1
|
Park MY, Tu CL, Perie L, Verma N, Serdan TDA, Shamsi F, Shapses S, Heffron S, Gamallo-Lana B, Mar AC, Alemán JO, Mueller E, Chang W, Sitara D. Targeted Deletion of Fibroblast Growth Factor 23 Rescues Metabolic Dysregulation of Diet-induced Obesity in Female Mice. Endocrinology 2024; 165:bqae141. [PMID: 39446375 DOI: 10.1210/endocr/bqae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 11/07/2024]
Abstract
Fibroblast growth factor 23 (FGF23) is a bone-secreted protein widely recognized as a critical regulator of skeletal and mineral metabolism. However, little is known about the nonskeletal production of FGF23 and its role in tissues other than bone. Growing evidence indicates that circulating FGF23 levels rise with a high-fat diet (HFD) and they are positively correlated with body mass index (BMI) in humans. In the present study, we show for the first time that increased circulating FGF23 levels in obese humans correlate with increased expression of adipose Fgf23 and both positively correlate with BMI. To understand the role of adipose-derived Fgf23, we generated adipocyte-specific Fgf23 knockout mice (AdipoqFgf23Δfl/Δfl) using the adiponectin-Cre driver, which targets mature white, beige, and brown adipocytes. Our data show that targeted ablation of Fgf23 in adipocytes prevents HFD-fed female mice from gaining body weight and fat mass while preserving lean mass but has no effect on male mice, indicating the presence of sexual dimorphism. These effects are observed in the absence of changes in food and energy intake. Adipose Fgf23 inactivation also prevents dyslipidemia, hyperglycemia, and hepatic steatosis in female mice. Moreover, these changes are associated with decreased respiratory exchange ratio and increased brown fat Ucp1 expression in knockout mice compared to HFD-fed control mice (Fgf23fl/fl). In conclusion, this is the first study highlighting that targeted inactivation of Fgf23 is a promising therapeutic strategy for weight loss and lean mass preservation in humans.
Collapse
Affiliation(s)
- Min Young Park
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Chia-Ling Tu
- Endocrine Research Unit, Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Luce Perie
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Narendra Verma
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Farnaz Shamsi
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Sue Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-RWJ Medical School, New Brunswick, NJ 08903, USA
| | - Sean Heffron
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Begona Gamallo-Lana
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Adam C Mar
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - José O Alemán
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Elisabetta Mueller
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Wenhan Chang
- Endocrine Research Unit, Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Despina Sitara
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
2
|
Phan P, Ternier G, Edirisinghe O, Kumar TKS. Exploring endocrine FGFs - structures, functions and biomedical applications. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:68-99. [PMID: 39309613 PMCID: PMC11411148 DOI: 10.62347/palk2137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024]
Abstract
The family of fibroblast growth factors (FGFs) consists of 22 members with diverse biological functions in cells, from cellular development to metabolism. The family can be further categorized into three subgroups based on their three modes of action. FGF19, FGF21, and FGF23 are endocrine FGFs that act in a hormone-like/endocrine manner to regulate various metabolic activities. However, all three members of the endocrine family require both FGF receptors (FGFRs) and klotho co-receptors to elicit their functions. α-klotho and β-klotho act as scaffolds to bring endocrine FGFs closer to their receptors (FGFRs) to form active complexes. Numerous novel studies about metabolic FGFs' structures, mechanisms, and physiological insights have been published to further understand the complex molecular interactions and physiological activities of endocrine FGFs. Herein, we aim to review the structures, physiological functions, binding mechanisms to cognate receptors, and novel biomedical applications of endocrine FGFs in recent years.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Gaёtane Ternier
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of ArkansasFayetteville, AR 72701, USA
| | | |
Collapse
|
3
|
Xiaohui T, Wang L, Yang X, Jiang H, Zhang N, Zhang H, Li D, Li X, Zhang Y, Wang S, Zhong C, Yu S, Ren M, Sun M, Li N, Chen T, Ma Y, Li F, Liu J, Yu Y, Yue H, Zhang Z, Zhang G. Sclerostin inhibition in rare bone diseases: Molecular understanding and therapeutic perspectives. J Orthop Translat 2024; 47:39-49. [PMID: 39007037 PMCID: PMC11245887 DOI: 10.1016/j.jot.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 07/16/2024] Open
Abstract
Sclerostin emerges as a novel target for bone anabolic therapy in bone diseases. Osteogenesis imperfecta (OI) and X-linked hypophosphatemia (XLH) are rare bone diseases in which therapeutic potential of sclerostin inhibition cannot be ignored. In OI, genetic/pharmacologic sclerostin inhibition promoted bone formation of mice, but responses varied by genotype and age. Serum sclerostin levels were higher in young OI-I patients, while lower in adult OI-I/III/IV. It's worth investigating whether therapeutic response of OI to sclerostin inhibition could be clinically predicted by genotype and age. In XLH, preclinical/clinical data suggested factors other than identified FGF23 contributing to XLH. Higher levels of circulating sclerostin were detected in XLH. Sclerostin inhibition promoted bone formation in Hyp mice, while restored phosphate homeostasis in age-/gender-dependent manner. The role of sclerostin in regulating phosphate metabolism deserves investigation. Sclerostin/FGF23 levels of XLH patients with/without response to FGF23-antibody warrants study to develop precise sclerostin/FGF23 inhibition strategy or synergistic/additive strategy. Notably, OI patients were associated with cardiovascular abnormalities, so were XLH patients receiving conventional therapy. Targeting sclerostin loop3 promoted bone formation without cardiovascular risks. Further, blockade of sclerostin loop3-LRP4 interaction while preserving sclerostin loop2-ApoER2 interaction could be a potential precise sclerostin inhibition strategy for OI and XLH with cardiovascular safety. The Translational Potential of this Article. Preclinical data on the molecular understanding of sclerostin inhibition in OI and therapeutic efficacy in mouse models of different genotypes, as well as clinical data on serum sclerostin levels in patients with different phenotypes of OI, were reviewed and discussed. Translationally, it would facilitate to develop clinical prediction strategies (e.g. based on genotype and age, not just phenotype) for OI patients responsive to sclerostin inhibition. Both preclinical and clinical data suggested sclerostin as another factor contributing to XLH, in addition to the identified FGF23. The molecular understanding and therapeutic effects of sclerostin inhibition on both promoting bone anabolism and improving phosphate homostasis in Hyp mice were reviewed and discussed. Translationaly, it would facilitate the development of precise sclerostin/FGF23 inhibition strategy or synergistic/additive strategy for the treatment of XLH. Cardiovascular risk could not be ruled out during sclerostin inhibition treatment, especially for OI and XLH patients with cardiovascular diseases history and cardiovascular abnormalities. Studies on the role of sclerostin in inhiting bone formation and protecting cardiovascular system were reviewed and discussed. Translationaly, blockade of sclerostin loop3-LRP4 interaction while preserving sclerostin loop2-ApoER2 interaction could be a potential precise sclerostin inhibition strategy for OI and XLH with cardiovascular safety.
Collapse
Affiliation(s)
- Tao Xiaohui
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xin Yang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hewen Jiang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ning Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huarui Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dijie Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaofei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yihao Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shenghang Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sifan Yu
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meishen Ren
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Meiheng Sun
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Nanxi Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Tienan Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hua Yue
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
4
|
Gędaj A, Gregorczyk P, Żukowska D, Chorążewska A, Ciura K, Kalka M, Porębska N, Opaliński Ł. Glycosylation of FGF/FGFR: An underrated sweet code regulating cellular signaling programs. Cytokine Growth Factor Rev 2024; 77:39-55. [PMID: 38719671 DOI: 10.1016/j.cytogfr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/22/2024]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute plasma-membrane localized signaling hubs that transmit signals from the extracellular environment to the cell interior, governing pivotal cellular processes like motility, metabolism, differentiation, division and death. FGF/FGFR signaling is critical for human body development and homeostasis; dysregulation of FGF/FGFR units is observed in numerous developmental diseases and in about 10% of human cancers. Glycosylation is a highly abundant posttranslational modification that is critical for physiological and pathological functions of the cell. Glycosylation is also very common within FGF/FGFR signaling hubs. Vast majority of FGFs (15 out of 22 members) are N-glycosylated and few FGFs are O-glycosylated. Glycosylation is even more abundant within FGFRs; all FGFRs are heavily N-glycosylated in numerous positions within their extracellular domains. A growing number of studies points on the multiple roles of glycosylation in fine-tuning FGF/FGFR signaling. Glycosylation modifies secretion of FGFs, determines their stability and affects interaction with FGFRs and co-receptors. Glycosylation of FGFRs determines their intracellular sorting, constitutes autoinhibitory mechanism within FGFRs and adjusts FGF and co-receptor recognition. Sugar chains attached to FGFs and FGFRs constitute also a form of code that is differentially decrypted by extracellular lectins, galectins, which transform FGF/FGFR signaling at multiple levels. This review focuses on the identified functions of glycosylation within FGFs and FGFRs and discusses their relevance for the cell physiology in health and disease.
Collapse
Affiliation(s)
- Aleksandra Gędaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Paulina Gregorczyk
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Dominika Żukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
5
|
Walker V. The Intricacies of Renal Phosphate Reabsorption-An Overview. Int J Mol Sci 2024; 25:4684. [PMID: 38731904 PMCID: PMC11083860 DOI: 10.3390/ijms25094684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton S016 6YD, UK
| |
Collapse
|
6
|
Wagner CA, Rubio Aliaga I, Egli-Spichtig D. Is fibroblast growth factor 23 the main culprit for cardiovascular disease in chronic kidney disease? Am J Physiol Renal Physiol 2024; 326:F561-F562. [PMID: 38205545 DOI: 10.1152/ajprenal.00379.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
7
|
Hu MC, Reneau JA, Shi M, Takahashi M, Chen G, Mohammadi M, Moe OW. C-terminal fragment of fibroblast growth factor 23 improves heart function in murine models of high intact fibroblast growth factor 23. Am J Physiol Renal Physiol 2024; 326:F584-F599. [PMID: 38299214 PMCID: PMC11208029 DOI: 10.1152/ajprenal.00298.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/02/2024] Open
Abstract
Cardiovascular disease (CVD) is the major cause of death in chronic kidney disease (CKD) and is associated with high circulating fibroblast growth factor (FGF)23 levels. It is unresolved whether high circulating FGF23 is a mere biomarker or pathogenically contributes to cardiomyopathy. It is also unknown whether the C-terminal FGF23 peptide (cFGF23), a natural FGF23 antagonist proteolyzed from intact FGF23 (iFGF23), retards CKD progression and improves cardiomyopathy. We addressed these questions in three murine models with high endogenous FGF23 and cardiomyopathy. First, we examined wild-type (WT) mice with CKD induced by unilateral ischemia-reperfusion and contralateral nephrectomy followed by a high-phosphate diet. These mice were continuously treated with intraperitoneal implanted osmotic minipumps containing either iFGF23 protein to further escalate FGF23 bioactivity, cFGF23 peptide to block FGF23 signaling, vehicle, or scrambled peptide as negative controls. Exogenous iFGF23 protein given to CKD mice exacerbated pathological cardiac remodeling and CKD progression, whereas cFGF23 treatment improved heart and kidney function, attenuated fibrosis, and increased circulating soluble Klotho. WT mice without renal insult placed on a high-phosphate diet and homozygous Klotho hypomorphic mice, both of whom develop moderate CKD and clear cardiomyopathy, were treated with cFGF23 or vehicle. Mice treated with cFGF23 in both models had improved heart and kidney function and histopathology. Taken together, these data indicate high endogenous iFGF23 is not just a mere biomarker but pathogenically deleterious in CKD and cardiomyopathy. Furthermore, attenuation of FGF23 bioactivity by cFGF23 peptide is a promising therapeutic strategy to protect the kidney and heart from high FGF23 activity.NEW & NOTEWORTHY There is a strong correlation between cardiovascular morbidity and high circulating fibroblast growth factor 23 (FGF23) levels, but causality was never proven. We used a murine chronic kidney disease (CKD) model to show that intact FGF23 (iFGF23) is pathogenic and contributes to both CKD progression and cardiomyopathy. Blockade of FGF23 signaling with a natural proteolytic product of iFGF23, C-terminal FGF23, alleviated kidney and cardiac histology, and function in three separate murine models of high endogenous FGF23.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - James A Reneau
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Mingjun Shi
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Masaya Takahashi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Gaozhi Chen
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Moosa Mohammadi
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Orson W Moe
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
8
|
Vinke JSJ, Kremer D, Knobbe TJ, Grote Beverborg N, Berger SP, Bakker SJ, de Borst MH, Eisenga MF. Iron Status and Cause-Specific Mortality After Kidney Transplantation. Kidney Med 2024; 6:100766. [PMID: 38375423 PMCID: PMC10874991 DOI: 10.1016/j.xkme.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Affiliation(s)
- Joanna Sophia J. Vinke
- Department of Nephrology, University Medical Center Groningen; Groningen, the Netherlands
| | - Daan Kremer
- Department of Nephrology, University Medical Center Groningen; Groningen, the Netherlands
| | - Tim J. Knobbe
- Department of Nephrology, University Medical Center Groningen; Groningen, the Netherlands
| | - Niels Grote Beverborg
- Department of Cardiology, University Medical Center Groningen; Groningen, the Netherlands
| | - Stefan P. Berger
- Department of Nephrology, University Medical Center Groningen; Groningen, the Netherlands
| | - Stephan J.L. Bakker
- Department of Nephrology, University Medical Center Groningen; Groningen, the Netherlands
| | - Martin H. de Borst
- Department of Nephrology, University Medical Center Groningen; Groningen, the Netherlands
| | - Michele F. Eisenga
- Department of Nephrology, University Medical Center Groningen; Groningen, the Netherlands
| |
Collapse
|
9
|
Zangerolamo L, Carvalho M, Velloso LA, Barbosa HCL. Endocrine FGFs and their signaling in the brain: Relevance for energy homeostasis. Eur J Pharmacol 2024; 963:176248. [PMID: 38056616 DOI: 10.1016/j.ejphar.2023.176248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Since their discovery in 2000, there has been a continuous expansion of studies investigating the physiology, biochemistry, and pharmacology of endocrine fibroblast growth factors (FGFs). FGF19, FGF21, and FGF23 comprise a subfamily with attributes that distinguish them from typical FGFs, as they can act as hormones and are, therefore, referred to as endocrine FGFs. As they participate in a broad cross-organ endocrine signaling axis, endocrine FGFs are crucial lipidic, glycemic, and energetic metabolism regulators during energy availability fluctuations. They function as powerful metabolic signals in physiological responses induced by metabolic diseases, like type 2 diabetes and obesity. Pharmacologically, FGF19 and FGF21 cause body weight loss and ameliorate glucose homeostasis and energy expenditure in rodents and humans. In contrast, FGF23 expression in mice and humans has been linked with insulin resistance and obesity. Here, we discuss emerging concepts in endocrine FGF signaling in the brain and critically assess their putative role as therapeutic targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
10
|
Edmonston D, Grabner A, Wolf M. FGF23 and klotho at the intersection of kidney and cardiovascular disease. Nat Rev Cardiol 2024; 21:11-24. [PMID: 37443358 DOI: 10.1038/s41569-023-00903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Cardiovascular disease is the leading cause of death in patients with chronic kidney disease (CKD). As CKD progresses, CKD-specific risk factors, such as disordered mineral homeostasis, amplify traditional cardiovascular risk factors. Fibroblast growth factor 23 (FGF23) regulates mineral homeostasis by activating complexes of FGF receptors and transmembrane klotho co-receptors. A soluble form of klotho also acts as a 'portable' FGF23 co-receptor in tissues that do not express klotho. In progressive CKD, rising circulating FGF23 levels in combination with decreasing kidney expression of klotho results in klotho-independent effects of FGF23 on the heart that promote left ventricular hypertrophy, heart failure, atrial fibrillation and death. Emerging data suggest that soluble klotho might mitigate some of these effects via several candidate mechanisms. More research is needed to investigate FGF23 excess and klotho deficiency in specific cardiovascular complications of CKD, but the pathophysiological primacy of FGF23 excess versus klotho deficiency might never be precisely resolved, given the entangled feedback loops that they share. Therefore, randomized trials should prioritize clinical practicality over scientific certainty by targeting disordered mineral homeostasis holistically in an effort to improve cardiovascular outcomes in patients with CKD.
Collapse
Affiliation(s)
- Daniel Edmonston
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
11
|
Schulz I, Kutscher A, Krall P, Carpio D, Ardiles L. Hyperphosphatemia With Normal Kidney Function Associated With Genetic Variants of GALNT3. Kidney Int Rep 2023; 8:2838-2841. [PMID: 38106599 PMCID: PMC10719595 DOI: 10.1016/j.ekir.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 12/19/2023] Open
Affiliation(s)
- Iris Schulz
- Department of Nephrology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra Kutscher
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Paola Krall
- Department of Nephrology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Department of Pediatrics and Child Surgery, Faculty of Medicine, University of Chile, Santiago de Chile, Chile
| | - Daniel Carpio
- Institute of Anatomy and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Leopoldo Ardiles
- Department of Nephrology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
12
|
Michon-Colin A, Metzger M, Bankir L, Gauci C, Brunel M, Baron S, Prot-Bertoye C, Stengel B, Thervet E, Haymann JP, Boffa JJ, Vrtovsnik F, Flamant M, Houillier P, Prie D, Courbebaisse M. Fibroblast growth factor 23 but not copeptin is independently associated with kidney failure and mortality in patients with chronic kidney disease. Clin Kidney J 2023; 16:2472-2481. [PMID: 38046034 PMCID: PMC10689138 DOI: 10.1093/ckj/sfad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 12/05/2023] Open
Abstract
Background Copeptin and intact fibroblast growth factor 23 (iFGF23) increase early during chronic kidney disease (CKD) and may be predictive of unfavourable outcomes. The aim of this study was to evaluate their respective associations with renal and vital outcomes in CKD patients. Methods We included CKD patients from the NephroTest cohort with concomitant measurements of plasma copeptin and iFGF23 concentrations and isotopic glomerular filtration rate measurement (mGFR). The primary endpoint was a composite outcome including kidney failure (KF) (dialysis initiation, pre-emptive transplantation or a 57% decrease of mGFR, corresponding to doubling of serum creatinine) or death before KF. Hazard ratios (HRs) of the primary endpoint associated with log-transformed copeptin and iFGF23 concentrations were estimated by Cox models. The slope of mGFR over time was analysed using a linear mixed model. Results A total of 329 CKD patients (243 men, mean age 60.3 ± 14.6 years) were included. Among them, 301 with an mGFR >15 ml/min/1.73 m2 were included in survival and mGFR slope analyses. During a median follow-up of 4.61 years (quartile 1-quartile 3: 3.72-6.07), 61 KFs and 32 deaths occurred. Baseline iFGF23 concentrations were associated with the composite outcome after multiple adjustments {HR 2.72 [95% confidence interval (CI) 1.85-3.99]}, whereas copeptin concentrations were not [HR 1.01 (95% CI 0.74-1.39)]. Neither copeptin nor iFGF23 were associated with mGFR slope over time. Conclusion Our study shows for the first time in population of CKD patients an independent association between iFGF23 and unfavourable renal and vital outcomes and shows no such association regarding copeptin, encouraging the integration of iFGF23 measurement into the follow-up of CKD.
Collapse
Affiliation(s)
- Arthur Michon-Colin
- Université Paris Cité, Paris, France
- Explorations Fonctionnelles Rénales – Physiologie, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Marie Metzger
- INSERM UMRS 1018, Equipe d'Epidémiologie Clinique, CESP, Université Paris-Saclay, Villejuif, France
| | - Lise Bankir
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS, ERL 8228, Laboratory of Kidney Physiology and Tubulopathies, Paris, France
| | - Cédric Gauci
- Explorations Fonctionnelles Rénales – Physiologie, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
- INSERM UMRS 1018, Equipe d'Epidémiologie Clinique, CESP, Université Paris-Saclay, Villejuif, France
| | - Mélanie Brunel
- Université Paris Cité, Paris, France
- Explorations Fonctionnelles Rénales – Physiologie, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Stéphanie Baron
- Université Paris Cité, Paris, France
- Explorations Fonctionnelles Rénales – Physiologie, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Caroline Prot-Bertoye
- Explorations Fonctionnelles Rénales – Physiologie, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS, ERL 8228, Laboratory of Kidney Physiology and Tubulopathies, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Bénédicte Stengel
- INSERM UMRS 1018, Equipe d'Epidémiologie Clinique, CESP, Université Paris-Saclay, Villejuif, France
| | - Eric Thervet
- Université Paris Cité, Paris, France
- Néphrologie et Hémodialyse, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Jean-Philippe Haymann
- Explorations Fonctionnelles Multidisciplinaires, Sorbonne Université Paris, France
- Explorations Fonctionnelles Multidisciplinaires, Hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Jean-Jacques Boffa
- Explorations Fonctionnelles Multidisciplinaires, Sorbonne Université Paris, France
- Néphrologie et Dialyse, Hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - François Vrtovsnik
- Université Paris Cité, Paris, France
- Néphrologie, Hôpital Bichat, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Martin Flamant
- Université Paris Cité, Paris, France
- Explorations Fonctionnelles Multidisciplinaires, Hôpital Bichat, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Pascal Houillier
- Université Paris Cité, Paris, France
- Explorations Fonctionnelles Rénales – Physiologie, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Dominique Prie
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Département de Physiologie, Hôpital Necker, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Marie Courbebaisse
- Université Paris Cité, Paris, France
- Explorations Fonctionnelles Rénales – Physiologie, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
13
|
Grimbly C, Graf D, Ward LM, Alexander RT. X-linked hypophosphatemia, fibroblast growth factor 23 signaling, and craniosynostosis. Exp Biol Med (Maywood) 2023; 248:2175-2182. [PMID: 38230523 PMCID: PMC10800125 DOI: 10.1177/15353702231222023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
This review summarizes the current knowledge of fibroblast growth factor 23 signaling in bone and its role in the disease pathology of X-linked hypophosphatemia. Craniosynostosis is an under-recognized complication of X-linked hypophosphatemia. The clinical implications and potential cellular mechanisms invoked by increased fibroblast growth factor 23 signaling causing craniosynostosis are reviewed. Knowledge gaps are identified and provide direction for future clinical and basic science studies.
Collapse
Affiliation(s)
- Chelsey Grimbly
- Department of Pediatrics, Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB T6G 2R7, Canada
- Women & Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Daniel Graf
- Women & Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 2R7, Canada
- Department of Dentistry and Dental Hygiene, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Leanne M Ward
- Division of Endocrinology and Metabolism, Department of Pediatrics Faculty of Medicine, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - R Todd Alexander
- Department of Pediatrics, Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB T6G 2R7, Canada
- Women & Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 2R7, Canada
| |
Collapse
|
14
|
Egli-Spichtig D, Hamid AK, Arroyo EMP, Ketteler M, Wiecek A, Rosenkranz AR, Pasch A, Lorenz H, Hellmann B, Karus M, Ammer R, Rubio-Aliaga I, Wagner CA. Intact FGF23 predicts serum phosphate improvement after combined nicotinamide and phosphate binder treatment in hemodialysis patients. Clin Kidney J 2023; 16:1622-1633. [PMID: 37779856 PMCID: PMC10539220 DOI: 10.1093/ckj/sfad040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 10/03/2023] Open
Abstract
Background Hyperphosphatemia is associated with increased mortality and cardiovascular morbidity of end-stage kidney failure (ESKF) patients. Managing serum phosphate in ESKF patients is challenging and mostly based on limiting intestinal phosphate absorption with low phosphate diets and phosphate binders (PB). In a multi-centric, double-blinded, placebo-controlled study cohort of maintenance hemodialysis patients with hyperphosphatemia, we demonstrated the efficacy of nicotinamide modified release (NAMR) formulation treatment in addition to standard PB therapy in decreasing serum phosphate. Here we aimed to assess the relationship between phosphate, FGF23, inflammation and iron metabolism in this cohort. Methods We measured the plasma concentrations of intact fibroblast growth factor 23 (iFGF23) and selected proinflammatory cytokines at baseline and Week 12 after initiating treatment. Results We observed a strong correlation between iFGF23 and cFGF23 (C-terminal fragment plus iFGF23). We identified iFGF23 as a better predictor of changes in serum phosphate induced by NAMR and PB treatment compared with cFGF23. Recursive partitioning revealed at baseline and Week 12, that iFGF23 and cFGF23 together with T50 propensity were the most important predictors of serum phosphate, whereas intact parathyroid hormone (iPTH) played a minor role in this model. Furthermore, we found serum phosphate and iPTH as the best predictors of iFGF23 and cFGF23. Sex, age, body mass index, and markers of inflammation and iron metabolism had only a minor impact in predicting FGF23. Conclusion Lowering serum phosphate in ESKF patients may depend highly on iFGF23 which is correlated to cFGF23 levels. Serum phosphate was the most important predictor of plasma FGF23 in this ESKF cohort.
Collapse
Affiliation(s)
- Daniela Egli-Spichtig
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland, and National Center of Competence in Research NCCR Kidney.CH
| | - Ahmad Kamal Hamid
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland, and National Center of Competence in Research NCCR Kidney.CH
| | - Eva Maria Pastor Arroyo
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland, and National Center of Competence in Research NCCR Kidney.CH
| | - Markus Ketteler
- Robert Bosch Hospital, Department of General Internal Medicine and Nephrology, Stuttgart, Germany
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Alexander R Rosenkranz
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Pasch
- Calciscon AG, 2503 Biel, Switzerland
- Department of Nephrology, Lindenhofspital, 3012 Bern, Switzerland
- Department of Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Horst Lorenz
- Buero fuer Biometrie und Statistik, Neuberg, Germany
| | | | - Michael Karus
- MEDICE Arzneimittel Pütter GmbH & Co KG, Iserlohn, Germany
| | - Richard Ammer
- MEDICE Arzneimittel Pütter GmbH & Co KG, Iserlohn, Germany
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, Münster, Germany
| | - Isabel Rubio-Aliaga
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland, and National Center of Competence in Research NCCR Kidney.CH
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland, and National Center of Competence in Research NCCR Kidney.CH
| |
Collapse
|
15
|
Liu Y, Chen M. Emerging role of α-Klotho in energy metabolism and cardiometabolic diseases. Diabetes Metab Syndr 2023; 17:102854. [PMID: 37722166 DOI: 10.1016/j.dsx.2023.102854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/16/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND AND AIM Klotho was first identified as a gene associated with aging and longevity in 1997. α-Klotho is an anti-aging protein and its role in energy metabolism, various cardiovascular diseases (CVDs), and metabolic disorders is increasingly being recognized. In this review, we aimed to outline the potential protective role and therapeutic prospects of α-Klotho in energy metabolism and cardiometabolic diseases (CMDs). METHODS We comprehensively reviewed the relevant literature in PubMed using the keywords 'Klotho', 'metabolism', 'cardiovascular', 'diabetes', 'obesity', 'metabolic syndrome', and 'nonalcoholic fatty liver disease'. RESULTS α-Klotho can be divided into membrane-bound Klotho, secreted Klotho, and the most studied circulating soluble Klotho that can act as a hormone. Klotho gene polymorphisms have been implicated in energy metabolism and CMDs. α-Klotho can inhibit insulin/insulin growth factor-1 signaling and its overexpression can lead to a 'healthy insulin resistance' and may exert beneficial effects on the regulation of glycolipid metabolism and central energy homeostasis. α-Klotho, mainly serum Klotho, has been revealed to be protective against CVDs, diabetes and its complications, obesity, and nonalcoholic fatty liver disease. Human recombinant Klotho protein/Klotho gene delivery, multiple drugs, or natural products, and exercise can increase α-Klotho expression. CONCLUSION Overall, α-Klotho has demonstrated its potential as a promising target for modulating energy metabolism and CMDs, and further research is needed to explore its utilization in clinical practice in the future.
Collapse
Affiliation(s)
- Yuanbin Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China.
| |
Collapse
|
16
|
Magagnoli L, Cozzolino M, Galassi A. The open system of FGF-23 at the crossroad between additional P-lowering therapy, anemia and inflammation: how to deal with the intact and the C-terminal assays? Clin Kidney J 2023; 16:1543-1549. [PMID: 37779858 PMCID: PMC10539210 DOI: 10.1093/ckj/sfad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 10/03/2023] Open
Abstract
Fibroblast growth factor 23 (FGF-23) has been associated with increased cardiovascular risk and poor survival in dialysis patients. It is well established that FGF-23 synthesis is directly induced by positive phosphate (P) balance. On the other hand, P-lowering treatments such as nutritional P restriction, P binders and dialysis are capable of reducing FGF-23 levels. However, there are many uncertainties regarding the possibility of adopting FGF-23 to guide the clinical decision-making process in the context of chronic kidney disease-mineral bone disorder (CKD-MBD). Furthermore, the best assay to adopt for measurement of FGF-23 levels (namely the intact vs the C-terminal one) remains to be determined, especially in conditions capable of altering the synthesis as well as the cleavage of the intact and biologically active molecule, as occurs in the presence of CKD and its complications. This Editorial discusses the main insights provided by the post hoc analysis of the NOPHOS trial, with particular attention given to evidence-based peculiarities of the intact and the C-terminal assays available for measuring FGF-23 levels, especially in patients receiving additive P-lowering therapy in the presence of inflammation, anemia and iron deficiency.
Collapse
Affiliation(s)
- Lorenza Magagnoli
- University of Milan, Department of Health Sciences, Milano, Italy
- ASST Santi Paolo e Carlo, Renal Division, Milano, Italy
| | - Mario Cozzolino
- University of Milan, Department of Health Sciences, Milano, Italy
- ASST Santi Paolo e Carlo, Renal Division, Milano, Italy
| | - Andrea Galassi
- University of Milan, Department of Health Sciences, Milano, Italy
- ASST Santi Paolo e Carlo, Renal Division, Milano, Italy
| |
Collapse
|
17
|
Zhang Y, Zhao C, Zhang H, Chen M, Meng Y, Pan Y, Zhuang Q, Zhao M. Association between serum soluble α-klotho and bone mineral density (BMD) in middle-aged and older adults in the United States: a population-based cross-sectional study. Aging Clin Exp Res 2023; 35:2039-2049. [PMID: 37368163 DOI: 10.1007/s40520-023-02483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Osteoporosis is a degenerative disease defined by low bone mineral density, has a high prevalence, and causes fractures at multiple sites throughout the body, greatly affecting the quality of patients. α-Klotho is an endocrine factor involved in the regulation of various metabolic processes in humans, and its role in bone metabolism has attracted widespread attention. The relationship between α-klotho and bone mineral density has not been uniformly recognized, and no large-scale correlation analysis has been conducted in the middle-aged and elderly population. OBJECTIVE To determine the relationship between α-klotho and bone mineral density in middle-aged and elderly people. METHODS Population data of 3120 individuals aged 40-79 years were obtained from the NHANES database for the period 2011-2016. Regression analysis was performed using a general linear model with serum α-klotho as the independent variable and total bone mineral density, thoracic bone mineral density, lumbar bone mineral density, pelvic bone mineral density, and trunk bone mineral density as the dependent variables, respectively. The generalized additive model was also used for smoothing curve fitting and threshold effect analysis. RESULTS Serum α-klotho was positively correlated with total bone mineral density at lg (Klotho) < 2.97 and with thoracic bone mineral density at lg (Klotho) > 2.69 (β = 0.05, p = 0.0006), and negatively correlated (β = -0.27, p = 0.0341) with lumbar bone mineral density at lg (Klotho) < 2.69. It also positively correlated with trunk bone mineral density (β = 0.027, p = 0.03657) and had no segmental effect but did not correlate with pelvic bone mineral density. The positive association of serum α-klotho with those aged 40-49 years, female, non-Hispanic White, and without hypertension was clearer. In the population with diabetes, a significantly positive association between total (β = 0.15, p = 0.01), thoracic (β = 0.23, p = 0.0404), and lumbar (β = 0.22, p = 0.0424) bone mineral density and α-klotho was observed. CONCLUSIONS α-Klotho has different relationships with total, thoracic, lumbar, and trunk bone mineral density. Among them, the positive correlation between α-klotho and trunk bone mineral density is more valuable for predicting osteoporosis. The significant effect of α-klotho on bone mineral density in diabetes patients suggests its potential as a predictive marker of diabetes progression.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Changtai Zhao
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Hanyong Zhang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Mingcong Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yang Meng
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yuxin Pan
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Quan Zhuang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
18
|
Xie H, Bastepe I, Zhou W, Ay B, Ceraj Z, Portales-Castillo IA, Liu ES, Burnett-Bowie SAM, Jüppner H, Rhee EP, Bastepe M, Simic P. 1,25-Dihydroxyvitamin D3 regulates furin-mediated FGF23 cleavage. JCI Insight 2023; 8:e168957. [PMID: 37681408 PMCID: PMC10544208 DOI: 10.1172/jci.insight.168957] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023] Open
Abstract
Intact fibroblast growth factor 23 (iFGF23) is a phosphaturic hormone that is cleaved by furin into N-terminal and C-terminal fragments. Several studies have implicated vitamin D in regulating furin in infections. Thus, we investigated the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D] and the vitamin D receptor (VDR) on furin-mediated iFGF23 cleavage. Mice lacking VDR (Vdr-/-) had a 25-fold increase in iFGF23 cleavage, with increased furin levels and activity compared with wild-type (WT) littermates. Inhibition of furin activity blocked the increase in iFGF23 cleavage in Vdr-/- animals and in a Vdr-knockdown osteocyte OCY454 cell line. Chromatin immunoprecipitation revealed VDR binding to DNA upstream of the Furin gene, with more transcription in the absence of VDR. In WT mice, furin inhibition reduced iFGF23 cleavage, increased iFGF23, and reduced serum phosphate levels. Similarly, 1,25(OH)2D reduced furin activity, decreased iFGF23 cleavage, and increased total FGF23. In a post hoc analysis of a randomized clinical trial, we found that ergocalciferol treatment, which increased serum 1,25(OH)2D, significantly decreased serum furin activity and iFGF23 cleavage, compared with placebo. Thus, 1,25(OH)2D inhibits iFGF23 cleavage via VDR-mediated suppression of Furin expression, thereby providing a mechanism by which vitamin D can augment phosphaturic iFGF23 levels.
Collapse
Affiliation(s)
- Han Xie
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Isinsu Bastepe
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Wen Zhou
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Birol Ay
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zara Ceraj
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ignacio A. Portales-Castillo
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eva S. Liu
- Endocrine Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Harald Jüppner
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eugene P. Rhee
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Murat Bastepe
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Simic
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Courbon G, Thomas JJ, Martinez-Calle M, Wang X, Spindler J, Von Drasek J, Hunt-Tobey B, Mehta R, Isakova T, Chang W, Creemers JWM, Ji P, Martin A, David V. Bone-derived C-terminal FGF23 cleaved peptides increase iron availability in acute inflammation. Blood 2023; 142:106-118. [PMID: 37053547 PMCID: PMC10356820 DOI: 10.1182/blood.2022018475] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023] Open
Abstract
Inflammation leads to functional iron deficiency by increasing the expression of the hepatic iron regulatory peptide hepcidin. Inflammation also stimulates fibroblast growth factor 23 (FGF23) production by increasing both Fgf23 transcription and FGF23 cleavage, which paradoxically leads to excess in C-terminal FGF23 peptides (Cter-FGF23), rather than intact FGF23 (iFGF23) hormone. We determined that the major source of Cter-FGF23 is osteocytes and investigated whether Cter-FGF23 peptides play a direct role in the regulation of hepcidin and iron metabolism in response to acute inflammation. Mice harboring an osteocyte-specific deletion of Fgf23 showed a ∼90% reduction in Cter-FGF23 levels during acute inflammation. Reduction in Cter-FGF23 led to a further decrease in circulating iron in inflamed mice owing to excessive hepcidin production. We observed similar results in mice showing impaired FGF23 cleavage owing to osteocyte-specific deletion of Furin. We next showed that Cter-FGF23 peptides bind members of the bone morphogenetic protein (BMP) family, BMP2 and BMP9, which are established inducers of hepcidin. Coadministration of Cter-FGF23 and BMP2 or BMP9 prevented the increase in Hamp messenger RNA and circulating hepcidin levels induced by BMP2/9, resulting in normal serum iron levels. Finally, injection of Cter-FGF23 in inflamed Fgf23KO mice and genetic overexpression of Cter-Fgf23 in wild type mice also resulted in lower hepcidin and higher circulating iron levels. In conclusion, during inflammation, bone is the major source of Cter-FGF23 secretion, and independently of iFGF23, Cter-FGF23 reduces BMP-induced hepcidin secretion in the liver.
Collapse
Affiliation(s)
- Guillaume Courbon
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jane Joy Thomas
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Marta Martinez-Calle
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Xueyan Wang
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jadeah Spindler
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John Von Drasek
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bridget Hunt-Tobey
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rupal Mehta
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tamara Isakova
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Wenhan Chang
- Endocrine Research Unit, San Francisco Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA
| | | | - Peng Ji
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Aline Martin
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Valentin David
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
20
|
Thomas SM, Li Q, Faul C. Fibroblast growth factor 23, klotho and heparin. Curr Opin Nephrol Hypertens 2023; 32:313-323. [PMID: 37195242 PMCID: PMC10241433 DOI: 10.1097/mnh.0000000000000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
PURPOSE OF REVIEW Fibroblast growth factor (FGF) 23 is a bone-derived hormone that regulates phosphate and vitamin D metabolism by targeting the kidney. When highly elevated, such as in chronic kidney disease (CKD), FGF23 can also target the heart and induce pathologic remodeling. Here we discuss the mechanisms that underlie the physiologic and pathologic actions of FGF23, with focus on its FGF receptors (FGFR) and co-receptors. RECENT FINDINGS Klotho is a transmembrane protein that acts as an FGFR co-receptor for FGF23 on physiologic target cells. Klotho also exists as a circulating variant, and recent studies suggested that soluble klotho (sKL) can mediate FGF23 effects in cells that do not express klotho. Furthermore, it has been assumed that the actions of FGF23 do not require heparan sulfate (HS), a proteoglycan that acts as a co-receptor for other FGF isoforms. However, recent studies revealed that HS can be part of the FGF23:FGFR signaling complex and modulate FGF23-induced effects. SUMMARY sKL and HS have appeared as circulating FGFR co-receptors that modulate the actions of FGF23. Experimental studies suggest that sKL protects from and HS accelerates CKD-associated heart injury. However, the in vivo relevance of these findings is still speculative.
Collapse
Affiliation(s)
- S Madison Thomas
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
21
|
Aprile A, Raggi L, Bolamperti S, Villa I, Storto M, Morello G, Marktel S, Tripodo C, Cappellini MD, Motta I, Rubinacci A, Ferrari G. Inhibition of FGF23 is a therapeutic strategy to target hematopoietic stem cell niche defects in β-thalassemia. Sci Transl Med 2023; 15:eabq3679. [PMID: 37256933 DOI: 10.1126/scitranslmed.abq3679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Clinical evidence highlights a relationship between the blood and the bone, but the underlying mechanism linking these two tissues is not fully elucidated. Here, we used β-thalassemia as a model of congenital anemia with bone and bone marrow (BM) niche defects. We demonstrate that fibroblast growth factor 23 (FGF23) is increased in patients and mice with β-thalassemia because erythropoietin induces FGF23 overproduction in bone and BM erythroid cells via ERK1/2 and STAT5 pathways. We show that in vivo inhibition of FGF23 signaling by carboxyl-terminal FGF23 peptide is a safe and efficacious therapeutic strategy to rescue bone mineralization and deposition in mice with β-thalassemia, normalizing the expression of niche factors and restoring hematopoietic stem cell (HSC) function. FGF23 may thus represent a molecular link connecting anemia, bone, and the HSC niche. This study provides a translational approach to targeting bone defects and rescuing HSC niche interactions, with potential clinical relevance for improving HSC transplantation and gene therapy for hematopoietic disorders.
Collapse
Affiliation(s)
- Annamaria Aprile
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Raggi
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- University of Milano Bicocca, 20126 Milan, Italy
| | - Simona Bolamperti
- Bone Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Endocrine and Osteometabolic Laboratory, Institute of Endocrine and Metabolic Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Isabella Villa
- Bone Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Endocrine and Osteometabolic Laboratory, Institute of Endocrine and Metabolic Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mariangela Storto
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gaia Morello
- Tumor Immunology Unit, Human Pathology Section, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
| | - Sarah Marktel
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Human Pathology Section, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
- IFOM ETS, AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Maria Domenica Cappellini
- General Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Irene Motta
- General Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Alessandro Rubinacci
- Bone Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuliana Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
22
|
Abstract
Cardiovascular disease (CVD) is prevalent in patients with chronic kidney disease (CKD) and it is responsible for approximately half of all CKD-related deaths. CVDs are the primary cause of death in hemodialysis patients due to major adverse cardiovascular events. Therefore, better approaches for differentiating chronic hemodialysis patients at higher cardiovascular risk will help physicians improve clinical outcomes. Hence, there is an urgent need to discover feasible and reliable cardiac biomarkers to improve diagnostic accuracy, reflect myocardial injury, and identify high-risk patients. Numerous biomarkers that have significant prognostic value with respect to adverse CVD outcomes in the setting of mild to severe CKD have been identified. Therefore, a better understanding of the positive clinical impact of cardiac biomarkers on CVD patient outcomes is an important step toward prevention and improving treatment in the future. In this review, we address the relationship between cardiovascular biomarkers and CKD treatment strategies to elucidate the underlying importance of these biomarkers to patient outcomes.
Collapse
Affiliation(s)
- Ying-Ju Chen
- Division of Laboratory Medicine, Asia University Hospital, Asia University, Taichung, Taiwan
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tze-Kiong Er
- Division of Laboratory Medicine, Asia University Hospital, Asia University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
23
|
Zhang Q, Chen Z, Zhang K, Zhu J, Jin T. FGF/FGFR system in the central nervous system demyelinating disease: Recent progress and implications for multiple sclerosis. CNS Neurosci Ther 2023; 29:1497-1511. [PMID: 36924298 PMCID: PMC10173727 DOI: 10.1111/cns.14176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND With millions of victims worldwide, multiple sclerosis is the second most common cause of disability among young adults. Although formidable advancements have been made in understanding the disease, the neurodegeneration associated with multiple sclerosis is only partially counteracted by current treatments, and effective therapy for progressive multiple sclerosis remains an unmet need. Therefore, new approaches are required to delay demyelination and the resulting disability and to restore neural function by promoting remyelination and neuronal repair. AIMS The article reviews the latest literature in this field. MATERIALS AND METHODS The fibroblast growth factor (FGF) signaling pathway is a promising target in progressive multiple sclerosis. DISCUSSION FGF signal transduction contributes to establishing the oligodendrocyte lineage, neural stem cell proliferation and differentiation, and myelination of the central nervous system. Furthermore, FGF signaling is implicated in the control of neuroinflammation. In recent years, interventions targeting FGF, and its receptor (FGFR) have been shown to ameliorate autoimmune encephalomyelitis symptoms in multiple sclerosis animal models moderately. CONCLUSION Here, we summarize the recent findings and investigate the role of FGF/FGFR signaling in the onset and progression, discuss the potential therapeutic advances, and offer fresh insights into managing multiple sclerosis.
Collapse
Affiliation(s)
- Qingxiang Zhang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Kaili Zhang
- Stomatology College of Inner Mongolia Medical University, Hohhot, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Regulation of FGF23 production and phosphate metabolism by bone-kidney interactions. Nat Rev Nephrol 2023; 19:185-193. [PMID: 36624273 DOI: 10.1038/s41581-022-00665-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
The bone-derived hormone fibroblast growth factor 23 (FGF23) functions in concert with parathyroid hormone (PTH) and the active vitamin D metabolite, 1,25(OH)2 vitamin D (1,25D), to control phosphate and calcium homeostasis. A rise in circulating levels of phosphate and 1,25D leads to FGF23 production in bone. Circulating FGF23 acts on the kidney by binding to FGF receptors and the co-receptor α-Klotho to promote phosphaturia and reduce circulating 1,25D levels. Various other biomolecules that are produced by the kidney, including lipocalin-2, glycerol 3-phosphate, 1-acyl lysophosphatidic acid and erythropoietin, are involved in the regulation of mineral metabolism via effects on FGF23 synthesis in bone. Understanding of the molecular mechanisms that control FGF23 synthesis in the bone and its bioactivity in the kidney has led to the identification of potential targets for novel interventions. Emerging approaches to target aberrant phosphate metabolism include small molecule inhibitors that directly bind FGF23 and prevent its interactions with FGF receptors and α-Klotho, FGF23 peptide fragments that act as competitive inhibitors of intact FGF23 and small molecule inhibitors of kidney sodium-phosphate cotransporters.
Collapse
|
25
|
Heparin is essential for optimal cell signaling by FGF21 and for regulation of βKlotho cellular stability. Proc Natl Acad Sci U S A 2023; 120:e2219128120. [PMID: 36745784 PMCID: PMC9962926 DOI: 10.1073/pnas.2219128120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
While important insights were gained about how FGF21 and other endocrine fibroblast growth factors (FGFs) bind to Klotho proteins, the exact mechanism of Klotho/FGF receptor assembly that drives receptor dimerization and activation has not been elucidated. The prevailing dogma is that Klotho proteins substitute for the loss of heparan sulfate proteoglycan (HSPG) binding to endocrine FGFs by high-affinity binding of endocrine FGF molecules to Klotho receptors. To explore a potential role of HSPG in FGF21 signaling, we have analyzed the dynamic properties of FGF21-induced FGF21-βKlotho-FGFR1c complexes on the surface of living wild-type (WT) or HSPG-deficient Chinese hamster ovary (CHO) cells by employing quantitative single-molecule fluorescence imaging analyses. Moreover, detailed analyses of FGF21 and FGF1 stimulation of cellular signaling pathways activated in WT or in HSPG-deficient CHO cells are also analyzed and compared. These experiments demonstrate that heparin is required for the formation of FGF21-βKlotho-FGFR1c complexes on the cell membrane and that binding of heparin or HSPG to FGFR1c is essential for optimal FGF21 stimulation of FGFR1c activation, mitogen-activated protein kinase responses, and intracellular Ca2+ release. It is also shown that FGF1 binding stimulates assembly of βKlotho and FGFR1c on cell membranes, resulting in endocytosis and degradation of βKlotho. We conclude that heparin or HSPG is essential for FGF21 signaling and for regulation of βKlotho cellular stability by acting as a coligand of FGFR1c.
Collapse
|
26
|
FGF23 in Chronic Kidney Disease: Bridging the Heart and Anemia. Cells 2023; 12:cells12040609. [PMID: 36831276 PMCID: PMC9954184 DOI: 10.3390/cells12040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced mainly in osteocytes. In chronic kidney disease (CKD) FGF23 levels increase due to higher production, but also as the result of impaired cleavage and reduced excretion from the body. FGF23 has a significant role in disturbed bone and mineral metabolism in CKD, which leads to a higher cardiovascular risk and mortality in these patients. Current research has emphasized the expression of FGF23 in cardiac myocytes, fibroblasts, and endothelial cells, and in addition to the effects on the kidney, its primary role is in cardiac remodeling in CKD patients. Recent discoveries found a significant link between increased FGF23 levels and anemia development in CKD. This review describes the FGF23 role in cardiac hypertrophy and anemia in the setting of CKD and discusses the best therapeutical approach for lowering FGF23 levels.
Collapse
|
27
|
Heijboer AC, Cavalier E. The Measurement and Interpretation of Fibroblast Growth Factor 23 (FGF23) Concentrations. Calcif Tissue Int 2023; 112:258-270. [PMID: 35665817 PMCID: PMC9859838 DOI: 10.1007/s00223-022-00987-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023]
Abstract
Two decades after the discovery of the hormone FGF23, we know more about phosphate homeostasis as it turned out that FGF23 is the central hormone that regulates this. Hereditary hypophosphatemic rickets and tumor-induced osteomalacia could by then be explained, by autonomous FGF23 production, and the nephrology field was excited by this new marker as it turned out to be independently associated with mortality in people treated by hemodialysis. This led to the development of several immunoassays to be able to measure FGF23 in blood. In the past years we learned that FGF23 is a rather stable peptide, the precision of the assays is acceptable but assays are not standardized and therefore not comparable. This means that reference values and cutoff values need to be assay specific. For several assays reference values have been established and gender and age did not seem of high importance. The phosphate content of the diet, which can be culturally dependent, however, should be taken into account when interpreting results, but to what extent is not totally clear. Currently, clinical application of the immunoassays is established in the diagnosis of hereditary hypophosphatemic rickets and diagnosis and follow-up of tumor-induced osteomalacia. Definite conclusions on the usefulness of the FGF23 measurement in people with CKD either as a marker for risk prediction or a as target for treatment remains to be determined. The latter applications would require dedicated prospective clinical trials, which may take years, before providing answers. To improve the standardization of the FGF23 assays and to shed light on the biological functions that fragments might have we might aim for an LC-MS/MS-based method to quantify both intact and fragmented FGF23. In this literature review we will summarize the current knowledge on the physiological role of FGF23, its quantification, and the clinical usefulness of its determination.
Collapse
Affiliation(s)
- Annemieke C Heijboer
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam and University of Amsterdam, de Boelelaan 1117 and Meibergdreef 9, Amsterdam, The Netherlands.
| | - Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, University of Liège, 4000, Liège, Belgium
| |
Collapse
|
28
|
Kritmetapak K, Kumar R. Phosphatonins: From Discovery to Therapeutics. Endocr Pract 2023; 29:69-79. [PMID: 36210014 DOI: 10.1016/j.eprac.2022.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Phosphate is crucial for cell signaling, energy metabolism, nucleotide synthesis, and bone mineralization. The gut-bone-parathyroid-kidney axis is influenced by parathyroid hormone, 1,25-dihydroxyvitamin D, and phosphatonins, especially fibroblast growth factor 23 (FGF23). These hormones facilitate maintenance of phosphate homeostasis. This review summarizes current knowledge regarding the phosphate homeostasis, phosphatonin pathophysiology, and clinical implications of FGF23-related hypophosphatemic disorders, with specific focus on burosumab treatment. METHOD A focused literature search of PubMed was conducted. RESULTS Phosphatonins including FGF23, secreted frizzled-related protein 4, matrix extracellular phosphoglycoprotein, and fibroblast growth factor 7 play a pathogenic role in several hypophosphatemic disorders. Excess FGF23 inhibits sodium-dependent phosphate cotransporters (NaPi-2a and NaPi-2c), resulting in hyperphosphaturia and hypophosphatemia. Additionally, FGF23 suppresses 1,25-dihydroxyvitamin D synthesis in the proximal renal tubule, and thus, it indirectly inhibits intestinal phosphate absorption. Disorders of FGF23-related hypophosphatemia include X-linked hypophosphatemia (XLH), autosomal dominant hypophosphatemic rickets, autosomal recessive hypophosphatemic rickets, fibrous dysplasia/McCune-Albright syndrome, and tumor-induced osteomalacia (TIO). Complications of conventional therapy with oral phosphate and vitamin D analogs comprise gastrointestinal distress, hypercalcemia, nephrocalcinosis, and secondary/tertiary hyperparathyroidism. In both children and adults with XLH and TIO, the anti-FGF23 antibody burosumab exhibits a favorable safety profile and is associated with healing of rickets in affected children and improvement of osteomalacia in both children and adults. CONCLUSION The treatment paradigm for XLH and TIO is changing based on data from recent clinical trials. Research suggest that burosumab is effective and safe for pediatric and adult patients with XLH or TIO.
Collapse
Affiliation(s)
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
29
|
Zhang L, Qin W. Research progress of fibroblast growth factor 23 in acute kidney injury. Pediatr Nephrol 2022:10.1007/s00467-022-05791-z. [PMID: 36416954 DOI: 10.1007/s00467-022-05791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is primarily produced in bones and mainly regulates calcium and phosphorus metabolism. The level of circulating FGF23 increases rapidly in the early stage of acute kidney injury (AKI). Recent studies have shown that FGF23 may serve as a biomarker for the diagnosis and poor prognosis of AKI. The mechanism of increased FGF23 in AKI may include increased production of FGF23, decreased renal clearance of FGF23, and some new regulatory factors, such as inflammation and glycerol 3-phosphate. However, the biological effects of elevated FGF23 in AKI are still unclear. It is also not known whether reducing the level of circulating FGF23 could alleviate AKI or its poor prognosis. Here, we review the pathophysiological mechanism and possible regulation of FGF23 in AKI and discuss the possibility of using FGF23 as a therapeutic target.
Collapse
Affiliation(s)
- Lina Zhang
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.,Division of Nephrology, Henan Key Laboratory for Kidney Disease and Immunology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Wei Qin
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
30
|
Roumpou A, Yavropoulou MP, Chronopoulos E, Kassi E. Novel Therapeutic Agents for Rare Diseases of Calcium and Phosphate Metabolism. Horm Metab Res 2022; 54:645-657. [PMID: 36049757 DOI: 10.1055/a-1917-0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The last decade has been revolutionary regarding the management of rare bone diseases caused by impaired calcium and phosphate metabolism. Elucidation of the underlying genetic basis and pathophysiologic alterations has been the determinant factor for the development of new, disease-specific treatment agents. The phosphaturic hormone Fibroblast Growth Factor 23 (FGF23) possesses a critical role in the pathogenesis of various hypophosphatemic disorders. Among them, the genetic disorder of X-linked hypophosphatemia and the acquired syndrome of tumor-induced osteomalacia, although very rare, have attracted the scientific community's attention towards designing an FGF23-inhibitor as a potential specific therapy. The monoclonal antibody burosumab was approved for the treatment of children and adult patients with X-linked hypophosphatemia and recently for tumor-induced osteomalacia patients, demonstrating benefits regarding their symptoms, biochemical profile and bone mineralization status. Asfotase alfa is a hydroxyapatite-targeted recombinant alkaline phosphatase, an enzymatic replacement therapy, substituting the defective activity of tissue non-specific alkaline phosphatase, in patients suffering from hypophosphatasia. Promising data regarding its favorable effect on survival rate, bone quality, fracture healing, muscle strength, mobility, respiratory function, and general quality of life have led to the approval of the drug for the treatment of childhood-onset hypophosphatasia. Given the high costs of treatment for both agents and their limited clinical use until now, more data are needed to define patients' characteristics that make them ideal candidates for therapy. Long-term safety issues also need to be clarified.
Collapse
Affiliation(s)
- Afroditi Roumpou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sofia" Children's Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
- Laboratory for Research of the Musculoskeletal System, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Maria P Yavropoulou
- Centre of Expertise for Rare Endocrine Diseases, C.E.R.E.D. Disorders of Calcium & Phosphate Metabolism, First Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Efstathios Chronopoulos
- Laboratory for Research of the Musculoskeletal System, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Eva Kassi
- Laboratory for Research of the Musculoskeletal System, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
- Centre of Expertise for Rare Endocrine Diseases, C.E.R.E.D. Disorders of Calcium & Phosphate Metabolism, First Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
- Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
31
|
Verbueken D, Moe OW. Strategies to lower fibroblast growth factor 23 bioactivity. Nephrol Dial Transplant 2022; 37:1800-1807. [PMID: 33502502 PMCID: PMC9494132 DOI: 10.1093/ndt/gfab012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a circulating hormone derived from the bone whose release is controlled by many factors and exerts a multitude of systemic actions. There are congenital and acquired disorders of increased and decreased FGF23 levels. In chronic kidney disease (CKD), elevations of FGF23 levels can be 1000-fold above the upper physiological limit. It is still debated whether this high FGF23 in CKD is a biomarker or causally related to morbidity and mortality. Data from human association studies support pathogenicity, while experimental data are less robust. Knowledge of the biology and pathobiology of FGF23 has generated a plethora of means to reduce FGF23 bioactivity at many levels that will be useful for therapeutic translations. This article summarizes these approaches and addresses several critical questions that still need to be answered.
Collapse
Affiliation(s)
- Devin Verbueken
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
32
|
Hasan M, Oster M, Reyer H, Ponsuksili S, Murani E, Wolf P, Fischer DC, Wimmers K. Tissue-Wide Expression of Genes Related to Vitamin D Metabolism and FGF23 Signaling following Variable Phosphorus Intake in Pigs. Metabolites 2022; 12:metabo12080729. [PMID: 36005601 PMCID: PMC9413461 DOI: 10.3390/metabo12080729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Calcium (Ca) and phosphorus (P) homeostasis is maintained by several regulators, including vitamin D and fibroblast growth factor 23 (FGF23), and their tissue-specific activation and signaling cascades. In this study, the tissue-wide expression of key genes linked to vitamin D metabolism (CYP2R1, CYP27A1, CYP27B1, CYP24A1, GC, VDR) and FGF23 signaling (FGF23, FGFR1-4, KL) were investigated in pigs fed conventional (trial 1) and divergent P diets (trial 2). The tissue set comprised kidney, liver, bone, lung, aorta, and gastrointestinal tract sections. Expression patterns revealed that non-renal tissues and cells (NRTC) express genes to form active vitamin D [1,25(OH)2D3] according to site-specific requirements. A low P diet resulted in higher serum calcitriol and increased CYP24A1 expression in the small intestine, indicating local suppression of vitamin D signaling. A high P diet prompted increased mRNA abundances of CYP27B1 for local vitamin D synthesis, specifically in bone. For FGF23 signaling, analyses revealed ubiquitous expression of FGFR1-4, whereas KL was expressed in a tissue-specific manner. Dietary P supply did not affect skeletal FGF23; however, FGFR4 and KL showed increased expression in bone at high P supply, suggesting regulation to balance mineralization. Specific NRTC responses influence vitamin D metabolism and P homeostasis, which should be considered for a thrifty but healthy P supply.
Collapse
Affiliation(s)
- Maruf Hasan
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Eduard Murani
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Petra Wolf
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
| | - Dagmar-Christiane Fischer
- Department of Pediatrics, Rostock University Hospital, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
- Correspondence: ; Tel.: +49-38208-68600
| |
Collapse
|
33
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
34
|
Agoro R, White KE. Anemia and fibroblast growth factor 23 elevation in chronic kidney disease: homeostatic interactions and emerging therapeutics. Curr Opin Nephrol Hypertens 2022; 31:320-325. [PMID: 35703246 PMCID: PMC9307122 DOI: 10.1097/mnh.0000000000000797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is a progressive disorder that is associated with development of elevated fibroblast growth factor 23 (FGF23) levels and anemia. Here, we review recent literature that extends our current knowledge on the interactions between FGF23 and anemia in CKD and the impact of anemia-targeting therapeutics on FGF23 elevation in CKD. RECENT FINDINGS The anemia of CKD is primarily driven by a lack of erythropoietin (EPO) and iron deficiency. In addition to EPO and iron replacement, novel drug classes to treat anemia have been approved or are in clinical development. A recent observational study provides supportive evidence for the hypothesis that FGF23 elevation in CKD mediates adverse effects of iron deficiency on the cardiovascular system in patients with CKD. Preclinical and clinical studies revealed that ferric citrate (FC), and hypoxia-induced factor-prolyl hydroxylase inhibitor (HIF-PHI) treatment may reduce elevated FGF23 levels in CKD, suggesting that correcting anemia in CKD could potentially lower FGF23 levels. However, as we describe, HIF-PHI have context-dependent effects. Moreover, whether a reduction in FGF23 will improve patient outcomes in patients with CKD remains to be determined. SUMMARY With the emergence of novel therapeutics to treat oxygen and iron utilization deficits in CKD, studies have investigated the impact of these new drugs on FGF23. Several of these drugs, including FC and HIF-PHIs, alleviate iron homeostasis alterations in CKD and are associated with FGF23 reduction. Herein, we review the relationships between oxygen/iron sensing and FGF23 in CKD, recent findings which link FGF23 with cardiac dysfunction, as well as future translational and clinical avenues.
Collapse
Affiliation(s)
- Rafiou Agoro
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA 46202
| | - Kenneth E. White
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA 46202
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA 46202
| |
Collapse
|
35
|
Sharma S, Katz R, Ginsberg C, Bullen A, Vallon V, Thomson S, Moe OW, Hoofnagle AN, de Leeuw PW, Kroon AA, Houben AJHM, Ix JH. Renal Clearance of Fibroblast Growth Factor-23 (FGF23) and its Fragments in Humans. J Bone Miner Res 2022; 37:1170-1178. [PMID: 35373859 PMCID: PMC9177785 DOI: 10.1002/jbmr.4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 11/06/2022]
Abstract
Relative abundance of fibroblast growth factor-23 (FGF23) measured by the C-terminal (cFGF23, which measures both intact FGF23 and C-terminal fragments) versus intact (iFGF23, measures only intact hormone) assays varies by kidney function in humans. Differential kidney clearance may explain this finding. We measured cFGF23 and iFGF23 in the aorta and bilateral renal veins of 162 patients with essential hypertension undergoing renal angiography. Using multivariable linear regression, we examined factors associated with aorta to renal vein reduction of FGF23 using both assays. Similar parameters and with addition of urine concentrations of cFGF23 and iFGF23 were measured in six Wistar rats. Mean ± standard deviation (SD) age was 54 ± 12 years, 54% were women, and mean creatinine clearance was 72 ± 48 mL/min/100 g. The human kidney reduced the concentrations of both cFGF23 (16% ± 12%) and iFGF23 (21% ± 16%), but reduction was higher for iFGF23. Greater kidney creatinine and PTH reductions were each independently associated with greater reductions of both cFGF23 and iFGF23. The greater kidney reduction of iFGF23 compared to cFGF23 appeared stable and consistent across the range of creatinine clearance evaluated. Kidney clearance was similar, and urine concentrations of both assays were low in the rat models, suggesting kidney metabolism of both cFGF23 and iFGF23. Renal reduction of iFGF23 is higher than that of creatinine and cFGF23. Our data suggest that FGF23 is metabolized by the kidney. However, the major cell types involved in metabolization of FGF23 requires future study. Kidney clearance of FGF23 does not explain differences in C-terminal and intact moieties across the range of kidney function. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shilpa Sharma
- Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Nephrology Section, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Ronit Katz
- University of Washington, Seattle, WA, USA
| | - Charles Ginsberg
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Alexander Bullen
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA, USA.,Nephrology Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Volker Vallon
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA, USA.,Nephrology Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA.,Department of Pharmacology, University of California-San Diego, La Jolla, CA, USA
| | - Scott Thomson
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA, USA.,Nephrology Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA.,Department of Pharmacology, University of California-San Diego, La Jolla, CA, USA
| | - Orson W Moe
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Departments of Internal Medicine and Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Peter W de Leeuw
- Department of Internal Medicine and CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Abraham A Kroon
- Department of Internal Medicine and CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Alfons J H M Houben
- Department of Internal Medicine and CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joachim H Ix
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA, USA.,Nephrology Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| |
Collapse
|
36
|
Wang Y, Wang K, Bao Y, Zhang T, Ainiwaer D, Xiong X, Wang G, Sun Z. The serum soluble Klotho alleviates cardiac aging and regulates M2a/M2c macrophage polarization via inhibiting TLR4/Myd88/NF-κB pathway. Tissue Cell 2022; 76:101812. [DOI: 10.1016/j.tice.2022.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
|
37
|
Vervloet MG. Shedding Light on the Complex Regulation of FGF23. Metabolites 2022; 12:metabo12050401. [PMID: 35629904 PMCID: PMC9147863 DOI: 10.3390/metabo12050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Early research has suggested a rather straightforward relation between phosphate exposure, increased serum FGF23 (Fibroblast Growth Factor 23) concentrations and clinical endpoints. Unsurprisingly, however, subsequent studies have revealed a much more complex interplay between autocrine and paracrine factors locally in bone like PHEX and DMP1, concentrations of minerals in particular calcium and phosphate, calciprotein particles, and endocrine systems like parathyroid hormone PTH and the vitamin D system. In addition to these physiological regulators, an expanding list of disease states are shown to influence FGF23 levels, usually increasing it, and as such increase the burden of disease. While some of these physiological or pathological factors, like inflammatory cytokines, may partially confound the association of FGF23 and clinical endpoints, others are in the same causal path, are targetable and hence hold the promise of future treatment options to alleviate FGF23-driven toxicity, for instance in chronic kidney disease, the FGF23-associated disease with the highest prevalence by far. These factors will be reviewed here and their relative importance described, thereby possibly opening potential means for future therapeutic strategies.
Collapse
Affiliation(s)
- Marc G. Vervloet
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Nephrology, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; ; Tel.: +31-20-4442671
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
38
|
Ammar YA, Maharem DA, Mohamed AH, Khalil GI, Shams-Eldin RS, Dwedar FI. Fibroblast growth factor-23 rs7955866 polymorphism and risk of chronic kidney disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A missense gain-of-function fibroblast growth factor-23 (FGF23) gene single nucleotide polymorphism (SNP) (rs7955866) has been associated with FGF23 hypersecretion, phosphaturia, and bone disease. Excess circulating FGF23 was linked with atherosclerosis, hypertension, initiation, and progression of chronic kidney disease (CKD).
Methods
The study included 72 CKD stage 2/3 Egyptian patients (27–71 years old, 37 females) and 26 healthy controls matching in age and sex. Repeated measures of blood pressure were used to quantify hypertension on a semiquantitative scale (grades 0 to 5). Fasting serum urea, creatinine, uric acid, total proteins, albumin, calcium, phosphorus, vitamin D3, intact parathyroid hormone (iPTH), and intact FGF23 (iFGF23) were measured. DNA extracted from peripheral blood leucocytes was used for genotyping of FGF23 rs7955866 SNP using the TaqMan SNP genotyping allelic discrimination method.
Results
Major causes of CKD were hypertension, diabetic kidney disease, and CKD of unknown etiology. There was no significant difference in minor allele (A) frequency between the studied groups (0.333 in GI and 0.308 in GII). Median (IQR) serum iFGF23 was significantly higher in GI [729.2 (531.9–972.3)] than in GII [126.1 (88.5–152.4)] pg/mL, P < 0.001. Within GI, the minor allele (A) frequency load, coded for codominant inheritance, had a significant positive correlation with both hypertension grade (r = 0.385, P = 0.001) and serum iFGF23 (r = 0.259, P = 0.028). Hypertension grade had a significant positive correlation with serum phosphorus and iFGF23.
Conclusions
For the first time in an Egyptian cohort, we report a relatively high frequency of the rs7955866 SNP. It may remain dormant or become upregulated in response to some environmental triggers, notably dietary phosphorus excess, leading to increased circulating iFGF23 with ensuing hypertension and/or renal impairment. Subjects with this SNP, particularly in the homozygous form, are at increased risk for CKD of presumably “unknown” etiology, with a tendency for early onset hypertension and increased circulating iFGF23 out of proportion with the degree of renal impairment. Large-scale population studies are needed to confirm these findings and explore the role of blockers of the renin–angiotensin–aldosterone system and sodium chloride cotransporters in mitigating hypertension associated with FGF23 excess.
Collapse
|
39
|
Afsar B, Kanbay M, Afsar RE. Interconnections of fibroblast growth factor 23 and klotho with erythropoietin and hypoxia-inducible factor. Mol Cell Biochem 2022; 477:1973-1985. [PMID: 35381946 DOI: 10.1007/s11010-022-04422-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
Bone marrow (BM) hematopoiesis is tightly regulated process and bone components such as osteoblasts, extracellular matrix, and minerals influence hematopoiesis via regulation of hematopoietic stem cell function. Erythropoietin (EPO) secreted mostly by renal EPO producing (REP) cells which employ the hypoxia-inducible factor (HIF) pathway. When tissue hypoxia occurs, HIFs bind to hypoxia response element in the EPO promoter and induce EPO production. EPO binds to the EPO receptor on red cell progenitors in the BM and triggers expansion of red cell mass. Fibroblast growth factor-23 (FGF23) which is secreted mostly by osteoblasts and less by BM impacts hematopoiesis by influencing EPO production. Reciprocally, increases of EPO (acute or chronic) influence both FG23 production and cleavage resulting in variation of c fragment FGF23 (cFGF23) and intact FGF23 (iFGF23) ratios. As HIFs stimulate EPO production, they indirectly affect FGF23. Direct stimulation of FGF23 synthesis by binding of HIF on FGF23 promoter is also suggested. FGF23 cleavage by furin is another potential mechanism affecting FGF23 levels. Klotho is present in membrane-bound (transmembrane) and free (circulating) forms. Transmembrane klotho is the co-receptor of FGF23 and forms complexes with FGF23 receptors in the membrane surface and required for FGF23 actions. Recent evidence showed that klotho is also associated with EPO and HIF production suggesting a complex relationship between FGF23, klotho, EPO, and HIF. In this review, we have summarized the connections between FGF23, klotho, HIF, and EPO and their reflections to hematopoiesis.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Mehmet Kanbay
- Department of Nephrology, School of Medicine, Koc University, Istanbul, Turkey
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
40
|
Sirikul W, Siri-Angkul N, Chattipakorn N, Chattipakorn SC. Fibroblast Growth Factor 23 and Osteoporosis: Evidence from Bench to Bedside. Int J Mol Sci 2022; 23:ijms23052500. [PMID: 35269640 PMCID: PMC8909928 DOI: 10.3390/ijms23052500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis is a chronic debilitating disease caused by imbalanced bone remodeling processes that impair the structural integrity of bone. Over the last ten years, the association between fibroblast growth factor 23 (FGF23) and osteoporosis has been studied in both pre-clinical and clinical investigations. FGF23 is a bone-derived endocrine factor that regulates mineral homeostasis via the fibroblast growth factor receptors (FGFRs)/αKlotho complex. These receptors are expressed in kidney and the parathyroid gland. Preclinical studies have supported the link between the local actions of FGF23 on the bone remodeling processes. In addition, clinical evidence regarding the effects of FGF23 on bone mass and fragility fractures suggest potential diagnostic and prognostic applications of FGF23 in clinical contexts, particularly in elderly and patients with chronic kidney disease. However, inconsistent findings exist and there are areas of uncertainty requiring exploration. This review comprehensively summarizes and discusses preclinical and clinical reports on the roles of FGF23 on osteoporosis, with an emphasis on the local action, as opposed to the systemic action, of FGF23 on the bone. Current gaps in knowledge and future research directions are also suggested to encourage further rigorous research in this important field.
Collapse
Affiliation(s)
- Wachiranun Sirikul
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Natthaphat Siri-Angkul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.-A.); (N.C.)
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.-A.); (N.C.)
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.-A.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-944-451; Fax: +66-53-222-844
| |
Collapse
|
41
|
Takashi Y, Kawanami D. The Role of Bone-Derived Hormones in Glucose Metabolism, Diabetic Kidney Disease, and Cardiovascular Disorders. Int J Mol Sci 2022; 23:ijms23042376. [PMID: 35216490 PMCID: PMC8879859 DOI: 10.3390/ijms23042376] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/19/2022] Open
Abstract
Bone contributes to supporting the body, protecting the central nervous system and other organs, hematopoiesis, the regulation of mineral metabolism (mainly calcium and phosphate), and assists in respiration. Bone has many functions in the body. Recently, it was revealed that bone also works as an endocrine organ and secretes several systemic humoral factors, including fibroblast growth factor 23 (FGF23), osteocalcin (OC), sclerostin, and lipocalin 2. Bone can communicate with other organs via these hormones. In particular, it has been reported that these bone-derived hormones are involved in glucose metabolism and diabetic complications. Some functions of these bone-derived hormones can become useful biomarkers that predict the incidence of diabetes and the progression of diabetic complications. Furthermore, other functions are considered to be targets for the prevention or treatment of diabetes and its complications. As is well known, diabetes is now a worldwide health problem, and many efforts have been made to treat diabetes. Thus, further investigations of the endocrine system through bone-derived hormones may provide us with new perspectives on the prediction, prevention, and treatment of diabetes. In this review, we summarize the role of bone-derived hormones in glucose metabolism, diabetic kidney disease, and cardiovascular disorders.
Collapse
|
42
|
The regulation of FGF23 under physiological and pathophysiological conditions. Pflugers Arch 2022; 474:281-292. [PMID: 35084563 PMCID: PMC8837506 DOI: 10.1007/s00424-022-02668-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is an important bone hormone that regulates phosphate homeostasis in the kidney along with active vitamin D (1,25(OH)2D3) and parathyroid hormone (PTH). Endocrine effects of FGF23 depend, at least in part, on αKlotho functioning as a co-receptor whereas further paracrine effects in other tissues are αKlotho-independent. Regulation of FGF23 production is complex under both, physiological and pathophysiological conditions. Physiological regulators of FGF23 include, but are not limited to, 1,25(OH)2D3, PTH, dietary phosphorus intake, and further intracellular and extracellular factors, kinases, cytokines, and hormones. Moreover, several acute and chronic diseases including chronic kidney disease (CKD) or further cardiovascular disorders are characterized by early rises in the plasma FGF23 level pointing to further mechanisms effective in the regulation of FGF23 under pathophysiological conditions. Therefore, FGF23 also serves as a prognostic marker in several diseases. Our review aims to comprehensively summarize the regulation of FGF23 in health and disease.
Collapse
|
43
|
Fuente R, García-Bengoa M, Fernández-Iglesias Á, Gil-Peña H, Santos F, López JM. Cellular and Molecular Alterations Underlying Abnormal Bone Growth in X-Linked Hypophosphatemia. Int J Mol Sci 2022; 23:ijms23020934. [PMID: 35055123 PMCID: PMC8778463 DOI: 10.3390/ijms23020934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
X-linked hypophosphatemia (XLH), the most common form of hereditary hypophosphatemic rickets, is caused by inactivating mutations of the phosphate-regulating endopeptidase gene (PHEX). XLH is mainly characterized by short stature, bone deformities and rickets, while in hypophosphatemia, normal or low vitamin D levels and low renal phosphate reabsorption are the principal biochemical aspects. The cause of growth impairment in patients with XLH is not completely understood yet, thus making the study of the growth plate (GP) alterations necessary. New treatment strategies targeting FGF23 have shown promising results in normalizing the growth velocity and improving the skeletal effects of XLH patients. However, further studies are necessary to evaluate how this treatment affects the GP as well as its long-term effects and the impact on adult height.
Collapse
Affiliation(s)
- Rocío Fuente
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Physiology, Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - María García-Bengoa
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hanover, Germany
| | - Ángela Fernández-Iglesias
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Helena Gil-Peña
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Fernando Santos
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - José Manuel López
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Correspondence:
| |
Collapse
|
44
|
Hu MC, Moe OW. Phosphate and Cellular Senescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:55-72. [PMID: 35288873 PMCID: PMC10513121 DOI: 10.1007/978-3-030-91623-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cellular senescence is one type of permeant arrest of cell growth and one of increasingly recognized contributor to aging and age-associated disease. High phosphate and low Klotho individually and synergistically lead to age-related degeneration in multiple organs. Substantial evidence supports the causality of high phosphate in cellular senescence, and potential contribution to human aging, cancer, cardiovascular, kidney, neurodegenerative, and musculoskeletal diseases. Phosphate can induce cellular senescence both by direct phosphotoxicity, and indirectly through downregulation of Klotho and upregulation of plasminogen activator inhibitor-1. Restriction of dietary phosphate intake and blockage of intestinal absorption of phosphate help suppress cellular senescence. Supplementation of Klotho protein, cellular senescence inhibitor, and removal of senescent cells with senolytic agents are potential novel strategies to attenuate phosphate-induced cellular senescence, retard aging, and ameliorate age-associated, and phosphate-induced disorders.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
45
|
Brescia V, Fontana A, Lovero R, Capobianco C, Marsico SV, De Chirico T, Pinto C, Varraso L, Cazzolla AP, Di Serio F. Determination of iFGF23 Upper Reference Limits (URL) in healthy pediatric population, for its better correct use. Front Endocrinol (Lausanne) 2022; 13:1018523. [PMID: 36440231 PMCID: PMC9681906 DOI: 10.3389/fendo.2022.1018523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The measurement of Fibroblast growth factor 23 (FGF23) may be useful in the diagnosis and management of abnormal phosphate metabolism in both patients with preserved renal function or with chronic kidney disease (CKD). FGF-23 tests differ considerably by molecule assayed (iFGF23 or cFGF23), analytical performance and reference ranges. We establish iFGF23 Upper Reference Limits (URL) in apparently healthy pediatric individuals using automated immunochemiluminescent assay. METHODS We measured the levels of plasma iFGF23 from 115 samples from apparently healthy pediatric subjects [59 (51.3%) individuals were male; median age 10 years (range 1-18)] included in an observational study conducted at Policlinico University Hospital of Bari. The method used for the iFGF23 assay was immunochemiluminescent sandwich assay developed by DiaSorin on the Liaison XL platform. Statistical calculation of 95% reference interval, right-sided (CLSI C28-A3) and verification of age and sex covariables was performed for the calculation of the URL. RESULTS The URL concentration of iFGF23 was 61.21 pg/mL (58.63 to 63.71, 90% CI). No significant differences were found between the median concentrations of iFGF23 differentiated by sex and age. CONCLUSIONS The dosage of iFGF23 is important both for the differential diagnosis of the various forms of rickets, and for the subsequent monitoring of the effectiveness of drug treatment. We have established the URL for the iFGF23 Liaison test in apparently healthy pediatric subjects. The availability of iFGF23 pediatric reference values will allow a better clinical use of the test.
Collapse
Affiliation(s)
- Vincenzo Brescia
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| | - Antonietta Fontana
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| | - Roberto Lovero
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
- *Correspondence: Roberto Lovero,
| | - Carmela Capobianco
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| | - Stella Vita Marsico
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| | - Tiziana De Chirico
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| | - Carla Pinto
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| | - Lucia Varraso
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, Foggia, Italy
| | - Francesca Di Serio
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| |
Collapse
|
46
|
Vitamin D and Phosphate Interactions in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:37-46. [DOI: 10.1007/978-3-030-91623-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Abstract
Osteocytes are dendritic cells in the mineralized bone matrix that descend from osteoblasts. They play critical roles in controlling bone mass through the production of sclerostin, an inhibitor of bone formation, and receptor activator of nuclear factor κ B ligand, an inducer of osteoblastic bone resorption. Osteocytes also govern phosphate homeostasis through the production of fibroblast growth factor 23 (FGF23), which lowers serum phosphate levels by increasing renal phosphate excretion and reducing the synthesis of 1,25-dihydroxyvitamin D (1,25(OH)2D), an active metabolite of vitamin D. The production of FGF23 in osteocytes is regulated by various local and systemic factors. Phosphate-regulating gene homologous to endopeptidase on X chromosome (PHEX), dentin matrix protein 1 (DMP1), and family with sequence similarity 20, member C function as local negative regulators of FGF23 production in osteocytes, and their inactivation causes the overproduction of FGF23 and hypophosphatemia. Sclerostin has been suggested to regulate the production of FGF23, which may link the two functions of osteocytes, namely, the control of bone mass and regulation of phosphate homeostasis. Systemic regulators of FGF23 production include 1,25(OH)2D, phosphate, parathyroid hormone, insulin, iron, and inflammation. Therefore, the regulation of FGF23 in osteocytes is complex and multifactorial. Recent mouse studies have suggested that decreases in serum phosphate levels from youth to adulthood are caused by growth-related increases in FGF23 production by osteocytes, which are associated with the down-regulation of Phex and Dmp1.
Collapse
|
48
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Bone-kidney axis: A potential therapeutic target for diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:996776. [PMID: 36353239 PMCID: PMC9637707 DOI: 10.3389/fendo.2022.996776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). However, its pathogenesis remains unclear, and effective prevention and treatment strategies are lacking. Recently, organ-to-organ communication has become a new focus of studies on pathogenesis. Various organs or tissues (the liver, muscle and adipose tissue) secrete a series of proteins or peptides to regulate the homeostasis of distal organs in an endocrine manner. Bone, an important part of the body, can also secrete bone-derived proteins or peptides that act on distal organs. As an organ with high metabolism, the kidney is responsible for signal and material exchange with other organs at any time through circulation. In this review, we briefly discussed bone composition and changes in bone structure and function in DN and summarized the current status of bone-derived proteins and their role in the progression of DN. We speculated that the "bone-kidney axis" is a potential target for early diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xi Wang,
| |
Collapse
|
49
|
Franco ML, Beyerstedt S, Rangel ÉB. Klotho and Mesenchymal Stem Cells: A Review on Cell and Gene Therapy for Chronic Kidney Disease and Acute Kidney Disease. Pharmaceutics 2021; 14:pharmaceutics14010011. [PMID: 35056905 PMCID: PMC8778857 DOI: 10.3390/pharmaceutics14010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) and acute kidney injury (AKI) are public health problems, and their prevalence rates have increased with the aging of the population. They are associated with the presence of comorbidities, in particular diabetes mellitus and hypertension, resulting in a high financial burden for the health system. Studies have indicated Klotho as a promising therapeutic approach for these conditions. Klotho reduces inflammation, oxidative stress and fibrosis and counter-regulates the renin-angiotensin-aldosterone system. In CKD and AKI, Klotho expression is downregulated from early stages and correlates with disease progression. Therefore, the restoration of its levels, through exogenous or endogenous pathways, has renoprotective effects. An important strategy for administering Klotho is through mesenchymal stem cells (MSCs). In summary, this review comprises in vitro and in vivo studies on the therapeutic potential of Klotho for the treatment of CKD and AKI through the administration of MSCs.
Collapse
Affiliation(s)
- Marcella Liciani Franco
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
| | - Stephany Beyerstedt
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
| | - Érika Bevilaqua Rangel
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
- Nephrology Division, Federal University of São Paulo, Sao Paulo 04038-901, Brazil
- Correspondence: ; Tel.: +55-11-2151-2148
| |
Collapse
|
50
|
Amin HA, Cordell HJ, Martin-Ruiz C, Robinson L, Kirkwood T, Blakemore AI, Drenos F. No Evidence That Genetic Variation At The Klotho Locus Is Associated With Longevity In Caucasians From The Newcastle 85 Plus Study And The Uk Biobank. J Gerontol A Biol Sci Med Sci 2021; 77:457-461. [PMID: 34893828 PMCID: PMC8893196 DOI: 10.1093/gerona/glab361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
The demographics of Western populations are changing, with an increase in the proportion of older adults. There is evidence to suggest that genetic factors may influence the aging process: studying these may lead to interventions to help individuals live a longer and healthier life. Evidence from several groups indicates that Klotho (KL), a gene encoding a single-pass transmembrane protein that acts as an FGF23 co-receptor, may be associated with longevity and healthy aging. We aimed to explore this area further by comparing the genotype counts in 642 long-lived individuals from the Newcastle 85+ Study with 18 295 middle-aged Newcastle-based controls from the UK Biobank to test whether variants at the KL gene locus are over- or under-represented in older individuals. If KL is associated with longevity, then we would expect the genotype counts to differ between the 2 cohorts. We found that the rs2283368 CC genotype and the rs9536338 C allele, but not the KL-VS haplotype, were associated with reaching very old age. However, these associations did not replicate in the remainder of the UK Biobank cohort. Thus, our results do not reliably support the role of KL as a longevity factor.
Collapse
Affiliation(s)
- Hasnat A Amin
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Carmen Martin-Ruiz
- BioScreening Core Facility, Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Louise Robinson
- Population Health Sciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tom Kirkwood
- Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexandra I Blakemore
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | |
Collapse
|