1
|
Stolz V, de Freitas e Silva R, Rica R, Zhu C, Preglej T, Hamminger P, Hainberger D, Alteneder M, Müller L, Waldherr M, Waltenberger D, Hladik A, Agerer B, Schuster M, Frey T, Krausgruber T, Knapp S, Campbell C, Schmetterer K, Trauner M, Bergthaler A, Bock C, Boucheron N, Ellmeier W. Nuclear receptor corepressor 1 controls regulatory T cell subset differentiation and effector function. eLife 2024; 13:e78738. [PMID: 39466314 PMCID: PMC11517256 DOI: 10.7554/elife.78738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
FOXP3+ regulatory T cells (Treg cells) are key for immune homeostasis. Here, we reveal that nuclear receptor corepressor 1 (NCOR1) controls naïve and effector Treg cell states. Upon NCOR1 deletion in T cells, effector Treg cell frequencies were elevated in mice and in in vitro-generated human Treg cells. NCOR1-deficient Treg cells failed to protect mice from severe weight loss and intestinal inflammation associated with CD4+ T cell transfer colitis, indicating impaired suppressive function. NCOR1 controls the transcriptional integrity of Treg cells, since effector gene signatures were already upregulated in naïve NCOR1-deficient Treg cells while effector NCOR1-deficient Treg cells failed to repress genes associated with naïve Treg cells. Moreover, genes related to cholesterol homeostasis including targets of liver X receptor (LXR) were dysregulated in NCOR1-deficient Treg cells. However, genetic ablation of LXRβ in T cells did not revert the effects of NCOR1 deficiency, indicating that NCOR1 controls naïve and effector Treg cell subset composition independent from its ability to repress LXRβ-induced gene expression. Thus, our study reveals that NCOR1 maintains naïve and effector Treg cell states via regulating their transcriptional integrity. We also reveal a critical role for this epigenetic regulator in supporting the suppressive functions of Treg cells in vivo.
Collapse
Affiliation(s)
- Valentina Stolz
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Rafael de Freitas e Silva
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Ramona Rica
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Ci Zhu
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Teresa Preglej
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Patricia Hamminger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Daniela Hainberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Marlis Alteneder
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Lena Müller
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Monika Waldherr
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Darina Waltenberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Anastasiya Hladik
- Medical University of Vienna, Vienna, Department of Medicine I, Laboratory of Infection BiologyViennaAustria
| | - Benedikt Agerer
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Michael Schuster
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Tobias Frey
- Medical University of Vienna, Department of Laboratory MedicineViennaAustria
| | - Thomas Krausgruber
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Medical University of Vienna, Center for Medical Statistics, Informatics, and Intelligent Systems, Institute of Artificial IntelligenceViennaAustria
| | - Sylvia Knapp
- Medical University of Vienna, Vienna, Department of Medicine I, Laboratory of Infection BiologyViennaAustria
| | - Clarissa Campbell
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Klaus Schmetterer
- Medical University of Vienna, Department of Laboratory MedicineViennaAustria
| | - Michael Trauner
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Hans Popper Laboratory of Molecular HepatologyViennaAustria
| | - Andreas Bergthaler
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Medical University of Vienna, Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied ImmunologyViennaAustria
| | - Christoph Bock
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Medical University of Vienna, Center for Medical Statistics, Informatics, and Intelligent Systems, Institute of Artificial IntelligenceViennaAustria
| | - Nicole Boucheron
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| |
Collapse
|
2
|
Cubitt CC, Wong P, Dorando HK, Foltz JA, Tran J, Marsala L, Marin ND, Foster M, Schappe T, Fatima H, Becker-Hapak M, Zhou AY, Hwang K, Jacobs MT, Russler-Germain DA, Mace EM, Berrien-Elliott MM, Payton JE, Fehniger TA. Induced CD8α identifies human NK cells with enhanced proliferative fitness and modulates NK cell activation. J Clin Invest 2024; 134:e173602. [PMID: 38805302 PMCID: PMC11291271 DOI: 10.1172/jci173602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
The surface receptor CD8α is present on 20%-80% of human (but not mouse) NK cells, yet its function on NK cells remains poorly understood. CD8α expression on donor NK cells was associated with a lack of therapeutic responses in patients with leukemia in prior studies, thus, we hypothesized that CD8α may affect critical NK cell functions. Here, we discovered that CD8α- NK cells had improved control of leukemia in xenograft models compared with CD8α+ NK cells, likely due to an enhanced capacity for proliferation. Unexpectedly, we found that CD8α expression was induced on approximately 30% of previously CD8α- NK cells following IL-15 stimulation. These induced CD8α+ (iCD8α+) NK cells had the greatest proliferation, responses to IL-15 signaling, and metabolic activity compared with those that sustained existing CD8α expression (sustained CD8α+) or those that remained CD8α- (persistent CD8α-). These iCD8α+ cells originated from an IL-15Rβhi NK cell population, with CD8α expression dependent on the transcription factor RUNX3. Moreover, CD8A CRISPR/Cas9 deletion resulted in enhanced responses through the activating receptor NKp30, possibly by modulating KIR inhibitory function. Thus, CD8α status identified human NK cell capacity for IL-15-induced proliferation and metabolism in a time-dependent fashion, and its presence had a suppressive effect on NK cell-activating receptors.
Collapse
Affiliation(s)
| | - Pamela Wong
- Division of Oncology, Siteman Cancer Center, and
| | - Hannah K. Dorando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | - Mark Foster
- Division of Oncology, Siteman Cancer Center, and
| | | | - Hijab Fatima
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | - Emily M. Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | - Jacqueline E. Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
3
|
Hada A, Li L, Kandel A, Jin Y, Xiao Z. Characterization of Bovine Intraepithelial T Lymphocytes in the Gut. Pathogens 2023; 12:1173. [PMID: 37764981 PMCID: PMC10535955 DOI: 10.3390/pathogens12091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Intraepithelial T lymphocytes (T-IELs), which constitute over 50% of the total T lymphocytes in the animal, patrol the mucosal epithelial lining to defend against pathogen invasion while maintaining gut homeostasis. In addition to expressing T cell markers such as CD4 and CD8, T-IELs display T cell receptors (TCR), including either TCRαβ or TCRγδ. Both humans and mice share similar T-IEL subsets: TCRγδ+, TCRαβ+CD8αα+, TCRαβ+CD4+, and TCRαβ+CD8αβ+. Among these subsets, human T-IELs are predominantly TCRαβ+ (over 80%), whereas those in mice are mostly TCRγδ+ (~60%). Of note, the majority of the TCRγδ+ subset expresses CD8αα in both species. Although T-IELs have been extensively studied in humans and mice, their profiles in cattle have not been well examined. Our study is the first to characterize bovine T-IELs using flow cytometry, where we identified several distinct features. The percentage of TCRγδ+ was comparable to that of TCRαβ+ T-IELs (both ~50% of CD3+), and the majority of bovine TCRγδ+ T-IELs did not express CD8 (CD8-) (above 60%). Furthermore, about 20% of TCRαβ+ T-IELs were CD4+CD8αβ+, and the remaining TCRαβ+ T-IELs were evenly distributed between CD4+ and CD8αβ+ (~40% of TCRαβ+ T-IELs each) with no TCRαβ+CD8αα+ identified. Despite these unique properties, bovine T-IELs, similar to those in humans and mice, expressed a high level of CD69, an activation and tissue-retention marker, and a low level of CD62L, a lymphoid adhesion marker. Moreover, bovine T-IELs produced low levels of inflammatory cytokines such as IFNγ and IL17A, and secreted small amounts of the immune regulatory cytokine TGFβ1. Hence, bovine T-IELs' composition largely differs from that of human and mouse, with the dominance of the CD8- population among TCRγδ+ T-IELs, the substantial presence of TCRαβ+CD4+CD8αβ+ cells, and the absence of TCRαβ+CD8αα+ T-IELs. These results provide the groundwork for conducting future studies to examine how bovine T-IELs respond to intestinal pathogens and maintain the integrity of the gut epithelial barrier in animals.
Collapse
Affiliation(s)
| | | | | | | | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.H.); (L.L.); (A.K.); (Y.J.)
| |
Collapse
|
4
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
5
|
Gülich AF, Rica R, Tizian C, Viczenczova C, Khamina K, Faux T, Hainberger D, Penz T, Bosselut R, Bock C, Laiho A, Elo LL, Bergthaler A, Ellmeier W, Sakaguchi S. Complex Interplay Between MAZR and Runx3 Regulates the Generation of Cytotoxic T Lymphocyte and Memory T Cells. Front Immunol 2021; 12:535039. [PMID: 33815354 PMCID: PMC8010151 DOI: 10.3389/fimmu.2021.535039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The BTB zinc finger transcription factor MAZR (also known as PATZ1) controls, partially in synergy with the transcription factor Runx3, the development of CD8 lineage T cells. Here we explored the role of MAZR as well as combined activities of MAZR/Runx3 during cytotoxic T lymphocyte (CTL) and memory CD8+ T cell differentiation. In contrast to the essential role of Runx3 for CTL effector function, the deletion of MAZR had a mild effect on the generation of CTLs in vitro. However, a transcriptome analysis demonstrated that the combined deletion of MAZR and Runx3 resulted in much more widespread downregulation of CTL signature genes compared to single Runx3 deletion, indicating that MAZR partially compensates for loss of Runx3 in CTLs. Moreover, in line with the findings made in vitro, the analysis of CTL responses to LCMV infection revealed that MAZR and Runx3 cooperatively regulate the expression of CD8α, Granzyme B and perforin in vivo. Interestingly, while memory T cell differentiation is severely impaired in Runx3-deficient mice, the deletion of MAZR leads to an enlargement of the long-lived memory subset and also partially restored the differentiation defect caused by loss of Runx3. This indicates distinct functions of MAZR and Runx3 in the generation of memory T cell subsets, which is in contrast to their cooperative roles in CTLs. Together, our study demonstrates complex interplay between MAZR and Runx3 during CTL and memory T cell differentiation, and provides further insight into the molecular mechanisms underlying the establishment of CTL and memory T cell pools.
Collapse
Affiliation(s)
- Alexandra Franziska Gülich
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Caroline Tizian
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Csilla Viczenczova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kseniya Khamina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Faux
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Daniela Hainberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Remy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Dybska E, Adams AT, Duclaux-Loras R, Walkowiak J, Nowak JK. Waiting in the wings: RUNX3 reveals hidden depths of immune regulation with potential implications for inflammatory bowel disease. Scand J Immunol 2021; 93:e13025. [PMID: 33528856 DOI: 10.1111/sji.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Complex interactions between the environment and the mucosal immune system underlie inflammatory bowel disease (IBD). The involved cytokine signalling pathways are modulated by a number of transcription factors, one of which is runt-related transcription factor 3 (RUNX3). OBJECTIVE To systematically review the immune roles of RUNX3 in immune regulation, with a focus on the context of IBD. METHODS Relevant articles and reviews were identified through a Scopus search in April 2020. Information was categorized by immune cell types, analysed and synthesized. IBD transcriptome data sets and FANTOM5 regulatory networks were processed in order to complement the literature review. RESULTS The available evidence on the immune roles of RUNX3 allowed for its description in twelve cell types: intraepithelial lymphocyte, Th1, Th2, Th17, Treg, double-positive T, cytotoxic T, B, dendritic, innate lymphoid, natural killer and macrophages. In the gut, the activity of RUNX3 is multifaceted and context-dependent: it may promote homeostasis or exacerbated reactions via cytokine signalling and regulation of receptor expression. RUNX3 is mostly engaged in pathways involving ThPOK, T-bet, IFN-γ, TGF-β/IL-2Rβ, GATA/CBF-β, SMAD/p300 and a number of miRNAs. RUNX3 targets relevant to IBD may include RAG1, OSM and IL-17B. Moreover, in IBD RUNX3 expression correlates positively with GZMM, and negatively with IFNAR1, whereas in controls, it strongly associates with TGFBR3. CONCLUSIONS Dysregulation of RUNX3, mostly in the form of deficiency, likely contributes to IBD pathogenesis. More clinical research is needed to examine RUNX3 in IBD.
Collapse
Affiliation(s)
- Emilia Dybska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rémi Duclaux-Loras
- INSERM U1111, Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Jan K Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
7
|
van der Ploeg EK, Golebski K, van Nimwegen M, Fergusson JR, Heesters BA, Martinez-Gonzalez I, Kradolfer CMA, van Tol S, Scicluna BP, de Bruijn MJW, de Boer GM, Tramper-Stranders GA, Braunstahl GJ, van IJcken WFJ, Nagtegaal AP, van Drunen CM, Fokkens WJ, Huylebroeck D, Spits H, Hendriks RW, Stadhouders R, Bal SM. Steroid-resistant human inflammatory ILC2s are marked by CD45RO and elevated in type 2 respiratory diseases. Sci Immunol 2021; 6:6/55/eabd3489. [PMID: 33514640 DOI: 10.1126/sciimmunol.abd3489] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) orchestrate protective type 2 immunity and have been implicated in various immune disorders. In the mouse, circulatory inflammatory ILC2s (iILC2s) were identified as a major source of type 2 cytokines. The human equivalent of the iILC2 subset remains unknown. Here, we identify a human inflammatory ILC2 population that resides in inflamed mucosal tissue and is specifically marked by surface CD45RO expression. CD45RO+ ILC2s are derived from resting CD45RA+ ILC2s upon activation by epithelial alarmins such as IL-33 and TSLP, which is tightly linked to STAT5 activation and up-regulation of the IRF4/BATF transcription factors. Transcriptome analysis reveals marked similarities between human CD45RO+ ILC2s and mouse iILC2s. Frequencies of CD45RO+ inflammatory ILC2 are increased in inflamed mucosal tissue and in the circulation of patients with chronic rhinosinusitis or asthma, correlating with disease severity and resistance to corticosteroid therapy. CD45RA-to-CD45RO ILC2 conversion is suppressed by corticosteroids via induction of differentiation toward an immunomodulatory ILC2 phenotype characterized by low type 2 cytokine and high amphiregulin expression. Once converted, however, CD45RO+ ILC2s are resistant to corticosteroids, which is associated with metabolic reprogramming resulting in the activation of detoxification pathways. Our combined data identify CD45RO+ inflammatory ILC2s as a human analog of mouse iILC2s linked to severe type 2 inflammatory disease and therapy resistance.
Collapse
Affiliation(s)
- Esmee K van der Ploeg
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Korneliusz Golebski
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Joannah R Fergusson
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Balthasar A Heesters
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Itziar Martinez-Gonzalez
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Chantal M A Kradolfer
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sophie van Tol
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Geertje M de Boer
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Gerdien A Tramper-Stranders
- Department of Pediatric Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands.,Department of Neonatology, Sophia Children's Hospital, Erasmus MC, Rotterdam, Netherlands
| | - Gert-Jan Braunstahl
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands.,Center for Biomics, Erasmus MC, Rotterdam, Netherlands
| | - A Paul Nagtegaal
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, Rotterdam, Netherlands
| | - Cornelis M van Drunen
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Wytske J Fokkens
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Hergen Spits
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands. .,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Suzanne M Bal
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
9
|
Abstract
A fundamental question in developmental immunology is how bipotential thymocyte precursors generate both CD4+ helper and CD8+ cytotoxic T cell lineages. The MHC specificity of αβ T cell receptors (TCRs) on precursors is closely correlated with cell fate-determining processes, prompting studies to characterize how variations in TCR signaling are linked with genetic programs establishing lineage-specific gene expression signatures, such as exclusive CD4 or CD8 expression. The key transcription factors ThPOK and Runx3 have been identified as mediating development of helper and cytotoxic T cell lineages, respectively. Together with increasing knowledge of epigenetic regulators, these findings have advanced our understanding of the transcription factor network regulating the CD4/CD8 dichotomy. It has also become apparent that CD4+ T cells retain developmental plasticity, allowing them to acquire cytotoxic activity in the periphery. Despite such advances, further studies are necessary to identify the molecular links between TCR signaling and the nuclear machinery regulating expression of ThPOK and Runx3.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan;
| |
Collapse
|
10
|
Gülich AF, Preglej T, Hamminger P, Alteneder M, Tizian C, Orola MJ, Muroi S, Taniuchi I, Ellmeier W, Sakaguchi S. Differential Requirement of Cd8 Enhancers E8 I and E8 VI in Cytotoxic Lineage T Cells and in Intestinal Intraepithelial Lymphocytes. Front Immunol 2019; 10:409. [PMID: 30915074 PMCID: PMC6421288 DOI: 10.3389/fimmu.2019.00409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/15/2019] [Indexed: 01/15/2023] Open
Abstract
CD8 expression in T lymphocytes is tightly regulated by the activity of at least six Cd8 enhancers (E8I-E8VI), however their complex developmental stage-, subset-, and lineage-specific interplays are incompletely understood. Here we analyzed ATAC-seq data on the Immunological Genome Project database and identified a similar developmental regulation of chromatin accessibility of a subregion of E8I, designated E8I-core, and of E8VI. Loss of E8I-core led to a similar reduction in CD8 expression in naïve CD8+ T cells and in IELs as observed in E8 I -/- mice, demonstrating that we identified the core enhancer region of E8I. While E8 VI -/- mice displayed a mild reduction in CD8 expression levels on CD8SP thymocytes and peripheral CD8+ T cells, CD8 levels were further reduced upon combined deletion of E8I-core and E8VI. Moreover, activated E8 I -core-/- E8 VI -/- CD8+ T cells lost CD8 expression to a greater degree than E8 I -core-/- and E8 VI -/- CD8+ T cells, suggesting that the combined activity of both enhancers is required for establishment and maintenance of CD8 expression before and after TCR activation. Finally, we observed a severe reduction of CD4 CTLs among the TCRβ+CD4+ IEL population in E8 I -core-/- but not E8 VI -/- mice. Such a reduction was not observed in Cd8a -/- mice, indicating that E8I-core controls the generation of CD4 CTLs independently of its role in Cd8a gene regulation. Further, the combined deletion of E8I-core and E8VI restored CD4 CTL subsets, suggesting an antagonistic function of E8VI in the generation of CD4 CTLs. Together, our study demonstrates a complex utilization and interplay of E8I-core and E8VI in regulating CD8 expression in cytotoxic lineage T cells and in IELs. Moreover, we revealed a novel E8I-mediated regulatory mechanism controlling the generation of intestinal CD4 CTLs.
Collapse
Affiliation(s)
- Alexandra Franziska Gülich
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Caroline Tizian
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maria Jonah Orola
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Acetylation of the Cd8 Locus by KAT6A Determines Memory T Cell Diversity. Cell Rep 2018; 16:3311-3321. [PMID: 27653692 DOI: 10.1016/j.celrep.2016.08.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/21/2016] [Accepted: 08/17/2016] [Indexed: 11/20/2022] Open
Abstract
How functionally diverse populations of pathogen-specific killer T cells are generated during an immune response remains unclear. Here, we propose that fine-tuning of CD8αβ co-receptor levels via histone acetylation plays a role in lineage fate. We show that lysine acetyltransferase 6A (KAT6A) is responsible for maintaining permissive Cd8 gene transcription and enabling robust effector responses during infection. KAT6A-deficient CD8(+) T cells downregulated surface CD8 co-receptor expression during clonal expansion, a finding linked to reduced Cd8α transcripts and histone-H3 lysine 9 acetylation of the Cd8 locus. Loss of CD8 expression in KAT6A-deficient T cells correlated with reduced TCR signaling intensity and accelerated contraction of the effector-like memory compartment, whereas the long-lived memory compartment appeared unaffected, a result phenocopied by the removal of the Cd8 E8I enhancer element. These findings suggest a direct role of CD8αβ co-receptor expression and histone acetylation in shaping functional diversity within the cytotoxic T cell pool.
Collapse
|
12
|
Brandt D, Hedrich CM. TCRαβ +CD3 +CD4 -CD8 - (double negative) T cells in autoimmunity. Autoimmun Rev 2018; 17:422-430. [PMID: 29428806 DOI: 10.1016/j.autrev.2018.02.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022]
Abstract
TCRαβ+CD3+CD4-CD8- "double negative" (DN) T cells comprise a small subset of mature peripheral T cells. The origin and function of DN T cells are somewhat unclear and discussed controversially. While DN T cells resemble a rare and heterogeneous T cell subpopulation in healthy individuals, numbers of TCRαβ+ DN T cells are expanded in several inflammatory conditions, where they also exhibit distinct effector phenotypes and infiltrate inflamed tissues. Thus, DN T cells may be involved in systemic inflammation and tissue damage in autoimmune/inflammatory conditions, including SLE, Sjögren's syndrome, and psoriasis. Here, the current understanding of the origin and phenotype of DN T cells, and their role in the instruction of immune responses, autoimmunity and inflammation will be discussed in health and disease.
Collapse
Affiliation(s)
- D Brandt
- Division of Pediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - C M Hedrich
- Division of Pediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany; Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
| |
Collapse
|
13
|
Müller L, Hainberger D, Stolz V, Hamminger P, Hassan H, Preglej T, Boucheron N, Sakaguchi S, Wiegers GJ, Villunger A, Auwerx J, Ellmeier W. The corepressor NCOR1 regulates the survival of single-positive thymocytes. Sci Rep 2017; 7:15928. [PMID: 29162920 PMCID: PMC5698297 DOI: 10.1038/s41598-017-15918-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023] Open
Abstract
Nuclear receptor corepressor 1 (NCOR1) is a transcriptional regulator bridging repressive chromatin modifying enzymes with transcription factors. NCOR1 regulates many biological processes, however its role in T cells is not known. Here we show that Cd4-Cre-mediated deletion of NCOR1 (NCOR1 cKOCd4) resulted in a reduction of peripheral T cell numbers due to a decrease in single-positive (SP) thymocytes. In contrast, double-positive (DP) thymocyte numbers were not affected in the absence of NCOR1. The reduction in SP cells was due to diminished survival of NCOR1-null postselection TCRβhiCD69+ and mature TCRβhiCD69- thymocytes. NCOR1-null thymocytes expressed elevated levels of the pro-apoptotic factor BIM and showed a higher fraction of cleaved caspase 3-positive cells upon TCR stimulation ex vivo. However, staphylococcal enterotoxin B (SEB)-mediated deletion of Vβ8+ CD4SP thymocytes was normal, suggesting that negative selection is not altered in the absence of NCOR1. Finally, transgenic expression of the pro-survival protein BCL2 restored the population of CD69+ thymocytes in NCOR1 cKOCd4 mice to a similar percentage as observed in WT mice. Together, these data identify NCOR1 as a crucial regulator of the survival of SP thymocytes and revealed that NCOR1 is essential for the proper generation of the peripheral T cell pool.
Collapse
Affiliation(s)
- Lena Müller
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Daniela Hainberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hammad Hassan
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria.,Department of Biochemistry (Shankar Campus), Abdul Wali Khan University (AWKUM) Mardan, KPK, Pakistan
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - G Jan Wiegers
- Innsbruck Medical University, Biocenter, Division of Developmental Immunology, Innsbruck, Austria
| | - Andreas Villunger
- Innsbruck Medical University, Biocenter, Division of Developmental Immunology, Innsbruck, Austria
| | - Johan Auwerx
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Integrative and Systems Physiology, Lausanne, Switzerland
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
14
|
Seo SH, Jang MS, Kim DJ, Kim SM, Oh SC, Jung CR, Park Y, Ha SJ, Jung H, Park YJ, Yoon SR, Choi I, Kim TD. MicroRNA-150 controls differentiation of intraepithelial lymphocytes through TGF-β receptor II regulation. J Allergy Clin Immunol 2017; 141:1382-1394.e14. [PMID: 28797734 DOI: 10.1016/j.jaci.2017.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Intraepithelial lymphocytes (IELs) in the intestines play pivotal roles in maintaining the integrity of the mucosa, regulating immune cells, and protecting against pathogenic invasion. Although several extrinsic factors, such as TGF-β, have been identified to contribute to IEL generation, intrinsic regulatory factors have not been determined fully. OBJECTIVE Here we investigated the regulation of IEL differentiation and the underlying mechanisms in mice. METHODS We analyzed IELs and the expression of molecules associated with IEL differentiation in wild-type control and microRNA (miRNA)-150 knockout mice. Methotrexate was administered to mice lacking miR-150 and control mice. RESULTS miR-150 deficiency reduced the IEL population in the small intestine and increased susceptibility to methotrexate-induced mucositis. Evaluation of expression of IEL differentiation-associated molecules showed that miR-150-deficient IELs exhibited decreased expression of TGF-β receptor (TGF-βR) II, CD103, CD8αα, and Runt-related transcription factor 3 in all the IEL subpopulations. The reduced expression of TGF-βRII in miR-150-deficient IELs was caused by increased expression of c-Myb/miR-20a. Restoration of miR-150 or inhibition of miR-20a recovered the TGF-βRII expression. CONCLUSION miR-150 is an intrinsic regulator of IEL differentiation through TGF-βRII regulation. miR-150-mediated IEL generation is crucial for maintaining intestinal integrity against anticancer drug-induced mucositis.
Collapse
Affiliation(s)
- Sang-Hwan Seo
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Min Seong Jang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seok-Min Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Se-Chan Oh
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Cho-Rok Jung
- the Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yunji Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Haiyoung Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Young-Jun Park
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Suk Ran Yoon
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Inpyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| |
Collapse
|
15
|
Vacchio MS, Bosselut R. What Happens in the Thymus Does Not Stay in the Thymus: How T Cells Recycle the CD4+-CD8+ Lineage Commitment Transcriptional Circuitry To Control Their Function. THE JOURNAL OF IMMUNOLOGY 2017; 196:4848-56. [PMID: 27260768 DOI: 10.4049/jimmunol.1600415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/06/2016] [Indexed: 12/24/2022]
Abstract
MHC-restricted CD4(+) and CD8(+) T cells are at the core of most adaptive immune responses. Although these cells carry distinct functions, they arise from a common precursor during thymic differentiation, in a developmental sequence that matches CD4 and CD8 expression and functional potential with MHC restriction. Although the transcriptional control of CD4(+)-CD8(+) lineage choice in the thymus is now better understood, less was known about what maintains the CD4(+) and CD8(+) lineage integrity of mature T cells. In this review, we discuss the mechanisms that establish in the thymus, and maintain in postthymic cells, the separation of these lineages. We focus on recent studies that address the mechanisms of epigenetic control of Cd4 expression and emphasize how maintaining a transcriptional circuitry nucleated around Thpok and Runx proteins, the key architects of CD4(+)-CD8(+) lineage commitment in the thymus, is critical for CD4(+) T cell helper functions.
Collapse
Affiliation(s)
- Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
16
|
Essential Roles of SATB1 in Specifying T Lymphocyte Subsets. Cell Rep 2017; 19:1176-1188. [DOI: 10.1016/j.celrep.2017.04.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/24/2017] [Accepted: 04/13/2017] [Indexed: 01/15/2023] Open
|
17
|
Issuree PDA, Ng CP, Littman DR. Heritable Gene Regulation in the CD4:CD8 T Cell Lineage Choice. Front Immunol 2017; 8:291. [PMID: 28382035 PMCID: PMC5360760 DOI: 10.3389/fimmu.2017.00291] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 12/04/2022] Open
Abstract
The adaptive immune system is dependent on functionally distinct lineages of T cell antigen receptor αβ-expressing T cells that differentiate from a common progenitor in the thymus. CD4+CD8+ progenitor thymocytes undergo selection following interaction with MHC class I and class II molecules bearing peptide self-antigens, giving rise to CD8+ cytotoxic and CD4+ helper or regulatory T cell lineages, respectively. The strict correspondence of CD4 and CD8 expression with distinct cellular phenotypes has made their genes useful surrogates for investigating molecular mechanisms of lineage commitment. Studies of Cd4 and Cd8 transcriptional regulation have uncovered cis-regulatory elements that are critical for mediating epigenetic modifications at distinct stages of development to establish heritable transcriptional programs. In this review, we examine the epigenetic mechanisms involved in Cd4 and Cd8 gene regulation during T cell lineage specification and highlight the features that make this an attractive system for uncovering molecular mechanisms of heritability.
Collapse
Affiliation(s)
- Priya D A Issuree
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine , New York, NY , USA
| | - Charles P Ng
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine , New York, NY , USA
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
18
|
Roles of RUNX Complexes in Immune Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:395-413. [DOI: 10.1007/978-981-10-3233-2_24] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Abstract
There has been speculation as to how bi-potent CD4(+) CD8(+) double-positive precursor thymocytes choose their distinct developmental fate, becoming either CD4(+) helper or CD8(+) cytotoxic T cells. Based on the clear correlation of αβT cell receptor (TCR) specificity to major histocompatibility complex (MHC) classes with this lineage choice, various studies have attempted to resolve this question by examining the cellular signaling events initiated by TCR engagements, a strategy referred to as a 'top-down' approach. On the other hand, based on the other correlation of CD4/CD8 co-receptor expression with its selected fate, other studies have addressed this question by gradually unraveling the sequential mechanisms that control the phenotypic outcome of this fate decision, a method known as the 'bottom-up' approach. Bridging these two approaches will contribute to a more comprehensive understanding of how TCR signals are coupled with developmental programs in the nucleus. Advances made during the last two decades seemed to make these two approaches more closely linked. For instance, identification of two transcription factors, ThPOK and Runx3, which play central roles in the development of helper and cytotoxic lineages, respectively, provided significant insights into the transcriptional network that controls a CD4/CD8 lineage choice. This review summarizes achievements made using the 'bottom-up' approach, followed by a perspective on future pathways toward coupling TCR signaling with nuclear programs.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
20
|
Tian Y, Sette A, Weiskopf D. Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection. Front Immunol 2016; 7:531. [PMID: 28003809 PMCID: PMC5141332 DOI: 10.3389/fimmu.2016.00531] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/10/2016] [Indexed: 12/12/2022] Open
Abstract
Dengue virus (DENV) has spread through most tropical and subtropical areas of the world and represents a serious public health problem. The control of DENV infection has not yet been fully successful due to lack of effective therapeutics or vaccines. Nevertheless, a better understanding of the immune responses against DENV infection may reveal new strategies for eliciting and improving antiviral immunity. T cells provide protective immunity against various viral infections by generating effector cells that cooperate to eliminate antigens and memory cells that can survive for long periods with enhanced abilities to control recurring pathogens. Following activation, CD8 T cells can migrate to sites of infection and kill infected cells, whereas CD4 T cells contribute to the elimination of pathogens by trafficking to infected tissues and providing help to innate immune responses, B cells, as well as CD8 T cells. However, it is now evident that CD4 T cells can also perform cytotoxic functions and induce the apoptosis of target cells. Importantly, accumulating studies demonstrate that cytotoxic CD4 T cells develop following DENV infections and may play a crucial role in protecting the host from severe dengue disease. We review our current understanding of the differentiation and function of cytotoxic CD4 T cells, with a focus on DENV infection, and discuss the potential of harnessing these cells for the prevention and treatment of DENV infection and disease.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| |
Collapse
|
21
|
Nguyen MLT, Jones SA, Prier JE, Russ BE. Transcriptional Enhancers in the Regulation of T Cell Differentiation. Front Immunol 2015; 6:462. [PMID: 26441967 PMCID: PMC4563239 DOI: 10.3389/fimmu.2015.00462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/24/2015] [Indexed: 12/24/2022] Open
Abstract
The changes in phenotype and function that characterize the differentiation of naïve T cells to effector and memory states are underscored by large-scale, coordinated, and stable changes in gene expression. In turn, these changes are choreographed by the interplay between transcription factors and epigenetic regulators that act to restructure the genome, ultimately ensuring lineage-appropriate gene expression. Here, we focus on the mechanisms that control T cell differentiation, with a particular focus on the role of regulatory elements encoded within the genome, known as transcriptional enhancers (TEs). We discuss the central role of TEs in regulating T cell differentiation, both in health and disease.
Collapse
Affiliation(s)
- Michelle L T Nguyen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, VIC , Australia
| | - Sarah A Jones
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health , Melbourne, VIC , Australia
| | - Julia E Prier
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, VIC , Australia
| | - Brendan E Russ
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
22
|
Sakaguchi S, Hainberger D, Tizian C, Tanaka H, Okuda T, Taniuchi I, Ellmeier W. MAZR and Runx Factors Synergistically Repress ThPOK during CD8+ T Cell Lineage Development. THE JOURNAL OF IMMUNOLOGY 2015; 195:2879-87. [PMID: 26254341 DOI: 10.4049/jimmunol.1500387] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022]
Abstract
Th-inducing Pox virus and zinc finger/Krüppel-like factor (ThPOK) is a key commitment factor for CD4(+) lineage T cells and is essential for the maintenance of CD4 lineage integrity; thus, the expression of ThPOK has to be tightly controlled. In this article, we demonstrate that Myc-associated zinc finger-related factor (MAZR) and Runt-related transcription factor 1 (Runx1) together repressed ThPOK in preselection double-positive thymocytes, whereas MAZR acted in synergy with Runx3 in the repression of ThPOK in CD8(+) T cells. Furthermore, MAZR-Runx1 and MAZR-Runx3 double-mutant mice showed enhanced derepression of Cd4 in double-negative thymocytes and in CD8(+) T cells in comparison with Runx1 or Runx3 single-deficient mice, respectively, indicating that MAZR modulates Cd4 silencing. Thus, our data demonstrate developmental stage-specific synergistic activities between MAZR and Runx/core-binding factor β (CBFβ) complexes. Finally, retroviral Cre-mediated conditional deletion of MAZR in peripheral CD8(+) T cells led to the derepression of ThPOK, thus showing that MAZR is also part of the molecular machinery that maintains a repressed state of ThPOK in CD8(+) T cells.
Collapse
Affiliation(s)
- Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Daniela Hainberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Caroline Tizian
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hirokazu Tanaka
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; and
| | - Tsukasa Okuda
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine Kyoto, Kyoto 602-8566, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; and
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
23
|
Mizutani S, Yoshida T, Zhao X, Nimer SD, Taniwaki M, Okuda T. Loss of RUNX1/AML1 arginine-methylation impairs peripheral T cell homeostasis. Br J Haematol 2015; 170:859-73. [PMID: 26010396 DOI: 10.1111/bjh.13499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/11/2015] [Indexed: 01/15/2023]
Abstract
RUNX1 (previously termed AML1) is a frequent target of human leukaemia-associated gene aberrations, and it encodes the DNA-binding subunit of the Core-Binding Factor transcription factor complex. RUNX1 expression is essential for the initiation of definitive haematopoiesis, for steady-state thrombopoiesis, and for normal lymphocytes development. Recent studies revealed that protein arginine methyltransferase 1 (PRMT1), which accounts for the majority of the type I PRMT activity in cells, methylates two arginine residues in RUNX1 (R206 and R210), and these modifications inhibit corepressor-binding to RUNX1 thereby enhancing its transcriptional activity. In order to elucidate the biological significance of these methylations, we established novel knock-in mouse lines with non-methylable, double arginine-to-lysine (RTAMR-to-KTAMK) mutations in RUNX1. Homozygous Runx1(KTAMK) (/) (KTAMK) mice are born alive and appear normal during adulthood. However, Runx1(KTAMK) (/) (KTAMK) mice showed a reduction in CD3(+) T lymphoid cells and a decrease in CD4(+) T cells in peripheral lymphoid organs, in comparison to their wild-type littermates, leading to a reduction in the CD4(+) to CD8(+) T-cell ratio. These findings suggest that arginine-methylation of RUNX1 in the RTAMR-motif is dispensable for the development of definitive haematopoiesis and for steady-state platelet production, however this modification affects the role of RUNX1 in the maintenance of the peripheral CD4(+) T-cell population.
Collapse
Affiliation(s)
- Shinsuke Mizutani
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan.,Division of Haematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Xinyang Zhao
- Department of Biochemistry & Molecular Genetics, University of Alabama, Birmingham, AL, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Masafumi Taniwaki
- Division of Haematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsukasa Okuda
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
24
|
[MUW researcher of the month]. Wien Klin Wochenschr 2015; 127:314-5. [PMID: 25895573 DOI: 10.1007/s00508-015-0790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Jeschke JC, Williams CB. Editorial: Crossing the divide: a novel Cd8 enhancer with activity in CTLs and CD8αα+ dendritic cells. J Leukoc Biol 2015; 97:623-5. [PMID: 25828836 DOI: 10.1189/jlb.2ce1214-606r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jonathan C Jeschke
- Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Calvin B Williams
- Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
26
|
Sakaguchi S, Hombauer M, Hassan H, Tanaka H, Yasmin N, Naoe Y, Bilic I, Moser MA, Hainberger D, Mayer H, Seiser C, Bergthaler A, Taniuchi I, Ellmeier W. A novel Cd8-cis-regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8αα+ dendritic cells. J Leukoc Biol 2014; 97:635-44. [PMID: 25548254 DOI: 10.1189/jlb.1hi1113-597rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CD8 coreceptor expression is dynamically regulated during thymocyte development and is tightly controlled by the activity of at least 5 different cis-regulatory elements. Despite the detailed characterization of the Cd8 loci, the regulation of the complex expression pattern of CD8 cannot be fully explained by the activity of the known Cd8 enhancers. In this study, we revisited the Cd8ab gene complex with bioinformatics and transgenic reporter gene expression approaches to search for additional Cd8 cis-regulatory elements. This led to the identification of an ECR (ECR-4), which in transgenic reporter gene expression assays, directed expression preferentially in CD44(hi)CD62L(+) CD8(+) T cells, including innate-like CD8(+) T cells. ECR-4, designated as Cd8 enhancer E8VI, was bound by Runx/CBFβ complexes and Bcl11b, indicating that E8VI is part of the cis-regulatory network that recruits transcription factors to the Cd8ab gene complex in CD8(+) T cells. Transgenic reporter expression was maintained in LCMV-specific CD8(+) T cells upon infection, although short-term, in vitro activation led to a down-regulation of E8VI activity. Finally, E8VI directed transgene expression also in CD8αα(+) DCs but not in CD8αα-expressing IELs. Taken together, we have identified a novel Cd8 enhancer that directs expression in CD44(hi)CD62L(+) CD8(+) T cells, including innate-like and antigen-specific effector/memory CD8(+) T cells and in CD8αα(+) DCs, and thus, our data provide further insight into the cis-regulatory networks that control CD8 expression.
Collapse
Affiliation(s)
- Shinya Sakaguchi
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Matthias Hombauer
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hammad Hassan
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hirokazu Tanaka
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nighat Yasmin
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Yoshinori Naoe
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ivan Bilic
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mirjam A Moser
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniela Hainberger
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Herbert Mayer
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christian Seiser
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andreas Bergthaler
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ichiro Taniuchi
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wilfried Ellmeier
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
27
|
Abstract
During blood cell development, hematopoietic stem cells generate diverse mature populations via several rounds of binary fate decisions. At each bifurcation, precursors adopt one fate and inactivate the alternative fate either stochastically or in response to extrinsic stimuli and stably maintain the selected fates. Studying of these processes would contribute to better understanding of etiology of immunodeficiency and leukemia, which are caused by abnormal gene regulation during the development of hematopoietic cells. The CD4(+) helper versus CD8(+) cytotoxic T-cell fate decision serves as an excellent model to study binary fate decision processes. These two cell types are derived from common precursors in the thymus. Positive selection of their TCRs by self-peptide presented on either MHC class I or class II triggers their fate decisions along with mutually exclusive retention and silencing of two coreceptors, CD4 and CD8. In the past few decades, extensive effort has been made to understand the T-cell fate decision processes by studying regulation of genes encoding the coreceptors and selection processes. These studies have identified several key transcription factors and gene regulatory networks. In this chapter, I will discuss recent advances in our understanding of the binary cell fate decision processes of T cells.
Collapse
Affiliation(s)
- Takeshi Egawa
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
28
|
HDAC1 controls CD8+ T cell homeostasis and antiviral response. PLoS One 2014; 9:e110576. [PMID: 25333902 PMCID: PMC4204873 DOI: 10.1371/journal.pone.0110576] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/15/2014] [Indexed: 01/10/2023] Open
Abstract
Reversible lysine acetylation plays an important role in the regulation of T cell responses. HDAC1 has been shown to control peripheral T helper cells, however the role of HDAC1 in CD8+ T cell function remains elusive. By using conditional gene targeting approaches, we show that LckCre-mediated deletion of HDAC1 led to reduced numbers of thymocytes as well as peripheral T cells, and to an increased fraction of CD8+CD4– cells within the CD3/TCRβlo population, indicating that HDAC1 is essential for the efficient progression of immature CD8+CD4– cells to the DP stage. Moreover, CD44hi effector CD8+ T cells were enhanced in mice with a T cell-specific deletion of HDAC1 under homeostatic conditions and HDAC1-deficient CD44hi CD8+ T cells produced more IFNγ upon ex vivo PMA/ionomycin stimulation in comparison to wild-type cells. Naïve (CD44l°CD62L+) HDAC1-null CD8+ T cells displayed a normal proliferative response, produced similar amounts of IL-2 and TNFα, slightly enhanced amounts of IFNγ, and their in vivo cytotoxicity was normal in the absence of HDAC1. However, T cell-specific loss of HDAC1 led to a reduced anti-viral CD8+ T cell response upon LCMV infection and impaired expansion of virus-specific CD8+ T cells. Taken together, our data indicate that HDAC1 is required for the efficient generation of thymocytes and peripheral T cells, for proper CD8+ T cell homeostasis and for an efficient in vivo expansion and activation of CD8+ T cells in response to LCMV infection.
Collapse
|
29
|
The CD4/CD8 lineages: central decisions and peripheral modifications for T lymphocytes. Curr Top Microbiol Immunol 2014; 373:113-29. [PMID: 23612990 DOI: 10.1007/82_2013_323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
CD4(+) helper and CD8(+) cytotoxic T cells, two major subsets of αβTCR expressing lymphocytes, are differentiated from common precursor CD4(+)CD8(+) double-positive (DP) thymocytes. Bifurcation of the CD4(+)/CD8(+) lineages in the thymus is a multilayered process and is thought to culminate in a loss of developmental plasticity between these functional subsets. Advances in the last decade have deepened our understanding of the transcription control mechanisms governing CD4 versus CD8 lineage commitment. Reciprocal expression and antagonistic interplay between two transcription factors, ThPOK and Runx3, is crucial for driving thymocyte decisions between these two cell fates. Here, we first focus on the regulation of ThPOK expression and its role in directing helper T cell development. We then discuss a novel aspect of the ThPOK/Runx3 axis in modifying CD4(+) T cell function upon exposure to gut microenvironment.
Collapse
|
30
|
Boucheron N, Tschismarov R, Goeschl L, Moser MA, Lagger S, Sakaguchi S, Winter M, Lenz F, Vitko D, Breitwieser FP, Müller L, Hassan H, Bennett KL, Colinge J, Schreiner W, Egawa T, Taniuchi I, Matthias P, Seiser C, Ellmeier W. CD4(+) T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nat Immunol 2014; 15:439-448. [PMID: 24681565 PMCID: PMC4346201 DOI: 10.1038/ni.2864] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/05/2014] [Indexed: 12/15/2022]
Abstract
Molecular mechanisms that maintain lineage integrity of helper T cells are largely unknown. Here we show histone deacetylases 1 and 2 (HDAC1 and HDAC2) as crucial regulators of this process. Loss of HDAC1 and HDAC2 during late T cell development led to the appearance of major histocompatibility complex (MHC) class II-selected CD4(+) helper T cells that expressed CD8-lineage genes such as Cd8a and Cd8b1. HDAC1 and HDAC2-deficient T helper type 0 (TH0) and TH1 cells further upregulated CD8-lineage genes and acquired a CD8(+) effector T cell program in a manner dependent on Runx-CBFβ complexes, whereas TH2 cells repressed features of the CD8(+) lineage independently of HDAC1 and HDAC2. These results demonstrate that HDAC1 and HDAC2 maintain integrity of the CD4 lineage by repressing Runx-CBFβ complexes that otherwise induce a CD8(+) effector T cell-like program in CD4(+) T cells.
Collapse
Affiliation(s)
- Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Roland Tschismarov
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Lisa Goeschl
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
- Division of Rheumatology, Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Mirjam A. Moser
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, 1030 Vienna, Austria
| | - Sabine Lagger
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, 1030 Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Mircea Winter
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, 1030 Vienna, Austria
| | - Florian Lenz
- Division of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Dijana Vitko
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Florian P. Breitwieser
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Lena Müller
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Hammad Hassan
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Keiryn L. Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Wolfgang Schreiner
- Division of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Takeshi Egawa
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, 4058 Basel, Switzerland and University of Basel, Faculty of Sciences, 4051 Basel, Switzerland
| | - Christian Seiser
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, 1030 Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
31
|
Epigenetic plasticity of Cd8a locus during CD8(+) T-cell development and effector differentiation and reprogramming. Nat Commun 2014; 5:3547. [PMID: 24675400 PMCID: PMC3974221 DOI: 10.1038/ncomms4547] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 03/04/2014] [Indexed: 11/29/2022] Open
Abstract
Modulation of CD8 coreceptor levels can profoundly affect T-cell sensitivity to antigen. Here we show that the heritable downregulation of CD8 during type 2 polarization of murine CD8+ effector T cells in vitro and in vivo is associated with CpG methylation of several regions of the Cd8a locus. These epigenetic modifications are maintained long-term in vivo following adoptive transfer. Even after extended type 2 polarization, however, some CD8low effector cells respond to interferon-γ by re-expressing CD8 and a type 1 cytokine profile in association with partial Cd8a demethylation. Cd8a methylation signatures in naive, polarized and repolarized cells are distinct from those observed during the initiation, maintenance and silencing of CD8 expression by developing T cells in the thymus. This persistent capacity for epigenetic reprogramming of coreceptor levels on effector CD8+ T cells enables the heritable tuning of antigen sensitivity in parallel with changes in type 1/type 2 cytokine balance. CD8 expression levels on peripheral CD8+ T cells are regulated during development and effector differentiation. Here, the authors show that methylation patterns at the Cd8a locus, whose product is essential for surface CD8 expression, can change during T-cell development, activation, cytokine polarization and reprogramming.
Collapse
|
32
|
Hedrich CM, Crispín JC, Rauen T, Ioannidis C, Koga T, Rodriguez Rodriguez N, Apostolidis SA, Kyttaris VC, Tsokos GC. cAMP responsive element modulator (CREM) α mediates chromatin remodeling of CD8 during the generation of CD3+ CD4- CD8- T cells. J Biol Chem 2013; 289:2361-70. [PMID: 24297179 DOI: 10.1074/jbc.m113.523605] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
TCR-αβ(+)CD3(+)CD4(-)CD8(-) "double negative" T cells are expanded in the peripheral blood of patients with systemic lupus erythematosus (SLE) and lupus-prone mice. Double negative T cells have been claimed to derive from CD8(+) cells that down-regulate CD8 co-receptors and acquire a distinct effector phenotype that includes the expression of proinflammatory cytokines. This, along with the fact that double negative T cells have been documented in inflamed organs, suggests that they may contribute to disease expression and tissue damage. We recently linked the transcription factor cAMP responsive element modulator (CREM) α, which is expressed at increased levels in T cells from SLE patients and lupus prone MRL/lpr mice, with trans-repression of a region syntenic to the murine CD8b promoter. However, the exact molecular mechanisms that result in a stable silencing of both CD8A and CD8B genes remain elusive. Here, we demonstrate that CREMα orchestrates epigenetic remodeling of the CD8 cluster through the recruitment of DNA methyltransferase (DNMT) 3a and histone methyltransferase G9a. Thus, we propose that CREMα is essential for the expansion of double negative T cells in SLE. CREMα blockade may have therapeutic value in autoimmune disorders with DN T cell expansion.
Collapse
Affiliation(s)
- Christian M Hedrich
- From the Department of Medicine, Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
In vitro induction of regulatory CD4+CD8α+ T cells by TGF-β, IL-7 and IFN-γ. PLoS One 2013; 8:e67821. [PMID: 23844100 PMCID: PMC3701067 DOI: 10.1371/journal.pone.0067821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/21/2013] [Indexed: 12/26/2022] Open
Abstract
In vitro CD4(+) T cell differentiation systems have made important contributions to understanding the mechanisms underlying the differentiation of naive CD4(+) T cells into effector cells with distinct biological functions. Mature CD4(+) T cells expressing CD8αα homodimers are primarily found in the intestinal mucosa of men and mice, and to a lesser extent in other tissues such as peripheral blood. Although CD4(+)CD8α(+) T cells are easily identified, very little is known about their development and immunological functions. It has been reported, however, that CD4(+)CD8α(+) T cells possess regulatory properties. In this report, we present a novel in vitro differentiation system where CD4(+) T cells are stimulated to become CD4(+)CD8α(+) T cells in the presence of TGF-β, IL-7 and IFN-γ, resulting in cells with very similar features as CD4(+)CD8α(+) intraepithelial lymphocytes. This novel in vitro differentiation culture should provide a powerful and tractable tool for dissecting the differentiation and biological functions of CD4(+)CD8α(+) T cells.
Collapse
|
34
|
Olver S, Apte SH, Baz A, Kelso A, Kienzle N. Interleukin-4-induced loss of CD8 expression and cytolytic function in effector CD8 T cells persists long term in vivo. Immunology 2013; 139:187-96. [PMID: 23311920 DOI: 10.1111/imm.12068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 01/28/2023] Open
Abstract
Activation of naive CD8(+) T cells in the presence of interleukin-4 modulates their CD8 co-receptor expression and functional differentiation, resulting in the generation of CD8(low) cells that produce type 2 cytokines and display poor cytolytic and anti-tumour activity. Although this CD8(low) phenotype becomes stable after about a week and can persist with further stimulation in vitro, it is not known whether it can be maintained long term in vivo. Here we report that CD8(low) cells derived from oval-bumin(257-264) -specific T-cell receptor-transgenic CD8(+) T cells activated in the presence of interleukin-4 could be detected in the spleen for at least 4 months after adoptive transfer into normal mice. A significant proportion of the long-term surviving cells retained their CD8(low) phenotype in vivo and after clonal re-activation in vitro. Although long-term surviving CD8(low) cells lacked detectable cytolytic activity or perforin expression, they showed some anti-tumour function in vivo. The persistence of functional cells with a CD8(low) phenotype in vivo raises the possibility that such cells can contribute to effector or regulatory responses to tumours or pathogens.
Collapse
Affiliation(s)
- Stuart Olver
- The Cooperative Research Centre for Vaccine Technology and the Queensland Institute of Medical Research, Herston, Qld, Australia
| | | | | | | | | |
Collapse
|
35
|
Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. Cell Mol Life Sci 2013; 70:4537-53. [PMID: 23793512 PMCID: PMC3827898 DOI: 10.1007/s00018-013-1393-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/24/2022]
Abstract
The differentiation and function of peripheral helper and cytotoxic T cell lineages is coupled with the expression of CD4 and CD8 coreceptor molecules, respectively. This indicates that the control of coreceptor gene expression is closely linked with the regulation of CD4/CD8 lineage decision of DP thymocytes. Research performed during the last two decades revealed comprehensive mechanistic insight into the developmental stage- and subset/lineage-specific regulation of Cd4, Cd8a and Cd8b1 (Cd8) gene expression. These studies provided important insight into transcriptional control mechanisms during T cell development and into the regulation of cis-regulatory networks in general. Moreover, the identification of transcription factors involved in the regulation of CD4 and CD8 significantly advanced the knowledge of the transcription factor network regulating CD4/CD8 cell-fate choice of DP thymocytes. In this review, we provide an overview of the identification and characterization of CD4/CD8 cis-regulatory elements and present recent progress in our understanding of how these cis-regulatory elements control CD4/CD8 expression during T cell development and in peripheral T cells. In addition, we describe the transcription factors implicated in the regulation of coreceptor gene expression and discuss how these factors are integrated into the transcription factor network that regulates CD4/CD8 cell-fate choice of DP thymocytes.
Collapse
|
36
|
Xiong Y, Castro E, Yagi R, Zhu J, Lesourne R, Love PE, Feigenbaum L, Bosselut R. Thpok-independent repression of Runx3 by Gata3 during CD4+ T-cell differentiation in the thymus. Eur J Immunol 2013; 43:918-28. [PMID: 23310955 DOI: 10.1002/eji.201242944] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/27/2012] [Accepted: 01/07/2013] [Indexed: 11/06/2022]
Abstract
CD4(+) helper T cells are essential for immune responses and differentiate in the thymus from CD4(+) CD8(+) "double-positive" (DP) thymocytes. The transcription factor Runx3 inhibits CD4(+) T-cell differentiation by repressing Cd4 gene expression; accordingly, Runx3 is not expressed in DP thymocytes or developing CD4(+) T cells. The transcription factor Thpok is upregulated in CD4-differentiating thymocytes and required to repress Runx3. However, how Runx3 is controlled at early stages of CD4(+) T-cell differentiation, before the onset of Thpok expression, remains unknown. Here we show that Gata3, a transcription factor preferentially and transiently upregulated by CD4(+) T-cell precursors, represses Runx3 and binds the Runx3 locus in vivo. Accordingly, we show that high-level Gata3 expression and expression of Runx3 are mutually exclusive. Furthermore, whereas Runx3 represses Cd4, we show that Gata3 promotes Cd4 expression in Thpok-deficient thymocytes. Thus, in addition to its previously documented role in promoting CD4-lineage gene-expression, Gata3 represses CD8-lineage gene expression. These findings identify Gata3 as a critical pivot of CD4-CD8 lineage differentiation.
Collapse
Affiliation(s)
- Yumei Xiong
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda 20892-4259, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Xiong Y, Bosselut R. CD4-CD8 differentiation in the thymus: connecting circuits and building memories. Curr Opin Immunol 2012; 24:139-45. [PMID: 22387323 PMCID: PMC3773541 DOI: 10.1016/j.coi.2012.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/22/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
The proper choice of the CD4-helper or CD8-cytotoxic lineages by developing T cells is crucial for the generation of an antigen-responsive and functionally fit T cell repertoire. Here we present a brief overview of the transcriptional control of this process, with emphasis on two issues. The study of Cd4 expression, that had previously generated important paradigms for transcriptional regulation in eukaryotic cells, now brings new twists to the concept of 'epigenetic memory'. And connections are emerging between transcriptional regulators critical for commitment to either lineage. The present review attempts to integrate these findings and discusses the still elusive mechanisms that match CD4-CD8 lineage differentiation to MHC specificity.
Collapse
Affiliation(s)
- Yumei Xiong
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|