1
|
Jasmin MDC, Radhakrishnan N, Prabhu VV, Sakthivel KM, Radha RR. Histone-Lysine N-Methyltransferase 2D (KMT2D) Impending Therapeutic Target for the Management of Cancer: The Giant Rats Tail. J Environ Pathol Toxicol Oncol 2025; 44:31-36. [PMID: 39462447 DOI: 10.1615/jenvironpatholtoxicoloncol.2024053872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
The histone-lysine N-methyltransferase 2D (KMT2D), tumor suppressor gene which is the major component of histone H3K4 mono-methyltransferase in mammals and has significant role in regulation of a gene which are frequently mutated that lead to many different types of cancers that include non-Hodgkin lymphoma, medulloblastoma, prostate carcinoma, renal carcinoma, bladder carcinoma and lung carcinoma. KMT2D gene epigenetic alterations in histone methylation play a significant role for the initiation and progression of cancers from pre-cancerous lesions, yet its complete function in oncogenesis remains unsolved. KMT2D deficiency - loss are thought of initial mediators of cancer development and cell migration such as B-cell lymphoma, medulloblastoma, melanoma, pancreas and lung cancer. The KMT2D loss has know to activate glycolytic genes that promote aggressive tumor progression. Therefore, the present review serves to underline the update on recent research pertaining to KMT2D gene, that could be a potential therapeutic target in downregulating glycolytic genes such as Pgk1, Ldha, Pgam1 and Gapdh; 2, epidermal growth factor receptor tyrosine kinase (EGFR-TK ) - ERBB2, RTK-RAS signaling, RAS activator genes Rgl1, Rasgrp1, Rasgrf1, Rasgrf 2 and Rapgef5 in suppressing the tumor progression that may represent novel targeted therapy for the management of cancer. This review will facilitate to understand the gene expression that inhibits cancer progression and which could serve as a potential molecular target in understanding cancer pathogenesis.
Collapse
Affiliation(s)
- Meshak Dhanashekaran Cecileya Jasmin
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Thandalam, Chennai, Tamil Nadu 602105, India; Department of Biochemistry, Tagore Medical College and Hospital, Rathinamangalam, Melakottaiyur, Chennai, Tamil Nadu 600127, India
| | | | - Venugopal Vinod Prabhu
- Department of Biochemistry, University of Madras, Guindy campus, Chennai-600025, Tamil Nadu, India
| | - Kunnathur Murugesan Sakthivel
- Karunya University, Department of Biotechnology, Karunya Nagar, Coimbatore-641114, Tamil Nadu, India; Laboratory of Cytogenetics and Molecular Diagnostics, Regional Cancer Centre, Medical College Post, Trivandrum 695011, Kerala, India
| | - Rasmi Rajan Radha
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu 614014, India
| |
Collapse
|
2
|
Jiao Y, Lv Y, Liu M, Liu Y, Han M, Xiong X, Zhou H, Zhong J, Kang X, Su W. The modification role and tumor association with a methyltransferase: KMT2C. Front Immunol 2024; 15:1444923. [PMID: 39165358 PMCID: PMC11333232 DOI: 10.3389/fimmu.2024.1444923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Histone methylation can affect chromosome structure and binding to other proteins, depending on the type of amino acid being modified and the number of methyl groups added, this modification may promote transcription of genes (H3K4me2, H3K4me3, and H3K79me3) or reduce transcription of genes (H3K9me2, H3K9me3, H3K27me2, H3K27me3, and H4K20me3). In addition, advances in tumor immunotherapy have shown that histone methylation as a type of protein post-translational modification is also involved in the proliferation, activation and metabolic reprogramming of immune cells in the tumor microenvironment. These post-translational modifications of proteins play a crucial role in regulating immune escape from tumors and immunotherapy. Lysine methyltransferases are important components of the post-translational histone methylation modification pathway. Lysine methyltransferase 2C (KMT2C), also known as MLL3, is a member of the lysine methyltransferase family, which mediates the methylation modification of histone 3 lysine 4 (H3K4), participates in the methylation of many histone proteins, and regulates a number of signaling pathways such as EMT, p53, Myc, DNA damage repair and other pathways. Studies of KMT2C have found that it is aberrantly expressed in many diseases, mainly tumors and hematological disorders. It can also inhibit the onset and progression of these diseases. Therefore, KMT2C may serve as a promising target for tumor immunotherapy for certain diseases. Here, we provide an overview of the structure of KMT2C, disease mechanisms, and diseases associated with KMT2C, and discuss related challenges.
Collapse
Affiliation(s)
- Yunjuan Jiao
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Yuanhao Lv
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Mingjie Liu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yun Liu
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Miaomiao Han
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Xiwen Xiong
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongyan Zhou
- Xinxiang Key Laboratory of Precision Diagnosis and Treatment for Colorectal Cancer, Xinxiang First People’s Hospital, Xinxiang, China
| | - Jiateng Zhong
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
- Xinxiang Engineering Technology Research Center of Digestive Tumor Molecular Diagnosis, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaohong Kang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Engineering Technology Research Center of Digestive Tumor Molecular Diagnosis, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
3
|
Wu CJ, Livak F, Ashwell JD. The histone methyltransferase KMT2D maintains cellular glucocorticoid responsiveness by shielding the glucocorticoid receptor from degradation. J Biol Chem 2024; 300:107581. [PMID: 39025450 PMCID: PMC11350265 DOI: 10.1016/j.jbc.2024.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Because of their ability to induce lymphocyte apoptosis, glucocorticoids (GC) are widely used to treat hematological malignancies such as lymphomas and multiple myeloma. Their effectiveness is often limited, however, due to the development of glucocorticoid resistance by a variety of molecular mechanisms. Here we performed an unbiased genome-wide CRISPR screen with the human T-cell leukemia cell line Jurkat to find previously unidentified genes required for GC-induced apoptosis. One such gene was KMT2D (also known as MLL2 or MLL4), which encodes a histone lysine methyltransferase whose mutations are associated with a variety of cancers, blood malignancies in particular, and are considered markers of poor prognosis. Knockout of KMT2D by CRISPR/Cas9 gene editing in Jurkat and several multiple myeloma cell lines downregulated GR protein expression. Surprisingly, this was not due to a reduction in GR transcripts, but rather to a decrease in the protein's half-life, primarily due to proteasomal degradation. Reconstitution of KMT2D expression restored GR levels. In contrast to the known ability of KMT2D to control gene transcription through covalent histone methylation, KMT2D-mediated upregulation of GR levels did not require its methyltransferase activity. Co-immunoprecipitation and proximity ligation assays found constitutive binding of KMT2D to the GR, which was enhanced in the presence of GC. These observations reveal KMT2D to be essential for the stabilization of cellular GR levels, and suggest a possible mechanism by which KMT2D mutations may lead to GC resistance in some malignancies.
Collapse
Affiliation(s)
- Chuan-Jin Wu
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ferenc Livak
- Laboratory of Genome Integrity Flow Cytometry Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
4
|
Lacunza E, Fink V, Salas ME, Gun AM, Basiletti JA, Picconi MA, Golubicki M, Robbio J, Kujaruk M, Iseas S, Williams S, Figueroa MI, Coso O, Cahn P, Ramos JC, Abba MC. Transcriptome and microbiome-immune changes across preinvasive and invasive anal cancer lesions. JCI Insight 2024; 9:e180907. [PMID: 39024554 PMCID: PMC11343604 DOI: 10.1172/jci.insight.180907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Anal squamous cell carcinoma (ASCC) is a rare gastrointestinal malignancy linked to high-risk human papillomavirus (HPV) infection, which develops from precursor lesions like low-grade squamous intraepithelial lesions and high-grade squamous intraepithelial lesions (HGSILs). ASCC incidence varies across populations and poses increased risk for people living with HIV. Our investigation focused on transcriptomic and metatranscriptomic changes from squamous intraepithelial lesions to ASCC. Metatranscriptomic analysis highlighted specific bacterial species (e.g., Fusobacterium nucleatum, Bacteroides fragilis) more prevalent in ASCC than precancerous lesions. These species correlated with gene-encoding enzymes (Acca, glyQ, eno, pgk, por) and oncoproteins (FadA, dnaK), presenting potential diagnostic or treatment markers. Unsupervised transcriptomic analysis identified distinct sample clusters reflecting histological diagnosis, immune infiltrate, HIV/HPV status, and pathway activities, recapitulating anal cancer progression's natural history. Our study unveiled molecular mechanisms in anal cancer progression, aiding in stratifying HGSIL cases based on low or high risk of progression to malignancy.
Collapse
Affiliation(s)
- Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
| | - Valeria Fink
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - María E. Salas
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
| | - Ana M. Gun
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Jorge A. Basiletti
- Laboratorio Nacional y Regional de Referencia de Virus Papiloma Humano, Instituto Nacional de Enfermedades Infecciosas - ANLIS “Dr. Malbrán”, Buenos Aires, Argentina
| | - María A. Picconi
- Laboratorio Nacional y Regional de Referencia de Virus Papiloma Humano, Instituto Nacional de Enfermedades Infecciosas - ANLIS “Dr. Malbrán”, Buenos Aires, Argentina
| | - Mariano Golubicki
- Unidad de Oncología, Hospital de Gastroenterología “Dr. Carlos Bonorino Udaondo”, Buenos Aires, Argentina
| | - Juan Robbio
- Unidad de Oncología, Hospital de Gastroenterología “Dr. Carlos Bonorino Udaondo”, Buenos Aires, Argentina
| | - Mirta Kujaruk
- Unidad de Oncología, Hospital de Gastroenterología “Dr. Carlos Bonorino Udaondo”, Buenos Aires, Argentina
| | - Soledad Iseas
- Medical Oncology Department, Paris-St Joseph Hospital, Paris, France
| | - Sion Williams
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- University of Miami - Center for AIDS Research/Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - María I. Figueroa
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Omar Coso
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Cahn
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Juan C. Ramos
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- University of Miami - Center for AIDS Research/Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Martín C. Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
| |
Collapse
|
5
|
Fang Z, Wu X, Xiao L, Wang C, Zhao Y, Zhang Q, Jablonska PA, La Rosa A, Dempke WCM, Furqan M, Fan H. Somatic KMT2D loss-of-function mutations in lung squamous cell carcinoma: a single-center cohort study. J Thorac Dis 2024; 16:3338-3349. [PMID: 38883659 PMCID: PMC11170359 DOI: 10.21037/jtd-24-134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024]
Abstract
Background The significant progress has been made in targeted therapy for lung adenocarcinoma (LUAD) in the past decade. Only few targeted therapeutics have yet been approved for the treatment of lung squamous cell carcinoma (LUSC). Several higher frequency of gene alterations are identified as potentially actionable in LUSC. Our work aimed to explore the complex interplay of multiple genetic alterations and pathways contributing to the pathogenesis of LUSC, with a very low frequency of a single driver molecular alterations to develop more effective therapeutic strategies in the future. Methods We retrospectively analyzed the targeted next-generation sequencing (NGS) data (approximately 600 genes) of 335 patients initially diagnosed with non-small cell lung cancer (NSCLC) at our institution between January 2019 and March 2023 and explored the somatic genome alteration difference between LUSC and LUAD. Results We analyzed that the presence of loss-of-function (LoF) mutations (nonsense, frameshift, and splice-site variants) in histone-lysine N-methyltransferase 2D (KMT2D) was much more prevalent in LUSC (11/53, 20.8%) than in LUAD (6/282, 2.1%). Moreover, our data indicated TP53 co-mutated with KMT2D LoF in 90.9% (10/11) LUSC and 33.3% (2/6) LUAD. Notably, the mutation allele fraction (MAF) of KMT2D was very similar to that of TP53 in the co-mutated cases. Genomic profiling of driver gene mutations of NSCLC showed that 81.8% (9/11) of the patients with LUSC with KMT2D LoF mutations had PIK3CA amplification and/or FGFR1 amplification. Conclusions Our results prompted that somatic LoF mutations of KMT2D occur frequently in LUSC, but are less frequent in LUAD and therefore may potentially contribute to the pathogenesis of LUSC. Concurrent TP53 mutations, FGFR1 amplification, and PIK3CA amplification are very common in LUSC cases with KMT2D LoF mutations. It needs more deeper investigation on the interplay of the genes and pathways and uses larger cohorts in the future.
Collapse
Affiliation(s)
- Zekui Fang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiping Wu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xiao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunli Wang
- Mygene Diagnostics Co., Ltd., Guangzhou, China
- Guangdong Engineering Technology Research Center of Multiplex PCR & Tumor Diagnostics, Guangzhou, China
| | - Yanyan Zhao
- Mygene Diagnostics Co., Ltd., Guangzhou, China
- Guangdong Engineering Technology Research Center of Multiplex PCR & Tumor Diagnostics, Guangzhou, China
| | - Qingchao Zhang
- Mygene Diagnostics Co., Ltd., Guangzhou, China
- Guangdong Engineering Technology Research Center of Multiplex PCR & Tumor Diagnostics, Guangzhou, China
| | - Paola Anna Jablonska
- Radiation Oncology Department, Hospital Universitario de Navarra, Pamplona, Spain
| | - Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Wolfram C M Dempke
- Department of Haematology and Oncology, University of Munich, Munich, Germany
| | - Muhammad Furqan
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Huizhen Fan
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Jamali M, Barar E, Shi J. Unveiling the Molecular Landscape of Pancreatic Ductal Adenocarcinoma: Insights into the Role of the COMPASS-like Complex. Int J Mol Sci 2024; 25:5069. [PMID: 38791111 PMCID: PMC11121229 DOI: 10.3390/ijms25105069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is poised to become the second leading cause of cancer-related death by 2030, necessitating innovative therapeutic strategies. Genetic and epigenetic alterations, including those involving the COMPASS-like complex genes, have emerged as critical drivers of PDAC progression. This review explores the genetic and epigenetic landscape of PDAC, focusing on the role of the COMPASS-like complex in regulating chromatin accessibility and gene expression. Specifically, we delve into the functions of key components such as KDM6A, KMT2D, KMT2C, KMT2A, and KMT2B, highlighting their significance as potential therapeutic targets. Furthermore, we discuss the implications of these findings for developing novel treatment modalities for PDAC.
Collapse
Affiliation(s)
- Marzieh Jamali
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erfaneh Barar
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
8
|
da Silva Santos ME, de Carvalho Abreu AK, Martins da Silva FW, Barros Ferreira E, Diniz Dos Reis PE, do Amaral Rabello Ramos D. KMT2 (MLL) family of methyltransferases in head and neck squamous cell carcinoma: A systematic review. Head Neck 2024; 46:417-434. [PMID: 38102754 DOI: 10.1002/hed.27597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The involvement of the KMT2 methyltransferase family in the pathogenesis of head and neck squamous cell carcinoma (HNSCC) remains elusive. METHOD This study adhered to the PRISMA guidelines, employing a search strategy in the LIVIVO, PubMed, Scopus, Embase, Web of Science, and Google Scholar databases. The methodological quality of the studies was assessed by the Joanna Briggs Institute. RESULTS A total of 33 studies involving 4294 individuals with HNSCC were included in this review. The most important alteration was the high mutational frequency in the KMT2C and KMT2D genes, with reported co-occurrence. The expression of the KMT2D gene exhibited considerable heterogeneity across the studies, while limited data was available for the remaining genes. CONCLUSIONS KMT2C and KMT2D genes seem to have tumor suppressor activities, with involvement of cell cycle inhibitors, regulating different pathways that can lead to tumor progression, disease aggressiveness, and DNA damage accumulation.
Collapse
Affiliation(s)
| | | | | | - Elaine Barros Ferreira
- Interdisciplinary Laboratory of Applied Research on Clinical Practice in Oncology, School of Health Sciences, University of Brasília, Brasília, Brazil
| | - Paula Elaine Diniz Dos Reis
- Interdisciplinary Laboratory of Applied Research on Clinical Practice in Oncology, School of Health Sciences, University of Brasília, Brasília, Brazil
| | | |
Collapse
|
9
|
Hamza A, Masliah-Planchon J, Neuzillet C, Lefèvre JH, Svrcek M, Vacher S, Bourneix C, Delaye M, Goéré D, Dartigues P, Samalin E, Hilmi M, Lazartigues J, Girard E, Emile JF, Rigault E, Dangles-Marie V, Rioux-Leclercq N, de la Fouchardière C, Tougeron D, Casadei-Gardini A, Mariani P, Peschaud F, Cacheux W, Lièvre A, Bièche I. Pathogenic alterations in PIK3CA and KMT2C are frequent and independent prognostic factors in anal squamous cell carcinoma treated with salvage abdominoperineal resection. Int J Cancer 2024; 154:504-515. [PMID: 37908048 DOI: 10.1002/ijc.34781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
The management of anal squamous cell carcinoma (ASCC) has yet to experience the transformative impact of precision medicine. Conducting genomic analyses may uncover novel prognostic biomarkers and offer potential directions for the development of targeted therapies. To that end, we assessed the prognostic and theragnostic implications of pathogenic variants identified in 571 cancer-related genes from surgical samples collected from a homogeneous, multicentric French cohort of 158 ASCC patients who underwent abdominoperineal resection treatment. Alterations in PI3K/AKT/mTOR, chromatin remodeling, and Notch pathways were frequent in HPV-positive tumors, while HPV-negative tumors often harbored variants in cell cycle regulation and genome integrity maintenance genes (e.g., frequent TP53 and TERT promoter mutations). In patients with HPV-positive tumors, KMT2C and PIK3CA exon 9/20 pathogenic variants were associated with worse overall survival in multivariate analysis (Hazard ratio (HR)KMT2C = 2.54, 95%CI = [1.25,5.17], P value = .010; HRPIK3CA = 2.43, 95%CI = [1.3,4.56], P value = .006). Alterations with theragnostic value in another cancer type was detected in 43% of patients. These results suggest that PIK3CA and KMT2C pathogenic variants are independent prognostic factors in patients with ASCC with HPV-positive tumors treated by abdominoperineal resection. And, importantly, the high prevalence of alterations bearing potential theragnostic value strongly supports the use of genomic profiling to allow patient enrollment in precision medicine clinical trials.
Collapse
Affiliation(s)
- Abderaouf Hamza
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | | | - Cindy Neuzillet
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Jérémie H Lefèvre
- Department of Digestive Surgery, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Paris, France
| | - Magali Svrcek
- Department of Pathology, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Christine Bourneix
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Matthieu Delaye
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Diane Goéré
- Department of Digestive Surgery, Gustave Roussy Institute, Villejuif, France
| | - Peggy Dartigues
- Department of Pathology, Gustave Roussy Institute, Villejuif, France
| | - Emmanuelle Samalin
- Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France
| | - Marc Hilmi
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Julien Lazartigues
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Elodie Girard
- INSERM U900 Research Unit, Institut Curie, PSL Research University, Paris, France
| | - Jean-François Emile
- Department of Pathology, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, UVSQ, BECCOH, Hôpital Ambroise-Paré, Boulogne-Billancourt, France
| | - Eugénie Rigault
- Department of Gastroenterology, Rennes University Hospital, Rennes, France
| | - Virginie Dangles-Marie
- Laboratory of preclinical investigation, Translational Research Department, Institut Curie, PSL Research University, Paris, France
- Faculty of Pharmaceutical and Biological Sciences, Paris Cité University, Paris, France
| | | | | | - David Tougeron
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Pascale Mariani
- Department of Surgery, Institut Curie, PSL Research University, Paris, France
| | - Frédérique Peschaud
- Department of Digestive and Oncologic Surgery, Ambroise Paré Hospital, Versailles Saint-Quentin University, Paris Saclay University, Boulogne-Billancourt, France
| | - Wulfran Cacheux
- Department of Medical Oncology, Hôpital Privé Pays de Savoie, Annemasse, France
| | - Astrid Lièvre
- Department of Gastroenterology, Rennes University Hospital, Rennes, France
- Rennes 1 University, Inserm U1242, COSS (Chemistry Oncogenesis Stress Signaling), Rennes, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
- Faculty of Pharmaceutical and Biological Sciences, Paris Cité University, INSERM U1016, Paris, France
| |
Collapse
|
10
|
Arai H, Matsui H, Chi S, Utsu Y, Masuda S, Aotsuka N, Minami Y. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. Int J Mol Sci 2024; 25:652. [PMID: 38203823 PMCID: PMC10779750 DOI: 10.3390/ijms25010652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the proliferation of genetic testing, pathogenic germline variants predisposing to hereditary hematological malignancy syndrome (HHMS) have been identified in an increasing number of genes. Consequently, the field of HHMS is gaining recognition among clinicians and scientists worldwide. Patients with germline genetic abnormalities often have poor outcomes and are candidates for allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT using blood from a related donor should be carefully considered because of the risk that the patient may inherit a pathogenic variant. At present, we now face the challenge of incorporating these advances into clinical practice for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) and optimizing the management and surveillance of patients and asymptomatic carriers, with the limitation that evidence-based guidelines are often inadequate. The 2016 revision of the WHO classification added a new section on myeloid malignant neoplasms, including MDS and AML with germline predisposition. The main syndromes can be classified into three groups. Those without pre-existing disease or organ dysfunction; DDX41, TP53, CEBPA, those with pre-existing platelet disorders; ANKRD26, ETV6, RUNX1, and those with other organ dysfunctions; SAMD9/SAMD9L, GATA2, and inherited bone marrow failure syndromes. In this review, we will outline the role of the genes involved in HHMS in order to clarify our understanding of HHMS.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Hirotaka Matsui
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuoku 104-0045, Japan;
- Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8665, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| |
Collapse
|
11
|
Terzi Çizmecioğlu N. Roles and Regulation of H3K4 Methylation During Mammalian Early Embryogenesis and Embryonic Stem Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:73-96. [PMID: 38231346 DOI: 10.1007/5584_2023_794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
From generation of germ cells, fertilization, and throughout early mammalian embryonic development, the chromatin undergoes significant alterations to enable precise regulation of gene expression and genome use. Methylation of histone 3 lysine 4 (H3K4) correlates with active regions of the genome, and it has emerged as a dynamic mark throughout this timeline. The pattern and the level of H3K4 methylation are regulated by methyltransferases and demethylases. These enzymes, as well as their protein partners, play important roles in early embryonic development and show phenotypes in embryonic stem cell self-renewal and differentiation. The various roles of H3K4 methylation are interpreted by dedicated chromatin reader proteins, linking this modification to broader molecular and cellular phenotypes. In this review, we discuss the regulation of different levels of H3K4 methylation, their distinct accumulation pattern, and downstream molecular roles with an early embryogenesis perspective.
Collapse
|
12
|
Whitford W, Taylor J, Hayes I, Smith W, Snell RG, Lehnert K, Jacobsen JC. A novel 11 base pair deletion in KMT2C resulting in Kleefstra syndrome 2. Mol Genet Genomic Med 2024; 12:e2350. [PMID: 38146907 PMCID: PMC10767577 DOI: 10.1002/mgg3.2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Haploinsufficiency of the Lysine Methyltransferase 2C (KMT2C) gene results in the autosomal dominant disorder, Kleefstra syndrome 2. It is an extremely rare neurodevelopmental condition, with 14 previous reports describing varied clinical manifestations including dysmorphic features, delayed psychomotor development and delayed growth. METHODS Here, we describe a female with global developmental delay, attention deficit disorder, dyspraxia, short stature and subtle non-specific dysmorphic features. To identify causative mutations, whole exome sequencing was performed on the proband and her younger brother with discrete clinical presentation. RESULTS Whole exome sequencing identified a novel de novo heterozygous 11 bp deletion in KMT2C (c.1759_1769del), resulting in a frameshift mutation and early termination of the protein (p.Gln587SerfsTer7). This variant is the second-most N-terminal reported mutation, located 4171 amino acids upstream of the critical enzymatically active SET domain (required for chromatin modification and histone methylation). CONCLUSION The majority of the other reported mutations are frameshift mutations upstream of the SET domain and are predicted to result in protein truncation. It is thought that truncation of the SET domain, results functionally in an inability to modify chromatin through histone methylation. This report expands the clinical and genetic characterisation of Kleefstra syndrome 2.
Collapse
Affiliation(s)
- Whitney Whitford
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| | - Juliet Taylor
- Genetic Health Service NZTe Whatu OraAucklandNew Zealand
| | - Ian Hayes
- Genetic Health Service NZTe Whatu OraAucklandNew Zealand
| | - Warwick Smith
- Kidz First Child Development ServiceTe Whatu OraAucklandNew Zealand
| | - Russell G. Snell
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| | - Klaus Lehnert
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| | - Jessie C. Jacobsen
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| |
Collapse
|
13
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
14
|
Gu X, Huang Z, Chen J, Luo Y, Ge S, Jia R, Song X, Chai P, Xu S, Fan X. Establishment and Characterization of a TP53-Mutated Eyelid Sebaceous Carcinoma Cell Line. Invest Ophthalmol Vis Sci 2023; 64:16. [PMID: 38095907 PMCID: PMC10723222 DOI: 10.1167/iovs.64.15.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose Eyelid sebaceous carcinoma (SeC) is the third most frequent eyelid malignancy worldwide and is relatively prevalent in Asian patients. An eyelid SeC cell line model is necessary for experimental research to explore the etiology and pathogenesis of eyelid SeC. This study established and characterized an eyelid SeC cell line with a TP53 mutation that might be useful for analyzing potential treatment options for eyelid SeC. Methods The eyelid SeC cell line SHNPH-SeC was obtained from a patient with eyelid SeC at Shanghai Ninth People's Hospital (SHNPH), Shanghai JiaoTong University School of Medicine. Immunofluorescence staining was employed to detect the origination and proliferation activity. Short tandem repeat (STR) profiling was performed for verification. Chromosome analysis was implemented to investigate chromosome aberrations. Whole exome sequencing (WES) was used to discover genomic mutations. Cell proliferation assays were performed to identify sensitivity to mitomycin-C (MMC) and 5-fluorouracil (5-FU). Results SHNPH-SeC cells were successively subcultured for more than 100 passages and demonstrated rapid proliferation and migration. Karyotype analysis revealed abundant chromosome aberrations, and WES revealed SeC-related mutations in TP53, KMT2C, and ERBB2. An in vivo tumor model was successfully established in NOD/SCID mice. Biomarkers of eyelid SeC, including cytokeratin 5 (CK5), epithelial membrane antigen (EMA), adipophilin, p53, and Ki-67, were detected in SHNPH-SeC cells, original tumors, and xenografts. MMC and 5-FU inhibited the proliferation and migration of SHNPH-SeC cells, and SHNPH-SeC cells presented a greater drug response than non-TP53-mutated SeC cells. Conclusions The newly established eyelid SeC cell line SHNPH-SeC demonstrates mutation in TP53, the most commonly mutated gene in SeC. It presents SeC properties and malignant characteristics that may facilitate the investigation of cellular behaviors and molecular mechanisms of SeC to explore promising therapeutic strategies.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ziyue Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yingxiu Luo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
15
|
Suzuki M, Kasajima R, Yokose T, Shimizu E, Hatakeyama S, Yamaguchi K, Yokoyama K, Katayama K, Yamaguchi R, Furukawa Y, Miyano S, Imoto S, Shinozaki-Ushiku A, Ushiku T, Miyagi Y. KMT2C expression and DNA homologous recombination repair factors in lung cancers with a high-grade fetal adenocarcinoma component. Transl Lung Cancer Res 2023; 12:1738-1751. [PMID: 37691868 PMCID: PMC10483084 DOI: 10.21037/tlcr-23-137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Abstract
Background High-grade fetal adenocarcinoma of the lung (H-FLAC) is a rare variant of pulmonary adenocarcinoma. Our previous study showed a high frequency of KMT2C mutations in lung cancers with an H-FLAC component, showing that KMT2C dysfunction may be associated with the biological features of H-FLACs. Methods In this study, we performed RNA sequencing and immunohistochemical analysis to identify the differentially expressed genes and corresponding pathways associated with H-FLACs, compared with common adenocarcinomas. Results Ingenuity pathway analysis based on RNA sequencing data revealed that DNA homologous recombination repair (HRR) pathways were significantly inactivated in H-FLAC. Expression of KMT2C, ATM, ATR, and BRCA2 was significantly lower in H-FLACs than in common adenocarcinomas, and BRCA1 expression showed a decreasing trend. Pearson correlation analyses for all cases revealed that KMT2C expression showed a strong positive correlation (R>0.7) with the expression of ATR, BRCA1, and BRCA2 genes and a moderately positive correlation with ATM expression (R=0.47). Immunohistochemical analysis showed significantly lower levels of KMT2C, ATM, ATR, and BRCA2 expression in H-FLACs than in common adenocarcinomas, and a trend of lower BRCA1 levels. Additionally, KMT2C expression showed a weak to moderate correlation with that of ATM, ATR, BRCA1, and BRCA2. Conclusions Cancers containing H-FLAC components showed lower levels of KMT2C and HRR factors than common lung adenocarcinomas, and their levels exhibited a positive correlation. These results support the hypothesis that loss of KMT2C function decreases the expression of the HRR factors in H-FLACs. H-FLACs with low KMT2C expression may be a good indication for poly (ADP-ribose) polymerase (PARP) inhibitor-based therapy.
Collapse
Affiliation(s)
- Masaki Suzuki
- Department of Pathology, The University of Tokyo, Tokyo, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Rika Kasajima
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Eigo Shimizu
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seira Hatakeyama
- Division of Clinical Genome Research, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Yokoyama
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kotoe Katayama
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Rui Yamaguchi
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Integrated Data Science, Medical and Dental Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Tetsuo Ushiku
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| |
Collapse
|
16
|
Xu X, Tian X, Song L, Xie J, Liao JC, Meeks JJ, Wu XR, Gin GE, Wang B, Uchio E, Zi X. Kawain Inhibits Urinary Bladder Carcinogenesis through Epigenetic Inhibition of LSD1 and Upregulation of H3K4 Methylation. Biomolecules 2023; 13:521. [PMID: 36979456 PMCID: PMC10046577 DOI: 10.3390/biom13030521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Epidemiological evidence suggests that kava (Piper methysticum Forst) drinks may reduce the risk of cancer in South Pacific Island smokers. However, little is known about the anti-carcinogenic effects of kava on tobacco smoking-related bladder cancer and its underlying mechanisms. Here we show that dietary feeding of kawain (a major active component in kava root extracts) to mice either before or after hydroxy butyl(butyl) nitrosamine (OH-BBN) carcinogen exposure slows down urinary bladder carcinogenesis and prolongs the survival of the OH-BBN-exposed mice. OH-BBN-induced bladder tumors exhibit significantly increased expression of lysine-specific demethylase 1 (LSD1), accompanied by decreased levels of H3K4 mono-methylation compared to normal bladder epithelium, whereas dietary kawain reverses the effects of OH-BBN on H3K4 mono-methylation. Human bladder cancer tumor tissues at different pathological grades also show significantly increased expression of LSD1 and decreased levels of H3K4 mono-methylation compared to normal urothelium. In addition, kava root extracts and the kavalactones kawain and methysticin all increase the levels of H3K4 mono- and di-methylation, leading to inhibitory effects on cell migration. Taken together, our results suggest that modification of histone lysine methylation may represent a new approach to bladder cancer prevention and treatment and that kavalactones may be promising agents for bladder cancer interception in both current and former smokers.
Collapse
Affiliation(s)
- Xia Xu
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Xuejiao Tian
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Liankun Song
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Jun Xie
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Joseph C. Liao
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Joshua J. Meeks
- Jesse Brown VA Medical Center, 820 S Damen Ave, Chicago, IL 60612, USA
| | - Xue-Ru Wu
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA
| | - Greg E. Gin
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Beverly Wang
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92868, USA
| | - Edward Uchio
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92868, USA
| |
Collapse
|
17
|
Roth C, Kilpinen H, Kurian MA, Barral S. Histone lysine methyltransferase-related neurodevelopmental disorders: current knowledge and saRNA future therapies. Front Cell Dev Biol 2023; 11:1090046. [PMID: 36923252 PMCID: PMC10009263 DOI: 10.3389/fcell.2023.1090046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Neurodevelopmental disorders encompass a group of debilitating diseases presenting with motor and cognitive dysfunction, with variable age of onset and disease severity. Advances in genetic diagnostic tools have facilitated the identification of several monogenic chromatin remodeling diseases that cause Neurodevelopmental disorders. Chromatin remodelers play a key role in the neuro-epigenetic landscape and regulation of brain development; it is therefore not surprising that mutations, leading to loss of protein function, result in aberrant neurodevelopment. Heterozygous, usually de novo mutations in histone lysine methyltransferases have been described in patients leading to haploinsufficiency, dysregulated protein levels and impaired protein function. Studies in animal models and patient-derived cell lines, have highlighted the role of histone lysine methyltransferases in the regulation of cell self-renewal, cell fate specification and apoptosis. To date, in depth studies of histone lysine methyltransferases in oncology have provided strong evidence of histone lysine methyltransferase dysregulation as a determinant of cancer progression and drug resistance. As a result, histone lysine methyltransferases have become an important therapeutic target for the treatment of different cancer forms. Despite recent advances, we still lack knowledge about the role of histone lysine methyltransferases in neuronal development. This has hampered both the study and development of precision therapies for histone lysine methyltransferases-related Neurodevelopmental disorders. In this review, we will discuss the current knowledge of the role of histone lysine methyltransferases in neuronal development and disease progression. We will also discuss how RNA-based technologies using small-activating RNAs could potentially provide a novel therapeutic approach for the future treatment of histone lysine methyltransferase haploinsufficiency in these Neurodevelopmental disorders, and how they could be first tested in state-of-the-art patient-derived neuronal models.
Collapse
Affiliation(s)
- Charlotte Roth
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Helena Kilpinen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Serena Barral
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
18
|
Soto-Feliciano YM, Sánchez-Rivera FJ, Perner F, Barrows DW, Kastenhuber ER, Ho YJ, Carroll T, Xiong Y, Anand D, Soshnev AA, Gates L, Beytagh MC, Cheon D, Gu S, Liu XS, Krivtsov AV, Meneses M, de Stanchina E, Stone RM, Armstrong SA, Lowe SW, Allis CD. A Molecular Switch between Mammalian MLL Complexes Dictates Response to Menin-MLL Inhibition. Cancer Discov 2023; 13:146-169. [PMID: 36264143 PMCID: PMC9827117 DOI: 10.1158/2159-8290.cd-22-0416] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/18/2022] [Accepted: 10/17/2022] [Indexed: 01/16/2023]
Abstract
Menin interacts with oncogenic MLL1-fusion proteins, and small molecules that disrupt these associations are in clinical trials for leukemia treatment. By integrating chromatin-focused and genome-wide CRISPR screens with genetic, pharmacologic, and biochemical approaches, we discovered a conserved molecular switch between the MLL1-Menin and MLL3/4-UTX chromatin-modifying complexes that dictates response to Menin-MLL inhibitors. MLL1-Menin safeguards leukemia survival by impeding the binding of the MLL3/4-UTX complex at a subset of target gene promoters. Disrupting the Menin-MLL1 interaction triggers UTX-dependent transcriptional activation of a tumor-suppressive program that dictates therapeutic responses in murine and human leukemia. Therapeutic reactivation of this program using CDK4/6 inhibitors mitigates treatment resistance in leukemia cells that are insensitive to Menin inhibitors. These findings shed light on novel functions of evolutionarily conserved epigenetic mediators like MLL1-Menin and MLL3/4-UTX and are relevant to understand and target molecular pathways determining therapeutic responses in ongoing clinical trials. SIGNIFICANCE Menin-MLL inhibitors silence a canonical HOX- and MEIS1-dependent oncogenic gene expression program in leukemia. We discovered a parallel, noncanonical transcriptional program involving tumor suppressor genes that are repressed in Menin-MLL inhibitor-resistant leukemia cells but that can be reactivated upon combinatorial treatment with CDK4/6 inhibitors to augment therapy responses. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
| | | | - Florian Perner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Internal Medicine C, Greifswald University Medical Center, Greifswald, Germany
| | - Douglas W. Barrows
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York.,Bioinformatics Resource Center, The Rockefeller University, New York, New York
| | - Edward R. Kastenhuber
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu-Jui Ho
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York
| | - Yijun Xiong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Disha Anand
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Internal Medicine C, Greifswald University Medical Center, Greifswald, Germany
| | - Alexey A. Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Leah Gates
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Mary Clare Beytagh
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - David Cheon
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Shengqing Gu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - X. Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrei V. Krivtsov
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maximiliano Meneses
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard M. Stone
- Leukemia Division, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Corresponding Authors: C. David Allis, The Rockefeller University, Allis Lab, Box #78, 1230 York Avenue, New York, NY 10065. Phone: 212-327-7839; E-mail: ; Scott W. Lowe, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Cancer Biology and Genetics Program, New York, NY, 10065. Phone: 646-888-3342; E-mail: ; and Scott A. Armstrong, Harvard Medical School, Dana-Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA, 02115. Phone: 617-632-2991; E-mail:
| | - Scott W. Lowe
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York.,Corresponding Authors: C. David Allis, The Rockefeller University, Allis Lab, Box #78, 1230 York Avenue, New York, NY 10065. Phone: 212-327-7839; E-mail: ; Scott W. Lowe, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Cancer Biology and Genetics Program, New York, NY, 10065. Phone: 646-888-3342; E-mail: ; and Scott A. Armstrong, Harvard Medical School, Dana-Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA, 02115. Phone: 617-632-2991; E-mail:
| | - C. David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York.,Corresponding Authors: C. David Allis, The Rockefeller University, Allis Lab, Box #78, 1230 York Avenue, New York, NY 10065. Phone: 212-327-7839; E-mail: ; Scott W. Lowe, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Cancer Biology and Genetics Program, New York, NY, 10065. Phone: 646-888-3342; E-mail: ; and Scott A. Armstrong, Harvard Medical School, Dana-Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA, 02115. Phone: 617-632-2991; E-mail:
| |
Collapse
|
19
|
A neonatal case of congenital blastic plasmacytoid dendritic cell neoplasm with KMT2C gene duplication. Ann Hematol 2023; 102:227-229. [PMID: 36348067 DOI: 10.1007/s00277-022-05022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022]
|
20
|
Cui J, Zhang C, Lee JE, Bartholdy BA, Yang D, Liu Y, Erler P, Galbo PM, Hodge DQ, Huangfu D, Zheng D, Ge K, Guo W. MLL3 loss drives metastasis by promoting a hybrid epithelial-mesenchymal transition state. Nat Cell Biol 2023; 25:145-158. [PMID: 36604594 PMCID: PMC10003829 DOI: 10.1038/s41556-022-01045-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/09/2022] [Indexed: 01/07/2023]
Abstract
Phenotypic plasticity associated with the hybrid epithelial-mesenchymal transition (EMT) is crucial to metastatic seeding and outgrowth. However, the mechanisms governing the hybrid EMT state remain poorly defined. Here we showed that deletion of the epigenetic regulator MLL3, a tumour suppressor frequently altered in human cancer, promoted the acquisition of hybrid EMT in breast cancer cells. Distinct from other EMT regulators that mediate only unidirectional changes, MLL3 loss enhanced responses to stimuli inducing EMT and mesenchymal-epithelial transition in epithelial and mesenchymal cells, respectively. Consequently, MLL3 loss greatly increased metastasis by enhancing metastatic colonization. Mechanistically, MLL3 loss led to increased IFNγ signalling, which contributed to the induction of hybrid EMT cells and enhanced metastatic capacity. Furthermore, BET inhibition effectively suppressed the growth of MLL3-mutant primary tumours and metastases. These results uncovered MLL3 mutation as a key driver of hybrid EMT and metastasis in breast cancer that could be targeted therapeutically.
Collapse
Affiliation(s)
- Jihong Cui
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chi Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ji-Eun Lee
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Yu Liu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piril Erler
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Phillip M Galbo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dayle Q Hodge
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
21
|
Zhao D, Yuan H, Fang Y, Gao J, Li H, Li M, Cong H, Zhang C, Liang Y, Li J, Yang H, Yao M, Du M, Tu H, Gan Y. Histone Methyltransferase KMT2B Promotes Metastasis and Angiogenesis of Cervical Cancer by Upregulating EGF Expression. Int J Biol Sci 2023; 19:34-49. [PMID: 36594087 PMCID: PMC9760441 DOI: 10.7150/ijbs.72381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Evidence has indicated that lysine methyltransferase 2B (KMT2B), a major H3K4 tri-methyltransferase (H3K4me3), contributes to the development of various cancers; however, its role in cervical cancer (CC) is unclear. In this study, increased KMT2B expression was observed in human CC specimens and significantly associated with poor prognosis. The condition medium of KMT2B-overexpressing cells facilitated angiogenesis in vitro. In the subcutaneous model of human CC, KMT2B overexpression significantly promoted tumor growth and increased tumor vascular density. Meanwhile, KMT2B enhanced the migration and invasion of CC cells and promoted their metastasis to bone in a tail-vein-metastasis model. Mechanistically, the genes upregulated by KMT2B were significantly enriched in PI3K-AKT pathway. Using H3K4me3 ChIP-seq analysis, we found increased H3K4me3 level at EGF promoter region in KMT2B-overexpressing HeLa cells. ChIP-qPCR experiments not only confirmed the increased H3K4me3 level of EGF promoter but also determined that in KMT2B-overexpressing HeLa cells, KMT2B increased binding with the EGF promoter. Blocking EGFR diminished the KMT2B-induced PI3K-AKT signaling activation and CC cell migration and invasion. Moreover, EGFR inhibitors abolished the KMT2B-drived tube formation capacity of HUVECs. In conclusion, KMT2B facilitates CC metastasis and angiogenesis by upregulating EGF expression, and may serve as a new therapeutic target for CC.
Collapse
Affiliation(s)
- Dan Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Yuan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, Yunnan Province, China
| | - Jian Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengge Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Cong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenglin Zhang
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, 415 Fengyang road, Shanghai, China
| | - Yiyi Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hancao Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Du
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,✉ Corresponding authors: Min Du, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 2200/25 Xie-Tu Road, Shanghai, 200032, China. Tel: 86-21-64437196; E-mail: ; Hong Tu, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 2200/25 Xie-Tu Road, Shanghai, 200032, China. Tel: 86-21-64437196; E-mail: ; Yu Gan, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 2200/25 Xie-Tu Road, Shanghai, 200032, China. Tel: 86-21-64437110; E-mail:
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,✉ Corresponding authors: Min Du, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 2200/25 Xie-Tu Road, Shanghai, 200032, China. Tel: 86-21-64437196; E-mail: ; Hong Tu, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 2200/25 Xie-Tu Road, Shanghai, 200032, China. Tel: 86-21-64437196; E-mail: ; Yu Gan, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 2200/25 Xie-Tu Road, Shanghai, 200032, China. Tel: 86-21-64437110; E-mail:
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,✉ Corresponding authors: Min Du, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 2200/25 Xie-Tu Road, Shanghai, 200032, China. Tel: 86-21-64437196; E-mail: ; Hong Tu, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 2200/25 Xie-Tu Road, Shanghai, 200032, China. Tel: 86-21-64437196; E-mail: ; Yu Gan, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 2200/25 Xie-Tu Road, Shanghai, 200032, China. Tel: 86-21-64437110; E-mail:
| |
Collapse
|
22
|
Tong A, Di X, Zhao X, Liang X. Review the progression of ovarian clear cell carcinoma from the perspective of genomics and epigenomics. Front Genet 2023; 14:952379. [PMID: 36873929 PMCID: PMC9978161 DOI: 10.3389/fgene.2023.952379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a rare subtype of epithelial ovarian cancer with unique molecular characteristics, specific biological and clinical behavior, poor prognosis and high resistance to chemotherapy. Pushed by the development of genome-wide technologies, our knowledge about the molecular features of OCCC has been considerably advanced. Numerous studies are emerging as groundbreaking, and many of them are promising treatment strategies. In this article, we reviewed studies about the genomics and epigenetics of OCCC, including gene mutation, copy number variations, DNA methylation and histone modifications.
Collapse
Affiliation(s)
- An Tong
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangjie Di
- Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Liang
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Ma Y, Pan H, Liu Y, Zhang Y, Hong S, Huang J, Weng S, Yang Y, Fang W, Huang Y, Xiao S, Wang T, Ding L, Cui L, Zhang L, Zhao H. Ensartinib in advanced ALK-positive non-small cell lung cancer: a multicenter, open-label, two-staged, phase 1 trial. J Thorac Dis 2022; 14:4751-4762. [PMID: 36647478 PMCID: PMC9840022 DOI: 10.21037/jtd-22-1606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
Background Ensartinib, a potent second-generation tyrosine kinase inhibitor (TKI) that targets anaplastic lymphoma kinase (ALK), MET and ROS1, was evaluated in a phase I clinical trial in patients with advanced, ALK-rearranged non-small cell lung cancer (NSCLC). Methods Patients with advanced, ALK or ROS1-positive NSCLC were recruited from 2 centers in China. This study consisted of dose escalation and expansion stages. Patients were treated with oral ensartinib [dosage of escalation stage was from 150, 200, 225 to 250 mg per day, expansion stage was recommended phase II dose (RP2D)] in continuous 28-day cycles. The primary objectives were safety, dose limited toxicity (DLT), maximum tolerated dose (MTD), and RP2D based on tolerability. Key secondary objectives included pharmacokinetic (PK) and anti-tumor activity. Results Forty-eight patients were enrolled, 37 (77.1%) were ALK TKI-naïve, 11 (22.9%) patients had previously received crizotinib, ceritinib or alectinib. Ensartinib was well tolerated and common treatment-related adverse events (TRAEs) included rash (87.5%), transaminase elevation (60.4%), pruritus (45.8%) and creatinine elevation (35.4%). The top 3 grade 3-5 TRAEs were rash (14.6%), elevated alanine aminotransferase (ALT) (12.5%) and aspartate transaminase (AST) (4.2%). Two DLTs were observed in 250 mg, so MTD and RP2D was 225 mg per day. Ensartinib was moderately absorbed (median Tmax: 3.00-4.00 h) and slowly eliminated (mean T1/2: 21.0-30.2 h). The area under the curve (AUC) of ensartinib reached saturation at 200 to 225 mg and no major accumulation after daily administration. For all patients, the objective response rate (ORR) and disease control rates (DCR) were 64.6 % and 81.3%, median progression-free survival (mPFS) was 16.79 months. In subgroup analysis, the ORR and mPFS was 81.3% and 45.5%, 25.73 and 4.14 months in TKI-naïve and -treated ALK+ patients, respectively. The intra-cranial ORR and mPFS for patients with measurable brain metastases were 66.7% and 22.90 months. ALK abundance may predict the efficacy of ensartinib. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed specific signaling pathways enrichment in long and short progression-free survival (PFS) groups. Conclusions Ensartinib was well tolerated under 225 mg (MTD) and demonstrated promising anti-tumor activity in ALK+ NSCLC patients, including those with CNS metastases and those previously TKI-treated. Trial Registration ClinicalTrials.gov NCT02959619.
Collapse
Affiliation(s)
- Yuxiang Ma
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China;,Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hui Pan
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yu Liu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China;,Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yang Zhang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shaodong Hong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jianjin Huang
- Department of Medical Oncology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Shanshan Weng
- Department of Medical Oncology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shanshan Xiao
- Department of R&D, Hangzhou Repugene Technology Co.,Ltd., Hangzhou, China
| | - Tao Wang
- Department of R&D, Hangzhou Repugene Technology Co.,Ltd., Hangzhou, China
| | - Lieming Ding
- Betta Pharmaceuticals Co., Ltd., China, Hangzhou, China
| | - Lingling Cui
- Betta Pharmaceuticals Co., Ltd., China, Hangzhou, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
24
|
Xu C, Cheng S, Chen K, Song Q, Liu C, Fan C, Zhang R, Zhu Q, Wu Z, Wang Y, Fan J, Zheng H, Lu L, Chen T, Zhao H, Jiao Y, Qu C. Sex Differences in Genomic Features of Hepatitis B-Associated Hepatocellular Carcinoma With Distinct Antitumor Immunity. Cell Mol Gastroenterol Hepatol 2022; 15:327-354. [PMID: 36272708 PMCID: PMC9772570 DOI: 10.1016/j.jcmgh.2022.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Aflatoxin exposure increases the risk for hepatocellular carcinoma (HCC) in hepatitis B virus (HBV)-infected individuals, particularly males. We investigated sex-based differences in the HCC genome and antitumor immunity. METHODS Whole-genome, whole-exome, and RNA sequencing were performed on 101 HCC patient samples (47 males, 54 females) that resulted from HBV infection and aflatoxin exposure from Qidong. Androgen on the expression of aflatoxin metabolism-related genes and nonhomologous DNA end joining (NHEJ) factors were examined in HBV-positive HCC cell lines, and further tested in tumor-bearing syngeneic mice. RESULTS Qidong HCC differed between males and females in genomic landscape and transcriptional dysfunction pathways. Compared with females, males expressed higher levels of aflatoxin metabolism-related genes, such as AHR and CYP1A1, and lower levels of NHEJ factors, such as XRCC4, LIG4, and MRE11, showed a signature of up-regulated type I interferon signaling/response and repressed antitumor immunity. Treatment with AFB1 in HBV-positive cells, the addition of 2 nmol/L testosterone to cultures significantly increased the expression of aflatoxin metabolism-related genes, but reduced NHEJ factors, resulting in more nuclear DNA leakage into cytosol to activate cGAS-STING. In syngeneic tumor-bearing mice that were administrated tamoxifen daily via oral gavage, favorable androgen signaling repressed NHEJ factor expression and activated cGAS-STING in tumors, increasing T-cell infiltration and improving anti-programmed cell death protein 1 treatment effect. CONCLUSIONS Androgen signaling in the context of genotoxic stress repressed DNA damage repair. The alteration caused more nuclear DNA leakage into cytosol to activate the cGAS-STING pathway, which increased T-cell infiltration into tumor mass and improved anti-programmed cell death protein 1 immunotherapy in HCCs.
Collapse
Affiliation(s)
- Chungui Xu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shaoyan Cheng
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kun Chen
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qianqian Song
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chang Liu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunsun Fan
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Ruochan Zhang
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qing Zhu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhiyuan Wu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuting Wang
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jian Fan
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Hongwei Zheng
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Lingling Lu
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Taoyang Chen
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Hong Zhao
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Hong Zhao, MD, Department of Hepatobiliary Surgery, State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Yuchen Jiao, MD, PhD, State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Chunfeng Qu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Correspondence Address correspondence to: Chunfeng Qu, MD, PhD, State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| |
Collapse
|
25
|
Unraveling the Role of the Tyrosine Tetrad from the Binding Site of the Epigenetic Writer MLL3 in the Catalytic Mechanism and Methylation Multiplicity. Int J Mol Sci 2022; 23:ijms231810339. [PMID: 36142254 PMCID: PMC9499395 DOI: 10.3390/ijms231810339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
MLL3, also known as KMT2C, is a lysine mono-methyltransferase in charge of the writing of an epigenetic mark on lysine 4 from histone 3. The catalytic site of MLL3 is composed of four tyrosines, namely, Y44, Y69, Y128, and Y130. Tyrosine residues are highly conserved among lysine methyltransferases’ catalytic sites, although their complete function is still unclear. The exploration of how modifications on these residues from the enzymatic machinery impact the enzymatic activity of MLL3 could shed light transversally into the inner functioning of enzymes with similar characteristics. Through the use of QMMM calculations, we focus on the effect of the mutation of each tyrosine from the catalytic site on the enzymatic activity and the product specificity in the current study. While we found that the mutations of Y44 and Y128 by phenylalanine inactivated the enzyme, the mutation of Y128 by alanine reactivated the enzymatic activity of MLL3. Moreover, according to our models, the Y128A mutant was even found to be capable of di- and tri-methylate lysine 4 from histone 3, what would represent a gain of function mutation, and could be responsible for the development of diseases. Finally, we were able to establish the inactivation mechanism, which involved the use of Y130 as a water occlusion structure, whose conformation, once perturbed by its mutation or Y128 mutant, allows the access of water molecules that sequester the electron pair from lysine 4 avoiding its methylation process and, thus, increasing the barrier height.
Collapse
|
26
|
Zhang Y, He X, Gao H. KMT2C mutation in a Chinese man with primary multidrug-resistant metastatic adenocarcinoma of rete testis: a case report. BMC Urol 2022; 22:123. [PMID: 35945529 PMCID: PMC9361678 DOI: 10.1186/s12894-022-01075-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
Abstract
Background Adenocarcinoma of the rete testis (AORT) is an extremely rare malignant tumor with poor prognosis and limited responsiveness to traditional chemotherapy. Few previous studies have focused on the molecular mechanisms underlying therapy resistance in AORT and further scrutiny is required to enable searches for targeted drugs to guide treatment selection. Case presentation The current case concerns a 55-year-old man with AORT who presented with isolated bone metastasis at initial diagnosis and experienced rapid disease progression after multi-line platinum-based combination chemotherapy. Next-generation sequencing revealed a novel somatic lysine methyltransferase 2C (KMT2C) c.5605 T > C mutation in exon 36 with an abundance of 49.27%. The patient received antiangiogenic drug treatment for 2 months but this was discontinued due to unacceptable anorexia and nausea. He survived for 12 months after diagnosis. Conclusion A potential correlation between AORT primary multi-drug resistance and KMT2C mutations is implied. Further studies are needed to determine the efficacy of PARP1/2 inhibitors for tumors with KMT2C mutations.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology, General Hospital of Western Theatre Command, No. 270, Tianhui Road, Rongdu Avenue, Jinniu District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Xiaoyan He
- Department of Pathology, General Hospital of Western Theatre Command, Chengdu, Sichuan, People's Republic of China
| | - Hui Gao
- Department of Oncology, General Hospital of Western Theatre Command, No. 270, Tianhui Road, Rongdu Avenue, Jinniu District, Chengdu, 610000, Sichuan, People's Republic of China.
| |
Collapse
|
27
|
Poreba E, Lesniewicz K, Durzynska J. Histone-lysine N-methyltransferase 2 (KMT2) complexes - a new perspective. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108443. [PMID: 36154872 DOI: 10.1016/j.mrrev.2022.108443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 01/01/2023]
Abstract
Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone-Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers. Moreover, inherited or de novo mutations in KMT2 genes are among the etiological factors in neurodevelopmental disorders such as Kabuki and Kleefstra syndromes. The canonical role of KMT2s is to catalyze H3K4 methylation, which results in a permissive chromatin environment that drives gene expression. However, current findings described in this review demonstrate that these enzymes can regulate processes that are not dependent on methylation: noncatalytic functions of KMT2s include DNA damage response, cell division, and metabolic activities. Moreover, these enzymes may also methylate non-histone substrates and play a methylation-dependent function in the DNA damage response. In this review, we present an overview of the new, noncanonical activities of KMT2 complexes in a variety of cellular processes. These discoveries may have crucial implications for understanding the functions of these methyltransferases in developmental processes, disease, and epigenome-targeting therapeutic strategies in the future.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Julia Durzynska
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
28
|
Meghani K, Folgosa Cooley L, Piunti A, Meeks JJ. Role of Chromatin Modifying Complexes and Therapeutic Opportunities in Bladder Cancer. Bladder Cancer 2022; 8:101-112. [PMID: 35898580 PMCID: PMC9278011 DOI: 10.3233/blc-211609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/14/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chromatin modifying enzymes, mainly through post translational modifications, regulate chromatin architecture and by extension the underlying transcriptional kinetics in normal and malignant cells. Muscle invasive bladder cancer (MIBC) has a high frequency of alterations in chromatin modifiers, with 76% of tumors exhibiting mutation in at least one chromatin modifying enzyme [1]. Additionally, clonal expansion of cells with inactivating mutations in chromatin modifiers has been identified in the normal urothelium, pointing to a currently unknown role of these proteins in normal bladder homeostasis. OBJECTIVE To review current knowledge of chromatin modifications and enzymes regulating these processes in Bladder cancer (BCa). METHODS By reviewing current literature, we summarize our present knowledge of external stimuli that trigger loss of equilibrium in the chromatin accessibility landscape and emerging therapeutic interventions for targeting these processes. RESULTS Genetic lesions in BCa lead to altered function of chromatin modifying enzymes, resulting in coordinated dysregulation of epigenetic processes with disease progression. CONCLUSION Mutations in chromatin modifying enzymes are wide-spread in BCa and several promising therapeutic targets for modulating activity of these genes are currently in clinical trials. Further research into understanding how the epigenetic landscape evolves as the disease progresses, could help identify patients who might benefit the most from these targeted therapies.
Collapse
Affiliation(s)
- Khyati Meghani
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
| | - Lauren Folgosa Cooley
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua J. Meeks
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago IL, USA
| |
Collapse
|
29
|
Jefri M, Zhang X, Stumpf PS, Zhang L, Peng H, Hettige N, Theroux JF, Aouabed Z, Wilson K, Deshmukh S, Antonyan L, Ni A, Alsuwaidi S, Zhang Y, Jabado N, Garcia BA, Schuppert A, Bjornsson HT, Ernst C. Kabuki syndrome stem cell models reveal locus specificity of histone methyltransferase 2D (KMT2D/MLL4). Hum Mol Genet 2022; 31:3715-3728. [PMID: 35640156 PMCID: PMC9616574 DOI: 10.1093/hmg/ddac121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
Kabuki syndrome is frequently caused by loss-of-function mutations in one allele of histone 3 lysine 4 (H3K4) methyltransferase KMT2D and is associated with problems in neurological, immunological and skeletal system development. We generated heterozygous KMT2D knockout and Kabuki patient-derived cell models to investigate the role of reduced dosage of KMT2D in stem cells. We discovered chromosomal locus-specific alterations in gene expression, specifically a 110 Kb region containing Synaptotagmin 3 (SYT3), C-Type Lectin Domain Containing 11A (CLEC11A), Chromosome 19 Open Reading Frame 81 (C19ORF81) and SH3 And Multiple Ankyrin Repeat Domains 1 (SHANK1), suggesting locus-specific targeting of KMT2D. Using whole genome histone methylation mapping, we confirmed locus-specific changes in H3K4 methylation patterning coincident with regional decreases in gene expression in Kabuki cell models. Significantly reduced H3K4 peaks aligned with regions of stem cell maps of H3K27 and H3K4 methylation suggesting KMT2D haploinsufficiency impact bivalent enhancers in stem cells. Preparing the genome for subsequent differentiation cues may be of significant importance for Kabuki-related genes. This work provides a new insight into the mechanism of action of an important gene in bone and brain development and may increase our understanding of a specific function of a human disease-relevant H3K4 methyltransferase family member.
Collapse
Affiliation(s)
- Malvin Jefri
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Patrick S Stumpf
- Institute for Computational Biomedicine, RWTH Aachen University, Aachen 52056, Germany
| | - Li Zhang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Huashan Peng
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Nuwan Hettige
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Jean-Francois Theroux
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Zahia Aouabed
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Khadija Wilson
- Department of Biochemistry and Molecular, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Shriya Deshmukh
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Lilit Antonyan
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Anjie Ni
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Shaima Alsuwaidi
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Ying Zhang
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Nada Jabado
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada,Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada,Department of Pediatrics, McGill University and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Andreas Schuppert
- Institute for Computational Biomedicine, RWTH Aachen University, Aachen 52056, Germany
| | - Hans T Bjornsson
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Faculty of Medicine, University of Iceland, Reykjavik, Iceland,Department of Genetics and Molecular Medicine, Landspitali University Hospital, 101 Reykjavik, Iceland
| | - Carl Ernst
- To whom correspondence should be addressed at: Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle boulevard, Frank Common building, Room 2101.2 Verdun, QC H4H 1R3, Canada. Tel: +1 514-761-6131 ext 3382; Fax: +1 514-762-3023;
| |
Collapse
|
30
|
Taylor-Papadimitriou J, Burchell JM. Histone Methylases and Demethylases Regulating Antagonistic Methyl Marks: Changes Occurring in Cancer. Cells 2022; 11:1113. [PMID: 35406676 PMCID: PMC8997813 DOI: 10.3390/cells11071113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation of gene expression is crucial to the determination of cell fate in development and differentiation, and the Polycomb (PcG) and Trithorax (TrxG) groups of proteins, acting antagonistically as complexes, play a major role in this regulation. Although originally identified in Drosophila, these complexes are conserved in evolution and the components are well defined in mammals. Each complex contains a protein with methylase activity (KMT), which can add methyl groups to a specific lysine in histone tails, histone 3 lysine 27 (H3K27), by PcG complexes, and H3K4 and H3K36 by TrxG complexes, creating transcriptionally repressive or active marks, respectively. Histone demethylases (KDMs), identified later, added a new dimension to histone methylation, and mutations or changes in levels of expression are seen in both methylases and demethylases and in components of the PcG and TrX complexes across a range of cancers. In this review, we focus on both methylases and demethylases governing the methylation state of the suppressive and active marks and consider their action and interaction in normal tissues and in cancer. A picture is emerging which indicates that the changes which occur in cancer during methylation of histone lysines can lead to repression of genes, including tumour suppressor genes, or to the activation of oncogenes. Methylases or demethylases, which are themselves tumour suppressors, are highly mutated. Novel targets for cancer therapy have been identified and a methylase (KMT6A/EZH2), which produces the repressive H3K27me3 mark, and a demethylase (KDM1A/LSD1), which demethylates the active H3K4me2 mark, are now under clinical evaluation.
Collapse
|
31
|
Hong Y, Limback D, Elsarraj HS, Harper H, Haines H, Hansford H, Ricci M, Kaufman C, Wedlock E, Xu M, Zhang J, May L, Cusick T, Inciardi M, Redick M, Gatewood J, Winblad O, Aripoli A, Huppe A, Balanoff C, Wagner JL, Amin AL, Larson KE, Ricci L, Tawfik O, Razek H, Meierotto RO, Madan R, Godwin AK, Thompson J, Hilsenbeck SG, Futreal A, Thompson A, Hwang ES, Fan F, Behbod F. Mouse-INtraDuctal (MIND): an in vivo model for studying the underlying mechanisms of DCIS malignancy. J Pathol 2022; 256:186-201. [PMID: 34714554 PMCID: PMC8738143 DOI: 10.1002/path.5820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/05/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022]
Abstract
Due to widespread adoption of screening mammography, there has been a significant increase in new diagnoses of ductal carcinoma in situ (DCIS). However, DCIS prognosis remains unclear. To address this gap, we developed an in vivo model, Mouse-INtraDuctal (MIND), in which patient-derived DCIS epithelial cells are injected intraductally and allowed to progress naturally in mice. Similar to human DCIS, the cancer cells formed in situ lesions inside the mouse mammary ducts and mimicked all histologic subtypes including micropapillary, papillary, cribriform, solid, and comedo. Among 37 patient samples injected into 202 xenografts, at median duration of 9 months, 20 samples (54%) injected into 95 xenografts showed in vivo invasive progression, while 17 (46%) samples injected into 107 xenografts remained non-invasive. Among the 20 samples that showed invasive progression, nine samples injected into 54 xenografts exhibited a mixed pattern in which some xenografts showed invasive progression while others remained non-invasive. Among the clinically relevant biomarkers, only elevated progesterone receptor expression in patient DCIS and the extent of in vivo growth in xenografts predicted an invasive outcome. The Tempus XT assay was used on 16 patient DCIS formalin-fixed, paraffin-embedded sections including eight DCISs that showed invasive progression, five DCISs that remained non-invasive, and three DCISs that showed a mixed pattern in the xenografts. Analysis of the frequency of cancer-related pathogenic mutations among the groups showed no significant differences (KW: p > 0.05). There were also no differences in the frequency of high, moderate, or low severity mutations (KW; p > 0.05). These results suggest that genetic changes in the DCIS are not the primary driver for the development of invasive disease. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Movement
- Cell Proliferation
- Disease Progression
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Epithelial Cells/transplantation
- Female
- Heterografts
- Humans
- Mice, Inbred NOD
- Mice, SCID
- Mutation
- Neoplasm Invasiveness
- Neoplasm Transplantation
- Receptors, Progesterone/metabolism
- Time Factors
- Mice
Collapse
Affiliation(s)
- Yan Hong
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Darlene Limback
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Hanan S Elsarraj
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Haleigh Harper
- University of Kansas School of MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Haley Haines
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Hayley Hansford
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Michael Ricci
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Carolyn Kaufman
- University of Kansas School of MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Emily Wedlock
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Mingchu Xu
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Jianhua Zhang
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Lisa May
- Department of RadiologyThe University of Kansas School of Medicine‐WichitaWichitaKSUSA
| | - Therese Cusick
- Department of SurgeryThe University of Kansas School of Medicine‐WichitaWichitaKSUSA
| | - Marc Inciardi
- Department of RadiologyThe University of Kansas Medical CenterKansas CityKSUSA
| | - Mark Redick
- Department of RadiologyThe University of Kansas Medical CenterKansas CityKSUSA
| | - Jason Gatewood
- Department of RadiologyThe University of Kansas Medical CenterKansas CityKSUSA
| | - Onalisa Winblad
- Department of RadiologyThe University of Kansas Medical CenterKansas CityKSUSA
| | - Allison Aripoli
- Department of RadiologyThe University of Kansas Medical CenterKansas CityKSUSA
| | - Ashley Huppe
- Department of RadiologyThe University of Kansas Medical CenterKansas CityKSUSA
| | - Christa Balanoff
- Department of General Surgery, Breast Surgical Oncology DivisionThe University of Kansas Medical CenterKansas CityKSUSA
| | - Jamie L Wagner
- Department of General Surgery, Breast Surgical Oncology DivisionThe University of Kansas Medical CenterKansas CityKSUSA
| | - Amanda L Amin
- Department of General Surgery, Breast Surgical Oncology DivisionThe University of Kansas Medical CenterKansas CityKSUSA
| | - Kelsey E Larson
- Department of General Surgery, Breast Surgical Oncology DivisionThe University of Kansas Medical CenterKansas CityKSUSA
| | - Lawrence Ricci
- Department of RadiologyTruman Medical CenterKansas CityMOUSA
| | - Ossama Tawfik
- Department of Pathology, St Luke's Health System of Kansas CityMAWD Pathology GroupKansas CityMOUSA
| | | | - Ruby O Meierotto
- Breast RadiologySaint Luke's Cancer Institute, Saint Luke's Health SystemKansas CityMOUSA
| | - Rashna Madan
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Andrew K Godwin
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | - Jeffrey Thompson
- Department of BiostatisticsThe University of Kansas Medical CenterKansas CityKSUSA
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Biostatistics and Informatics Shared Resources, Duncan Cancer CenterBaylor College of MedicineHoustonTXUSA
| | - Andy Futreal
- Department of Genomic Medicine, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Alastair Thompson
- Section of Breast SurgeryBaylor College of Medicine, Lester and Sue Smith Breast Center, Dan L Duncan Comprehensive Cancer CenterHoustonTXUSA
| | | | - Fang Fan
- Department of PathologyCity of Hope Medical CenterDuarteCAUSA
| | - Fariba Behbod
- Department of Pathology and Laboratory MedicineThe University of Kansas Medical CenterKansas CityKSUSA
| | | |
Collapse
|
32
|
Xu-Monette ZY, Wei L, Fang X, Au Q, Nunns H, Nagy M, Tzankov A, Zhu F, Visco C, Bhagat G, Dybkaer K, Chiu A, Tam W, Zu Y, Hsi ED, Hagemeister FB, Sun X, Han X, Go H, Ponzoni M, Ferreri AJM, Møller MB, Parsons BM, van Krieken JH, Piris MA, Winter JN, Li Y, Xu B, Albitar M, You H, Young KH. Genetic Subtyping and Phenotypic Characterization of the Immune Microenvironment and MYC/BCL2 Double Expression Reveal Heterogeneity in Diffuse Large B-cell Lymphoma. Clin Cancer Res 2022; 28:972-983. [PMID: 34980601 DOI: 10.1158/1078-0432.ccr-21-2949] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/25/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Diffuse large B-cell lymphoma (DLBCL) is molecularly and clinically heterogeneous, and can be subtyped according to genetic alterations, cell-of-origin, or microenvironmental signatures using high-throughput genomic data at the DNA or RNA level. Although high-throughput proteomic profiling has not been available for DLBCL subtyping, MYC/BCL2 protein double expression (DE) is an established prognostic biomarker in DLBCL. The purpose of this study is to reveal the relative prognostic roles of DLBCL genetic, phenotypic, and microenvironmental biomarkers. EXPERIMENTAL DESIGN We performed targeted next-generation sequencing; IHC for MYC, BCL2, and FN1; and fluorescent multiplex IHC for microenvironmental markers in a large cohort of DLBCL. We performed correlative and prognostic analyses within and across DLBCL genetic subtypes and MYC/BCL2 double expressors. RESULTS We found that MYC/BCL2 double-high-expression (DhE) had significant adverse prognostic impact within the EZB genetic subtype and LymphGen-unclassified DLBCL cases but not within MCD and ST2 genetic subtypes. Conversely, KMT2D mutations significantly stratified DhE but not non-DhE DLBCL. T-cell infiltration showed favorable prognostic effects within BN2, MCD, and DhE but unfavorable effects within ST2 and LymphGen-unclassified cases. FN1 and PD-1-high expression had significant adverse prognostic effects within multiple DLBCL genetic/phenotypic subgroups. The prognostic effects of DhE and immune biomarkers within DLBCL genetic subtypes were independent although DhE and high Ki-67 were significantly associated with lower T-cell infiltration in LymphGen-unclassified cases. CONCLUSIONS Together, these results demonstrated independent and additive prognostic effects of phenotypic MYC/BCL2 and microenvironment biomarkers and genetic subtyping in DLBCL prognostication, important for improving DLBCL classification and identifying prognostic determinants and therapeutic targets.
Collapse
Affiliation(s)
- Zijun Y Xu-Monette
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, North Carolina.
| | - Li Wei
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingyan Au
- NeoGenomics Laboratories, Aliso Viejo, California
| | - Harry Nunns
- NeoGenomics Laboratories, Aliso Viejo, California
| | - Máté Nagy
- NeoGenomics Laboratories, Aliso Viejo, California
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Feng Zhu
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | | | - Govind Bhagat
- Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, New York
| | | | | | - Wayne Tam
- Weill Medical College of Cornell University, New York, New York
| | - Youli Zu
- The Methodist Hospital, Houston, Texas
| | | | - Fredrick B Hagemeister
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoping Sun
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xin Han
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heounjeong Go
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Republic of South Korea
| | | | | | | | | | - J Han van Krieken
- Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Miguel A Piris
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Bing Xu
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Maher Albitar
- Genomic Testing Cooperative, LCA, Irvine, California
| | - Hua You
- Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Ken H Young
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, North Carolina. .,Duke Cancer Institute, Durham, North Carolina
| |
Collapse
|
33
|
Alterations of Chromatin Regulators in the Pathogenesis of Urinary Bladder Urothelial Carcinoma. Cancers (Basel) 2021; 13:cancers13236040. [PMID: 34885146 PMCID: PMC8656749 DOI: 10.3390/cancers13236040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Urinary bladder cancer is one of the ten major cancers worldwide, with higher incidences in males, in smokers, and in highly industrialized countries. New therapies beyond cytotoxic chemotherapy are urgently needed to improve treatment of these tumors. A better understanding of the mechanisms underlying their development may help in this regard. Recently, it was discovered that a group of proteins regulating the state of chromatin and thus gene expression is exceptionally and frequently affected by gene mutations in bladder cancers. Altered function of these mutated chromatin regulators must therefore be fundamental in their development, but how and why is poorly understood. Here we review the current knowledge on changes in chromatin regulators and discuss their possible consequences for bladder cancer development and options for new therapies. Abstract Urothelial carcinoma (UC) is the most frequent histological type of cancer in the urinary bladder. Genomic changes in UC activate MAPK and PI3K/AKT signal transduction pathways, which increase cell proliferation and survival, interfere with cell cycle and checkpoint control, and prevent senescence. A more recently discovered additional category of genetic changes in UC affects chromatin regulators, including histone-modifying enzymes (KMT2C, KMT2D, KDM6A, EZH2), transcription cofactors (CREBBP, EP300), and components of the chromatin remodeling complex SWI/SNF (ARID1A, SMARCA4). It is not yet well understood how these changes contribute to the development and progression of UC. Therefore, we review here the emerging knowledge on genomic and gene expression alterations of chromatin regulators and their consequences for cell differentiation, cellular plasticity, and clonal expansion during UC pathogenesis. Our analysis identifies additional relevant chromatin regulators and suggests a model for urothelial carcinogenesis as a basis for further mechanistic studies and targeted therapy development.
Collapse
|
34
|
Stauffer KM, Elion DL, Cook RS, Stricker T. MLL3 is a de novo cause of endocrine therapy resistance. Cancer Med 2021; 10:7692-7711. [PMID: 34581028 PMCID: PMC8559462 DOI: 10.1002/cam4.4285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/12/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022] Open
Abstract
Background Cancer resequencing studies have revealed epigenetic enzymes as common targets for recurrent mutations. The monomethyltransferase MLL3 is among the most recurrently mutated enzymes in ER+ breast cancer. The H3K4me1 marks created by MLL3 can define enhancers. In ER+ breast cancer, ERα genome‐binding sites are primarily distal enhancers. Thus, we hypothesize that mutation of MLL3 will alter the genomic binding and transcriptional regulatory activity of ERα. Methods We investigated the genomic consequences of knocking down MLL3 in an MLL3/PIK3CA WT ER+ breast cancer cell line. Results Loss of MLL3 led to a large loss of H3K4me1 across the genome, and a shift in genomic location of ERα‐binding sites, which was accompanied by a re‐organization of the breast cancer transcriptome. Gene set enrichment analyses of ERα‐binding sites in MLL3 KD identified endocrine therapy resistance terms, and we showed that MLL3 KD cells are resistant to tamoxifen and fulvestrant. Many differentially expressed genes are controlled by the small collection of new locations of H3K4me1 deposition and ERα binding, suggesting that loss of functional MLL3 leads to new transcriptional regulation of essential genes. Motif analysis of RNA‐seq and ChIP‐seq data highlighted SP1 as a critical transcription factor in the MLL3 KD cells. Differentially expressed genes that display a loss of ERα binding upon MLL3 KD also harbor increased SP1 binding. Conclusions Our data show that a decrease in functional MLL3 leads to endocrine therapy resistance. This highlights the importance of genotyping patient tumor samples for MLL3 mutation upon initial resection, prior to deciding upon treatment plans.
Collapse
|
35
|
Bloehdorn J, Braun A, Taylor-Weiner A, Jebaraj BMC, Robrecht S, Krzykalla J, Pan H, Giza A, Akylzhanova G, Holzmann K, Scheffold A, Johnston HE, Yeh RF, Klymenko T, Tausch E, Eichhorst B, Bullinger L, Fischer K, Weisser M, Robak T, Schneider C, Gribben J, Dahal LN, Carter MJ, Elemento O, Landau DA, Neuberg DS, Cragg MS, Benner A, Hallek M, Wu CJ, Döhner H, Stilgenbauer S, Mertens D. Multi-platform profiling characterizes molecular subgroups and resistance networks in chronic lymphocytic leukemia. Nat Commun 2021; 12:5395. [PMID: 34518531 PMCID: PMC8438057 DOI: 10.1038/s41467-021-25403-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Knowledge of the genomic landscape of chronic lymphocytic leukemia (CLL) grows increasingly detailed, providing challenges in contextualizing the accumulated information. To define the underlying networks, we here perform a multi-platform molecular characterization. We identify major subgroups characterized by genomic instability (GI) or activation of epithelial-mesenchymal-transition (EMT)-like programs, which subdivide into non-inflammatory and inflammatory subtypes. GI CLL exhibit disruption of genome integrity, DNA-damage response and are associated with mutagenesis mediated through activation-induced cytidine deaminase or defective mismatch repair. TP53 wild-type and mutated/deleted cases constitute a transcriptionally uniform entity in GI CLL and show similarly poor progression-free survival at relapse. EMT-like CLL exhibit high genomic stability, reduced benefit from the addition of rituximab and EMT-like differentiation is inhibited by induction of DNA damage. This work extends the perspective on CLL biology and risk categories in TP53 wild-type CLL. Furthermore, molecular targets identified within each subgroup provide opportunities for new treatment approaches.
Collapse
Affiliation(s)
| | - Andrejs Braun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | | | - Sandra Robrecht
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Julia Krzykalla
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Heng Pan
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Adam Giza
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Gulnara Akylzhanova
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Annika Scheffold
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Harvey E Johnston
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Ru-Fang Yeh
- Biostatistics, Genentech Inc., South San Francisco, CA, USA
| | - Tetyana Klymenko
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Eugen Tausch
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Barbara Eichhorst
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Lars Bullinger
- Medical Clinic for Hematology, Oncology and Tumor Biology, Charité University Hospital, Berlin, Germany
| | - Kirsten Fischer
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Martin Weisser
- Roche Pharma Research and Early Development, Penzberg, Germany
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | | | - John Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lekh N Dahal
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Pharmacology and Therapeutics, Faculty of Life and Health Sciences, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mathew J Carter
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Dan A Landau
- Cancer Genomics and Evolutionary Dynamics, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Donna S Neuberg
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mark S Cragg
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Michael Hallek
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Catherine J Wu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hartmut Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | | | - Daniel Mertens
- Department of Internal Medicine III, University of Ulm, Ulm, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
36
|
Peterson C, Moore R, Hicks JL, Morsberger LA, De Marzo AM, Zou Y, Eberhart CG, Campbell AA. NGS Analysis Confirms Common TP53 and RB1 Mutations, and Suggests MYC Amplification in Ocular Adnexal Sebaceous Carcinomas. Int J Mol Sci 2021; 22:8454. [PMID: 34445161 PMCID: PMC8395148 DOI: 10.3390/ijms22168454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 01/31/2023] Open
Abstract
Ocular adnexal (OA) sebaceous carcinomas generally demonstrate more aggressive clinical and histopathological phenotypes than extraocular cases, but the molecular drivers implicated in their oncogenesis remain poorly defined. A retrospective review of surgical and ocular pathology archives identified eleven primary resection specimens of OA sebaceous carcinomas with adequate tissue for molecular analysis; two extraocular cases were also examined. Next-generation sequencing was used to evaluate mutations and copy number changes in a large panel of cancer-associated genes. Fluorescence in situ hybridization (FISH) confirmed MYC copy number gain in select cases, and immunohistochemistry to evaluate MYC protein expression. The commonest mutations occurred in TP53 (10/13) and RB1 (7/13). Additional mutations in clinically actionable genes, or mutations with a frequency of at least 25%, included the NF1 (3/12), PMS2 (4/12), ROS1 (3/12), KMT2C (4/12), MNX1 (6/12), NOTCH1 (4/12), PCLO (3/12), and PTPRT (3/12) loci. Low level copy number gain suggestive of amplification of the MYC locus was seen in two cases, and confirmed using FISH. MYC protein expression, as assessed by immunohistochemistry, was present in almost all sebaceous carcinoma cases. Our findings support the concept that alterations in TP53 and RB1 are the commonest alterations in sebaceous carcinoma, and suggest that MYC may contribute to the oncogenesis of these tumors.
Collapse
Affiliation(s)
- Cornelia Peterson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Robert Moore
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.M.); (J.L.H.); (L.A.M.); (A.M.D.M.); (Y.Z.)
| | - Jessica L. Hicks
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.M.); (J.L.H.); (L.A.M.); (A.M.D.M.); (Y.Z.)
| | - Laura A. Morsberger
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.M.); (J.L.H.); (L.A.M.); (A.M.D.M.); (Y.Z.)
- Clinical Cytogenetics Laboratory, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Genomics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Angelo M. De Marzo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.M.); (J.L.H.); (L.A.M.); (A.M.D.M.); (Y.Z.)
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Brady Urological Research Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ying Zou
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.M.); (J.L.H.); (L.A.M.); (A.M.D.M.); (Y.Z.)
- Clinical Cytogenetics Laboratory, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Genomics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charles G. Eberhart
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.M.); (J.L.H.); (L.A.M.); (A.M.D.M.); (Y.Z.)
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ashley A. Campbell
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
37
|
Maurya S, Yang W, Tamai M, Zhang Q, Erdmann-Gilmore P, Bystry A, Martins Rodrigues F, Valentine MC, Wong WH, Townsend R, Druley TE. Loss of KMT2C reprograms the epigenomic landscape in hPSCs resulting in NODAL overexpression and a failure of hemogenic endothelium specification. Epigenetics 2021; 17:220-238. [PMID: 34304711 PMCID: PMC8865227 DOI: 10.1080/15592294.2021.1954780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Germline or somatic variation in the family of KMT2 lysine methyltransferases have been associated with a variety of congenital disorders and cancers. Notably, KMT2A-fusions are prevalent in 70% of infant leukaemias but fail to phenocopy short latency leukaemogenesis in mammalian models, suggesting additional factors are necessary for transformation. Given the lack of additional somatic mutation, the role of epigenetic regulation in cell specification, and our prior results of germline KMT2C variation in infant leukaemia patients, we hypothesized that germline dysfunction of KMT2C altered haematopoietic specification. In isogenic KMT2C KO hPSCs, we found genome-wide differences in histone modifications at active and poised enhancers, leading to gene expression profiles akin to mesendoderm rather than mesoderm highlighted by a significant increase in NODAL expression and WNT inhibition, ultimately resulting in a lack of in vitro hemogenic endothelium specification. These unbiased multi-omic results provide new evidence for germline mechanisms increasing risk of early leukaemogenesis.
Collapse
Affiliation(s)
- Shailendra Maurya
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Wei Yang
- McDonnell Genome Institute, Genome Technology Access Center, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Minori Tamai
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Qiang Zhang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Petra Erdmann-Gilmore
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amelia Bystry
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | | | - Mark C Valentine
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Wing H Wong
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Reid Townsend
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Todd E Druley
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
38
|
Exploration of the Activation Mechanism of the Epigenetic Regulator MLL3: A QM/MM Study. Biomolecules 2021; 11:biom11071051. [PMID: 34356675 PMCID: PMC8301819 DOI: 10.3390/biom11071051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
The mixed lineage leukemia 3 or MLL3 is the enzyme in charge of the writing of an epigenetic mark through the methylation of lysine 4 from the N-terminal domain of histone 3 and its deregulation has been related to several cancer lines. An interesting feature of this enzyme comes from its regulation mechanism, which involves its binding to an activating dimer before it can be catalytically functional. Once the trimer is formed, the reaction mechanism proceeds through the deprotonation of the lysine followed by the methyl-transfer reaction. Here we present a detailed exploration of the activation mechanism through a QM/MM approach focusing on both steps of the reaction, aiming to provide new insights into the deprotonation process and the role of the catalytic machinery in the methyl-transfer reaction. Our finding suggests that the source of the activation mechanism comes from conformational restriction mediated by the formation of a network of salt-bridges between MLL3 and one of the activating subunits, which restricts and stabilizes the positioning of several residues relevant for the catalysis. New insights into the deprotonation mechanism of lysine are provided, identifying a valine residue as crucial in the positioning of the water molecule in charge of the process. Finally, a tyrosine residue was found to assist the methyl transfer from SAM to the target lysine.
Collapse
|
39
|
Histone H3K4 Methyltransferases as Targets for Drug-Resistant Cancers. BIOLOGY 2021; 10:biology10070581. [PMID: 34201935 PMCID: PMC8301125 DOI: 10.3390/biology10070581] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
The KMT2 (MLL) family of proteins, including the major histone H3K4 methyltransferase found in mammals, exists as large complexes with common subunit proteins and exhibits enzymatic activity. SMYD, another H3K4 methyltransferase, and SET7/9 proteins catalyze the methylation of several non-histone targets, in addition to histone H3K4 residues. Despite these structural and functional commonalities, H3K4 methyltransferase proteins have specificity for their target genes and play a role in the development of various cancers as well as in drug resistance. In this review, we examine the overall role of histone H3K4 methyltransferase in the development of various cancers and in the progression of drug resistance. Compounds that inhibit protein-protein interactions between KMT2 family proteins and their common subunits or the activity of SMYD and SET7/9 are continuously being developed for the treatment of acute leukemia, triple-negative breast cancer, and castration-resistant prostate cancer. These H3K4 methyltransferase inhibitors, either alone or in combination with other drugs, are expected to play a role in overcoming drug resistance in leukemia and various solid cancers.
Collapse
|
40
|
Chang A, Liu L, Ashby JM, Wu D, Chen Y, O'Neill SS, Huang S, Wang J, Wang G, Cheng D, Tan X, Petty WJ, Pasche BC, Xiang R, Zhang W, Sun P. Recruitment of KMT2C/MLL3 to DNA Damage Sites Mediates DNA Damage Responses and Regulates PARP Inhibitor Sensitivity in Cancer. Cancer Res 2021; 81:3358-3373. [PMID: 33853832 PMCID: PMC8260460 DOI: 10.1158/0008-5472.can-21-0688] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
When recruited to promoters, histone 3 lysine 4 (H3K4) methyltransferases KMT2 (KMT2A-D) activate transcription by opening chromatin through H3K4 methylation. Here, we report that KMT2 mutations occur frequently in non-small cell lung cancer (NSCLC) and are associated with high mutation loads and poor survival. KMT2C regulated DNA damage responses (DDR) through direct recruitment to DNA damage sites by Ago2 and small noncoding DNA damage response RNA, where it mediates H3K4 methylation, chromatin relaxation, secondary recruitment of DDR factors, and amplification of DDR signals along chromatin. Furthermore, by disrupting homologous recombination (HR)-mediated DNA repair, KMT2C/D mutations sensitized NSCLC to Poly(ADP-ribose) polymerase inhibitors (PARPi), whose efficacy is unclear in NSCLC due to low BRCA1/2 mutation rates. These results demonstrate a novel, transcription-independent role of KMT2C in DDR and identify high-frequency KMT2C/D mutations as much-needed biomarkers for PARPi therapies in NSCLC and other cancers with infrequent BRCA1/2 mutations. SIGNIFICANCE: This study uncovers a critical role for KMT2C in DDR via direct recruitment to DNA damage sites, identifying high-frequency KMT2C/D mutations as biomarkers for response to PARP inhibition in cancer.
Collapse
MESH Headings
- Animals
- Apoptosis
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- DNA Damage
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Homologous Recombination
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Nude
- Mutation
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Prognosis
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Antao Chang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Nankai University School of Medicine, Tianjin, China
| | - Liang Liu
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Justin M Ashby
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Dan Wu
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Yanan Chen
- Nankai University School of Medicine, Tianjin, China
| | - Stacey S O'Neill
- Department of Pathology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Shan Huang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Nankai University School of Medicine, Tianjin, China
| | - Juan Wang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Nankai University School of Medicine, Tianjin, China
| | - Guanwen Wang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Nankai University School of Medicine, Tianjin, China
| | - Dongmei Cheng
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Xiaoming Tan
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Department of Respiratory Disease, South Campus, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - W J Petty
- Department of Internal Medicine, Division of Hematology and Oncology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Boris C Pasche
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Rong Xiang
- Nankai University School of Medicine, Tianjin, China
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina.
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina.
| |
Collapse
|
41
|
Kaur G, Iyer LM, Burroughs AM, Aravind L. Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. eLife 2021; 10:70394. [PMID: 34061031 PMCID: PMC8195603 DOI: 10.7554/elife.70394] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Several homologous domains are shared by eukaryotic immunity and programmed cell-death systems and poorly understood bacterial proteins. Recent studies show these to be components of a network of highly regulated systems connecting apoptotic processes to counter-invader immunity, in prokaryotes with a multicellular habit. However, the provenance of key adaptor domains, namely those of the Death-like and TRADD-N superfamilies, a quintessential feature of metazoan apoptotic systems, remained murky. Here, we use sensitive sequence analysis and comparative genomics methods to identify unambiguous bacterial homologs of the Death-like and TRADD-N superfamilies. We show the former to have arisen as part of a radiation of effector-associated α-helical adaptor domains that likely mediate homotypic interactions bringing together diverse effector and signaling domains in predicted bacterial apoptosis- and counter-invader systems. Similarly, we show that the TRADD-N domain defines a key, widespread signaling bridge that links effector deployment to invader-sensing in multicellular bacterial and metazoan counter-invader systems. TRADD-N domains are expanded in aggregating marine invertebrates and point to distinctive diversifying immune strategies probably directed both at RNA and retroviruses and cellular pathogens that might infect such communities. These TRADD-N and Death-like domains helped identify several new bacterial and metazoan counter-invader systems featuring underappreciated, common functional principles: the use of intracellular invader-sensing lectin-like (NPCBM and FGS), transcription elongation GreA/B-C, glycosyltransferase-4 family, inactive NTPase (serving as nucleic acid receptors), and invader-sensing GTPase switch domains. Finally, these findings point to the possibility of multicellular bacteria-stem metazoan symbiosis in the emergence of the immune/apoptotic systems of the latter.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| |
Collapse
|
42
|
MLL3 suppresses tumorigenesis through regulating TNS3 enhancer activity. Cell Death Dis 2021; 12:364. [PMID: 33824309 PMCID: PMC8024252 DOI: 10.1038/s41419-021-03647-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/05/2022]
Abstract
MLL3 is a histone H3K4 methyltransferase that is frequently mutated in cancer, but the underlying molecular mechanisms remain elusive. Here, we found that MLL3 depletion by CRISPR/sgRNA significantly enhanced cell migration, but did not elevate the proliferation rate of cancer cells. Through RNA-Seq and ChIP-Seq approaches, we identified TNS3 as the potential target gene for MLL3. MLL3 depletion caused downregulation of H3K4me1 and H3K27ac on an enhancer ~ 7 kb ahead of TNS3. 3C assay indicated the identified enhancer interacts with TNS3 promoter and repression of enhancer activity by dCas9-KRAB system impaired TNS3 expression. Exogenous expression of TNS3 in MLL3 deficient cells completely blocked the enhanced cell migration phenotype. Taken together, our study revealed a novel mechanism for MLL3 in suppressing cancer, which may provide novel targets for diagnosis or drug development.
Collapse
|
43
|
Dong YL, Vadla GP, Lu JYJ, Ahmad V, Klein TJ, Liu LF, Glazer PM, Xu T, Chabu CY. Cooperation between oncogenic Ras and wild-type p53 stimulates STAT non-cell autonomously to promote tumor radioresistance. Commun Biol 2021; 4:374. [PMID: 33742110 PMCID: PMC7979758 DOI: 10.1038/s42003-021-01898-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 02/23/2021] [Indexed: 12/27/2022] Open
Abstract
Oncogenic RAS mutations are associated with tumor resistance to radiation therapy. Cell-cell interactions in the tumor microenvironment (TME) profoundly influence therapy outcomes. However, the nature of these interactions and their role in Ras tumor radioresistance remain unclear. Here we use Drosophila oncogenic Ras tissues and human Ras cancer cell radiation models to address these questions. We discover that cellular response to genotoxic stress cooperates with oncogenic Ras to activate JAK/STAT non-cell autonomously in the TME. Specifically, p53 is heterogeneously activated in Ras tumor tissues in response to irradiation. This mosaicism allows high p53-expressing Ras clones to stimulate JAK/STAT cytokines, which activate JAK/STAT in the nearby low p53-expressing surviving Ras clones, leading to robust tumor re-establishment. Blocking any part of this cell-cell communication loop re-sensitizes Ras tumor cells to irradiation. These findings suggest that coupling STAT inhibitors to radiotherapy might improve clinical outcomes for Ras cancer patients.
Collapse
Affiliation(s)
- Yong-Li Dong
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
- State Key Laboratory of Genetic Engineering and National Center for International Research, Fudan-Yale Biomedical Research Center, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Gangadhara P Vadla
- Division of Biological Sciences, College of Veterinary Medicine, Department of Surgery, University of Missouri, Columbia, MO, USA
| | - Jin-Yu Jim Lu
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
- Yale-Waterbury Internal Medicine Residency Program, Waterbury, CT, USA
| | - Vakil Ahmad
- Division of Biological Sciences, College of Veterinary Medicine, Department of Surgery, University of Missouri, Columbia, MO, USA
| | - Thomas J Klein
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
- South Florida Radiation Oncology, West Palm Beach, FL, USA
| | - Lu-Fang Liu
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tian Xu
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA.
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.
| | - Chiswili-Yves Chabu
- Division of Biological Sciences, College of Veterinary Medicine, Department of Surgery, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
44
|
Chen R, Okeyo-Owuor T, Patel RM, Casey EB, Cluster AS, Yang W, Magee JA. Kmt2c mutations enhance HSC self-renewal capacity and convey a selective advantage after chemotherapy. Cell Rep 2021; 34:108751. [PMID: 33596429 PMCID: PMC7951951 DOI: 10.1016/j.celrep.2021.108751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The myeloid tumor suppressor KMT2C is recurrently deleted in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), particularly therapy-related MDS/AML (t-MDS/t-AML), as part of larger chromosome 7 deletions. Here, we show that KMT2C deletions convey a selective advantage to hematopoietic stem cells (HSCs) after chemotherapy treatment that may precipitate t-MDS/t-AML. Kmt2c deletions markedly enhance murine HSC self-renewal capacity without altering proliferation rates. Haploid Kmt2c deletions convey a selective advantage only when HSCs are driven into cycle by a strong proliferative stimulus, such as chemotherapy. Cycling Kmt2c-deficient HSCs fail to differentiate appropriately, particularly in response to interleukin-1. Kmt2c deletions mitigate histone methylation/acetylation changes that accrue as HSCs cycle after chemotherapy, and they impair enhancer recruitment during HSC differentiation. These findings help explain why Kmt2c deletions are more common in t-MDS/t-AML than in de novo AML or clonal hematopoiesis: they selectively protect cycling HSCs from differentiation without inducing HSC proliferation themselves.
Collapse
Affiliation(s)
- Ran Chen
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Theresa Okeyo-Owuor
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Riddhi M Patel
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Emily B Casey
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Andrew S Cluster
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Jeffrey A Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
45
|
Aberrant Activity of Histone-Lysine N-Methyltransferase 2 (KMT2) Complexes in Oncogenesis. Int J Mol Sci 2020; 21:ijms21249340. [PMID: 33302406 PMCID: PMC7762615 DOI: 10.3390/ijms21249340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
KMT2 (histone-lysine N-methyltransferase subclass 2) complexes methylate lysine 4 on the histone H3 tail at gene promoters and gene enhancers and, thus, control the process of gene transcription. These complexes not only play an essential role in normal development but have also been described as involved in the aberrant growth of tissues. KMT2 mutations resulting from the rearrangements of the KMT2A (MLL1) gene at 11q23 are associated with pediatric mixed-lineage leukemias, and recent studies demonstrate that KMT2 genes are frequently mutated in many types of human cancers. Moreover, other components of the KMT2 complexes have been reported to contribute to oncogenesis. This review summarizes the recent advances in our knowledge of the role of KMT2 complexes in cell transformation. In addition, it discusses the therapeutic targeting of different components of the KMT2 complexes.
Collapse
|
46
|
Berendsen MR, Stevens WBC, van den Brand M, van Krieken JH, Scheijen B. Molecular Genetics of Relapsed Diffuse Large B-Cell Lymphoma: Insight into Mechanisms of Therapy Resistance. Cancers (Basel) 2020; 12:E3553. [PMID: 33260693 PMCID: PMC7760867 DOI: 10.3390/cancers12123553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
The majority of patients with diffuse large B-cell lymphoma (DLBCL) can be treated successfully with a combination of chemotherapy and the monoclonal anti-CD20 antibody rituximab. Nonetheless, approximately one-third of the patients with DLBCL still experience relapse or refractory (R/R) disease after first-line immunochemotherapy. Whole-exome sequencing on large cohorts of primary DLBCL has revealed the mutational landscape of DLBCL, which has provided a framework to define novel prognostic subtypes in DLBCL. Several studies have investigated the genetic alterations specifically associated with R/R DLBCL, thereby uncovering molecular pathways linked to therapy resistance. Here, we summarize the current state of knowledge regarding the genetic alterations that are enriched in R/R DLBCL, and the corresponding pathways affected by these gene mutations. Furthermore, we elaborate on their potential role in mediating therapy resistance, also in connection with findings in other B-cell malignancies, and discuss alternative treatment options. Hence, this review provides a comprehensive overview on the gene lesions and molecular mechanisms underlying R/R DLBCL, which are considered valuable parameters to guide treatment.
Collapse
Affiliation(s)
- Madeleine R. Berendsen
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Wendy B. C. Stevens
- Department of Hematology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands;
| | - Michiel van den Brand
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Pathology-DNA, Rijnstate Hospital, 6815AD Arnhem, The Netherlands
| | - J. Han van Krieken
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
| | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
47
|
Li Y, Zhao L, Tian X, Peng C, Gong F, Chen Y. Crystal Structure of MLL2 Complex Guides the Identification of a Methylation Site on P53 Catalyzed by KMT2 Family Methyltransferases. Structure 2020; 28:1141-1148.e4. [DOI: 10.1016/j.str.2020.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023]
|
48
|
Abstract
The Trithorax group (TrxG) of proteins is a large family of epigenetic regulators that form multiprotein complexes to counteract repressive developmental gene expression programmes established by the Polycomb group of proteins and to promote and maintain an active state of gene expression. Recent studies are providing new insights into how two crucial families of the TrxG - the COMPASS family of histone H3 lysine 4 methyltransferases and the SWI/SNF family of chromatin remodelling complexes - regulate gene expression and developmental programmes, and how misregulation of their activities through genetic abnormalities leads to pathologies such as developmental disorders and malignancies.
Collapse
|
49
|
Sugeedha J, Gautam J, Tyagi S. SET1/MLL family of proteins: functions beyond histone methylation. Epigenetics 2020; 16:469-487. [PMID: 32795105 PMCID: PMC8078731 DOI: 10.1080/15592294.2020.1809873] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The SET1 family of enzymes are well known for their involvement in the histone 3 lysine 4 (H3K4) methylation, a conserved trait of euchromatin associated with transcriptional activation. These methyltransferases are distinct, and involved in various biological functions in the cell. Impairment in the function of SET1 family members leads to a number of abnormalities such as skeletal and neurological defects, leukaemogenesis and even lethality. Tremendous progress has been made in understanding the unique biological roles and the mechanism of SET1 enzymes in context with H3K4 methylation/canonical functions. However, in recent years, several studies have indicated the novel role of SET1 family proteins, other than H3K4 methylation, which are equally important for cellular functions. In this review, we focus on these non-canonical function of SET1 family members.
Collapse
Affiliation(s)
- Jeyapal Sugeedha
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Jyoti Gautam
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| |
Collapse
|
50
|
Abstract
Hepatitis B virus (HBV), which was discovered in 1965, is a threat to global public health. HBV infects human hepatocytes and leads to acute and chronic liver diseases, and there is no cure. In cells infected by HBV, viral DNA can be integrated into the cellular genome. HBV DNA integration is a complicated process during the HBV life cycle. Although HBV integration normally results in replication-incompetent transcripts, it can still act as a template for viral protein expression. Of note, it is a primary driver of hepatocellular carcinoma (HCC). Recently, with the development of detection methods and research models, the molecular biology and the pathogenicity of HBV DNA integration have been better revealed. Here, we review the advances in the research of HBV DNA integration, including molecular mechanisms, detection methods, research models, the effects on host and viral gene expression, the role of HBV integrations in the pathogenesis of HCC, and potential treatment strategies. Finally, we discuss possible future research prospects of HBV DNA integration.
Collapse
Affiliation(s)
- Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Andrew Liu
- Laboratory of Molecular Cardiology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|