1
|
Van Coillie S, Prévot J, Sánchez-Ramón S, Lowe DM, Borg M, Autran B, Segundo G, Pecoraro A, Garcelon N, Boersma C, Silva SL, Drabwell J, Quinti I, Meyts I, Ali A, Burns SO, van Hagen M, Pergent M, Mahlaoui N. Charting a course for global progress in PIDs by 2030 - proceedings from the IPOPI global multi-stakeholders' summit (September 2023). Front Immunol 2024; 15:1430678. [PMID: 39055704 PMCID: PMC11270239 DOI: 10.3389/fimmu.2024.1430678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
The International Patient Organisation for Primary Immunodeficiencies (IPOPI) held its second Global Multi-Stakeholders' Summit, an annual stimulating and forward-thinking meeting uniting experts to anticipate pivotal upcoming challenges and opportunities in the field of primary immunodeficiency (PID). The 2023 summit focused on three key identified discussion points: (i) How can immunoglobulin (Ig) therapy meet future personalized patient needs? (ii) Pandemic preparedness: what's next for public health and potential challenges for the PID community? (iii) Diagnosing PIDs in 2030: what needs to happen to diagnose better and to diagnose more? Clinician-Scientists, patient representatives and other stakeholders explored avenues to improve Ig therapy through mechanistic insights and tailored Ig preparations/products according to patient-specific needs and local exposure to infectious agents, amongst others. Urgency for pandemic preparedness was discussed, as was the threat of shortage of antibiotics and increasing antimicrobial resistance, emphasizing the need for representation of PID patients and other vulnerable populations throughout crisis and care management. Discussion also covered the complexities of PID diagnosis, addressing issues such as global diagnostic disparities, the integration of patient-reported outcome measures, and the potential of artificial intelligence to increase PID diagnosis rates and to enhance diagnostic precision. These proceedings outline the outcomes and recommendations arising from the 2023 IPOPI Global Multi-Stakeholders' Summit, offering valuable insights to inform future strategies in PID management and care. Integral to this initiative is its role in fostering collaborative efforts among stakeholders to prepare for the multiple challenges facing the global PID community.
Collapse
Affiliation(s)
- Samya Van Coillie
- International Patient Organisation for Primary Immunodeficiencies (IPOPI), Brussels, Belgium
| | - Johan Prévot
- International Patient Organisation for Primary Immunodeficiencies (IPOPI), Brussels, Belgium
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, Health Research Institute of the Hospital Clínico San Carlos/Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IML and IdISSC), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - David M. Lowe
- Department of Immunology, Royal Free London National Heath System (NHS) Foundation Trust, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Michael Borg
- Department of Infection Control & Sterile Services, Mater Dei Hospital, Msida, Malta
| | - Brigitte Autran
- Sorbonne-Université, Cimi-Paris, Institut national de la santé et de la recherche médicale (INSERM) U1135, centre national de la recherche scientifique (CNRS) ERL8255, Université Pierre et Marie Curie Centre de Recherche n°7 (UPMC CR7), Paris, France
| | - Gesmar Segundo
- Departamento de Pediatra, Universidade Federal de Uberlândia, Uberlandia, MG, Brazil
| | - Antonio Pecoraro
- Transfusion Medicine Unit, Azienda Sanitaria Territoriale, Ascoli Piceno, Italy
| | - Nicolas Garcelon
- Université de Paris, Imagine Institute, Data Science Platform, Institut national de la santé et de la recherche médicale Unité Mixte de Recherche (INSERM UMR) 1163, Paris, France
| | - Cornelis Boersma
- Health-Ecore B.V., Zeist, Netherlands
- Unit of Global Health, Department of Health Sciences, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
- Department of Management Sciences, Open University, Heerlen, Netherlands
| | - Susana L. Silva
- Serviço de Imunoalergologia, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jose Drabwell
- International Patient Organisation for Primary Immunodeficiencies (IPOPI), Brussels, Belgium
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Adli Ali
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, Universiti Kebangsaan Malaysia (UKM) Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siobhan O. Burns
- Department of Immunology, Royal Free London National Heath System (NHS) Foundation Trust, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Martin van Hagen
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martine Pergent
- International Patient Organisation for Primary Immunodeficiencies (IPOPI), Brussels, Belgium
| | - Nizar Mahlaoui
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker-Enfants malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
2
|
Jandus C, Jandus P. Effects of Intravenous Immunoglobulins on Human Innate Immune Cells: Collegium Internationale Allergologicum Update 2024. Int Arch Allergy Immunol 2024; 185:975-996. [PMID: 38852585 DOI: 10.1159/000539069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Intravenous immunoglobulin (IVIg) has been used for almost 40 years in the treatment of autoimmune and systemic inflammatory diseases. Numerous cells are involved in the innate immune response, including monocytes/macrophages, neutrophils, dendritic cells, mast cells, basophils, eosinophils, natural killer cells, and innate lymphoid cells. Many studies have investigated the mechanisms by which IVIg down-modulates inflammatory and autoimmune processes of innate immune cells. However, questions remain regarding the precise mechanism of action in autoimmune or inflammatory conditions. The aim of this work was to review the immunomodulatory effect of IVIg on only human innate immune cells. A narrative review approach was chosen to summarize key evidence on the immunomodulatory effects of commercially available and unmodified IVIg on human innate immune cells. SUMMARY Numerous different immunomodulatory effects of IVIg have been reported, with some very different effects depending on the immune cell type and disease. Several limitations of the different studies were identified. Of the 77 studies identified and reviewed, 29 (37.7%) dealt with autoimmune or inflammatory diseases. Otherwise, the immunomodulatory effects of IVIg were studied only in healthy donors using an in vitro experimental approach. Some of the documented effects showed disease-specific effects, such as in Kawasaki disease. Various methodological limitations have also been identified that may reduce the validity of some studies. KEY MESSAGE As further insights have been gained into the various inflammatory cascades activated in immunological diseases, interesting insights have also been gained into the mechanism of action of IVIg. We are still far from discovering all the immunomodulatory mechanisms of IVIg.
Collapse
Affiliation(s)
- Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Geneva Center for Inflammation Research, Geneva, Switzerland
- Translational Research Centre in Onco-Haematology (CRTOH), Geneva, Switzerland
| | - Peter Jandus
- Division of Immunology and Allergology, University Hospitals and Medical Faculty, Geneva, Switzerland
| |
Collapse
|
3
|
Pinho SS, Alves I, Gaifem J, Rabinovich GA. Immune regulatory networks coordinated by glycans and glycan-binding proteins in autoimmunity and infection. Cell Mol Immunol 2023; 20:1101-1113. [PMID: 37582971 PMCID: PMC10541879 DOI: 10.1038/s41423-023-01074-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
The immune system is coordinated by an intricate network of stimulatory and inhibitory circuits that regulate host responses against endogenous and exogenous insults. Disruption of these safeguard and homeostatic mechanisms can lead to unpredictable inflammatory and autoimmune responses, whereas deficiency of immune stimulatory pathways may orchestrate immunosuppressive programs that contribute to perpetuate chronic infections, but also influence cancer development and progression. Glycans have emerged as essential components of homeostatic circuits, acting as fine-tuners of immunological responses and potential molecular targets for manipulation of immune tolerance and activation in a wide range of pathologic settings. Cell surface glycans, present in cells, tissues and the extracellular matrix, have been proposed to serve as "self-associated molecular patterns" that store structurally relevant biological data. The responsibility of deciphering this information relies on different families of glycan-binding proteins (including galectins, siglecs and C-type lectins) which, upon recognition of specific carbohydrate structures, can recalibrate the magnitude, nature and fate of immune responses. This process is tightly regulated by the diversity of glycan structures and the establishment of multivalent interactions on cell surface receptors and the extracellular matrix. Here we review the spatiotemporal regulation of selected glycan-modifying processes including mannosylation, complex N-glycan branching, core 2 O-glycan elongation, LacNAc extension, as well as terminal sialylation and fucosylation. Moreover, we illustrate examples that highlight the contribution of these processes to the control of immune responses and their integration with canonical tolerogenic pathways. Finally, we discuss the power of glycans and glycan-binding proteins as a source of immunomodulatory signals that could be leveraged for the treatment of autoimmune inflammation and chronic infection.
Collapse
Affiliation(s)
- Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal.
- Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
| | - Inês Alves
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Joana Gaifem
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Ciudad de Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
4
|
Abstract
Glycosylation has a profound influence on protein activity and cell biology through a variety of mechanisms, such as protein stability, receptor interactions and signal transduction. In many rheumatic diseases, a shift in protein glycosylation occurs, and is associated with inflammatory processes and disease progression. For example, the Fc-glycan composition on (auto)antibodies is associated with disease activity, and the presence of additional glycans in the antigen-binding domains of some autoreactive B cell receptors can affect B cell activation. In addition, changes in synovial fibroblast cell-surface glycosylation can alter the synovial microenvironment and are associated with an altered inflammatory state and disease activity in rheumatoid arthritis. The development of our understanding of the role of glycosylation of plasma proteins (particularly (auto)antibodies), cells and tissues in rheumatic pathological conditions suggests that glycosylation-based interventions could be used in the treatment of these diseases.
Collapse
Affiliation(s)
- Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
5
|
Ballow M. Immunoglobulin Therapy: Replacement and Immunomodulation. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
6
|
Fan J, Wang S, Chen K, Sun Z. Aging impairs arterial compliance via Klotho-mediated downregulation of B-cell population and IgG levels. Cell Mol Life Sci 2022; 79:494. [PMID: 36001158 PMCID: PMC10082671 DOI: 10.1007/s00018-022-04512-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Aging is associated with compromised immune function and arterial remodeling and stiffness. The purpose of this study is to investigate whether in vivo AAV-based delivery of secreted Klotho (SKL) gene (AAV-SKL) improves aging- and senescence-associated immune dysfunction and arterial stiffness. METHODS AND RESULTS Senescence-accelerated mice prone strain 1 (SAMP1, 10 months) and old mice (20 months) were used. Serum SKL levels, B-cell population and serum IgG levels were markedly decreased in SAMP1 and old mice. Rescue of downregulation of serum SKL levels by in vivo AAV2-based delivery of SKL gene (AAV-SKL) increased B-cell population and serum IgG levels and attenuated arterial stiffness in SAMP1 and old mice. Thus, Klotho deficiency may play a role in senescence- and aging-associated humoral immune dysfunction and arterial stiffness. Vascular infiltration of inflammatory cells and expression of TGFβ1, collagen 1, scleraxis, MMP-2 and MMP-9 were increased while the elastin level was decreased in aortas of SAMP1 and old mice which can be rescued by AAV-SKL. Interestingly, treatment with IgG effectively rescued arterial inflammation and remodeling and attenuated arterial stiffness and hypertension in aging mice. In cultured B-lymphoblast cells, we further showed that SKL regulates B-cell proliferation and maturation partly via the NFkB pathway. CONCLUSION Aging-associated arterial stiffening may be largely attributed to downregulation of B-cell population and serum IgG levels. AAV-SKL attenuates arterial stiffness in aging mice partly via restoring B-cell population and serum IgG levels which attenuates aging-associated vascular inflammation and arterial remodeling.
Collapse
Affiliation(s)
- Jun Fan
- Department of Physiology, College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Shirley Wang
- Department of Physiology, College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Kai Chen
- Department of Physiology, College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, A302 Coleman Building, 956 Court Avenue, Memphis, TN, 38163, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, A302 Coleman Building, 956 Court Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
7
|
Wolf B, Piksa M, Beley I, Patoux A, Besson T, Cordier V, Voedisch B, Schindler P, Stöllner D, Perrot L, von Gunten S, Brees D, Kammüller M. Therapeutic antibody glycosylation impacts antigen recognition and immunogenicity. Immunology 2022; 166:380-407. [PMID: 35416297 DOI: 10.1111/imm.13481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
In this study we show that glycosylation is relevant for immune recognition of therapeutic antibodies, and that defined glycan structures can modulate immunogenicity. Concerns regarding immunogenicity arise from the high heterogeneity in glycosylation that is difficult to control and can deviate from human glycosylation if produced in non-human cell lines. While non-human glycosylation is thought to cause hypersensitivity reactions and immunogenicity, less is known about effects of Fc-associated glycan structures on immune cell responses. We postulated that glycosylation influences antigen recognition and subsequently humoral responses to therapeutic antibodies by modulating 1) recognition and uptake by dendritic cells (DCs), and 2) antigen routing, processing and presentation. Here, we compared different glycosylation variants of the antibody rituximab (RTX) in in vitro assays using human DCs and T cells as well as in in vivo studies. We found that human DCs bind and internalize unmodified RTX stronger compared to its aglycosylated form suggesting that glycosylation mediates uptake after recognition by glycan-specific receptors. Furthermore, we show that DC-uptake of RTX increases or decreases if glycosylation is selectively modified to recognize activating (by mannosylation) or inhibitory lectin receptors (by sialylation). Moreover, glycosylation seems to influence antigen presentation by DCs because specific glycovariants tend to induce either stronger or weaker T cell activation. Finally, we demonstrate that antibody glycosylation impacts anti-drug antibody (ADA) responses to RTX in vivo. Hence, defined glycan structures can modulate immune recognition and alter ADA responses. Glyco-engineering may help to decrease clinical immunogenicity and ADA-associated adverse events such as hypersensitivity reactions.
Collapse
Affiliation(s)
- Babette Wolf
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mateusz Piksa
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Isabelle Beley
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Agnes Patoux
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thierry Besson
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Valerie Cordier
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Bernd Voedisch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Ludovic Perrot
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Dominique Brees
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
8
|
Zhou X, Ahn DU, Xia M, Zeng Q, Li X, Cai Z. Fab Fragment of Immunoglobulin Y Modulates NF-κB and MAPK Signaling through TLR4 and αVβ3 Integrin and Inhibits the Inflammatory Effect on R264.7 Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8747-8757. [PMID: 34337939 DOI: 10.1021/acs.jafc.1c03330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-purity Fab fragment and immunoglobulin Y (IgY) were prepared to evaluate their anti-inflammatory activity in the lipopolysaccharide (LPS)-induced Raw 264.7 macrophage system. Compared with IgY, the Fab fragment possessed a greater potency in inhibiting the inflammation by nitric oxide (NO)/inducible nitric oxide synthase (iNOS) and prostaglandin-E2 (PGE2)/cyclooxygenase-2 (COX-2) pathways. The Fab fragment attenuated the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) to 38.07 ± 1.86-48.39 ± 11.33 pg/mL (63.1-71.0% inhibition), 31.59 ± 3.91-38.08 ± 4.44 pg/mL (72.4-77.1% inhibition), and 20.62 ± 0.46-21.91 ± 0.65 pg/mL (50-53% inhibition), respectively. Additionally, the Fab fragment significantly inhibited the translocation of nuclear transcription factor-κB (NF-κB) p65 and the phosphorylation of mitogen-activated protein kinase (MAPK) proteins, including ERK1/2 (41.5/33.2%), JNK1/2 (44.2/39.6%), and p38 (42.2%). The Fab fragment could be internalized into cells, and the pretreatment of RAW 264.7 macrophages with the Fab fragment reduced the mRNA expression of the Toll-like receptor (TLR4, 32.7-44.4% inhibition) and αVβ3 integrin (76.1% inhibition). In conclusion, Fab fragments regulated the TLR4 and αVβ3 integrin-mediated inflammatory processes by blocking the NF-κB and MAPKs pathways in the LPS-induced RAW 264.7 macrophage system.
Collapse
Affiliation(s)
- Xin Zhou
- Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, United States
| | - Minquan Xia
- Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zeng
- Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaomeng Li
- Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoxia Cai
- Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Kumar D, Gauthami S, Bayry J, Kaveri SV, Hegde NR. Antibody Therapy: From Diphtheria to Cancer, COVID-19, and Beyond. Monoclon Antib Immunodiagn Immunother 2021; 40:36-49. [PMID: 33900819 DOI: 10.1089/mab.2021.0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dawn of the 20th century saw the formative years of developments in immunology. In particular, immunochemistry, specifically pertaining to antibodies, was extensively studied. These studies laid the foundations for employing antibodies in a variety of ways. Not surprisingly, antibodies have been used for applications ranging from biomedical research to disease diagnostics and therapeutics to evaluation of immune responses during natural infection and those elicited by vaccines. Despite recent advancements in cellular immunology and the excitement of T cell therapy, use of antibodies represents a large proportion of immunotherapeutic approaches as well as clinical interventions. Polyclonal antibodies in the form of plasma or sera continue to be used to treat a number of diseases, including autoimmune disorders, cancers, and infectious diseases. Historically, antisera to toxins have been the longest serving biotherapeutics. In addition, intravenous immunoglobulins (IVIg) have been extensively used to treat not only immunodeficiency conditions but also autoimmune disorders. Beyond the simplistic suppositions of their action, the IVIg have also unraveled the immune regulatory and homeostatic ramifications of their use. The advent of monoclonal antibodies (MAbs), on the other hand, has provided a clear pathway for their development as drug molecules. MAbs have found a clear place in the treatment of cancers and extending lives and have been used in a variety of other conditions. In this review, we capture the important developments in the therapeutic applications of antibodies to alleviate disease, with a focus on some of the recent developments.
Collapse
Affiliation(s)
| | - Sulgey Gauthami
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Indian Institute of Technology Palakkad, Palakkad, Kerala, India
| | - Srinivas V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique (CNRS) Bureau India, IFI, New Delhi, India
| | | |
Collapse
|
10
|
Yang L, Zhang Q, Lin L, Xu Y, Huang Y, Hu Z, Wang K, Zhang C, Yang P, Yu H. Microarray investigation of glycan remodeling during macrophage polarization reveals α2,6 sialic acid as an anti-inflammatory indicator. Mol Omics 2021; 17:565-571. [PMID: 34002197 DOI: 10.1039/d0mo00192a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycosylation is a widely occurring posttranslational modification. Here, we applied a quick, convenient and high-throughput strategy (lectin array) to investigate the variation in glycans on different macrophage subtypes derived from THP-1 and RAW264.7 cells. For THP-1 cells, there were more significant differences in the glycan on M2 macrophages compared to the other two subtypes. In contrast, M1 macrophages exhibited more significant glycan remodeling than the other subtypes for the RAW264.7 cell line. The response of the lectins which recogonize the N-glycan and α2,6 sialic acid was higher during polarization into anti-inflammatory phase (THP-1 derived M2 subtypes), and lower in pro-inflammatory phase (RAW264.7 M1 subtypes). The regulation of several α2,6 sialyltransferase genes was coincident with the regulation of the α2,6 sialic acid on the two cell lines. The lectin response and glycosyltranferase gene expression confirmed that α2,6 sialic acid showed higher expression in the anti-inflammatory phase. This indicated that α2,6 sialic acid was a potential indicator for the anti-inflammatory response.
Collapse
Affiliation(s)
- Lujie Yang
- Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Fudan University, Shanghai, 200032, China.
| | - Quanqing Zhang
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, USA
| | - Ling Lin
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen 361008, China
| | - Ying Xu
- Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Fudan University, Shanghai, 200032, China.
| | - Yuanyu Huang
- Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Fudan University, Shanghai, 200032, China.
| | - Zuojian Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Ke Wang
- Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Fudan University, Shanghai, 200032, China.
| | - Cuiping Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Pengyuan Yang
- Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Fudan University, Shanghai, 200032, China.
| | - Hongxiu Yu
- Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Liu X, Cao W, Li T. High-Dose Intravenous Immunoglobulins in the Treatment of Severe Acute Viral Pneumonia: The Known Mechanisms and Clinical Effects. Front Immunol 2020; 11:1660. [PMID: 32760407 PMCID: PMC7372093 DOI: 10.3389/fimmu.2020.01660] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
The current outbreak of viral pneumonia, caused by novel coronavirus SARS-CoV-2, is the focus of worldwide attention. The WHO declared the COVID-19 outbreak a pandemic event on Mar 12, 2020, and the number of confirmed cases is still on the rise worldwide. While most infected individuals only experience mild symptoms or may even be asymptomatic, some patients rapidly progress to severe acute respiratory failure with substantial mortality, making it imperative to develop an efficient treatment for severe SARS-CoV-2 pneumonia alongside supportive care. So far, the optimal treatment strategy for severe COVID-19 remains unknown. Intravenous immunoglobulin (IVIg) is a blood product pooled from healthy donors with high concentrations of immunoglobulin G (IgG) and has been used in patients with autoimmune and inflammatory diseases for more than 30 years. In this review, we aim to highlight the known mechanisms of immunomodulatory effects of high-dose IVIg therapy, the immunopathological hypothesis of viral pneumonia, and the clinical evidence of IVIg therapy in viral pneumonia. We then make cautious therapeutic inferences about high-dose IVIg therapy in treating severe COVID-19. These inferences may provide relevant and useful insights in order to aid treatment for COVID-19.
Collapse
Affiliation(s)
- Xiaosheng Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Taisheng Li
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Fitzpatrick EA, Wang J, Strome SE. Engineering of Fc Multimers as a Protein Therapy for Autoimmune Disease. Front Immunol 2020; 11:496. [PMID: 32269572 PMCID: PMC7109252 DOI: 10.3389/fimmu.2020.00496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
The success of Intravenous Immunoglobulin in treating autoimmune and inflammatory processes such as immune thrombocytopenia purpura and Kawasaki disease has led to renewed interest in developing recombinant molecules capable of recapitulating these therapeutic effects. The anti-inflammatory properties of IVIG are, in part, due to the Fc region of the IgG molecule, which interacts with activating or inhibitory Fcγ receptors (FcγRs), the neonatal Fc Receptor, non-canonical FcRs expressed by immune cells and complement proteins. In most cases, Fc interactions with these cognate receptors are dependent upon avidity—avidity which naturally occurs when polyclonal antibodies recognize unique antigens on a given target. The functional consequences of these avid interactions include antibody dependent cell-mediated cytotoxicity, antibody dependent cell phagocytosis, degranulation, direct killing, and/or complement activation—all of which are associated with long-term immunomodulatory effects. Many of these immunologic effects can be recapitulated using recombinant or non-recombinant approaches to induce Fc multimerization, affording the potential to develop a new class of therapeutics. In this review, we discuss the history of tolerance induction by immune complexes that has led to the therapeutic development of artificial Fc bearing immune aggregates and recombinant Fc multimers. The contribution of structure, aggregation and N-glycosylation to human IgG: FcγR interactions and the functional effect(s) of these interactions are reviewed. Understanding the mechanisms by which Fc multimers induce tolerance and attempts to engineer Fc multimers to target specific FcγRs and/or specific effector functions in autoimmune disorders is explored in detail.
Collapse
Affiliation(s)
- Elizabeth A Fitzpatrick
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Jin Wang
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - S E Strome
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| |
Collapse
|
13
|
Karnam A, Rambabu N, Das M, Bou-Jaoudeh M, Delignat S, Käsermann F, Lacroix-Desmazes S, Kaveri SV, Bayry J. Therapeutic normal IgG intravenous immunoglobulin activates Wnt-β-catenin pathway in dendritic cells. Commun Biol 2020; 3:96. [PMID: 32132640 PMCID: PMC7055225 DOI: 10.1038/s42003-020-0825-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/12/2020] [Indexed: 12/24/2022] Open
Abstract
Therapeutic normal IgG intravenous immunoglobulin (IVIG) is a well-established first-line immunotherapy for many autoimmune and inflammatory diseases. Though several mechanisms have been proposed for the anti-inflammatory actions of IVIG, associated signaling pathways are not well studied. As β-catenin, the central component of the canonical Wnt pathway, plays an important role in imparting tolerogenic properties to dendritic cells (DCs) and in reducing inflammation, we explored whether IVIG induces the β-catenin pathway to exert anti-inflammatory effects. We show that IVIG in an IgG-sialylation independent manner activates β-catenin in human DCs along with upregulation of Wnt5a secretion. Mechanistically, β-catenin activation by IVIG requires intact IgG and LRP5/6 co-receptors, but FcγRIIA and Syk are not implicated. Despite induction of β-catenin, this pathway is dispensable for anti-inflammatory actions of IVIG in vitro and for mediating the protection against experimental autoimmune encephalomyelitis in vivo in mice, and reciprocal regulation of effector Th17/Th1 and regulatory T cells.
Collapse
Affiliation(s)
- Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France
| | - Naresh Rambabu
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France
| | - Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France
| | - Melissa Bou-Jaoudeh
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France
| | - Sandrine Delignat
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France
| | - Fabian Käsermann
- CSL Behring, Research, CSL Biologics Research Center, 3014, Bern, Switzerland
| | - Sébastien Lacroix-Desmazes
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France.
| |
Collapse
|
14
|
Abstract
The precise mechanisms underlying anti-inflammatory effects of intravenous immunoglobulin (IVIg) therapies remain elusive. The sialylated IgG fraction within IVIg has been shown to be therapeutically more active in mouse models. Functionally, it has been suggested that IgG undergoes conformational changes upon Fc-sialylation which sterically impede binding to conventional FcγRs, but simultaneously allow binding to human DC-SIGN (SIGN-R1 in mice) and also CD23. These latter C-type lectins have been proposed responsible for the immunomodulatory effects in mouse models. However, there is conflicting evidence supporting direct interactions between sialylated human IgG and CD23/DC-SIGN. While cells expressing human CD23 and DC-SIGN in their native configuration bound their natural ligands IgE and ICAM-3, respectively, no IgG binding was observed, regardless of Fc-glycan sialylation in any context (with or without bisection and/or fucosylation) or presence of sialylated Fab-glycans. This was tested by both by FACS and a novel cellular Surface Plasmon Resonance imaging (cSPRi) approach allowing for monitoring low-affinity but high-avidity interactions. In summary, we find no evidence for human CD23 or DC-SIGN being bona fide receptors to human IgG, regardless of IgG Fc- or Fab-glycosylation status. However, these results do not exclude the possibility that either IgG glycosylation or C-type lectins affect IVIg therapies.
Collapse
|
15
|
Galeotti C, Kaveri SV, Bayry J. IVIG-mediated effector functions in autoimmune and inflammatory diseases. Int Immunol 2019; 29:491-498. [PMID: 28666326 DOI: 10.1093/intimm/dxx039] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is a pooled preparation of normal IgG obtained from several thousand healthy donors. It is widely used in the immunotherapy of a large number of autoimmune and inflammatory diseases. The mechanisms of action of IVIG are complex and, as discussed in this review, experimental and clinical data provide an indicator that the therapeutic benefit of IVIG therapy is due to several mutually non-exclusive mechanisms affecting soluble mediators as well as cellular components of the immune system. These mechanisms depend on Fc and/or F(ab')2 fragments. A better understanding of the effector functions of IVIG should help in identification of biomarkers of responses to IVIG in autoimmune patients.
Collapse
Affiliation(s)
- Caroline Galeotti
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Department of Pediatric Rheumatology, National Referral Centre of Auto-inflammatory Diseases, CHU de Bicêtre, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
16
|
Immunoglobulin Therapy. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Dalziel M, Beers SA, Cragg MS, Crispin M. Through the barricades: overcoming the barriers to effective antibody-based cancer therapeutics. Glycobiology 2018; 28:697-712. [PMID: 29800150 DOI: 10.1093/glycob/cwy043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
Since the turn of the century, cancer therapy has undergone a transformation in terms of new treatment modalities and renewed optimism in achieving long-lived tumor control and even cure. This is, in large part, thanks to the widespread incorporation of monoclonal antibodies (mAbs) into standard treatment regimens. These new therapies have, across many settings, significantly contributed to improved clinical responses, patient quality of life and survival. Moreover, the flexibility of the antibody platform has led to the development of a wide range of innovative and combinatorial therapies that continue to augment the clinician's armory. Despite these successes, there is a growing awareness that in many cases mAb therapy remains suboptimal, primarily due to inherent limitations imposed by the immune system's own homeostatic controls and the immunosuppressive tumor microenvironment. Here, we discuss the principal barriers that act to constrain the tumor-killing activity of antibody-based therapeutics, particularly those involving antibody glycans, using illustrative examples from both pre-clinical and market approved mAbs. We also discuss strategies that have been, or are in development to overcome these obstacles. Finally, we outline how the growing understanding of the biological terrain in which mAbs function is shaping innovation and regulation in cancer therapeutics.
Collapse
Affiliation(s)
- Martin Dalziel
- Oxford Glycobiology Institute, Department of Biochemistry, South Parks Road, Oxford, UK
| | - Stephen A Beers
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mark S Cragg
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Max Crispin
- Centre for Biological Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton, UK
| |
Collapse
|
18
|
Muyayalo KP, Li ZH, Mor G, Liao AH. Modulatory effect of intravenous immunoglobulin on Th17/Treg cell balance in women with unexplained recurrent spontaneous abortion. Am J Reprod Immunol 2018; 80:e13018. [PMID: 29984444 DOI: 10.1111/aji.13018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a growing problem worldwide. In a majority of cases, the cause remains unknown but there is increasing evidence that immunologic factors play an important role. Intravenous immunoglobulin (IVIg) therapy has been proposed to have immune modulatory effects and therefore been applicable for the treatment of patients with RSA. Although its efficacy is still controversial, several recent studies suggest that IVIg treatment may improve pregnancy outcomes. CD4+ T cells and their related cytokines play an important role in maternal-fetal immune regulation, and an imbalance of Th17/Treg cell ratio has been proposed as a cause for RSA. We review the scientific evidence supporting a modulatory effect of IVIg on Th17/Treg cell balance and discuss the potential mechanisms how IVIg might enhance Treg cells function. We propose that correction of Th17/Treg cell dysregulation could be one of the mechanisms that can explain the positive therapeutic effects of IVIg therapy. Consequently, selecting patients with abnormal Th17/Treg cell ratios could increase the success of IVIg therapy.
Collapse
Affiliation(s)
- Kahinho P Muyayalo
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Hui Li
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Reproductive Immunology Unit, Department of Obstetrics Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, Connecticut
| | - Ai-Hua Liao
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Dekkers G, Rispens T, Vidarsson G. Novel Concepts of Altered Immunoglobulin G Galactosylation in Autoimmune Diseases. Front Immunol 2018; 9:553. [PMID: 29616041 PMCID: PMC5867308 DOI: 10.3389/fimmu.2018.00553] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
The composition of the conserved N297 glycan in immunoglobulin G (IgG) has been shown to affect antibody effector functions via C1q of the complement system and Fc gamma receptors (FcγR) on immune cells. Changes in the general levels of IgG-glycoforms, such as lowered total IgG galactosylation observed in many autoimmune diseases have been associated with elevated disease severity. Agalactosyslated IgG has therefore been regarded and classified by many as pro-inflammatory. However, and somewhat counterintuitively, agalactosylation has been shown by several groups to decrease affinity for FcγRIII and decrease C1q binding and downstream activation, which seems at odds with this proposed pro-inflammatory nature. In this review, we discuss these circumstances where altered IgG galactosylation/glycosylation is found. We propose a novel model based on these observations and current biochemical evidence, where the levels of IgG galactosylation found in the total bulk IgG affect the threshold required to achieve immune activation by autoantibodies through either C1q or FcγR. Although this model needs experimental verification, it is supported by several clinical observations and reconciles apparent discrepancies in the literature, and suggests a general mechanism in IgG-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Gillian Dekkers
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands.,Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Finke JM, Banks WA. Modulators of IgG penetration through the blood-brain barrier: Implications for Alzheimer's disease immunotherapy. Hum Antibodies 2018; 25:131-146. [PMID: 28035915 DOI: 10.3233/hab-160306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review serves to highlight approaches that may improve the access of antibody drugs to regions of the brain affected by Alzheimer's Disease. While previous antibody drugs have been unsuccessful in treating Alzheimer's disease, recent work demonstrates that Alzheimer's pathology can be modified if these drugs can penetrate the brain parenchyma with greater efficacy. Research in antibody blood-brain barrier drug delivery predominantly follows one of three distinct directions: (1) enhancing influx with reduced antibody size, addition of Trojan horse modules, or blood-brain barrier disruption; (2) modulating trancytotic equilibrium and/or kinetics of the neonatal Fc Receptor; and (3) manipulation of antibody glycan carbohydrate composition. In addition to these topics, recent studies are discussed that reveal a role of glycan sialic acid in suppressing antibody efflux from the brain.
Collapse
Affiliation(s)
- John M Finke
- Division of Sciences and Mathematics, Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Geriatric Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
21
|
Pagan JD, Kitaoka M, Anthony RM. Engineered Sialylation of Pathogenic Antibodies In Vivo Attenuates Autoimmune Disease. Cell 2018; 172:564-577.e13. [PMID: 29275858 PMCID: PMC5849077 DOI: 10.1016/j.cell.2017.11.041] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/20/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
Abstract
Self-reactive IgGs contribute to the pathology of autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. Paradoxically, IgGs are used to treat inflammatory diseases in the form of high-dose intravenous immunoglobulin (IVIG). Distinct glycoforms on the IgG crystallizable fragment (Fc) dictate these divergent functions. IgG anti-inflammatory activity is attributed to sialylation of the Fc glycan. We therefore sought to convert endogenous IgG to anti-inflammatory mediators in vivo by engineering solubilized glycosyltransferases that attach galactose or sialic acid. When both enzymes were administered in a prophylactic or therapeutic fashion, autoimmune inflammation was markedly attenuated in vivo. The enzymes worked through a similar pathway to IVIG, requiring DC-SIGN, STAT6 signaling, and FcγRIIB. Importantly, sialylation was highly specific to pathogenic IgG at the site of inflammation, driven by local platelet release of nucleotide-sugar donors. These results underscore the therapeutic potential of glycoengineering in vivo.
Collapse
Affiliation(s)
- Jose D Pagan
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Maya Kitaoka
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
22
|
Han AR, Lee SK. Immune modulation of i.v. immunoglobulin in women with reproductive failure. Reprod Med Biol 2018; 17:115-124. [PMID: 29692668 PMCID: PMC5902469 DOI: 10.1002/rmb2.12078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022] Open
Abstract
Background The mechanism of maternal immune tolerance of the semi‐allogenic fetus has been explored extensively. The immune reaction to defend from invasion by pathogenic microorganisms should be maintained during pregnancy. An imbalance between the immune tolerance to the fetus and immune activation to the pathogenic organisms is associated with poor pregnancy outcomes. This emphasizes that the immune mechanism of successful reproduction is not just immune suppression, but adequate immune modulation. Methods In this review, the action of i.v. immunoglobulin G (IVIg) on the immune system and its efficacy in reproductive failure (RF) was summarized. Also suggested is the indication of IVIg therapy for women with RF. Main findings (Results) Based on the mechanism of the immune regulation of IVIg and following confirmation of the immune modulation effects of it in various aberrant immune parameters in patients with RF, it is obvious that IVIg is effective in recurrent pregnancy losses and repeated implantation failures with immunologic disturbances. Conclusion The authors recommend IVIg therapy in patients with RF with aberrant cellular immunologic parameters, including a high natural killer cell proportion and its cytotoxicity or elevated T helper 1 to T helper 2 ratio, based on each clinic's cut‐off values. Further clinical studies about the safety of IVIg in the fetus and its efficacy in other immunologic abnormalities of RF are needed.
Collapse
Affiliation(s)
- Ae R Han
- Department of Obstetrics and Gynecology Gangseo Mizmedi Hospital Seoul South Korea.,Department of Obstetrics and Gynecology Eulji University College of Medicine Daejeon South Korea
| | - Sung K Lee
- Department of Obstetrics and Gynecology Konyang University College of Medicine Daejeon South Korea
| |
Collapse
|
23
|
Smith AM, Huber VC. The Unexpected Impact of Vaccines on Secondary Bacterial Infections Following Influenza. Viral Immunol 2017; 31:159-173. [PMID: 29148920 DOI: 10.1089/vim.2017.0138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infections remain a significant health burden worldwide, despite available vaccines. Factors that contribute to this include a lack of broad coverage by current vaccines and continual emergence of novel virus strains. Further complicating matters, when influenza viruses infect a host, severe infections can develop when bacterial pathogens invade. Secondary bacterial infections (SBIs) contribute to a significant proportion of influenza-related mortality, with Streptococcus pneumoniae, Staphylococcus aureus, Streptococcus pyogenes, and Haemophilus influenzae as major coinfecting pathogens. Vaccines against bacterial pathogens can reduce coinfection incidence and severity, but few vaccines are available and those that are, may have decreased efficacy in influenza virus-infected hosts. While some studies indicate a benefit of vaccine-induced immunity in providing protection against SBIs, a comprehensive understanding is lacking. In this review, we discuss the current knowledge of viral and bacterial vaccine availability, the generation of protective immunity from these vaccines, and the effectiveness in limiting influenza-associated bacterial infections.
Collapse
Affiliation(s)
- Amber M Smith
- 1 Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Victor C Huber
- 2 Division of Basic Biomedical Sciences, University of South Dakota , Vermillion, South Dakota
| |
Collapse
|
24
|
Sordé L, Spindeldreher S, Palmer E, Karle A. Massive immune response against IVIg interferes with response against other antigens in mice: A new mode of action? PLoS One 2017; 12:e0186046. [PMID: 29023507 PMCID: PMC5638328 DOI: 10.1371/journal.pone.0186046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/25/2017] [Indexed: 11/19/2022] Open
Abstract
Administration of high dose intravenous immunoglobulin (IVIg) is widely used in the clinic to treat autoimmune and severe inflammatory diseases. However, its mechanisms of action remain poorly understood. We assessed the impact of IVIg on immune cell populations using an in vivo ovalbumin (Ova)-immunization mouse model. High dose IVIg significantly reduced the Ova-specific antibody response. Intriguingly, the results obtained indicate an immediate and massive immune reaction against IVIg, as shown by the activation and expansion of B cells and CD4+ T cells in the spleen and draining lymph nodes and the production of IVIg-specific antibodies. We propose that IVIg competes at the T-cell level with the response against Ova to explain the immunomodulatory properties of IVIg. Two monoclonal antibodies did not succeeded in reproducing the effects of IVIg. This suggests that in addition to the mouse response against human constant domains, the enormous sequence diversity of IVIg may significantly contribute to this massive immune response against IVIg. While correlation of these findings to IVIg-treated patients remains to be explored, our data demonstrate for the first time that IVIg re-directs the immune response towards IVIg and away from a specific antigen response.
Collapse
Affiliation(s)
- Laetitia Sordé
- Novartis Pharma AG, Integrated Biologics Profiling Unit, Immunogenicity Risk Assessment, Basel, Switzerland
| | - Sebastian Spindeldreher
- Novartis Institute for Biomedical Research, Drug Metabolism and Pharmacokinetics, Biologics, Basel, Switzerland
| | - Ed Palmer
- University Hospital Basel, Department of Biomedicine, Transplantation Immunology and Nephrology, Basel, Switzerland
| | - Anette Karle
- Novartis Pharma AG, Integrated Biologics Profiling Unit, Immunogenicity Risk Assessment, Basel, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Quast I, Peschke B, Lünemann JD. Regulation of antibody effector functions through IgG Fc N-glycosylation. Cell Mol Life Sci 2017; 74:837-847. [PMID: 27639381 PMCID: PMC11107549 DOI: 10.1007/s00018-016-2366-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 02/03/2023]
Abstract
Immunoglobulin gamma (IgG) antibodies are key effector proteins of the immune system. They recognize antigens with high specificity and are indispensable for immunological memory following pathogen exposure or vaccination. The constant, crystallizable fragment (Fc) of IgG molecules mediates antibody effector functions such as complement-dependent cytotoxicity, antibody-mediated cellular cytotoxicity, and antibody-dependent cell-mediated phagocytosis. These functions are regulated by a single N-linked, biantennary glycan of the heavy chain, which resides just below the hinge region, and the presence of specific sugar moieties on the glycan has profound implications on IgG effector functions. Emerging knowledge of how Fc glycans contribute to IgG structure and functions has opened new avenues for the therapeutic exploitation of defined antibody glycoforms in the treatment of cancer and autoimmune diseases. Here, we review recent advances in understanding proinflammatory IgG effector functions and their regulation by Fc glycans.
Collapse
Affiliation(s)
- Isaak Quast
- Laboratory of Neuroinflammation, Department of Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Benjamin Peschke
- Laboratory of Neuroinflammation, Department of Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jan D Lünemann
- Laboratory of Neuroinflammation, Department of Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
26
|
Jefferis R. Recombinant Proteins and Monoclonal Antibodies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 175:281-318. [DOI: 10.1007/10_2017_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
28
|
Le NPL, Bowden TA, Struwe WB, Crispin M. Immune recruitment or suppression by glycan engineering of endogenous and therapeutic antibodies. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:1655-68. [PMID: 27105835 PMCID: PMC4922387 DOI: 10.1016/j.bbagen.2016.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/20/2022]
Abstract
Human serum IgG contains multiple glycoforms which exhibit a range of binding properties to effector molecules such as cellular Fc receptors. Emerging knowledge of how the Fc glycans contribute to the antibody structure and effector functions has opened new avenues for the exploitation of defined antibody glycoforms in the treatment of diseases. Here, we review the structure and activity of antibody glycoforms and highlight developments in antibody glycoengineering by both the manipulation of the cellular glycosylation machinery and by chemoenzymatic synthesis. We discuss wide ranging applications of antibody glycoengineering in the treatment of cancer, autoimmunity and inflammation. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Ngoc Phuong Lan Le
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
29
|
van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y. The Emerging Importance of IgG Fab Glycosylation in Immunity. THE JOURNAL OF IMMUNOLOGY 2016; 196:1435-41. [PMID: 26851295 DOI: 10.4049/jimmunol.1502136] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human IgG is the most abundant glycoprotein in serum and is crucial for protective immunity. In addition to conserved IgG Fc glycans, ∼15-25% of serum IgG contains glycans within the variable domains. These so-called "Fab glycans" are primarily highly processed complex-type biantennary N-glycans linked to N-glycosylation sites that emerge during somatic hypermutation. Specific patterns of Fab glycosylation are concurrent with physiological and pathological conditions, such as pregnancy and rheumatoid arthritis. With respect to function, Fab glycosylation can significantly affect stability, half-life, and binding characteristics of Abs and BCRs. Moreover, Fab glycans are associated with the anti-inflammatory activity of IVIgs. Consequently, IgG Fab glycosylation appears to be an important, yet poorly understood, process that modulates immunity.
Collapse
Affiliation(s)
- Fleur S van de Bovenkamp
- Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, the Netherlands; Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Lise Hafkenscheid
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, the Netherlands; Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands;
| | - Yoann Rombouts
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and Université Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| |
Collapse
|
30
|
Cowan J, Gaudet L, Mulpuru S, Corrales-Medina V, Hawken S, Cameron C, Aaron SD, Cameron DW. A Retrospective Longitudinal Within-Subject Risk Interval Analysis of Immunoglobulin Treatment for Recurrent Acute Exacerbation of Chronic Obstructive Pulmonary Disease. PLoS One 2015; 10:e0142205. [PMID: 26558756 PMCID: PMC4641695 DOI: 10.1371/journal.pone.0142205] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/19/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recurrent acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are common, debilitating, costly and often difficult to prevent. METHODS We reviewed records of patients who had COPD and immunoglobulin (Ig) treatment as adjunctive preventative treatment for AECOPD, and documented all AECOPD episodes for one year before and after initiation of Ig treatment. We graded AECOPD episodes as moderate for prescription of antibiotics and/or corticosteroids or for visit to the Emergency Department, and as severe for hospital admission. We conducted a retrospective within-subject self-controlled risk interval analysis to compare the outcome of annual AECOPD rate before and after treatment. RESULTS We identified 22 cases of certain COPD, of which three had early discontinuation of Ig treatment due to rash and local swelling to subcutaneous Ig, and five had incomplete records leaving 14 cases for analyses. The median baseline IgG level was 5.9 g/L (interquartile range 4.1-7.4). Eight had CT radiographic bronchiectasis. Overall, the incidence of AECOPD was consistently and significantly reduced in frequency from mean 4.7 (± 3.1) per patient-year before, to 0.6 (± 1.0) after the Ig treatment (p = 0.0001). There were twelve episodes of severe AECOPD (in seven cases) in the year prior, and one in the year after Ig treatment initiation (p = 0.016). CONCLUSIONS Ig treatment appears to decrease the frequency of moderate and severe recurrent AECOPD. A prospective, controlled evaluation of adjunctive Ig treatment to standard therapy of recurrent AECOPD is warranted.
Collapse
Affiliation(s)
- Juthaporn Cowan
- Division of Infectious Diseases, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Logan Gaudet
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Sunita Mulpuru
- Division of Respirology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Vicente Corrales-Medina
- Division of Infectious Diseases, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Steven Hawken
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Chris Cameron
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Shawn D. Aaron
- Division of Respirology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - D. William Cameron
- Division of Infectious Diseases, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Liu R, Giddens J, McClung CM, Magnelli PE, Wang LX, Guthrie EP. Evaluation of a glycoengineered monoclonal antibody via LC-MS analysis in combination with multiple enzymatic digestion. MAbs 2015; 8:340-6. [PMID: 26514686 PMCID: PMC4966608 DOI: 10.1080/19420862.2015.1113361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Glycosylation affects the efficacy, safety and pharmacokinetics/pharmacodynamics properties of therapeutic monoclonal antibodies (mAbs), and glycoengineering is now being used to produce mAbs with improved efficacy. In this work, a glycoengineered version of rituximab was produced by chemoenzymatic modification to generate human-like N-glycosylation with α 2,6 linked sialic acid. This modified rituximab was comprehensively characterized by liquid chromatography-mass spectrometry and compared to commercially available rituximab. As anticipated, the majority of N-glycans were converted to α 2,6 linked sialic acid, in contrast to CHO-produced rituximab, which only contains α 2,3 linked sialic acid. Typical posttranslational modifications, such as pyro-glutamic acid formation at the N-terminus, oxidation at methionine, deamidation at asparagine, and disulfide linkages were also characterized in both the commercial and glycoengineered mAbs using multiple enzymatic digestion and mass spectrometric analysis. The comparative study reveals that the glycoengineering approach does not cause any additional posttranslational modifications in the antibody except the specific transformation of the glycoforms, demonstrating the mildness and efficiency of the chemoenzymatic approach for glycoengineering of therapeutic antibodies.
Collapse
Affiliation(s)
- Renpeng Liu
- a New England Biolabs Inc. , Ipswich , MA 01938
| | - John Giddens
- b Department of Chemistry & Biochemistry ; University of Maryland , College Park , MD 20742
| | | | | | - Lai-Xi Wang
- b Department of Chemistry & Biochemistry ; University of Maryland , College Park , MD 20742
| | | |
Collapse
|
32
|
Kaufman GN, Massoud AH, Dembele M, Yona M, Piccirillo CA, Mazer BD. Induction of Regulatory T Cells by Intravenous Immunoglobulin: A Bridge between Adaptive and Innate Immunity. Front Immunol 2015; 6:469. [PMID: 26441974 PMCID: PMC4566032 DOI: 10.3389/fimmu.2015.00469] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/28/2015] [Indexed: 12/25/2022] Open
Abstract
Intravenous immunoglobulin (IVIg) is a polyclonal immunoglobulin G preparation with potent immunomodulatory properties. The mode of action of IVIg has been investigated in multiple disease states, with various mechanisms described to account for its benefits. Recent data indicate that IVIg increases both the number and the suppressive capacity of regulatory T cells, a subpopulation of T cells that are essential for immune homeostasis. IVIg alters dendritic cell function, cytokine and chemokine networks, and T lymphocytes, leading to development of regulatory T cells. The ability of IVIg to influence Treg induction has been shown both in animal models and in human diseases. In this review, we discuss data on the potential mechanisms contributing to the interaction between IVIg and the regulatory T-cell compartment.
Collapse
Affiliation(s)
- Gabriel N Kaufman
- Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre , Montreal, QC , Canada
| | - Amir H Massoud
- Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre , Montreal, QC , Canada ; Laboratory of Cellular and Molecular Immunology, University of Montreal Hospital Research Centre , Montreal, QC , Canada
| | - Marieme Dembele
- Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre , Montreal, QC , Canada
| | - Madelaine Yona
- Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre , Montreal, QC , Canada
| | - Ciriaco A Piccirillo
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre , Montreal, QC , Canada
| | - Bruce D Mazer
- Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre , Montreal, QC , Canada ; Department of Pediatrics, Faculty of Medicine, McGill University , Montreal, QC , Canada
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW In the past few years there have been many advances in our understanding of the mechanisms by which intravenous immune globulin (IVIG) modulates immune function in autoimmune disorders. RECENT FINDINGS Previous investigations have focused on the Fc domain of the IgG molecule, and the role of the FcγRIIB receptor and the sialylated Fc domain that have been show to mediate the anti-inflammatory effects in certain murine models of autoantibody-mediated diseases. More recent findings have implicated the F(ab')₂ domain in IVIG-induced immune modulation in T-cell-mediated autoimmune disease models in which upregulation of T-regulatory cells and downregulation of the Th17 pathways are important components of this mechanism. The prostaglandin E pathway may be playing a role in the IVIG-induced changes in the T-regulatory pathway. SUMMARY Many of the mechanisms proposed for the immune-modulating effects of IVIG demonstrate the complexity of immune effector functions in disease processes. Although controversy exists on the role of the FcγRIIB receptor and the importance of the sialylated Fc domain in human autoimmune disorders, probably no one single mechanism is responsible for the effects of IVIG in autoimmune and inflammatory diseases. The potential role of the prostaglandin E pathway may offer alternative treatments.
Collapse
|
34
|
Séïté JF, Hillion S, Harbonnier T, Pers JO. Review: intravenous immunoglobulin and B cells: when the product regulates the producer. Arthritis Rheumatol 2015; 67:595-603. [PMID: 25303681 DOI: 10.1002/art.38910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/07/2014] [Indexed: 01/08/2023]
|
35
|
Intravenous immunoglobulin (IVIg) dampens neuronal toll-like receptor-mediated responses in ischemia. J Neuroinflammation 2015; 12:73. [PMID: 25886362 PMCID: PMC4409750 DOI: 10.1186/s12974-015-0294-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 04/02/2015] [Indexed: 11/14/2022] Open
Abstract
Background Ischemic stroke causes a high rate of deaths and permanent neurological damage in survivors. Ischemic stroke triggers the release of damage-associated molecular patterns (DAMPs) such as high-mobility group box 1 (HMGB1), which activate toll-like receptors (TLRs) and receptor for advanced glycation endproducts (RAGE) in the affected area, leading to an exaggerated inflammatory response and cell death. Both TLRs and RAGE are transmembrane pattern recognition receptors (PRRs) that have been shown to contribute to ischemic stroke-induced brain injury. Intravenous immunoglobulin (IVIg) preparations obtained by fractionating human blood plasma are increasingly being used as an effective therapeutic agent in the treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke has been proposed, but little is known about the direct neuroprotective mechanisms of IVIg. We therefore investigate whether IVIg exerts its beneficial effects on the outcome of neuronal injury by modulating HMGB1-induced TLR and RAGE expressions and activations. Methods Primary cortical neurons were subjected to glucose deprivation or oxygen and glucose deprivation conditions and treated with IVIg and recombinant HMGB1. C57/BL6J mice were subjected to middle cerebral artery occlusion, followed by reperfusion, and IVIg was administered intravenously 3 h after the start of reperfusion. Expression of TLRs, RAGE and downstream signalling proteins in neurons and brain tissues were evaluated by immunoblot. Results Treatment of cultured neurons with IVIg reduced simulated ischemia-induced TLR2, TLR4, TLR8 and RAGE expressions, pro-apoptotic caspase-3 cleavage and phosphorylation of the cell death-associated kinases such as c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK) as well as the p65 subunit of nuclear factor kappa B (NF-κB). These results were recapitulated in an in vivo model of stroke. IVIg treatment also upregulated the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) in cortical neurons under ischemic conditions. Finally, IVIg protected neurons against HMGB1-induced neuronal cell death by modulating TLR and RAGE expressions and signalling pathways. Conclusions Taken together, these results provide a rationale for the potential use of IVIg to target inappropriately activated components of the innate immune system following ischemic stroke.
Collapse
|
36
|
Boesch AW, Brown EP, Cheng HD, Ofori MO, Normandin E, Nigrovic PA, Alter G, Ackerman ME. Highly parallel characterization of IgG Fc binding interactions. MAbs 2015; 6:915-27. [PMID: 24927273 DOI: 10.4161/mabs.28808] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Because the variable ability of the antibody constant (Fc) domain to recruit innate immune effector cells and complement is a major factor in antibody activity in vivo, convenient means of assessing these binding interactions is of high relevance to the development of enhanced antibody therapeutics, and to understanding the protective or pathogenic antibody response to infection, vaccination, and self. Here, we describe a highly parallel microsphere assay to rapidly assess the ability of antibodies to bind to a suite of antibody receptors. Fc and glycan binding proteins such as FcγR and lectins were conjugated to coded microspheres and the ability of antibodies to interact with these receptors was quantified. We demonstrate qualitative and quantitative assessment of binding preferences and affinities across IgG subclasses, Fc domain point mutants, and antibodies with variant glycosylation. This method can serve as a rapid proxy for biophysical methods that require substantial sample quantities, high-end instrumentation, and serial analysis across multiple binding interactions, thereby offering a useful means to characterize monoclonal antibodies, clinical antibody samples, and antibody mimics, or alternatively, to investigate the binding preferences of candidate Fc receptors.
Collapse
Affiliation(s)
- Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA
| | - Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA
| | - Hao D Cheng
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH USA
| | - Maame Ofua Ofori
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA
| | - Erica Normandin
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA USA
| | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA; Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH USA; Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH USA
| |
Collapse
|
37
|
Intravenous immunoglobulin exerts reciprocal regulation of Th1/Th17 cells and regulatory T cells in Guillain–Barré syndrome patients. Immunol Res 2014; 60:320-9. [DOI: 10.1007/s12026-014-8580-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Intravenous immunoglobulin-induced IL-33 is insufficient to mediate basophil expansion in autoimmune patients. Sci Rep 2014; 4:5672. [PMID: 25012067 PMCID: PMC5375975 DOI: 10.1038/srep05672] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/26/2014] [Indexed: 11/16/2022] Open
Abstract
Intravenous immunoglobulin (IVIg) is used in the therapy of various autoimmune and inflammatory diseases. Recent studies in experimental models propose that anti-inflammatory effects of IVIg are mainly mediated by α2,6-sialylated Fc fragments. These reports further suggest that α2,6-sialylated Fc fragments interact with DC-SIGN+ cells to release IL-33 that subsequently expands IL-4-producing basophils. However, translational insights on these observations are lacking. Here we show that IVIg therapy in rheumatic patients leads to significant raise in plasma IL-33. However, IL-33 was not contributed by human DC-SIGN+ dendritic cells and splenocytes. As IL-33 has been shown to expand basophils, we analyzed the proportion of circulating basophils in these patients following IVIg therapy. In contrast to mice data, IVIg therapy led to basophil expansion only in two patients who also showed increased plasma levels of IL-33. Importantly, the fold-changes in IL-33 and basophils were not correlated and we could hardly detect IL-4 in the plasma following IVIg therapy. Thus, our results indicate that IVIg-induced IL-33 is insufficient to mediate basophil expansion in autoimmune patients. Hence, IL-33 and basophil-mediated anti-inflammatory mechanism proposed for IVIg might not be pertinent in humans.
Collapse
|
39
|
Tjon ASW, van Gent R, Jaadar H, Martin van Hagen P, Mancham S, van der Laan LJW, te Boekhorst PAW, Metselaar HJ, Kwekkeboom J. Intravenous immunoglobulin treatment in humans suppresses dendritic cell function via stimulation of IL-4 and IL-13 production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:5625-34. [PMID: 24808368 DOI: 10.4049/jimmunol.1301260] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
High-dose i.v. Ig (IVIg) is a prominent immunomodulatory therapy for various autoimmune and inflammatory diseases. Recent mice studies suggest that IVIg inhibits myeloid cell function by inducing a cascade of IL-33-Th2 cytokine production causing upregulation of the inhibitory FcγRIIb, as well as by modulating IFN-γ signaling. The purpose of our study was to explore whether and how these mechanisms are operational in IVIg-treated patients. We show that IVIg in patients results in increases in plasma levels of IL-33, IL-4, and IL-13 and that increments in IL-33 levels correlate with rises in plasma IL-4 and IL-13 levels. Strikingly, no upregulation of FcγRIIb expression was found, but instead a decreased expression of the activating FcγRIIa on circulating myeloid dendritic cells (mDCs) after high-dose, but not after low-dose, IVIg treatment. In addition, expression of the signaling IFN-γR2 subunit of the IFN-γR on mDCs was downregulated upon high-dose IVIg therapy. In vitro experiments suggest that the modulation of FcγRs and IFN-γR2 on mDCs is mediated by IL-4 and IL-13, which functionally suppress the responsiveness of mDCs to immune complexes or IFN-γ. Human lymph nodes and macrophages were identified as potential sources of IL-33 during IVIg treatment. Interestingly, stimulation of IL-33 production in human macrophages by IVIg was not mediated by dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN). In conclusion, high-dose IVIg treatment inhibits inflammatory responsiveness of mDCs in humans by Th2 cytokine-mediated downregulation of FcγRIIa and IFN-γR2 and not by upregulation of FcγRIIb. Our results suggest that this cascade is initiated by stimulation of IL-33 production that seems DC-SIGN independent.
Collapse
Affiliation(s)
- Angela S W Tjon
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Rogier van Gent
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Haziz Jaadar
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine and Immunology, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Shanta Mancham
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands; and
| | - Peter A W te Boekhorst
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands;
| |
Collapse
|
40
|
Othy S, Topçu S, Saha C, Kothapalli P, Lacroix-Desmazes S, Käsermann F, Miescher S, Bayry J, Kaveri SV. Sialylation may be dispensable for reciprocal modulation of helper T cells by intravenous immunoglobulin. Eur J Immunol 2014; 44:2059-63. [DOI: 10.1002/eji.201444440] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/24/2014] [Accepted: 03/26/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Shivashankar Othy
- Institut National de la Sante et de la Recherche Medicale Unité 1138; Paris France
- Centre de Recherche des Cordeliers, Equipe 16-Immunopathology and therapeutic immunointervention; Université Pierre et Marie Curie - Paris; Paris France
| | - Selma Topçu
- Institut National de la Sante et de la Recherche Medicale Unité 1138; Paris France
| | - Chaitrali Saha
- Institut National de la Sante et de la Recherche Medicale Unité 1138; Paris France
- Université de Technologie de Compiègne; Compiègne France
| | - Prathap Kothapalli
- Institut National de la Sante et de la Recherche Medicale Unité 1138; Paris France
| | - Sebastien Lacroix-Desmazes
- Institut National de la Sante et de la Recherche Medicale Unité 1138; Paris France
- Centre de Recherche des Cordeliers, Equipe 16-Immunopathology and therapeutic immunointervention; Université Pierre et Marie Curie - Paris; Paris France
- Université Paris Descartes; Paris France
- International Associated Laboratory IMPACT (Institut National de la Santé et de la Recherche Médicale; France-Indian Council of Medical Research); National Institute of Immunohematology; Mumbai India
| | | | | | - Jagadeesh Bayry
- Institut National de la Sante et de la Recherche Medicale Unité 1138; Paris France
- Centre de Recherche des Cordeliers, Equipe 16-Immunopathology and therapeutic immunointervention; Université Pierre et Marie Curie - Paris; Paris France
- Université Paris Descartes; Paris France
- International Associated Laboratory IMPACT (Institut National de la Santé et de la Recherche Médicale; France-Indian Council of Medical Research); National Institute of Immunohematology; Mumbai India
| | - Srini V. Kaveri
- Institut National de la Sante et de la Recherche Medicale Unité 1138; Paris France
- Centre de Recherche des Cordeliers, Equipe 16-Immunopathology and therapeutic immunointervention; Université Pierre et Marie Curie - Paris; Paris France
- Université Paris Descartes; Paris France
- International Associated Laboratory IMPACT (Institut National de la Santé et de la Recherche Médicale; France-Indian Council of Medical Research); National Institute of Immunohematology; Mumbai India
| |
Collapse
|
41
|
Campbell IK, Miescher S, Branch DR, Mott PJ, Lazarus AH, Han D, Maraskovsky E, Zuercher AW, Neschadim A, Leontyev D, McKenzie BS, Käsermann F. Therapeutic effect of IVIG on inflammatory arthritis in mice is dependent on the Fc portion and independent of sialylation or basophils. THE JOURNAL OF IMMUNOLOGY 2014; 192:5031-8. [PMID: 24760152 DOI: 10.4049/jimmunol.1301611] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-dose i.v. Ig (IVIG) is used to treat various autoimmune and inflammatory diseases; however, the mechanism of action remains unclear. Based on the K/BxN serum transfer arthritis model in mice, IVIG suppression of inflammation has been attributed to a mechanism involving basophils and the binding of highly sialylated IgG Fc to DC-SIGN-expressing myeloid cells. The requirement for sialylation was examined in the collagen Ab-induced arthritis (CAbIA) and K/BxN serum transfer arthritis models in mice. High-dose IVIG (1-2 g/kg body weight) suppressed inflammatory arthritis when given prophylactically. The same doses were also effective in the CAbIA model when given subsequent to disease induction. In this therapeutic CAbIA model, the anti-inflammatory effect of IVIG was dependent on IgG Fc but not F(ab')2 fragments. Removal of sialic acid residues by neuraminidase had no impact on the anti-inflammatory activity of IVIG or Fc fragments. Treatment of mice with basophil-depleting mAbs did not abrogate the suppression of either CAbIA or K/BxN arthritis by IVIG. Our data confirm the therapeutic benefit of IVIG and IgG Fc in Ab-induced arthritis but fail to support the significance of sialylation and basophil involvement in the mechanism of action of IVIG therapy.
Collapse
Affiliation(s)
- Ian K Campbell
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Sylvia Miescher
- CSL Behring, Research and Development, CH-3000 Bern, Switzerland
| | - Donald R Branch
- Canadian Blood Services, Centre for Innovation, Toronto, Ontario K1G 4J5, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5G 2M1, Canada; and
| | - Patrick J Mott
- Canadian Blood Services, Centre for Innovation, Toronto, Ontario K1G 4J5, Canada; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Alan H Lazarus
- Canadian Blood Services, Centre for Innovation, Toronto, Ontario K1G 4J5, Canada; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Dongji Han
- Canadian Blood Services, Centre for Innovation, Toronto, Ontario K1G 4J5, Canada; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| | | | - Adrian W Zuercher
- CSL Ltd., Bio21 Institute, Parkville, Victoria 3010, Australia; CSL Behring, Research and Development, CH-3000 Bern, Switzerland
| | - Anton Neschadim
- Canadian Blood Services, Centre for Innovation, Toronto, Ontario K1G 4J5, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5G 2M1, Canada; and
| | - Danila Leontyev
- Canadian Blood Services, Centre for Innovation, Toronto, Ontario K1G 4J5, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5G 2M1, Canada; and
| | | | - Fabian Käsermann
- CSL Behring, Research and Development, CH-3000 Bern, Switzerland;
| |
Collapse
|
42
|
Tregitope peptides: the active pharmaceutical ingredient of IVIG? Clin Dev Immunol 2013; 2013:493138. [PMID: 24454476 PMCID: PMC3886585 DOI: 10.1155/2013/493138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/17/2013] [Indexed: 11/17/2022]
Abstract
Five years ago, we reported the identification and characterization of several regulatory T-cell epitopes (now called Tregitopes) that were discovered in the heavy and light chains of IgG (De Groot et al. Blood, 2008). When added ex vivo to human PBMCs, these Tregitopes activated regulatory T cells (Tregs), increased expression of the transcription factor FoxP3, and induced IL-10 expression in CD4(+) T cells. We have now shown that coadministration of the Tregitopes in vivo, in a number of different murine models of autoimmune disease, can suppress immune responses to antigen in an antigen-specific manner, and that this response is mediated by Tregs. In addition we have shown that, although these are generally promiscuous epitopes, the activity of individual Tregitope peptides is restricted by HLA. In this brief report, we provide an overview of the effects of Tregitopes in vivo, discuss potential applications, and suggest that Tregitopes may represent one of the "active pharmaceutical ingredients" of IVIg. Tregitope applications may include any of the autoimmune diseases that are currently treated almost exclusively with intravenous immunoglobulin G (IVIG), such as Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) and Multifocal Motor Neuropathy (MMN), as well as gene therapy and allergy where Tregitopes may provide a means of inducing antigen-specific tolerance.
Collapse
|
43
|
Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase-2-dependent prostaglandin E2 in human dendritic cells. Blood 2013; 122:1419-27. [PMID: 23847198 DOI: 10.1182/blood-2012-11-468264] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) play a critical role in the maintenance of immune tolerance. Intravenous immunoglobulin (IVIg), a therapeutic preparation of normal pooled human IgG, expands Tregs in various experimental models and in patients. However, the cellular and molecular mechanisms by which IVIg expands Tregs are relatively unknown. As Treg expansion in the periphery requires signaling by antigen-presenting cells such as dendritic cells (DCs) and IVIg has been demonstrated to modulate DC functions, we hypothesized that IVIg induces distinct signaling events in DCs that subsequently mediate Treg expansion. We demonstrate that IVIg expands Tregs via induction of cyclooxygenase (COX)-2-dependent prostaglandin E2 (PGE2) in human DCs. However, costimulatory molecules of DCs such as programmed death ligands, OX40 ligand, and inducible T-cell costimulator ligands were not implicated. Inhibition of PGE2 synthesis by COX-2 inhibitors prevented IVIg-mediated Treg expansion in vitro and significantly diminished IVIg-mediated Treg expansion in vivo and protection from disease in experimental autoimmune encephalomyelitis model. IVIg-mediated COX-2 expression, PGE2 production, and Treg expansion were mediated in part via interaction of IVIg and F(ab')2 fragments of IVIg with DC-specific intercellular adhesion molecule-3-grabbing nonintegrin. Our results thus uncover novel cellular and molecular mechanism by which IVIg expands Tregs.
Collapse
|
44
|
Collin M, Ehlers M. The carbohydrate switch between pathogenic and immunosuppressive antigen-specific antibodies. Exp Dermatol 2013; 22:511-4. [DOI: 10.1111/exd.12171] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Mattias Collin
- Division of Infection Medicine; Department of Clinical Sciences; Lund University; Lund; Sweden
| | - Marc Ehlers
- Laboratory of Tolerance and Autoimmunity; Institute for Systemic Inflammation Research; University of Lübeck; Lübeck; Germany
| |
Collapse
|
45
|
Intravenous immunoglobulin inhibits BAFF production in chronic inflammatory demyelinating polyneuropathy - a new mechanism of action? J Neuroimmunol 2013; 256:84-90. [PMID: 23357714 DOI: 10.1016/j.jneuroim.2013.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 12/31/2012] [Accepted: 01/02/2013] [Indexed: 12/21/2022]
Abstract
Chronic-inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated disease treated with intravenous immunoglobulin (IVIg). The underlying mechanism of action remains incompletely understood. The B-cell activating factor BAFF contributes to B-cell homeostasis and (auto-)antibody production. BAFF was recently identified as one key molecule in the development of autoimmune diseases. Herein, we demonstrate that BAFF serum levels are elevated in CIDP patients. IVIg treatment resulted in a significant decrease of BAFF serum level. In vitro, IVIg inhibited BAFF in monocytes. Consequently, we identified BAFF as a new target for IVIg in CIDP treatment and provide a new, Fcγ-receptor independent, mechanism of action for IVIg.
Collapse
|
46
|
Cousens LP, Najafian N, Mingozzi F, Elyaman W, Mazer B, Moise L, Messitt TJ, Su Y, Sayegh M, High K, Khoury SJ, Scott DW, De Groot AS. In vitro and in vivo studies of IgG-derived Treg epitopes (Tregitopes): a promising new tool for tolerance induction and treatment of autoimmunity. J Clin Immunol 2012; 33 Suppl 1:S43-9. [PMID: 22941509 PMCID: PMC3538121 DOI: 10.1007/s10875-012-9762-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/08/2012] [Indexed: 12/31/2022]
Abstract
Tregitopes are regulatory T cell epitopes derived from immunoglobulin G (IgG) that stimulate CD25+ FoxP3+ T cells to expand. In conjunction with these Tregs, Tregitopes can prevent, treat, and even cure autoimmune disease in mouse models, suppress allo-specific responses in murine transplant models, inhibit CD8+ T cell responses to recombinant adeno-associated virus (AAV) gene transfer vectors, and induce adaptive Tregs in DO11.10 mice. In this review of recent Tregitope studies, we summarize their effects in vitro and describe recent comparisons between intravenous IgG (IVIG) and Tregitopes in standard in vivo immune tolerance models. Further investigations of the mechanism of action of Tregitopes in the preclinical models described here will lead to clinical trials where Tregitopes may have the potential to alter the treatment of autoimmune disease, transplantation, and allergy, and to improve the efficiency of gene and protein replacement therapies.
Collapse
|
47
|
Othy S, Bruneval P, Topçu S, Dugail I, Delers F, Lacroix-Desmazes S, Bayry J, Kaveri SV. Effect of IVIg on human dendritic cell-mediated antigen uptake and presentation: Role of lipid accumulation. J Autoimmun 2012; 39:168-72. [DOI: 10.1016/j.jaut.2012.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 05/20/2012] [Indexed: 11/25/2022]
|
48
|
Cousens LP, Tassone R, Mazer BD, Ramachandiran V, Scott DW, De Groot AS. Tregitope update: mechanism of action parallels IVIg. Autoimmun Rev 2012; 12:436-43. [PMID: 22944299 DOI: 10.1016/j.autrev.2012.08.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 08/22/2012] [Indexed: 12/12/2022]
Abstract
In the course of screening immunoglobulin G (IgG) sequences for T cell epitopes, we identified novel Treg epitope peptides, now called Tregitopes, contained in the highly conserved framework regions of Fab and Fc. Tregitopes may provide one explanation for the expansion and stimulation of Treg cells following intravenous immunoglobulin (IVIg) therapy. Their distinguishing characteristics include in silico signatures that suggest high-affinity binding to multiple human HLA class II DR and conservation across IgG isotypes and mammalian species with only minor amino acid modifications. Tregitopes induce expansion of CD4(+)/CD25(hi)/FoxP3(+) T cells and suppress immune responses to co-incubated antigens in vitro. By comparing the human IgG Tregitopes (hTregitopes 167 and 289, located in the IgG CH1 and CH2 domains) and Fab to murine sequences, we identified class II-restricted murine Tregitope homologs (mTregitopes). In vivo, mTregitopes suppress inflammation and reproducibly induce Tregs to expand. In vitro studies suggest that the Tregitope mechanism of action is to induce Tregs to respond, leading to production of regulatory signals, followed by modulation of dendritic cell phenotype. The identification of Treg epitopes in IgG suggests that additional Tregitopes may also be present in other autologous proteins; methods for identifying and validating such peptides are described here. The discovery of Tregitopes in IgG and other autologous proteins may lead to the development of new insights as to the role of Tregs in autoimmune diseases.
Collapse
|
49
|
Jefferis R. Isotype and glycoform selection for antibody therapeutics. Arch Biochem Biophys 2012; 526:159-66. [PMID: 22465822 DOI: 10.1016/j.abb.2012.03.021] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/12/2012] [Accepted: 03/17/2012] [Indexed: 12/15/2022]
Abstract
We live in a hostile environment but are protected by the innate and adaptive immune system. A major component of the latter is mediated by antibody molecules that bind to pathogens, with exquisite specificity, and the immune complex formed activates cellular mechanisms leading to the removal and destruction of the complex. Five classes of antibody are identified; however, the IgG class predominates in serum and a majority of monoclonal antibody (mAb) therapeutics are based on the IgG format. Selection within the antibody repertoire allows the generation of (mAb) having specificity for any selected target, including human antigens. This review focuses on the structure and function of the Fc region of IgG molecules that mediates biologic functions, within immune complexes, by interactions with cellular Fc receptors (FcγR) and/or the C1q component of complement. A property of IgG that is suited to its use as a therapeutic is the long catabolic half life of ~21 days, mediated through the structurally distinct neonatal Fc receptor (FcRn). Our understanding of structure/function relationships is such that we can contemplate engineering the IgG-Fc to enhance or eliminate biologic activities to generate therapeutics considered optimal for a given disease indication. There are four subclasses of human IgG that exhibit high sequence homology but a unique profile of biologic activities. The FcγR and the C1q binding functions are dependent on glycosylation of the IgG-Fc. Normal human serum IgG is comprised of multiple glycoforms and biologic activities, other than catabolism, varies between glycoforms.
Collapse
|
50
|
Kwekkeboom J. Modulation of dendritic cells and regulatory T cells by naturally occurring antibodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:133-44. [PMID: 22903671 DOI: 10.1007/978-1-4614-3461-0_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most studies on the effects of naturally occurring autoantibodies (NAbs) on immune cells have been performed in the context of research on the immunomodulatory effects of intravenous immunoglobulin (IVIG). Among others, IVIG inhibits the differentiation, maturation and functions of dendritic cells (DC), thereby suppressing T-cell activation. In addition, IVIG stimulates expansion and suppressive function of regulatory T cells (Treg) carrying the antigens CD4, CD25 and Foxp3. Current data on the immunomodulatory effects of IVIG on DC and Treg are summarized, and possible molecular interactions between NAbs and DC or Treg that mediate these effects are discussed.
Collapse
Affiliation(s)
- Jaap Kwekkeboom
- Laboratory of Gastroenterology and Hepatology, Erasmus MC - University Medical Centre Rotterdam, The Netherlands.
| |
Collapse
|