1
|
Colejo-Durán L, Pelletier F, Dillon L, Gagnon A, Bergeron P. Early and adult life environmental effects on reproductive performance in preindustrial women. PLoS One 2024; 19:e0290212. [PMID: 39466728 PMCID: PMC11515999 DOI: 10.1371/journal.pone.0290212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/16/2024] [Indexed: 10/30/2024] Open
Abstract
Early life environments can have long-lasting effects on adult reproductive performance, but disentangling the influence of early and adult life environments on fitness is challenging, especially for long-lived species. Using a detailed dataset spanning over two centuries, we studied how both early and adult life environments impacted reproductive performance in preindustrial women. Due to a wide geographic range, agricultural production was lower in northern compared to southern parishes, and health conditions were worse in urban than rural parishes. We tested whether reproductive traits and offspring survival varied between early and adult life environments by comparing women who moved between different environments during their lifetime with those who moved parishes but remained in the same environment. Our findings reveal that urban-born women had an earlier age at first reproduction and less offspring surviving to adulthood than rural-born women. Moreover, switching from urban to rural led to increased offspring survival, while switching from rural to urban had the opposite effect. Finally, women who switched from rural to urban and from South to North had their first child at an older age compared to those who stayed in the same environment type. Our study underscores the complex and interactive effects of early and adult life environments on reproductive traits, highlighting the need to consider both when studying environmental effects on reproductive outcomes.
Collapse
Affiliation(s)
- Lidia Colejo-Durán
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Biology and Biochemistry, Bishop’s University, Sherbrooke, Québec, Canada
| | - Fanie Pelletier
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lisa Dillon
- Department of Demography, Université de Montréal, Montréal, Québec, Canada
| | - Alain Gagnon
- Department of Demography, Université de Montréal, Montréal, Québec, Canada
| | - Patrick Bergeron
- Department of Biology and Biochemistry, Bishop’s University, Sherbrooke, Québec, Canada
| |
Collapse
|
2
|
Bolte E, Dean T, Garcia B, Seferovic MD, Sauter K, Hummel G, Bucher M, Li F, Hicks J, Qin X, Suter MA, Barrozo ER, Jochum M, Shope C, Friedman JE, Gannon M, Wesolowski SR, McCurdy CE, Kievit P, Aagaard KM. Initiation of metformin in early pregnancy results in fetal bioaccumulation, growth restriction, and renal dysmorphology in a primate model. Am J Obstet Gynecol 2024; 231:352.e1-352.e16. [PMID: 38871238 PMCID: PMC11344684 DOI: 10.1016/j.ajog.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND In recent years, pragmatic metformin use in pregnancy has stretched to include prediabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus, and (most recently) preeclampsia. However, with its expanded use, concerns of unintended harm have been raised. OBJECTIVE This study developed an experimental primate model and applied ultrahigh performance liquid chromatography coupled to triple-quadrupole mass spectrometry for direct quantitation of maternal and fetal tissue metformin levels with detailed fetal biometry and histopathology. STUDY DESIGN Within 30 days of confirmed conception (defined as early pregnancy), 13 time-bred (timed-mated breeding) Rhesus dams with pregnancies designated for fetal necropsy were initiated on twice-daily human dose-equivalent 10 mg/kg metformin or vehicle control. Pregnant dams were maintained as pairs and fed either a control chow or 36% fat Western-style diet. Metformin or placebo vehicle control was delivered in various treats while the animals were separated via a slide. A cesarean delivery was performed at gestational day 145, and amniotic fluid and blood were collected, and the fetus and placenta were delivered. The fetus was immediately necropsied by trained primate center personnel. All fetal organs were dissected, measured, sectioned, and processed per clinical standards. Fluid and tissue metformin levels were assayed using validated ultrahigh performance liquid chromatography coupled to triple-quadrupole mass spectrometry in selected reaction monitoring against standard curves. RESULTS Among 13 pregnancies at gestational day 145 with fetal necropsy, 1 dam and its fetal tissues had detectable metformin levels despite being allocated to the vehicle control group (>1 μmol metformin/kg maternal weight or fetal or placental tissue), whereas a second fetus allocated to the vehicle control group had severe fetal growth restriction (birthweight of 248.32 g [<1%]) and was suspected of having a fetal congenital condition. After excluding these 2 fetal pregnancies from further analyses, 11 fetuses from dams initiated on either vehicle control (n=4: 3 female and 1 male fetuses) or 10 mg/kg metformin (n=7: 5 female and 2 male fetuses) were available for analyses. Among dams initiated on metformin at gestational day 30 (regardless of maternal diet), significant bioaccumulation within the fetal kidney (0.78-6.06 μmol/kg; mean of 2.48 μmol/kg), liver (0.16-0.73 μmol/kg; mean of 0.38 μmol/kg), fetal gut (0.28-1.22 μmol/kg; mean of 0.70 μmol/kg), amniotic fluid (0.43-3.33 μmol/L; mean of 1.88 μmol/L), placenta (0.16-1.00 μmol/kg; mean of 0.50 μmol/kg), fetal serum (0.00-0.66 μmol/L; mean of 0.23 μmol/L), and fetal urine (4.10-174.10 μmol/L; mean of 38.5 μmol/L) was observed, with fetal levels near biomolar equivalent to maternal levels (maternal serum: 0.18-0.86 μmol/L [mean of 0.46 μmol/L]; maternal urine: 42.60-254.00 μmol/L [mean of 149.30 μmol/L]). Western-style diet feeding neither accelerated nor reduced metformin bioaccumulations in maternal or fetal serum, urine, amniotic fluid, placenta, or fetal tissues. In these 11 animals, fetal bioaccumulation of metformin was associated with less fetal skeletal muscle (57% lower cross-sectional area of gastrocnemius) and decreased liver, heart, and retroperitoneal fat masses (P<.05), collectively driving lower delivery weight (P<.0001) without changing the crown-rump length. Sagittal sections of fetal kidneys demonstrated delayed maturation, with disorganized glomerular generations and increased cortical thickness. This renal dysmorphology was not accompanied by structural or functional changes indicative of renal insufficiency. CONCLUSION Our study demonstrates fetal bioaccumulation of metformin with associated fetal growth restriction and renal dysmorphology after maternal initiation of the drug within 30 days of conception in primates. Given these results and the prevalence of metformin use during pregnancy, additional investigation of any potential immediate and enduring effects of prenatal metformin use is warranted.
Collapse
Affiliation(s)
- Erin Bolte
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Tyler Dean
- Oregon National Primate Research Center, Beaverton, OR
| | - Brandon Garcia
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Maxim D Seferovic
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | | | - Gwendolynn Hummel
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Matthew Bucher
- Department of Human Physiology, University of Oregon, Eugene OR
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Xuan Qin
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Melissa A Suter
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Enrico R Barrozo
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Michael Jochum
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Cynthia Shope
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Maureen Gannon
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN
| | | | | | - Paul Kievit
- Oregon National Primate Research Center, Beaverton, OR
| | - Kjersti M Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Oregon National Primate Research Center, Beaverton, OR.
| |
Collapse
|
3
|
Salonen M, Lahdenperä M, Rotkirch A, Lummaa V. Fertility resilience varies by socioeconomic status and sex: Historical trends in childlessness across 150 years. iScience 2024; 27:110227. [PMID: 39021810 PMCID: PMC11253507 DOI: 10.1016/j.isci.2024.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/08/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Fertility dynamics are key drivers of demographic change in a population. Fertility resilience is likely to vary by socioeconomic class, yet little investigated. Using a unique dataset tracking the reproduction of family lineages for 150 years, we explored childlessness by socioeconomic status and sex during the demographic transition and recurring societal and economic disturbances in Finland. Lifetime childlessness doubled from the 1800 birth cohort to the 1945-1949 cohort. Higher socioeconomic status (SES) indicated higher lifetime likelihood to reproduce. The fluctuations in childlessness over time appeared to be driven by the low socioeconomic group, showing low fertility resilience. In contrast, a steady increase was seen in high and moderate SES. Our findings suggest that the family formation of lower socioeconomic groups suffers the most during crises and does not necessarily recuperate. Preventing inequalities in family formation and reproduction should be recognized as a key challenge for population resilience to crises.
Collapse
Affiliation(s)
- Milla Salonen
- Department of Biology, University of Turku, Turku, Finland
| | | | - Anna Rotkirch
- Population Research Institute, Väestöliitto, The Family Federation of Finland, Helsinki, Finland
| | - Virpi Lummaa
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
4
|
van Dijk IK, Nilsson T, Quaranta L. Disease exposure in infancy affects women's reproductive outcomes and offspring health in southern Sweden 1905-2000. Soc Sci Med 2024; 347:116767. [PMID: 38518483 DOI: 10.1016/j.socscimed.2024.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024]
Abstract
Ample evidence demonstrates that early-life adversity negatively affects morbidity and survival in late life. We show that disease exposure in infancy also has a continuous impact on reproduction and health across the female life course and even affects early-life health of the next generation. Using Swedish administrative data, obstetric records, and local infant mortality rates as a measure of disease exposure, we follow women's reproductive careers and offspring health 1905-2000, examining a comprehensive set of outcomes. Women exposed to disease in infancy give birth to a lower proportion of boys, consistent with notions that male fetuses are more vulnerable to adverse conditions and are more often miscarried. Sons of exposed mothers are also more likely to be born preterm and have higher birthweight suggesting in utero out-selection. Exposed women have a greater risk of miscarriage and of male stillbirth, but their overall likelihood of giving birth is not affected.
Collapse
Affiliation(s)
- Ingrid K van Dijk
- Centre for Economic Demography, Department of Economic History, Lund University, Sweden.
| | - Therese Nilsson
- Centre for Economic Demography, Department of Economic History, Lund University, Sweden; Research Institute of Industrial Economics (IFN), Stockholm, Sweden; Department of Economics, Lund University, Sweden.
| | - Luciana Quaranta
- Centre for Economic Demography, Department of Economic History, Lund University, Sweden.
| |
Collapse
|
5
|
Wells JCK, Desoye G, Leon DA. Reconsidering the developmental origins of adult disease paradigm: The 'metabolic coordination of childbirth' hypothesis. Evol Med Public Health 2024; 12:50-66. [PMID: 38380130 PMCID: PMC10878253 DOI: 10.1093/emph/eoae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/18/2023] [Indexed: 02/22/2024] Open
Abstract
In uncomplicated pregnancies, birthweight is inversely associated with adult non-communicable disease (NCD) risk. One proposed mechanism is maternal malnutrition during pregnancy. Another explanation is that shared genes link birthweight with NCDs. Both hypotheses are supported, but evolutionary perspectives address only the environmental pathway. We propose that genetic and environmental associations of birthweight with NCD risk reflect coordinated regulatory systems between mother and foetus, that evolved to reduce risks of obstructed labour. First, the foetus must tailor its growth to maternal metabolic signals, as it cannot predict the size of the birth canal from its own genome. Second, we predict that maternal alleles that promote placental nutrient supply have been selected to constrain foetal growth and gestation length when fetally expressed. Conversely, maternal alleles that increase birth canal size have been selected to promote foetal growth and gestation when fetally expressed. Evidence supports these hypotheses. These regulatory mechanisms may have undergone powerful selection as hominin neonates evolved larger size and encephalisation, since every mother is at risk of gestating a baby excessively for her pelvis. Our perspective can explain the inverse association of birthweight with NCD risk across most of the birthweight range: any constraint of birthweight, through plastic or genetic mechanisms, may reduce the capacity for homeostasis and increase NCD susceptibility. However, maternal obesity and diabetes can overwhelm this coordination system, challenging vaginal delivery while increasing offspring NCD risk. We argue that selection on viable vaginal delivery played an over-arching role in shaping the association of birthweight with NCD risk.
Collapse
Affiliation(s)
- Jonathan C K Wells
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - David A Leon
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
6
|
Levy EJ, Lee A, Siodi IL, Helmich EC, McLean EM, Malone EJ, Pickard MJ, Ranjithkumar R, Tung J, Archie EA, Alberts SC. Early life drought predicts components of adult body size in wild female baboons. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:357-371. [PMID: 37737520 PMCID: PMC10591920 DOI: 10.1002/ajpa.24849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVES In many taxa, adverse early-life environments are associated with reduced growth and smaller body size in adulthood. However, in wild primates, we know very little about whether, where, and to what degree trajectories are influenced by early adversity, or which types of early adversity matter most. Here, we use parallel-laser photogrammetry to assess inter-individual predictors of three measures of body size (leg length, forearm length, and shoulder-rump length) in a population of wild female baboons studied since birth. MATERIALS AND METHODS Using >2000 photogrammetric measurements of 127 females, we present a cross-sectional growth curve of wild female baboons (Papio cynocephalus) from juvenescence through adulthood. We then test whether females exposed to several important sources of early-life adversity-drought, maternal loss, low maternal rank, or a cumulative measure of adversity-were smaller for their age than females who experienced less adversity. Using the "animal model," we also test whether body size is heritable in this study population. RESULTS Prolonged early-life drought predicted shorter limbs but not shorter torsos (i.e., shoulder-rump lengths). Our other measures of early-life adversity did not predict variation in body size. Heritability estimates for body size measures were 36%-67%. Maternal effects accounted for 13%-17% of the variance in leg and forearm length, but no variance in torso length. DISCUSSION Our results suggest that baboon limbs, but not torsos, grow plastically in response to maternal effects and energetic early-life stress. Our results also reveal considerable heritability for all three body size measures in this study population.
Collapse
Affiliation(s)
- Emily J. Levy
- Department of Biology, Indiana University, Bloomington IN 47405, USA
- Department of Biology, Duke University, Durham NC 27708, USA
| | - Anna Lee
- Department of Biology, Duke University, Durham NC 27708, USA
| | | | - Emma C. Helmich
- Department of Biology, Duke University, Durham NC 27708, USA
| | - Emily M. McLean
- Division of Natural Sciences, Oxford College of Emory University, Oxford, GA, 30054, USA
| | - Elise J. Malone
- Department of Biology, Duke University, Durham NC 27708, USA
| | | | - Riddhi Ranjithkumar
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jenny Tung
- Department of Biology, Duke University, Durham NC 27708, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology, Duke University, Durham NC 27708, USA
- Canadian Institute for Advanced Research, Toronto, Canada M5G 1M1, Canada
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame IN, 46556, USA
| | - Susan C. Alberts
- Department of Biology, Duke University, Durham NC 27708, USA
- Department of Evolutionary Anthropology, Duke University, Durham NC 27708, USA
| |
Collapse
|
7
|
Dib S, Fewtrell M, Wells JCK. Maternal capital predicts investment in infant growth and development through lactation. Front Nutr 2023; 10:1272938. [PMID: 37885440 PMCID: PMC10598761 DOI: 10.3389/fnut.2023.1272938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Maternal capital (MC) is a broad term from evolutionary biology, referring to any aspects of maternal phenotype that represent resources available for investment in offspring. We investigated MC in breastfeeding mothers of late preterm and early term infants, examining its relationship with infant and breastfeeding outcomes. We also determined whether MC modified the effect of the relaxation intervention on these outcomes. Methods The data was collected as part of a randomized controlled trial investigating breastfeeding relaxation in 72 mothers of late preterm and early term infants. Indicators of MC (socioeconomic, social, somatic, reproductive, psychological, and cognitive) were collected at baseline at 2-3 weeks post-delivery. Principal Component Analysis was conducted for the MC measures and two components were identified: 1."Subjective" maternal capital which included stress and depression scores, and 2."Objective" maternal capital which included height, infant birth weight, and verbal memory. Univariate linear regression was conducted to assess the relationship between objective and subjective MC (predictors) and infant growth, infant behavior, maternal behavior, and infant feeding variables (outcomes) at 6-8 weeks. The interaction of MC and intervention assignment with outcomes was assessed. Results Higher objective MC was significantly associated with higher infant weight (0.43; 95%CI 0.21,0.66) and length z-scores (0.47; 95%CI 0.19,0.76), shorter duration of crying (-17.5; 95%CI -33.2,-1.9), and lower food (-0.28; 95%CI -0.48,-0.08) and satiety responsiveness (-0.17; 95%CI -0.31,-0.02) at 6-8 weeks. It was also associated with greater maternal responsiveness to infant cues (-0.05, 95%CI -0.09,-0.02 for non-responsiveness). Greater subjective maternal capital was significantly associated with higher breastfeeding frequency (2.3; 95%CI 0.8,3.8) and infant appetite (0.30; 95%CI 0.07,0.54). There was a significant interaction between the intervention assignment and objective MC for infant length, with trends for infant weight and crying, which indicated that the intervention had greater effects among mothers with lower capital. Conclusion Higher MC was associated with better infant growth and shorter crying duration. This was possibly mediated through more frequent breastfeeding and prompt responsiveness to infant cues, reflecting greater maternal investment. The findings also suggest that a relaxation intervention was most effective among those with low MC, suggesting some reduction in social inequalities in health.
Collapse
Affiliation(s)
| | | | - Jonathan C. K. Wells
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
8
|
Urlacher SS. The energetics of childhood: Current knowledge and insights into human variation, evolution, and health. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 36866969 DOI: 10.1002/ajpa.24719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/22/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
How organisms capture and ultimately use metabolic energy-a limiting resource of life-has profound implications for understanding evolutionary legacies and current patterns of phenotypic variation, adaptation, and health. Energetics research among humans has a rich history in biological anthropology and beyond. The energetics of childhood, however, remains relatively underexplored. This shortcoming is notable given the accepted importance of childhood in the evolution of the unique human life history pattern as well as the known sensitivity of childhood development to local environments and lived experiences. In this review, I have three objectives: (1) To overview current knowledge regarding how children acquire and use energy, highlighting work among diverse human populations and pointing to recent advances and remaining areas of uncertainty; (2) To discuss key applications of this knowledge for understanding human variation, evolution, and health; (3) To recommend future avenues for research. A growing body of evidence supports a model of trade-offs and constraint in childhood energy expenditure. This model, combined with advancements on topics such as the energetics of immune activity, the brain, and the gut, provides insights into the evolution of extended human subadulthood and the nature of variation in childhood development, lifetime phenotype, and health.
Collapse
Affiliation(s)
- Samuel S Urlacher
- Department of Anthropology, Baylor University, Waco, Texas, USA
- Child and Brain Development Program, CIFAR, Toronto, Canada
| |
Collapse
|
9
|
Lea AJ, Clark AG, Dahl AW, Devinsky O, Garcia AR, Golden CD, Kamau J, Kraft TS, Lim YAL, Martins D, Mogoi D, Pajukanta P, Perry G, Pontzer H, Trumble BC, Urlacher SS, Venkataraman VV, Wallace IJ, Gurven M, Lieberman D, Ayroles JF. Evolutionary mismatch and the role of GxE interactions in human disease. ARXIV 2023:arXiv:2301.05255v2. [PMID: 36713247 PMCID: PMC9882586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Globally, we are witnessing the rise of complex, non-communicable diseases (NCDs) related to changes in our daily environments. Obesity, asthma, cardiovascular disease, and type 2 diabetes are part of a long list of "lifestyle" diseases that were rare throughout human history but are now common. A key idea from anthropology and evolutionary biology-the evolutionary mismatch hypothesis-seeks to explain this phenomenon. It posits that humans evolved in environments that radically differ from the ones experienced by most people today, and thus traits that were advantageous in past environments may now be "mismatched" and disease-causing. This hypothesis is, at its core, a genetic one: it predicts that loci with a history of selection will exhibit "genotype by environment" (GxE) interactions and have differential health effects in ancestral versus modern environments. Here, we discuss how this concept could be leveraged to uncover the genetic architecture of NCDs in a principled way. Specifically, we advocate for partnering with small-scale, subsistence-level groups that are currently transitioning from environments that are arguably more "matched" with their recent evolutionary history to those that are more "mismatched". These populations provide diverse genetic backgrounds as well as the needed levels and types of environmental variation necessary for mapping GxE interactions in an explicit mismatch framework. Such work would make important contributions to our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and sociocultural contexts.
Collapse
Affiliation(s)
- Amanda J. Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Child and Brain Development, Canadian Institute for Advanced Research, Toronto, Canada
| | - Andrew G. Clark
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Andrew W. Dahl
- Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Medical Center, New York, NY, USA
- Comprehensive Epilepsy Center, NYU Langone Medical Center, New York, NY, USA
| | - Angela R. Garcia
- Center for Evolution and Medicine, Arizona State University, Tempe, United States
| | | | - Joseph Kamau
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Thomas S. Kraft
- Department of Anthropology, University of Utah, Salt Lake City, USA
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Dino Martins
- Turkana Basin Research Institute, Turkana, Kenya
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, USA
| | - Donald Mogoi
- Director at County Government of Laikipia, Nanyuki, Kenya
| | - Paivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - George Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Herman Pontzer
- Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Benjamin C. Trumble
- School of Human Evolution and Social Change, Arizona State University, Tempe, US
- Center for Evolution and Medicine, Arizona State University, Tempe, United States
| | - Samuel S. Urlacher
- Department of Anthropology, Baylor University, Waco, TX, USA
- Child and Brain Development, Canadian Institute for Advanced Research, Toronto, Canada
| | | | - Ian J. Wallace
- Department of Anthropology, University of New Mexico, Albuquerque, USA
| | - Michael Gurven
- Department of Anthropology, University of California: Santa Barbara, Santa Barbara, CA, USA
| | - Daniel Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Julien F. Ayroles
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
10
|
Ehlman SM, Scherer U, Bierbach D, Francisco FA, Laskowski KL, Krause J, Wolf M. Leveraging big data to uncover the eco-evolutionary factors shaping behavioural development. Proc Biol Sci 2023; 290:20222115. [PMID: 36722081 PMCID: PMC9890127 DOI: 10.1098/rspb.2022.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mapping the eco-evolutionary factors shaping the development of animals' behavioural phenotypes remains a great challenge. Recent advances in 'big behavioural data' research-the high-resolution tracking of individuals and the harnessing of that data with powerful analytical tools-have vastly improved our ability to measure and model developing behavioural phenotypes. Applied to the study of behavioural ontogeny, the unfolding of whole behavioural repertoires can be mapped in unprecedented detail with relative ease. This overcomes long-standing experimental bottlenecks and heralds a surge of studies that more finely define and explore behavioural-experiential trajectories across development. In this review, we first provide a brief guide to state-of-the-art approaches that allow the collection and analysis of high-resolution behavioural data across development. We then outline how such approaches can be used to address key issues regarding the ecological and evolutionary factors shaping behavioural development: developmental feedbacks between behaviour and underlying states, early life effects and behavioural transitions, and information integration across development.
Collapse
Affiliation(s)
- Sean M. Ehlman
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - David Bierbach
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Fritz A. Francisco
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany
| | - Kate L. Laskowski
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| | - Jens Krause
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| |
Collapse
|
11
|
Godoi AR, Fioravante VC, Santos BM, Martinez FE, Pinheiro PFF. Maternal exposure of rats to sodium saccharin during gestation and lactation on male offspring†. Biol Reprod 2023; 108:98-106. [PMID: 36219170 DOI: 10.1093/biolre/ioac190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/29/2022] [Accepted: 10/06/2022] [Indexed: 01/20/2023] Open
Abstract
We investigated the effects of fetal programming in Sprague-Dawley rats through the maternal consumption of sodium saccharin on the testicular structure and function in male offspring. Feed intake and efficiency, organ and fat weight, quantification and expression of androgen receptor (AR), and proliferating cell nuclear antigen (PCNA) proteins, sperm count, and hormone levels were determined. Consumption alterations were found in the final weeks of the experiment. Decreases in AR and PCNA expression and quantification, tubular diameter, and luminal volume, and increases in epithelial and interstitial relative volumes were observed. Lower sperm count and transit, and lower estradiol concentration were also found. Sodium saccharin consumption by dams programmed male offspring by affecting the hypothalamic-pituitary-gonad axis with alterations in the Sertoli cell population, in spermatogonia proliferation, the expression and quantification of AR, and in sperm count. We hypothesized that these changes may be due to an estradiol reduction that caused the loosening of adhesion junctions of the blood-testis barrier, causing cell losses during spermatogenesis, also reflected by a decrease in tubular diameter with an increase in epithelial volume and consequent decrease in luminal volume. We conclude that maternal sodium saccharin consumption during pregnancy and lactation programmed alterations in the reproductive parameters of male offspring, thus influencing spermatogenesis.
Collapse
Affiliation(s)
- Alana Rezende Godoi
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Vanessa Caroline Fioravante
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Beatriz Melo Santos
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Francisco Eduardo Martinez
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | | |
Collapse
|
12
|
Farias SDS, Dierings AC, Mufalo VC, Sabei L, Parada Sarmiento M, da Silva AN, Ferraz PA, Pugliesi G, Ribeiro CVDM, Oliveira CADA, Zanella AJ. Asinine milk mitigates stress-mediated immune, cortisol and behavioral responses of piglets to weaning: A study to foster future interventions in humans. Front Immunol 2023; 14:1139249. [PMID: 37122716 PMCID: PMC10140756 DOI: 10.3389/fimmu.2023.1139249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The present study assessed whether asinine milk supplementation improved the immune and behavioral responses of piglets during an early life weaning stress event as a model for its future use in humans. Methods For this, 48 piglets from 4 different litters were used. At 20 days of age, piglets were weighed and allocated with their litter and dam into group pens until 28 days of age. Four piglets from each litter were then randomly assigned to either (1) asinine milk supplementation (n = 16) (2), skimmed cow milk supplementation (n = 16) or (3) no supplementation (n = 16; control group). The supplementations were voluntarily administered for 3 days preweaning and 3 days postweaning using a baby bottle. The effects on the weaning stress response were assessed through salivary cortisol measurements; behavioral tests such as the open field, novel object end elevated plus maze tests; and gene expression of HSD11B1, NR3C1 and IL1B in PBMCs, which was determined by RT-qPCR and normalized to GAPDH and UBB. To test the effect of the supplementations on weight, milk intake, gene expression, and behavior, a randomized block design was used with repeated measurements over time by the PROC MIXED procedure. Results and discussion The effects on salivary cortisol were determined using the ratio between the morning and afternoon concentrations, considering the time before and after the weaning event. Principal component analysis (PCA) and Fisher's test were performed to evaluate the behavior test data. When comparing salivary cortisol concentrations between the pre- and postweaning periods, there was a difference (p < 0.05) between the supplementation groups in the afternoon period, suggesting that piglets fed asinine milk had lower afternoon cortisol concentrations postweaning than their counterparts. For the behavioral tests, the supplementations had no measurable effects. No difference was between groups pre- and postweaning for the expression of HSD11B2, which codes for an enzyme that breaks down cortisol. However, the expression of NR3C1, which encodes the glucocorticoid receptor, was significantly upregulated in piglets supplemented with cow milk (mean 1.245; p < 0.05). Conclusion Asinine milk downregulated 1L1B gene expression, which codes for an inflammatory cytokine. In conclusion, these results suggest that supplementation with asinine milk may represent a strategy to diminish the damage associated with an early life event by modulating IL1B expression and reducing salivary cortisol levels in piglets undergoing weaning stress. Further transcriptomic and metabolomic studies may improve our understanding of the molecular pathways that mediate this systemic immune-mediated response.
Collapse
Affiliation(s)
- Sharacely de Souza Farias
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- *Correspondence: Sharacely de Souza Farias, ; Adroaldo José Zanella,
| | - Ana Carolina Dierings
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Vinicius Cardoso Mufalo
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Leandro Sabei
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marisol Parada Sarmiento
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Arthur Nery da Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Priscila Assis Ferraz
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Claudio Vaz Di Mambro Ribeiro
- Department of Animal Science, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | - Chiara Albano de Araujo Oliveira
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | - Adroaldo José Zanella
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- *Correspondence: Sharacely de Souza Farias, ; Adroaldo José Zanella,
| |
Collapse
|
13
|
Mc Auley MT. Dietary restriction and ageing: Recent evolutionary perspectives. Mech Ageing Dev 2022; 208:111741. [PMID: 36167215 DOI: 10.1016/j.mad.2022.111741] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 12/30/2022]
Abstract
Dietary restriction (DR) represents one of the most robust interventions for extending lifespan. It is not known how DR increases lifespan. The prevailing evolutionary hypothesis suggests the DR response redirects metabolic resources towards somatic maintenance at the expense of investment in reproduction. Consequently, DR acts as a proximate mechanism which promotes a pro-longevity phenotype. This idea is known as resource reallocation. However, growing findings suggest this paradigm could be incomplete. It has been argued that during DR it is not always possible to identify a trade-off between reproduction and lifespan. It is also suggested the relationship between reproduction and somatic maintenance can be uncoupled by the removal or inclusion of specific nutrients. These findings have created an imperative to re-explore the nexus between DR and evolutionary theory. In this review I will address this evolutionary conundrum. My overarching objectives are fourfold: (1) to outline some of the evidence for and against resource reallocation; (2) to examine recent findings which have necessitated a theoretical re-evaluation of the link between life history theory and DR; (3) to present alternatives to the resource reallocation model; (4) to present emerging variables which potentially influence how DR effects evolutionary trade-offs.
Collapse
Affiliation(s)
- Mark T Mc Auley
- Faculty of Science and Engineering, Thornton Science Park, University of Chester, Parkgate Road, Chester CH1 4BJ, UK.
| |
Collapse
|
14
|
Sergio F, Tavecchia G, Blas J, Tanferna A, Hiraldo F, Korpimaki E, Beissinger SR. Hardship at birth alters the impact of climate change on a long-lived predator. Nat Commun 2022; 13:5517. [PMID: 36167683 PMCID: PMC9515099 DOI: 10.1038/s41467-022-33011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
Climate change is increasing the frequency of extreme events, such as droughts or hurricanes, with substantial impacts on human and wildlife communities. Extreme events can affect individuals through two pathways: by altering the fitness of adults encountering a current extreme, and by affecting the development of individuals born during a natal extreme, a largely overlooked process. Here, we show that the impact of natal drought on an avian predator overrode the effect of current drought for decades, so that individuals born during drought were disadvantaged throughout life. Incorporation of natal effects caused a 40% decline in forecasted population size and a 21% shortening of time to extinction. These results imply that climate change may erode populations more quickly and severely than currently appreciated, suggesting the urgency to incorporate “penalties” for natal legacies in the analytical toolkit of impact forecasts. Similar double impacts may apply to other drivers of global change. The long-term effects of extreme climate events in early life are largely overlooked in forecasts of climate change impacts. Here, the authors show that raptorial red kites born during drought are disadvantaged throughout life, and including this climate legacy leads to substantial decreases in forecasted population size and time to extinction.
Collapse
Affiliation(s)
- Fabrizio Sergio
- Department of Conservation Biology, Estación Biológica de Doñana - CSIC, 41092, Seville, Spain.
| | - Giacomo Tavecchia
- Population Ecology Group, Institute for Mediterranean Studies (IMEDEA), CSIC-UIB, 07190, Esporles, Spain
| | - Julio Blas
- Department of Conservation Biology, Estación Biológica de Doñana - CSIC, 41092, Seville, Spain
| | - Alessandro Tanferna
- Department of Conservation Biology, Estación Biológica de Doñana - CSIC, 41092, Seville, Spain
| | - Fernando Hiraldo
- Department of Conservation Biology, Estación Biológica de Doñana - CSIC, 41092, Seville, Spain
| | - Erkki Korpimaki
- Section of Ecology, Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Steven R Beissinger
- Department of Environmental Science, Policy & Management, University of California, Berkeley, 94720, CA, USA.,Museum of Vertebrate Zoology, University of California, Berkeley, 94720, CA, USA
| |
Collapse
|
15
|
van de Crommenacker J, Hammers M, Dugdale HL, Burke TA, Komdeur J, Richardson DS. Early-life conditions impact juvenile telomere length, but do not predict later life-history strategies or fitness in a wild vertebrate. Ecol Evol 2022; 12:e8971. [PMID: 35784039 PMCID: PMC9207752 DOI: 10.1002/ece3.8971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/05/2022] Open
Abstract
Environmental conditions experienced during early life may have long-lasting effects on later-life phenotypes and fitness. Individuals experiencing poor early-life conditions may suffer subsequent fitness constraints. Alternatively, individuals may use a strategic "Predictive Adaptive Response" (PAR), whereby they respond-in terms of physiology or life-history strategy-to the conditions experienced in early life to maximize later-life fitness. Particularly, the Future Lifespan Expectation (FLE) PAR hypothesis predicts that when poor early-life conditions negatively impact an individual's physiological state, it will accelerate its reproductive schedule to maximize fitness during its shorter predicted life span. We aimed to measure the impact of early-life conditions and resulting fitness across individual lifetimes to test predictions of the FLE hypothesis in a wild, long-lived model species. Using a long-term individual-based dataset, we investigated how early-life conditions are linked with subsequent fitness in an isolated population of the Seychelles warbler Acrocephalus sechellensis. How individuals experience early-life environmental conditions may vary greatly, so we also tested whether telomere length-shorter telomers are a biomarker of an individual's exposure to stress-can provide an effective measure of the individual-specific impact of early-life conditions. Specifically, under the FLE hypothesis, we would expect shorter telomeres to be associated with accelerated reproduction. Contrary to expectations, shorter juvenile telomere length was not associated with poor early-life conditions, but instead with better conditions, probably as a result of faster juvenile growth. Furthermore, neither juvenile telomere length, nor other measures of early-life conditions, were associated with age of first reproduction or the number of offspring produced during early life in either sex. We found no support for the FLE hypothesis. However, for males, poor early-life body condition was associated with lower first-year survival and reduced longevity, indicating that poor early-life conditions pose subsequent fitness constraints. Our results also showed that using juvenile telomere length as a measure of early-life conditions requires caution, as it is likely to not only reflect environmental stress but also other processes such as growth.
Collapse
Affiliation(s)
- Janske van de Crommenacker
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - Martijn Hammers
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - Hannah L. Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
- Faculty of Biological SciencesSchool of BiologyUniversity of LeedsLeedsUK
| | - Terry A. Burke
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - David S. Richardson
- School of Biological SciencesUniversity of East AngliaNorfolkUK
- Nature SeychellesRoche CaimanMahéSeychelles
| |
Collapse
|
16
|
Vedder O, Bichet C, Tschirren B. The Effect of Manipulated Prenatal Conditions on Growth, Survival, and Reproduction Throughout the Complete Life Course of a Precocial Bird. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.834433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The quality of the environment individuals experience during development is commonly regarded as very influential on performance in later life. However, studies that have experimentally manipulated the early-life environment and subsequently measured individual performance in all components of fitness over the complete life course are scarce. In this study, we incubated fertile eggs of Japanese quail (Coturnix japonica) at substandard and standard incubation temperature, and monitored growth, survival, and reproduction throughout the complete life course. While embryonic development was slower and hatching success tended to be lower under substandard incubation temperature, the prenatal treatment had no effect on post-hatching growth, survival to sexual maturity, or age at first reproduction. In adulthood, body mass and investment in individual egg mass peaked at middle age, irrespective of the prenatal treatment. Individual reproduction rate declined soon after its onset, and was higher in females that lived longer. Yet, reproduction, and its senescence, were independent of the prenatal treatment. Similarly, adult survival over the complete lifespan was not affected. Hence, we did not find evidence for effects on performance beyond the developmental period that was manipulated. Our results suggest that effects of unfavorable developmental conditions on individual performance later in life could be negligible in some circumstances.
Collapse
|
17
|
Bar-Sadeh B, Amichai OE, Pnueli L, Begum K, Leeman G, Emes RD, Stöger R, Bentley GR, Melamed P. Epigenetic regulation of 5α reductase-1 underlies adaptive plasticity of reproductive function and pubertal timing. BMC Biol 2022; 20:11. [PMID: 34996447 PMCID: PMC8742331 DOI: 10.1186/s12915-021-01219-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Background Women facing increased energetic demands in childhood commonly have altered adult ovarian activity and shorter reproductive lifespan, possibly comprising a strategy to optimize reproductive success. Here, we sought to understand the mechanisms of early-life programming of reproductive function, by integrating analysis of reproductive tissues in an appropriate mouse model with methylation analysis of proxy tissue DNA in a well-characterized population of Bangladeshi migrants in the UK. Bangladeshi women whose childhood was in Bangladesh were found to have later pubertal onset and lower age-matched ovarian reserve than Bangladeshi women who grew-up in England. Subsequently, we aimed to explore the potential relevance to the altered reproductive phenotype of one of the genes that emerged from the screens. Results Of the genes associated with differential methylation in the Bangladeshi women whose childhood was in Bangladesh as compared to Bangladeshi women who grew up in the UK, 13 correlated with altered expression of the orthologous gene in the mouse model ovaries. These mice had delayed pubertal onset and a smaller ovarian reserve compared to controls. The most relevant of these genes for reproductive function appeared to be SRD5A1, which encodes the steroidogenic enzyme 5α reductase-1. SRD5A1 was more methylated at the same transcriptional enhancer in mice ovaries as in the women’s buccal DNA, and its expression was lower in the hypothalamus of the mice as well, suggesting a possible role in the central control of reproduction. The expression of Kiss1 and Gnrh was also lower in these mice compared to controls, and inhibition of 5α reductase-1 reduced Kiss1 and Gnrh mRNA levels and blocked GnRH release in GnRH neuronal cell cultures. Crucially, we show that inhibition of this enzyme in female mice in vivo delayed pubertal onset. Conclusions SRD5A1/5α reductase-1 responds epigenetically to the environment and its downregulation appears to alter the reproductive phenotype. These findings help to explain diversity in reproductive characteristics and how they are shaped by early-life environment and reveal novel pathways that might be targeted to mitigate health issues caused by life-history trade-offs. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01219-6.
Collapse
Affiliation(s)
- Ben Bar-Sadeh
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Or E Amichai
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Khurshida Begum
- Department of Anthropology, Durham University, Durham, DH1 3LE, UK
| | - Gregory Leeman
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Richard D Emes
- School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | | | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
18
|
Roubinov D, Meaney MJ, Boyce WT. Change of pace: How developmental tempo varies to accommodate failed provision of early needs. Neurosci Biobehav Rev 2021; 131:120-134. [PMID: 34547365 PMCID: PMC8648258 DOI: 10.1016/j.neubiorev.2021.09.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/30/2021] [Accepted: 09/16/2021] [Indexed: 01/13/2023]
Abstract
The interplay of genes and environments (GxE) is a fundamental source of variation in behavioral and developmental outcomes. Although the role of developmental time (T) in the unfolding of such interactions has yet to be fully considered, GxE operates within a temporal frame of reference across multiple timescales and degrees of biological complexity. Here, we consider GxExT interactions to understand adversity-induced developmental acceleration or deceleration whereby environmental conditions hasten or hinder children's development. To date, developmental pace changes have been largely explained through a focus on the individual: for example, how adversity "wears down" aging biological systems or how adversity accelerates or decelerates maturation to optimize reproductive fitness. We broaden such theories by positing shifts in developmental pace in response to the parent-child dyad's capacity or incapacity for meeting children's early, physiological and safety needs. We describe empirical evidence and potential neurobiological mechanisms supporting this new conceptualization of developmental acceleration and deceleration. We conclude with suggestions for future research on the developmental consequences of early adverse exposures.
Collapse
Affiliation(s)
- Danielle Roubinov
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, United States.
| | - Michael J Meaney
- Department of Psychiatry and Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, H3H 1R4, Canada; Child and Brain Development Program, CIFAR, Toronto, Ontario, M5G 1M1, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A ⁎STAR), 117609, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - W Thomas Boyce
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, United States; Child and Brain Development Program, CIFAR, Toronto, Ontario, M5G 1M1, Canada; Department of Pediatrics, University of California, San Francisco, United States
| |
Collapse
|
19
|
Abstract
Purpose of Review To review the effects of early-life, preconception, and prior-generation exposures on reproductive health in women. Recent Findings Women’s early-life factors can affect reproductive health by contributing to health status or exposure level on entering pregnancy. Alternately, they can have permanent effects, regardless of later-life experience. Nutrition, social class, parental smoking, other adverse childhood experiences, environmental pollutants, infectious agents, and racism and discrimination all affect reproductive health, even if experienced in childhood or in utero. Possible transgenerational effects are now being investigated through three- or more-generation studies. These effects occur with mechanisms that may include direct exposure, behavioral, endocrine, inflammatory, and epigenetic pathways. Summary Pregnancy is increasingly understood in a life course perspective, but rigorously testing hypotheses on early-life effects is still difficult. In order to improve the health outcomes of all women, we need to expand our toolkit of methods and theory. Supplementary Information The online version contains supplementary material available at 10.1007/s40471-021-00279-0.
Collapse
|
20
|
Hsu CH, Posegga O, Fischbach K, Engelhardt H. Examining the trade-offs between human fertility and longevity over three centuries using crowdsourced genealogy data. PLoS One 2021; 16:e0255528. [PMID: 34351988 PMCID: PMC8341544 DOI: 10.1371/journal.pone.0255528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
The evolution theory of ageing predicts that reproduction comes with long-term costs of survival. However, empirical studies in human species report mixed findings of the relationship between fertility and longevity, which varies by populations, time periods, and individual characteristics. One explanation underscores that changes in survival conditions over historical periods can moderate the negative effect of human fertility on longevity. This study investigates the fertility-longevity relationship in Europe during a period of rapid modernisation (seventeenth to twentieth centuries) and emphasises the dynamics across generations. Using a crowdsourced genealogy dataset from the FamiLinx project, our sample consists of 81,924 women and 103,642 men born between 1601 and 1910 across 16 European countries. Results from multilevel analyses show that higher fertility has a significantly negative effect on longevity. For both women and men, the negative effects are stronger among the older cohorts and have reduced over time. Moreover, we find similar trends in the dynamic associations between fertility and longevity across four geographical regions in Europe. Findings and limitations of this study call for further investigations into the historical dynamics of multiple mechanisms behind the human evolution of ageing.
Collapse
Affiliation(s)
- Chen-Hao Hsu
- Department of Sociology, University of Bamberg, Bamberg, Germany
- * E-mail:
| | - Oliver Posegga
- Department of Information Systems and Social Networks, University of Bamberg, Bamberg, Germany
| | - Kai Fischbach
- Department of Information Systems and Social Networks, University of Bamberg, Bamberg, Germany
| | - Henriette Engelhardt
- Department of Sociology, University of Bamberg, Bamberg, Germany
- The State Institute for Family Research (ifb), Bamberg, Germany
| |
Collapse
|
21
|
Marasco V, Boner W, Griffiths K, Heidinger B, Monaghan P. Repeated exposure to challenging environmental conditions influences telomere dynamics across adult life as predicted by changes in mortality risk. FASEB J 2021; 35:e21743. [PMID: 34192361 DOI: 10.1096/fj.202100556r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
The effects of stress exposure are likely to vary depending on life-stage and stressor. While it has been postulated that mild stress exposure may have beneficial effects, the duration of such effects and the underlying mechanisms are unclear. While the long-term effects of early-life stress are relatively well studied, we know much less about the effects of exposure in adulthood since the early- and adult-life environments are often similar. We previously reported that repeated experimental exposure to a relatively mild stressor in female zebra finches, first experienced in young adulthood, initially had no effect on mortality risk, reduced mortality in middle age, but the apparently beneficial effects disappeared in old age. We show here that this is underpinned by differences between the control and stress-exposed group in the pattern of telomere change, with stress-exposed birds showing reduced telomere loss in middle adulthood. We thereby provide novel experimental evidence that telomere dynamics play a key role linking stress resilience and aging.
Collapse
Affiliation(s)
- Valeria Marasco
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Britt Heidinger
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
22
|
Tuljapurkar S, Zuo W, Coulson T, Horvitz C, Gaillard JM. Distributions of LRS in varying environments. Ecol Lett 2021; 24:1328-1340. [PMID: 33904254 DOI: 10.1111/ele.13745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/05/2021] [Indexed: 11/30/2022]
Abstract
The lifetime reproductive success (LRS) of individuals is affected by random events such as death, realized growth or realized reproduction, and the outcomes of these events can differ even when individuals have identical probabilities. Another source of randomness arises when these probabilities also change over time in variable environments. For structured populations in stochastic environments, we extend our recent method to determine how birth environment and birth stage determine the random distribution of the LRS. Our results provide a null model that quantifies effects on LRS of just the birth size or stage. Using Roe deer Capreolus capreolus as a case study, we show that the effect of an individual's birth environment on LRS varies with the frequency of environments and their temporal autocorrelation, and that lifetime performance is affected by changes in the pattern of environmental states expected as a result of climate change.
Collapse
Affiliation(s)
| | - Wenyun Zuo
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Tim Coulson
- Department of Zoology, University of Oxford, Oxford, UK
| | - Carol Horvitz
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Villeurbanne, France
| |
Collapse
|
23
|
Sanghvi K, Zajitschek F, Iglesias-Carrasco M, Head ML. Sex- and trait-specific silver-spoon effects of developmental environments, on ageing. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10115-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Vedder O, Pen I, Bouwhuis S. How fitness consequences of early-life conditions vary with age in a long-lived seabird: A Bayesian multivariate analysis of age-specific reproductive values. J Anim Ecol 2021; 90:1505-1514. [PMID: 33694165 DOI: 10.1111/1365-2656.13471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/05/2021] [Indexed: 12/01/2022]
Abstract
Evolutionary theory suggests that individuals can benefit from deferring the fitness cost of developing under poor conditions to later in life. Although empirical evidence for delayed fitness costs of poor developmental conditions is abundant, individuals that die prematurely have not often been incorporated when estimating fitness, such that age-specific fitness costs, and therefore the relative importance of delayed fitness costs are actually unknown. We developed a Bayesian statistical framework to estimate age-specific reproductive values in relation to developmental conditions. We applied it to data obtained from a long-term longitudinal study of common terns Sterna hirundo, using sibling rank to describe variation in developmental conditions. Common terns have a maximum of three chicks, and later hatching chicks acquire less food, grow more slowly and have a lower fledging probability than their earlier hatched siblings. We estimated fitness costs in adulthood to constitute c. 45% and 70% of the total fitness costs of hatching third and second, respectively, compared to hatching first. This was due to third-ranked hatchlings experiencing especially high pre-fledging mortality, while second-ranked hatchlings had lower reproductive success in adulthood. Both groups had slightly lower adult survival. There was, however, no evidence for sibling rank-specific rates of senescence. We additionally found years with low fledgling production to be associated with particularly strong pre-fledging selection on sibling rank, and with increased adult survival to the next breeding season. This suggests that adults reduce parental allocation to reproduction in poor years, which disproportionately impacts low-ranked offspring. Interpreting these results, we suggest that selection at the level of the individual offspring for delaying fitness costs is counteracted by selection for parental reduction in brood size when resources are limiting.
Collapse
Affiliation(s)
- Oscar Vedder
- Institute of Avian Research, Wilhelmshaven, Germany.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ido Pen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
25
|
Lea AJ, Waigwa C, Muhoya B, Lotukoi F, Peng J, Henry LP, Abhyankar V, Kamau J, Martins D, Gurven M, Ayroles JF. Socioeconomic status effects on health vary between rural and urban Turkana. Evol Med Public Health 2021; 9:406-419. [PMID: 34987823 PMCID: PMC8697843 DOI: 10.1093/emph/eoab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/15/2021] [Indexed: 11/14/2022] Open
Abstract
Background and objectives Understanding the social determinants of health is a major goal in evolutionary biology and human health research. Low socioeconomic status (often operationalized as absolute material wealth) is consistently associated with chronic stress, poor health and premature death in high-income countries. However, the degree to which wealth gradients in health are universal—or are instead made even steeper under contemporary, post-industrial conditions—remains poorly understood. Methodology We quantified absolute material wealth and several health outcomes among a population of traditional pastoralists, the Turkana of northwest Kenya, who are currently transitioning toward a more urban, market-integrated lifestyle. We assessed whether wealth associations with health differed in subsistence-level versus urban contexts. We also explored the causes and consequences of wealth-health associations by measuring serum cortisol, potential sociobehavioral mediators in early life and adulthood, and adult reproductive success (number of surviving offspring). Results Higher socioeconomic status and greater material wealth predicts better self-reported health and more offspring in traditional pastoralist Turkana, but worse cardiometabolic health and fewer offspring in urban Turkana. We do not find robust evidence for either direct biological mediators (cortisol) or indirect sociobehavioral mediators (e.g. adult diet or health behaviors, early life experiences) of wealth–health relationships in either context. Conclusions and implications While social gradients in health are well-established in humans and animals across a variety of socioecological contexts, we show that the relationship between wealth and health can vary within a single population. Our findings emphasize that changes in economic and societal circumstances may directly alter how, why and under what conditions socioeconomic status predicts health. Lay Summary High socioeconomic status predicts better health and more offspring in traditional Turkana pastoralists, but worse health and fewer offspring in individuals of the same group living in urban areas. Together, our study shows that under different economic and societal circumstances, wealth effects on health may manifest in very different ways.
Collapse
Affiliation(s)
- Amanda J Lea
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Charles Waigwa
- Mpala Research Centre, Nanyuki, Kenya
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Benjamin Muhoya
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Mpala Research Centre, Nanyuki, Kenya
| | | | - Julie Peng
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lucas P Henry
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Varada Abhyankar
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Joseph Kamau
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Dino Martins
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, USA
- Mpala Research Centre, Nanyuki, Kenya
| | - Michael Gurven
- Department of Anthropology, University of California: Santa Barbara, Santa Barbara, CA, USA
| | - Julien F Ayroles
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
26
|
Lea AJ, Martins D, Kamau J, Gurven M, Ayroles JF. Urbanization and market integration have strong, nonlinear effects on cardiometabolic health in the Turkana. SCIENCE ADVANCES 2020; 6:eabb1430. [PMID: 33087362 PMCID: PMC7577730 DOI: 10.1126/sciadv.abb1430] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/04/2020] [Indexed: 05/11/2023]
Abstract
The "mismatch" between evolved human physiology and Western lifestyles is thought to explain the current epidemic of cardiovascular disease (CVD) in industrialized societies. However, this hypothesis has been difficult to test because few populations concurrently span ancestral and modern lifestyles. To address this gap, we collected interview and biomarker data from individuals of Turkana ancestry who practice subsistence-level, nomadic pastoralism (the ancestral way of life for this group), as well as individuals who no longer practice pastoralism and live in urban areas. We found that Turkana who move to cities exhibit poor cardiometabolic health, partially because of a shift toward "Western diets" high in refined carbohydrates. We also show that being born in an urban area independently predicts adult health, such that life-long city dwellers will experience the greatest CVD risk. By focusing on a substantial lifestyle gradient, our work thus informs the timing, magnitude, and evolutionary causes of CVD.
Collapse
Affiliation(s)
- Amanda J Lea
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Dino Martins
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, USA
- Mpala Research Centre, Nanyuki, Kenya
| | - Joseph Kamau
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Michael Gurven
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Julien F Ayroles
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, USA.
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
27
|
Accelerated reproduction is not an adaptive response to early-life adversity in wild baboons. Proc Natl Acad Sci U S A 2020; 117:24909-24919. [PMID: 32958642 PMCID: PMC7547275 DOI: 10.1073/pnas.2004018117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In humans and other long-lived species, harsh conditions in early life often lead to profound differences in adult life expectancy. In response, natural selection is expected to accelerate the timing and pace of reproduction in individuals who experience some forms of early-life adversity. However, the adaptive benefits of reproductive acceleration following early adversity remain untested. Here, we test a recent version of this theory, the internal predictive adaptive response (iPAR) model, by assessing whether accelerating reproduction following early-life adversity leads to higher lifetime reproductive success. We do so by leveraging 48 y of continuous, individual-based data from wild female baboons in the Amboseli ecosystem in Kenya, including prospective, longitudinal data on multiple sources of nutritional and psychosocial adversity in early life; reproductive pace; and lifetime reproductive success. We find that while early-life adversity led to dramatically shorter lifespans, individuals who experienced early adversity did not accelerate their reproduction compared with those who did not experience early adversity. Further, while accelerated reproduction predicted increased lifetime reproductive success overall, these benefits were not specific to females who experienced early-life adversity. Instead, females only benefited from reproductive acceleration if they also led long lives. Our results call into question the theory that accelerated reproduction is an adaptive response to both nutritional and psychosocial sources of early-life adversity in baboons and other long-lived species.
Collapse
|
28
|
McKerracher L, Fried R, Kim AW, Moffat T, Sloboda DM, Galloway T. Synergies between the Developmental Origins of Health and Disease framework and multiple branches of evolutionary anthropology. Evol Anthropol 2020; 29:214-219. [DOI: 10.1002/evan.21860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 04/24/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Luseadra McKerracher
- Department of Biochemistry and Biomedical Sciences McMaster University Hamilton Ontario Canada
- Department of Anthropology McMaster University Hamilton Ontario Canada
| | - Ruby Fried
- Institute for Circumpolar Health Studies, University of Alaska Anchorage Anchorage Alaska USA
| | - Andrew W. Kim
- Department of Anthropology Northwestern University Evanston Illinois USA
| | - Tina Moffat
- Department of Anthropology McMaster University Hamilton Ontario Canada
| | - Deborah M. Sloboda
- Department of Obstetrics and Gynecology McMaster University Hamilton Ontario Canada
- Department of Pediatrics McMaster University Hamilton Ontario Canada
- Farncombe Institute of Digestive Health McMaster University Hamilton Ontario Canada
| | - Tracey Galloway
- Department of Anthropology University of Toronto Mississauga Ontario Canada
| |
Collapse
|
29
|
Snell-Rood E, Snell-Rood C. The developmental support hypothesis: adaptive plasticity in neural development in response to cues of social support. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190491. [PMID: 32475336 PMCID: PMC7293157 DOI: 10.1098/rstb.2019.0491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Across mammals, cues of developmental support, such as touching, licking or attentiveness, stimulate neural development, behavioural exploration and even overall body growth. Why should such fitness-related traits be so sensitive to developmental conditions? Here, we review what we term the 'developmental support hypothesis', a potential adaptive explanation of this plasticity. Neural development can be a costly process, in terms of time, energy and exposure. However, environmental variability may sometimes compromise parental care during this costly developmental period. We propose this environmental variation has led to the evolution of adaptive plasticity of neural and behavioural development in response to cues of developmental support, where neural development is stimulated in conditions that support associated costs. When parental care is compromised, offspring grow less and adopt a more resilient and stress-responsive strategy, improving their chances of survival in difficult conditions, similar to existing ideas on the adaptive value of early-life programming of stress. The developmental support hypothesis suggests new research directions, such as testing the adaptive value of reduced neural growth and metabolism in stressful conditions, and expanding the range of potential cues animals may attend to as indicators of developmental support. Considering evolutionary and ecologically appropriate cues of social support also has implications for promoting healthy neural development in humans. This article is part of the theme issue 'Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals'.
Collapse
Affiliation(s)
- Emilie Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, Gortner 140, St Paul, MN 55108, USA
| | - Claire Snell-Rood
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
30
|
Sheppard P, Van Winkle Z. Using sequence analysis to test if human life histories are coherent strategies. EVOLUTIONARY HUMAN SCIENCES 2020; 2:e39. [PMID: 37588360 PMCID: PMC10427452 DOI: 10.1017/ehs.2020.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Life history theory, a prominent ecological model in biology, is widely used in the human sciences to make predictions about human behaviour. However, its principal assumptions have not been empirically tested. We address this gap with three research questions: (1) do humans exhibit coherent life history strategies; (2) do individuals adopt strategies along a slow-fast continuum; and (3) are socioeconomic circumstances during childhood associated with the pace of the life history strategy that an individual adopts? Data from the Wisconsin Longitudinal Study is used to reconstruct the life histories of US women including information on puberty, fertility, menopause and death. We introduce a novel methodological approach to evolutionary anthropology, sequence analysis, to assess if human life histories are coherent strategies and how these strategies are patterned. In subsequent analyses we used multinomial logistic regressions to test whether childhood socioeconomic status predicts the life history patterns women follow. Results provide little evidence that humans follow coherent life-history strategies; Wisconsin women are clustered by the number of children they have but not by ages at life events. Socioeconomic status does not predict which cluster women fall into, suggesting that less well-off women do not have higher fertility, as predicted.
Collapse
Affiliation(s)
- Paula Sheppard
- School of Anthropology and Museum Ethnography, University of Oxford, 51–53 Banbury Road, OxfordOX2 6PE, UK
| | - Zachary Van Winkle
- Department of Sociology, University of Oxford, 42–43 Park End Street, OxfordOX1 1DJ, UK
| |
Collapse
|
31
|
Snyder-Mackler N, Burger JR, Gaydosh L, Belsky DW, Noppert GA, Campos FA, Bartolomucci A, Yang YC, Aiello AE, O'Rand A, Harris KM, Shively CA, Alberts SC, Tung J. Social determinants of health and survival in humans and other animals. Science 2020; 368:eaax9553. [PMID: 32439765 PMCID: PMC7398600 DOI: 10.1126/science.aax9553] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
The social environment, both in early life and adulthood, is one of the strongest predictors of morbidity and mortality risk in humans. Evidence from long-term studies of other social mammals indicates that this relationship is similar across many species. In addition, experimental studies show that social interactions can causally alter animal physiology, disease risk, and life span itself. These findings highlight the importance of the social environment to health and mortality as well as Darwinian fitness-outcomes of interest to social scientists and biologists alike. They thus emphasize the utility of cross-species analysis for understanding the predictors of, and mechanisms underlying, social gradients in health.
Collapse
Affiliation(s)
- Noah Snyder-Mackler
- Social and Biological Determinants of Health Working Group, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Psychology, University of Washington, Seattle, WA, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Joseph Robert Burger
- Social and Biological Determinants of Health Working Group, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Institute of the Environment, University of Arizona, Tucson, AZ, USA
| | - Lauren Gaydosh
- Social and Biological Determinants of Health Working Group, NC, USA
- Center for Medicine, Health, and Society, Vanderbilt University, Nashville, TN, USA
| | - Daniel W Belsky
- Social and Biological Determinants of Health Working Group, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Grace A Noppert
- Social and Biological Determinants of Health Working Group, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Center for Population Health and Aging, Duke University, Durham, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for the Study of Aging and Human Development, Duke University, Durham, NC, USA
| | - Fernando A Campos
- Social and Biological Determinants of Health Working Group, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Yang Claire Yang
- Social and Biological Determinants of Health Working Group, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison E Aiello
- Social and Biological Determinants of Health Working Group, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angela O'Rand
- Social and Biological Determinants of Health Working Group, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Center for Population Health and Aging, Duke University, Durham, NC, USA
| | - Kathleen Mullan Harris
- Social and Biological Determinants of Health Working Group, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carol A Shively
- Social and Biological Determinants of Health Working Group, NC, USA
- Comparative Medicine Section, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Susan C Alberts
- Social and Biological Determinants of Health Working Group, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Center for Population Health and Aging, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Institute of Primate Research, Nairobi, Kenya
| | - Jenny Tung
- Social and Biological Determinants of Health Working Group, NC, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Center for Population Health and Aging, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Institute of Primate Research, Nairobi, Kenya
| |
Collapse
|
32
|
Spagopoulou F, Teplitsky C, Lind MI, Chantepie S, Gustafsson L, Maklakov AA. Silver-spoon upbringing improves early-life fitness but promotes reproductive ageing in a wild bird. Ecol Lett 2020; 23:994-1002. [PMID: 32239642 DOI: 10.1111/ele.13501] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 01/07/2023]
Abstract
Early-life conditions can have long-lasting effects and organisms that experience a poor start in life are often expected to age at a faster rate. Alternatively, individuals raised in high-quality environments can overinvest in early-reproduction resulting in rapid ageing. Here we use a long-term experimental manipulation of early-life conditions in a natural population of collared flycatchers (Ficedula albicollis), to show that females raised in a low-competition environment (artificially reduced broods) have higher early-life reproduction but lower late-life reproduction than females raised in high-competition environment (artificially increased broods). Reproductive success of high-competition females peaked in late-life, when low-competition females were already in steep reproductive decline and suffered from a higher mortality rate. Our results demonstrate that 'silver-spoon' natal conditions increase female early-life performance at the cost of faster reproductive ageing and increased late-life mortality. These findings demonstrate experimentally that natal environment shapes individual variation in reproductive and actuarial ageing in nature.
Collapse
Affiliation(s)
- Foteini Spagopoulou
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvagen 18D, 75236, Uppsala, Sweden
| | - Céline Teplitsky
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Martin I Lind
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvagen 18D, 75236, Uppsala, Sweden
| | - Stéphane Chantepie
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Lars Gustafsson
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvagen 18D, 75236, Uppsala, Sweden
| | - Alexei A Maklakov
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvagen 18D, 75236, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
33
|
Frankenhuis WE, Nettle D, Dall SRX. A case for environmental statistics of early-life effects. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180110. [PMID: 30966883 PMCID: PMC6460088 DOI: 10.1098/rstb.2018.0110] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There is enduring debate over the question of which early-life effects are adaptive and which ones are not. Mathematical modelling shows that early-life effects can be adaptive in environments that have particular statistical properties, such as reliable cues to current conditions and high autocorrelation of environmental states. However, few empirical studies have measured these properties, leading to an impasse. Progress, therefore, depends on research that quantifies cue reliability and autocorrelation of environmental parameters in real environments. These statistics may be different for social and non-social aspects of the environment. In this paper, we summarize evolutionary models of early-life effects. Then, we discuss empirical data on environmental statistics from a range of disciplines. We highlight cases where data on environmental statistics have been used to test competing explanations of early-life effects. We conclude by providing guidelines for new data collection and reflections on future directions. This article is part of the theme issue ‘Developing differences: early-life effects and evolutionary medicine'.
Collapse
Affiliation(s)
- Willem E Frankenhuis
- 1 Behavioural Science Institute, Radboud University , Nijmegen 6500 HE , The Netherlands
| | - Daniel Nettle
- 2 Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University , Newcastle upon Tyne NE1 7RU , UK
| | - Sasha R X Dall
- 3 Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE , UK
| |
Collapse
|
34
|
Wells JCK. Developmental plasticity as adaptation: adjusting to the external environment under the imprint of maternal capital. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180122. [PMID: 30966888 DOI: 10.1098/rstb.2018.0122] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Plasticity is assumed to enable beneficial adjustment to the environment. In this context, developmental plasticity is generally approached within a two-stage framework, whereby adjustments to ecological cues in stage 1 are exposed to selection in stage 2. This conceptual approach may have limitations, because in species providing parental investment, particularly placental mammals such as humans, initial adjustments are not to the environment directly, but rather to the niche generated by parental phenotype (in mammals, primarily that of the mother). Only as maternal investment is withdrawn is the developing organism exposed directly to prevailing ecological conditions. A three-stage model may therefore be preferable, where developmental trajectory first adjusts to maternal investment, then to the external environment. Each offspring experiences a trade-off, benefitting from maternal investment during the most vulnerable stages of development, at the cost of exposure to investment strategies that maximize maternal fitness. Maternal life-history trade-offs impact the magnitude and schedule of her investment in her offspring, generating lifelong effects on traits related to health outcomes. Understanding the imprint of maternal capital on offspring is particularly important in species demonstrating social hierarchy. Interventions targeting maternal capital might offer new opportunities to improve health outcomes of both mother and offspring. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.
Collapse
Affiliation(s)
- Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child Health , 30 Guilford Street, London WC 1N 1EH , UK
| |
Collapse
|
35
|
Međedović J, Kovačević U. Personality as a state-dependent behavior: Do childhood poverty and pregnancy planning moderate the link between personality and fitness? PERSONALITY AND INDIVIDUAL DIFFERENCES 2020. [DOI: 10.1016/j.paid.2019.109625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Zhang H, Qu X, Wang H, Tang K. Early life famine exposure to the Great Chinese Famine in 1959-1961 and subsequent pregnancy loss: a population-based study. BJOG 2019; 127:39-45. [PMID: 31444892 DOI: 10.1111/1471-0528.15908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To explore the relation between famine exposure in early life and subsequent pregnancy loss, including stillbirth, and spontaneous abortion in adulthood. DESIGN A population-based, partly ecological study. SETTING AND POPULATION Individual data of 58 601 females born around the time of the Great Chinese Famine in 1959-1961. METHODS Associations between the famine exposure in early life and pregnancy loss (stillbirth and spontaneous abortion) in adulthood were analysed using negative binomial regression, with the non-exposure group as reference, adjusting for region, highest education, monthly income, alcohol consumption, tobacco use, body mass index in 25-year-olds and metabolic equivalent. Further analyses were stratified by rural versus urban region. MAIN OUTCOME MEASURES Continuous variables of times of stillbirths and spontaneous abortions were used according to the individual self-reported reproductive history. RESULTS No association was found between famine exposure and spontaneous abortion. In contrast, females experiencing the famine during their prenatal period (incidence rate ratio = 1.15, 95% CI 1.00-1.33) or infant period (incidence rate ratio = 1.27, 95% CI 1.12-1.44) were more likely to report stillbirth in later adult life. Such an association appeared stronger in women living in rural regions. CONCLUSIONS Early life exposure of famine was associated with an increased risk of stillbirth but not spontaneous abortion in adulthood. The strength of such an association appeared stronger in rural areas. Given the high potential for unmeasured confounding, these associations must be interpreted with caution. Regarding the potential implication that undernutrition in the fetal period is related to reproductive outcome in adulthood, fetal nutritional supply may play an important role in human reproduction. TWEETABLE ABSTRACT Exposure to famine in early life was associated with increased pregnancy loss in adulthood.
Collapse
Affiliation(s)
- H Zhang
- School of Public Health, Peking University Health Science Center, Beijing, China.,Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - X Qu
- School of Public Health, Peking University Health Science Center, Beijing, China.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - H Wang
- Institute for Medical Humanities, Peking University Health Science Centre, Beijing, China
| | - K Tang
- Research Centre for Public Health, Tsinghua University, Beijing, China
| |
Collapse
|
37
|
Lu A, Petrullo L, Carrera S, Feder J, Schneider-Crease I, Snyder-Mackler N. Developmental responses to early-life adversity: Evolutionary and mechanistic perspectives. Evol Anthropol 2019; 28:249-266. [PMID: 31498945 DOI: 10.1002/evan.21791] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/28/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Adverse ecological and social conditions during early life are known to influence development, with rippling effects that may explain variation in adult health and fitness. The adaptive function of such developmental plasticity, however, remains relatively untested in long-lived animals, resulting in much debate over which evolutionary models are most applicable. Furthermore, despite the promise of clinical interventions that might alleviate the health consequences of early-life adversity, research on the proximate mechanisms governing phenotypic responses to adversity have been largely limited to studies on glucocorticoids. Here, we synthesize the current state of research on developmental plasticity, discussing both ultimate and proximate mechanisms. First, we evaluate the utility of adaptive models proposed to explain developmental responses to early-life adversity, particularly for long-lived mammals such as humans. In doing so, we highlight how parent-offspring conflict complicates our understanding of whether mothers or offspring benefit from these responses. Second, we discuss the role of glucocorticoids and a second physiological system-the gut microbiome-that has emerged as an additional, clinically relevant mechanism by which early-life adversity can influence development. Finally, we suggest ways in which nonhuman primates can serve as models to study the effects of early-life adversity, both from evolutionary and clinical perspectives.
Collapse
Affiliation(s)
- Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, New York
| | - Lauren Petrullo
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York
| | - Sofia Carrera
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Jacob Feder
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York
| | - India Schneider-Crease
- Department of Anthropology, Stony Brook University, Stony Brook, New York.,Department of Psychology, University of Washington, Seattle, Washington
| | - Noah Snyder-Mackler
- Department of Psychology, University of Washington, Seattle, Washington.,Center for Studies in Demography and Ecology, University of Washington, Seattle, Washington
| |
Collapse
|
38
|
Douhard M, Festa‐Bianchet M, Landes J, Pelletier F. Trophy hunting mediates sex‐specific associations between early‐life environmental conditions and adult mortality in bighorn sheep. J Anim Ecol 2019; 88:734-745. [DOI: 10.1111/1365-2656.12970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/20/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Mathieu Douhard
- Département de BiologieUniversité de Sherbrooke Sherbrooke Quebec Canada
| | | | - Julie Landes
- Département de BiologieUniversité de Sherbrooke Sherbrooke Quebec Canada
| | - Fanie Pelletier
- Département de BiologieUniversité de Sherbrooke Sherbrooke Quebec Canada
| |
Collapse
|
39
|
Alberts SC, Gaillard J. Social influences on survival and reproduction: Insights from a long-term study of wild baboons. J Anim Ecol 2019; 88:47-66. [PMID: 30033518 PMCID: PMC6340732 DOI: 10.1111/1365-2656.12887] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/28/2018] [Indexed: 12/21/2022]
Abstract
For social species, the environment has two components: physical and social. The social environment modifies the individual's interaction with the physical environment, and the physical environment may in turn impact individuals' social relationships. This interplay can generate considerable variation among individuals in survival and reproduction. Here, I synthesize more than four decades of research on the baboons of the Amboseli basin in southern Kenya to illustrate how social and physical environments interact to affect reproduction and survival. For immature baboons, social behaviour can both mitigate and exacerbate the challenge of survival. Only c. 50% of live-born females and c. 44% of live-born males reach the median age of first reproduction. Variation in pre-adult survival, growth and development is associated with multiple aspects of the social environment. For instance, conspecifics provide direct care and are a major source of social knowledge about food and the environment, but conspecifics can also represent a direct threat to survival through infanticide. In adulthood, both competition (within and between social groups) and cooperative affiliation (i.e. collective action and/or the exchange of social resources such as grooming) are prominent features of baboon social life and have important consequences for reproduction and survival. For instance, adult females with higher social dominance ranks have accelerated reproduction, and adult females that engage in more frequent affiliative social interactions have higher survival throughout adulthood. The early life environment also has important consequences for adult reproduction and survival, as in a number of other bird and mammal species. In seasonal breeders, early life effects often apply to entire cohorts; in contrast, in nonseasonal and highly social species such as baboons, early life effects are more individual-specific, stemming from considerable variation not only in the early physical environment (even if they are born in the same year) but also in the particulars of their social environment.
Collapse
Affiliation(s)
- Susan C. Alberts
- Departments of Biology and Evolutionary AnthropologyDuke UniversityDurhamNorth Carolina
- Institute of Primate ResearchNational Museums of KenyaKarenNairobiKenya
| | | |
Collapse
|
40
|
Nutrition, the visceral immune system, and the evolutionary origins of pathogenic obesity. Proc Natl Acad Sci U S A 2018; 116:723-731. [PMID: 30598443 PMCID: PMC6338860 DOI: 10.1073/pnas.1809046116] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The global obesity epidemic is the subject of an immense, diversely specialized research effort. An evolutionary analysis reveals connections among disparate findings, starting with two well-documented facts: Obesity-associated illnesses (e.g., type-2 diabetes and cardiovascular disease), are especially common in: (i) adults with abdominal obesity, especially enlargement of visceral adipose tissue (VAT), a tissue with important immune functions; and (ii) individuals with poor fetal nutrition whose nutritional input increases later in life. I hypothesize that selection favored the evolution of increased lifelong investment in VAT in individuals likely to suffer lifelong malnutrition because of its importance in fighting intraabdominal infections. Then, when increased nutrition violates the adaptive fetal prediction of lifelong nutritional deficit, preferential VAT investment could contribute to abdominal obesity and chronic inflammatory disease. VAT prioritization may help explain several patterns of nutrition-related disease: the paradoxical increase of chronic disease with increased food availability in recently urbanized and migrant populations; correlations between poor fetal nutrition, improved childhood (catch-up) growth, and adult metabolic syndrome; and survival differences between children with marasmus and kwashiorkor malnutrition. Fats and sugars can aggravate chronic inflammation via effects on intestinal bacteria regulating gut permeability to visceral pathogens. The extremes in a nutrition-sensitive trade-off between visceral (immune-function) vs. subcutaneous (body shape) adiposity may have been favored by selection in highly stratified premedicine societies. Altered adipose allocation in populations with long histories of social stratification and malnutrition may be the result of genetic accommodation of developmental responses to poor maternal/fetal conditions, increasing their vulnerability to inflammatory disease.
Collapse
|
41
|
Song Z, Zou Y, Hu C, Ye Y, Wang C, Qing B, Komdeur J, Ding C. Silver spoon effects of hatching order in an asynchronous hatching bird. Behav Ecol 2018. [DOI: 10.1093/beheco/ary191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zitan Song
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yuqi Zou
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Canshi Hu
- School of Nature Conservation, Beijing Forestry University, Beijing, China
- College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Yuanxing Ye
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Chao Wang
- Shaanxi Hanzhong Crested Ibis National Nature Reserve, Yangxian, Shaanxi, China
| | - Baoping Qing
- Shaanxi Hanzhong Crested Ibis National Nature Reserve, Yangxian, Shaanxi, China
| | - Jan Komdeur
- Behavioural Physiology and Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Changqing Ding
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
42
|
Nenko I, Hayward AD, Simons MJP, Lummaa V. Early-life environment and differences in costs of reproduction in a preindustrial human population. PLoS One 2018; 13:e0207236. [PMID: 30540747 PMCID: PMC6291071 DOI: 10.1371/journal.pone.0207236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/27/2018] [Indexed: 11/19/2022] Open
Abstract
Reproduction is predicted to trade-off with long-term maternal survival, but the survival costs often vary between individuals, cohorts and populations, limiting our understanding of this trade-off, which is central to life-history theory. One potential factor generating variation in reproductive costs is variation in developmental conditions, but the role of early-life environment in modifying the reproduction-survival trade-off has rarely been investigated. We quantified the effect of early-life environment on the trade-off between female reproduction and survival in pre-industrial humans by analysing individual-based life-history data for >80 birth cohorts collected from Finnish church records, and between-year variation in local crop yields, annual spring temperature, and infant mortality as proxies of early-life environment. We predicted that women born during poor environmental conditions would show higher costs of reproduction in terms of survival compared to women born in better conditions. We found profound variation between the studied cohorts in the correlation between reproduction and longevity and in the early-life environment these cohorts were exposed to, but no evidence that differences in early-life environment or access to wealth affected the trade-off between reproduction and survival. Our results therefore do not support the hypothesis that differences in developmental conditions underlie the observed heterogeneity in reproduction-survival trade-off between individuals.
Collapse
Affiliation(s)
- Ilona Nenko
- Department of Environmental Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
- * E-mail:
| | - Adam D. Hayward
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, United Kingdom
| | - Mirre J. P. Simons
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Virpi Lummaa
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
43
|
Richardson J, Smiseth PT. Effects of variation in resource acquisition during different stages of the life cycle on life-history traits and trade-offs in a burying beetle. J Evol Biol 2018; 32:19-30. [PMID: 30311711 PMCID: PMC7379983 DOI: 10.1111/jeb.13388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/24/2018] [Accepted: 10/09/2018] [Indexed: 12/01/2022]
Abstract
Individual variation in resource acquisition should have consequences for life‐history traits and trade‐offs between them because such variation determines how many resources can be allocated to different life‐history functions, such as growth, survival and reproduction. Since resource acquisition can vary across an individual's life cycle, the consequences for life‐history traits and trade‐offs may depend on when during the life cycle resources are limited. We tested for differential and/or interactive effects of variation in resource acquisition in the burying beetle Nicrophorus vespilloides. We designed an experiment in which individuals acquired high or low amounts of resources across three stages of the life cycle: larval development, prior to breeding and the onset of breeding in a fully crossed design. Resource acquisition during larval development and prior to breeding affected egg size and offspring survival, respectively. Meanwhile, resource acquisition at the onset of breeding affected size and number of both eggs and offspring. In addition, there were interactive effects between resource acquisition at different stages on egg size and offspring survival. However, only when females acquired few resources at the onset of breeding was there evidence for a trade‐off between offspring size and number. Our results demonstrate that individual variation in resource acquisition during different stages of the life cycle has important consequences for life‐history traits but limited effects on trade‐offs. This suggests that in species that acquire a fixed‐sized resource at the onset of breeding, the size of this resource has larger effects on life‐history trade‐offs than resources acquired at earlier stages.
Collapse
Affiliation(s)
- Jon Richardson
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Per T Smiseth
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
44
|
Berger V, Lemaître JF, Allainé D, Gaillard JM, Cohas A. Early and Adult Social Environments Shape Sex-Specific Actuarial Senescence Patterns in a Cooperative Breeder. Am Nat 2018; 192:525-536. [PMID: 30205028 DOI: 10.1086/699513] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sociality modulates life-history traits through changes in resource allocation to fitness-related traits. However, how social factors at different stages of the life cycle modulate senescence remains poorly understood. To address this question, we assessed the influence of social environment in both early life and adulthood on actuarial senescence in the Alpine marmot, a cooperative breeder. The influence of helpers on actuarial senescence strongly differed depending on when help was provided and on the sex of the dominant. Being helped when adult slowed down senescence in both sexes. However, the effect of the presence of helpers during the year of birth of a dominant was sex specific. Among dominants helped during adulthood, females born in the presence of helpers senesced slower, whereas males senesced faster. Among dominants without helpers during adulthood, females with helpers at birth senesced faster. Social environment modulates senescence but acts differently between sexes and life stages.
Collapse
|
45
|
Iwasa T, Matsuzaki T, Yano K, Mayila Y, Irahara M. Prenatal undernutrition attenuates fasting-induced reproductive dysfunction in pre-pubertal male rats. Int J Dev Neurosci 2018; 71:30-33. [PMID: 30026056 DOI: 10.1016/j.ijdevneu.2018.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/18/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022] Open
Abstract
Prenatal undernutrition affects various physiological functions, such as metabolic and reproductive functions, after birth, and such changes are associated with the pathogeneses of certain diseases. It has been hypothesized that these changes are predictive adaptive responses that help individuals to endure similar conditions in the postnatal period. Thus, we evaluated the effects of prenatal undernutrition on the responses of the body weight (BW) regulation system and reproductive functions to fasting in the pre-pubertal period in male rats. Prenatally normally nourished and undernourished rats exhibited similar reductions in BW and visceral fat after 48 h fasting in the pre-pubertal period. Furthermore, these two groups displayed similar fasting-induced patterns of change in their hypothalamic levels of appetite regulatory factors; i.e., neuropeptide Y and pro-opiomelanocortin. These results indicate that prenatal undernutrition had no marked effects on BW regulation in male rats. On the other hand, serum luteinizing hormone and testosterone levels were decreased by 48 h fasting in the prenatally normally nourished rats, whereas the levels of these hormones did not change in the prenatally undernourished rats. However, the hypothalamic mRNA level of kisspeptin 1 (Kiss1), which is a positive regulator of gonadotropin-releasing hormone/gonadotropins, was reduced by fasting in both groups. These results indicate that prenatal undernutrition might attenuate fasting-induced reproductive dysfunction in the postnatal period; however, these changes might not be induced by alterations in the hypothalamic Kiss1 system. Further studies are needed to clarify the mechanisms involved in these changes in reproductive function.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan.
| | - Kiyohito Yano
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Yiliyasi Mayila
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| |
Collapse
|
46
|
Frankenhuis WE, Nettle D, McNamara JM. Echoes of Early Life: Recent Insights From Mathematical Modeling. Child Dev 2018; 89:1504-1518. [PMID: 29947096 PMCID: PMC6175464 DOI: 10.1111/cdev.13108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decades, developmental origins of health and disease (DOHaD) has emerged as a central framework for studying early‐life effects, that is, the impact of fetal and early postnatal experience on adult functioning. Apace with empirical progress, theoreticians have built mathematical models that provide novel insights for DOHaD. This article focuses on three of these insights, which show the power of environmental noise (i.e., imperfect indicators of current and future conditions) in shaping development. Such noise can produce: (a) detrimental outcomes even in ontogenetically stable environments, (b) individual differences in sensitive periods, and (c) early‐life effects tailored to predicted future somatic states. We argue that these insights extend DOHaD and offer new research directions.
Collapse
|
47
|
Briga M, Griffin RM, Berger V, Pettay JE, Lummaa V. What have humans done for evolutionary biology? Contributions from genes to populations. Proc Biol Sci 2018; 284:rspb.2017.1164. [PMID: 29118130 DOI: 10.1098/rspb.2017.1164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
Many fundamental concepts in evolutionary biology were discovered using non-human study systems. Humans are poorly suited to key study designs used to advance this field, and are subject to cultural, technological, and medical influences often considered to restrict the pertinence of human studies to other species and general contexts. Whether studies using current and recent human populations provide insights that have broader biological relevance in evolutionary biology is, therefore, frequently questioned. We first surveyed researchers in evolutionary biology and related fields on their opinions regarding whether studies on contemporary humans can advance evolutionary biology. Almost all 442 participants agreed that humans still evolve, but fewer agreed that this occurs through natural selection. Most agreed that human studies made valuable contributions to evolutionary biology, although those less exposed to human studies expressed more negative views. With a series of examples, we discuss strengths and limitations of evolutionary studies on contemporary humans. These show that human studies provide fundamental insights into evolutionary processes, improve understanding of the biology of many other species, and will make valuable contributions to evolutionary biology in the future.
Collapse
Affiliation(s)
- Michael Briga
- Department of Biology, University of Turku, Turku 20014, Finland
| | - Robert M Griffin
- Department of Biology, University of Turku, Turku 20014, Finland
| | - Vérane Berger
- Department of Biology, University of Turku, Turku 20014, Finland
| | - Jenni E Pettay
- Department of Biology, University of Turku, Turku 20014, Finland
| | - Virpi Lummaa
- Department of Biology, University of Turku, Turku 20014, Finland
| |
Collapse
|
48
|
Lea AJ, Tung J, Archie EA, Alberts SC. Developmental plasticity research in evolution and human health: Response to commentaries. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2017:201-205. [PMID: 29645009 PMCID: PMC5888464 DOI: 10.1093/emph/eoy007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Amanda J Lea
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jenny Tung
- Department of Biology, Duke University, Durham, NC 27708, USA.,Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya.,Duke University Population Research Institute, Duke University, Durham, NC 27708, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Elizabeth A Archie
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC 27708, USA.,Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya.,Duke University Population Research Institute, Duke University, Durham, NC 27708, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
49
|
Lea AJ, Tung J, Archie EA, Alberts SC. Developmental plasticity: Bridging research in evolution and human health. Evol Med Public Health 2018; 2017:162-175. [PMID: 29424834 PMCID: PMC5798083 DOI: 10.1093/emph/eox019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/19/2017] [Indexed: 02/06/2023] Open
Abstract
Early life experiences can have profound and persistent effects on traits expressed throughout the life course, with consequences for later life behavior, disease risk, and mortality rates. The shaping of later life traits by early life environments, known as 'developmental plasticity', has been well-documented in humans and non-human animals, and has consequently captured the attention of both evolutionary biologists and researchers studying human health. Importantly, the parallel significance of developmental plasticity across multiple fields presents a timely opportunity to build a comprehensive understanding of this phenomenon. We aim to facilitate this goal by highlighting key outstanding questions shared by both evolutionary and health researchers, and by identifying theory and empirical work from both research traditions that is designed to address these questions. Specifically, we focus on: (i) evolutionary explanations for developmental plasticity, (ii) the genetics of developmental plasticity and (iii) the molecular mechanisms that mediate developmental plasticity. In each section, we emphasize the conceptual gains in human health and evolutionary biology that would follow from filling current knowledge gaps using interdisciplinary approaches. We encourage researchers interested in developmental plasticity to evaluate their own work in light of research from diverse fields, with the ultimate goal of establishing a cross-disciplinary understanding of developmental plasticity.
Collapse
Affiliation(s)
- Amanda J Lea
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jenny Tung
- Department of Biology, Duke University, Durham, NC 27708, USA
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
- Duke University Population Research Institute, Duke University, Durham, NC 27708, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Elizabeth A Archie
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC 27708, USA
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
- Duke University Population Research Institute, Duke University, Durham, NC 27708, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
50
|
Wells JCK, Figueiroa JN, Alves JG. Maternal pelvic dimensions and neonatal size: Implications for growth plasticity in early life as adaptation. Evol Med Public Health 2018; 2017:191-200. [PMID: 29423225 PMCID: PMC5798154 DOI: 10.1093/emph/eox016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023] Open
Abstract
Patterns of fetal growth predict non-communicable disease risk in adult life, but fetal growth variability appears to have a relatively weak association with maternal nutritional dynamics during pregnancy. This challenges the interpretation of fetal growth variability as 'adaptation'. We hypothesized that associations of maternal size and nutritional status with neonatal size are mediated by the dimensions of the maternal pelvis. We analysed data on maternal height, body mass index (BMI) and pelvic dimensions (conjugate, inter-spinous and inter-cristal diameters) and neonatal gestational age, weight, length, thorax girth and head girth (n = 224). Multiple regression analysis was used to identify independent maternal predictors of neonatal size, and the mediating role of neonatal head girth in these associations. Pelvic dimensions displaced maternal BMI as a predictor of birth weight, explaining 11.6% of the variance. Maternal conjugate and inter-spinous diameters predicted neonatal length, thorax girth and head girth, whereas inter-cristal diameter only predicted neonatal length. Associations of pelvic dimensions with birth length, but not birth weight, were mediated by neonatal head girth. Pelvic dimensions predicted neonatal size better than maternal BMI, and these associations were mostly independent of maternal height. Sensitivity of fetal growth to pelvic dimensions reduces the risk of cephalo-pelvic disproportion, potentially a strong selective pressure during secular trends in height. Selection on fetal adaptation to relatively inflexible components of maternal phenotype, rather than directly to external ecological conditions, may help explain high levels of growth plasticity during late fetal life and early infancy.
Collapse
Affiliation(s)
- Jonathan C K Wells
- Population, Policy and Practice Programme, Childhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - José N Figueiroa
- Department of Pediatrics and Statistics Unit, Faculdade Pernambucana de Saúde (FPS), Medical School, Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Rua dos Coelhos 300, Boa Vista, Recife, PE Brazil CEP 52050-080, Brazil
| | - Joao G Alves
- Department of Pediatrics and Statistics Unit, Faculdade Pernambucana de Saúde (FPS), Medical School, Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Rua dos Coelhos 300, Boa Vista, Recife, PE Brazil CEP 52050-080, Brazil
| |
Collapse
|