1
|
Attah R, Kaur K, Reilly CA, Deering-Rice CE, Kelly KE. The effects of photochemical aging and interactions with secondary organic aerosols on cellular toxicity of combustion particles. JOURNAL OF AEROSOL SCIENCE 2025; 183:106473. [PMID: 39372219 PMCID: PMC11449255 DOI: 10.1016/j.jaerosci.2024.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Fine particulate matter (PM2.5) is associated with numerous adverse health effects, including pulmonary and cardiovascular diseases and premature death. Significant contributors to ambient PM2.5 include combustion particles and secondary organic aerosols (SOA). Combustion particles enter the atmosphere and undergo an aging process that changes their shape and composition, but there is limited study on the health effects of combustion particle aging and interactions with SOA. This study aimed to understand how biological responses to combustion particles would be affected by atmospheric aging and interaction with anthropogenic SOA. Fresh combustion particles underwent photochemical aging in a potential aerosol mass (PAM) oxidation flow reactor and interacted with SOA produced by the oxidation of toluene vapor in the PAM reactor. Photochemical aging and SOA interactions lead to significant changes in the PAH content and oxidative potential of the particle. Photochemical aging and SOA interactions also affected the biological responses, such as the inflammatory response and CYP1A1 induction of the particles in monoculture and coculture cells. These findings highlight the significance of photochemical aging and SOA interactions on the composition and cellular responses of combustion particles.
Collapse
Affiliation(s)
- Reuben Attah
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Kamaljeet Kaur
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, United States
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, United States
| | - Kerry E. Kelly
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
2
|
Lan L, Quan J, Ma P, Pan Y, Lian C, Wang W, Liao Z, Wang Q, Cheng Z, Dai L, Jia X, Zhang X. Strong upwards transport of HONO in daytime over urban area of Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175590. [PMID: 39159692 DOI: 10.1016/j.scitotenv.2024.175590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Strong upwards transport of Nitrous acid (HONO) in daytime over urban area of Beijing was observed based on combined observations of HONO, NOx (NO and NO2), nitrate, and PM2.5 at two heights (90 m and 528 m) on the highest building of Beijing (528 m above ground). The mean HONO at the 528 m (0.26 ppb) was lower than that at the 90 m (0.54 ppb), and a clear difference in diurnal variation of HONO between the two heights was observed. HONO at the 90 m showed two peaks in the morning rush hour and mid-night, but decreased sharply in daytime (e.g., from 0.62 ppb at 08:00 to 0.34 at 14:00); while the decreasing trend of HONO in daytime significantly weakened at the 528 m (e.g., from 0.26 ppb at 08:00 to 0.27 at 14:00).With PBL development in the morning, HONO in low layer was upwards transported to the 528 m, which compensated partly HONO loss via photolysis and resulted in a relatively stable concentration at the 528 m in daytime. A positive relationship of the bulk Richardson number (Ri) in 0-500 m with the difference of HONO between the two heights during daytime (08:00-18:00) confirmed the above analyses. HONO budget analysis indicated that a strong unknown HONO source existed at the 528 m in daytime, which was negative correlated to the Ri. These results further confirmed that vertical transport of HONO from low layer was a potential HONO source at the 528 m. Moreover, the contribution of photolysis of particulate nitrate significantly increased at the 528 m. Its contribution in total HONO sources increased from 11.9 % at the 90 m to 16.0 % at the 528 m.
Collapse
Affiliation(s)
- Linhui Lan
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China; Institute of Urban Meteorology, Chinese Meteorological Administration (CMA), Beijing 100089, China
| | - Jiannong Quan
- Institute of Urban Meteorology, Chinese Meteorological Administration (CMA), Beijing 100089, China.
| | - Pengkun Ma
- Institute of Urban Meteorology, Chinese Meteorological Administration (CMA), Beijing 100089, China
| | - Yubing Pan
- Institute of Urban Meteorology, Chinese Meteorological Administration (CMA), Beijing 100089, China
| | - Chaofan Lian
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiheng Liao
- Institute of Urban Meteorology, Chinese Meteorological Administration (CMA), Beijing 100089, China
| | - Qianqian Wang
- Institute of Urban Meteorology, Chinese Meteorological Administration (CMA), Beijing 100089, China
| | - Zhigang Cheng
- Institute of Urban Meteorology, Chinese Meteorological Administration (CMA), Beijing 100089, China
| | - Lindong Dai
- Institute of Urban Meteorology, Chinese Meteorological Administration (CMA), Beijing 100089, China
| | - Xingcan Jia
- Institute of Urban Meteorology, Chinese Meteorological Administration (CMA), Beijing 100089, China
| | - Xiaoling Zhang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China.
| |
Collapse
|
3
|
Tang R, Cao J, Shang J, Kuang Y, Geng H, Qiu X. Coupling Effect of Elemental Carbon and Organic Carbon on the Changes of Optical Properties and Oxidative Potential of Soot Particles under Visible Light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39431524 DOI: 10.1021/acs.est.4c09217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Soot particles, coming from the incomplete combustion of fossil or biomass fuels, feature a core-shell structure with inner elemental carbon (EC) and outer organic carbon (OC). Both EC and OC are known to be photoactive under solar radiation. However, research on their coupling effect during photochemical aging remains limited. This study examines how the optical properties and oxidative potential (OP) of wood, coal, and diesel soot particles with varying EC and OC levels are affected by exposure to visible light. Wood soot, which has the highest OC content, showed the most significant changes in both optical properties and OP, indicating its highest sensitivity to visible light aging. Molecular composition analysis revealed that the reduction of polycyclic aromatic hydrocarbons (PAHs) and methyl-PAHs primarily affects the optical properties, while oxygenated PAHs play a major role in OP. Combined with the results from reactive oxygen species detection, it is suggested that EC initiates photoreactions by generating superoxide anions, while OC undergoes compositional changes that result in subsequent atmospheric effects. These findings enhance our understanding of the photochemical aging process of soot particles and their implications for climate and health.
Collapse
Affiliation(s)
- Rui Tang
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jiong Cao
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jing Shang
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yu Kuang
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Hong Geng
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Xinghua Qiu
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Li J, Zhu Y, Ji X, Huang D, Ge M, Wang W, Li J, Li M, Chen C, Zhao J. Oxidation of Polycyclic Aromatic Hydrocarbons (PAHs) Triggered by a Photochemical Synergistic Effect between High- and Low-Molecular-Weight PAHs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17807-17816. [PMID: 39347567 DOI: 10.1021/acs.est.4c08661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Photooxidation of polycyclic aromatic hydrocarbons (PAHs), which are widely observed in atmospheric particulate matter (PM), largely determines their atmospheric fate. In the environment, PAHs are highly complex in chemical composition, and a great variety of PAHs tend to co-occur. Despite extensive investigation on the photochemical behavior of individual PAH molecules, the photochemical interaction among these coexisting PAHs is still not well understood. Here, we show that during photooxidation, there is a strong photochemical synergistic effect among PAHs extracted from soot particles. We find that neither small PAHs with low molecular weights of 200-350 Da and 4-8 aromatic rings (named PAHsmall) nor large PAHs with high molecular weights of 350-600 Da and 8-14 aromatic rings (named PAHlarge) undergo photooxidation under red-light irradiation (λ = 648 nm), even though PAHlarge can absorb light with this wavelength. Interestingly, when PAHlarge is mixed with PAHsmall, substantial photooxidation is observed for both PAHlarge and PAHsmall. Comparisons of in situ infrared (IR), high-resolution mass spectrometry, and electron paramagnetic resonance analysis indicate that the presence of PAHsmall inhibits the light quenching effect arising from the π-π stacking of PAHlarge. This leads to the formation of singlet oxygen (1O2), which initiates the photooxidation. Our findings reveal a new mechanism for the photooxidation of PAHs and suggest that complex atmospheric PAHs exhibit distinct photoreactivity from simple systems.
Collapse
Affiliation(s)
- Jiachun Li
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yifan Zhu
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaojie Ji
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Di Huang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Maofa Ge
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weigang Wang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jikun Li
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Meng Li
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
5
|
Zhang P, Li H, Wang S, Chu B, Chen T, Ma Q, Wang Y, Yu Y, He H. Dark NO 2 Reduction on a Graphene Surface with Implications for Soot Aging and HONO Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39255235 DOI: 10.1021/acs.est.4c03406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Soot, primarily composed of elemental carbon (EC) and organic carbon (OC), is ubiquitous in PM2.5. In the atmosphere, the heterogeneous interaction between NO2 and soot is not only an important pathway driving soot aging but also of central importance to nitrous acid (HONO) formation. It is commonly believed that the surface redox reaction between reductive OC and NO2 dominates the night aging of soot and the conversion of NO2 to HONO. However, completely differing from the currently popular explanation, we find here that the redox reaction between EC and NO2 can also drive the conversion of NO2 to HONO during soot aging. By combining in situ experiments with density functional theory (DFT) calculations, we proposed that the surface carbon vacancy defects on graphite/graphene-like EC should be a type of potential primary adsorption and reactive sites inducing the heterogeneous reduction of NO2. We suggested a new mechanism that NO2 is reduced to form HONO on surface vacancy defects through the splitting of H2O molecules, and the carbon atoms adjacent to surface vacancy are simultaneously oxidized to form hydroxyl-functionalized EC. This novel finding provides insights into the chemical mechanism driving the NO2-to-HONO conversion and rapid soot aging, which expands our knowledge of the heterogeneous chemistry of soot in the atmosphere.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuying Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
6
|
Yang W, Ji H, Li F, He X, Zhang S, Nan X, Du T, Li K, Han C. Important yet Overlooked HONO Source from Aqueous-phase Photochemical Oxidation of Nitrophenols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15722-15731. [PMID: 39175437 DOI: 10.1021/acs.est.4c05048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Nitrites (NO2-/HONO), as the primary source of hydroxyl radicals (•OH) in the atmosphere, play a key role in atmospheric chemistry. However, the current understanding of the source of NO2-/HONO is insufficient and therefore hinders the accurate quantification of atmospheric oxidation capacity. Herein, we highlighted an overlooked HONO source by the reaction between nitrophenols (NPs) and •OH in the aqueous phase and provided kinetic data to better evaluate the contribution of this process to atmospheric HONO. Three typical NPs, including 4-nitrophenol (4NP), 2-nitrophenol (2NP), and 4-nitrocatechol (4NC), underwent a denitration process to form aqueous NO2- and gaseous HONO through the •OH oxidation, with the yield of NO2-/HONO varied from 15.0 to 33.5%. According to chemical composition and structure analysis, the reaction pathway, where the ipso addition of •OH to the NO2 group on 4NP generated hydroquinone, can contribute to more than 61.9% of the NO2-/HONO formation. The aqueous photooxidation of NPs may account for HONO in the atmosphere, depending on the specific conditions. The results clearly suggest that the photooxidation of NPs should be considered in the field observation and calculation to better evaluate the HONO budget in the atmosphere.
Collapse
Affiliation(s)
- Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Hui Ji
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Fu Li
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Xue He
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Shan Zhang
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiangli Nan
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Tao Du
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Kun Li
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
7
|
Zhu Y, Li J, Zhang Y, Ji X, Chen J, Huang D, Li J, Li M, Chen C, Zhao J. Distinct Photochemistry of Odd-Carbon PAHs from the Even-Carbon Ones During the Photoaging and Analysis of Soot. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11578-11586. [PMID: 38899536 DOI: 10.1021/acs.est.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the primary organic carbons in soot. In addition to PAHs with even carbon numbers (PAHeven), substantial odd-carbon PAHs (PAHodd) have been widely observed in soot and ambient particles. Analyzing and understanding the photoaging of these compounds are essential for assessing their environmental effects. Here, using laser desorption ionization mass spectrometry (LDI-MS), we reveal the substantially different photoreactivity of PAHodd from PAHeven in the aging process and their MS detection through their distinct behaviors in the presence and absence of elemental carbon (EC) in soot. During direct photooxidation of organic carbon (OC) alone, the PAHeven are oxidized more rapidly than the PAHodd. However, the degradation of PAHodd becomes preponderant over PAHeven in the presence of EC during photoaging of the whole soot. All of these observations are proposed to originate from the more rapid hydrogen abstraction reaction from PAHodd in the EC-photosensitized reaction, owing to its unique structure of a single sp3-hybridized carbon site. Our findings reveal the photoreactivity and reaction mechanism of PAHodd for the first time, providing a comprehensive understanding of the oxidation of PAHs at a molecular level during soot aging and highlight the enhanced effect of EC on PAHodd ionization in LDI-MS analysis.
Collapse
Affiliation(s)
- Yifan Zhu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiachun Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yufan Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaojie Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianhua Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Di Huang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jikun Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Meng Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
- Currently at Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
8
|
Ji X, Chen F, Chen J, Zhang Y, Zhu Y, Huang D, Li J, Lei Y, Chen C, Zhao J. Multiple effects of relative humidity on heterogeneous ozonolysis of cooking organic aerosol proxies from heated peanut oil emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173069. [PMID: 38723974 DOI: 10.1016/j.scitotenv.2024.173069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/15/2024]
Abstract
The exposure to cooking organic aerosols (COA) is closely related to people's daily lives. Despite extensive investigations into COA's model compounds like oleic acid, the intricacies of heterogeneous ozonolysis of real COA and the effects of ambient conditions like humidity remain elusive. In this work, the ozonolysis of COA proxies from heated peanut oil emissions was investigated using diffuse reflectance infrared Fourier transform (DRIFTS) spectroscopy, and proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). We found that humidity hinders the reaction between ozone and CC double bonds due to the competitive adsorption of water and ozone on COA. Although visible light has little influence on the ozonolysis of COA in the absence of humidity, the ozonolytic CO production is significantly promoted by visible light in the presence of humidity. It may be attributed to the formation of water-derived reactive oxygen species (ROS, mainly HO•) from the photosensitization of polycyclic aromatic hydrocarbons (PAHs) in COA. We also found that humidity can enhance the depolymerization of carboxylic acid dimers and hydrolysis of intrinsic acetals in the COA. Moreover, humidity promotes the release of VOCs during both the dark and light ozonolysis of COA. This work reveals the important roles of humidity-responsive and photo-responsive components in COA during its ozonolysis, and the change in VOC release may guide the control of human VOC exposure in indoor air.
Collapse
Affiliation(s)
- Xiaojie Ji
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fengxia Chen
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianhua Chen
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yufan Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yifan Zhu
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Di Huang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jikun Li
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
9
|
Panadés-Barrueta RL, Duflot D, Soto J, Martínez-Núñez E, Peláez D. Automatic Determination of the Non-Covalent Stable Conformations of the NO 2-Pyrene Cluster in Full Dimensionality (81D) Using the vdW-TSSCDS Approach. Chemphyschem 2024; 25:e202301001. [PMID: 38662437 DOI: 10.1002/cphc.202301001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Indexed: 05/24/2024]
Abstract
We present the detailed topographical characterisation (stationary points and minimum energy paths connecting them) of the full dimensional (81D) intermolecular potential energy surface associated with the non-covalent interactions between the NO2 radical and the pyrene (C16H10) molecule. The whole procedure is (quasi) fully automated. We have used our recent algorithm vdW-TSSCDS as implemented on the freely-available AutoMekin software package. To this end, a series of inexpensive classical trajectories using forces from a low-level (semi-empirical) theory are used to sample the configuration space of the system in the search for candidates to first order saddle points. These guess structures are determined by means of a graph-theory based algorithm using the concept of adjacency matrix. Low-level optimizations are followed by re-optimizations at a final high-level of theory (DFT and CCSD(T)-F12 in our case.). The resulting set of stationary points and paths connecting them constitutes the so-called reaction network. In the case of NO2-pyrene, this network exhibits four major basins which can be characterized by their point-group symmetry. A central one, of global C2 symmetry, comprises the global minimum (as well as all other permutationally related conformers) together with the corresponding C2v saddle points connecting them. This central basin is connected to three others of lower C1 symmetry. The latter can be distinguished by the projection of the position of the NO2 nitrogen atom on the pyrene plane in combination with the relative orientation of the oxygen pair pointing either inwards, outwards, upwards or downwards.
Collapse
Affiliation(s)
- Ramón L Panadés-Barrueta
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Denis Duflot
- Univ. Lille, CNRS, UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, F-59000, Lille, France
| | - Juan Soto
- Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Emilio Martínez-Núñez
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Daniel Peláez
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| |
Collapse
|
10
|
Zeng J, Xu W, Kuang Y, Xu W, Liu C, Zhang G, Zhao H, Ren S, Zhou G, Xu X. The Impact of Agroecosystems on Nitrous Acid (HONO) Emissions during Spring and Autumn in the North China Plain. TOXICS 2024; 12:331. [PMID: 38787110 PMCID: PMC11126139 DOI: 10.3390/toxics12050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Solar radiation triggers atmospheric nitrous acid (HONO) photolysis, producing OH radicals, thereby accelerating photochemical reactions, leading to severe secondary pollution formation. Missing daytime sources were detected in the extensive HONO budget studies carried out in the past. In the rural North China Plain, some studies attributed those to soil emissions and more recent studies to dew evaporation. To investigate the contributions of these two processes to HONO temporal variations and unknown production rates in rural areas, HONO and related field observations obtained at the Gucheng Agricultural and Ecological Meteorological Station during spring and autumn were thoroughly analyzed. Morning peaks in HONO frequently occurred simultaneously with those of ammonia (NH3) and water vapor both during spring and autumn, which were mostly caused by dew and guttation water evaporation. In spring, the unknown HONO production rate revealed pronounced afternoon peaks exceeding those in the morning. In autumn, however, the afternoon peak was barely detectable compared to the morning peak. The unknown afternoon HONO production rates were attributed to soil emissions due to their good relationship to soil temperatures, while NH3 soil emissions were not as distinctive as dew emissions. Overall, the relative daytime contribution of dew emissions was higher during autumn, while soil emissions dominated during spring. Nevertheless, dew emission remained the most dominant contributor to morning time HONO emissions in both seasons, thus being responsible for the initiation of daytime OH radical formation and activation of photochemical reactions, while soil emissions further maintained HONO and associated OH radial formation rates at a high level, especially during spring. Future studies need to thoroughly investigate the influencing factors of dew and soil emissions and establish their relationship to HONO emission rates, form reasonable parameterizations for regional and global models, and improve current underestimations in modeled atmospheric oxidation capacity.
Collapse
Affiliation(s)
- Jianhui Zeng
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (J.Z.); (C.L.); (G.Z.); (X.X.)
| | - Wanyun Xu
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (J.Z.); (C.L.); (G.Z.); (X.X.)
| | - Ye Kuang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China;
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Weiqi Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
| | - Chang Liu
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (J.Z.); (C.L.); (G.Z.); (X.X.)
| | - Gen Zhang
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (J.Z.); (C.L.); (G.Z.); (X.X.)
| | - Huarong Zhao
- State Key Laboratory of Severe Weather, Institute of Agricultural Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (H.Z.); (S.R.); (G.Z.)
- Hebei Gucheng Agricultural Meteorology National Observation and Research Station, Baoding 072656, China
| | - Sanxue Ren
- State Key Laboratory of Severe Weather, Institute of Agricultural Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (H.Z.); (S.R.); (G.Z.)
- Hebei Gucheng Agricultural Meteorology National Observation and Research Station, Baoding 072656, China
| | - Guangsheng Zhou
- State Key Laboratory of Severe Weather, Institute of Agricultural Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (H.Z.); (S.R.); (G.Z.)
- Hebei Gucheng Agricultural Meteorology National Observation and Research Station, Baoding 072656, China
| | - Xiaobin Xu
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China; (J.Z.); (C.L.); (G.Z.); (X.X.)
| |
Collapse
|
11
|
Tang MX, He LY, Xia SY, Jiang Z, He DY, Guo S, Hu RZ, Zeng H, Huang XF. Coarse particles compensate for missing daytime sources of nitrous acid and enhance atmospheric oxidation capacity in a coastal atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170037. [PMID: 38232856 DOI: 10.1016/j.scitotenv.2024.170037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
Large missing sources of daytime atmospheric nitrous acid (HONO), a vital source of hydroxyl radicals (OH) through its photolysis, frequently exist in global coastal regions. In this study, ambient HONO and relevant species were measured at a coastal site in the Pearl River Delta (PRD), China, during October 2019. Relatively high concentrations (0.32 ± 0.19 ppbv) and daytime peaks at approximately 13:00 of HONO were observed, and HONO photolysis was found to be the dominant (55.5 %) source of the primary OH production. A budget analysis of HONO based on traditional sources suggested large unknown sources during the daytime (66.4 %), which had a significant correlation with the mass of coarse particles (PM2.5-10) and photolysis frequency (J(NO2)). When incorporating photolysis of the abundant nitrate measured in coarse particles with a reasonable enhancement factor relative to fine particles due to favorable aerosol conditions, the missing daytime sources of HONO could be fully compensated by coarse particles serving as the largest source at this coastal site. Our study revealed great potential of coarse particles as a strong daytime HONO source, which has been ignored before but can efficiently promote NOx recycling and thus significantly enhance atmospheric oxidation capacity.
Collapse
Affiliation(s)
- Meng-Xue Tang
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ling-Yan He
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Shi-Yong Xia
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Jiang
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dong-Yi He
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ren-Zhi Hu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Hui Zeng
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiao-Feng Huang
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
12
|
Oren O, McTaggart-Cowan G, Khan S. Enhancing soot oxidation using microtextured surfaces. Sci Rep 2024; 14:4247. [PMID: 38378782 PMCID: PMC10879092 DOI: 10.1038/s41598-024-54320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/11/2024] [Indexed: 02/22/2024] Open
Abstract
Biomass combustion provides energy needs for millions of people worldwide. However, soot accumulation on the combustors' walls significantly reduces heat transfer efficiency. Herein, we demonstrate how microtextured surfaces minimize soot accumulation by enhancing soot oxidation. We investigate soot layers from the combustion of paraffin wax as a model for wood-based soot, and find that randomly microtextured glass obtained by sandblasting shows a 71% reduction in the time taken to oxidize 90% of surface soot coverage when compared to smooth glass at 530 °C. We also study grooved microtextures fabricated via laser ablation and find that grooves with widths between 15 and 50 µm enhance soot oxidation, while the expedited advantage is lost when the groove width is 85 µm. X-ray photoelectron spectroscopy validates the superior extent of soot removal on microtextures down to a sub-nanometer length-scale. The high density of sharp features such as peaks and edges on microtextures, and the conformality of the soot layer to the microtextures contribute to increased soot oxidation. We also demonstrate enhanced soot oxidation on microtextured stainless steel, the principal material of construction in biomass combustors. Microtextured surfaces that facilitate soot oxidation upon contact could significantly improve performance and longevity in various combustion applications.
Collapse
Affiliation(s)
- Oz Oren
- School of Sustainable Energy Engineering, Simon Fraser University, Surrey, V3T 0N1, Canada
| | - Gordon McTaggart-Cowan
- School of Sustainable Energy Engineering, Simon Fraser University, Surrey, V3T 0N1, Canada
| | - Sami Khan
- School of Sustainable Energy Engineering, Simon Fraser University, Surrey, V3T 0N1, Canada.
| |
Collapse
|
13
|
Yang J, Qu Y, Chen Y, Zhang J, Liu X, Niu H, An J. Dominant physical and chemical processes impacting nitrate in Shandong of the North China Plain during winter haze events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169065. [PMID: 38065496 DOI: 10.1016/j.scitotenv.2023.169065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Nitrate has been a dominant component of PM2.5 since the stringent emission control measures implemented in China in 2013. Clarifying key physical and chemical processes influencing nitrate concentrations is crucial for eradicating heavy air pollution in China. In this study, we explored dominant processes impacting nitrate concentrations in Shandong of the North China Plain during three haze events from 9 to 25 December 2021, named cases P1 (94.46 (30.85) μg m-3 for PM2.5 (nitrate)), P2 (148.95 (50.12) μg m-3) and P3 (88.03 (29.21) μg m-3), by using the Weather Research and Forecasting/Chemistry model with an integrated process rate analysis scheme and updated heterogeneous hydrolysis of dinitrogen pentoxide on the wet aerosol surface (HET-N2O5) and additional nitrous acid (HONO) sources (AS-HONO). The results showed that nitrate increases in the three cases were attributed to aerosol chemistry, whereas nitrate decreases were due mainly to the vertical mixing process in cases P1 and P2 and to the advection process in case P3. HET-N2O5 (the reaction of OH + NO2) contributed 45 % (51 %) of the HNO3 production rate during the study period. AS-HONO produced a nitrate enhancement of 24 % in case P1, 12 % in case P2 and 19 % in case P3, and a HNO3 production rate enhancement of 0.79- 0.97 (0.18- 0.60) μg m-3 h-1 through the reaction of OH + NO2 (HET-N2O5) in the three cases. This study implies that using suitable parameterization schemes for heterogeneous reactions on aerosol and ground surfaces and nitrate photolysis is vital in simulations of HONO and nitrate, and the MOSAIC module for aerosol water simulations needs to be improved.
Collapse
Affiliation(s)
- Juan Yang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yong Chen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwei Zhang
- Department of Atmospheric Sciences, Yunnan University, Kunming 650091, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hongya Niu
- School of Earth Sciences and Engineering, Hebei University of Engineering, Handan 056038, China
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Czech H, Popovicheva O, Chernov DG, Kozlov A, Schneider E, Shmargunov VP, Sueur M, Rüger CP, Afonso C, Uzhegov V, Kozlov VS, Panchenko MV, Zimmermann R. Wildfire plume ageing in the Photochemical Large Aerosol Chamber (PHOTO-LAC). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:35-55. [PMID: 37873726 DOI: 10.1039/d3em00280b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Plumes from wildfires are transported over large distances from remote to populated areas and threaten sensitive ecosystems. Dense wildfire plumes are processed by atmospheric oxidants and complex multiphase chemistry, differing from processes at typical ambient concentrations. For studying dense biomass burning plume chemistry in the laboratory, we establish a Photochemical Large Aerosol Chamber (PHOTO-LAC) being the world's largest aerosol chamber with a volume of 1800 m3 and provide its figures of merit. While the photolysis rate of NO2 (jNO2) is comparable to that of other chambers, the PHOTO-LAC and its associated low surface-to-volume ratio lead to exceptionally low losses of particles to the walls. Photochemical ageing of toluene under high-NOx conditions induces substantial formation of secondary organic aerosols (SOAs) and brown carbon (BrC). Several individual nitrophenolic compounds could be detected by high resolution mass spectrometry, demonstrating similar photochemistry to other environmental chambers. Biomass burning aerosols are generated from pine wood and debris under flaming and smouldering combustion conditions and subsequently aged under photochemical and dark ageing conditions, thus resembling day- and night-time atmospheric chemistry. In the unprecedented long ageing with alternating photochemical and dark ageing conditions, the temporal evolution of particulate matter and its chemical composition is shown by ultra-high resolution mass spectrometry. Due to the spacious cavity, the PHOTO-LAC may be used for applications requiring large amounts of particulate matter, such as comprehensive chemical aerosol characterisation or cell exposures under submersed conditions.
Collapse
Affiliation(s)
- Hendryk Czech
- Department of Analytical and Technical Chemistry, Chair of Analytical Chemistry, Joint Mass Spectrometry Centre (JMSC), University of Rostock, 18059, Rostock, Germany.
| | - Olga Popovicheva
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991, Moscow, Russia.
| | - Dmitriy G Chernov
- V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, 634055, Tomsk, Russia
| | - Alexander Kozlov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Eric Schneider
- Department of Analytical and Technical Chemistry, Chair of Analytical Chemistry, Joint Mass Spectrometry Centre (JMSC), University of Rostock, 18059, Rostock, Germany.
- Department Life, Light & Matter (LLM), University of Rostock, 18059, Rostock, Germany
| | - Vladimir P Shmargunov
- V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, 634055, Tomsk, Russia
| | - Maxime Sueur
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000, Rouen, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, 76700, Harfleur, France
| | - Christopher P Rüger
- Department of Analytical and Technical Chemistry, Chair of Analytical Chemistry, Joint Mass Spectrometry Centre (JMSC), University of Rostock, 18059, Rostock, Germany.
- Department Life, Light & Matter (LLM), University of Rostock, 18059, Rostock, Germany
| | - Carlos Afonso
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000, Rouen, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, 76700, Harfleur, France
| | - Viktor Uzhegov
- V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, 634055, Tomsk, Russia
| | - Valerii S Kozlov
- V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, 634055, Tomsk, Russia
| | - Mikhail V Panchenko
- V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, 634055, Tomsk, Russia
| | - Ralf Zimmermann
- Department of Analytical and Technical Chemistry, Chair of Analytical Chemistry, Joint Mass Spectrometry Centre (JMSC), University of Rostock, 18059, Rostock, Germany.
- Department Life, Light & Matter (LLM), University of Rostock, 18059, Rostock, Germany
| |
Collapse
|
15
|
Chen D, Zhou L, Liu S, Lian C, Wang W, Liu H, Li C, Liu Y, Luo L, Xiao K, Chen Y, Qiu Y, Tan Q, Ge M, Yang F. Primary sources of HONO vary during the daytime: Insights based on a field campaign. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166605. [PMID: 37640078 DOI: 10.1016/j.scitotenv.2023.166605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Nitrous acid (HONO) is an established precursor of hydroxyl (OH) radical and has significant impacts on the formation of PM2.5 and O3. Despite extensive research on HONO observation in recent years, knowledge regarding its sources and sinks in urban areas remains inadequate. In this study, we monitored the atmospheric concentrations of HONO and related pollutants, including gaseous nitric acid and particulate nitrate, simultaneously at a supersite in downtown Chengdu, a megacity in southwestern China during spring, when was chosen due to its tolerance for both PM2.5 and O3 pollution. Furthermore, we employed the random forest model to fill the missing data of HONO, which exhibited good predictive performance (R2 = 0.96, RMSE = 0.36 ppbv). During this campaign, the average mixing ratio of HONO was measured to be 1.0 ± 0.7 ppbv. Notably, during periods of high O3 and PM2.5 concentrations, the mixing ratio of HONO was >50 % higher compared to the clean period. We developed a comprehensive parameterization scheme for the HONO budget, and it performed well in simulating diurnal variations of HONO. Based on the HONO budget analysis, we identified different mechanisms that dominate HONO formation at different times of the day. Vehicle emissions and NO2 heterogeneous conversions were found to be the primary sources of HONO during nighttime (21.0 %, 30.2 %, respectively, from 18:00 to 7:00 the next day). In the morning (7:00-12:00), NO2 heterogeneous conversions and the reaction of NO with OH became the main sources (35.0 %, 32.2 %, respectively). However, in the afternoon (12:00-18:00), the heterogeneous photolysis of HNO3 on PM2.5 was identified as the most substantial source of HONO (contributing 52.5 %). This study highlights the significant variations in primary HONO sources throughout the day.
Collapse
Affiliation(s)
- Dongyang Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Li Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China.
| | - Song Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Chaofan Lian
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hefan Liu
- Chengdu Academy of Environmental Sciences, Chengdu 610000, China
| | - Chunyuan Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Yuelin Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Lan Luo
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Kuang Xiao
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Yong Chen
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Yang Qiu
- Department of Industrial Engineering, The Pittsburgh Institute, Sichuan University, Chengdu 610065, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610000, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| |
Collapse
|
16
|
Yang W, Shang J, Nan X, Du T, Han C. Unveiling the effect of O 2 on the photochemical reaction of NO 2 with polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119838-119846. [PMID: 37930566 DOI: 10.1007/s11356-023-30289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The photochemical reaction of NO2 with organics may be a source of atmospheric HONO during the daytime. Here, the conversion of NO2 to HONO on polycyclic aromatic hydrocarbons (PAHs) under solar irradiation under aerobic and anaerobic conditions was investigated using a flow tube reactor coupled to a NOx analyzer. O2 played an inhibition role in NO2 uptake and HONO formation on PAHs, as shown by 7%-45% and 15%-52% decrease in NO2 uptake coefficient (γ) and HONO yield (YHONO), respectively. The negative effect of O2 on the reaction between NO2 and PAHs should be attributed to three reasons. First, O2 could compete with NO2 for the available sites on PAHs. Second, the quenching of the triple excited state of PAHs (3PAHs*) by O2 inhibited the NO2 uptake. Third, NO3- formed under aerobic conditions reduced the conversion efficiency of NO2 to HONO. The environmental implications suggested that the NO2 uptake on PAHs could contribute to a HONO source strength of 10-120 ppt h-1 in the atmosphere.
Collapse
Affiliation(s)
- Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Jiaqi Shang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Xiangli Nan
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Tao Du
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
17
|
Zhang P, Wang Y, Chen T, Yu Y, Ma Q, Liu C, Li H, Chu B, He H. Insight into the Mechanism and Kinetics of the Heterogeneous Reaction between SO 2 and NO 2 on Diesel Black Carbon under Light Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17718-17726. [PMID: 36919346 DOI: 10.1021/acs.est.2c09674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The heterogeneous oxidation of SO2 by NO2 has been extensively proposed as an important pathway of sulfate production during haze events in China. However, the kinetics and mechanism of oxidation of SO2 by NO2 on the surface of complex particles remain poorly understood. Here, we systematically explore the mechanism and kinetics of the reaction between SO2 and NO2 on diesel black carbon (DBC) under light irradiation. The experimental results prove that DBC photochemistry can not only significantly promote the heterogeneous reduction of NO2 to produce HONO via transferring photoinduced electrons but also indirectly promote OH radical formation. These reduction products of NO2 as well as NO2 itself greatly promote the heterogeneous oxidation of SO2 on DBC. NO2 oxidation, HONO oxidation, and the surface photo-oxidation process are proven to be three major surface oxidation pathways of SO2. The kinetics results indicate that the surface photooxidation pathway accounts for the majority of the total SO2 uptake (∼63%), followed by the HONO oxidation pathway (∼27%) and direct oxidation by NO2 (∼10%). This work highlights the significant synergistic roles of DBC, NO2, and light irradiation in enhancing the atmospheric oxidation capacity and promoting the heterogeneous formation of sulfate.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | | | - Hao Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
18
|
Zhang S, Li G, Ma N, He Y, Zhu S, Pan X, Dong W, Zhang Y, Luo Q, Ditas J, Kuhn U, Zhang Y, Yuan B, Wang Z, Cheng P, Hong J, Tao J, Xu W, Kuang Y, Wang Q, Sun Y, Zhou G, Cheng Y, Su H. Exploring HONO formation and its role in driving secondary pollutants formation during winter in the North China Plain. J Environ Sci (China) 2023; 132:83-97. [PMID: 37336612 DOI: 10.1016/j.jes.2022.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 06/21/2023]
Abstract
Daytime HONO photolysis is an important source of atmospheric hydroxyl radicals (OH). Knowledge of HONO formation chemistry under typical haze conditions, however, is still limited. In the Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain in 2018, we investigated the wintertime HONO formation and its atmospheric implications at a rural site Gucheng. Three different episodes based on atmospheric aerosol loading levels were classified: clean periods (CPs), moderately polluted periods (MPPs) and severely polluted periods (SPPs). Correlation analysis revealed that HONO formation via heterogeneous conversion of NO2 was more efficient on aerosol surfaces than on ground, highlighting the important role of aerosols in promoting HONO formation. Daytime HONO budget analysis indicated a large missing source (with an average production rate of 0.66 ± 0.26, 0.97 ± 0.47 and 1.45 ± 0.55 ppbV/hr for CPs, MPPs and SPPs, respectively), which strongly correlated with photo-enhanced reactions (NO2 heterogeneous reaction and particulate nitrate photolysis). Average OH formation derived from HONO photolysis reached up to (0.92 ± 0.71), (1.75 ± 1.26) and (1.82 ± 1.47) ppbV/hr in CPs, MPPs and SPPs respectively, much higher than that from O3 photolysis (i.e., (0.004 ± 0.004), (0.006 ± 0.007) and (0.0035 ± 0.0034) ppbV/hr). Such high OH production rates could markedly regulate the atmospheric oxidation capacity and hence promote the formation of secondary aerosols and pollutants.
Collapse
Affiliation(s)
- Shaobin Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Guo Li
- Max Planck Institute for Chemistry, Mainz 55128, Germany.
| | - Nan Ma
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| | - Yao He
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Shaowen Zhu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Xihao Pan
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Wenlin Dong
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Yanyan Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Qingwei Luo
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Jeannine Ditas
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Uwe Kuhn
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Yuxuan Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Bin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Zelong Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Peng Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Juan Hong
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Jiangchuan Tao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Wanyun Xu
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Ye Kuang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Qiaoqiao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Guangsheng Zhou
- Gucheng Experimental Station of Ecological and Agricultural Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yafang Cheng
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Hang Su
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| |
Collapse
|
19
|
Zhang Q, Liu P, Wang Y, George C, Chen T, Ma S, Ren Y, Mu Y, Song M, Herrmann H, Mellouki A, Chen J, Yue Y, Zhao X, Wang S, Zeng Y. Unveiling the underestimated direct emissions of nitrous acid (HONO). Proc Natl Acad Sci U S A 2023; 120:e2302048120. [PMID: 37603738 PMCID: PMC10468620 DOI: 10.1073/pnas.2302048120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023] Open
Abstract
Gaseous nitrous acid (HONO) is a critical source of hydroxyl radicals (OH) in the troposphere. While both direct and secondary sources contribute to atmospheric HONO, direct emissions have traditionally been considered minor contributors. In this study, we developed δ15N and δ18O isotopic fingerprints to identify six direct HONO emission sources and conducted a 1-y case study on the isotopic composition of atmospheric HONO at rural and urban sites. Interestingly, we identified that livestock farming is a previously overlooked direct source of HONO and determined its HONO to ammonia (NH3) emission ratio. Additionally, our results revealed that spatial and temporal variations in atmospheric HONO isotopic composition can be partially attributed to direct emissions. Through a detailed HONO budget analysis incorporating agricultural sources, we found that direct HONO emissions accounted for 39~45% of HONO production in rural areas across different seasons. The findings were further confirmed by chemistry transport model simulations, highlighting the significance of direct HONO emissions and their impact on air quality in the North China Plain. These findings provide compelling evidence that direct HONO emissions play a more substantial role in contributing to atmospheric HONO than previously believed. Moreover, the δ15N and δ18O isotopic fingerprints developed in this study may serve as a valuable tool for further research on the atmospheric chemistry of reactive nitrogen gases.
Collapse
Affiliation(s)
- Qian Zhang
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne69626, France
| | - Pengfei Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yan Wang
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne69626, France
| | - Tianshu Chen
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Shuyi Ma
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Yangang Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Min Song
- Shandong University Chamber Laboratory, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Hartmut Herrmann
- Shandong University Chamber Laboratory, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
- Atmospheric Chemistry Department, Leibniz-Institute for Tropospheric Research, Leipzig04318, Germany
| | - Abdelwahid Mellouki
- Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS, Orléans45071, France
- College of Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Rehamna43150, Morocco
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai200438, China
| | - Yang Yue
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Xiaoxi Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Shuguang Wang
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Yang Zeng
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| |
Collapse
|
20
|
Liu Y, He G, Chu B, Ma Q, He H. Atmospheric heterogeneous reactions on soot: A review. FUNDAMENTAL RESEARCH 2023; 3:579-591. [PMID: 38933550 PMCID: PMC11197571 DOI: 10.1016/j.fmre.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 10/18/2022] Open
Abstract
Soot particles, composed of elemental carbon and organic compounds, have attracted widespread attention in recent years due to their significant impacts on climate, the environment and human health. Soot has been found to be chemically and physically active in atmospheric aging processes, which leads to alterations in its composition, morphology, hygroscopicity and optical properties and thus changes its environmental and health effects. The heterogeneous reactions on soot also have a significant impact on the transformation of gaseous pollutants into secondary aerosols. Therefore, the interactions between soot and atmospheric substances have been widely investigated to better understand the environmental behaviors of soot. In this review, we systematically summarize the progress and developments in the heterogeneous chemistry on soot over the past 30 years. Atmospheric trace constituents such as NO2, O3, SO2, N2O5, HNO3, H2SO4, OH radical, HO2 radical, peroxyacetyl nitrate etc., are presented in detail from the aspect of their heterogeneous reactions on soot. The possible mechanisms and the effects of environmental conditions on these heterogeneous reactions are also addressed. Further, the impacts of the heterogeneous reactions of soot on the atmospheric environment are discussed, and some aspects of soot-related research which require further investigation are proposed as well.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Sarmiento DJ, Majestic BJ. Formation of Environmentally Persistent Free Radicals from the Irradiation of Polycyclic Aromatic Hydrocarbons. J Phys Chem A 2023. [PMID: 37316958 DOI: 10.1021/acs.jpca.3c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) provide a complex matrix for environmentally persistent free radicals (EPFRs) to stabilize in particulate matter, allowing them to be transported over long distances in the atmosphere while participating in light-driven reactions and causing various cardiopulmonary diseases. In this study, four PAHs ranging from three to five rings (anthracene, phenanthrene, pyrene, and benzo[e]pyrene) were investigated for EPFR formation upon photochemical and aqueous-phase aging. Through electron paramagnetic resonance (EPR) spectroscopy, it was found that approximately 1015 to 1016 spins g-1 of EPFRs were formed from the PAH upon aging. EPR analysis also revealed that carbon-centered and monooxygen-centered radicals were predominantly formed by irradiation. However, oxidation and fused-ring matrices have added complexity to the chemical environment of these carbon-centered radicals, as observed by their g-values. This study showed that atmospheric aging results not only in the transformation of PAH-derived EPFR but also in an increase in EPFR concentrations of up to 1017 spins g-1. Therefore, because of their stability and photosensitivity, PAH-derived EPFRs have a major impact on the environment.
Collapse
Affiliation(s)
- Desiree J Sarmiento
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Brian J Majestic
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
22
|
Liu J, Li B, Deng H, Yang Y, Song W, Wang X, Luo Y, Francisco JS, Li L, Gligorovski S. Resolving the Formation Mechanism of HONO via Ammonia-Promoted Photosensitized Conversion of Monomeric NO 2 on Urban Glass Surfaces. J Am Chem Soc 2023; 145:11488-11493. [PMID: 37196053 DOI: 10.1021/jacs.3c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Understanding the formation processes of nitrous acid (HONO) is crucial due to its role as a primary source of hydroxyl radicals (OH) in the urban atmosphere and its involvement in haze events. In this study, we propose a new pathway for HONO formation via the UVA-light-promoted photosensitized conversion of nitrogen dioxide (NO2) in the presence of ammonia (NH3) and polycyclic aromatic hydrocarbons (PAHs, common compounds in urban grime). This new mechanism differs from the traditional mechanism, as it does not require the formation of the NO2 dimer. Instead, the enhanced electronic interaction between the UVA-light excited triplet state of PAHs and NO2-H2O/NO2-NH3-H2O significantly reduces the energy barrier and facilitates the exothermic formation of HONO from monomeric NO2. Furthermore, the performed experiments confirmed our theoretical findings and revealed that the synergistic effect from light-excited PAHs and NH3 boosts the HONO formation with determined HONO fluxes of 3.6 × 1010 molecules cm-2 s-1 at 60% relative humidity (RH) higher than any previously reported HONO fluxes. Intriguingly, light-induced NO2 to HONO conversion yield on authentic urban grime in presence of NH3 is unprecedented 130% at 60% RH due to the role of NH3 acting as a hydrogen carrier, facilitating the transfer of hydrogen from H2O to NO2. These results show that NH3-assisted UVA-light-induced NO2 to HONO conversion on urban surfaces can be a dominant source of HONO in the metropolitan area.
Collapse
Affiliation(s)
- Jiangping Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bai Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, China
- Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Joseph S Francisco
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lei Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
23
|
Wei J, Huang XF, Peng Y, Lin XY, Lei ZH, Cao LM, Zhu WF, Guo S, He LY. Evolution characteristic of atmospheric black carbon particles at a coastal site in the Pearl River Delta, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121380. [PMID: 36863439 DOI: 10.1016/j.envpol.2023.121380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The mixing of black carbon (BC) with secondary materials is a major uncertainty source in assessing its radiative forcing. However, current understanding of the formation and evolution of various BC components is limited, particularly in the Pearl River Delta, China. This study measured submicron BC-associated nonrefractory materials and the total submicron nonrefractory materials using a soot particle aerosol mass spectrometer and a high-resolution time-of-flight aerosol mass spectrometer, respectively, at a coastal site in Shenzhen, China. Two distinct atmospheric conditions were also identified to further explore the distinctive evolution of BC-associated components: polluted period (PP) and clean period (CP). Comparing the components of two particles, we found that more-oxidized organic factor (MO-OOA) prefers to form on BC during PP rather CP. The formation of MO-OOA on BC (MO-OOABC) was affected by both enhanced photochemical processes and nocturnal heterogeneous processes. Enhanced photo-reactivity of BC, photochemistry during the daytime, and heterogeneous reaction at nighttime were potential pathways for MO-OOABC formation during PP. The fresh BC surface was favorable for the formation of MO-OOABC. Our study shows the evolution of BC-associated components under different atmospheric conditions, which should be considered in regional climate models to improve the assessment of the climate effects of BC.
Collapse
Affiliation(s)
- Jing Wei
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiao-Feng Huang
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Yan Peng
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiao-Yu Lin
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhen-Hua Lei
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Li-Ming Cao
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wen-Fei Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ling-Yan He
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
24
|
Ding X, Huang C, Liu W, Ma D, Lou S, Li Q, Chen J, Yang H, Xue C, Cheng Y, Su H. Direct Observation of HONO Emissions from Real-World Residential Natural Gas Heating in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4751-4762. [PMID: 36919886 DOI: 10.1021/acs.est.2c09386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Atmospheric nitrous acid (HONO) is an important precursor of atmospheric hydroxyl radicals. Vehicle emissions and heterogeneous reactions have been identified as major sources of urban HONO. Here, we report on HONO emissions from residential natural gas (RNG) for water and space heating in urban areas based on in situ measurements. The observed HONO emission factors (EFs) of RNG heating vary between 6.03 and 608 mg·m-3 NG, which are highly dependent on the thermal load. The highest HONO EFs are observed at a high thermal load via the thermal NO homogeneous reaction. The average HONO EFs of RNG water heating in winter are 1.8 times higher than that in summer due to the increased thermal load caused by the lower inlet water temperatures in winter. The power-based HONO EFs of the traditional RNG heaters are 1085 times and 1.7 times higher than those of gasoline and diesel vehicles that meet the latest emission standards, respectively. It is estimated that the HONO emissions from RNG heaters in a typical Chinese city are gradually close to emissions from on-road vehicles when temperatures decline. These findings highlight that RNG heating is a non-negligible source of urban HONO emissions in China. With the continuous acceleration of coal-to-gas projects and the continuous tightening of NOx emission standards for vehicle exhaust, HONO emissions from RNG heaters will become more prominent in urban areas. Hence, it is urgently needed to upgrade traditional RNG heaters with efficient emission reduction technologies such as frequency-converted blowers, secondary condensers, and low-NOx combustors.
Collapse
Affiliation(s)
- Xiang Ding
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Wenyang Liu
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dongxiang Ma
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Jun Chen
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huinan Yang
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chaoyang Xue
- Laboratoire de Physique et Chimie del'Environnement et de l'Espace (LPC2E), CNRS-Université Orléans-CNES, Orléans, Cedex 245071, France
| | - Yafang Cheng
- Minerva Research Group, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Hang Su
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| |
Collapse
|
25
|
Zhao X, Zhao X, Liu P, Chen D, Zhang C, Xue C, Liu J, Xu J, Mu Y. Transport Pathways of Nitrate Formed from Nocturnal N 2O 5 Hydrolysis Aloft to the Ground Level in Winter North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2715-2725. [PMID: 36722840 DOI: 10.1021/acs.est.3c00086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Particulate nitrate (NO3-) has currently become the major component of fine particles in the North China Plain (NCP) during winter haze episodes. However, the contributions of formation pathways to ground NO3- in the NCP are not fully understood. Herein, the NO3- formation pathways were comprehensively investigated based on model simulations combined with two-month field measurements at a rural site in the winter NCP. The results indicated that the nocturnal chemistry of N2O5 hydrolysis aloft could contribute evidently to ground NO3- at the rural site during the pollution episodes with high aerosol water contents, achieving the contribution percentages of 25.2-30.4% of the total. In addition to the commonly proposed vertical mixing of breaking nocturnal boundary layer in the early morning, two additional transport pathways (frontal downdrafts and downslope mountain breezes) in the nighttime were found to make higher contributions to ground NO3-. Considering the dominant role (69.6-74.8%) of diurnal chemistry in NO3- formation, reduction of NOx emissions in the daytime may be an effective control measure for reducing regional NO3- in the NCP.
Collapse
Affiliation(s)
- Xiaoxi Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing100089, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiujuan Zhao
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing100089, China
| | - Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Dan Chen
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing100089, China
| | - Chenglong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Chaoyang Xue
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS-Université Orléans-CNES, CEDEX 2, Orléans45071, France
| | - Junfeng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jing Xu
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing100089, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
26
|
Xuan H, Zhao Y, Ma Q, Chen T, Liu J, Wang Y, Liu C, Wang Y, Liu Y, Mu Y, He H. Formation mechanisms and atmospheric implications of summertime nitrous acid (HONO) during clean, ozone pollution and double high-level PM 2.5 and O 3 pollution periods in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159538. [PMID: 36270355 DOI: 10.1016/j.scitotenv.2022.159538] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Nitrous acid (HONO) is a key precursor of the hydroxyl radicals (OH) and has a significant impact on air quality. Nowadays, the source of HONO is still controversial due to its complex formation mechanisms, which is widely explored in extensive field and laboratory studies. In this study, the pollution characteristics and source contribution of HONO under different air quality conditions in summer in Beijing were analyzed. The observation periods were classified as three typical periods: clean, ozone pollution, and double high pollution (co-occurrence of high PM2.5 and O3 concentrations). The average concentrations of observed HONO were 0.38 ± 0.35 ppb, 0.21 ± 0.18 ppb, 0.26 ± 0.20 ppb and 0.54 ± 0.45 ppb during the whole, clean, ozone and double high periods, respectively. The elevated HONO levels at night were attributed to vehicle emissions and the RH-dependent heterogeneous conversion of NO2 to HONO. The average emission ratio (HONO/NOx) was 0.85 % ± 0.38 %, and the mean value of calculated nocturnal NO2 to HONO conversion frequency was 0.0076 ± 0.0031 h-1. Based on daytime HONO budget analysis, the largest potential source of HONO was the homogeneous reaction of NO and OH (0.33 and 0.34 ppb h-1), followed by the unknown source (0.11 and 0.21 ppb h-1) during clean and ozone periods, while the unknown source (0.49 ppb h-1) played the predominant role during double high period. The unknown sources of HONO could be attributed to the photo-enhanced heterogeneous conversion of NO2 and the photolysis of particulate nitrate. Furthermore, the photolysis of ozone (0.17, 0.34 and 0.44 ppb h-1) was the major contributor to primary OH during three typical periods. HONO photolysis contributed considerable amounts of primary OH (0.32 ppb h-1) during double high period. These results are helpful to further understand the linkage between HONO and air quality variation.
Collapse
Affiliation(s)
- Huiying Xuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chang Liu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Yafei Wang
- Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
27
|
Yang D, Liu Q, Wang S, Bozorg M, Liu J, Nair P, Balaguer P, Song D, Krause H, Ouazia B, Abbatt JPD, Peng H. Widespread formation of toxic nitrated bisphenols indoors by heterogeneous reactions with HONO. SCIENCE ADVANCES 2022; 8:eabq7023. [PMID: 36459560 PMCID: PMC10936053 DOI: 10.1126/sciadv.abq7023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
With numerous structurally diverse indoor contaminants, indoor transformation chemistry has been largely unexplored. Here, by integrating protein affinity purification and nontargeted mass spectrometry analysis (PUCA), we identified a substantial class of previously unrecognized indoor transformation products formed through gas-surface reactions with nitrous acid (HONO). Through the PUCA, we identified a noncommercial compound, nitrated bisphenol A (BPA), from house dust extracts strongly binding to estrogen-related receptor γ. The compound was detected in 28 of 31 house dust samples with comparable concentrations (ND to 0.30 μg/g) to BPA. Via exposing gaseous HONO to surface-bound BPA, we demonstrated it likely forms via a heterogeneous indoor chemical transformation that is highly selective toward bisphenols with electron-rich aromatic rings. We used 15N-nitrite for in situ labeling and found 110 nitration products formed from indoor contaminants with distinct aromatic moieties. This study demonstrates a previously unidentified class of chemical reactions involving indoor HONO, which should be incorporated into the risk evaluation of indoor contaminants, particularly bisphenols.
Collapse
Affiliation(s)
- Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Qifan Liu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Sizhi Wang
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Matin Bozorg
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jiabao Liu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Pranav Nair
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Patrick Balaguer
- IRCM, INSERM U1194, Université de Montpellier, ICM, Montpellier, France
| | - Datong Song
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Henry Krause
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | | | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Song Y, Zhang Y, Xue C, Liu P, He X, Li X, Mu Y. The seasonal variations and potential sources of nitrous acid (HONO) in the rural North China Plain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119967. [PMID: 35981642 DOI: 10.1016/j.envpol.2022.119967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Nitrous acid (HONO), an essential precursor of hydroxyl radicals (OH) in the troposphere, plays an integral role in atmospheric photochemistry. However, potential HONO sources remain unclear, particularly in rural areas, where long-term (including seasonal) measurements are scarce. HONO and related parameters were measured at a rural site in the North China Plain (NCP) during the winter of 2017 and summer and autumn of 2020. The mean HONO level was higher in winter (1.79 ± 1.44 ppbv) than in summer (0.67 ± 0.50 ppbv) and autumn (0.83 ± 0.62 ppbv). Source analysis revealed that the heterogeneous conversion (including photo-enhanced conversion) of NO2 on the ground surface dominated the daytime HONO production in the three seasons (43.1% in winter, 54.3% in summer, and 62.0% in autumn), and the homogeneous reaction of NO and OH contributed 37.8, 12.2, and 28.4% of the daytime HONO production during winter, summer, and autumn, respectively. In addition, the total contributions of other sources (direct vehicle emissions, particulate nitrate photolysis, NO2 uptake and its photo-enhanced reaction on the aerosol surface) to daytime HONO production were less than 5% in summer and autumn and 12.0% in winter. Unlike winter and autumn, an additional HONO source was found in summer (0.45 ± 0.21 ppbv h-1, 31.4% to the daytime HONO formation), which might be attributed to the HONO emission from the fertilized field. Among the primary radical sources (photolysis of HONO, O3, and formaldehyde), HONO photolysis was dominant, with contributions of 82.6, 49.3, and 63.2% in winter, summer, and autumn, respectively. Our findings may aid in understanding HONO formation in different seasons in rural areas and may highlight the impact of HONO on atmospheric oxidation capacity.
Collapse
Affiliation(s)
- Yifei Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoyang Xue
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS-Université Orléans-CNES, CEDEX 2, Orléans, 45071, France
| | - Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuran Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
Zhang P, Chen T, Ma Q, Chu B, Wang Y, Mu Y, Yu Y, He H. Diesel soot photooxidation enhances the heterogeneous formation of H 2SO 4. Nat Commun 2022; 13:5364. [PMID: 36097270 PMCID: PMC9467980 DOI: 10.1038/s41467-022-33120-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Both field observation and experimental simulation have implied that black carbon or soot plays a remarkable role in the catalytic oxidation of SO2 for the formation of atmospheric sulfate. However, the catalytic mechanism remains ambiguous, especially that under light irradiation. Here we systematically investigate the heterogeneous conversion of SO2 on diesel soot or black carbon (DBC) under light irradiation. The experimental results show that the presence of DBC under light irradiation can significantly promote the heterogeneous conversion of SO2 to H2SO4, mainly through the heterogeneous reaction between SO2 and photo-induced OH radicals. The detected photo-chemical behaviors on DBC suggest that OH radical formation is closely related to the abstraction and transfer of electrons in DBC and the formation of reactive superoxide radical (•O2−) as an intermediate. Our results extend the known sources of atmospheric H2SO4 and provide insight into the internal photochemical oxidation mechanism of SO2 on DBC. Potential source of H2SO4 remains unclear in the atmosphere. This work first demonstrates that the formation of photoinduced •OH radical can directly promote the heterogeneous conversion of SO2 to H2SO4 on real diesel soot under light irradiation, extending the known sources of atmospheric H2SO4.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China.
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China.
| |
Collapse
|
30
|
Zhu J, Sheng M, Shang J, Kuang Y, Shi X, Qiu X. Photocatalytic Role of Atmospheric Soot Particles under Visible-Light Irradiation: Reactive Oxygen Species Generation, Self-Oxidation Process, and Induced Higher Oxidative Potential and Cytotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7668-7678. [PMID: 35537182 DOI: 10.1021/acs.est.2c00420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is known that there are semiconductor oxides involved in mineral dust, which have photocatalytic properties. However, soot particles contained in carbonaceous aerosol and their photoactivity under sunlight are rarely realized. In this study, reactive oxygen species (ROS) such as superoxide anions and hydroxyl radicals were generated upon visible-light irradiation of soot particles, and the production activity was consistent with the carbonaceous core content, indicating that the atmospheric soot particles can serve as a potential photocatalyst. The increase of oxygen-containing functional groups, environmentally persistent free radicals, oxygenated polycyclic aromatic hydrocarbons, and the oxidative potential (OP) of soot after irradiation confirmed the occurrence of visible-light-triggered photocatalytic oxidation of the soot itself. The mechanism analyses suggested that the carbonaceous core caused the production of ROS, which subsequently oxidize the extractable organic species on the soot surface. It is oxidized organic extracts that are responsible for the enhancements of the OP, cell mortality, and intracellular ROS generation. These new findings shed light on both the photocatalytic role of the soot and the importance of ROS during the photochemical self-oxidation of soot triggered by visible light and will promote a more comprehensive understanding of both the atmospheric chemical behavior and health effects of soot particles.
Collapse
Affiliation(s)
- Jiali Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Mengshuang Sheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Yu Kuang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Xiaodi Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Xinghua Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| |
Collapse
|
31
|
He G, Ma J, Chu B, Hu R, Li H, Gao M, Liu Y, Wang Y, Ma Q, Xie P, Zhang G, Zeng XC, Francisco JS, He H. Generation and Release of OH Radicals from the Reaction of H
2
O with O
2
over Soot. Angew Chem Int Ed Engl 2022; 61:e202201638. [DOI: 10.1002/anie.202201638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control Research Center for Eco-environmental Sciences Chinese Academy of Sciences Beijing 100085 China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control Research Center for Eco-environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- Center for Excellence in Regional Atmospheric Environment Institute of Urban Environment Chinese Academy of Sciences Xiamen 361021 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control Research Center for Eco-environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- Center for Excellence in Regional Atmospheric Environment Institute of Urban Environment Chinese Academy of Sciences Xiamen 361021 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Renzhi Hu
- State Key Laboratory of Environmental Optics and Technology Anhui Institute of Optics and Fine Mechanics Chinese Academy of Sciences Hefei 230031 China
| | - Hao Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control Research Center for Eco-environmental Sciences Chinese Academy of Sciences Beijing 100085 China
| | - Meng Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control Research Center for Eco-environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control Research Center for Eco-environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control Research Center for Eco-environmental Sciences Chinese Academy of Sciences Beijing 100085 China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control Research Center for Eco-environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- Center for Excellence in Regional Atmospheric Environment Institute of Urban Environment Chinese Academy of Sciences Xiamen 361021 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pinhua Xie
- Center for Excellence in Regional Atmospheric Environment Institute of Urban Environment Chinese Academy of Sciences Xiamen 361021 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory of Environmental Optics and Technology Anhui Institute of Optics and Fine Mechanics Chinese Academy of Sciences Hefei 230031 China
| | - Guoxian Zhang
- State Key Laboratory of Environmental Optics and Technology Anhui Institute of Optics and Fine Mechanics Chinese Academy of Sciences Hefei 230031 China
| | - Xiao Cheng Zeng
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Joseph S. Francisco
- Department of Earth and Environmental Science and Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control Research Center for Eco-environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- Center for Excellence in Regional Atmospheric Environment Institute of Urban Environment Chinese Academy of Sciences Xiamen 361021 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
32
|
Liu Y, Chan CK. The oxidative potential of fresh and aged elemental carbon-containing airborne particles: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:525-546. [PMID: 35333266 DOI: 10.1039/d1em00497b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Elemental carbon is often found in ambient particulate matter (PM), and it contributes to the PM's oxidative potential (OP) and thus poses great health concerns. Previous review articles mainly focused on the methodologies in evaluating OP in PM and its relationship with selected chemical constituents, including metal ions, PAHs, and inorganic species. In recent years, growing attention has been paid to the effect of atmospheric aging processes on the OP of EC-containing airborne particles (ECCAPs). This review investigates more than 150 studies concerning the OP measurements and physico-chemical properties of both fresh and aged ECCAPs such as laboratory-generated elemental carbon (LGEC), carbon black (CB), soot (black carbon), and engineered carbon-containing nanomaterials (ECCBNs). Specifically, we summarize the characteristics of water-soluble and insoluble organic species, PAHs, quinone, and oxygen-containing functional groups (OFGs), and EC crystallinity. Both water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WIOC) contribute to the OP. Low molecular weight (MW) PAHs show a higher correlation with OP than high MW PAHs. Furthermore, oxidative aging processes introduce OFGs, where quinone (CO) and epoxide (O-C-O) increase the OP of ECCAPs. In contrast, carboxyl (-COOH) and hydroxyl (-OH) slightly change the OP. The low crystallinity of EC favors the oxygen addition and forms active OFG quinone, thus increasing the OP. More detailed analyses for the EC microstructures and the organic coatings are needed to predict the OP of ECCAPs.
Collapse
Affiliation(s)
- Yangyang Liu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
33
|
Lian C, Wang W, Chen Y, Zhang Y, Zhang J, Liu Y, Fan X, Li C, Zhan J, Lin Z, Hua C, Zhang W, Liu M, Li J, Wang X, An J, Ge M. Long-term winter observation of nitrous acid in the urban area of Beijing. J Environ Sci (China) 2022; 114:334-342. [PMID: 35459496 DOI: 10.1016/j.jes.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 06/14/2023]
Abstract
The particulate matter (PM) pollution has been significantly improved by carrying out various valid emission control strategies since 2013 in China. Meanwhile the variation trend of nitrous acid (HONO) is worthy to investigate due to its vital role in the atmospheric oxidation process. In this study, field observation in the winter is conducted to investigate the concentration of HONO in an urban area of Beijing. In the winter of 2019, the mean HONO concentration is 1.38 ppbV during the whole winter. Photo-enhanced NO2 heterogeneous reactions on the ground and aerosol surfaces were found as the possible daytime sources of HONO. Compared to O3, photolysis of HONO dominates the primary OH sources during the winter time. To understand the HONO pollution patterns by years variation, multi-year data is summarized and finds that primary pollutants including CO and NO decreased, but secondary pollutants i.e., HONO (mostly generated via secondary process) increased. Our study highlights the requirement to mitigate secondary pollution by control HONO concentration.
Collapse
Affiliation(s)
- Chaofan Lian
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Yan Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yusheng Zhang
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingwei Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiaolong Fan
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chang Li
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junlei Zhan
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhuohui Lin
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chenjie Hua
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenyu Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyuan Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuefei Wang
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
34
|
He G, Ma J, Chu B, Hu R, Li H, Gao M, Liu Y, Wang Y, Ma Q, Xie P, Zhang G, Zeng XC, Francisco JS, He H. Generation and release of OH radicals from the reaction of H2O with O2 over soot. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guangzhi He
- Chinese Academy of Sciences Research Center for Eco-Environmental Sciences CHINA
| | - Jinzhu Ma
- Chinese Academy of Sciences Research Center for Eco-Environmental Sciences CHINA
| | - Biwu Chu
- Chinese Academy of Sciences Research Center for Eco-Environmental Sciences CHINA
| | - Renzhi Hu
- Chinese Academy of Sciences Anhui Institute of Optics and Fine Mechanics CHINA
| | - Hao Li
- Chinese Academy of Sciences Research Center for Eco-Environmental Sciences CHINA
| | - Meng Gao
- Chinese Academy of Sciences Research Center for Eco-Environmental Sciences CHINA
| | - Yuan Liu
- Chinese Academy of Sciences Research Center for Eco-Environmental Sciences CHINA
| | - Yonghong Wang
- Chinese Academy of Sciences Research Center for Eco-Environmental Sciences CHINA
| | - Qingxin Ma
- Chinese Academy of Sciences Research Center for Eco-Environmental Sciences CHINA
| | - Pinhua Xie
- Chinese Academy of Sciences Anhui Institute of Optics and Fine Mechanics CHINA
| | - Guoxian Zhang
- Chinese Academy of Sciences State Key Laboratory of Environmental Optics and Technology CHINA
| | - Xiao Cheng Zeng
- UNL: University of Nebraska-Lincoln Department of Chemistry UNITED STATES
| | - Joseph S. Francisco
- University of Pennsylvania Department of Earth and Environmental Science and Department of Chemistry 251 Hayden Hall240 South 33rd Street 19104-6316 Philadelphia UNITED STATES
| | - Hong He
- Chinese Academy of Sciences Research Center for Eco-Environmental Sciences CHINA
| |
Collapse
|
35
|
Prabhu V, Singh P, Kulkarni P, Sreekanth V. Characteristics and health risk assessment of fine particulate matter and surface ozone: results from Bengaluru, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:211. [PMID: 35195799 PMCID: PMC8863905 DOI: 10.1007/s10661-022-09852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Urban air pollution is a complex problem, which requires a multi-pronged approach to understand its dynamics. In the current study, various aspects of air pollution over Bengaluru city were studied utilizing simultaneous reference-grade measurements (during the period July 2019 to June 2020) of fine particulate matter mass concentration (PM2.5), aerosol black carbon mass concentrations (BC), and surface ozone (O3) concentrations. The study period mean PM2.5, BC, and O3 were observed to be 26.8 ± 11.5 µg m-3, 5.6 ± 2.8 µg m-3, and 25.5 ± 12.4 ppb, respectively. Statistical methods such as principal component analysis, moving average subtraction method, conditional bivariate probability function, and concentration weighted trajectory analysis were performed to understand the dynamics of air pollution over Bengaluru and its long-range transportation pathways. Some of the major findings from the statistical analyses include (i) contrasting association in BC versus O3 and PM2.5 versus O3; (ii) around one-fourth of the observed receptor site BC was contributed by local sources/emissions; and (iii) the source locations potentially contributing to BC and PM2.5 were spatially different. In Bengaluru, long-term exposure to PM2.5 resulted in around 3413, 3393, 1016, and 147 attributable deaths for the health endpoints chronic obstructive pulmonary disorder, ischemic heart disease, stroke, and lung cancer, respectively. Long-term exposure to O3 resulted in around 155 attributable deaths for respiratory diseases, as estimated by the AirQ + model. Finally, the limitations of the study in terms of data availability and analysis have been detailed.
Collapse
Affiliation(s)
- Vignesh Prabhu
- Center for Study of Science, Technology and Policy, Bengaluru, 560094 India
| | - Pratima Singh
- Center for Study of Science, Technology and Policy, Bengaluru, 560094 India
| | - Padmavati Kulkarni
- Center for Study of Science, Technology and Policy, Bengaluru, 560094 India
| | - V. Sreekanth
- Center for Study of Science, Technology and Policy, Bengaluru, 560094 India
| |
Collapse
|
36
|
Effect of Diesel Soot on the Heterogeneous Reaction of NO2 on the Surface of γ-Al2O3. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Soot and aged soot are often found to be mixed with atmospheric particles, which inevitably affect various atmospheric heterogeneous reactions and secondary aerosol formation. Previous studies have investigated the heterogeneous reaction of NO2 with different types of soot, but there are few studies on the heterogeneous reaction of NO2 with mixtures containing diesel soot (DS) or aged DS and mineral dust particles. In this study, the effects of DS and aged DS on the heterogeneous reaction of NO2 on the surface of γ-Al2O3 were investigated via in-situ diffuse reflectance infrared Fourier transform spectrometry (DRIFTS). The results showed that the DS or DS n-hexane extract significantly inhibited the formation of nitrate on γ-Al2O3 particles and promoted the formation of nitrite. At 58% RH, with the increase of DS or DS n-hexane extract loading amount, the effect of DS or DS n-hexane extract on the formation of nitrate changed from promotion to inhibition, but DS or DS n-hexane extract always promoted the formation of nitrite. The results also showed that light was conducive to the formation of nitrate on the DS-γ-Al2O3 or DS-n-hexane extract-γ-Al2O3 particles. Furthermore, the influence of soot aging on the heterogeneous reaction of NO2 was investigated under light and no light. In the dark, O3-aged DS-γ-Al2O3 or O3-aged DS-n-hexane extract-γ-Al2O3 firstly inhibited the formation of nitrate on the mixed particles and then promoted it, while the effect of aged DS on nitrite formation was complex. Under light, the O3-aged DS-γ-Al2O3 firstly promoted the formation of nitrate on the mixed particles and then inhibited it, while the O3-aged DS-n-hexane extract-γ-Al2O3 promoted the formation of nitrate on the mixed particles. Our results further showed that the production of nitrate on the O3-aged particles under light or no light was greater than that of the UV-nitrate-aged particles. This study is helpful to deeply understand the atmospheric chemical behavior of soot and the heterogeneous conversion of atmospheric NO2.
Collapse
|
37
|
Bao F, Cheng Y, Kuhn U, Li G, Wang W, Kratz AM, Weber J, Weber B, Pöschl U, Su H. Key Role of Equilibrium HONO Concentration over Soil in Quantifying Soil-Atmosphere HONO Fluxes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2204-2212. [PMID: 35104400 PMCID: PMC8851686 DOI: 10.1021/acs.est.1c06716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Nitrous acid (HONO) is an important component of the global nitrogen cycle and can regulate the atmospheric oxidative capacity. Soil is an important source of HONO. [HONO]*, the equilibrium gas-phase concentration over the aqueous solution of nitrous acid in the soil, has been suggested as a key parameter for quantifying soil fluxes of HONO. However, [HONO]* has not yet been well-validated and quantified. Here, we present a method to retrieve [HONO]* by conducting controlled dynamic chamber experiments with soil samples applied with different HONO concentrations at the chamber inlet. We show a bi-directional soil-atmosphere exchange of HONO and confirm the existence of [HONO]* over soil: when [HONO]* is higher than the atmospheric HONO concentration, HONO will be released from soil; otherwise, HONO will be deposited. We demonstrate that [HONO]* is a soil characteristic, which is independent of HONO concentrations in the chamber but varies with different soil water contents. We illustrate the robustness of using [HONO]* for quantifying soil fluxes of HONO, whereas the laboratory-determined chamber HONO fluxes can largely deviate from those in the real world for the same soil sample. This work advances the understanding of the soil-atmosphere exchange of HONO and the evaluation of its impact on the atmospheric oxidizing capacity.
Collapse
Affiliation(s)
- Fengxia Bao
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Yafang Cheng
- Department
of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
- Minerva
Research Group, Max Planck Institute for
Chemistry, Mainz 55128, Germany
| | - Uwe Kuhn
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Guo Li
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Wenjie Wang
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Alexandra Maria Kratz
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Jens Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
- Institute
of Biology, University of Graz, Graz 8010, Austria
| | - Bettina Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
- Institute
of Biology, University of Graz, Graz 8010, Austria
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Hang Su
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| |
Collapse
|
38
|
Zhang J, Ran H, Guo Y, Xue C, Liu X, Qu Y, Sun Y, Zhang Q, Mu Y, Chen Y, Wang J, An J. High crop yield losses induced by potential HONO sources - A modelling study in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149929. [PMID: 34478900 DOI: 10.1016/j.scitotenv.2021.149929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Nitrous acid (HONO) is a major source of hydroxyl radicals in the troposphere through its photolysis, and can significantly influence ozone (O3) levels, thereby causing considerable crop yield losses. Previous studies have assessed relative crop yield losses by using exposure-response equations with observed or simulated O3, however, the contribution of enhanced O3 due to potential HONO sources to the crop yield losses has never been quantified. In this study, for the first time, we evaluated the crop yield losses caused by potential HONO sources in the North China Plain (NCP), which is one of the major grain-producing areas in China suffering from heavy O3 pollution, by using the Weather Research and Forecasting/Chemistry (WRF-Chem) model during the wheat and maize growing seasons of 2016. HONO simulations were significantly improved after including six potential HONO sources in the WRF-Chem model. The potential HONO sources produced a daily maximum 8-h O3 enhancement of 8.1/8.2 ppb during the wheat/maize growing seasons, respectively, and led to ~11.4%/3.3% relative yield losses for wheat/maize, respectively, corresponding to approximately US$3.78/0.66 billion losses, respectively, in NCP in 2016. The above results suggest that potential HONO sources play a significant role in O3 formation and could induce high crop yield losses globally.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Haiyan Ran
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yitian Guo
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoyang Xue
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Yujing Mu
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yong Chen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Jing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
39
|
Wang Y, Huang DD, Huang W, Liu B, Chen Q, Huang R, Gen M, Go BR, Chan CK, Li X, Hao T, Tan Y, Hoi KI, Mok KM, Li YJ. Enhanced Nitrite Production from the Aqueous Photolysis of Nitrate in the Presence of Vanillic Acid and Implications for the Roles of Light-Absorbing Organics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15694-15704. [PMID: 34784716 DOI: 10.1021/acs.est.1c04642] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A prominent source of hydroxyl radicals (•OH), nitrous acid (HONO) plays a key role in tropospheric chemistry. Apart from direct emission, HONO (or its conjugate base nitrite, NO2-) can be formed secondarily in the atmosphere. Yet, how secondary HONO forms requires elucidation, especially for heterogeneous processes involving numerous organic compounds in atmospheric aerosols. We investigated nitrite production from aqueous photolysis of nitrate for a range of conditions (pH, organic compound, nitrate concentration, and cation). Upon adding small oxygenates such as ethanol, n-butanol, or formate as •OH scavengers, the average intrinsic quantum yield of nitrite [Φ(NO2-)] was 0.75 ± 0.15%. With near-UV-light-absorbing vanillic acid (VA), however, the effective Φ(NO2-) was strongly pH-dependent, reaching 8.0 ± 2.1% at a pH of 8 and 1.5 ± 0.39% at a more atmospherically relevant pH of 5. Our results suggest that brown carbon (BrC) may greatly enhance the nitrite production from the aqueous nitrate photolysis through photosensitizing reactions, where the triplet excited state of BrC may generate solvated electrons, which reduce nitrate to NO2 for further conversion to nitrite. This photosensitization process by BrC chromophores during nitrate photolysis under mildly acidic conditions may partly explain the missing HONO in urban environments.
Collapse
Affiliation(s)
- Yalin Wang
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Dan Dan Huang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Wanyi Huang
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Ben Liu
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Qi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Rujin Huang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Masao Gen
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Brix Raphael Go
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Yunkai Tan
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Ka In Hoi
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Kai Meng Mok
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Yong Jie Li
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China
| |
Collapse
|
40
|
Zhang S, Sarwar G, Xing J, Chu B, Xue C, Sarav A, Ding D, Zheng H, Mu Y, Duan F, Ma T, He H. Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China. ATMOSPHERIC CHEMISTRY AND PHYSICS 2021; 21:15809-15826. [PMID: 34804135 PMCID: PMC8597575 DOI: 10.5194/acp-21-15809-2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We compare Community Multiscale Air Quality (CMAQ) model predictions with measured nitrous acid (HONO) concentrations in Beijing, China for December 2015. The model with the existing HONO chemistry in CMAQ severely under-estimates the observed HONO concentrations with a normalized mean bias of -97%. We revise the HONO chemistry in the model by implementing six additional heterogeneous reactions in the model: reaction of nitrogen dioxide (NO2) on ground surfaces, reaction of NO2 on aerosol surfaces, reaction of NO2 on soot surfaces, photolysis of aerosol nitrate, nitric acid displacement reaction, and hydrochloric acid displacement reaction. The model with the revised chemistry substantially increases HONO predictions and improves the comparison with observed data with a normalized mean bias of -5%. The photolysis of HONO enhances day-time hydroxyl radical by almost a factor of two. The enhanced hydroxyl radical concentrations compare favourably with observed data and produce additional sulfate via the reaction with sulfur dioxide, aerosol nitrate via the reaction with nitrogen dioxide, and secondary organic aerosols via the reactions with volatile organic compounds. The additional sulfate stemming from revised HONO chemistry improves the comparison with observed concentration; however, it does not close the gap between model prediction and the observation during polluted days.
Collapse
Affiliation(s)
- Shuping Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Golam Sarwar
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Jia Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chaoyang Xue
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Arunachalam Sarav
- Institute for the Environment, The University of North Carolina at Chapel Hill, 100 Eurpoa Drive, Chapel Hill, NC 27514, USA
| | - Dian Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Haotian Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
41
|
Huang Q, He X, Huang W, Reinfelder JR. Mass-Independent Fractionation of Mercury Isotopes during Photoreduction of Soot Particle Bound Hg(II). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13783-13791. [PMID: 34623141 DOI: 10.1021/acs.est.1c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Soot and mercury (Hg) are two notorious air pollutants, and the fate and transport of Hg may be affected by soot at various scales in the environment as soot may be both a carrier and a reactant for active Hg species. This study was designed to quantify photoreduction of Hg(II) in the presence of soot and the associated Hg isotope fractionation under both atmospheric aerosol and aqueous conditions (water-saturated). Photoreduction experiments were conducted with diesel soot particulate matter under controlled temperature and relative humidity (RH) conditions using a flow-through semibatch reactor system. Mass-dependent fractionation resulted in the enrichment of heavier Hg isotopes in the remaining Hg(II) with enrichment factors (ε202Hg) of 1.48 ± 0.02‰ (±2 standard deviation) to 1.75 ± 0.05‰ for aerosol-phase reactions (RH 28-68%) and from 1.26 ± 0.11 to 1.50 ± 0.04‰ for aqueous-phase reactions. Positive odd mass-independent fractionation (MIF) was observed in aqueous-phase reactions, resulting in Δ199Hg values for reactant Hg(II) as high as 5.29‰, but negative odd-MIF occurred in aerosol-phase reactions, in which Δ199Hg values of reactant Hg(II) varied from -1.02 to 0‰. The average ratio of Δ199Hg/Δ201Hg (1.1) indicated that under all conditions, MIF was dominated by magnetic isotope effects during photoreduction of Hg(II). Increasing RH resulted in higher reduction rates but lower extents of negative MIF in the aerosol-phase experiments, suggesting that the reduction of soot particle-bound Hg(II) was responsible for the observed negative odd-MIF. Our results suggest that mass-independent Hg isotope fractionation during Hg(II) photoreduction varies with soot aerosol water content and that Hg-stable isotope ratios may be used to understand the transformational histories of aerosol-bound Hg(II) in the environment.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
- Department of Environmental Sciences, Rutgers University, New Brunswick 08901, New Jersey, United States
| | - Xiaoshuai He
- Department of Environmental Sciences, Rutgers University, New Brunswick 08901, New Jersey, United States
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers University, New Brunswick 08901, New Jersey, United States
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick 08901, New Jersey, United States
| |
Collapse
|
42
|
Xia D, Zhang X, Chen J, Tong S, Xie HB, Wang Z, Xu T, Ge M, Allen DT. Heterogeneous Formation of HONO Catalyzed by CO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12215-12222. [PMID: 34323471 DOI: 10.1021/acs.est.1c02706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gas-phase nitrous acid (HONO) is a major precursor of hydroxyl radicals that dominate atmospheric oxidizing capacity. Nevertheless, pathways of HONO formation remain to be explored. This study unveiled an important CO2-catalysis mechanism of HONO formation, using Born-Oppenheimer molecular dynamics simulations and free-energy samplings. In the mechanism, HCO3- formed from CO2 hydrolysis reacts with NO2 dimers to produce HONO at water surfaces, and simultaneously, itself reconverts back to CO2 via intermediates OC(O)ONO- and HOC(O)ONO. A flow system experiment was performed to confirm the new mechanism, which indicated that HONO concentrations with CO2 injections were increased by 29.4-68.5%. The new mechanism can be extended to other humid surfaces. Therefore, this study unveiled a previously overlooked vital role of CO2 that catalyzes formation of HONO and affects atmospheric oxidizing capacity.
Collapse
Affiliation(s)
- Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinran Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - David T Allen
- Center for Energy and Environmental Resources, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
43
|
Lu M, Tang X, Feng Y, Wang Z, Chen X, Kong L, Ji D, Liu Z, Liu K, Wu H, Liang S, Zhou H, Hu K. Nonlinear response of SIA to emission changes and chemical processes over eastern and central China during a heavy haze month. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147747. [PMID: 34034193 DOI: 10.1016/j.scitotenv.2021.147747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
This study used a chemical transport model to investigate the response of secondary inorganic aerosols (SIA) to chemical processes and its precursor emissions over northern and southern city-clusters of China in January 2014. Unexpectedly, SIA concentrations with low levels of precursor emissions were much higher over the southern regions than those over the northern region with high levels of precursor emissions, based on ground observations and high-precision simulations. The sensitivity analysis of chemical processes suggests that the gas-phase chemistry was a critical factor determining the SIA pattern, especially the higher efficiency of nitrogen conversion to nitrate in southern cities controlled by favorable meteorological elements than that in northern city. However, the heterogeneous process led to the decrease of SIA in southern regions by 3% to 36% and the increasing of SIA in NCP by 26.9%, mainly attributing to the impact on nitrate. The reason was that sulfate enhancement by the heterogeneous reactions can compete ammonia (NH3) and the excessive nitric acid converted into nitrogen oxide (NOx), leading to nitrate decrease in southern regions under NH3-deficient regimes. Moreover, through sensitivity experiments of precursor emission reduction by 20%, NH3 control was found to be the most effective for reducing SIA concentrations comparing to sulfur dioxide (SO2) and NOx reduction and a more remarkable decrease of SIA was in southern regions by 10% to 15% than that in northern region by 6.7%. The effect of the synergy control of precursors emission varied in different city-clusters, inferring that the control strategy aimed at improving air quality should be implemented based on specific characteristics of precursors emission in different regions of China.
Collapse
Affiliation(s)
- Miaomiao Lu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU, Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300074, China
| | - Xiao Tang
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU, Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300074, China.
| | - Zifa Wang
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Xueshun Chen
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lei Kong
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongsheng Ji
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zirui Liu
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Kexin Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU, Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300074, China
| | - Huangjian Wu
- Guanghua School of Management, Peking University, Beijing 100871, China
| | - Shengwen Liang
- Wuhan Environmental Monitoring Center, Wuhan 430015, China
| | - Hui Zhou
- Hunan Meteorological Observatory, Changsha 410118, China
| | - Ke Hu
- Wuhan Environmental Monitoring Center, Wuhan 430015, China
| |
Collapse
|
44
|
Cui L, Wang S. Mapping the daily nitrous acid (HONO) concentrations across China during 2006-2017 through ensemble machine-learning algorithm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147325. [PMID: 33957584 DOI: 10.1016/j.scitotenv.2021.147325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Nitrous acid (HONO) is a major source of the hydroxyl radical (OH) and plays a key role in atmospheric photochemistry. The lack of spatially resolved HONO concentration information results in large knowledge gaps of HONO and its role in atmospheric chemistry and air pollution in China. In this work, an ensemble machine learning model comprising of random forest, gradient boosting, and back propagation neural network was proposed, for the first time, to estimate the long-term (2006-2017) daily HONO concentrations across China in 0.25° resolution. Further, the key factors controlling the space-time variablity of HONO concentrations were analyzed based on variable importance values. The ensemble model well characterized the spatiotemporal distribution of daily HONO concentrations with the sampled-based, site-based and by-year cross-validation (CV) R2 (RMSE) of 0.7 (0.36 ppbv), 0.67 (0.36 ppbv), and 0.62 (0.40 ppbv), respectively. HONO hotspots were mainly distributed in the Beijing-Tianjin-Hebei (BTH), Pearl River Delta (PRD), Yangtze River Delta (YRD), and several sites of Sichuan Basin, in line with the distribution patterns of the tropospheric NO2 columns and assimilated surface NO3- levels. The national HONO levels stagnated during 2006-2013, then declined after 2013 benefiting from the implementation of the Action Plan for Air Pollution Prevention and Control. The NO3- concentration, urban area, NO2 column density ranked as important variables for HONO prediction, while agricultral land, forest and grassland played minor roles in affecting HONO concentrations, suggesting the significant role of heterogeneous HONO production from anthropogenic precursor emissions. Leveraging the ground-level HONO observations, this study fills the gap of statistically modelling nationwide HONO in China, which provides essential data for atmospheric chemistry research.
Collapse
Affiliation(s)
- Lulu Cui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.
| |
Collapse
|
45
|
Yu C, Wang Z, Ma Q, Xue L, George C, Wang T. Measurement of heterogeneous uptake of NO 2 on inorganic particles, sea water and urban grime. J Environ Sci (China) 2021; 106:124-135. [PMID: 34210428 DOI: 10.1016/j.jes.2021.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 06/13/2023]
Abstract
Heterogeneous reactions of NO2 on different surfaces play an important role in atmospheric NOx removal and HONO formation, having profound impacts on photochemistry in polluted urban areas. Previous studies have suggested that the NO2 uptake on the ground or aerosol surfaces could be a dominant source for elevated HONO during the daytime. However, the uptake behavior of NO2 varies with different surfaces, and different uptake coefficients were used or derived in different studies. To obtain a more holistic picture of heterogeneous NO2 uptake on different surfaces, a series of laboratory experiments using different flow tube reactors was conducted, and the NO2 uptake coefficients (γ) were determined on inorganic particles, sea water and urban grime. The results showed that heterogeneous reactions on those surfaces were generally weak in dark conditions, with the measured γ varied from <10-8 to 3.2 × 10-7 under different humidity. A photo-enhanced uptake of NO2 on urban grime was observed, with the obvious formation of HONO and NO from the heterogeneous reaction. The photo-enhanced γ was measured to be 1.9 × 10-6 at 5% relative humidity (RH) and 5.8 × 10-6 at 70% RH on urban grime, showing a positive RH dependence for both NO2 uptake and HONO formation. The results demonstrate an important role of urban grime in the daytime NO2-to-HONO conversion, and could be helpful to explain the unknown daytime HONO source in the polluted urban area.
Collapse
Affiliation(s)
- Chuan Yu
- Environment Research Institute, Shandong University, Qingdao 266237, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China.
| | - Qingxin Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), Villeurbanne F-69626, France
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| |
Collapse
|
46
|
Duan Z, Wang P, Yu G, Liang M, Dong J, Su J, Huang W, Li Y, Zhang A, Chen C. Aggregation kinetics of UV-aged soot nanoparticles in wet environments: Effects of irradiation time and background solution chemistry. WATER RESEARCH 2021; 201:117385. [PMID: 34225234 DOI: 10.1016/j.watres.2021.117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Soot nanoparticles (SNPs) undergo aging processes in aqueous systems, altering their physicochemical properties and affecting their fate and transport. This study investigated the aging effects via ultraviolet irradiation on aggregation kinetics of SNPs in water. The results showed that, compared to fresh SNPs, those irradiated for 1 day aggregated more easily in NaCl and CaCl2 solutions, with reduction of critical coagulation concentrations by 72% and 40%, respectively. Similar phenomena were found in additional six electrolyte solutions, and SNPs irradiated for > 3 days had no measurable difference in aggregation rate. The aggregation-enhancement of irradiated SNPs was more prominent at low electrolyte concentrations and pH > 4. However, in the presence of macromolecules, irradiated SNPs could be stabilized against aggregation via steric hindrance with strength of bovine serum albumin > humic acid > alginate > fulvic acid, whereas alginate further destabilized aged SNPs via calcium bridging. The fitted Hamaker constant increased from 7.8 × 10-20 (fresh) to 1.2 × 10-19 J (7-day irradiated), suggesting that decarboxylation during irradiation may weaken electrical repulsion and enhance van der Waals attraction, promoting aggregation. These results demonstrated the vital role of UV-induced aging in fate and transport of SNPs in wet environments.
Collapse
Affiliation(s)
- Zhihui Duan
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, 18 Shuangqing Road, Beijing 100085, China
| | - Ping Wang
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Guangwei Yu
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Miaoting Liang
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Jiawei Dong
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Jiana Su
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, United States
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, 18 Shuangqing Road, Beijing 100085, China
| | - Chengyu Chen
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
47
|
Deng H, Liu J, Wang Y, Song W, Wang X, Li X, Vione D, Gligorovski S. Effect of Inorganic Salts on N-Containing Organic Compounds Formed by Heterogeneous Reaction of NO 2 with Oleic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7831-7840. [PMID: 34086442 DOI: 10.1021/acs.est.1c01043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fatty acids are ubiquitous constituents of grime on urban and indoor surfaces and they represent important surfactants on organic aerosol particles in the atmosphere. Here, we assess the heterogeneous processing of NO2 on films consisting of pure oleic acid (OA) or a mixture of OA and representative salts for urban grime and aerosol particles, namely Na2SO4 and NaNO3. The uptake coefficients of NO2 on OA under light irradiation (300 nm < λ < 400 nm) decreased with increasing relative humidity (RH), from (1.4 ± 0.1) × 10-6 at 0% RH to (7.1 ± 1.6) × 10-7 at 90% RH. The uptake process of NO2 on OA gives HONO as a reaction product, and the highest HONO production was observed upon the heterogeneous reaction of NO2 with OA in the presence of nitrate (NO3-) ions. The formation of gaseous nitroaromatic compounds was also enhanced in the presence of NO3- ions upon light-induced heterogeneous processing of NO2 with OA, as revealed by membrane inlet single-photon ionization time-of-flight mass spectrometry (MI-SPI-TOFMS). These results suggest that inorganic salts can affect the heterogeneous conversion of gaseous NO2 on fatty acids and enhance the formation of HONO and other N-containing organic compounds in the atmosphere.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangping Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Science, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Science, Guangzhou 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Science, Guangzhou 510640, China
| |
Collapse
|
48
|
Xu W, Yang W, Han C, Yang H, Xue X. Significant influences of TiO 2 crystal structures on NO 2 and HONO emissions from the nitrates photolysis. J Environ Sci (China) 2021; 102:198-206. [PMID: 33637244 DOI: 10.1016/j.jes.2020.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
The emissions of NO2 and HONO from the KNO3 photolysis in the presence of TiO2 were measured using a round-shape reactor coupled to a NOx analyzer. TiO2 played important roles in the emission flux density of NO2 (RNO2) and HONO (RHONO), depending on crystal structures and mass ratios of TiO2. RNO2 and RHONO significantly decreased with increasing the rutile and anatase mass ratios from 0 to 8 and 0.5 wt.%, respectively. Nevertheless, with further increasing the anatase mass ratio to 8 wt.%, there was an increase in RNO2 and RHONO. RNO2 on KNO3/TiO2/SiO2 had positive correlation with the KNO3 mass (1-20 wt.%), irradiation intensity (80-400 W/m2) and temperature (278-308 K), while it had the maximum value at the relative humidity (RH) of 55%. RHONO on KNO3/TiO2/SiO2 slightly varied with the KNO3 mass and temperature, whereas it increased with the irradiation intensity and RH. In addition, the mechanism for NO2 and HONO emissions from the nitrates photolysis and atmospheric implications were discussed.
Collapse
Affiliation(s)
- Wenwen Xu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang 110819, China.
| | - He Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Xiangxin Xue
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
49
|
Yang W, Han C, Zhang T, Tang N, Yang H, Xue X. Heterogeneous photochemical uptake of NO 2 on the soil surface as an important ground-level HONO source. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116289. [PMID: 33383427 DOI: 10.1016/j.envpol.2020.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Nitrous acid (HONO) production from the heterogeneous photochemical reaction of NO2 on several Chinese soils was performed in a cylindrical reactor at atmospheric pressure. The NO2 uptake coefficient (γ) and HONO yield (YHONO) on different soils were (0.42-5.16) × 10-5 and 6.3%-69.6%, respectively. Although the photo-enhanced uptake of NO2 on different soils was observed, light could either enhance or inhibit the conversion efficiency of NO2 to HONO, depending on the properties of the soils. Soils with lower pH generally had larger γ and YHONO. Soil organics played a key role in HONO formation through the photochemical uptake of NO2 on soil surfaces. The γ showed a positive correlation with irradiation and temperature, while it exhibited a negative relationship with relative humidity (RH). YHONO inversely depended on the soil mass (0.32-3.25 mg cm-2), and it positively relied on the irradiance and RH (7%-22%). There was a maximum value for YHONO at 298 K. Based on the experimental results, HONO source strengths from heterogeneous photochemical reaction of NO2 on the soil surfaces were estimated to be 0.2-2.7 ppb h-1 for a mixing layer height of 100 m, which could account for the missing daytime HONO sources in most areas.
Collapse
Affiliation(s)
- Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang, 110819, China.
| | - Tingting Zhang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - He Yang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Xiangxin Xue
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
50
|
Santos UDP, Arbex MA, Braga ALF, Mizutani RF, Cançado JED, Terra-Filho M, Chatkin JM. Environmental air pollution: respiratory effects. J Bras Pneumol 2021; 47:e20200267. [PMID: 33567063 PMCID: PMC7889311 DOI: 10.36416/1806-3756/e20200267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/06/2020] [Indexed: 12/25/2022] Open
Abstract
Environmental air pollution is a major risk factor for morbidity and mortality worldwide. Environmental air pollution has a direct impact on human health, being responsible for an increase in the incidence of and number of deaths due to cardiopulmonary, neoplastic, and metabolic diseases; it also contributes to global warming and the consequent climate change associated with extreme events and environmental imbalances. In this review, we present articles that show the impact that exposure to different sources and types of air pollutants has on the respiratory system; we present the acute effects-such as increases in symptoms and in the number of emergency room visits, hospitalizations, and deaths-and the chronic effects-such as increases in the incidence of asthma, COPD, and lung cancer, as well as a rapid decline in lung function. The effects of air pollution in more susceptible populations and the effects associated with physical exercise in polluted environments are also presented and discussed. Finally, we present the major studies on the subject conducted in Brazil. Health care and disease prevention services should be aware of this important risk factor in order to counsel more susceptible individuals about protective measures that can facilitate their treatment, as well as promoting the adoption of environmental measures that contribute to the reduction of such emissions.
Collapse
Affiliation(s)
- Ubiratan de Paula Santos
- . Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Marcos Abdo Arbex
- . Faculdade de Medicina, Universidade de Araraquara - UNIARA - Araraquara (SP) Brasil
- . Núcleo de Estudos em Epidemiologia Ambiental, Laboratório de Poluição Atmosférica Experimental - NEEA-LPAE - Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Alfésio Luis Ferreira Braga
- . Núcleo de Estudos em Epidemiologia Ambiental, Laboratório de Poluição Atmosférica Experimental - NEEA-LPAE - Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
- . Grupo de Avaliação de Exposição e Risco Ambiental, Programa de Pós-Graduação em Saúde Coletiva, Universidade Católica de Santos - UNISANTOS - Santos (SP) Brasil
| | - Rafael Futoshi Mizutani
- . Grupo de Doenças Respiratórias Ambientais, Ocupacionais e de Cessação de Tabagismo, Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | | | - Mário Terra-Filho
- . Departamento de Cardiopneumologia, Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - José Miguel Chatkin
- . Disciplina de Medicina Interna/Pneumologia, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS - Porto Alegre (RS), Brasil
- . Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS - Porto Alegre (RS), Brasil
| |
Collapse
|