 cell activation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:165-175. [PMID: 30552991 DOI: 10.1016/j.jep.2018.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anthriscus sylvestris L. Hoffmann (AS) is a perennial plant that grows in Asia and Eastern Europe. Its dried root is used to treat conditions such as asthma, bronchitis, and cough. AIM OF THE STUDY The present study investigated the anti-inflammatory effects of whole AS extract (ASE) on allergic lung inflammation in vitro and in vivo as well as the underlying mechanisms. MATERIALS AND METHODS We used an ovalbumin (OVA)-induced asthma mouse model and in vitro primary T helper (Th)2 polarization system. Five groups of 8-week-old female C57BL/6 mice were divided into the following groups: saline control, or OVA-induced allergic asthma with vehicle, ASE (100 or 200 mg/kg), or dexamethasone (5 mg/kg) treatment for 7 days. RESULTS ASE attenuated mucus secretion in airway epithelial cells, inflammatory cell infiltration, eosinophilia, and Th2 cytokine levels in bronchoalveolar lavage fluid. Mice administered ASE showed reductions in the activated cluster of differentiation 4+ T cell population and GATA-binding protein-3 gene expression in the lung, and diminished Th2 cell differentiation and activation in vitro. Furthermore, ASE-treated mice showed decreased interleukin-6 and interferon regulatory factor (IRF)4 expression, with corresponding reductions in nitric oxide levels in the lungs of asthmatic mice and in stimulated RAW cells. CONCLUSION ASE exerts anti-asthmatic effects by inhibiting IRF4 expression and thereby suppressing Th2 cell activation.
Collapse
Affiliation(s)
- Sung-Bae Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - A Yeong Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Jin Mi Chun
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - A Reum Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Hyo Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Yun Soo Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Byeong Cheol Moon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Bo-In Kwon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do 26339, Republic of Korea.
| |
Collapse
|
8
|
Musavi SAA, Yamashita S, Fujihara T, Masaka H, Islam MR, Kim S, Gotoh T, Kawahara M, Tashiro K, Yamauchi N. Analysis of differentially expressed genes and the promoters in bovine endometrium throughout estrus cycle and early pregnancy. Anim Sci J 2018; 89:1609-1621. [PMID: 30182475 DOI: 10.1111/asj.13091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/17/2018] [Indexed: 01/09/2023]
Abstract
Endometrial gene expression is primarily regulated by the ovarian steroids and pregnancy recognition factors. This study was aimed to characterize differential expression genes (DEGs) in bovine endometrium together with the analysis of their promoter region. Bovine uteri at follicular stage (FS), luteal stage (LS), and implantation stage (IS) at Day 18 of pregnancy were collected. Total RNA extracted and prepared cDNA were then subjected to high-throughput sequencing. For promoter analysis, 1 kb upstream promoter region of each DEG was analyzed. The numbers of highly expressed DEGs were 496 and 597 at FS and LS, respectively. When compared the gene expression of IS with LS, 383 and 346 DEGs showed higher and lower expression at IS, respectively. It was also observed that 20-30 transcription factors (TFs) were included in each DEGs. In addition, promoter analyses estimated 150-160 TFs for each stage. DLX4 and interferon regulatory factor 4 (IRF4) at FS, and IRF5, IRF9, STAT1, and STAT2 at IS were in common to DEGs and estimated TFs, respectively. This study highlighted potential molecular mechanisms controlling endometrial function during estrus cycle and IS, which will further guide to better understand the endometrial functions in future studies.
Collapse
Affiliation(s)
- Sayed A A Musavi
- Department of Animal and Marine Bio Resource Sciences, Graduate School Kyushu University, Fukuoka, Japan.,Department of Animal Husbandry, Agriculture Faculty, Balkh University, Mazar-e-Sharif, Afghanistan
| | - Seiya Yamashita
- Department of Animal and Marine Bio Resource Sciences, Graduate School Kyushu University, Fukuoka, Japan
| | - Taisuke Fujihara
- Department of Animal and Marine Bio Resource Sciences, Graduate School Kyushu University, Fukuoka, Japan
| | - Hironori Masaka
- Department of Animal and Marine Bio Resource Sciences, Graduate School Kyushu University, Fukuoka, Japan
| | - Md Rashedul Islam
- Department of Genetics and Animal Breeding, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Sangwan Kim
- Laboratory of Molecular Gene Technics, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takafumi Gotoh
- Laboratory of Meat Science, Graduate School of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Manabu Kawahara
- Department of Animal Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kosuke Tashiro
- Laboratory of Molecular Gene Technics, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Nobuhiko Yamauchi
- Department of Animal and Marine Bio Resource Sciences, Graduate School Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Myers DR, Lau T, Markegard E, Lim HW, Kasler H, Zhu M, Barczak A, Huizar JP, Zikherman J, Erle DJ, Zhang W, Verdin E, Roose JP. Tonic LAT-HDAC7 Signals Sustain Nur77 and Irf4 Expression to Tune Naive CD4 T Cells. Cell Rep 2017; 19:1558-1571. [PMID: 28538176 PMCID: PMC5587137 DOI: 10.1016/j.celrep.2017.04.076] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/05/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022] Open
Abstract
CD4+ T cells differentiate into T helper cell subsets in feedforward manners with synergistic signals from the T cell receptor (TCR), cytokines, and lineage-specific transcription factors. Naive CD4+ T cells avoid spontaneous engagement of feedforward mechanisms but retain a prepared state. T cells lacking the adaptor molecule LAT demonstrate impaired TCR-induced signals yet cause a spontaneous lymphoproliferative T helper 2 (TH2) cell syndrome in mice. Thus, LAT constitutes an unexplained maintenance cue. Here, we demonstrate that tonic signals through LAT constitutively export the repressor HDAC7 from the nucleus of CD4+ T cells. Without such tonic signals, HDAC7 target genes Nur77 and Irf4 are repressed. We reveal that Nur77 suppresses CD4+ T cell proliferation and uncover a suppressive role for Irf4 in TH2 polarization; halving Irf4 gene-dosage leads to increases in GATA3+ and IL-4+ cells. Our studies reveal that naive CD4+ T cells are dynamically tuned by tonic LAT-HDAC7 signals.
Collapse
Affiliation(s)
- Darienne R Myers
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tannia Lau
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Evan Markegard
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hyung W Lim
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Herbert Kasler
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrea Barczak
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John P Huizar
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David J Erle
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
10
|
Mamun AA, Liu F. Role of IRF4-Mediated Inflammation: Implication in Neurodegenerative Diseases. NEUROLOGY & NEUROTHERAPY OPEN ACCESS JOURNAL 2017; 2:107. [PMID: 39473489 PMCID: PMC11521387 DOI: 10.23880/nnoaj-16000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Neuro-inflammation is a common feature of various central nervous system (CNS) disorders, including stroke, Alzheimer's disease, Multiple sclerosis, etc., and has a significant impact on the outcomes. Regulation of the immune response has therapeutic value. Interferon regulatory factor 4 (IRF4) is a hemopoietic transcription factor critical for activation of microglia/macrophages and modulation of inflammatory responses. The effects of IRF4 signaling on inflammation are pleiotropic, and vary depending on immune cell types and the pathological microenvironment that is regulated by both pro- and anti-inflammatory cytokines. Mechanistically, IRF4 is a quintessential 'context-dependent' transcription factor that regulates distinct groups of inflammatory mediators in a differential manner depending on their activation in different cell types including phagocytes, T-cell subtypes, and neuronal cells. In this review, we summarized the recent findings of IRF4 in the context of immune responses in different cell types with diverse pathological conditions. The primary goal of this review is to understand the signaling pathways and beneficial functions of IRF4, in hope of developing effective therapeutic strategies targeting the immune responses to neurodegenerative diseases.
Collapse
Affiliation(s)
- AA Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Medical School, USA
| | - F Liu
- Department of Neurology, McGovern Medical School, The University of Texas Medical School, USA
| |
Collapse
|
11
|
Nam S, Lim JS. Essential role of interferon regulatory factor 4 (IRF4) in immune cell development. Arch Pharm Res 2016; 39:1548-1555. [DOI: 10.1007/s12272-016-0854-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022]
|
12
|
Manni M, Gupta S, Nixon BG, Weaver CT, Jessberger R, Pernis AB. IRF4-Dependent and IRF4-Independent Pathways Contribute to DC Dysfunction in Lupus. PLoS One 2015; 10:e0141927. [PMID: 26544714 PMCID: PMC4636285 DOI: 10.1371/journal.pone.0141927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023] Open
Abstract
Interferon Regulatory Factors (IRFs) play fundamental roles in dendritic cell (DC) differentiation and function. In particular, IRFs are critical transducers of TLR signaling and dysregulation in this family of factors is associated with the development of autoimmune disorders such as Systemic Lupus Erythematosus (SLE). While several IRFs are expressed in DCs their relative contribution to the aberrant phenotypic and functional characteristics that DCs acquire in autoimmune disease has not been fully delineated. Mice deficient in both DEF6 and SWAP-70 (= Double-knock-out or DKO mice), two members of a unique family of molecules that restrain IRF4 function, spontaneously develop a lupus-like disease. Although autoimmunity in DKO mice is accompanied by dysregulated IRF4 activity in both T and B cells, SWAP-70 is also known to regulate multiple aspects of DC biology leading us to directly evaluate DC development and function in these mice. By monitoring Blimp1 expression and IL-10 competency in DKO mice we demonstrate that DCs in these mice exhibit dysregulated IL-10 production, which is accompanied by aberrant Blimp1 expression in the spleen but not in the peripheral lymph nodes. We furthermore show that DCs from these mice are hyper-responsive to multiple TLR ligands and that IRF4 plays a differential role in in these responses by being required for the TLR4-mediated but not the TLR9-mediated upregulation of IL-10 expression. Thus, DC dysfunction in lupus-prone mice relies on both IRF4-dependent and IRF4-independent pathways.
Collapse
Affiliation(s)
- Michela Manni
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, United States of America
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, United States of America
| | - Briana G. Nixon
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, United States of America
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, United States of America
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, United States of America
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Zhao GN, Jiang DS, Li H. Interferon regulatory factors: at the crossroads of immunity, metabolism, and disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:365-78. [PMID: 24807060 DOI: 10.1016/j.bbadis.2014.04.030] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 11/25/2022]
|
14
|
Abstract
Caspase recruitment domain-containing membrane-associated guanylate kinase protein-1 (CARMA1), a member of the membrane associated guanylate kinase (MAGUK) family of kinases, is essential for T lymphocyte activation and proliferation via T-cell receptor (TCR) mediated NF-κB activation. Recent studies suggest a broader role for CARMA1 regulating other T-cell functions as well as a role in non-TCR-mediated signaling pathways important for lymphocyte development and functions. In addition, CARMA1 has been shown to be an important component in the pathogenesis of several human diseases. Thus, comprehensively defining its mechanisms of action and regulation could reveal novel therapeutic targets for T-cell-mediated diseases and lymphoproliferative disorders.
Collapse
Affiliation(s)
- Marly I Roche
- Pulmonary and Critical Care Unit and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
15
|
Rangaswamy US, Speck SH. Murine gammaherpesvirus M2 protein induction of IRF4 via the NFAT pathway leads to IL-10 expression in B cells. PLoS Pathog 2014; 10:e1003858. [PMID: 24391506 PMCID: PMC3879372 DOI: 10.1371/journal.ppat.1003858] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/13/2013] [Indexed: 12/04/2022] Open
Abstract
Reactivation of the gammaherpesviruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) from latently infected B cells has been linked to plasma cell differentiation. We have previously shown that the MHV68 M2 protein is important for virus reactivation from B cells and, when expressed alone in primary murine B cells, can drive B cell differentiation towards a pre-plasma cell phenotype. In addition, expression of M2 in primary murine B cells leads to secretion of high levels of IL-10 along with enhanced proliferation and survival. Furthermore, the absence of M2 in vivo leads to a defect in the appearance of MHV68 infected plasma cells in the spleen at the peak of MHV68 latency. Here, employing an inducible B cell expression system, we have determined that M2 activates the NFAT pathway in a Src kinase-dependent manner – leading to induction of the plasma cell-associated transcription factor, Interferon Regulatory Factor-4 (IRF4). Furthermore, we show that expression of IRF4 alone in a B cell line up-regulates IL-10 expression in culture supernatants, revealing a novel role for IRF4 in B cell induced IL-10. Consistent with the latter observation, we show that IRF4 can regulate the IL-10 promoter in B cells. In primary murine B cells, addition of cyclosporine (CsA) resulted in a significant decrease in M2-induced IL-10 levels as well as IRF4 expression, emphasizing the importance of the NFAT pathway in M2- mediated induction of IL-10. Together, these studies argue in favor of a model wherein M2 activation of the NFAT pathway initiates events leading to increased levels of IRF4 – a key player in plasma cell differentiation – which in turn triggers IL-10 expression. In the context of previous findings, the data presented here provides insights into how M2 facilitates plasma cell differentiation and subsequent virus reactivation. The human viruses Epstein-Barr Virus (EBV) and Kaposi's Sarcoma-associated herpesvirus (KSHV) are members of the gammaherpesvirus family – pathogens that are associated with cancers of lymphoid tissues. Murine gammaherpesvirus 68 (MHV68) infection of laboratory mice provides a small animal model to study how this family of viruses chronically infects their host. The gammaherpesvirus establish a quiescent infection (termed latency) for the lifetime of the individual. However, they are capable of producing progeny virus (termed reactivation) in response to a variety of immune or environmental stimuli. Differentiation of latently infected B cells into plasma cells (the cells producing antibodies) has been associated with reactivation from latency. Notably, the MHV68 M2 protein plays a role in driving differentiation of MHV68 infected B cells to plasma cells. Furthermore, M2 expression results in increased levels of IL-10 (an immune-regulatory cytokine). Here we show that M2 mediated IL-10 production occurs through induction of IRF4 expression, a key player in plasma cell differentiation. This process involves Src kinases and NFAT – both components of B cell receptor signaling. Additionally, mice lacking IRF4 in infected cells show a significant defect in virus reactivation, thereby identifying IRF4 as a crucial component of M2 mediated functions.
Collapse
Affiliation(s)
- Udaya S. Rangaswamy
- Microbiology and Molecular Genetics Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samuel H. Speck
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Takeda Y, Shimomura T, Wakabayashi I. [Immunological disorders of diabetes mellitus in experimental rat models]. Nihon Eiseigaku Zasshi 2014; 69:166-176. [PMID: 25253518 DOI: 10.1265/jjh.69.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A comprehensive understanding of the pathogenic mechanism is the prerequisite for proper disease management. However, the mechanisms of diabetes mellitus and diabetic complication remain extremely complicated and unresolved. While immune reactions are involved in the pathogenesis of diabetes and diabetic complication, the diabetic condition itself can influence immune responses. Furthermore, both diabetes and immune reactions are regulated by genetic and environmental factors. As a result, animal models have evolved to be powerful research tools to elucidate the complicated mechanisms for the pathogenesis of diabetes. Recently, various animal models of diabetes have been developed in rats, which provide advantages over mouse models in the scale of tissue samples and variation in type 2 diabetes models. In this review, we introduced rat models of diabetes and summarized the immune reactions in diabetic rats to propose the relationship between immune reactions and diabetes. Type 1 diabetes is induced by self-reactive cellular immune reactions. On the other hand, type 2 diabetes in rat models is associated with augmentation of innate immune reactions and increased humoral immunity. For example, helper T (Th) 1/Th17 cells are prevalent in non-obese type 1 diabetes rats (diabetes-prone BioBreeding rats), while non-obese type 2 diabetes rats (Goto-Kakizaki rat) show higher levels of natural IgM and T cell ratios with elevated Th2 cells compared with Wister rats. The investigation of immunological disorders in various diabetic rat models is useful to elucidate complicated mechanisms for the pathophysiology of diabetes. In future studies, immunological experimentations altering Th1/Th17 or Th2 cell levels and natural immune reactions may lend support to understanding the causes of diabetes and predicting the pathological conditions in diabetes.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine
| | | | | |
Collapse
|
17
|
Rogatsky I, Chandrasekaran U, Manni M, Yi W, Pernis AB. Epigenetics and the IRFs: A complex interplay in the control of immunity and autoimmunity. Autoimmunity 2013; 47:242-55. [DOI: 10.3109/08916934.2013.853050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
He F, Chen H, Probst-Kepper M, Geffers R, Eifes S, Del Sol A, Schughart K, Zeng AP, Balling R. PLAU inferred from a correlation network is critical for suppressor function of regulatory T cells. Mol Syst Biol 2013; 8:624. [PMID: 23169000 PMCID: PMC3531908 DOI: 10.1038/msb.2012.56] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/05/2012] [Indexed: 02/07/2023] Open
Abstract
Human FOXP3(+)CD25(+)CD4(+) regulatory T cells (Tregs) are essential to the maintenance of immune homeostasis. Several genes are known to be important for murine Tregs, but for human Tregs the genes and underlying molecular networks controlling the suppressor function still largely remain unclear. Here, we describe a strategy to identify the key genes directly from an undirected correlation network which we reconstruct from a very high time-resolution (HTR) transcriptome during the activation of human Tregs/CD4(+) T-effector cells. We show that a predicted top-ranked new key gene PLAU (the plasminogen activator urokinase) is important for the suppressor function of both human and murine Tregs. Further analysis unveils that PLAU is particularly important for memory Tregs and that PLAU mediates Treg suppressor function via STAT5 and ERK signaling pathways. Our study demonstrates the potential for identifying novel key genes for complex dynamic biological processes using a network strategy based on HTR data, and reveals a critical role for PLAU in Treg suppressor function.
Collapse
Affiliation(s)
- Feng He
- Department of Infection Genetics, Helmholtz Centre for Infection Research (HZI), University of Veterinary Medicine Hannover, Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nayar R, Enos M, Prince A, Shin H, Hemmers S, Jiang JK, Klein U, Thomas CJ, Berg LJ. TCR signaling via Tec kinase ITK and interferon regulatory factor 4 (IRF4) regulates CD8+ T-cell differentiation. Proc Natl Acad Sci U S A 2012; 109:E2794-802. [PMID: 23011795 PMCID: PMC3478592 DOI: 10.1073/pnas.1205742109] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD8(+) T-cell development in the thymus generates a predominant population of conventional naive cells, along with minor populations of "innate" T cells that resemble memory cells. Recent studies analyzing a variety of KO or knock-in mice have indicated that impairments in the T-cell receptor (TCR) signaling pathway produce increased numbers of innate CD8(+) T cells, characterized by their high expression of CD44, CD122, CXCR3, and the transcription factor, Eomesodermin (Eomes). One component of this altered development is a non-CD8(+) T cell-intrinsic role for IL-4. To determine whether reduced TCR signaling within the CD8(+) T cells might also contribute to this pathway, we investigated the role of the transcription factor, IFN regulatory factor 4 (IRF4). IRF4 is up-regulated following TCR stimulation in WT T cells; further, this up-regulation is impaired in T cells treated with a small-molecule inhibitor of the Tec family tyrosine kinase, IL-2 inducible T-cell kinase (ITK). In contrast to WT cells, activation of IRF4-deficient CD8(+) T cells leads to rapid and robust expression of Eomes, which is further enhanced by IL-4 stimulation. In addition, inhibition of ITK together with IL-4 increases Eomeso up-regulation. These data indicate that ITK signaling promotes IRF4 up-regulation following CD8(+) T-cell activation and that this signaling pathway normally suppresses Eomes expression, thereby regulating the differentiation pathway of CD8(+) T cells.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Female
- Flow Cytometry
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Gene Expression/drug effects
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Interferon Regulatory Factors/metabolism
- Interleukin-4/pharmacology
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/immunology
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/immunology
- T-Box Domain Proteins/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymocytes/immunology
- Thymocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Ribhu Nayar
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Megan Enos
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Amanda Prince
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - HyunMu Shin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Saskia Hemmers
- Department of Immunology, Memorial Sloan–Kettering Cancer Center, New York, NY 10065
| | - Jian-kang Jiang
- Chemical Genomics Center, National Institutes of Health, Rockville, MD 20850
| | - Ulf Klein
- Department of Microbiology and Immunology, Columbia University, New York, NY 10032; and
| | - Craig J. Thomas
- Chemical Genomics Center, National Institutes of Health, Rockville, MD 20850
| | - Leslie J. Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
20
|
Hemdan NYA, Birkenmeier G, Wichmann G. Key molecules in the differentiation and commitment program of T helper 17 (Th17) cells up-to-date. Immunol Lett 2012; 148:97-109. [PMID: 23036716 DOI: 10.1016/j.imlet.2012.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 01/02/2023]
Abstract
The mechanisms underlying autoimmunity and cancer remain elusive. However, perpendicular evidence has been evolved in the past decade that T helper (Th)17 cells and their related molecules are implicated in initiation and induction of various disease settings including both diseases. Meanwhile, extensive research on Th17 cells elucidated various molecules including cytokines and transcription factors as well as signaling pathways involved in the differentiation, maturation, survival and ultimate commitment of Th17 cells. In the current review, we revise the mechanistic underpinnings delivered by recent research on these molecules in the Th17 differentiation/commitment concert. We emphasize on those molecules proposed as targets for attaining potential therapies of various autoimmune disorders and cancer, aiming both at dampening the dark-side of Th17 repertoire and simultaneously potentiating its benefits in the roster of the antimicrobial response.
Collapse
Affiliation(s)
- Nasr Y A Hemdan
- ENT-Research Lab, Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, University of Leipzig, Liebig Str. 21, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
21
|
Combining gene expression microarray- and cluster analysis with sequence-based predictions to identify regulators of IL-13 in allergy. Cytokine 2012; 60:736-40. [PMID: 22981205 DOI: 10.1016/j.cyto.2012.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 06/07/2012] [Accepted: 08/07/2012] [Indexed: 12/22/2022]
Abstract
The Th2 cytokine IL-13 plays a key role in allergy, by regulating IgE, airway hyper secretion, eosinophils and mast cells. In this study, we aimed to identify novel transcription factors (TFs) that potentially regulated IL-13. We analyzed Th2 polarized naïve T cells from four different blood donors with gene expression microarrays to find clusters of genes that were correlated or anti-correlated with IL13. These clusters were further filtered, by selecting genes that were functionally related. In these clusters, we identified three transcription factors (TFs) that were predicted to regulate the expression of IL13, namely CEBPB, E2F6 and AHR. siRNA mediated knockdowns of these TFs in naïve polarized T cells showed significant increases of IL13, following knockdown of CEBPB and E2F6, but not AHR. This suggested an inhibitory role of CEBPB and E2F6 in the regulation of IL13 and allergy. This was supported by analysis of E2F6, but not CEBPB, in allergen-challenged CD4+ T cells from six allergic patients and six healthy controls, which showed decreased expression of E2F6 in patients. In summary, our findings indicate an inhibitory role of E2F6 in the regulation of IL-13 and allergy. The analytical approach may be generally applicable to elucidate the complex regulatory patterns in Th2 cell polarization and allergy.
Collapse
|
22
|
Xia C, Ya-dong G, Jiong Y. Elevated Interferon Regulatory Factor 4 Levels in Patients with Allergic Asthma. J Asthma 2012; 49:441-9. [DOI: 10.3109/02770903.2012.674998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Biswas PS, Gupta S, Stirzaker RA, Kumar V, Jessberger R, Lu TT, Bhagat G, Pernis AB. Dual regulation of IRF4 function in T and B cells is required for the coordination of T-B cell interactions and the prevention of autoimmunity. ACTA ACUST UNITED AC 2012; 209:581-96. [PMID: 22370718 PMCID: PMC3302237 DOI: 10.1084/jem.20111195] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Effective humoral responses to protein antigens require the precise execution of carefully timed differentiation programs in both T and B cell compartments. Disturbances in this process underlie the pathogenesis of many autoimmune disorders, including systemic lupus erythematosus (SLE). Interferon regulatory factor 4 (IRF4) is induced upon the activation of T and B cells and serves critical functions. In CD4(+) T helper cells, IRF4 plays an essential role in the regulation of IL-21 production, whereas in B cells it controls class switch recombination and plasma cell differentiation. IRF4 function in T helper cells can be modulated by its interaction with regulatory protein DEF6, a molecule that shares a high degree of homology with only one other protein, SWAP-70. Here, we demonstrate that on a C57BL/6 background the absence of both DEF6 and SWAP-70 leads to the development of a lupus-like disease in female mice, marked by simultaneous deregulation of CD4(+) T cell IL-21 production and increased IL-21 B cell responsiveness. We furthermore show that DEF6 and SWAP-70 are differentially used at distinct stages of B cell differentiation to selectively control the ability of IRF4 to regulate IL-21 responsiveness in a stage-specific manner. Collectively, these data provide novel insights into the mechanisms that normally couple and coordinately regulate T and B cell responses to ensure tight control of productive T-B cell interactions.
Collapse
Affiliation(s)
- Partha S Biswas
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bruhn S, Barrenäs F, Mobini R, Andersson BA, Chavali S, Egan BS, Hovig E, Sandve GK, Langston MA, Rogers G, Wang H, Benson M. Increased expression of IRF4 and ETS1 in CD4+ cells from patients with intermittent allergic rhinitis. Allergy 2012; 67:33-40. [PMID: 21919915 DOI: 10.1111/j.1398-9995.2011.02707.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The transcription factor (TF) IRF4 is involved in the regulation of Th1, Th2, Th9, and Th17 cells, and animal studies have indicated an important role in allergy. However, IRF4 and its target genes have not been examined in human allergy. METHODS IRF4 and its target genes were examined in allergen-challenged CD4(+) cells from patients with IAR, using combined gene expression microarrays and chromatin immunoprecipitation chips (ChIP-chips), computational target prediction, and RNAi knockdowns. RESULTS IRF4 increased in allergen-challenged CD4(+) cells from patients with IAR, and functional studies supported its role in Th2 cell activation. IRF4 ChIP-chip showed that IRF4 regulated a large number of genes relevant to Th cell differentiation. However, neither Th1 nor Th2 cytokines were the direct targets of IRF4. To examine whether IRF4 induced Th2 cytokines via one or more downstream TFs, we combined gene expression microarrays, ChIP-chips, and computational target prediction and found a putative intermediary TF, namely ETS1 in allergen-challenged CD4(+) cells from allergic patients. ETS1 increased significantly in allergen-challenged CD4(+) cells from patients compared to controls. Gene expression microarrays before and after ETS1 RNAi knockdown showed that ETS1 induced Th2 cytokines as well as disease-related pathways. CONCLUSIONS Increased expression of IRF4 in allergen-challenged CD4(+) cells from patients with intermittent allergic rhinitis leads to activation of a complex transcriptional program, including Th2 cytokines.
Collapse
Affiliation(s)
- S Bruhn
- The Centre for Individualized Medication, Linköping University Hospital, Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shindo H, Yasui K, Yamamoto K, Honma K, Yui K, Kohno T, Ma Y, Chua KJ, Kubo Y, Aihara H, Ito T, Nagayasu T, Matsuyama T, Hayashi H. Interferon regulatory factor-4 activates IL-2 and IL-4 promoters in cooperation with c-Rel. Cytokine 2011; 56:564-72. [DOI: 10.1016/j.cyto.2011.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 07/15/2011] [Accepted: 08/03/2011] [Indexed: 12/22/2022]
|
26
|
Refaat A, Zhou Y, Suzuki S, Takasaki I, Koizumi K, Yamaoka S, Tabuchi Y, Saiki I, Sakurai H. Distinct roles of transforming growth factor-beta-activated kinase 1 (TAK1)-c-Rel and interferon regulatory factor 4 (IRF4) pathways in human T cell lymphotropic virus 1-transformed T helper 17 cells producing interleukin-9. J Biol Chem 2011; 286:21092-9. [PMID: 21498517 DOI: 10.1074/jbc.m110.200907] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Investigation of helper T cell markers in HTLV-1-transformed cell lines demonstrated that HuT-102 has an IL-9-producing Th17 phenotype. We confirmed the vital role of retinoic acid-related orphan receptor C, a Th17 transcription factor, in the expression of IL-17. Interferon regulatory factor 4 (IRF4), a transcription factor overexpressed in all HTLV-1-infected cells, regulated IL-17 and IL-9 concomitantly. We further demonstrated a novel pathway for the regulation of Tax-induced cytokines, IL-9 and IL-6, through TAK1-mediated nuclear accumulation of c-Rel. A microarray analysis for IRF4 knocked down HuT-102 cells showed a significant up-regulation in the set of genes related to Th1, mainly IFN-γ and several transcription factors. T-bet and IRF1, but not STAT1 and IRF9, participated in counteracting the inhibitory effect of IRF4 on the production of IFN-γ. Finally, suppression of both IRF4 and c-Rel resulted in the reduced proliferation. Collectively, these findings indicate that TAK1-c-Rel and IRF4 pathways play distinct roles in the maintenance of IL-9-producing Th17 phenotype of HTLV-1-transformed cells.
Collapse
Affiliation(s)
- Alaa Refaat
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee CG, Hwang W, Maeng KE, Kwon HK, So JS, Sahoo A, Lee SH, Park ZY, Im SH. IRF4 regulates IL-10 gene expression in CD4+ T cells through differential nuclear translocation. Cell Immunol 2011; 268:97-104. [DOI: 10.1016/j.cellimm.2011.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/06/2011] [Accepted: 02/28/2011] [Indexed: 12/18/2022]
|
28
|
Kimura D, Miyakoda M, Honma K, Shibata Y, Yuda M, Chinzei Y, Yui K. Production of IFN- by CD4+ T cells in response to malaria antigens is IL-2 dependent. Int Immunol 2010; 22:941-52. [DOI: 10.1093/intimm/dxq448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Bowdridge S, Gause WC. Regulation of alternative macrophage activation by chromatin remodeling. Nat Immunol 2010; 11:879-81. [PMID: 20856215 DOI: 10.1038/ni1010-879] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Wang YH, Voo KS, Liu B, Chen CY, Uygungil B, Spoede W, Bernstein JA, Huston DP, Liu YJ. A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. ACTA ACUST UNITED AC 2010; 207:2479-91. [PMID: 20921287 PMCID: PMC2964570 DOI: 10.1084/jem.20101376] [Citation(s) in RCA: 342] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The inflammatory cytokine interleukin (IL)-17 is involved in the pathogenesis of allergic diseases. However, the identity and functions of IL-17-producing T cells during the pathogenesis of allergic diseases remain unclear. Here, we report a novel subset of T(H)2 memory/effector cells that coexpress the transcription factors GATA3 and RORγt and coproduce T(H)17 and T(H)2 cytokines. Classical T(H)2 memory/effector cells had the potential to produce IL-17 after stimulation with proinflammatory cytokines IL-1β, IL-6, and IL-21. The number of IL-17-T(H)2 cells was significantly increased in blood of patients with atopic asthma. In a mouse model of allergic lung diseases, IL-17-producing CD4(+) T(H)2 cells were induced in the inflamed lung and persisted as the dominant IL-17-producing T cell population during the chronic stage of asthma. Treating cultured bronchial epithelial cells with IL-17 plus T(H)2 cytokines induced strong up-regulation of chemokine eotaxin-3, Il8, Mip1b, and Groa gene expression. Compared with classical T(H)17 and T(H)2 cells, antigen-specific IL-17-producing T(H)2 cells induced a profound influx of heterogeneous inflammatory leukocytes and exacerbated asthma. Our findings highlight the plasticity of T(H)2 memory cells and suggest that IL-17-producing T(H)2 cells may represent the key pathogenic T(H)2 cells promoting the exacerbation of allergic asthma.
Collapse
Affiliation(s)
- Yui-Hsi Wang
- Division of Allergy and Immunology, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, Miyake T, Matsushita K, Okazaki T, Saitoh T, Honma K, Matsuyama T, Yui K, Tsujimura T, Standley DM, Nakanishi K, Nakai K, Akira S. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 2010; 11:936-44. [PMID: 20729857 DOI: 10.1038/ni.1920] [Citation(s) in RCA: 890] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 07/22/2010] [Indexed: 12/14/2022]
Abstract
Polarization of macrophages to M1 or M2 cells is important for mounting responses against bacterial and helminth infections, respectively. Jumonji domain containing-3 (Jmjd3), a histone 3 Lys27 (H3K27) demethylase, has been implicated in the activation of macrophages. Here we show that Jmjd3 is essential for M2 macrophage polarization in response to helminth infection and chitin, though Jmjd3 is dispensable for M1 responses. Furthermore, Jmjd3 (also known as Kdm6b) is essential for proper bone marrow macrophage differentiation, and this function depends on demethylase activity of Jmjd3. Jmjd3 deficiency affected trimethylation of H3K27 in only a limited number of genes. Among them, we identified Irf4 as encoding a key transcription factor that controls M2 macrophage polarization. Collectively, these results show that Jmjd3-mediated H3K27 demethylation is crucial for regulating M2 macrophage development leading to anti-helminth host responses.
Collapse
Affiliation(s)
- Takashi Satoh
- Laboratory of Host Defense, World Premiere Initiative Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 2010; 33:192-202. [PMID: 20674401 DOI: 10.1016/j.immuni.2010.07.014] [Citation(s) in RCA: 426] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/17/2010] [Accepted: 07/02/2010] [Indexed: 12/14/2022]
Abstract
Interferon-regulatory factor 4 (IRF4) is essential for the development of T helper 2 (Th2) and Th17 cells. Herein, we report that IRF4 is also crucial for the development and function of an interleukin-9 (IL-9)-producing CD4(+) T cell subset designated Th9. IRF4-deficient CD4(+) T cells failed to develop into IL-9-producing Th9 cells, and IRF4-specific siRNA inhibited IL-9 production in wild-type CD4(+) T cells. Chromatin-immunoprecipitation (ChIP) analyses revealed direct IRF4 binding to the Il9 promoter in Th9 cells. In a Th9-dependent asthma model, neutralization of IL-9 substantially ameliorated asthma symptoms. The relevance of these findings is emphasized by the fact that the induction of IL-9 production also occurs in human CD4(+) T cells accompanied by the upregulation of IRF4. Our data clearly demonstrate the central function of IRF4 in the development of Th9 cells and underline the contribution of this T helper cell subset to the pathogenesis of asthma.
Collapse
|
33
|
SATB1 dictates expression of multiple genes including IL-5 involved in human T helper cell differentiation. Blood 2010; 116:1443-53. [PMID: 20522714 DOI: 10.1182/blood-2009-11-252205] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Special AT-rich binding protein 1 (SATB1) is a global chromatin organizer and a transcription factor regulated by interleukin-4 (IL-4) during the early T helper 2 (Th2) cell differentiation. Here we show that SATB1 controls multiple IL-4 target genes involved in human Th cell polarization or function. Among the genes regulated by SATB1 is that encoding the cytokine IL-5, which is predominantly produced by Th2 cells and plays a key role in the development of eosinophilia in asthma. We demonstrate that, during the early Th2 cell differentiation, IL-5 expression is repressed through direct binding of SATB1 to the IL-5 promoter. Furthermore, SATB1 knockdown-induced up-regulation of IL-5 is partly counteracted by down-regulating GATA3 expression using RNAi in polarizing Th2 cells. Our results suggest that a competitive mechanism involving SATB1 and GATA3 regulates IL-5 transcription, and provide new mechanistic insights into the stringent regulation of IL-5 expression during human Th2 cell differentiation.
Collapse
|
34
|
Savitsky D, Tamura T, Yanai H, Taniguchi T. Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother 2010; 59:489-510. [PMID: 20049431 PMCID: PMC11030943 DOI: 10.1007/s00262-009-0804-6] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 12/01/2009] [Indexed: 02/06/2023]
Abstract
Nine interferon regulatory factors (IRFs) compose a family of transcription factors in mammals. Although this family was originally identified in the context of the type I interferon system, subsequent studies have revealed much broader functions performed by IRF members in host defense. In this review, we provide an update on the current knowledge of their roles in immune responses, immune cell development, and regulation of oncogenesis.
Collapse
Affiliation(s)
- David Savitsky
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tomohiko Tamura
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Hideyuki Yanai
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tadatsugu Taniguchi
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
35
|
Battistini A. Interferon regulatory factors in hematopoietic cell differentiation and immune regulation. J Interferon Cytokine Res 2010; 29:765-80. [PMID: 19929577 DOI: 10.1089/jir.2009.0030] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Members of the interferon regulatory factor (IRF) family are transcription factors implicated in the regulation of a variety of biological processes. Originally identified as intracellular mediators of the induction and biological activities of interferons, their central role in host resistance to pathogens has recently been confirmed by the recognition of their involvement in the regulation of gene expression in responses triggered by Toll-like receptors and other pattern recognition receptors (PRRs). Their function in regulating the development as well as the activity of hematopoietic cells puts them at the interface between innate and adaptive immune responses. IRFs also regulate cell growth and apoptosis in several cell types, thereby affecting susceptibility to and the progression of cancer. In this review the role of some members of the family more deeply involved in the differentiation of hematopoietic cells and in immune regulation is addressed, with a specific focus on T cells and dendritic cells.
Collapse
Affiliation(s)
- Angela Battistini
- Molecular Pathogenesis Unit, Department of Infectious, Parasitic, and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome 00161, Italy.
| |
Collapse
|
36
|
Biswas PS, Bhagat G, Pernis AB. IRF4 and its regulators: evolving insights into the pathogenesis of inflammatory arthritis? Immunol Rev 2010; 233:79-96. [PMID: 20192994 PMCID: PMC2920730 DOI: 10.1111/j.0105-2896.2009.00864.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accumulating evidence from murine and human studies supports a key role for interleukin-17 (IL-17) and IL-21 in the pathogenesis of inflammatory arthritis. The pathways and molecular mechanisms that underlie the production of IL-17 and IL-21 are being rapidly elucidated. This review focuses on interferon regulatory factor 4 (IRF4), a member of the IRF family of transcription factors, which has emerged as a crucial controller of both IL-17 and IL-21 production. We first outline the complex role of IRF4 in the function of CD4(+) T cells and then discuss recent studies from our laboratory that have revealed a surprising role for components of Rho GTPase-mediated pathways in controlling the activity of IRF4. A better understanding of these novel pathways will hopefully provide new insights into mechanisms responsible for the development of inflammatory arthritis and potentially guide the design of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Govind Bhagat
- Department of Pathology, Columbia University, New York, NY, USA
| | | |
Collapse
|
37
|
Ahyi ANN, Chang HC, Dent AL, Nutt SL, Kaplan MH. IFN regulatory factor 4 regulates the expression of a subset of Th2 cytokines. THE JOURNAL OF IMMUNOLOGY 2009; 183:1598-606. [PMID: 19592658 DOI: 10.4049/jimmunol.0803302] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Th2 cells can be subdivided into subpopulations depending on the level of a cytokine and the subsets of cytokines they produce. We have recently identified the ETS family transcription factor PU.1 as regulating heterogeneity in Th2 populations. To define additional factors that might contribute to Th2 heterogeneity, we examined the PU.1 interacting protein IFN-regulatory factor (IRF)4. When Th2 cells are separated based on levels of IL-10 secretion, IRF4 expression segregates into the subset of Th2 cells expressing high levels of IL-10. Infection of total Th2 cells, and IL-10 nonsecreting cells, with retrovirus-expressing IRF4, resulted in increased IL-4 and IL-10 expression, no change in IL-5 or IL-13 production and decreased Il9 transcription. Transfection of an IRF4-specific small interfering RNA into Th2 cells decreases IL-10 production. IRF4 directly binds the Il10 gene as evidenced by chromatin immunoprecipitation assay, and regulates Il10 control elements in a reporter assay. IRF4 interacts with PU.1, and in PU.1-deficient T cells there was an increase in IRF4 binding to the Il10 gene, and in the ability of IRF4 to induce IL-10 production compared with wild-type cells and Il10 promoter activity in a reporter assay. Further heterogeneity of IRF4 expression was observed in Th2 cells analyzed for expression of multiple Th2 cytokines. Thus, IRF4 promotes the expression of a subset of Th2 cytokines and contributes to Th2 heterogeneity.
Collapse
Affiliation(s)
- Ayele-Nati N Ahyi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
38
|
Shaffer AL, Emre NCT, Romesser PB, Staudt LM. IRF4: Immunity. Malignancy! Therapy? Clin Cancer Res 2009; 15:2954-61. [PMID: 19383829 DOI: 10.1158/1078-0432.ccr-08-1845] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
IRF4, a member of the Interferon Regulatory Factor (IRF) family of transcription factors, is expressed in cells of the immune system, where it transduces signals from various receptors to activate or repress gene expression. IRF4 expression is a key regulator of several steps in lymphoid-, myeloid-, and dendritic-cell differentiation, including the differentiation of mature B cells into antibody-secreting plasma cells. IRF4 expression is also associated with many lymphoid malignancies, with recent evidence pointing to an essential role in multiple myeloma, a malignancy of plasma cells. Interference with IRF4 expression is lethal to multiple myeloma cells, irrespective of their genetic etiology, making IRF4 an "Achilles' heel" that may be exploited therapeutically.
Collapse
Affiliation(s)
- Arthur L Shaffer
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
39
|
Fowell DJ. Signals for the execution of Th2 effector function. Cytokine 2009; 46:1-6. [PMID: 19237299 PMCID: PMC2955979 DOI: 10.1016/j.cyto.2008.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/10/2008] [Accepted: 12/29/2008] [Indexed: 11/16/2022]
Abstract
Appropriate control of infection depends on the generation of lymphocytes armed with a particular array of cytokine and chemokine effector molecules. The differentiation of naïve T cells into functionally distinct effector subsets is regulated by signals from the T cell receptor (TCR) and cytokine receptors. Using gene knock-out approaches, the initiation of discrete effector programs appears differentially sensitive to the loss of individual TCR signaling components; likely due to differences in the transcription factors needed to activate individual cytokine genes. Less well understood however, are the signal requirements for the execution of effector function. With a focus on Th2 cells and the kinase ITK, we review recent observations that point to differences between the signals needed for the initiation and implementation of cytokine programs in CD4+ T cells. Indeed, Th2 effector cells signal differently from both their naïve counterparts and from Th1 effectors suggesting they may transduce activation signals differently or may be selectively receptive to different activation signals. Potential regulation points for effector function lie at the level of transcription and translation of cytokine genes. We also discuss how provision of these execution signals may be spatially segregated in vivo occurring at tissue sites of inflammation and subject to modulation by the pathogen itself.
Collapse
Affiliation(s)
- Deborah J Fowell
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Box 609, Rochester, NY 14642, USA.
| |
Collapse
|