1
|
Tang J, Xu W, Yu Y, Yin S, Ye BC, Zhou Y. The role of the gut microbial metabolism of sterols and bile acids in human health. Biochimie 2025; 230:43-54. [PMID: 39542125 DOI: 10.1016/j.biochi.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Sterols and bile acids are vital signaling molecules that play key roles in systemic functions, influencing the composition of the human gut microbiota, which maintains a symbiotic relationship with the host. Additionally, gut microbiota-encoded enzymes catalyze the conversion of sterols and bile acids into various metabolites, significantly enhancing their diversity and biological activities. In this review, we focus on the microbial transformations of sterols and bile acids in the gut, summarize the relevant bacteria, genes, and enzymes, and review the relationship between the sterols and bile acids metabolism of gut microbiota and human health. This review contributes to a deeper understanding of the crucial roles of sterols and bile acids metabolism by gut microbiota in human health, offering insights for further investigation into the interactions between gut microbiota and the host.
Collapse
Affiliation(s)
- Jiahui Tang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwu Xu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yangfan Yu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shengxiang Yin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yunyan Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
2
|
Dong Z, Yang S, Tang C, Li D, Kan Y, Yao L. New insights into microbial bile salt hydrolases: from physiological roles to potential applications. Front Microbiol 2025; 16:1513541. [PMID: 40012771 PMCID: PMC11860951 DOI: 10.3389/fmicb.2025.1513541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Gut microbiota has been increasingly linked to metabolic health and diseases over the past few decades. Bile acids (BAs), the major components of bile, are bidirectionally linked to intestinal microbiota, also known as the gut microbiome-BA metabolic axis. Gut microbiota-derived bile salt hydrolase (BSH, EC 3.5.1.24), which catalyzes the "gateway" reaction in a wider pathway of bile acid modification, not only shapes the bile acid landscape, but also modulates the crosstalk between gut microbiota and host health. Therefore, microbial BSHs exhibit the potential to directly or indirectly influence microbial and host physiologies, and have been increasingly considered as promising targets for the modulation of gut microbiota to benefit animal and human health. However, their physiological functions in bacterial and host physiologies are still controversial and not clear. In this review, we mainly discuss the current evidence related to the physiological roles that BSHs played in gut microbiota and human health, and the possible underlying mechanisms. Meanwhile, we also present the potential applications of BSHs and BSH-producing probiotics in various fields. Finally, we describe several important questions that need to be addressed by further investigations. A detailed exploration of the physiological significance of BSHs will contribute to their future diagnostic and therapeutic applications in improving animal and human health.
Collapse
Affiliation(s)
- Zixing Dong
- Henan Province Engineering Research Center of Insect Bioreactor, College of Life Sciences, Nanyang Normal University, Nanyang, China
| | - Shuangshuang Yang
- College of Physical Education, Nanyang Normal University, Nanyang, China
| | - Cunduo Tang
- Henan Province Engineering Research Center of Insect Bioreactor, College of Life Sciences, Nanyang Normal University, Nanyang, China
| | - Dandan Li
- Henan Province Engineering Research Center of Insect Bioreactor, College of Life Sciences, Nanyang Normal University, Nanyang, China
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Yunchao Kan
- Henan Province Engineering Research Center of Insect Bioreactor, College of Life Sciences, Nanyang Normal University, Nanyang, China
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Lunguang Yao
- Henan Province Engineering Research Center of Insect Bioreactor, College of Life Sciences, Nanyang Normal University, Nanyang, China
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| |
Collapse
|
3
|
Subedi L, Bamjan AD, Phuyal S, Shim JH, Cho SS, Seo JB, Chang KY, Byun Y, Kweon S, Park JW. An oral liraglutide nanomicelle formulation conferring reduced insulin-resistance and long-term hypoglycemic and lipid metabolic benefits. J Control Release 2025; 378:637-655. [PMID: 39709071 DOI: 10.1016/j.jconrel.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/20/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Type 2 diabetes is a chronic disease characterized by insulin resistance and often worsened by obesity. Effective management involves the use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) to assist with glycemic control and weight management. However, these drugs must be administered subcutaneously due to their low oral bioavailability. We developed an oral liraglutide (LRG) formulation by electrostatic complexation of GLP-1 RA with bile acid derivatives and nanomicelle (NM) formation, with non-ionic surfactant n-dodecyl-β-d-maltoside (DDM). The optimized formulation, LDD[1:2:4]-NM, had a mean particle size of 75.9 ± 5.60 nm and a permeability 1347 % higher than that of unformulated LRG when tested in Caco-2/HT29-MTX-E12 cell monolayers. In rats, oral bioavailability was 4.63-fold higher than that of unformulated LRG (1.11 ± 0.20 % vs. 5.14 ± 0.63 %). The absorption mechanism included clathrin-mediated endocytosis, macropinocytosis, and an ASBT-mediated pathway. A 12-week oral treatment consisting of a daily dose of 20 mg LDD[1:2:4]-NM/kg significantly reduced glycohemoglobin levels, a marker of diabetic control, and the HOMA-IR index, a marker of insulin resistance. The weight of epididymal and inguinal white adipose tissue and brown adipose tissue (BAT) was also reduced. Moreover, LDD[1:2:4]-NM had a greater impact on BAT activation, pro-inflammatory gene expression, and lipid metabolism than subcutaneous LRG. This study showed that an oral NM formulation can efficiently deliver LRG. Long-term treatment led to improved hyperglycemic effects, insulin resistance, and modulated lipid metabolism. LDD[1:2:4]-NM is thus a promising oral therapeutic option for the management of type 2 diabetes, potentially transforming treatment paradigms based on the availability of a more convenient administration route.
Collapse
Affiliation(s)
- Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Arjun Dhwoj Bamjan
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Susmita Phuyal
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jong Bae Seo
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | | | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seho Kweon
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea.
| |
Collapse
|
4
|
Yamamura R, Okubo R, Ukawa S, Nakamura K, Okada E, Nakagawa T, Imae A, Kimura T, Tamakoshi A. Increased fecal glycocholic acid levels correlate with obesity in conjunction with the depletion of archaea: the DOSANCO Health Study. J Nutr Biochem 2025:109846. [PMID: 39863085 DOI: 10.1016/j.jnutbio.2025.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/30/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Recent studies have focused on the relationship between obesity and gut microbiota. This study aims to identify fecal components and gut bacterial species associated with different BMI categories. METHODS In this study, 538 participants aged ≥18 years were categorized into underweight, normal, and obese groups based on BMI (cutoffs: 18.5 and 25.0 kg/m²). We compared 30 fecal components among these groups and calculated correlation coefficients between each component and BMI. Participants were then divided into quartiles based on fecal component levels correlated with BMI, and the prevalence ratio (PR) of obesity was calculated, adjusted for confounding factors. We also analyzed the composition and diversity of gut microbiota and bacterial gene expression among the quartiles for each fecal component. RESULTS Fecal glycocholic acid (GCA) showed a significant positive correlation with BMI. The PR for obesity in the highest quartile of fecal GCA was 3.30 (95% CI: 1.21-9.54), indicating a significantly higher risk of obesity compared to the lowest quartile. Gut microbiota analysis revealed significant differences in the abundance of Ruminococcaceae Incertae Sedis, Faecalibacterium, and Methanobrevibacter, with Methanobrevibacter being absent in the higher quartiles of fecal GCA. Additionally, gene expression for enzymes involved in the deconjugation of conjugated bile acids, including GCA, was downregulated in the highest quartile. CONCLUSIONS Increased fecal GCA levels are positively correlated with obesity, alongside a depletion of archaea.
Collapse
Affiliation(s)
- Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-0815, Japan.
| | - Ryo Okubo
- Department of Neuropsychiatry, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Shigekazu Ukawa
- Osaka Metropolitan University Graduate School of Human Life and Ecology, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan; Department of Public Health, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Koshi Nakamura
- Department of Public Health and Hygiene, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan; Department of Public Health, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Emiko Okada
- The Health Care Science Institute, 3-2-12 Akasaka, Minato-ku, Tokyo, 107-0052, Japan; Department of Public Health, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Takafumi Nakagawa
- The Hokkaido Centre for Family Medicine, 1-18, N41, E15, Higashi-ku, Sapporo 007-0841, Japan
| | - Akihiro Imae
- The Hokkaido Centre for Family Medicine, 1-18, N41, E15, Higashi-ku, Sapporo 007-0841, Japan
| | - Takashi Kimura
- Department of Public Health, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Akiko Tamakoshi
- Department of Public Health, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
5
|
Wang N, Xin Y. Review: Gut microbiota: Therapeutic targets of ginseng polysaccharides against multiple disorders. Int J Biol Macromol 2025; 287:138527. [PMID: 39662561 DOI: 10.1016/j.ijbiomac.2024.138527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
As biological macromolecules, ginseng polysaccharides (GP) are often difficult to be directly absorbed through the intestinal cell membrane. It has been found that it can regulate gut microbiota by acting as a prebiotic, and then play a therapeutic role in some diseases, such as diarrhea, tumour, diabetic, dementia, obesity. With the deepening of research, we found that the role played by GP as a prebiotic cannot be ignored. Not only that, it can also affect the immunity and the metabolism and absorption of ginsenosides to play a synergistic role. Overall, GP can regulate the diversity of gut microbiota, which in turn affects the synthesis of secondary metabolites. GP also promotes the transformation of ginsenosides, leading to improved absorptivity of these compounds. This review aims to provide a deeper understanding of how GP interacts with the gut microbiota in various disorders and the transformation of ginsenosides. By exploring these interactions, we can gain valuable insights into the potential benefits of GP in managing different health conditions and enhancing the bioavailability of ginsenosides.
Collapse
Affiliation(s)
- Na Wang
- Department of Pharmacy, The Affliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yizhou Xin
- Department of Pharmacy, The Affliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
6
|
Yang B, Lu F, Li P, Ma J, Yang J, Zhang X, Cheng M, Yu W, Chai Y, Zou Y, Xu W, Wang D. An efficient measure for the isolation of chenodeoxycholic acid from chicken biles using enzyme-assisted extraction and macroporous resins refining. Poult Sci 2025; 104:104573. [PMID: 39631279 PMCID: PMC11665364 DOI: 10.1016/j.psj.2024.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Chicken bile is a by-product of chicken processing, rich in chenodeoxycholic acid (CDCA), an active pharmaceutical raw material. In this study, a green measure for the extraction and purification of CDCA from chicken biles by enzymatic hydrolysis and macroporous resins refining was established. For the assisted extraction of CDCA, the active bile salt hydrolase (BSH) from Bifidobacterium was heterologously expressed and applied, its activities on GCDCA and TCDCA were 4.96 ± 0.32 U/mg and 3.07 ± 0.031 U/mg and optimal catalytic conditions for the extraction of CDCA were determined as 0.04 g/g of the enzyme dosage, pH 5.0 and 38 °C. Through validation of the conditions, the yield of CDCA was up to 5.32 %, which was equivalent to that by saponification method. In order to further refine CDCA from the extract obtained by enzyme-assisted extraction, a more preferable resin, AB-8 was selected for the purification of CDCA, which had a good adsorption capacity of 61.06 ± 0.57 mg/g for CDCA. Besides, the obtained CDCA extract was purified through AB-8 resin, the purity of CDCA was improved from 51.7 % to 91.4 % and the recovery yield of CDCA was 87.8 %. The advantages of energy conservation, time saving, economy and environmental friendliness make the measure using enzyme-assisted extraction and macroporous resins refining a promising candidate for isolation of CDCA from chicken bile.
Collapse
Affiliation(s)
- Biao Yang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Laboratory of Agricultural Products Cold Chain Logistics Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, PR China
| | - Fangyun Lu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; College of Food and Bioengineering, Jiangsu University, Zhenjiang 212001, PR China
| | - Pengpeng Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Laboratory of Agricultural Products Cold Chain Logistics Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, PR China
| | - Jingjing Ma
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Laboratory of Agricultural Products Cold Chain Logistics Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, PR China
| | - Jing Yang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Laboratory of Agricultural Products Cold Chain Logistics Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, PR China
| | - Xinxiao Zhang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Laboratory of Agricultural Products Cold Chain Logistics Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, PR China
| | - Mei Cheng
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Laboratory of Agricultural Products Cold Chain Logistics Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, PR China
| | - Wenjing Yu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yao Chai
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Laboratory of Agricultural Products Cold Chain Logistics Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, PR China
| | - Ye Zou
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Laboratory of Agricultural Products Cold Chain Logistics Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, PR China
| | - Weimin Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Laboratory of Agricultural Products Cold Chain Logistics Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, PR China
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Laboratory of Agricultural Products Cold Chain Logistics Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, PR China.
| |
Collapse
|
7
|
Guo D, Ning X, Bai T, Tan L, Zhou Y, Guo Z, Li X. Interaction between Vitamin D homeostasis, gut microbiota, and central precocious puberty. Front Endocrinol (Lausanne) 2024; 15:1449033. [PMID: 39717097 PMCID: PMC11663660 DOI: 10.3389/fendo.2024.1449033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Central precocious puberty (CPP) is an endocrine disease in children, characterized by rapid genital development and secondary sexual characteristics before the age of eight in girls and nine in boys. The premature activation of the hypothalamic-pituitary-gonadal axis (HPGA) limits the height of patients in adulthood and is associated with a higher risk of breast cancer. How to prevent and improve the prognosis of CPP is an important problem. Vitamin D receptor (VDR) is widely expressed in the reproductive system, participates in the synthesis and function of regulatory sex hormones, and affects the development and function of gonads. In addition, gut microbiota plays an important role in human health by mainly regulating metabolites, energy homeostasis, and hormone regulation. This review aims to clarify the effect of vitamin D deficiency on the occurrence and development of CPP and explore the role of gut microbiota in it. Although evidence on the interaction between vitamin D deficiency, gut microbiota, and sexual development remains limited, vitamin D supplementation and gut microbiota interventions offer a promising, non-invasive strategy for managing CPP.
Collapse
Affiliation(s)
- Doudou Guo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ning
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingfang Tan
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichen Guo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Zha A, Qi M, Deng Y, Li H, Wang N, Wang C, Liao S, Wan D, Xiong X, Liao P, Wang J, Yin Y, Tan B. Gut Bifidobacterium pseudocatenulatum protects against fat deposition by enhancing secondary bile acid biosynthesis. IMETA 2024; 3:e261. [PMID: 39742294 PMCID: PMC11683477 DOI: 10.1002/imt2.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
Gut microbiome is crucial for lipid metabolism in humans and animals. However, how specific gut microbiota and their associated metabolites impact fat deposition remains unclear. In this study, we demonstrated that the colonic microbiome of lean and obese pigs differentially contributes to fat deposition, as evidenced by colonic microbiota transplantation experiments. Notably, the higher abundance of Bifidobacterium pseudocatenulatum was significantly associated with lower backfat thickness in lean pigs. Microbial-derived lithocholic acid (LCA) species were also significantly enriched in lean pigs and positively correlated with the abundance of B. pseudocatenulatum. In a high-fat diet (HFD)-fed mice model, administration of live B. pseudocatenulatum decreased fat deposition and enhances colonic secondary bile acid biosynthesis. Importantly, pharmacological inhibition of the bile salt hydrolase (BSH), which mediates secondary bile acid biosynthesis, impaired the anti-fat deposition effect of B. pseudocatenulatum in antibiotic-pretreated, HFD-fed mice. Furthermore, dietary LCA also decreased fat deposition in HFD-fed rats and obese pig models. These findings provide mechanistic insights into the anti-fat deposition role of B. pseudocatenulatum and identify BSH as a potential target for preventing excessive fat deposition in humans and animals.
Collapse
Affiliation(s)
- Andong Zha
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
- School of Basic Medical Science, Central South UniversityChangshaChina
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Yuankun Deng
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Hao Li
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Nan Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Chengming Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Simeng Liao
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Xia Xiong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Peng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Jing Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Yulong Yin
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Bi'e Tan
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| |
Collapse
|
9
|
Bello AT, Sarafian MH, Wimborne EA, Middleton B, Revell VL, Raynaud FI, Chowdhury NR, van der Veen DR, Skene DJ, Swann JR. Exposing 24-hour cycles in bile acids of male humans. Nat Commun 2024; 15:10014. [PMID: 39562795 PMCID: PMC11576969 DOI: 10.1038/s41467-024-53673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Bile acids are trans-genomic molecules arising from the concerted metabolism of the human host and the intestinal microbiota and are important for digestion, energy homeostasis and metabolic regulation. While diurnal variation has been demonstrated in the enterohepatic circulation and the gut microbiota, existing human data are poorly resolved, and the influence of the host circadian system has not been determined. Using entrained laboratory protocols, we demonstrate robust daily rhythms in the circulating bile acid pool in healthy male participants. We identify temporal relationships between bile acids and plasma lipids and show that these relationships are lost following sleep deprivation. We also highlight that bile acid rhythmicity is predominantly lost when environmental timing cues are held constant. Here we show that the environment is a stronger determinant of these temporal dynamics than the intrinsic circadian system of the host. This has significance for the intimate relationship between circadian timing and metabolism.
Collapse
Affiliation(s)
- Adesola T Bello
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Elizabeth A Wimborne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benita Middleton
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Victoria L Revell
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Florence I Raynaud
- Centre for Cancer Drug Discovery, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Namrata R Chowdhury
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Daan R van der Veen
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Debra J Skene
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Jonathan R Swann
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
10
|
Cronin P, Hurley C, Ryan A, Zamora-Úbeda M, Govindan A, Stanton C, Lane GP, Joyce SA, O’Toole PW, O’Connor EM. Yeast β-glucan supplementation lowers insulin resistance without altering microbiota composition compared with placebo in subjects with type II diabetes: a phase I exploratory study. Br J Nutr 2024; 132:1-12. [PMID: 39439317 PMCID: PMC11617109 DOI: 10.1017/s0007114524002526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 09/21/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The increased global prevalence of type II diabetes mellitus (T2DM) is associated with consumption of low fibre 'Western diets'. Characteristic metabolic parameters of these individuals include insulin resistance, high fasting and postprandial glucose, as well as low-grade systemic inflammation. Gut microbiota composition is altered significantly in these cohorts suggesting a causative link between diet, microbiota and disease. Dietary fibre consumption has been shown to alleviate these changes and improve glucose parameters in individuals with metabolic disease. We previously reported that yeast β-glucan (yeast beta-1,3/1,6-D-glucan; Wellmune) supplementation ameliorated hyperinsulinaemia and insulin resistance in a murine model. Here, we conducted a randomised, placebo-controlled, two-armed dietary fibre phase I exploratory intervention study in patients with T2DM. The primary outcome measure was alteration to microbiota composition, while the secondary outcome measures included markers of glycaemic control, inflammation as well as metabolomics. Patients were supplemented with 2·5g/day of maltodextrin (placebo) or yeast β-1,3/1,6-D-glucan (treatment). Yeast β-glucan (Wellmune) lowered insulin resistance compared with the placebo maltodextrin after 8 weeks of consumption. TNFα was significantly lower after 4 weeks of β-glucan supplementation. Significantly higher fecal concentrations of several bile acids were detected in the treatment group when compared with the placebo after 8 weeks. These included tauroursodeoxycholic acid, which was previously shown to improve glucose control and lower insulin resistance. Interestingly, the hypoglycaemic and anti-inflammatory effect of yeast β-glucan was independent of any changes in fecal microbiota composition or short-chain fatty acid levels. Our findings highlight the potential of yeast β-glucan to lower insulin resistance in patients with T2DM.
Collapse
Affiliation(s)
- Peter Cronin
- Department of Biological Science, University of Limerick, Limerick, Republic of Ireland
- APC Microbiome Ireland, University College Cork, Cork, Republic of Ireland
| | - Cian Hurley
- School of Microbiology, University College Cork, Cork, Republic of Ireland
| | - Andrew Ryan
- School of Medicine, University of Limerick, Limerick, Republic of Ireland
| | - María Zamora-Úbeda
- APC Microbiome Ireland, University College Cork, Cork, Republic of Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Republic of Ireland
- Teagsac Food Research Centre, Moorepark, Fermoy, Cork, Republic of Ireland
| | - Ashokkumar Govindan
- APC Microbiome Ireland, University College Cork, Cork, Republic of Ireland
- Teagsac Food Research Centre, Moorepark, Fermoy, Cork, Republic of Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Republic of Ireland
- Teagsac Food Research Centre, Moorepark, Fermoy, Cork, Republic of Ireland
| | - Ger P. Lane
- School of Medicine, University of Limerick, Limerick, Republic of Ireland
| | - Susan A. Joyce
- APC Microbiome Ireland, University College Cork, Cork, Republic of Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Republic of Ireland
| | - Paul W. O’Toole
- APC Microbiome Ireland, University College Cork, Cork, Republic of Ireland
- School of Microbiology, University College Cork, Cork, Republic of Ireland
| | - Eibhlís M. O’Connor
- Department of Biological Science, University of Limerick, Limerick, Republic of Ireland
- APC Microbiome Ireland, University College Cork, Cork, Republic of Ireland
- Health Research Institute, University of Limerick, Limerick, Republic of Ireland
| |
Collapse
|
11
|
Habermaass V, Bartoli F, Gori E, Dini R, Cogozzo A, Puccinelli C, Pierini A, Marchetti V. Fecal Bile Acids in Canine Chronic Liver Disease: Results from 46 Dogs. Animals (Basel) 2024; 14:3051. [PMID: 39518774 PMCID: PMC11545594 DOI: 10.3390/ani14213051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
The concentrations of fecal and serum bile acids (BAs) are known to be altered in human patients with chronic liver diseases (CLDs), especially those with biliary tract involvement (BTD). Scarce literature is available regarding fecal BA modifications during canine CLDs. This study aimed to evaluate fecal BAs in canine CLDs according to different clinical and clinicopathological variables. Forty-six dogs were enrolled. Canine feces were analyzed by HPLC. Cholic Acid (CA), Chenodeoxycholic Acid (CDCA), Ursodeoxycholic Acid (UDCA), Deoxycholic Acid (DCA), and Lithocholic Acid (LCA) were measured, and primary BAs (CA + CDCA), secondary BAs (UDCA + DCA + LCA), and the primary/secondary (P/S) ratio were calculated. Primary BAs (p < 0.0001), CA (p = 0.0003), CDCA (p = 0.003), the P/S ratio (p = 0.002), and total BAs (p = 0.005) were significatively higher in BTD dogs (n = 18) compared to in non-BTD dogs (n = 28). Fecal secondary BAs did not statistically differ between BTD and non-BTD dogs. Gastrointestinal clinical signs (p = 0.028) and diarrhea (p = 0.03) were significantly more prevalent in BTD dogs compared to in non-BTD dogs, supporting the hypothesis of some pathological mechanisms assimilable to bile acid diarrhea (BAD). Our results could reflect imbalances of the fecal BA metabolism in dogs with CLDs. Further studies involving gut microbiome and metabolomic assessment are needed to better understand the possible clinical implications of BA metabolism disruption and their potential role in canine CLDs.
Collapse
Affiliation(s)
- Verena Habermaass
- Department of Veterinary Sciences, Veterinary Teaching Hospital “Mario Modenato”, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, 56122 Pisa, Italy; (V.H.); (V.M.)
| | - Francesco Bartoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Eleonora Gori
- Department of Veterinary Sciences, Veterinary Teaching Hospital “Mario Modenato”, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, 56122 Pisa, Italy; (V.H.); (V.M.)
| | - Rebecca Dini
- Department of Veterinary Sciences, Veterinary Teaching Hospital “Mario Modenato”, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, 56122 Pisa, Italy; (V.H.); (V.M.)
| | - Aurora Cogozzo
- Department of Veterinary Sciences, Veterinary Teaching Hospital “Mario Modenato”, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, 56122 Pisa, Italy; (V.H.); (V.M.)
| | - Caterina Puccinelli
- Department of Veterinary Sciences, Veterinary Teaching Hospital “Mario Modenato”, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, 56122 Pisa, Italy; (V.H.); (V.M.)
| | - Alessio Pierini
- Department of Veterinary Sciences, Veterinary Teaching Hospital “Mario Modenato”, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, 56122 Pisa, Italy; (V.H.); (V.M.)
| | - Veronica Marchetti
- Department of Veterinary Sciences, Veterinary Teaching Hospital “Mario Modenato”, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, 56122 Pisa, Italy; (V.H.); (V.M.)
| |
Collapse
|
12
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
13
|
Singh S, Kriti M, Catanzaro R, Marotta F, Malvi M, Jain A, Verma V, Nagpal R, Tiwari R, Kumar M. Deciphering the Gut–Liver Axis: A Comprehensive Scientific Review of Non-Alcoholic Fatty Liver Disease. LIVERS 2024; 4:435-454. [DOI: 10.3390/livers4030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant global health issue. The condition is closely linked to metabolic dysfunctions such as obesity and type 2 diabetes. The gut–liver axis, a bidirectional communication pathway between the liver and the gut, plays a crucial role in the pathogenesis of NAFLD. This review delves into the mechanisms underlying the gut–liver axis, exploring the influence of gut microbiota, intestinal permeability, and inflammatory pathways. This review also explores the potential therapeutic strategies centered on modulating gut microbiota such as fecal microbiota transplantation; phage therapy; and the use of specific probiotics, prebiotics, and postbiotics in managing NAFLD. By understanding these interactions, we can better comprehend the development and advancement of NAFLD and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Mona Kriti
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Roberto Catanzaro
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology Service, University Hospital Policlinico “G. Rodolico”, University of Catania, 95123 Catania, Italy
| | | | - Mustafa Malvi
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Ajay Jain
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Rajnarayan Tiwari
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| |
Collapse
|
14
|
Beekman CN, Penumutchu S, Peterson R, Han G, Belenky M, Hasan MH, Belenky A, Beura LK, Belenky P. Spatial analysis of murine microbiota and bile acid metabolism during amoxicillin treatment. Cell Rep 2024; 43:114572. [PMID: 39116202 DOI: 10.1016/j.celrep.2024.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Antibiotics cause collateral damage to resident microbes that is associated with various health risks. To date, studies have largely focused on the impacts of antibiotics on large intestinal and fecal microbiota. Here, we employ a gastrointestinal (GI) tract-wide integrated multiomic approach to show that amoxicillin (AMX) treatment reduces bacterial abundance, bile salt hydrolase activity, and unconjugated bile acids in the small intestine (SI). Losses of fatty acids (FAs) and increases in acylcarnitines in the large intestine (LI) correspond with spatially distinct expansions of Proteobacteria. Parasutterella excrementihominis engage in FA biosynthesis in the SI, while multiple Klebsiella species employ FA oxidation during expansion in the LI. We subsequently demonstrate that restoration of unconjugated bile acids can mitigate losses of commensals in the LI while also inhibiting the expansion of Proteobacteria during AMX treatment. These results suggest that the depletion of bile acids and lipids may contribute to AMX-induced dysbiosis in the lower GI tract.
Collapse
Affiliation(s)
- Chapman N Beekman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Rachel Peterson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Geongoo Han
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Marina Belenky
- Felicitex Therapeutics Inc., 27 Strathmore Road, Natick, MA 01760, USA
| | - Mohammad H Hasan
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Alexei Belenky
- Felicitex Therapeutics Inc., 27 Strathmore Road, Natick, MA 01760, USA
| | - Lalit K Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
15
|
Li W, Chen H, Tang J. Interplay between Bile Acids and Intestinal Microbiota: Regulatory Mechanisms and Therapeutic Potential for Infections. Pathogens 2024; 13:702. [PMID: 39204302 PMCID: PMC11356816 DOI: 10.3390/pathogens13080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) play a crucial role in the human body's defense against infections caused by bacteria, fungi, and viruses. BAs counteract infections not only through interactions with intestinal bacteria exhibiting bile salt hydrolase (BSH) activity but they also directly combat infections. Building upon our research group's previous discoveries highlighting the role of BAs in combating infections, we have initiated an in-depth investigation into the interactions between BAs and intestinal microbiota. Leveraging the existing literature, we offer a comprehensive analysis of the relationships between BAs and 16 key microbiota. This investigation encompasses bacteria (e.g., Clostridioides difficile (C. difficile), Staphylococcus aureus (S. aureus), Escherichia coli, Enterococcus, Pseudomonas aeruginosa, Mycobacterium tuberculosis (M. tuberculosis), Bacteroides, Clostridium scindens (C. scindens), Streptococcus thermophilus, Clostridium butyricum (C. butyricum), and lactic acid bacteria), fungi (e.g., Candida albicans (C. albicans) and Saccharomyces boulardii), and viruses (e.g., coronavirus SARS-CoV-2, influenza virus, and norovirus). Our research found that Bacteroides, C. scindens, Streptococcus thermophilus, Saccharomyces boulardii, C. butyricum, and lactic acid bacteria can regulate the metabolism and function of BSHs and 7α-dehydroxylase. BSHs and 7α-dehydroxylase play crucial roles in the conversion of primary bile acid (PBA) to secondary bile acid (SBA). It is important to note that PBAs generally promote infections, while SBAs often exhibit distinct anti-infection roles. In the antimicrobial action of BAs, SBAs demonstrate antagonistic properties against a wide range of microbiota, with the exception of norovirus. Given the intricate interplay between BAs and intestinal microbiota, and their regulatory effects on infections, we assert that BAs hold significant potential as a novel approach for preventing and treating microbial infections.
Collapse
Affiliation(s)
| | - Hui Chen
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| |
Collapse
|
16
|
Tang X, Zhang L, Wang L, Ren S, Zhang J, Ma Y, Xu F, Wu G, Zhang Y. Multi-Omics Analysis Reveals Dietary Fiber's Impact on Growth, Slaughter Performance, and Gut Microbiome in Durco × Bamei Crossbred Pig. Microorganisms 2024; 12:1674. [PMID: 39203515 PMCID: PMC11357262 DOI: 10.3390/microorganisms12081674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Dietary fiber (DF) is an important nutrient component in pig's diet that remarkably influences their growth and slaughter performance. The ability of pigs to digest DF depends on the microbial composition of the intestinal tract, particularly in the hindgut. However, studies on how DF alters the growth and slaughter performance of pigs by shaping the gut microbial composition and metabolites are still limited. Therefore, this study aimed to investigate the effects of DF on microbial composition, functions, and metabolites, ultimately altering host growth and slaughter performance using Durco × Bamei crossbred pigs supplemented with 0%, 10%, 17%, and 24% broad bean silage in the basic diet. We found that the final weight, average daily gain, fat, and lean meat weight significantly decreased with increasing DF. Pigs with the lowest slaughter rate and fat weight were observed in the 24% fiber-supplemented group. Gut microbial communities with the highest alpha diversity were formed in the 17% fiber group. The relative abundance of fiber-degrading bacteria, bile acid, and succinate-producing bacteria, including Prevotella sp., Bacteroides sp., Ruminococcus sp., and Parabacteroides sp., and functional pathways, including the butanoate metabolism and the tricarboxylic acid [TCA] cycle, significantly increased in the high-fiber groups. The concentrations of several bile acids significantly decreased in the fiber-supplemented groups, whereas the concentrations of succinate and long-chain fatty acids increased. Our results indicate that a high-fiber diet may alter the growth and slaughter performance of Durco × Bamei crossbred pigs by modulating the composition of Prevotella sp., Bacteroides sp., Ruminococcus sp., Parabacteroides sp., and metabolite pathways of bile acids and succinate.
Collapse
Affiliation(s)
- Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Shien Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Jianbo Zhang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Yuhong Ma
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Fafang Xu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Guofang Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| |
Collapse
|
17
|
Jia Y, Liu Y, Wu Y, Feng C, Zhang H, Ren F, Liu H. The regulation of glucose and lipid metabolism through the interaction of dietary polyphenols and polysaccharides via the gut microbiota pathway. Food Funct 2024; 15:8200-8216. [PMID: 39039938 DOI: 10.1039/d4fo00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The interaction of polyphenols-polysaccharides-gut microbiota to promote health benefits has become a hotspot and direction for precise dietary intervention strategies and foundational research in biomedicine. Both dietary polyphenols and polysaccharides possess biological activities that regulate body health. Single components, due to their inherent structure and physicochemical properties, have a low bioavailability, thus are unable to exert their optimal effects. The compound structure formed by the interaction of polyphenols and polysaccharides can enhance their functional properties, thereby more effectively promoting health benefits and preventing diseases. This review primarily focuses on the roles played by polyphenols and polysaccharides in regulating glucose and lipid metabolism, the improvement of glucose and lipid metabolism through the gut microbial pathway by polyphenols and polysaccharides, and the mechanisms by which polyphenols and polysaccharides interact to regulate glucose and lipid metabolism. A considerable amount of preliminary research has confirmed the regulatory effects of plant polyphenols and polysaccharides on glucose and lipid metabolism. However, studies on the combined effects and mechanisms of these two components are still very limited. This review aims to provide a reference for subsequent research on their interactions and changes in functional properties.
Collapse
Affiliation(s)
- Yuanqiang Jia
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yanan Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yingying Wu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Chaohui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan
| | - Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
18
|
Habermaass V, Biolatti C, Bartoli F, Gori E, Bruni N, Olivero D, Marchetti V. Effects of Synbiotic Administration on Gut Microbiome and Fecal Bile Acids in Dogs with Chronic Hepatobiliary Disease: A Randomized Case-Control Study. Vet Sci 2024; 11:364. [PMID: 39195817 PMCID: PMC11360150 DOI: 10.3390/vetsci11080364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Alteration in the gut microbiome in human patients with chronic liver disease is a well-known pathophysiological mechanism. Therefore, it represents both a diagnostic and therapeutical target. Intestinal dysbiosis has also been identified in dogs with chronic liver disease, but clinical trials evaluating the effectiveness of synbiotic administration are lacking. Thirty-two dogs with chronic hepatobiliary disease were equally randomized into two groups: one treated with a synbiotic complex for 4-6 weeks (TG) and one untreated control group (CG). All dogs underwent clinical evaluation, complete anamnesis, bloodwork, abdominal ultrasound, fecal bile acids, and gut microbiome evaluation at T0-T1 (after 4-6 weeks). Treated dogs showed a significant reduction in ALT activity (p = 0.007) and clinical resolution of gastrointestinal signs (p = 0.026) compared to control dogs. The synbiotic treatment resulted in a lower increase in Enterobacteriaceae and Lachnospiraceae compared to the control group but did not affect the overall richness and number of bacterial species. No significant changes in fecal bile acids profile were detected with synbiotic administration. Further studies are needed to better evaluate the effectiveness of synbiotic administration in these patients and the metabolic pathways involved in determining the clinical and biochemical improvement.
Collapse
Affiliation(s)
- Verena Habermaass
- Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, 56122 Pisa, Italy; (V.H.); (V.M.)
| | - Corrado Biolatti
- Department of Microbiology, Charles River Laboratories, F26D789 Ballina, Ireland;
| | - Francesco Bartoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Savi 10, 56126 Pisa, Italy;
| | - Eleonora Gori
- Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, 56122 Pisa, Italy; (V.H.); (V.M.)
| | | | - Daniela Olivero
- Analysis Lab. BSA Scilvet, Via A. D’Aosta 7, 20129 Milan, Italy;
| | - Veronica Marchetti
- Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, 56122 Pisa, Italy; (V.H.); (V.M.)
| |
Collapse
|
19
|
Garcia AC, Six N, Ma L, Morel L. Intersection of the microbiome and immune metabolism in lupus. Immunol Rev 2024; 325:77-89. [PMID: 38873851 PMCID: PMC11338729 DOI: 10.1111/imr.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Systemic lupus erythematosus is a complex autoimmune disease resulting from a dysregulation of the immune system that involves gut dysbiosis and an altered host cellular metabolism. This review highlights novel insights and expands on the interactions between the gut microbiome and the host immune metabolism in lupus. Pathobionts, invasive pathogens, and even commensal microbes, when in dysbiosis, can all trigger and modulate immune responses through metabolic reprogramming. Changes in the microbiota's global composition or individual taxa may trigger a cascade of metabolic changes in immune cells that may, in turn, reprogram their functions. Factors contributing to dysbiosis include changes in intestinal hypoxia, competition for glucose, and limited availability of essential nutrients, such as tryptophan and metal ions, all of which can be driven by host metabolism changes. Conversely, the accumulation of some host metabolites, such as itaconate, succinate, and free fatty acids, could further influence the microbial composition and immune responses. Overall, mounting evidence supports a bidirectional relationship between host immunometabolism and the microbiota in lupus pathogenesis.
Collapse
Affiliation(s)
- Abigail Castellanos Garcia
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Natalie Six
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Longhuan Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Laurence Morel
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
20
|
Mohr AE, Ortega-Santos CP, Whisner CM, Klein-Seetharaman J, Jasbi P. Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines 2024; 12:1496. [PMID: 39062068 PMCID: PMC11274472 DOI: 10.3390/biomedicines12071496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The field of multi-omics has witnessed unprecedented growth, converging multiple scientific disciplines and technological advances. This surge is evidenced by a more than doubling in multi-omics scientific publications within just two years (2022-2023) since its first referenced mention in 2002, as indexed by the National Library of Medicine. This emerging field has demonstrated its capability to provide comprehensive insights into complex biological systems, representing a transformative force in health diagnostics and therapeutic strategies. However, several challenges are evident when merging varied omics data sets and methodologies, interpreting vast data dimensions, streamlining longitudinal sampling and analysis, and addressing the ethical implications of managing sensitive health information. This review evaluates these challenges while spotlighting pivotal milestones: the development of targeted sampling methods, the use of artificial intelligence in formulating health indices, the integration of sophisticated n-of-1 statistical models such as digital twins, and the incorporation of blockchain technology for heightened data security. For multi-omics to truly revolutionize healthcare, it demands rigorous validation, tangible real-world applications, and smooth integration into existing healthcare infrastructures. It is imperative to address ethical dilemmas, paving the way for the realization of a future steered by omics-informed personalized medicine.
Collapse
Affiliation(s)
- Alex E. Mohr
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA
| | - Carmen P. Ortega-Santos
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Corrie M. Whisner
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA
| | - Judith Klein-Seetharaman
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Paniz Jasbi
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
| |
Collapse
|
21
|
Huang Y, Xu W, Dong W, Chen G, Sun Y, Zeng X. Anti-diabetic effect of dicaffeoylquinic acids is associated with the modulation of gut microbiota and bile acid metabolism. J Adv Res 2024:S2090-1232(24)00264-9. [PMID: 38969095 DOI: 10.1016/j.jare.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024] Open
Abstract
INTRODUCTION The human gut microbiome plays a pivotal role in health and disease, notably through its interaction with bile acids (BAs). BAs, synthesized in the liver, undergo transformation by the gut microbiota upon excretion into the intestine, thus influencing host metabolism. However, the potential mechanisms of dicaffeoylquinic acids (DiCQAs) from Ilex kudingcha how to modulate lipid metabolism and inflammation via gut microbiota remain unclear. OBJECTIVES AND METHODS The objectives of the present study were to investigate the regulating effects of DiCQAs on diabetes and the potential mechanisms of action. Two mice models were utilized to investigate the anti-diabetic effects of DiCQAs. Additionally, analysis of gut microbiota structure and functions was conducted concurrently with the examination of DiCQAs' impact on gut microbiota carrying the bile salt hydrolase (BSH) gene, as well as on the enterohepatic circulation of BAs and related signaling pathways. RESULTS Our findings demonstrated that DiCQAs alleviated diabetic symptoms by modulating gut microbiota carrying the BSH gene. This modulation enhanced intestinal barrier integrity, increased enterohepatic circulation of conjugated BAs, and inhibited the farnesoid X receptor-fibroblast growth factor 15 (FGF15) signaling axis in the ileum. Consequently, the protein expression of hepatic FGFR4 fibroblast growth factor receptor 4 (FGFR4) decreased, accompanied by heightened BA synthesis, reduced hepatic BA stasis, and lowered levels of hepatic and plasma cholesterol. Furthermore, DiCQAs upregulated glucolipid metabolism-related proteins in the liver and muscle, including v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3-beta (GSK3β) and AMP-activated protein kinase (AMPK), thereby ameliorating hyperglycemia and mitigating inflammation through the down-regulation of the MAPK signaling pathway in the diabetic group. CONCLUSION Our study elucidated the anti-diabetic effects and mechanism of DiCQAs from I. kudingcha, highlighting the potential of targeting gut microbiota, particularly Acetatifactor sp011959105 and Acetatifactor muris carrying the BSH gene, as a therapeutic strategy to attenuate FXR-FGF15 signaling and ameliorate diabetes.
Collapse
Affiliation(s)
- Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
22
|
Tano S, Kotani T, Matsuo S, Ushida T, Imai K, Kajiyama H. Identifying the high-benefit population for weight management-based cardiovascular disease prevention in Japan. Prev Med Rep 2024; 43:102782. [PMID: 39026567 PMCID: PMC11257143 DOI: 10.1016/j.pmedr.2024.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024] Open
Abstract
Background Cardiovascular-disease (CVD) is the leading cause of death, and the association between obesity and CVD is particularly significant among women. Given the evidence highlighting the significance of weight-gain velosity, we aimed to elucidate its influence on cardio-ankle vascular index (CAVI), a reliable surrogate marker of CVD, and identify the high-benefit population where this influence is most pronounced. Methods This multicenter retrospective study used electronic data from annual health checkups for workers in Japan. Individuals who voluntarily measured CAVI in 2019 were included, and weight-gain velosity was defined as the mean BMI gain from 2015 to 2019. Our primary outcome was the relationship between weight-gain velosity and CAVI. Results Among 459 individuals, 53 had CAVI ≥ 9. Random forest analysis revealed that age was the most important factor, followed by lipid metabolism, weight-gain velosity, and glucose metabolism, with sex being the least important. Non-linear regression analysis of the effect of age on CAVI ≥ 9 showed the effect was pronounced after age 60, and the trend was greater in women. Among individuals aged 60 or younger, the aOR of weight-gain velosity for CAVI ≥ 9 was significantly positive (aOR 11.95, 95 %CI 1.13-126.27), while it was not significant for those older than 60. The relationship between weight-gain velosity and CAVI provides a new perspective on CVD risk factors. The effects of age, especially after 60, and weight-gain velosity in early- to middle-adulthood on arterial stiffness are emphasized. Conclusions These findings underscore the importance of weight management under age 60, especially in women.
Collapse
Affiliation(s)
- Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Division of Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Division of Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Seiko Matsuo
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
23
|
He J, Liu X, Zhang J, Wang R, Cao X, Liu G. Gut microbiome-derived hydrolases-an underrated target of natural product metabolism. Front Cell Infect Microbiol 2024; 14:1392249. [PMID: 38915922 PMCID: PMC11194327 DOI: 10.3389/fcimb.2024.1392249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024] Open
Abstract
In recent years, there has been increasing interest in studying gut microbiome-derived hydrolases in relation to oral drug metabolism, particularly focusing on natural product drugs. Despite the significance of natural product drugs in the field of oral medications, there is a lack of research on the regulatory interplay between gut microbiome-derived hydrolases and these drugs. This review delves into the interaction between intestinal microbiome-derived hydrolases and natural product drugs metabolism from three key perspectives. Firstly, it examines the impact of glycoside hydrolases, amide hydrolases, carboxylesterase, bile salt hydrolases, and epoxide hydrolase on the structure of natural products. Secondly, it explores how natural product drugs influence microbiome-derived hydrolases. Lastly, it analyzes the impact of interactions between hydrolases and natural products on disease development and the challenges in developing microbial-derived enzymes. The overarching goal of this review is to lay a solid theoretical foundation for the advancement of research and development in new natural product drugs and personalized treatment.
Collapse
Affiliation(s)
- Jiaxin He
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
| | - Xiaofeng Liu
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
| | - Junming Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xinyuan Cao
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
- Ningxia Medical University, School of Basic Medicine, Yinchuan, China
| | - Ge Liu
- Ningxia Medical University, School of Basic Medicine, Yinchuan, China
| |
Collapse
|
24
|
Lu ZF, Hsu CY, Younis NK, Mustafa MA, Matveeva EA, Al-Juboory YHO, Adil M, Athab ZH, Abdulraheem MN. Exploring the significance of microbiota metabolites in rheumatoid arthritis: uncovering their contribution from disease development to biomarker potential. APMIS 2024; 132:382-415. [PMID: 38469726 DOI: 10.1111/apm.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Rheumatoid arthritis (RA) is a multifaceted autoimmune disorder characterized by chronic inflammation and joint destruction. Recent research has elucidated the intricate interplay between gut microbiota and RA pathogenesis, underscoring the role of microbiota-derived metabolites as pivotal contributors to disease development and progression. The human gut microbiota, comprising a vast array of microorganisms and their metabolic byproducts, plays a crucial role in maintaining immune homeostasis. Dysbiosis of this microbial community has been linked to numerous autoimmune disorders, including RA. Microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), tryptophan derivatives, Trimethylamine-N-oxide (TMAO), bile acids, peptidoglycan, and lipopolysaccharide (LPS), exhibit immunomodulatory properties that can either exacerbate or ameliorate inflammation in RA. Mechanistically, these metabolites influence immune cell differentiation, cytokine production, and gut barrier integrity, collectively shaping the autoimmune milieu. This review highlights recent advances in understanding the intricate crosstalk between microbiota metabolites and RA pathogenesis and also discusses the potential of specific metabolites to trigger or suppress autoimmunity, shedding light on their molecular interactions with immune cells and signaling pathways. Additionally, this review explores the translational aspects of microbiota metabolites as diagnostic and prognostic tools in RA. Furthermore, the challenges and prospects of translating these findings into clinical practice are critically examined.
Collapse
Affiliation(s)
- Zi-Feng Lu
- Heilongjiang Beidahuang Group General Hospital, Heilongjiang, China
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Kirkuk, Iraq
| | - Elena A Matveeva
- Department of Orthopaedic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
25
|
Murthy VL, Mosley JD, Perry AS, Jacobs DR, Tanriverdi K, Zhao S, Sawicki KT, Carnethon M, Wilkins JT, Nayor M, Das S, Abel ED, Freedman JE, Clish CB, Shah RV. Metabolic liability for weight gain in early adulthood. Cell Rep Med 2024; 5:101548. [PMID: 38703763 PMCID: PMC11148768 DOI: 10.1016/j.xcrm.2024.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/27/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
While weight gain is associated with a host of chronic illnesses, efforts in obesity have relied on single "snapshots" of body mass index (BMI) to guide genetic and molecular discovery. Here, we study >2,000 young adults with metabolomics and proteomics to identify a metabolic liability to weight gain in early adulthood. Using longitudinal regression and penalized regression, we identify a metabolic signature for weight liability, associated with a 2.6% (2.0%-3.2%, p = 7.5 × 10-19) gain in BMI over ≈20 years per SD higher score, after comprehensive adjustment. Identified molecules specified mechanisms of weight gain, including hunger and appetite regulation, energy expenditure, gut microbial metabolism, and host interaction with external exposure. Integration of longitudinal and concurrent measures in regression with Mendelian randomization highlights the complexity of metabolic regulation of weight gain, suggesting caution in interpretation of epidemiologic or genetic effect estimates traditionally used in metabolic research.
Collapse
Affiliation(s)
- Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Jonathan D Mosley
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Kahraman Tanriverdi
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shilin Zhao
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | - Matthew Nayor
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Saumya Das
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane E Freedman
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
26
|
Yang CW, Liu HM, Chang ZY, Liu GH, Chang HH, Huang PY, Lee TY. Puerarin Modulates Hepatic Farnesoid X Receptor and Gut Microbiota in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2024; 25:5274. [PMID: 38791314 PMCID: PMC11121391 DOI: 10.3390/ijms25105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Obesity is associated with alterations in lipid metabolism and gut microbiota dysbiosis. This study investigated the effects of puerarin, a bioactive isoflavone, on lipid metabolism disorders and gut microbiota in high-fat diet (HFD)-induced obese mice. Supplementation with puerarin reduced plasma alanine aminotransferase, liver triglyceride, liver free fatty acid (FFA), and improved gut microbiota dysbiosis in obese mice. Puerarin's beneficial metabolic effects were attenuated when farnesoid X receptor (FXR) was antagonized, suggesting FXR-mediated mechanisms. In hepatocytes, puerarin ameliorated high FFA-induced sterol regulatory element-binding protein (SREBP) 1 signaling, inflammation, and mitochondrial dysfunction in an FXR-dependent manner. In obese mice, puerarin reduced liver damage, regulated hepatic lipogenesis, decreased inflammation, improved mitochondrial function, and modulated mitophagy and ubiquitin-proteasome pathways, but was less effective in FXR knockout mice. Puerarin upregulated hepatic expression of FXR, bile salt export pump (BSEP), and downregulated cytochrome P450 7A1 (CYP7A1) and sodium taurocholate transporter (NTCP), indicating modulation of bile acid synthesis and transport. Puerarin also restored gut microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of Clostridium celatum and Akkermansia muciniphila. This study demonstrates that puerarin effectively ameliorates metabolic disturbances and gut microbiota dysbiosis in obese mice, predominantly through FXR-dependent pathways. These findings underscore puerarin's potential as a therapeutic agent for managing obesity and enhancing gut health, highlighting its dual role in improving metabolic functions and modulating microbial communities.
Collapse
MESH Headings
- Animals
- Isoflavones/pharmacology
- Gastrointestinal Microbiome/drug effects
- Diet, High-Fat/adverse effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Mice
- Obesity/metabolism
- Obesity/drug therapy
- Liver/metabolism
- Liver/drug effects
- Male
- Dysbiosis
- Mice, Obese
- Mice, Inbred C57BL
- ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics
- Cholesterol 7-alpha-Hydroxylase/metabolism
- Cholesterol 7-alpha-Hydroxylase/genetics
- Mice, Knockout
- Organic Anion Transporters, Sodium-Dependent/metabolism
- Organic Anion Transporters, Sodium-Dependent/genetics
- Symporters/metabolism
- Symporters/genetics
- Lipid Metabolism/drug effects
- Hepatocytes/metabolism
- Hepatocytes/drug effects
- Akkermansia
Collapse
Affiliation(s)
- Ching-Wei Yang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Division of Internal and Pediatric Chinese Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou 333423, Taiwan
| | - Hsuan-Miao Liu
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Zi-Yu Chang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Geng-Hao Liu
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
- Division of Acupuncture and Moxibustion, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Sleep Center, Chang Gung Memorial Hospital, Taoyuan 333008, Taiwan
| | - Hen-Hong Chang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Po-Yu Huang
- Department of Chinese Medicine, Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei 10844, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
| |
Collapse
|
27
|
Meng J, Liu S, Wu X. Engineered probiotics as live biotherapeutics for diagnosis and treatment of human diseases. Crit Rev Microbiol 2024; 50:300-314. [PMID: 36946080 DOI: 10.1080/1040841x.2023.2190392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/09/2023] [Indexed: 03/23/2023]
Abstract
The use of probiotics to regulate the intestinal microbiota to prevent and treat a large number of disorders and diseases has been an international research hotspot. Although conventional probiotics have a certain regulatory role in nutrient metabolism, inhibiting pathogens, inducing immune regulation, and maintaining intestinal epithelial barrier function, they are unable to treat certain diseases. In recent years, aided by the continuous development of synthetic biology, engineering probiotics with desired characteristics and functionalities to benefit human health has made significant progress. In this article, we summarise the mechanism of action of conventional probiotics and their limitations and highlight the latest developments in the design and construction of probiotics as living diagnostics and therapeutics for the detection and treatment of a series of diseases, including pathogen infections, cancer, intestinal inflammation, metabolic disorders, vaccine delivery, cognitive health, and fatty liver. Besides we discuss the concerns regarding engineered probiotics and corresponding countermeasures and outline the desired features in the future development of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Jiao Meng
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, China
| | - Shufan Liu
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology; College of Bioengineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xin Wu
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
28
|
Heianza Y, Xue Q, Rood J, Clish CB, Bray GA, Sacks FM, Qi L. Changes in bile acid subtypes and improvements in lipid metabolism and atherosclerotic cardiovascular disease risk: the Preventing Overweight Using Novel Dietary Strategies (POUNDS Lost) trial. Am J Clin Nutr 2024; 119:1293-1300. [PMID: 38428740 PMCID: PMC11130658 DOI: 10.1016/j.ajcnut.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Distinct circulating bile acid (BA) subtypes may play roles in regulating lipid homeostasis and atherosclerosis. OBJECTIVES We investigated whether changes in circulating BA subtypes induced by weight-loss dietary interventions were associated with improved lipid profiles and atherosclerotic cardiovascular disease (ASCVD) risk estimates. METHODS This study included adults with overweight or obesity (n = 536) who participated in a randomized weight-loss dietary intervention trial. Circulating primary and secondary unconjugated BAs and their taurine-/glycine-conjugates were measured at baseline and 6 mo after the weight-loss diet intervention. The ASCVD risk estimates were calculated using the validated equations. RESULTS At baseline, higher concentrations of specific BA subtypes were related to higher concentrations of atherogenic very low-density lipoprotein lipid subtypes and ASCVD risk estimates. Weight-loss diet-induced decreases in primary BAs were related to larger reductions in triglycerides and total cholesterol [every 1 standard deviation (SD) decrease of glycocholate, glycochenodeoxycholate, or taurochenodeoxycholate was related to β (standard error) -3.3 (1.3), -3.4 (1.3), or -3.8 (1.3) mg/dL, respectively; PFDR < 0.05 for all]. Greater decreases in specific secondary BA subtypes were also associated with improved lipid metabolism at 6 mo; there was β -4.0 (1.1) mg/dL per 1-SD decrease of glycoursodeoxycholate (PFDR =0.003) for changes in low-density lipoprotein cholesterol. We found significant interactions (P-interaction < 0.05) between dietary fat intake and changes in BA subtypes on changes in ASCVD risk estimates; decreases in primary and secondary BAs (such as conjugated cholate or deoxycholate) were significantly associated with improved ASCVD risk after consuming a high-fat diet, but not after consuming a low-fat diet. CONCLUSIONS Decreases in distinct BA subtypes were associated with improved lipid profiles and ASCVD risk estimates, highlighting the importance of changes in circulating BA subtypes as significant factors linked to improved lipid metabolism and ASCVD risk estimates in response to weight-loss dietary interventions. Habitual dietary fat intake may modify the associations of changes in BAs with ASCVD risk. This trial was registered at clinicaltrials.gov as NCT00072995.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States.
| | - Qiaochu Xue
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| |
Collapse
|
29
|
Ridlon JM, Gaskins HR. Another renaissance for bile acid gastrointestinal microbiology. Nat Rev Gastroenterol Hepatol 2024; 21:348-364. [PMID: 38383804 PMCID: PMC11558780 DOI: 10.1038/s41575-024-00896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The field of bile acid microbiology in the gastrointestinal tract is going through a current rebirth after a peak of activity in the late 1970s and early 1980s. This renewed activity is a result of many factors, including the discovery near the turn of the century that bile acids are potent signalling molecules and technological advances in next-generation sequencing, computation, culturomics, gnotobiology, and metabolomics. We describe the current state of the field with particular emphasis on questions that have remained unanswered for many decades in both bile acid synthesis by the host and metabolism by the gut microbiota. Current knowledge of established enzymatic pathways, including bile salt hydrolase, hydroxysteroid dehydrogenases involved in the oxidation and epimerization of bile acid hydroxy groups, the Hylemon-Bjӧrkhem pathway of bile acid C7-dehydroxylation, and the formation of secondary allo-bile acids, is described. We cover aspects of bile acid conjugation and esterification as well as evidence for bile acid C3-dehydroxylation and C12-dehydroxylation that are less well understood but potentially critical for our understanding of bile acid metabolism in the human gut. The physiological consequences of bile acid metabolism for human health, important caveats and cautionary notes on experimental design and interpretation of data reflecting bile acid metabolism are also explored.
Collapse
Affiliation(s)
- Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Advanced Study, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
30
|
Xiong Y, Ma X, He B, Zhi J, Liu X, Wang P, Zhou Z, Liu D. Multifaceted Effects of Subchronic Exposure to Chlorfenapyr in Mice: Implications from Serum Metabolomics, Hepatic Oxidative Stress, and Intestinal Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7423-7437. [PMID: 38502791 DOI: 10.1021/acs.jafc.3c09682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
As chlorfenapyr is a commonly used insecticide in agriculture, the health risks of subchronic exposure to chlorfenapyr remained unclear. This study aimed to extensively probe the health risks from subchronic exposure to chlorfenapyr at the NOAEL and 10-fold NOAEL dose in mice. Through pathological and biochemical examinations, the body metabolism, hepatic toxicity, and intestinal homeostasis were systematically assessed. After 12 weeks, a 10-fold NOAEL dose of chlorfenapyr resulted in weight reduction, increased daily food intake, and blood lipid abnormalities. Concurrently, this dosage induced hepatotoxicity and amplified oxidative stress in hepatocytes, a finding further supported in HepG2 cells. Moreover, chlorfenapyr resulted in intestinal inflammation, evidenced by increased inflammatory factors (IL-17a, IL-10, IL-1β, IL-6, IL-22), disrupted immune cells (RORγt, Foxp3), and compromised intestinal barriers (ZO-1 and occludin). By contrast, the NOAEL dose presented less toxicity in most evaluations. Serum metabolomic analyses unveiled widespread disruptions in pathways related to hepatotoxicity and intestinal inflammation, including NF-κB signaling, Th cell differentiation, and bile acid metabolism. Microbiomic analysis showed an increase in Lactobacillus, a decrease in Muribaculaceae, and diminished anti-inflammatory microbes, which further propelled the inflammatory response and leaded to intestinal inflammation. These findings revealed the molecular mechanisms underlying chlorfenapyr-induced hepatotoxicity and intestinal inflammation, highlighting the significant role of the gut microbiota.
Collapse
Affiliation(s)
- Yabing Xiong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoran Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Bingying He
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jianwen Zhi
- Department of Proctology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
31
|
Didriksen BJ, Eshleman EM, Alenghat T. Epithelial regulation of microbiota-immune cell dynamics. Mucosal Immunol 2024; 17:303-313. [PMID: 38428738 PMCID: PMC11412483 DOI: 10.1016/j.mucimm.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
The mammalian gastrointestinal tract hosts a diverse community of trillions of microorganisms, collectively termed the microbiota, which play a fundamental role in regulating tissue physiology and immunity. Recent studies have sought to dissect the cellular and molecular mechanisms mediating communication between the microbiota and host immune system. Epithelial cells line the intestine and form an initial barrier separating the microbiota from underlying immune cells, and disruption of epithelial function has been associated with various conditions ranging from infection to inflammatory bowel diseases and cancer. From several studies, it is now clear that epithelial cells integrate signals from commensal microbes. Importantly, these non-hematopoietic cells also direct regulatory mechanisms that instruct the recruitment and function of microbiota-sensitive immune cells. In this review, we discuss the central role that has emerged for epithelial cells in orchestrating intestinal immunity and highlight epithelial pathways through which the microbiota can calibrate tissue-intrinsic immune responses.
Collapse
Affiliation(s)
- Bailey J Didriksen
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily M Eshleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
32
|
Zhang J, Zhou J, He Z, Li H. Bacteroides and NAFLD: pathophysiology and therapy. Front Microbiol 2024; 15:1288856. [PMID: 38572244 PMCID: PMC10988783 DOI: 10.3389/fmicb.2024.1288856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition observed globally, with the potential to progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. Currently, the US Food and Drug Administration (FDA) has not approved any drugs for the treatment of NAFLD. NAFLD is characterized by histopathological abnormalities in the liver, such as lipid accumulation, steatosis, hepatic balloon degeneration, and inflammation. Dysbiosis of the gut microbiota and its metabolites significantly contribute to the initiation and advancement of NAFLD. Bacteroides, a potential probiotic, has shown strong potential in preventing the onset and progression of NAFLD. However, the precise mechanism by which Bacteroides treats NAFLD remains uncertain. In this review, we explore the current understanding of the role of Bacteroides and its metabolites in the treatment of NAFLD, focusing on their ability to reduce liver inflammation, mitigate hepatic steatosis, and enhance intestinal barrier function. Additionally, we summarize how Bacteroides alleviates pathological changes by restoring the metabolism, improving insulin resistance, regulating cytokines, and promoting tight-junctions. A deeper comprehension of the mechanisms through which Bacteroides is involved in the pathogenesis of NAFLD should aid the development of innovative drugs targeting NAFLD.
Collapse
Affiliation(s)
- Jun Zhang
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Jing Zhou
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Zheyun He
- Liver Diseases Institute, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Hongshan Li
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
33
|
Bernardi F, D’Amico F, Bencardino S, Faggiani I, Fanizza J, Zilli A, Parigi TL, Allocca M, Danese S, Furfaro F. Gut Microbiota Metabolites: Unveiling Their Role in Inflammatory Bowel Diseases and Fibrosis. Pharmaceuticals (Basel) 2024; 17:347. [PMID: 38543132 PMCID: PMC10975629 DOI: 10.3390/ph17030347] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/06/2025] Open
Abstract
In recent years, there has been a growing focus on the intricate interplay between the gut microbiota and host health, specifically in the context of inflammatory bowel diseases (IBDs). The gut microbiota produces a diverse array of metabolites, influencing the host's immune response and tissue homeostasis. Noteworthy metabolites, such as short-chain fatty acids, bile acids, and indoles, exert significant effects on intestinal inflammation and fibrosis. This review integrates current research findings to clarify the mechanisms through which gut microbiota metabolites contribute to the progression of IBD and fibrosis, offering insights into potential therapeutic targets and strategies for managing these intricate gastrointestinal conditions. The unraveling of the complex relationship between gut microbiota metabolites and inflammatory processes holds promise for the development of targeted interventions that could lead to more effective and personalized treatment approaches for individuals affected by IBD and subsequent intestinal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy; (F.B.); (F.D.); (S.B.); (I.F.); (J.F.); (A.Z.); (T.L.P.); (M.A.); (S.D.)
| |
Collapse
|
34
|
Lu W, Jiang C, Chen Y, Lu Z, Xu X, Zhu L, Xi H, Ye G, Yan C, Chen J, Zhang J, Zuo L, Huang Q. Altered metabolome and microbiome associated with compromised intestinal barrier induced hepatic lipid metabolic disorder in mice after subacute and subchronic ozone exposure. ENVIRONMENT INTERNATIONAL 2024; 185:108559. [PMID: 38461778 DOI: 10.1016/j.envint.2024.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Exposure to ozone has been associated with metabolic disorders in humans, but the underlying mechanism remains unclear. In this study, the role of the gut-liver axis and the potential mechanism behind the metabolic disorder were investigated by histological examination, microbiome and metabolome approaches in mice during the subacute (4-week) and subchronic (12-week) exposure to 0.5 ppm and 2.5 ppm ozone. Ozone exposure resulted in slowed weight gain and reduced hepatic lipid contents in a dose-dependent manner. After exposure to ozone, the number of intestinal goblet cells decreased, while the number of tuft cells increased. Tight junction protein zonula occludens-1 (ZO-1) was significantly downregulated, and the apoptosis of epithelial cells increased with compensatory proliferation, indicating a compromised chemical and physical layer of the intestinal barrier. The hepatic and cecal metabolic profiles were altered, primarily related to lipid metabolism and oxidative stress. The abundance of Muribaculaceae increased dose-dependently in both colon and cecum, and was associated with the decrease of metabolites such as bile acids, betaine, and L-carnitine, which subsequently disrupted the intestinal barrier and lipid metabolism. Overall, this study found that subacute and subchronic exposure to ozone induced metabolic disorder via disturbing the gut-liver axis, especially the intestinal barrier. These findings provide new mechanistic understanding of the health risks associated with environmental ozone exposure and other oxidative stressors.
Collapse
Affiliation(s)
- Wenjia Lu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chonggui Jiang
- Innovation and Entrepreneurship Laboratory for college students, Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yajie Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhonghua Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xueli Xu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liting Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotong Xi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Guozhu Ye
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Changzhou Yan
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for college students, Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National Basic Science Data Center, Beijing 100190, China.
| |
Collapse
|
35
|
Zhao BC, Wang TH, Chen J, Qiu BH, Xu YR, Li JL. Essential oils improve nursery pigs' performance and appetite via modulation of intestinal health and microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:174-188. [PMID: 38357573 PMCID: PMC10864218 DOI: 10.1016/j.aninu.2023.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 02/16/2024]
Abstract
Optimal intestinal health and functionality are essential for animal health and performance, and simultaneously intestinal nutrient transporters and intestinal peptides are also involved in appetite and feed intake control mechanisms. Given the potential of essential oil (EO) in improving animal performance and improving feed palatability, we hypothesized that dietary supplementation of cinnamaldehyde and carvacrol could improve performance and appetite of nursery pigs by modulating intestinal health and microbiota. Cinnamaldehyde (100 mg/kg), carvacrol (100 mg/kg), and their mixtures (including 50 mg/kg cinnamaldehyde and 50 mg/kg carvacrol) were supplemented into the diets of 240 nursery pigs for 42 d, and data related to performance were measured. Thereafter, the influence of EO on intestinal health, appetite and gut microbiota and their correlations were explored. EO supplementation increased (P < 0.05) the body weight, average daily gain (ADG) and average daily feed intake (ADFI) of piglets, and reduced (P < 0.05) diarrhea rates in nursery pigs. Furthermore, EO increased (P < 0.05) the intestinal absorption area and the abundance of tight junction proteins, and decreased (P < 0.05) intestinal permeability and local inflammation. In terms of intestinal development and the mucus barrier, EO promoted intestinal development and increased (P < 0.05) the number of goblet cells. Additionally, we found that piglets in the EO-supplemented group had upregulated (P < 0.05) levels of transporters and digestive enzymes in the intestine, which were significantly associated with daily gain and feed utilization. In addition, EO supplementation somewhat improved appetite in nursery pigs, increased the diversity of the gut microbiome and the abundance of beneficial bacteria, and there was a correlation between altered bacterial structure and appetite-related hormones. These findings indicate that EO is effective in promoting growth performance and nutrient absorption as well as in regulating appetite by improving intestinal health and bacterial structure.
Collapse
Affiliation(s)
- Bi-Chen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tian-Hao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bai-Hao Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
36
|
Cai H, Zhang J, Liu C, Le TN, Lu Y, Feng F, Zhao M. High-Fat Diet-Induced Decreased Circulating Bile Acids Contribute to Obesity Associated with Gut Microbiota in Mice. Foods 2024; 13:699. [PMID: 38472812 DOI: 10.3390/foods13050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The altered circulating bile acids (BAs) modulate gut microbiota, energy metabolism and various physiological functions. BA profiles in liver, serum, ileum and feces of HFD-fed mice were analyzed with normal chow diet (NCD)-fed mice after 16-week feeding. Furthermore, gut microbiota was analyzed and its correlation analysis with BA was performed. The result showed that long-term HFD feeding significantly decreased hepatic and serum BA levels, mainly attributed to the inhibition of hepatic BA synthesis and the reduced reabsorption efficiency of BAs in enterohepatic circulation. It also significantly impaired glucose and lipid homeostasis and gut microbiota in mice. We found significantly higher bile salt hydrolase activity in ileal microbes and a higher ratio of free BAs to conjugated BA content in ileal contents in HFD groups compared with NCD group mice, which might account for the activated intestinal farnesoid X receptor signaling on liver BA synthesis inhibition and reduced ileal reabsorption. The decreased circulating BAs were associated with the dysregulation of the lipid metabolism according to the decreased TGR5 signaling in the ileum and BAT. In addition, it is astonishing to find extremely high percentages of taurocholate and 12-OH BAs in liver and serum BA profiles of both groups, which was mainly attributed to the high substrate selectivity for 12-OH BAs of the intestinal BAs transporter during the ileal reabsorption of enterohepatic circulation. This study revealed a significant effect of long-term HFD feeding on the decreased circulating BA pool in mice, which impaired lipid homeostasis and gut microbiota, and collectively resulted in metabolic disorders and obesity.
Collapse
Affiliation(s)
- Haiying Cai
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chang Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Thanh Ninh Le
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Yuyun Lu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
Fernández-García L, Gao X, Kirigo J, Song S, Battisti ME, Garcia-Contreras R, Tomas M, Guo Y, Wang X, Wood TK. Single-cell analysis reveals that cryptic prophage protease LfgB protects Escherichia coli during oxidative stress by cleaving antitoxin MqsA. Microbiol Spectr 2024; 12:e0347123. [PMID: 38206055 PMCID: PMC10846083 DOI: 10.1128/spectrum.03471-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Although toxin/antitoxin (TA) systems are ubiquitous, beyond phage inhibition and mobile element stabilization, their role in host metabolism is obscure. One of the best-characterized TA systems is MqsR/MqsA of Escherichia coli, which has been linked previously to protecting gastrointestinal species during the stress it encounters from the bile salt deoxycholate as it colonizes humans. However, some recent whole-population studies have challenged the role of toxins such as MqsR in bacterial physiology since the mqsRA locus is induced over a hundred-fold during stress, but a phenotype was not found upon its deletion. Here, we investigate further the role of MqsR/MqsA by utilizing single cells and demonstrate that upon oxidative stress, the TA system MqsR/MqsA has a heterogeneous effect on the transcriptome of single cells. Furthermore, we discovered that MqsR activation leads to induction of the poorly characterized yfjXY ypjJ yfjZF operon of cryptic prophage CP4-57. Moreover, deletion of yfjY makes the cells sensitive to H2O2, acid, and heat stress, and this phenotype was complemented. Hence, we recommend yfjY be renamed to lfgB (less fatality gene B). Critically, MqsA represses lfgB by binding the operon promoter, and LfgB is a protease that degrades MqsA to derepress rpoS and facilitate the stress response. Therefore, the MqsR/MqsA TA system facilitates the stress response through cryptic phage protease LfgB.IMPORTANCEThe roles of toxin/antitoxin systems in cell physiology are few and include phage inhibition and stabilization of genetic elements; yet, to date, there are no single-transcriptome studies for toxin/antitoxin systems and few insights for prokaryotes from this novel technique. Therefore, our results with this technique are important since we discover and characterize a cryptic prophage protease that is regulated by the MqsR/MqsA toxin/antitoxin system in order to regulate the host response to oxidative stress.
Collapse
Affiliation(s)
- Laura Fernández-García
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiology Department, Hospital A Coruña (HUAC), A Coruña, Spain
- Microbiology Translational and Multidisciplinary (MicroTM)‐Research Institute Biomedical A Coruña (INIBIC) and Microbiology, University of A Coruña (UDC), A Coruña, Spain
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Institute of Oceanology, Chinese Academy of Sciences, Nansha, Guangzhou, China
- Guangdong Key Laboratory of Marine Materia Medica, Chinese Academy of Sciences, Nansha, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea, Chinese Academy of Sciences, China, Nansha,, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Joy Kirigo
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Animal Science, Jeonbuk National University, Jeonju-Si, Jellabuk-Do, South Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju-Si, Jellabuk-Do, South Korea
| | - Michael E. Battisti
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rodolfo Garcia-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Maria Tomas
- Microbiology Department, Hospital A Coruña (HUAC), A Coruña, Spain
- Microbiology Translational and Multidisciplinary (MicroTM)‐Research Institute Biomedical A Coruña (INIBIC) and Microbiology, University of A Coruña (UDC), A Coruña, Spain
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Institute of Oceanology, Chinese Academy of Sciences, Nansha, Guangzhou, China
- Guangdong Key Laboratory of Marine Materia Medica, Chinese Academy of Sciences, Nansha, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea, Chinese Academy of Sciences, China, Nansha,, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Institute of Oceanology, Chinese Academy of Sciences, Nansha, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
38
|
Zhao M, Kuang W, Yang J, Liu Y, Yang M, Chen Y, Zhu H, Yang Y. Cholesterol lowering in diet-induced hypercholesterolemic mice using Lactobacillus bile salt hydrolases with different substrate specificities. Food Funct 2024; 15:1340-1354. [PMID: 38205623 DOI: 10.1039/d3fo04871c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The cholesterol-lowering effect of lactic acid bacteria with high activity of bile salt hydrolase (BSH) is unclear. We believe that distinguishing BSH substrate specificity is necessary to study the effect of various BSH enzymes. We engineered a BSH mutant enzyme recombinant strain named F67A, which exclusively hydrolyzes taurocholic acid (TCA) using site-directed mutagenesis, and a previously lab-constructed BSH recombinant strain, YB81 that exclusively hydrolyzes glycocholic acid (GCA). We also constructed the recombinant strain named NB5462, which carries the empty pSIP411 plasmid and was used as a blank control strain. The intestinal flora in pseudo-germ-free (PGF) mice in which intestinal flora were eliminated via antibiotics, and F67A successfully reduced serum cholesterol levels in high-cholesterol diet-fed mice, whereas YB81 did not yield the same results. However, YB81 regained its cholesterol-lowering capacity in specific pathogen-free (SPF) mice with intact intestinal flora. The cholesterol-lowering mechanism of F67A involved modifying the bile acid pool through BSH enzyme activity. This adjustment regulated the expression of intestinal farnesoid X receptor and subsequently elevated hepatic cholesterol 7α-hydroxylase (CYP7A1), effectively reducing cholesterol levels. Conversely, GCA, the substrate of YB81, was found in minimal quantities in mice, preventing it from inducing changes in bile acid pools. In the presence of intestinal flora, the YB81 BSH enzyme induced notable alterations in bile acids by regulating changes in the intestinal flora and BSH within the flora, ultimately resulting in cholesterol reduction. This is the first study investigating the substrate specificity of BSH, demonstrating that different substrate-specific BSH enzymes exhibit cholesterol-lowering properties. Additionally, we elaborate on the mechanism of BSH-mediated enterohepatic axis regulation.
Collapse
Affiliation(s)
- Menghuan Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210046, China.
| | - Weijia Kuang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210046, China.
| | - Jiaxin Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210046, China.
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China
| | - Yanrong Liu
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China
| | - Miao Yang
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China
| | - Ying Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Huanjing Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210046, China.
| | - Yao Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210046, China.
| |
Collapse
|
39
|
Green GBH, Williams MB, Brandom JL, Chehade SB, Fay CX, Morrow CD, Lawrence AL, Bej AK, Watts SA. A Bacterial-Sourced Protein Diet Induces Beneficial Shifts in the Gut Microbiome of the Zebrafish, Danio rerio. Curr Dev Nutr 2024; 8:102077. [PMID: 38357379 PMCID: PMC10865222 DOI: 10.1016/j.cdnut.2024.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Background Bacterial-sourced single-cell proteins (SCPs) offer an alternative protein source for diet formulation for Zebrafish (Danio rerio) and other aquaculture models. In addition, the use of a single-cell bacterial protein source derived from multiple species provides a unique insight into the interplay among nutrients in the diet, microbial populations in the diet, and the gut microbiome in D. rerio. Objective Our objective in this study was to evaluate the impact of dietary replacement of fish protein hydrolysate in a standard reference (SR) with a single-cell bacterial protein source on D. rerio gut microbiome. Methods We investigated gut microbial compositions of D. rerio fed an open-formulation standard reference (SR) diet or a bacterial-sourced protein (BP) diet, utilizing microbial taxonomic co-occurrence networks, and predicted functional profiles. Results Microbial communities in the SR diet were primarily composed of Firmicutes. In contrast, the BP diet was mainly composed of Proteobacteria. Alpha diversity revealed significant differences in microbial communities between the 2 diets, and between the guts of D. rerio fed either of the 2 diets. D. rerio fed with the SR diet resulted in abundance of Aeromonas and Vibrio. In contrast, D. rerio fed with a BP diet displayed a large abundance of members from the Rhodobacteraceae family. Taxonomic co-occurrence networks display unique microbial interactions, and key taxons in D. rerio gut samples were dependent on diet and gender. Predicted functional profiling of the microbiome across D. rerio fed SR or BP diets revealed distinct metabolic pathway differences. Female D. rerio fed the BP diet displayed significant upregulation of pathways related to primary and secondary bile acid synthesis. Male D. rerio fed the BP diet revealed similar pathway shifts and, additionally, a significant upregulation of the polyketide sugar unit biosynthesis pathway. Conclusions The use of a BP dramatically affects the composition and activity of the gut microbiome. Future investigations should further address the interplay among biological systems and diet and may offer insights into potential health benefits in preclinical and translational animal models.
Collapse
Affiliation(s)
- George BH Green
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael B Williams
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeri L. Brandom
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sophie B Chehade
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christian X Fay
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Addison L Lawrence
- Texas A&M AgriLife Extension Agriculture and Life Sciences, TAMU College Station, TX, United States
| | - Asim K Bej
- J. Frank Barefield, Jr. Department of Criminal Justice, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen A Watts
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
40
|
Rimal B, Collins SL, Tanes CE, Rocha ER, Granda MA, Solanki S, Hoque NJ, Gentry EC, Koo I, Reilly ER, Hao F, Paudel D, Singh V, Yan T, Kim MS, Bittinger K, Zackular JP, Krausz KW, Desai D, Amin S, Coleman JP, Shah YM, Bisanz JE, Gonzalez FJ, Vanden Heuvel JP, Wu GD, Zemel BS, Dorrestein PC, Weinert EE, Patterson AD. Bile salt hydrolase catalyses formation of amine-conjugated bile acids. Nature 2024; 626:859-863. [PMID: 38326609 PMCID: PMC10881385 DOI: 10.1038/s41586-023-06990-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/18/2023] [Indexed: 02/09/2024]
Abstract
Bacteria in the gastrointestinal tract produce amino acid bile acid amidates that can affect host-mediated metabolic processes1-6; however, the bacterial gene(s) responsible for their production remain unknown. Herein, we report that bile salt hydrolase (BSH) possesses dual functions in bile acid metabolism. Specifically, we identified a previously unknown role for BSH as an amine N-acyltransferase that conjugates amines to bile acids, thus forming bacterial bile acid amidates (BBAAs). To characterize this amine N-acyltransferase BSH activity, we used pharmacological inhibition of BSH, heterologous expression of bsh and mutants in Escherichia coli and bsh knockout and complementation in Bacteroides fragilis to demonstrate that BSH generates BBAAs. We further show in a human infant cohort that BBAA production is positively correlated with the colonization of bsh-expressing bacteria. Lastly, we report that in cell culture models, BBAAs activate host ligand-activated transcription factors including the pregnane X receptor and the aryl hydrocarbon receptor. These findings enhance our understanding of how gut bacteria, through the promiscuous actions of BSH, have a significant role in regulating the bile acid metabolic network.
Collapse
Affiliation(s)
- Bipin Rimal
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Collins
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ceylan E Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edson R Rocha
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Megan A Granda
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Sumeet Solanki
- Department of Molecular & Integrative Physiology and Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Nushrat J Hoque
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Imhoi Koo
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Erin R Reilly
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Devendra Paudel
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Vishal Singh
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Min Soo Kim
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph P Zackular
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dhimant Desai
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | - Shantu Amin
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | - James P Coleman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology and Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Jordan E Bisanz
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- One Health Microbiome Center, Huck Life Sciences Institute, University Park, PA, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John P Vanden Heuvel
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
- INDIGO Biosciences, Inc., State College, PA, USA
| | - Gary D Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Emily E Weinert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
- One Health Microbiome Center, Huck Life Sciences Institute, University Park, PA, USA.
| |
Collapse
|
41
|
Mao L, Gao B, Chang H, Shen H. Interaction and Metabolic Pathways: Elucidating the Role of Gut Microbiota in Gestational Diabetes Mellitus Pathogenesis. Metabolites 2024; 14:43. [PMID: 38248846 PMCID: PMC10819307 DOI: 10.3390/metabo14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a complex metabolic condition during pregnancy with an intricate link to gut microbiota alterations. Throughout gestation, notable shifts in the gut microbial component occur. GDM is marked by significant dysbiosis, with a decline in beneficial taxa like Bifidobacterium and Lactobacillus and a surge in opportunistic taxa such as Enterococcus. These changes, detectable in the first trimester, hint as the potential early markers for GDM risk. Alongside these taxa shifts, microbial metabolic outputs, especially short-chain fatty acids and bile acids, are perturbed in GDM. These metabolites play pivotal roles in host glucose regulation, insulin responsiveness, and inflammation modulation, which are the key pathways disrupted in GDM. Moreover, maternal GDM status influences neonatal gut microbiota, indicating potential intergenerational health implications. With the advance of multi-omics approaches, a deeper understanding of the nuanced microbiota-host interactions via metabolites in GDM is emerging. The reviewed knowledge offers avenues for targeted microbiota-based interventions, holding promise for innovative strategies in GDM diagnosis, management, and prevention.
Collapse
Affiliation(s)
- Lindong Mao
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
| | - Biling Gao
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
| | - Hao Chang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
| | - Heqing Shen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361003, China
| |
Collapse
|
42
|
Wal A, Srivastava A, Verma N, Pandey SS, Tyagi S. The Role of Nutraceutical Supplements in the Treatment of Irritable Bowel Syndrome: A Mini Review. Curr Pediatr Rev 2024; 20:66-75. [PMID: 36593535 DOI: 10.2174/1573396319666230102121953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a prolonged bowel illness that is generally stress-related and is characterized by a variety of gastrointestinal problems, the most prominent of which is chronic visceral abdominal discomfort. As a result, IBS typically impacts sufferers' standard of living, and it is typically associated with depression and anxiety symptoms. IBS medication is based mostly on symptom alleviation. However, no effective medicines have been discovered too far. As a result, it is essential to discover novel anti-IBS medications. OBJECTIVE The purpose of this brief review is to describe the existing research on nutraceutical supplements in irritable bowel syndrome management, including probiotics, prebiotics, symbiotics, herbal products, and dietary fibers. METHODS This review covered the relevant papers from the previous twenty years that were available in different journals such as Science Direct, Elsevier, NCBI, and Web of Science that were related to the role and function of nutraceuticals in Irritable Bowel Syndrome. RESULTS Nutraceutical substances have a variety of modes of action, including restoring the healthy microbiome, improving the function of the gastrointestinal barrier, immunomodulatory, antiinflammatory, and antinociceptive properties. According to the literature, these substances not only can improve irritable bowel syndrome symptomatology but also have an excellent long-term safety profile. CONCLUSION Irritable bowel syndrome is a prolonged bowel illness with a lot of gastrointestinal problems. The nutraceuticals treatment works as an anti-IBS intervention and enhances patient compliance with minimum side effects since patients take it better than pharmaceutical treatments.
Collapse
Affiliation(s)
- Ankita Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, UP, India
| | - Ashish Srivastava
- Department of Pharmacy, Pranveer Singh Institute of Technology, UP, India
| | - Neha Verma
- Department of Pharmacy, Pranveer Singh Institute of Technology, UP, India
| | - Shiv Shanker Pandey
- Department of Pharmacology, Tahira Institute of Medical Sciences, GIDA, Gorakhpur, UP, India
| | - Sachin Tyagi
- Department of Pharmacology, Bharat Institute of Technology, School of Pharmacy Meerut, UP, India
| |
Collapse
|
43
|
Shirolapov IV, Gribkova OV, Kovalev AM, Shafigullina LR, Ulivanova VA, Kozlov AV, Ereshchenko AA, Lyamin AV, Zakharov AV. [The interactions along the microbiota-gut-brain axis in the regulation of circadian rhythms, sleep mechanisms and disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:79-86. [PMID: 38934670 DOI: 10.17116/jnevro202412405279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The bidirectional relationship between cerebral structures and the gastrointestinal tract involving the microbiota embraces the scientific concept of the microbiota-gut-brain axis. The gut microbiome plays an important role in many physiological and biochemical processes of the human body, in the immune response and maintenance of homeostasis, as well as in the regulation of circadian rhythms. There is a relationship between the higher prevalence of a number of neurological disorders, sleep disorders and changes in the intestinal microbiota, which actualizes the study of the complex mechanisms of such correlation for the development of new treatment and prevention strategies. Environmental factors associated with excessive light exposure can aggravate the gut dysbiosis of intestinal microflora, and as a result, lead to sleep disturbances. This review examines the integrative mechanisms of sleep regulation associated with the gut microbiota (the role of neurotransmitters, short-chain fatty acids, unconjugated bile acids, bacterial cell wall components, cytokines). Taking into account the influence of gut dysbiosis as a risk factor in the development of various diseases, the authors systematize key aspects and modern scientific data on the importance of microflora balance to ensure optimal interaction along the microbiota-gut-brain axis in the context of the regulatory role of the sleep-wake cycle and its disorders.
Collapse
Affiliation(s)
| | | | - A M Kovalev
- Samara State Medical University, Samara, Russia
| | | | | | - A V Kozlov
- Samara State Medical University, Samara, Russia
| | | | - A V Lyamin
- Samara State Medical University, Samara, Russia
| | | |
Collapse
|
44
|
Lum GR, Ha SM, Olson CA, Blencowe M, Paramo J, Reyes B, Matsumoto JH, Yang X, Hsiao EY. Ketogenic diet therapy for pediatric epilepsy is associated with alterations in the human gut microbiome that confer seizure resistance in mice. Cell Rep 2023; 42:113521. [PMID: 38070135 PMCID: PMC10769314 DOI: 10.1016/j.celrep.2023.113521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023] Open
Abstract
The gut microbiome modulates seizure susceptibility and the anti-seizure effects of the ketogenic diet (KD) in animal models, but whether these relationships translate to KD therapies for human epilepsy is unclear. We find that the clinical KD alters gut microbial function in children with refractory epilepsy. Colonizing mice with KD-associated microbes promotes seizure resistance relative to matched pre-treatment controls. Select metagenomic and metabolomic features, including those related to anaplerosis, fatty acid β-oxidation, and amino acid metabolism, are seen with human KD therapy and preserved upon microbiome transfer to mice. Mice colonized with KD-associated gut microbes exhibit altered hippocampal transcriptomes, including pathways related to ATP synthesis, glutathione metabolism, and oxidative phosphorylation, and are linked to susceptibility genes identified in human epilepsy. Our findings reveal key microbial functions that are altered by KD therapies for pediatric epilepsy and linked to microbiome-induced alterations in brain gene expression and seizure protection in mice.
Collapse
Affiliation(s)
- Gregory R Lum
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Sung Min Ha
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christine A Olson
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Montgomery Blencowe
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Paramo
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Beck Reyes
- Department of Pediatrics, Division of Pediatric Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joyce H Matsumoto
- Department of Pediatrics, Division of Pediatric Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
45
|
Shayya NW, Bandick R, Busmann LV, Mousavi S, Bereswill S, Heimesaat MM. Metabolomic signatures of intestinal colonization resistance against Campylobacter jejuni in mice. Front Microbiol 2023; 14:1331114. [PMID: 38164399 PMCID: PMC10757985 DOI: 10.3389/fmicb.2023.1331114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Campylobacter jejuni stands out as one of the leading causes of bacterial enteritis. In contrast to humans, specific pathogen-free (SPF) laboratory mice display strict intestinal colonization resistance (CR) against C. jejuni, orchestrated by the specific murine intestinal microbiota, as shown by fecal microbiota transplantation (FMT) earlier. Methods Murine infection models, comprising SPF, SAB, hma, and mma mice were employed. FMT and microbiota depletion were confirmed by culture and culture-independent analyses. Targeted metabolome analyses of fecal samples provided insights into the associated metabolomic signatures. Results In comparison to hma mice, the murine intestinal microbiota of mma and SPF mice (with CR against C. jejuni) contained significantly elevated numbers of lactobacilli, and Mouse Intestinal Bacteroides, whereas numbers of enterobacteria, enterococci, and Clostridium coccoides group were reduced. Targeted metabolome analysis revealed that fecal samples from mice with CR contained increased levels of secondary bile acids and fatty acids with known antimicrobial activities, but reduced concentrations of amino acids essential for C. jejuni growth as compared to control animals without CR. Discussion The findings highlight the role of microbiota-mediated nutrient competition and antibacterial activities of intestinal metabolites in driving murine CR against C. jejuni. The study underscores the complex dynamics of host-microbiota-pathogen interactions and sets the stage for further investigations into the mechanisms driving CR against enteric infections.
Collapse
|
46
|
Yang R, Ahmad S, Liu H, Xu Q, Yin C, Liu Y, Zhang H, Yan H. Biodegradation of Cholesterol by Enterococcus faecium YY01. Microorganisms 2023; 11:2979. [PMID: 38138122 PMCID: PMC10745435 DOI: 10.3390/microorganisms11122979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cholesterol (CHOL) is one of the risk factors causing the blockage of the arterial wall, atherosclerosis, coronary heart disease, and other serious cardiovascular diseases. Here, a promising bacterial strain for biodegrading CHOL was successfully isolated from the gut of healthy individuals and identified as Enterococcus faecium YY01 with an analysis of the 16S rDNA sequence. An initial CHOL of 1.0 g/L was reduced to 0.5 g/L in 5 days, and glucose and beef extract were found to be optimal carbon and nitrogen sources for the rapid growth of YY01, respectively. To gain further insight into the mechanisms underlying CHOL biodegradation, the draft genome of YY01 was sequenced using Illumina HiSeq. Choloylglycine hydrolase, acyltransferase, and alkyl sulfatase was encoded by gene0586, gene1890, and gene2442, which play crucial roles in converting 3α, 7α, 12α-trihydroxy-5β-choranic acid to choline-CoA and then choline-CoA to bile acid. Notably, choloylglycine hydrolase was closely related to the biosynthesis of both primary and secondary bile acid. The findings of this study provide valuable insights into the metabolism pathway of CHOL biodegradation by YY01 and offer a potential avenue for the development of bacterioactive drugs against hypercholesterolemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (R.Y.); (S.A.); (H.L.); (Q.X.); (C.Y.); (Y.L.); (H.Z.)
| |
Collapse
|
47
|
Pan T, Li X, Guo X, Wang H, Zhou X, Shang R, Xie D, Qian X, Dai M, Fan E, Chen X, Chen C. Electroacupuncture Improves Insulin Resistance in Type 2 Diabetes Mice by Regulating Intestinal Flora and Bile Acid. Diabetes Metab Syndr Obes 2023; 16:4025-4042. [PMID: 38089431 PMCID: PMC10712683 DOI: 10.2147/dmso.s421134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/02/2023] [Indexed: 01/21/2025] Open
Abstract
INTRODUCTION Adjusting internal organs and dredging channel electroacupuncture has a definite effect on type 2 diabetes, but the specific mechanism still needs to be further clarified. This study aims to investigate the effects of electroacupuncture on the gut microbiota and bile acids in db/db mice after the intervention of "adjusting internal organs and dredging channel" and further explore its mechanism of action in treating T2DM. METHODS We used db/db mice as the animal model and db/m mice from the same litter as the blank control group, a total of 4 weeks of intervention were conducted. We evaluated the effectiveness of the "adjusting internal organs and dredging channel" treatment by detecting indicators related to glucose and lipid- metabolism. Detect changes in the gut microbiota of mice in each group using 16SrDNA sequencing technology. The content of bile acids in mouse feces was determined using liquid chromatography mass spectrometry, and the correlation analysis between different bile acids and differential bacterial communities was performed. The expression levels of TGR5 and GLP-1 proteins were measured using the Western blot method. RESULTS Adjusting internal organs and dredging channel electroacupuncture can improve blood glucose levels in db/db mice, increase the abundance of Firmicutes and Actinobacteria, and increase the content of fecal bile acid pool heavy CA and UDCA. At the same time, it also increased the content of TGR5/GLP1 in the small intestine. CONCLUSION Adjusting internal organs and dredging channel electroacupuncture can improve the disorder of glucose and lipid metabolism in db/db mice, regulate the abundance and colony composition of intestinal microbiota in mice, and regulate bile acid metabolism in mice. The interaction between bile acid and intestinal microbiota can also be observed; Mutual influence may play a role in regulating blood sugar together.
Collapse
Affiliation(s)
- Ting Pan
- College of Traditional Chinese Medicine, ChangChun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Xuefeng Li
- School of Acupuncture-Moxibustion and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Xiaole Guo
- Prevention and Treatment Center, The Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Haili Wang
- School of Acupuncture-Moxibustion and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Xue Zhou
- School of Acupuncture-Moxibustion and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Rui Shang
- Traditional Chinese Medicine Rehabilitation Center, Jilin Cancer Hospital, Changchun, Jilin, People’s Republic of China
| | - Donge Xie
- Acupuncture and moxibustion Clinical Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Xin Qian
- Tuina Department, Shenzhen Traditional Chinese Medicine Hospital, ShenZhen, Guangdong, People’s Republic of China
| | - Mengyao Dai
- School of Acupuncture-Moxibustion and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Enshuo Fan
- School of Acupuncture-Moxibustion and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Xinhua Chen
- College of Traditional Chinese Medicine, ChangChun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Chunhai Chen
- Acupuncture and moxibustion Clinical Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
48
|
Feng J, Ma H, Yue Y, Wang L, Hao K, Zhang Y, Li J, Xiang Y, Min Y. Saikosaponin a ameliorates diet-induced fatty liver via regulating intestinal microbiota and bile acid profile in laying hens. Poult Sci 2023; 102:103155. [PMID: 37871490 PMCID: PMC10598744 DOI: 10.1016/j.psj.2023.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
Fatty liver hemorrhagic syndrome is a widespread metabolic disease in laying hens that decreases egg production and even causes death in severe cases. Many traditional Chinese medicine ingredients, such as saikosaponin a (SSa), have been shown to alleviate fatty liver, but the underlying mechanisms remain unclear. In this study, we aimed to explore the alleviation of dietary SSa on excessive hepatic lipid deposition and the interactions between intestinal microbiota and bile acid (BA) in laying hens. Fifty-four 35-wk-old laying hens were randomly allocated into 3 treatment groups with 6 replicates (3 birds per replicate) and fed with a basal diet (CON), high-energy and low-protein diet (HELP), and HELP diet with 30 mg/kg SSa (HELP + SSa). SSa reversed diet-induced egg production rate decrease (P < 0.05). SSa could potently ameliorate HELP-induced accumulation of hepatic cholesterol and liver injury via the increase (P < 0.05) of mRNA expression of BA synthesis gene, such as cholesterol 7 alpha-hydroxylase 1. SSa treatment alleviated gut dysbiosis, especially reducing (P < 0.05) the relative abundance of bile salt hydrolase (BSH)-producing bacteria such as Lactobacillus, Bifidobacterium, and Turicibacter. Ileal BA metabolomic analysis revealed that SSa increased (P < 0.05) the content of tauro-conjugated BAs, mainly taurochenodeoxycholic acid and tauro-α-muricholic acid. The mRNA expression of farnesoid X receptor (FXR) and fibroblast growth factor 19 were decreased (P < 0.05) in intestine, which was associated with increased gene expression of enzymes in the BA synthesis that reduced the levels of cholesterol. Moreover, SSa treatment inhibited intestinal BA reabsorption via decreasing (P < 0.05) the mRNA expression of apical sodium-dependent bile acid transporter. Our findings indicated that SSa reduced liver cholesterol accumulation and alleviated fatty liver in laying hens through microbiota-BA-intestinal FXR crosstalk.
Collapse
Affiliation(s)
- Jia Feng
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Hui Ma
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yanrui Yue
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Lijun Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Keyang Hao
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yanan Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - Jinghe Li
- Tongchuan City Health Supervision Institute, Tongchuan 629000, Shaanxi, China
| | - Yujun Xiang
- Tongchuan City Health Supervision Institute, Tongchuan 629000, Shaanxi, China
| | - Yuna Min
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
49
|
de Wit DF, Hanssen NMJ, Wortelboer K, Herrema H, Rampanelli E, Nieuwdorp M. Evidence for the contribution of the gut microbiome to obesity and its reversal. Sci Transl Med 2023; 15:eadg2773. [PMID: 37992156 DOI: 10.1126/scitranslmed.adg2773] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/27/2023] [Indexed: 11/24/2023]
Abstract
Obesity has become a worldwide pandemic affecting more than 650 million people and is associated with a high burden of morbidity. Alongside traditional risk factors for obesity, the gut microbiome has been identified as a potential factor in weight regulation. Although rodent studies suggest a link between the gut microbiome and body weight, human evidence for causality remains scarce. In this Review, we postulate that existing evidence remains to establish a contribution of the gut microbiome to the development of obesity in humans but that modified probiotic strains and supraphysiological dosages of microbial metabolites may be beneficial in combatting obesity.
Collapse
Affiliation(s)
- Douwe F de Wit
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, 1105AZ Amsterdam, Netherlands
| | - Nordin M J Hanssen
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
| | - Koen Wortelboer
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, 1105AZ Amsterdam, Netherlands
| | - Hilde Herrema
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, 1105AZ Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105AZ Amsterdam, Netherlands
| | - Elena Rampanelli
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, 1105AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, 1105AZ Amsterdam, Netherlands
| | - Max Nieuwdorp
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, 1105AZ Amsterdam, Netherlands
- Amsterdam UMC location Vrije Universiteit Medical Center, Department of Internal Medicine, Diabetes Center, 1105AZ Amsterdam, Netherlands
| |
Collapse
|
50
|
Polishchuk S, Neverovskyi A, Shypulin V. Alterations of bile acid metabolism in patients with functional bowel disorders: a case-control study. PRZEGLAD GASTROENTEROLOGICZNY 2023; 18:442-448. [PMID: 38572453 PMCID: PMC10985747 DOI: 10.5114/pg.2023.133062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/12/2022] [Indexed: 04/05/2024]
Abstract
Introduction It is assumed that up to 50% of patients with functional bowel disorders with diarrhoea may suffer from bile acid (BA) malabsorption, which is considered as an underrecognized cause of chronic diarrhoea.Aim: To evaluate the indicators of BA metabolism in patients with irritable bowel syndrome (IBS). Material and methods The study population included 28 healthy adults (control group), 108 patients with IBS with diarrhoea (IBS-D) and 37 with constipation (IBS-C), aged 18-44 years. All participants were assessed by symptoms questionnaires: VSI and FBDSI. High-performance liquid chromatography - mass spectrometry (HPLC-MS) was used to measure serum and faecal BA (sBA and fBA). Ultra-performance liquid chromatography - mass spectrometry (UPLC-MS) was used to evaluate the relative activity (RA) of gut bacterial bile salt hydrolase (BSH). Results Primary sBA in absolute and percentages, total fBA, and primary fBA in absolute and percentages were higher, and secondary sBA and fBA in percentages were lower in the IBS-D group compared to the control and IBS-C groups (p < 0.01). The RA of gut bacterial BSH was lower in IBS-D compared to the control and IBS-C groups (p < 0.01). RA of gut bacterial BSH, secondary sBA and fBA correlated negatively with abdominal pain, bloating, stool frequency, Bristol scale, VSI, and FBDSI (p < 0.05 in all). Total fBA, primary sBA, and fBA correlated positively with the same clinical parameters (p < 0.05 in all). Conclusions IBS-D patients had altered parameters of BA metabolism that were associated with the severity of clinical symptoms, disease severity, visceral sensitivity, and stool appearance and frequency.
Collapse
Affiliation(s)
- Serhii Polishchuk
- Department of Internal Medicine No. 1, Bogomolets National Medical University, Kyiv, Ukraine
| | - Artem Neverovskyi
- Department of Internal Medicine No. 1, Bogomolets National Medical University, Kyiv, Ukraine
| | - Vadym Shypulin
- Department of Internal Medicine No. 1, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|