1
|
Jiang L, Li W, Liu X, Li C, Sun Z, Wu F, Ge S. Integrative techniques for insect behavior analysis using micro-CT and Blender. INSECT SCIENCE 2024. [PMID: 39415497 DOI: 10.1111/1744-7917.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
In this paper, we provide an approach that can simulate the behavior of insects, and the aggressive behavior of fruit flies is shown as an example. The specific workflow is as follows. (1) We obtained high-speed camera video of the fly's aggressive behavior. (2) Based on the high-speed camera video, we generated the key action diagrams for each movement. (3, 4) We used micro-computed tomography imaging to segment the leg exoskeleton models using Amira 6.0. (5) With the Blender software, we optimized the OBJ model. (6) We gave motion properties to the 3-dimensional biomechanical model in Blender. (7) Based on high-speed camera videos and the key action diagrams, we generated a 4-dimensional precision adult Drosophila melanogaster biomechanical model. Our study provides a new approach to study rapid locomotion in insects. In addition, our study provides a new idea for establishment of a 4D database, the design and fabrication of bionic multipedal robots, and the linking of nerve signaling and muscle stretching processes.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenjie Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaokun Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Congqiao Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zonghui Sun
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengming Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siqin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Kim SJ, Lee KM, Park SH, Yang T, Song I, Rai F, Hoshino R, Yun M, Zhang C, Kim JI, Lee S, Suh GSB, Niwa R, Park ZY, Kim YJ. A sexually transmitted sugar orchestrates reproductive responses to nutritional stress. Nat Commun 2024; 15:8477. [PMID: 39353950 PMCID: PMC11445483 DOI: 10.1038/s41467-024-52807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Seminal fluid is rich in sugars, but their role beyond supporting sperm motility is unknown. In this study, we found Drosophila melanogaster males transfer a substantial amount of a phospho-galactoside to females during mating, but only half as much when undernourished. This seminal substance, which we named venerose, induces an increase in germline stem cells (GSCs) and promotes sperm storage in females, especially undernourished ones. Venerose enters the hemolymph and directly activates nutrient-sensing Dh44+ neurons in the brain. Food deprivation directs the nutrient-sensing neurons to secrete more of the neuropeptide Dh44 in response to infused venerose. The secreted Dh44 then enhances the local niche signal, stimulating GSC proliferation. It also extends the retention of ejaculate by females, resulting in greater venerose absorption and increased sperm storage. In this study, we uncovered the role of a sugar-like seminal substance produced by males that coordinates reproductive responses to nutritional challenges in females.
Collapse
Affiliation(s)
- Seong-Jin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Kang-Min Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Si Hyung Park
- School of Horticulture and Forestry, College of Bio and Medical Sciences, Mokpo National University, Muan, 58554, Republic of Korea
| | - Taekyun Yang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ingyu Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Fumika Rai
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ryo Hoshino
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Minsik Yun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Chen Zhang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jae-Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
3
|
Dos Santos E, Cochemé HM. How does a fly die? Insights into ageing from the pathophysiology of Drosophila mortality. GeroScience 2024; 46:4003-4015. [PMID: 38642259 PMCID: PMC11336040 DOI: 10.1007/s11357-024-01158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/22/2024] Open
Abstract
The fruit fly Drosophila melanogaster is a common animal model in ageing research. Large populations of flies are used to study the impact of genetic, nutritional and pharmacological interventions on survival. However, the processes through which flies die and their relative prevalence in Drosophila populations are still comparatively unknown. Understanding the causes of death in an animal model is essential to dissect the lifespan-extending interventions that are organism- or disease-specific from those broadly applicable to ageing. Here, we review the pathophysiological processes that can lead to fly death and discuss their relation to ageing.
Collapse
Affiliation(s)
- Eliano Dos Santos
- MRC Laboratory of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
- Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, Du Cane Road, London, W12 0HS, UK
| | - Helena M Cochemé
- MRC Laboratory of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK.
- Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, Du Cane Road, London, W12 0HS, UK.
| |
Collapse
|
4
|
Kircher BK, McCown MA, Scully DM, Behringer RR, Larina IV. Structural analysis of the female reptile reproductive system by micro-computed tomography and optical coherence tomography†. Biol Reprod 2024; 110:1077-1085. [PMID: 38641547 PMCID: PMC11180613 DOI: 10.1093/biolre/ioae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/21/2024] Open
Abstract
Volumetric data provide unprecedented structural insight to the reproductive tract and add vital anatomical context to the relationships between organs. The morphology of the female reproductive tract in non-avian reptiles varies between species, corresponding to a broad range of reproductive modes and providing valuable insight to comparative investigations of reproductive anatomy. However, reproductive studies in reptilian models, such as the brown anole studied here, have historically relied on histological methods to understand the anatomy. While these methods are highly effective for characterizing the cell types present in each organ, histological methods lose the 3D relationships between images and leave the architecture of the organ system poorly understood. We present the first comprehensive volumetric analyses of the female brown anole reproductive tract using two non-invasive, non-destructive imaging modalities: micro-computed tomography (microCT) and optical coherence tomography (OCT). Both are specialized imaging technologies that facilitate high-throughput imaging and preserve three-dimensional information. This study represents the first time that microCT has been used to study all reproductive organs in this species and the very first time that OCT has been applied to this species. We show how the non-destructive volumetric imaging provided by each modality reveals anatomical context including orientation and relationships between reproductive organs of the anole lizard. In addition to broad patterns of morphology, both imaging modalities provide the high resolution necessary to capture details and key anatomical features of each organ. We demonstrate that classic histological features can be appreciated within whole-organ architecture in volumetric imaging using microCT and OCT, providing the complementary information necessary to understand the relationships between tissues and organs in the reproductive system. This side-by-side imaging analysis using microCT and OCT allows us to evaluate the specific advantages and limitations of these two methods for the female reptile reproductive system.
Collapse
Affiliation(s)
- Bonnie K Kircher
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Michaela A McCown
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Deirdre M Scully
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Irina V Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Blackie L, Gaspar P, Mosleh S, Lushchak O, Kong L, Jin Y, Zielinska AP, Cao B, Mineo A, Silva B, Ameku T, Lim SE, Mao Y, Prieto-Godino L, Schoborg T, Varela M, Mahadevan L, Miguel-Aliaga I. The sex of organ geometry. Nature 2024; 630:392-400. [PMID: 38811741 PMCID: PMC11168936 DOI: 10.1038/s41586-024-07463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Organs have a distinctive yet often overlooked spatial arrangement in the body1-5. We propose that there is a logic to the shape of an organ and its proximity to its neighbours. Here, by using volumetric scans of many Drosophila melanogaster flies, we develop methods to quantify three-dimensional features of organ shape, position and interindividual variability. We find that both the shapes of organs and their relative arrangement are consistent yet differ between the sexes, and identify unexpected interorgan adjacencies and left-right organ asymmetries. Focusing on the intestine, which traverses the entire body, we investigate how sex differences in three-dimensional organ geometry arise. The configuration of the adult intestine is only partially determined by physical constraints imposed by adjacent organs; its sex-specific shape is actively maintained by mechanochemical crosstalk between gut muscles and vascular-like trachea. Indeed, sex-biased expression of a muscle-derived fibroblast growth factor-like ligand renders trachea sexually dimorphic. In turn, tracheal branches hold gut loops together into a male or female shape, with physiological consequences. Interorgan geometry represents a previously unrecognized level of biological complexity which might enable or confine communication across organs and could help explain sex or species differences in organ function.
Collapse
Affiliation(s)
- Laura Blackie
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Pedro Gaspar
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Salem Mosleh
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | | | - Lingjin Kong
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Yuhong Jin
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Agata P Zielinska
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Boxuan Cao
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Alessandro Mineo
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Bryon Silva
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Tomotsune Ameku
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Shu En Lim
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | | | - Todd Schoborg
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Marta Varela
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| | - L Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Departments of Physics and Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Irene Miguel-Aliaga
- MRC Laboratory of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
6
|
Ma X, Yin Z, Li H, Guo J. Roles of herbivorous insects salivary proteins. Heliyon 2024; 10:e29201. [PMID: 38601688 PMCID: PMC11004886 DOI: 10.1016/j.heliyon.2024.e29201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
The intricate relationship between herbivorous insects and plants has evolved over millions of years, central to this dynamic interaction are salivary proteins (SPs), which mediate key processes ranging from nutrient acquisition to plant defense manipulation. SPs, sourced from salivary glands, intestinal regurgitation or acquired through horizontal gene transfer, exhibit remarkable functional versatility, influencing insect development, behavior, and adhesion mechanisms. Moreover, SPs play pivotal roles in modulating plant defenses, to induce or inhibit plant defenses as elicitors or effectors. In this review, we delve into the multifaceted roles of SPs in herbivorous insects, highlighting their diverse impacts on insect physiology and plant responses. Through a comprehensive exploration of SP functions, this review aims to deepen our understanding of plant-insect interactions and foster advancements in both fundamental research and practical applications in plant-insect interactions.
Collapse
Affiliation(s)
- Xinyi Ma
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Zhiyong Yin
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| |
Collapse
|
7
|
Urum A, Rice G, Glassford W, Yanku Y, Shklyar B, Rebeiz M, Preger-Ben Noon E. A developmental atlas of male terminalia across twelve species of Drosophila. Front Cell Dev Biol 2024; 12:1349275. [PMID: 38487271 PMCID: PMC10937369 DOI: 10.3389/fcell.2024.1349275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/25/2024] [Indexed: 03/17/2024] Open
Abstract
How complex morphologies evolve is one of the central questions in evolutionary biology. Observing the morphogenetic events that occur during development provides a unique perspective on the origins and diversification of morphological novelty. One can trace the tissue of origin, emergence, and even regression of structures to resolve murky homology relationships between species. Here, we trace the developmental events that shape some of the most diverse organs in the animal kingdom-the male terminalia (genitalia and analia) of Drosophilids. Male genitalia are known for their rapid evolution with closely related species of the Drosophila genus demonstrating vast variation in their reproductive morphology. We used confocal microscopy to monitor terminalia development during metamorphosis in twelve related species of Drosophila. From this comprehensive dataset, we propose a new staging scheme for pupal terminalia development based on shared developmental landmarks, which allows one to align developmental time points between species. We were able to trace the origin of different substructures, find new morphologies and suggest possible homology of certain substructures. Additionally, we demonstrate that posterior lobe is likely originated prior to the split between the Drosophila melanogaster and the Drosophila yakuba clade. Our dataset opens up many new directions of research and provides an entry point for future studies of the Drosophila male terminalia evolution and development.
Collapse
Affiliation(s)
- Anna Urum
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gavin Rice
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - William Glassford
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yifat Yanku
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Boris Shklyar
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ella Preger-Ben Noon
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Muinde J, Zhang TH, Liang ZL, Liu SP, Kioko E, Huang ZZ, Ge SQ. Functional Anatomy of Split Compound Eyes of the Whirligig Beetles Dineutus mellyi (Coleoptera: Gyrinidae). INSECTS 2024; 15:122. [PMID: 38392541 PMCID: PMC10889679 DOI: 10.3390/insects15020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The functional anatomy of the split compound eyes of whirligig beetles Dineutus mellyi (Coleoptera: Gyrinidae) was examined by advanced microscopy and microcomputed tomography. We report the first 3D visualization and analysis of the split compound eyes. On average, the dorsal and ventral eyes contain 1913 ± 44.5 facets and 3099 ± 86.2 facets, respectively. The larger area of ventral eyes ensures a higher field of vision underwater. The ommatidium of the split compound eyes is made up of laminated cornea lenses that offer protection against mechanical injuries, bullet-shaped crystalline cones that guide light to the photoreceptive regions, and screening pigments that ensure directional light passage. The photoreceptive elements, made up of eight retinular cells, exhibit a tri-tiered rhabdom structure, including the upper distal rhabdom, a clear zone that ensures maximum light passage, and an enlarged lower distal rhabdom that ensures optimal photon capture.
Collapse
Affiliation(s)
- Jacob Muinde
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- National Museums of Kenya, Museum Hill, Nairobi P.O. Box 40658-00100, Kenya
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Hao Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zu-Long Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Pei Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Esther Kioko
- National Museums of Kenya, Museum Hill, Nairobi P.O. Box 40658-00100, Kenya
| | - Zheng-Zhong Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si-Qin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Yamanouchi HM, Kamikouchi A, Tanaka R. Protocol to investigate the neural basis for copulation posture of Drosophila using a closed-loop real-time optogenetic system. STAR Protoc 2023; 4:102623. [PMID: 37788165 PMCID: PMC10551656 DOI: 10.1016/j.xpro.2023.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
In internal fertilization animals, maintaining a copulation posture facilitates the process of transporting gametes from male to female. Here, we present a protocol to investigate the neural basis for copulation posture of fruit flies using a closed-loop real-time optogenetic system. We describe steps for using deep learning analysis to enable optogenetic manipulation of neural activity only during copulation with high efficiency. This system can be applied to various animal behaviors other than copulation. For complete details on the use and execution of this protocol, please refer to Yamanouchi et al. (2023).1.
Collapse
Affiliation(s)
- Hayato M Yamanouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8602, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ryoya Tanaka
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
10
|
Delbare SYN, Jain AM, Clark AG, Wolfner MF. Transcriptional programs are activated and microRNAs are repressed within minutes after mating in the Drosophila melanogaster female reproductive tract. BMC Genomics 2023; 24:356. [PMID: 37370014 PMCID: PMC10294459 DOI: 10.1186/s12864-023-09397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The female reproductive tract is exposed directly to the male's ejaculate, making it a hotspot for mating-induced responses. In Drosophila melanogaster, changes in the reproductive tract are essential to optimize fertility. Many changes occur within minutes after mating, but such early timepoints are absent from published RNA-seq studies. We measured transcript abundances using RNA-seq and microRNA-seq of reproductive tracts of unmated and mated females collected at 10-15 min post-mating. We further investigated whether early transcriptome changes in the female reproductive tract are influenced by inhibiting BMPs in secondary cells, a condition that depletes exosomes from the male's ejaculate. RESULTS We identified 327 differentially expressed genes. These were mostly upregulated post-mating and have roles in tissue morphogenesis, wound healing, and metabolism. Differentially abundant microRNAs were mostly downregulated post-mating. We identified 130 predicted targets of these microRNAs among the differentially expressed genes. We saw no detectable effect of BMP inhibition in secondary cells on transcript levels in the female reproductive tract. CONCLUSIONS Our results indicate that mating induces early changes in the female reproductive tract primarily through upregulation of target genes, rather than repression. The upregulation of certain target genes might be mediated by the mating-induced downregulation of microRNAs. Male-derived exosomes and other BMP-dependent products were not uniquely essential for this process. Differentially expressed genes and microRNAs provide candidates that can be further examined for their participation in the earliest alterations of the reproductive tract microenvironment.
Collapse
Affiliation(s)
- Sofie Y N Delbare
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA.
| | - Asha M Jain
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Mariana F Wolfner
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
11
|
Windfelder AG, Steinbart J, Flögel U, Scherberich J, Kampschulte M, Krombach GA, Vilcinskas A. A quantitative micro-tomographic gut atlas of the lepidopteran model insect Manduca sexta. iScience 2023; 26:106801. [PMID: 37378344 PMCID: PMC10291339 DOI: 10.1016/j.isci.2023.106801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/26/2023] [Accepted: 04/28/2023] [Indexed: 06/29/2023] Open
Abstract
The tobacco hornworm is used extensively as a model system for ecotoxicology, immunology and gut physiology. Here, we established a micro-computed tomography approach based on the oral application of the clinical contrast agent iodixanol, allowing for a high-resolution quantitative analysis of the Manduca sexta gut. This technique permitted the identification of previously unknown and understudied structures, such as the crop or gastric ceca, and revealed the underlying complexity of the hindgut folding pattern, which is involved in fecal pellet formation. The acquired data enabled the volume rendering of all gut parts, the reliable calculation of their volumes, and the virtual endoscopy of the entire alimentary tract. It can provide information for accurate orientation in histology uses, enable quantitative anatomical phenotyping in three dimensions, and allow the calculation of locally effective midgut concentrations of applied chemicals. This atlas will provide critical insights into the evolution of the alimentary tract in lepidopterans.
Collapse
Affiliation(s)
- Anton G. Windfelder
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Jessica Steinbart
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Scherberich
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Marian Kampschulte
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Germany
| | - Gabriele A. Krombach
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Germany
| | - Andreas Vilcinskas
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
12
|
Yamanouchi HM, Tanaka R, Kamikouchi A. Piezo-mediated mechanosensation contributes to stabilizing copulation posture and reproductive success in Drosophila males. iScience 2023; 26:106617. [PMID: 37250311 PMCID: PMC10214400 DOI: 10.1016/j.isci.2023.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 05/31/2023] Open
Abstract
In internal fertilization animals, reproductive success depends on maintaining copulation until gametes are transported from male to female. In Drosophila melanogaster, mechanosensation in males likely contributes to copulation maintenance, but its molecular underpinning remains to be identified. Here we show that the mechanosensory gene piezo and its' expressing neurons are responsible for copulation maintenance. An RNA-seq database search and subsequent mutant analysis revealed the importance of piezo for maintaining male copulation posture. piezo-GAL4-positive signals were found in the sensory neurons of male genitalia bristles, and optogenetic inhibition of piezo-expressing neurons in the posterior side of the male body during copulation destabilized posture and terminated copulation. Our findings suggest that the mechanosensory system of male genitalia through Piezo channels plays a key role in copulation maintenance and indicate that Piezo may increase male fitness during copulation in flies.
Collapse
Affiliation(s)
| | - Ryoya Tanaka
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
13
|
Rohrbach EW, Knapp EM, Deshpande SA, Krantz DE. Drosophila cells that express octopamine receptors can either inhibit or promote oviposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539296. [PMID: 37205438 PMCID: PMC10187210 DOI: 10.1101/2023.05.03.539296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adrenergic signaling is known to play a critical role in regulating female reproductive processes in both mammals and insects. In Drosophila , the ortholog of noradrenaline, octopamine (Oa), is required for ovulation as well as several other female reproductive processes. Loss of function studies using mutant alleles of receptors, transporters, and biosynthetic enzymes for Oa have led to a model in which disruption of octopaminergic pathways reduces egg laying. However, neither the complete expression pattern in the reproductive tract nor the role of most octopamine receptors in oviposition is known. We show that all six known Oa receptors are expressed in peripheral neurons at multiple sites within in the female fly reproductive tract as well as in non-neuronal cells within the sperm storage organs. The complex pattern of Oa receptor expression in the reproductive tract suggests the potential for influencing multiple regulatory pathways, including those known to inhibit egg-laying in unmated flies. Indeed, activation of some neurons that express Oa receptors inhibits oviposition, and neurons that express different subtypes of Oa receptor can affect different stages of egg laying. Stimulation of some Oa receptor expressing neurons (OaRNs) also induces contractions in lateral oviduct muscle and activation of non-neuronal cells in the sperm storage organs by Oa generates OAMB-dependent intracellular calcium release. Our results are consistent with a model in which adrenergic pathways play a variety of complex roles in the fly reproductive tract that includes both the stimulation and inhibition of oviposition.
Collapse
|
14
|
Dodge R, Jones EW, Zhu H, Obadia B, Martinez DJ, Wang C, Aranda-Díaz A, Aumiller K, Liu Z, Voltolini M, Brodie EL, Huang KC, Carlson JM, Sivak DA, Spradling AC, Ludington WB. A symbiotic physical niche in Drosophila melanogaster regulates stable association of a multi-species gut microbiota. Nat Commun 2023; 14:1557. [PMID: 36944617 PMCID: PMC10030875 DOI: 10.1038/s41467-023-36942-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
The gut is continuously invaded by diverse bacteria from the diet and the environment, yet microbiome composition is relatively stable over time for host species ranging from mammals to insects, suggesting host-specific factors may selectively maintain key species of bacteria. To investigate host specificity, we used gnotobiotic Drosophila, microbial pulse-chase protocols, and microscopy to investigate the stability of different strains of bacteria in the fly gut. We show that a host-constructed physical niche in the foregut selectively binds bacteria with strain-level specificity, stabilizing their colonization. Primary colonizers saturate the niche and exclude secondary colonizers of the same strain, but initial colonization by Lactobacillus species physically remodels the niche through production of a glycan-rich secretion to favor secondary colonization by unrelated commensals in the Acetobacter genus. Our results provide a mechanistic framework for understanding the establishment and stability of a multi-species intestinal microbiome.
Collapse
Affiliation(s)
- Ren Dodge
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Eric W Jones
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Haolong Zhu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Benjamin Obadia
- Molecular and Cell Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Daniel J Martinez
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Chenhui Wang
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21218, USA
| | - Andrés Aranda-Díaz
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Kevin Aumiller
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhexian Liu
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Marco Voltolini
- Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Milano, Italy
| | - Eoin L Brodie
- Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Jean M Carlson
- Department of Physics, University of California, Santa Barbara, CA, 93106, USA
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Allan C Spradling
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21218, USA
| | - William B Ludington
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
15
|
Rice GR, David JR, Gompel N, Yassin A, Rebeiz M. Resolving between novelty and homology in the rapidly evolving phallus of Drosophila. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:182-196. [PMID: 34958528 PMCID: PMC10155935 DOI: 10.1002/jez.b.23113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/24/2021] [Accepted: 10/10/2021] [Indexed: 11/11/2022]
Abstract
The genitalia present some of the most rapidly evolving anatomical structures in the animal kingdom, possessing a variety of parts that can distinguish recently diverged species. In the Drosophila melanogaster group, the phallus is adorned with several processes, pointed outgrowths, that are similar in size and shape between species. However, the complex three-dimensional nature of the phallus can obscure the exact connection points of each process. Previous descriptions based upon adult morphology have primarily assigned phallic processes by their approximate positions in the phallus and have remained largely agnostic regarding their homology relationships. In the absence of clearly identified homology, it can be challenging to model when each structure first evolved. Here, we employ a comparative developmental analysis of these processes in eight members of the melanogaster species group to precisely identify the tissue from which each process forms. Our results indicate that adult phallic processes arise from three pupal primordia in all species. We found that in some cases the same primordia generate homologous structures whereas in other cases, different primordia produce phenotypically similar but remarkably non-homologous structures. This suggests that the same gene regulatory network may have been redeployed to different primordia to induce phenotypically similar traits. Our results highlight how traits diversify and can be redeployed, even at short evolutionary scales.
Collapse
Affiliation(s)
- Gavin R Rice
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jean R David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), UMR 9191, CNRS,IRD, Univ.Paris-Sud, Université Paris-Saclay, Orsay, Cedex, France
| | - Nicolas Gompel
- Fakultät für Biologie, Biozentrum, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| | - Amir Yassin
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), UMR 9191, CNRS,IRD, Univ.Paris-Sud, Université Paris-Saclay, Orsay, Cedex, France.,Institut de Systématique, Evolution et Biodiversité, UMR7205, Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Delbare SYN, Venkatraman S, Scuderi K, Wells MT, Wolfner MF, Basu S, Clark AG. Time series transcriptome analysis implicates the circadian clock in the Drosophila melanogaster female's response to sex peptide. Proc Natl Acad Sci U S A 2023; 120:e2214883120. [PMID: 36706221 PMCID: PMC9945991 DOI: 10.1073/pnas.2214883120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
Sex peptide (SP), a seminal fluid protein of Drosophila melanogaster males, has been described as driving a virgin-to-mated switch in females, through eliciting an array of responses including increased egg laying, activity, and food intake and a decreased remating rate. While it is known that SP achieves this, at least in part, by altering neuronal signaling in females, the genetic architecture and temporal dynamics of the female's response to SP remain elusive. We used a high-resolution time series RNA-sequencing dataset of female heads at 10 time points within the first 24 h after mating to learn about the genetic architecture, at the gene and exon levels, of the female's response to SP. We find that SP is not essential to trigger early aspects of a virgin-to-mated transcriptional switch, which includes changes in a metabolic gene regulatory network. However, SP is needed to maintain and diversify metabolic changes and to trigger changes in a neuronal gene regulatory network. We further find that SP alters rhythmic gene expression in females and suggests that SP's disruption of the female's circadian rhythm might be key to its widespread effects.
Collapse
Affiliation(s)
- Sofie Y. N. Delbare
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Sara Venkatraman
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Kate Scuderi
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| | - Martin T. Wells
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Mariana F. Wolfner
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| | - Sumanta Basu
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Andrew G. Clark
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
17
|
van Gammeren S, Lang M, Rücklin M, Schilthuizen M. No evidence for asymmetric sperm deposition in a species with asymmetric male genitalia. PeerJ 2022; 10:e14225. [PMID: 36447515 PMCID: PMC9701498 DOI: 10.7717/peerj.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background Asymmetric genitalia have repeatedly evolved in animals, yet the underlying causes for their evolution are mostly unknown. The fruit fly Drosophila pachea has asymmetric external genitalia and an asymmetric phallus with a right-sided phallotrema (opening for sperm release). The complex of female and male genitalia is asymmetrically twisted during copulation and males adopt a right-sided copulation posture on top of the female. We wished to investigate if asymmetric male genital morphology and a twisted gentitalia complex may be associated with differential allocation of sperm into female sperm storage organs. Methods We examined the internal complex of female and male reproductive organs by micro-computed tomography and synchrotron X-ray tomography before, during and after copulation. In addition, we monitored sperm aggregation states and timing of sperm transfer during copulation by premature interruption of copulation at different time-points. Results The asymmetric phallus is located at the most caudal end of the female abdomen during copulation. The female reproductive tract, in particular the oviduct, re-arranges during copulation. It is narrow in virgin females and forms a broad vesicle at 20 min after the start of copulation. Sperm transfer into female sperm storage organs (spermathecae) was only in a minority of examined copulation trials (13/64). Also, we found that sperm was mainly transferred early, at 2-4 min after the start of copulation. We did not detect a particular pattern of sperm allocation in the left or right spermathecae. Sperm adopted a granular or filamentous aggregation state in the female uterus and spermathecae, respectively. Discussion No evidence for asymmetric sperm deposition was identified that could be associated with asymmetric genital morphology or twisted complexing of genitalia. Male genital asymmetry may potentially have evolved as a consequence of a complex internal alignment of reproductive organs during copulation in order to optimize low sperm transfer rates.
Collapse
Affiliation(s)
| | - Michael Lang
- Université Paris Cité, CNRS - Institut Jacques Monod, Paris, France,Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Menno Schilthuizen
- Naturalis Biodiversity Center, Leiden, The Netherlands,Institute for Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
18
|
Morimoto J, Barcellos R, Schoborg TA, Nogueira LP, Colaço MV. Assessing Anatomical Changes in Male Reproductive Organs in Response to Larval Crowding Using Micro-computed Tomography Imaging. NEOTROPICAL ENTOMOLOGY 2022; 51:526-535. [PMID: 35789989 PMCID: PMC9304064 DOI: 10.1007/s13744-022-00976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Ecological conditions shape (adaptive) responses at the molecular, anatomical, and behavioral levels. Understanding these responses is key to predict the outcomes of intra- and inter-specific competitions and the evolutionary trajectory of populations. Recent technological advances have enabled large-scale molecular (e.g., RNAseq) and behavioral (e.g., computer vision) studies, but the study of anatomical responses to ecological conditions has lagged behind. Here, we highlight the role of X-ray micro-computed tomography (micro-CT) in generating in vivo and ex vivo 3D imaging of anatomical structures, which can enable insights into adaptive anatomical responses to ecological environments. To demonstrate the application of this method, we manipulated the larval density of Drosophila melanogaster Meigen flies and applied micro-CT to investigate the anatomical responses of the male reproductive organs to varying intraspecific competition levels during development. Our data is suggestive of two classes of anatomical responses which broadly agree with sexual selection theory: increasing larval density led to testes and ejaculatory duct to be overall larger (in volume), while the volume of accessory glands and, to a lesser extent, ejaculatory duct decreased. These two distinct classes of anatomical responses might reflect shared developmental regulation of the structures of the male reproductive system. Overall, we show that micro-CT can be an important tool to advance the study of anatomical (adaptive) responses to ecological environments.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK.
- Institute of Mathematics, University of Aberdeen, Aberdeen, UK.
- Programa de Pós-Graduação Em Ecologia E Conservação, Universidade Federal Do Paraná, Curitiba, Paraná, Brazil.
- Institute of Differential Geometry, Riemann Centre for Geometry and Physics, Leibniz Universität Hannover, Hannover, Germany.
| | - Renan Barcellos
- COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Todd A Schoborg
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | | | - Marcos Vinicius Colaço
- Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
19
|
Chen DS, Clark AG, Wolfner MF. Octopaminergic/tyraminergic Tdc2 neurons regulate biased sperm usage in female Drosophila melanogaster. Genetics 2022; 221:6637517. [PMID: 35809068 PMCID: PMC9339280 DOI: 10.1093/genetics/iyac096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
In polyandrous internally fertilizing species, a multiply-mated female can use stored sperm from different males in a biased manner to fertilize her eggs. The female's ability to assess sperm quality and compatibility is essential for her reproductive success, and represents an important aspect of postcopulatory sexual selection. In Drosophila melanogaster, previous studies demonstrated that the female nervous system plays an active role in influencing progeny paternity proportion, and suggested a role for octopaminergic/tyraminergic Tdc2 neurons in this process. Here, we report that inhibiting Tdc2 neuronal activity causes females to produce a higher-than-normal proportion of first-male progeny. This difference is not due to differences in sperm storage or release, but instead is attributable to the suppression of second-male sperm usage bias that normally occurs in control females. We further show that a subset of Tdc2 neurons innervating the female reproductive tract is largely responsible for the progeny proportion phenotype that is observed when Tdc2 neurons are inhibited globally. On the contrary, overactivation of Tdc2 neurons does not further affect sperm storage, release or progeny proportion. These results suggest that octopaminergic/tyraminergic signaling allows a multiply-mated female to bias sperm usage, and identify a new role for the female nervous system in postcopulatory sexual selection.
Collapse
Affiliation(s)
- Dawn S Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| |
Collapse
|
20
|
Abstract
Despite their evolutionary and biomedical importance, studies of the morphology and function of female genitalia have continued to lag behind those of male genitalia. While studying female genitalia can be difficult because of their soft, deformable and internal nature, recent advances in imaging, geometric analyses of shape and mechanical testing have been made, allowing for a much greater understanding of the incredible diversity of form and function of female genitalia. Here we summarize some of these methods, as well as discuss some big questions in the field that are beginning to be examined now, and will continue to benefit from further work, especially a comparative approach. Topics of further research include examination of the morphology of female genitalia in situ, in-depth anatomical work in many more species, studies of the interplay between natural and sexual selection in influencing features of vaginal morphology, how these diverse functions influence the mechanical properties of tissues, and studies of clitoris morphology and function across amniotes. Many other research topics related to female genitalia remain largely unexplored, and we hope that the papers in this issue will continue to inspire further research on female genitalia.
Collapse
Affiliation(s)
- Patricia L R Brennan
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| |
Collapse
|
21
|
Orr TJ, Lukitsch T, Eiting TP, Brennan PLR. Testing Morphological Relationships Between Female and Male Copulatory Structures in Bats. Integr Comp Biol 2022; 62:icac040. [PMID: 35661885 DOI: 10.1093/icb/icac040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The lower reproductive tract of female mammals has several competing functions including mating, tract health maintenance, and parturition. Diverse vaginal anatomy suggests interactions between natural and sexual selection, yet despite its importance, female copulatory morphology remains under-studied. We undertook a comparative study across the species-rich mammalian order Chiroptera (bats) with a focus on the suborder Yangochiroptera (Vespertilioniformes) to examine how female vaginal features may have coevolved with male penis morphology to minimize mechanical damage to their tissues during copulation. The penis morphology is diverse, presenting great potential for post-copulatory sexual selection and coevolution with the female morphology, but vaginas have not been carefully examined. Here we test the hypotheses that vaginal thickness and collagen density have coevolved with features of the male penis including the presence of spines and a baculum. We present histological data from females of 24 species from 7 families of bats, and corresponding data on male penis anatomy. We also examine the role of phylogenetic history in the morphological patterns we observe. We found evidence that female vaginal thickness has coevolved with the presence of penile spines, but not with baculum presence or width. Collagen density did not appear to covary with male penile features. Our findings highlight the importance of considering interactions between the sexes in influencing functional reproductive structures and examine how these structures have been under selection in bats.
Collapse
Affiliation(s)
- Teri J Orr
- New Mexico State University, Department of Biology, Las Cruces, NM 88003
| | - Theresa Lukitsch
- New Mexico State University, Department of Biology, Las Cruces, NM 88003
| | - Thomas P Eiting
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112
| | - Patricia L R Brennan
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075
| |
Collapse
|
22
|
Exploring Compound Eyes in Adults of Four Coleopteran Species Using Synchrotron X-ray Phase-Contrast Microtomography (SR-PhC Micro-CT). Life (Basel) 2022; 12:life12050741. [PMID: 35629408 PMCID: PMC9145526 DOI: 10.3390/life12050741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/17/2022] Open
Abstract
Compound eyes in insects are primary visual receptors of surrounding environments. They show considerable design variations, from the apposition vision of most day-active species to the superposition vision of nocturnal insects, that sacrifice resolution to increase sensitivity and are able to overcome the challenges of vision during lightless hours or in dim habitats. In this study, Synchrotron radiation X-ray phase-contrast microtomography was used to describe the eye structure of four coleopteran species, showing species-specific habitat demands and different feeding habits, namely the saproxylic Clinidium canaliculatum (Costa, 1839) (Rhysodidae), the omnivorous Tenebrio molitor (Linnaeus, 1758) and Tribolium castaneum (Herbest, 1797) (Tenebrionidae), and the generalist predator Pterostichus melas italicus (Dejean, 1828) (Carabidae). Virtual sections and 3D volume renderings of the heads were performed to evaluate the application and limitations of this technique for studying the internal dioptrical and sensorial parts of eyes, and to avoid time-consuming methods such as ultrastructural analyses and classic histology. Morphological parameters such as the area of the corneal facet lens and cornea, interocular distance, facet density and corneal lens thickness were measured, and differences among the studied species were discussed concerning the differences in lifestyle and habitat preferences making different demands on the visual system. Our imaging results provide, for the first time, morphological descriptions of the compound eyes in these species, supplementing their ecological and behavioural traits.
Collapse
|
23
|
McQueen EW, Afkhami M, Atallah J, Belote JM, Gompel N, Heifetz Y, Kamimura Y, Kornhauser SC, Masly JP, O’Grady P, Peláez J, Rebeiz M, Rice G, Sánchez-Herrero E, Santos Nunes MD, Santos Rampasso A, Schnakenberg SL, Siegal ML, Takahashi A, Tanaka KM, Turetzek N, Zelinger E, Courtier-Orgogozo V, Toda MJ, Wolfner MF, Yassin A. A standardized nomenclature and atlas of the female terminalia of Drosophila melanogaster. Fly (Austin) 2022; 16:128-151. [PMID: 35575031 PMCID: PMC9116418 DOI: 10.1080/19336934.2022.2058309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The model organism Drosophila melanogaster has become a focal system for investigations of rapidly evolving genital morphology as well as the development and functions of insect reproductive structures. To follow up on a previous paper outlining unifying terminology for the structures of the male terminalia in this species, we offer here a detailed description of the female terminalia of D. melanogaster. Informative diagrams and micrographs are presented to provide a comprehensive overview of the external and internal reproductive structures of females. We propose a collection of terms and definitions to standardize the terminology associated with the female terminalia in D. melanogaster and we provide a correspondence table with the terms previously used. Unifying terminology for both males and females in this species will help to facilitate communication between various disciplines, as well as aid in synthesizing research across publications within a discipline that has historically focused principally on male features. Our efforts to refine and standardize the terminology should expand the utility of this important model system for addressing questions related to the development and evolution of animal genitalia, and morphology in general.
Collapse
Affiliation(s)
- Eden W. McQueen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mehrnaz Afkhami
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Joel Atallah
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA
| | - John M. Belote
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Nicolas Gompel
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
| | - Yael Heifetz
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Shani C. Kornhauser
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
- Biozentrum, University of Basel, Basel, Switzerland
| | - John P. Masly
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Patrick O’Grady
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Julianne Peláez
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gavin Rice
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | | - Sandra L. Schnakenberg
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
- Sema4, Stamford, CT, USA
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji, Japan
| | - Kentaro M. Tanaka
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Natascha Turetzek
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
| | - Einat Zelinger
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
- Center for Scientific Imaging, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Amir Yassin
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), UMR 9191, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|
24
|
Virtual sections and 3D reconstructions of female reproductive system in a carabid beetle using synchrotron X-ray phase-contrast microtomography. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Orbach DN. Gender Bias in the Study of Genital Evolution: Females Continue to Receive Less Attention than Males. Integr Comp Biol 2022; 62:icac012. [PMID: 35353194 DOI: 10.1093/icb/icac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evolution of female genitalia has historically received less attention than male reproductive organs. Several papers have underscored the disparities in research efforts, but have calls for change resonated with the scientific community and rectified the skew? A literature review was conducted of journal articles published between 2013 through 2021 that explore genital evolution to determine if gender bias (sex of research subject) and imbalance (sex of researcher) have changed. Of the 334 articles that specifically explored genital evolution, first authors of both sexes published on female genitalia less than half as often as male genitalia, although the majority of authors published on genitalia of both sexes. First authors of both sexes mentioned females after males substantially more often than females before males. Female first authors published the most about genital evolution in all taxa except for insects and arachnids. Female first authors published in high impact journals marginally less often than male first authors. Articles about genital evolution across taxa generally had high impact factors, but how impact factors and number of citations varied by the sex of the subject was not clear. Although the number of studies exploring genital co-evolution between the sexes has increased across taxa and years, female genitalia continue to be researched less often than male genitalia when only one sex is investigated. Both female and male scientists are publishing in the field of genital evolution, although research on female subjects continue to lag behind males, demonstrating continued bias within the discipline.
Collapse
Affiliation(s)
- D N Orbach
- Department of Life Sciences, Texas A&M University- Corpus Christi
| |
Collapse
|
26
|
Polak M, McEvey SF. Refutation of traumatic insemination in the Drosophila bipectinata species complex. Biol Lett 2022; 18:20210625. [PMID: 35135315 PMCID: PMC8826136 DOI: 10.1098/rsbl.2021.0625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic insemination (TI) is a rare reproductive behaviour characterized by the transfer of sperm to the female via puncture wounds inflicted across her body wall. Here, we challenge the claim made by Kamimura (Kamimura 2007 Biol. Lett. 3, 401-404. (doi:10.1098/rsbl.2007.0192)) that males of species of the Drosophila bipectinata complex use a pair of claw-like processes (claws) to traumatically inseminate females: the claws are purported to puncture the female body wall and genital tract, and to inject sperm through the wounds into the lumen of her genital tract, bypassing the vaginal opening. This supposed case of TI is widely cited and featured in prominent subject reviews. We examined high-resolution scanning electron micrographs of the claws and failed to discover any obvious 'groove' for sperm transport. We demonstrated that sperm occurred in the female reproductive tract as a single-integrated unit, inconsistent with the claim that sperm are injected via paired processes. Laser ablation of the sharp terminal ends of the claws failed to inhibit insemination. We showed that the aedeagus in the complex delivers sperm through the vaginal opening, as in other Drosophila. The results refute the claim of TI in the Drosophila bipectinata species complex.
Collapse
Affiliation(s)
- Michal Polak
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | - Shane F McEvey
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia
| |
Collapse
|
27
|
Petersen CE, Tripoli BA, Schoborg TA, Smyth JT. Analysis of Drosophila cardiac hypertrophy by microcomputerized tomography for genetic dissection of heart growth mechanisms. Am J Physiol Heart Circ Physiol 2022; 322:H296-H309. [PMID: 34951542 PMCID: PMC8782661 DOI: 10.1152/ajpheart.00387.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heart failure is often preceded by pathological cardiac hypertrophy, a thickening of the heart musculature driven by complex gene regulatory and signaling processes. The Drosophila heart has great potential as a genetic model for deciphering the underlying mechanisms of cardiac hypertrophy. However, current methods for evaluating hypertrophy of the Drosophila heart are laborious and difficult to carry out reproducibly. Here, we demonstrate that microcomputerized tomography (microCT) is an accessible, highly reproducible method for nondestructive, quantitative analysis of Drosophila heart morphology and size. To validate our microCT approach for analyzing Drosophila cardiac hypertrophy, we show that expression of constitutively active Ras (Ras85DV12), previously shown to cause hypertrophy of the fly heart, results in significant thickening of both adult and larval heart walls when measured from microCT images. We then show using microCT analysis that genetic upregulation of store-operated Ca2+ entry (SOCE) driven by expression of constitutively active Stim (StimCA) or Orai (OraiCA) proteins also results in significant hypertrophy of the Drosophila heart, through a process that specifically depends on Orai Ca2+ influx channels. Intravital imaging of heart contractility revealed significantly reduced end-diastolic and end-systolic dimensions in StimCA- and OraiCA-expressing hearts, consistent with the hypertrophic phenotype. These results demonstrate that increased SOCE activity is an important driver of hypertrophic cardiomyocyte growth, and demonstrate how microCT analysis combined with tractable genetic tools in Drosophila can be used to delineate molecular signaling processes that underlie cardiac hypertrophy and heart failure.NEW & NOTEWORTHY Genetic analysis of Drosophila cardiac hypertrophy holds immense potential for the discovery of new therapeutic targets to prevent and treat heart failure. This potential has been hindered by a lack of rapid and effective methods for analyzing heart size in flies. Here, we demonstrate that analysis of the Drosophila heart with microcomputerized tomography yields accurate and highly reproducible heart size measurements that can be used to analyze heart growth and cardiac hypertrophy in Drosophila.
Collapse
Affiliation(s)
- Courtney E. Petersen
- 1Graduate Program in Molecular and Cell Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Benjamin A. Tripoli
- 1Graduate Program in Molecular and Cell Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Todd A. Schoborg
- 2Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Jeremy T. Smyth
- 3Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
28
|
Nanfack-Minkeu F, Sirot LK. Effects of Mating on Gene Expression in Female Insects: Unifying the Field. INSECTS 2022; 13:insects13010069. [PMID: 35055912 PMCID: PMC8781128 DOI: 10.3390/insects13010069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Insects play many important roles including in ecosystems, food production, pathogen transmission, and production of materials. As a result, humans are interested in understanding how to control insect population sizes for control, propagation, or conservation efforts. In many insect species, female reproductive output is promoted by mating and components of the ejaculate. Beyond just the impact of receiving sperm, mating and ejaculate components can result in increased rate of oocyte development, ovulation, and oviposition as well as other changes such as reduced mating receptivity. To understand how mating causes these changes, researchers have investigated changes in female gene expression that occur after mating. In this review, we summarize the current state of knowledge on mating-induced gene expression changes in female insects and the methods used for conducting such studies. We find that genes related to immune response, chemosensation, and metabolism are commonly regulated across species. We suggest future research paths to facilitate the comparison of studies on mating-regulated gene expression across insect species. Abstract There is intense interest in controlling insect reproductive output. In many insect species, reproductive output is profoundly influenced by mating, including the receipt of sperm and seminal fluid molecules, through physiological and behavior changes. To understand these changes, many researchers have investigated post-mating gene expression regulation. In this review, we synthesize information from studies both across and within different species about the impact of mating, or components of mating, on female gene expression patterns. We found that genes related to the roles of metabolism, immune-response, and chemosensation are regulated by mating across many different insect species. We highlight the few studies that have taken the important next step of examining the functional consequences of gene expression regulation which is crucial in order to understand the mechanisms underlying the mating-regulated control of female lifespan and reproduction and to make use of such knowledge to propagate or control insect populations. The potential of cross-study comparisons is diminished by different studies using different methods. Thus, we also include a consideration of how future studies could be designed to facilitate cross-study comparisons and a call for collaboration across researchers studying different insect species and different aspects of insect biology.
Collapse
|
29
|
Amaro IA, Ahmed-Braimah YH, League GP, Pitcher SA, Avila FW, Cruz PC, Harrington LC, Wolfner MF. Seminal fluid proteins induce transcriptome changes in the Aedes aegypti female lower reproductive tract. BMC Genomics 2021; 22:896. [PMID: 34906087 PMCID: PMC8672594 DOI: 10.1186/s12864-021-08201-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mating induces behavioral and physiological changes in the arbovirus vector Aedes aegypti, including stimulation of egg development and oviposition, increased survival, and reluctance to re-mate with subsequent males. Transferred seminal fluid proteins and peptides derived from the male accessory glands induce these changes, though the mechanism by which they do this is not known. RESULTS To determine transcriptome changes induced by seminal proteins, we injected extract from male accessory glands and seminal vesicles (MAG extract) into females and examined female lower reproductive tract (LRT) transcriptomes 24 h later, relative to non-injected controls. MAG extract induced 87 transcript-level changes, 31 of which were also seen in a previous study of the LRT 24 h after a natural mating, including 15 genes with transcript-level changes similarly observed in the spermathecae of mated females. The differentially-regulated genes are involved in diverse molecular processes, including immunity, proteolysis, neuronal function, transcription control, or contain predicted small-molecule binding and transport domains. CONCLUSIONS Our results reveal that seminal fluid proteins, specifically, can induce gene expression responses after mating and identify gene targets to further investigate for roles in post-mating responses and potential use in vector control.
Collapse
Affiliation(s)
- I Alexandra Amaro
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Garrett P League
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Sylvie A Pitcher
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Priscilla C Cruz
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
30
|
Santos Rampasso A, O'Grady PM. Standardized terminology and visual atlas of the external morphology and terminalia for the genus Scaptomyza (Diptera: Drosophilidae). Fly (Austin) 2021; 16:37-61. [PMID: 34641736 PMCID: PMC8525988 DOI: 10.1080/19336934.2021.1969220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The genus Scaptomyza is one of the two Drosophilidae genera with Hawaiian endemic species. This genus is an excellent model for biogeographic studies since it is distributed throughout the majority of continents, including continental islands, the Hawaiian Islands, and many other remote oceanic islands. This genus currently comprises 273 described species, 148 of which are endemic to the Hawaiian Islands. However, most descriptions were published before efforts to standardizing the morphological terminology across the Diptera were made in the 1980’s. Since research groups developed their own set of terminologies independently, without considering homologies, multiple terms have been used to refer to the same characters. This is especially true for the male terminalia, which have remarkable modifications within the family Drosophilidae. We reviewed the Scaptomyza literature, in addition to other studies across the Drosophilidae and Diptera, compiled the English synonyms, and provided a visual atlas of each body part, indicating how to recognize the morphological characters. The goal of the present study is to facilitate species identification and propose preferred terms to be adopted for future Scaptomyza descriptions.
Collapse
|
31
|
Mank JE, Rideout EJ. Developmental mechanisms of sex differences: from cells to organisms. Development 2021; 148:272484. [PMID: 34647574 DOI: 10.1242/dev.199750] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Male-female differences in many developmental mechanisms lead to the formation of two morphologically and physiologically distinct sexes. Although this is expected for traits with prominent differences between the sexes, such as the gonads, sex-specific processes also contribute to traits without obvious male-female differences, such as the intestine. Here, we review sex differences in developmental mechanisms that operate at several levels of biological complexity - molecular, cellular, organ and organismal - and discuss how these differences influence organ formation, function and whole-body physiology. Together, the examples we highlight show that one simple way to gain a more accurate and comprehensive understanding of animal development is to include both sexes.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
32
|
Sirot L, Bansal R, Esquivel CJ, Arteaga-Vázquez M, Herrera-Cruz M, Pavinato VAC, Abraham S, Medina-Jiménez K, Reyes-Hernández M, Dorantes-Acosta A, Pérez-Staples D. Post-mating gene expression of Mexican fruit fly females: disentangling the effects of the male accessory glands. INSECT MOLECULAR BIOLOGY 2021; 30:480-496. [PMID: 34028117 DOI: 10.1111/imb.12719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Mating has profound physiological and behavioural consequences for female insects. During copulation, female insects typically receive not only sperm, but a complex ejaculate containing hundreds of proteins and other molecules from male reproductive tissues, primarily the reproductive accessory glands. The post-mating phenotypes affected by male accessory gland (MAG) proteins include egg development, attraction to oviposition hosts, mating, attractiveness, sperm storage, feeding and lifespan. In the Mexican fruit fly, Anastrepha ludens, mating increases egg production and the latency to remating. However, previous studies have not found a clear relationship between injection of MAG products and oviposition or remating inhibition in this species. We used RNA-seq to study gene expression in mated, unmated and MAG-injected females to understand the potential mating- and MAG-regulated genes and pathways in A. ludens. Both mating and MAG-injection regulated transcripts and pathways related to egg development. Other transcripts regulated by mating included those with orthologs predicted to be involved in immune response, musculature and chemosensory perception, whereas those regulated by MAG-injection were predicted to be involved in translational control, sugar regulation, diet detoxification and lifespan determination. These results suggest new phenotypes that may be influenced by seminal fluid molecules in A. ludens. Understanding these influences is critical for developing novel tools to manage A. ludens.
Collapse
Affiliation(s)
- L Sirot
- The College of Wooster, Wooster, OH, USA
| | - R Bansal
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - C J Esquivel
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - M Arteaga-Vázquez
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - M Herrera-Cruz
- CONACyT- Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - V A C Pavinato
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - S Abraham
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), PROIMI, Tucumán, Argentina, CONICET, Argentina
| | - K Medina-Jiménez
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - M Reyes-Hernández
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - A Dorantes-Acosta
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - D Pérez-Staples
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| |
Collapse
|
33
|
Bonfini A, Dobson AJ, Duneau D, Revah J, Liu X, Houtz P, Buchon N. Multiscale analysis reveals that diet-dependent midgut plasticity emerges from alterations in both stem cell niche coupling and enterocyte size. eLife 2021; 10:64125. [PMID: 34553686 PMCID: PMC8528489 DOI: 10.7554/elife.64125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
The gut is the primary interface between an animal and food, but how it adapts to qualitative dietary variation is poorly defined. We find that the Drosophila midgut plastically resizes following changes in dietary composition. A panel of nutrients collectively promote gut growth, which sugar opposes. Diet influences absolute and relative levels of enterocyte loss and stem cell proliferation, which together determine cell numbers. Diet also influences enterocyte size. A high sugar diet inhibits translation and uncouples intestinal stem cell proliferation from expression of niche-derived signals, but, surprisingly, rescuing these effects genetically was not sufficient to modify diet’s impact on midgut size. However, when stem cell proliferation was deficient, diet’s impact on enterocyte size was enhanced, and reducing enterocyte-autonomous TOR signaling was sufficient to attenuate diet-dependent midgut resizing. These data clarify the complex relationships between nutrition, epithelial dynamics, and cell size, and reveal a new mode of plastic, diet-dependent organ resizing.
Collapse
Affiliation(s)
- Alessandro Bonfini
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Adam J Dobson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - David Duneau
- Université Toulouse 3 Paul Sabatier, CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jonathan Revah
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Xi Liu
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Philip Houtz
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Nicolas Buchon
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| |
Collapse
|
34
|
Matsumura Y, Kovalev A, Gorb SN. Mechanical properties of a female reproductive tract of a beetle and implications for penile penetration. Proc Biol Sci 2021; 288:20211125. [PMID: 34229492 DOI: 10.1098/rspb.2021.1125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Coevolution of male and female genitalia is widespread in animals. Nevertheless, few studies have examined the mechanics of genital interactions during mating. We characterized the mechanical properties of the elongated female genitalia, the spermathecal duct, of the small cassidine beetle, Cassida rubiginosa. The data were compared with the mechanical properties of the elongated male genitalia, the flagellum. We analysed the material distributions of the spermathecal duct using a microscopy technique, established a tensile test setup under a light microscope and conducted tensile tests. Diameter and tensile stiffness gradients were present along the spermathecal duct, but its Young's modulus and material distribution were more or less homogeneous. The results confirmed the hypothesis based on numerical simulations that the spermathecal duct is more rigid than the flagellum. In the study species, the penile penetration force is simply applied to the base of the hyper-elongated flagellum and conveyed along the flagellum to its tip. Considering this simple penetration mechanism, the relatively low flexibility of the spermathecal duct, compared to the flagellum, is likely to be essential for effective penetration of the flagellum.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
35
|
Agudelo J, Alfonso-Parra C, Avila FW. Male Age Influences Re-mating Incidence and Sperm Use in Females of the Dengue Vector Aedes aegypti. Front Physiol 2021; 12:691221. [PMID: 34354600 PMCID: PMC8329734 DOI: 10.3389/fphys.2021.691221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Diseases transmitted by female Aedes aegypti mosquitoes are public health issues in countries in the tropics and sub-tropics. As in other insects, A. aegypti females undergo behavioral and physiological changes upon mating that principally act to facilitate the production of progeny. The primary effectors of A. aegypti female post-mating responses are male-derived seminal proteins that are transferred to females during mating. Increased male age reduces ejaculate function in numerous taxa and alters seminal protein composition in Drosophila melanogaster, but the impacts of male age on female A. aegypti post-mating responses are unknown. Here, we used "old" (21-22 days old) and "young" (4-5 days old) A. aegypti males to assess the influence of male age on oviposition, fertility, and re-mating incidence in their mates. We also examined how age influenced paternity share in females initially mated to young or old males that subsequently re-mated with a transgenic male that transferred RFP-labeled sperm and whose progeny inherited a larval-expressed GFP marker. We found that increased male age had no effect on female fecundity or fertility but significantly impacted their ability to prevent re-mating in their mates-more than half (54.5%) of the females mated to an old male re-mated, compared to 24% of females initially mated to a young male. Polyandrous A. aegypti females displayed first male precedence regardless of the age of their initial mate. However, young males were better able to compete with rival male sperm, siring significantly more progeny (77%) compared to old males (64%). Young males had significantly more sperm in their seminal vesicles than old males at the time of mating, although males of both age groups transferred similar numbers of sperm to their mates. Our results suggest that male senescence differentially impacts the induction of some post-mating changes in A. aegypti females. As the effect of age may be further exacerbated in the field, age-related declines in male ability to induce sexual refractoriness have implications for A. aegypti population control programs that release adults into the environment.
Collapse
Affiliation(s)
- Juliana Agudelo
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| | - Catalina Alfonso-Parra
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia.,Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
36
|
Hagen JFD, Mendes CC, Booth SR, Figueras Jimenez J, Tanaka KM, Franke FA, Baudouin-Gonzalez L, Ridgway AM, Arif S, Nunes MDS, McGregor AP. Unraveling the Genetic Basis for the Rapid Diversification of Male Genitalia between Drosophila Species. Mol Biol Evol 2021; 38:437-448. [PMID: 32931587 PMCID: PMC7826188 DOI: 10.1093/molbev/msaa232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the last 240,000 years, males of the Drosophila simulans species clade have evolved striking differences in the morphology of their epandrial posterior lobes and claspers (surstyli). These appendages are used for grasping the female during mating and so their divergence is most likely driven by sexual selection. Mapping studies indicate a highly polygenic and generally additive genetic basis for these morphological differences. However, we have limited understanding of the gene regulatory networks that control the development of genital structures and how they evolved to result in this rapid phenotypic diversification. Here, we used new D. simulans/D. mauritiana introgression lines on chromosome arm 3L to generate higher resolution maps of posterior lobe and clasper differences between these species. We then carried out RNA-seq on the developing genitalia of both species to identify the expressed genes and those that are differentially expressed between the two species. This allowed us to test the function of expressed positional candidates during genital development in D. melanogaster. We identified several new genes involved in the development and possibly the evolution of these genital structures, including the transcription factors Hairy and Grunge. Furthermore, we discovered that during clasper development Hairy negatively regulates tartan (trn), a gene known to contribute to divergence in clasper morphology. Taken together, our results provide new insights into the regulation of genital development and how this has evolved between species.
Collapse
Affiliation(s)
- Joanna F D Hagen
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Cláudia C Mendes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Shamma R Booth
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Javier Figueras Jimenez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Kentaro M Tanaka
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Franziska A Franke
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Luis Baudouin-Gonzalez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Amber M Ridgway
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom.,Centre for Functional Genomics, Oxford Brookes University, Oxford, United Kingdom
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom.,Centre for Functional Genomics, Oxford Brookes University, Oxford, United Kingdom
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom.,Centre for Functional Genomics, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
37
|
Orr TJ, Hayssen V. The Female Snark Is Still a Boojum: Looking toward the Future of Studying Female Reproductive Biology. Integr Comp Biol 2021; 60:782-795. [PMID: 32702114 DOI: 10.1093/icb/icaa091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Philosophical truths are hidden in Lewis Carroll's nonsense poems, such as "The hunting of the snark." When the poem is used as a scientific allegory, a snark stands for the pursuit of scientific truth, while a boojum is a spurious discovery. In the study of female biology, boojums have been the result of the use of cultural stereotypes to frame hypotheses and methodologies. Although female reproduction is key for the continuation of sexually reproducing species, not only have females been understudied in many regards, but also data have commonly been interpreted in the context of now-outdated social mores. Spurious discoveries, boojums, are the result. In this article, we highlight specific gaps in our knowledge of female reproductive biology and provide a jumping-off point for future research. We discuss the promise of emerging methodologies (e.g., micro-CT scanning, high-throughput sequencing, proteomics, big-data analysis, CRISPR-Cas9, and viral vector technology) that can yield insights into previously cryptic processes and features. For example, in mice, deoxyribonucleic acid sequencing via chromatin immunoprecipitation followed by sequencing is already unveiling how epigenetics lead to sex differences in brain development. Similarly, new explorations, including microbiome research, are rapidly debunking dogmas such as the notion of the "sterile womb." Finally, we highlight how understanding female reproductive biology is well suited to the National Science Foundation's big idea, "Predicting Rules of Life." Studies of female reproductive biology will enable scholars to (1) traverse levels of biological organization from reproductive proteins at the molecular level, through anatomical details of the ovum and female reproductive tract, into physiological aspects of whole-organism performance, leading to behaviors associated with mating and maternal care, and eventually reaching population structure and ecology; (2) discover generalizable rules such as the co-evolution of maternal-offspring phenotypes in gestation and lactation; and (3) predict the impacts of changes to reproductive timing when the reliability of environmental cues becomes unpredictable. Studies in these key areas relative to female reproduction are sure to further our understanding across a range of diverse taxa.
Collapse
Affiliation(s)
- Teri J Orr
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Virginia Hayssen
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| |
Collapse
|
38
|
Orr TJ, Burns M, Hawkes K, Holekamp KE, Hook KA, Josefson CC, Kimmitt AA, Lewis AK, Lipshutz SE, Lynch KS, Sirot LK, Stadtmauer DJ, Staub NL, Wolfner MF, Hayssen V. It Takes Two to Tango: Including a Female Perspective in Reproductive Biology. Integr Comp Biol 2021; 60:796-813. [PMID: 32702091 DOI: 10.1093/icb/icaa084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Like many scientific disciplines, the field of reproductive biology is subject to biases in terminology and research foci. For example, females are often described as coy and passive players in reproductive behaviors and are termed "promiscuous" if they engage in extra-pair copulations. Males on the other hand are viewed as actively holding territories and fighting with other males. Males are termed "multiply mating" if they mate with multiple females. Similarly, textbooks often illustrate meiosis as it occurs in males but not females. This edition of Integrative and Comparative Biology (ICB) includes a series of papers that focus on reproduction from the female perspective. These papers represent a subset of the work presented in our symposium and complementary sessions on female reproductive biology. In this round table discussion, we use a question and answer format to leverage the diverse perspectives and voices involved with the symposium in an exploration of theoretical, cultural, pedagogical, and scientific issues related to the study of female biology. We hope this dialog will provide a stepping-stone toward moving reproductive science and teaching to a more inclusive and objective framework.
Collapse
Affiliation(s)
- Teri J Orr
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Mercedes Burns
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Kristen Hawkes
- Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Kristin A Hook
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Chloe C Josefson
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Abigail A Kimmitt
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - A Kelsey Lewis
- Center for Research on Gender and Women & Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kathleen S Lynch
- Biological Sciences, Hofstra University, Hempstead, NY 11549, USA
| | - Laura K Sirot
- Department of Biology, The College of Wooster, Wooster, OH 44691, USA
| | - Daniel J Stadtmauer
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Nancy L Staub
- Biology Department, Gonzaga University, Spokane, WA 99258, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
39
|
Donato S, Vommaro ML, Tromba G, Giglio A. Synchrotron X-ray phase contrast micro tomography to explore the morphology of abdominal organs in Pterostichus melas italicus Dejean, 1828 (Coleoptera, Carabidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 62:101044. [PMID: 33743431 DOI: 10.1016/j.asd.2021.101044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Micro-computer tomography imaging is a fast and non-destructive data acquisition technique which can replace or complement the traditional investigation methodologies used in entomology to study morphology. In this paper, Synchrotron Radiation X-ray Phase-Contrast micro tomography (SR-PhC micro-CT) was combined with histology and scanning electron microscopy (SEM) observations to describe the abdominal organs of Pterostichus melas italicus Dejean, 1828 (Coleoptera, Carabidae). This species was used as a representative model because of its ecological role as a generalist predator in agroecosystems. SR-PhC micro-CT allowed us to identify in situ abdominal structures including dorsal vessel, digestive tract with Malpighian tubules, male reproductive system, ganglia, fat bodies, pygidial glands, muscles and tracheae. The histology was performed to define the tissue organization of the digestive and reproductive systems. SR-PhC micro-CT and 3D rendering provided more accurate information on shape and size of organs than histological and SEM analyses, respectively. The finding of this study was to describe the anatomy and histology of organs involved in crucial life history traits, such as reproduction, nutrition and excretion. High quality images and the supplementary video represent a significant advance in knowledge of the carabid anatomy and are a baseline for future research.
Collapse
Affiliation(s)
- Sandro Donato
- Department of Physics, University of Calabria, Via Bucci, 87036 Arcavacata di Rende, Cosenza, Italy; Istituto Nazionale di Fisica Nucleare, Division of Frascati, Via Fermi, 54, 00044 Frascati, Rome, Italy; Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036 Arcavacata di Rende, Cosenza, Italy.
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
40
|
White MA, Chen DS, Wolfner MF. She's got nerve: roles of octopamine in insect female reproduction. J Neurogenet 2021; 35:132-153. [PMID: 33909537 DOI: 10.1080/01677063.2020.1868457] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The biogenic monoamine octopamine (OA) is a crucial regulator of invertebrate physiology and behavior. Since its discovery in the 1950s in octopus salivary glands, OA has been implicated in many biological processes among diverse invertebrate lineages. It can act as a neurotransmitter, neuromodulator and neurohormone in a variety of biological contexts, and can mediate processes including feeding, sleep, locomotion, flight, learning, memory, and aggression. Here, we focus on the roles of OA in female reproduction in insects. OA is produced in the octopaminergic neurons that innervate the female reproductive tract (RT). It exerts its effects by binding to receptors throughout the RT to generate tissue- and region-specific outcomes. OA signaling regulates oogenesis, ovulation, sperm storage, and reproductive behaviors in response to the female's internal state and external conditions. Mating profoundly changes a female's physiology and behavior. The female's OA signaling system interacts with, and is modified by, male molecules transferred during mating to elicit a subset of the post-mating changes. Since the role of OA in female reproduction is best characterized in the fruit fly Drosophila melanogaster, we focus our discussion on this species but include discussion of OA in other insect species whenever relevant. We conclude by proposing areas for future research to further the understanding of OA's involvement in female reproduction in insects.
Collapse
Affiliation(s)
- Melissa A White
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Dawn S Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
41
|
McDonough-Goldstein CE, Borziak K, Pitnick S, Dorus S. Drosophila female reproductive tract gene expression reveals coordinated mating responses and rapidly evolving tissue-specific genes. G3 (BETHESDA, MD.) 2021; 11:jkab020. [PMID: 33890615 PMCID: PMC8063083 DOI: 10.1093/g3journal/jkab020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Sexual reproduction in internally fertilizing species requires complex coordination between female and male reproductive systems and among the diverse tissues of the female reproductive tract (FRT). Here, we report a comprehensive, tissue-specific investigation of Drosophila melanogaster FRT gene expression before and after mating. We identified expression profiles that distinguished each tissue, including major differences between tissues with glandular or primarily nonglandular epithelium. All tissues were enriched for distinct sets of genes possessing secretion signals that exhibited accelerated evolution, as might be expected for genes participating in molecular interactions between the sexes within the FRT extracellular environment. Despite robust transcriptional differences between tissues, postmating responses were dominated by coordinated transient changes indicative of an integrated systems-level functional response. This comprehensive characterization of gene expression throughout the FRT identifies putative female contributions to postcopulatory events critical to reproduction and potentially reproductive isolation, as well as the putative targets of sexual selection and conflict.
Collapse
Affiliation(s)
| | - Kirill Borziak
- Center for Reproductive Evolution, Biology Department, Syracuse University, Syracuse, NY, USA
| | - Scott Pitnick
- Center for Reproductive Evolution, Biology Department, Syracuse University, Syracuse, NY, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Biology Department, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
42
|
Ahmed-Braimah YH, Wolfner MF, Clark AG. Differences in Postmating Transcriptional Responses between Conspecific and Heterospecific Matings in Drosophila. Mol Biol Evol 2021; 38:986-999. [PMID: 33035303 PMCID: PMC7947788 DOI: 10.1093/molbev/msaa264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In many animal species, females undergo physiological and behavioral changes after mating. Some of these changes are driven by male-derived seminal fluid proteins and are critical for fertilization success. Unfortunately, our understanding of the molecular interplay between female and male reproductive proteins remains inadequate. Here, we analyze the postmating response in a Drosophila species that has evolved strong gametic incompatibility with its sister species; Drosophila novamexicana females produce only ∼1% fertilized eggs in crosses with Drosophila americana males, compared to ∼98% produced in within-species crosses. This incompatibility is likely caused by mismatched male and female reproductive molecules. In this study, we use short-read RNA sequencing to examine the evolutionary dynamics of female reproductive genes and the postmating transcriptome response in crosses within and between species. First, we found that most female reproductive tract genes are slow-evolving compared to the genome average. Second, postmating responses in con- and heterospecific matings are largely congruent, but heterospecific matings induce expression of additional stress-response genes. Some of those are immunity genes that are activated by the Imd pathway. We also identify several genes in the JAK/STAT signaling pathway that are induced in heterospecific, but not conspecific mating. While this immune response was most pronounced in the female reproductive tract, we also detect it in the female head and ovaries. These results show that the female's postmating transcriptome-level response is determined in part by the genotype of the male, and that divergence in male reproductive genes and/or traits can have immunogenic effects on females.
Collapse
Affiliation(s)
- Yasir H Ahmed-Braimah
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 13850
- Department of Biology, Syracuse University, Syracuse, NY 13244
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 13850
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 13850
| |
Collapse
|
43
|
Wang XQ, Guo JS, Li DT, Yu Y, Hagoort J, Moussian B, Zhang CX. Three-dimensional reconstruction of a whole insect reveals its phloem sap-sucking mechanism at nano-resolution. eLife 2021; 10:62875. [PMID: 33620311 PMCID: PMC8016479 DOI: 10.7554/elife.62875] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
Using serial block-face scanning electron microscopy, we report on the internal 3D structures of the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) at nanometer resolution for the first time. Within the reconstructed organs and tissues, we found many novel and fascinating internal structures in the planthopper such as naturally occurring three four-way rings connecting adjacent spiracles to facilitate efficient gas exchange, and fungal endosymbionts in a single huge insect cell occupying 22% of the abdomen volume to enable the insect to live on plant sap. To understand the muscle and stylet movement during phloem sap-sucking, the cephalic skeleton and muscles were reconstructed in feeding nymphs. The results revealed an unexpected contraction of the protractors of the stylets and suggested a novel feeding model for the phloem sap-sucking. Since the 19th century, scientists have been investigating how the organs of insects are shaped and arranged. However, classic microscopy methods have struggled to image these small, delicate structures. Understanding how the organs of insects are configured could help to identify new methods for controlling pests, such as chemicals that target the mouthparts that some insects use to feed on plants. Most insects that feed on the sap of plants suck out the nutrient via their stylet bundle – a thin, straw-like structure surrounded by a sheath called the labium. As well as drying out the plant and damaging its tissues, the stylet bundle also allows the insect to transmit viruses that cause further harm. To investigate these mouthparts in more detail, Wang, Guo et al. used a method called SBF-SEM to determine the three-dimensional structure of one of the most destructive pests of rice crops, the brown planthopper. In this technique, a picture of the planthopper was taken every time a thin slice of its body was removed. This continuous slicing and re-imaging generated thousands of images that were compiled into a three-dimensional model of the brown planthopper’s whole body and internal organs. Previously unknown features emerged from the reconstruction, including a huge cell in the planthopper’s abdomen which is full of fungi that provide the nutrients absent in plants. Next, Wang, Guo et al. used this technique to see how the muscles in the labium and surrounding the stylet move by imaging planthoppers that were frozen at different stages of the feeding process. This revealed that when brown planthoppers bow their heads to eat, the labium compresses and pushes out the stylet, allowing it to pierce deeper into the plant. This is the first time that the body of such a small insect has been reconstructed three-dimensionally using SBF-SEM. Furthermore, these findings help explain how brown planthoppers and other sap-feeding insects insert their stylet and damage plants, potentially providing a stepping stone towards identifying new strategies to stop these pests from destroying millions of crops.
Collapse
Affiliation(s)
- Xin-Qiu Wang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Jian-Sheng Guo
- Department of Pathology of Sir Run Run Shaw Hospital, and Center of Cryo-Electron Microscopy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan-Ting Li
- Institute of Insect Science, Zhejiang University, Hangzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yang Yu
- Carl Zeiss (Shanghai) Co., Ltd.60 Meiyue Road, China (Shanghai) Pilot Free Trade Zone, Shanghai, China
| | - Jaco Hagoort
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Université Côte d'Azur, Institute of Biology Valrose, Parc Valrose, Inserm, France
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
44
|
Interactions between the microbiome and mating influence the female's transcriptional profile in Drosophila melanogaster. Sci Rep 2020; 10:18168. [PMID: 33097776 PMCID: PMC7584617 DOI: 10.1038/s41598-020-75156-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Drosophila melanogaster females undergo a variety of post-mating changes that influence their activity, feeding behavior, metabolism, egg production and gene expression. These changes are induced either by mating itself or by sperm or seminal fluid proteins. In addition, studies have shown that axenic females-those lacking a microbiome-have altered fecundity compared to females with a microbiome, and that the microbiome of the female's mate can influence reproductive success. However, the extent to which post-mating changes in transcript abundance are affected by microbiome state is not well-characterized. Here we investigated fecundity and the post-mating transcript abundance profile of axenic or control females after mating with either axenic or control males. We observed interactions between the female's microbiome and her mating status: transcripts of genes involved in reproduction and genes with neuronal functions were differentially abundant depending on the females' microbiome status, but only in mated females. In addition, immunity genes showed varied responses to either the microbiome, mating, or a combination of those two factors. We further observed that the male's microbiome status influences the fecundity of both control and axenic females, while only influencing the transcriptional profile of axenic females. Our results indicate that the microbiome plays a vital role in the post-mating switch of the female's transcriptome.
Collapse
|
45
|
Garlovsky MD, Evans C, Rosenow MA, Karr TL, Snook RR. Seminal fluid protein divergence among populations exhibiting postmating prezygotic reproductive isolation. Mol Ecol 2020; 29:4428-4441. [DOI: 10.1111/mec.15636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/23/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Martin D. Garlovsky
- Department of Animal and Plant Sciences The University of Sheffield Sheffield UK
| | - Caroline Evans
- Department of Chemical and Biological Engineering The University of Sheffield Sheffield UK
| | | | - Timothy L. Karr
- Centre for Mechanisms of Evolution The Biodesign Institute Arizona State University Tempe AZ USA
| | | |
Collapse
|
46
|
Interpreting Morphological Adaptations Associated with Viviparity in the Tsetse Fly Glossina morsitans ( Westwood) by Three-Dimensional Analysis. INSECTS 2020; 11:insects11100651. [PMID: 32977418 PMCID: PMC7650751 DOI: 10.3390/insects11100651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 01/26/2023]
Abstract
Simple Summary Tsetse flies, the sole transmitters of African Sleeping Sickness parasites, have a unique reproductive biology. They only develop one offspring at a time, they carry that offspring in their uterus for its entire immature development and provide nourishment for that offspring via milk-like secretions. This specialized reproductive biology has required dramatic modifications to the morphology of the reproductive organs in these and related flies. Here, we use phase contrast micro-Computed Tomography (Micro-CT) to visualize these adaptations in three dimensions for the first time. These adaptations include cuticular modifications allowing increased abdominal volume, expanded abdominal and uterine musculature, reduced egg development capacity, structural features of the male seminal secretions and detailed visualization of the gland responsible for synthesis and secretion of “milk” to feed intrauterine larvae. The ability to examine these tissues within the context of the rest of the organ systems in the fly provides new functional insights into how these changes have facilitated the evolution of the mating and reproductive biology of these flies. Abstract Tsetse flies (genus Glossina), the sole vectors of African trypanosomiasis, are distinct from most other insects, due to dramatic morphological and physiological adaptations required to support their unique biology. These adaptations are driven by demands associated with obligate hematophagy and viviparous reproduction. Obligate viviparity entails intrauterine larval development and the provision of maternal nutrients for the developing larvae. The reduced reproductive capacity/rate associated with this biology results in increased inter- and intra-sexual competition. Here, we use phase contrast microcomputed tomography (pcMicroCT) to analyze morphological adaptations associated with viviparous biology. These include (1) modifications facilitating abdominal distention required during blood feeding and pregnancy, (2) abdominal and uterine musculature adaptations for gestation and parturition of developed larvae, (3) reduced ovarian structure and capacity, (4) structural features of the male-derived spermatophore optimizing semen/sperm delivery and inhibition of insemination by competing males and (5) structural features of the milk gland facilitating nutrient incorporation and transfer into the uterus. Three-dimensional analysis of these features provides unprecedented opportunities for examination and discovery of internal morphological features not possible with traditional microscopy techniques and provides new opportunities for comparative morphological analyses over time and between species.
Collapse
|
47
|
Camargo C, Ahmed-Braimah YH, Amaro IA, Harrington LC, Wolfner MF, Avila FW. Mating and blood-feeding induce transcriptome changes in the spermathecae of the yellow fever mosquito Aedes aegypti. Sci Rep 2020; 10:14899. [PMID: 32913240 PMCID: PMC7484758 DOI: 10.1038/s41598-020-71904-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
Aedes aegypti mosquitoes are the primary vectors of numerous viruses that impact human health. As manipulation of reproduction has been proposed to suppress mosquito populations, elucidation of biological processes that enable males and females to successfully reproduce is necessary. One essential process is female sperm storage in specialized structures called spermathecae. Aedes aegypti females typically mate once, requiring them to maintain sperm viably to fertilize eggs they lay over their lifetime. Spermathecal gene products are required for Drosophila sperm storage and sperm viability, and a spermathecal-derived heme peroxidase is required for long-term Anopheles gambiae fertility. Products of the Ae. aegypti spermathecae, and their response to mating, are largely unknown. Further, although female blood-feeding is essential for anautogenous mosquito reproduction, the transcriptional response to blood-ingestion remains undefined in any reproductive tissue. We conducted an RNAseq analysis of spermathecae from unfed virgins, mated only, and mated and blood-fed females at 6, 24, and 72 h post-mating and identified significant differentially expressed genes in each group at each timepoint. A blood-meal following mating induced a greater transcriptional response in the spermathecae than mating alone. This study provides the first view of elicited mRNA changes in the spermathecae by a blood-meal in mated females.
Collapse
Affiliation(s)
- Carolina Camargo
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Complejo RutaN, Calle 67 #52-20, Laboratory 4-166, 050010, Medellín, Colombia
| | | | - I Alexandra Amaro
- Department of Entomology, Cornell University, Ithaca, NY, 14850, USA
| | | | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Complejo RutaN, Calle 67 #52-20, Laboratory 4-166, 050010, Medellín, Colombia.
| |
Collapse
|
48
|
Schoborg TA. Whole Animal Imaging of Drosophila melanogaster using Microcomputed Tomography. J Vis Exp 2020. [PMID: 32955492 DOI: 10.3791/61515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Biomedical imaging tools permit investigation of molecular mechanisms across spatial scales, from genes to organisms. Drosophila melanogaster, a well-characterized model organism, has benefited from the use of light and electron microscopy to understand gene function at the level of cells and tissues. The application of imaging platforms that allow for an understanding of gene function at the level of the entire intact organism would further enhance our knowledge of genetic mechanisms. Here a whole animal imaging method is presented that outlines the steps needed to visualize Drosophila at any developmental stage using microcomputed tomography (µ-CT). The advantages of µ-CT include commercially available instrumentation and minimal hands-on time to produce accurate 3D information at micron-level resolution without the need for tissue dissection or clearing methods. Paired with software that accelerate image analysis and 3D rendering, detailed morphometric analysis of any tissue or organ system can be performed to better understand mechanisms of development, physiology, and anatomy for both descriptive and hypothesis testing studies. By utilizing an imaging workflow that incorporates the use of electron microscopy, light microscopy, and µ-CT, a thorough evaluation of gene function can be performed, thus furthering the usefulness of this powerful model organism.
Collapse
|
49
|
Peirce MJ, Mitchell SN, Kakani EG, Scarpelli P, South A, Shaw WR, Werling KL, Gabrieli P, Marcenac P, Bordoni M, Talesa V, Catteruccia F. JNK signaling regulates oviposition in the malaria vector Anopheles gambiae. Sci Rep 2020; 10:14344. [PMID: 32873857 PMCID: PMC7462981 DOI: 10.1038/s41598-020-71291-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
The reproductive fitness of the Anopheles gambiae mosquito represents a promising target to prevent malaria transmission. The ecdysteroid hormone 20-hydroxyecdysone (20E), transferred from male to female during copulation, is key to An. gambiae reproductive success as it licenses females to oviposit eggs developed after blood feeding. Here we show that 20E-triggered oviposition in these mosquitoes is regulated by the stress- and immune-responsive c-Jun N-terminal kinase (JNK). The heads of mated females exhibit a transcriptional signature reminiscent of a JNK-dependent wounding response, while mating—or injection of virgins with exogenous 20E—selectively activates JNK in the same tissue. RNAi-mediated depletion of JNK pathway components inhibits oviposition in mated females, whereas JNK activation by silencing the JNK phosphatase puckered induces egg laying in virgins. Together, these data identify JNK as a potential conduit linking stress responses and reproductive success in the most important vector of malaria.
Collapse
Affiliation(s)
- Matthew J Peirce
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy.
| | - Sara N Mitchell
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA.,Verily Life Sciences, South San Francisco, CA, 94080, USA
| | - Evdoxia G Kakani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA.,Verily Life Sciences, South San Francisco, CA, 94080, USA
| | - Paolo Scarpelli
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Adam South
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - W Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - Kristine L Werling
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - Paolo Gabrieli
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy.,Dipartimento Bioscienze, University of Milan, 20133, Milan, Italy
| | - Perrine Marcenac
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - Martina Bordoni
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Vincenzo Talesa
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA.
| |
Collapse
|
50
|
Zulekha K, Tagide D, Mercedes B. Spermathecal variation in temperate Opiliones. Integr Comp Biol 2020; 63:icaa120. [PMID: 32805033 PMCID: PMC10388384 DOI: 10.1093/icb/icaa120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/12/2022] Open
Abstract
Most arachnid fertilization occurs internally, allowing for a variety of post-copulatory mechanisms to take place. Females are expected to exert some level of control over sperm fate when 1) the point of gametic fusion is particularly distant from the point of oogenesis, 2) the time of syngamy is significantly later than the time of mating, 3) sperm are non-motile, and/or 4) the morphology of females allows for selective containment of sperm. Many of these conditions are met in Opiliones (a.k.a. "harvesters," "harvestmen," or "daddy-longlegs"), where we have evidence of sexual antagonism, multiple mating, and delayed oviposition for a number of species. We used confocal laser scanning microscopy to capture and analyze images of harvester spermathecae, structures within the genitalia of female arthropods that store and maintain sperm after copulation. Spermathecal morphology may have critical function in controlling seminal movement. We anticipated that species with previously identified traits associated with sexual antagonism would also have thicker and/or relatively more complex spermathecae. We examined spermathecal morphology in thirteen species of Leiobunum and one species of Hadrobunus, which were collected from North America and Japan. Our results show that eight species had structures consisting of a single chamber with no or partial invagination, and the remainder had multiple cuticular invaginations producing 2-3 lumina within the spermathecae. Using phylogenetic multivariate comparative methods, we estimated a trend towards cross-correlation between conflict and spermathecal traits. Some, but not all, of the species with thicker, more complex spermathecae had morphological traits associated with sexual conflict (larger body size, thicker genital muscle). In conclusion, we discuss methods to elucidate spermathecal mechanism and sperm precedence in these species. Confocal microscopy allowed us to visualize internal structures difficult to interpret with two-dimensional brightfield microscopy, a technique that could be applied to the characterization of internal reproductive structures in other arthropods.
Collapse
Affiliation(s)
- Karachiwalla Zulekha
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - deCarvalho Tagide
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
- Keith R. Porter Imaging Facility, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Burns Mercedes
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|