1
|
Fawthrop R, Cerca J, Pacheco G, Sætre GP, Scordato ESC, Ravinet M, Rowe M. Understanding human-commensalism through an ecological and evolutionary framework. Trends Ecol Evol 2024:S0169-5347(24)00257-X. [PMID: 39542789 DOI: 10.1016/j.tree.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
Human-commensalism has been intuitively characterised as an interspecific interaction whereby non-human individuals benefit from tight associations with anthropogenic environments. However, a clear definition of human-commensalism, rooted within an ecological and evolutionary framework, has yet to be proposed. Here, we define human-commensalism as a population-level dependence on anthropogenic resources, associated with genetic differentiation from the ancestral, non-commensal form. Such a definition helps us to understand the origins of human-commensalism and the pace and form of adaptation to anthropogenic niches, and may enable the prediction of future evolution in an increasingly human-modified world. Our discussion encourages greater consideration of the spatial and temporal complexity in anthropogenic niches, promoting a nuanced consideration of human-commensal populations when formulating research questions.
Collapse
Affiliation(s)
- Ruth Fawthrop
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands; Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands.
| | - José Cerca
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - George Pacheco
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Glenn-Peter Sætre
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Elizabeth S C Scordato
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Melissah Rowe
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands
| |
Collapse
|
2
|
Rick TC, Radde HD, Teeter WG, Elliott Smith EA, Alvitre CM, Dagtas ND, Kennedy-Richardson KO, King JL, Martinez DR, Schnorr S, Shirazi S, Maldonado JE, Hofman CA. Enhancing biodiversity: historical ecology and biogeography of the Santa Catalina Island ground squirrel, Otospermophilus beecheyi nesioticus. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240726. [PMID: 39507996 PMCID: PMC11539835 DOI: 10.1098/rsos.240726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
People have influenced Earth's biodiversity for millennia, including numerous introductions of domestic and wild species to islands. Here, we explore the origins and ecology of the Santa Catalina Island ground squirrel (SCIGS; Otospermophilus beecheyi nesioticus), one of only five endemic terrestrial mammals found on California's Santa Catalina Island. We synthesized all records of archaeological/palaeontological SCIGS, conducted radiocarbon dating and stable isotope analysis of the potentially earliest SCIGS remains and performed genetic analysis of modern SCIGS. Squirrels were not identified in island palaeontological deposits, but at least 12 island archaeological sites contain SCIGS bones, including some that are butchered or burned. All directly dated SCIGS bones are Late Holocene in age and younger than approximately 1290 cal BP. The first mitochondrial genome for modern Otospermophilus beecheyi and 15 modern SCIGS mitogenomes document at least one introduction of squirrels. Stable isotope data indicate variable SCIGS diets and potential subsidies from marine environments to terrestrial plants consumed by some individuals. We cannot rule out a natural overwater dispersal, but the earliest SCIGS remains post-date the earliest evidence for people by several millennia and, along with other lines of evidence, support a human-assisted translocation of squirrels during the Late Holocene. These data illustrate the important role of Indigenous people in shaping and enhancing island biodiversity and ecology around the world.
Collapse
Affiliation(s)
- Torben C. Rick
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC20013-7012, USA
| | - Hugh D. Radde
- Repository for Archaeological and Ethnographic Collections, University of California Santa Barbara, Santa Barbara, CA93106, USA
- Pimu Catalina Island Archaeology Project, Los Angeles, CA, USA
| | - Wendy G. Teeter
- Pimu Catalina Island Archaeology Project, Los Angeles, CA, USA
- Santa Ynez Band of Chumash Indians, Santa Ynez, CA, USA
| | - Emma A. Elliott Smith
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC20013-7012, USA
- Department of Biology & Center for Stable Isotopes, University of New Mexico, Albuquerque, NM87131, USA
| | - Cindi M. Alvitre
- Pimu Catalina Island Archaeology Project, Los Angeles, CA, USA
- Ti’at Society/Traditional Council of Pimu, Avalon, CA, USA
| | - Nihan D. Dagtas
- Department of Anthropology and Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK73019, USA
| | - Karimah O. Kennedy-Richardson
- Pimu Catalina Island Archaeology Project, Los Angeles, CA, USA
- Department of Anthropology, University of California Riverside, Riverside, CA, USA
| | - Julie L. King
- Santa Catalina Island Conservancy, Avalon, CA90704, USA
| | - Desireé R. Martinez
- Pimu Catalina Island Archaeology Project, Los Angeles, CA, USA
- Tribal Relations Office, California Polytechnic State University, Pomona, CA, USA
| | - Stephanie Schnorr
- Department of Anthropology and Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK73019, USA
| | - Sabrina Shirazi
- Department of Anthropology and Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK73019, USA
| | - Jesús E. Maldonado
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC20008, USA
| | - Courtney A. Hofman
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC20013-7012, USA
- Department of Anthropology and Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK73019, USA
| |
Collapse
|
3
|
Evteev A, Syutkina T, Grosheva A, Santos P, Ghirotto S, Hanihara T, Hubbe M, Menéndez LP. Disparate and parallel craniofacial climatic adaptations in native populations of Asia, North America, and South America. J Anat 2024; 245:699-724. [PMID: 39183681 PMCID: PMC11470782 DOI: 10.1111/joa.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024] Open
Abstract
Understanding the impact that climate had in shaping cranial variation is critical for inferring the evolutionary mechanisms that played a role in human diversification. Here, we provide a comprehensive study aiming to analyze the association between climate and cranial variation of high latitude populations living in temperate to cold environments of Asia, North America, and South America. For this, we compiled a large morphometric dataset (N = 2633), which was combined with climatic and genomic data. We tested the influence of climate on the facial skeleton, nasal protrusion, and cranial vault and through multiple statistical tests at two geographical scales: intracontinental and intercontinental. We show that populations living in cold areas share a morphological pattern characterized by an increase in nasal height, facial and orbital heights and widths, a decrease in facial protrusion, and larger, longer, and lower cranial vaults. There are also distinctive features; populations from north Asia present the tallest noses, largest faces, and cranial vaults of the whole sample. Nasal breadth dimensions show small values in Asians, large values in South Americans, and non-significant changes in arctic North America. The morphological pattern in populations living at high latitude may be the result of parallel adaptation, as supported by physiological, morphometric, ecological, and genetic explanations, while the differences in magnitude and phenotypic expression could be due to the diverse population histories, severity of climate, and cultural strategies. Overall, our study shows that climate is a relevant factor shaping modern human morphology and it should be considered when studying modern human evolution and diversification.
Collapse
Affiliation(s)
- Andrej Evteev
- Anuchin Research Institute and Museum of AnthropologyMoscow State UniversityMoscowRussia
| | - Taisiya Syutkina
- Miklukho‐Maklay Institute of Ethnology and AnthropologyRussian Academy of SciencesMoscowRussia
| | - Alexandra Grosheva
- Vavilov Institute of General GeneticsRussian Academy of ScienceMoscowRussia
| | - Patrícia Santos
- CNRS, UMR 5199 – PACEAUniversité de BordeauxPessacFrance
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| | - Silvia Ghirotto
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| | - Tsunehiko Hanihara
- Department of Anatomy, School of MedicineKitasato UniversitySagamiharaKanagawaJapan
| | - Mark Hubbe
- Department of AnthropologyOhio State UniversityColumbusOhioUSA
- Instituto de Arqueología y AntropologíaUniversidad Católica del NorteSan Pedro de AtacamaChile
| | - Lumila Paula Menéndez
- Department of Anthropology of the AmericasUniversity of BonnBonnGermany
- Konrad Lorenz Institute for Evolution and Cognition ResearchKlosterneuburgAustria
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
4
|
Kemp ME. Assembly, Persistence, and Disassembly Dynamics of Quaternary Caribbean Frugivore Communities. Am Nat 2024; 204:400-415. [PMID: 39326059 DOI: 10.1086/731994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractHow communities assemble and restructure is of critical importance to ecological theory, evolutionary theory, and conservation, but long-term perspectives on the patterns and processes of community assembly are rarely integrated into traditional community ecology, and the utility of communities as an ecological concept has been repeatedly questioned in part because of a lack of temporal perspective. Through a synthesis of paleontological and neontological data, I reconstruct Caribbean frugivore communities over the Quaternary (2.58 million years ago to present). Numerous Caribbean frugivore lineages arise during periods coincident with the global origins of plant-frugivore mutualisms. The persistence of many of these lineages into the Quaternary is indicative of long-term community stability, but an analysis of Quaternary extinctions reveals a nonrandom loss of large-bodied mammalian and reptilian frugivores. Anthropogenic impacts, including human niche construction, underlie the recent reorganization of frugivore communities, setting the stage for continued declines and evolutionary responses in plants that have lost mutualistic partners. These impacts also support ongoing and future introductions of invader complexes: introduced plants and frugivores that further exacerbate native biodiversity loss by interacting more strongly with one another than with native plants or frugivores. This work illustrates the importance of paleontological data and perspectives in conceptualizing ecological communities, which are dynamic and important entities.
Collapse
|
5
|
Fedorova N, Kandler A, McElreath R. Strategic housing decisions and the evolution of urban settlements: optimality modelling and empirical application in Ulaanbaatar, Mongolia. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241415. [PMID: 39479246 PMCID: PMC11522881 DOI: 10.1098/rsos.241415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/31/2024] [Indexed: 11/02/2024]
Abstract
Investments in housing influence migration and landscape construction, making them a key component of human-environment interactions. However, the strategic decision-making that builds residential landscapes is an underdeveloped area of research in evolutionary approaches to human behaviour. Our contribution to this literature is a theoretical model and an empirical test of this model using data from Ulaanbaatar, Mongolia. We develop a model of strategic housing decisions using stochastic dynamic programming (SDP) to explore the trade-offs between building, moving and saving over time, finding different trade-offs depending on optimization scenarios and housing costs. Household strategies are then estimated using data on 825 households that settled in the Ger districts of Ulaanbaatar between 1942 and 2020. The Ger districts are areas of self-built housing that feature both mobile dwellings (gers) and immobile houses (bashins). Using approximate Bayesian computation (ABC), we find the parameters of our dynamic programming model that best fit the empirical data. The model is able to capture the time horizon of housing changes and their bi-directionality, showing that moving from a fixed to mobile dwelling can also be an optimal strategy. However, the model underpredicts household persistence in dwelling types. We discuss deviations from model predictions and identify a more detailed exploration of risk and population mixes of strategies as key steps for future research.
Collapse
Affiliation(s)
- Natalia Fedorova
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Kandler
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Richard McElreath
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
6
|
Vazquez MS, La Sala LF, Scorolli AL, Caruso NC, Zalba SM. Pushing the boundaries: actual and potential distribution of thrushes expanding their ranges in South America. Sci Rep 2024; 14:17587. [PMID: 39080378 PMCID: PMC11289275 DOI: 10.1038/s41598-024-68611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
The distribution of a species reflects its ecological adaptability and evolutionary history, which is shaped by the environment and represents a dynamic area subject to anthropogenic environmental change. We used the MaxEnt algorithm to construct ecological niche models for four thrush species within the Turdus genus; T. amaurochalinus, T. chiguanco, T. falcklandii and T. rufiventris. These models were used to predict the potential geographic distributions of these species that are expanding their ranges in South America. Using occurrence records, we estimated currently occupied areas for each species. We also identified suitable habitats and projected possible areas to be colonized by the four species at continental scale. Temperature annual range had the highest influence for T. falcklandii, while human modification was the main variable explaining the distribution of the other three species. The potential distribution area ranged from 2.5 million km2 for T. falcklandii to nearly seven million km2 for T. amaurochalinus. Large proportions of suitable area remain unoccupied by all four species, being 50% for T. amaurochalinus and T. rufiventris, and about 70% for T. chiguanco and T. falcklandii. Anthropogenic disturbances, such as habitat loss and ecosystem transformation, lead to non-random species extinction and biotic homogenization, highlighting the importance of predictive models as valuable tools for informing mitigation policies and conservation strategies. Thrushes are progressively expanding their ranges, and the colonization of new habitats could bring new challenges.
Collapse
Affiliation(s)
- M Soledad Vazquez
- Departamento de Biología, Bioquímica y Farmacia, GEKKO-Grupo de Estudios en Conservación y Manejo, Universidad Nacional del Sur. San Juan, 670 (8000), Bahía Blanca, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| | - Luciano F La Sala
- Departamento de Biología, Bioquímica y Farmacia, GEKKO-Grupo de Estudios en Conservación y Manejo, Universidad Nacional del Sur. San Juan, 670 (8000), Bahía Blanca, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), CONICET-Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Alberto L Scorolli
- Departamento de Biología, Bioquímica y Farmacia, GEKKO-Grupo de Estudios en Conservación y Manejo, Universidad Nacional del Sur. San Juan, 670 (8000), Bahía Blanca, Argentina
| | - Nicolas C Caruso
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), CONICET-Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Sergio M Zalba
- Departamento de Biología, Bioquímica y Farmacia, GEKKO-Grupo de Estudios en Conservación y Manejo, Universidad Nacional del Sur. San Juan, 670 (8000), Bahía Blanca, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
7
|
Xu M, Feng W, Liu Z, Li Z, Song X, Zhang H, Zhang C, Yang L. Seasonal-Spatial Distribution Variations and Predictions of Loliolus beka and Loliolus uyii in the East China Sea Region: Implications from Climate Change Scenarios. Animals (Basel) 2024; 14:2070. [PMID: 39061532 PMCID: PMC11273479 DOI: 10.3390/ani14142070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Global climate change profoundly impacts the East China Sea ecosystem and poses a major challenge to fishery management in this region. In addition, closely related species with low catches are often not distinguished in fishery production and relevant data are commonly merged in statistics and fishing logbooks, making it challenging to accurately predict their habitat distribution range. Here, merged fisheries-independent data of the closely related squid Loliolus beka (Sasaki, 1929) and Loliolus uyii (Wakiya and Ishikawa, 1921) were used to explore the construction and prediction performance of species distribution models. Data in 2018 to 2019 from the southern Yellow and East China Seas were used to identify the seasonal-spatial distribution characteristics of both species, revealing a boundary line at 29.00° N for L. uyii during the autumn, with the highest average individual weight occurring during the summer, with both larvae and juveniles occurring during the autumn. Thus, the life history of L. uyii can be divided into winter-spring nursery and summer-autumn spawning periods. L. beka showed a preference for inshore areas (15-60 m) during the summer and offshore areas (32.00-78.00 m) during the winter. High-value areas of both species included inshore areas of the southern Yellow and mid-East China Seas during the autumn, enlarging during the spring to include central areas of the survey region, before significantly decreasing during the summer. Therefore, this study provides both a novel perspective for modeling biological habitat distribution with limited data and a scientific basis for the adjustment of fishery resource management and conservation measures in the context of climate change.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China; (M.X.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Wangjue Feng
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Zunlei Liu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China; (M.X.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Zhiguo Li
- Xiangshan County Fisheries Bureau, Ningbo 315700, China
| | - Xiaojing Song
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China; (M.X.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Hui Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China; (M.X.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Chongliang Zhang
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Linlin Yang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China; (M.X.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
8
|
Liu X, Wang M, Song S, Ma Q, Yang Z. Population structure and diversification of Gymnospermium kiangnanense, a plant species with extremely small populations endemic to eastern China. PeerJ 2024; 12:e17554. [PMID: 38938610 PMCID: PMC11210486 DOI: 10.7717/peerj.17554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Background Gymnospermium kiangnanense is the only species distributed in the subtropical region within the spring ephemeral genus Gymnospermium. Extensive human exploitation and habitat destruction have resulted in a rapid shrink of G. kiangnanense populations. This study utilizes microsatellite markers to analyze the genetic diversity and structure and to deduce historical population events of extant populations of G. kiangnanense. Methods A total of 143 individuals from eight extant populations of G. kiangnanense, including two populations from Anhui Province and six populations from Zhejiang Province, were analyzed with using 21 pairs of microsatellite markers. Genetic diversity indices were calculated using Cervus, GENEPOP, GenALEX. Population structure was assessed using genetic distance (UPGMA), principal coordinate analysis (PCoA), Bayesian clustering method (STRUCTURE), and molecular variation analysis of variance (AMOVA). Population history events were inferred using DIYABC. Results The studied populations of G. kiangnanense exhibited a low level of genetic diversity (He = 0.179, I = 0.286), but a high degree of genetic differentiation (FST = 0.521). The mean value of gene flow (Nm ) among populations was 1.082, indicating prevalent gene exchange via pollen dispersal. Phylogeographic analyses suggested that the populations of G. kiangnanense were divided into two lineages, Zhejiang (ZJ) and Anhui (AH). These two lineages were separated by the Huangshan-Tianmu Mountain Range. AMOVA analysis revealed that 36.59% of total genetic variation occurred between the two groups. The ZJ lineage was further divided into the Hangzhou (ZJH) and Zhuji (ZJZ) lineages, separated by the Longmen Mountain and Fuchun River. DIYABC analyses suggested that the ZJ and AH lineages were separated at 5.592 ka, likely due to the impact of Holocene climate change and human activities. Subsequently, the ZJZ lineage diverged from the ZJH lineage around 2.112 ka. Given the limited distribution of G. kiangnanense and the significant genetic differentiation among its lineages, both in-situ and ex-situ conservation strategies should be implemented to protect the germplasm resources of G. kiangnanense.
Collapse
Affiliation(s)
- Xiangnan Liu
- College of Life Sciences and Technology, Tarim University, Alar, Xinjiang, China
| | - Meizhen Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shiqiang Song
- College of Life Sciences and Technology, Tarim University, Alar, Xinjiang, China
| | - Qing Ma
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Zhaoping Yang
- College of Life Sciences and Technology, Tarim University, Alar, Xinjiang, China
| |
Collapse
|
9
|
Santostasi NL, Bauduin S, Grente O, Gimenez O, Ciucci P. Simulating the efficacy of wolf-dog hybridization management with individual-based modeling. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14312. [PMID: 38894638 DOI: 10.1111/cobi.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 06/21/2024]
Abstract
Introgressive hybridization between wolves and dogs is a conservation concern due to its potentially deleterious long-term evolutionary consequences. European legislation requires that wolf-dog hybridization be mitigated through effective management. We developed an individual-based model (IBM) to simulate the life cycle of gray wolves that incorporates aspects of wolf sociality that affect hybridization rates (e.g., the dissolution of packs after the death of one/both breeders) with the goal of informing decision-making on management of wolf-dog hybridization. We applied our model by projecting hybridization dynamics in a local wolf population under different mate choice and immigration scenarios and contrasted results of removal of admixed individuals with their sterilization and release. In several scenarios, lack of management led to complete admixture, whereas reactive management interventions effectively reduced admixture in wolf populations. Management effectiveness, however, strongly depended on mate choice and number and admixture level of individuals immigrating into the wolf population. The inclusion of anthropogenic mortality affecting parental and admixed individuals (e.g., poaching) increased the probability of pack dissolution and thus increased the probability of interbreeding with dogs or admixed individuals and boosted hybridization and introgression rates in all simulation scenarios. Recognizing the necessity of additional model refinements (appropriate parameterization, thorough sensitivity analyses, and robust model validation) to generate management recommendations applicable in real-world scenarios, we maintain confidence in our model's potential as a valuable conservation tool that can be applied to diverse situations and species facing similar threats.
Collapse
Affiliation(s)
- Nina Luisa Santostasi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Roma, Italy
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
- National Biodiversity Future Center, Palermo, Italy
| | - Sarah Bauduin
- Direction de la Recherche et Appui Scientifique, Service Conservation et Gestion des Espèces à Enjeux, Office Français de la Biodiversité, Juvignac, France
| | - Oksana Grente
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Olivier Gimenez
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Paolo Ciucci
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Roma, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
10
|
Michalczuk J. Which habitat factors affect the occurrence and richness of cavity nesters in parks along an urbanisation gradient? Recommendations for the management of greenery in an urban landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172091. [PMID: 38599413 DOI: 10.1016/j.scitotenv.2024.172091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Affiliation(s)
- Jerzy Michalczuk
- Department of Nature Conservation and Landscape Ecology, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszów, Poland.
| |
Collapse
|
11
|
Hussain ST, Baumann C. The human side of biodiversity: coevolution of the human niche, palaeo-synanthropy and ecosystem complexity in the deep human past. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230021. [PMID: 38583478 PMCID: PMC10999276 DOI: 10.1098/rstb.2023.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/18/2023] [Indexed: 04/09/2024] Open
Abstract
Today's biodiversity crisis fundamentally threatens the habitability of the planet, thus ranking among the primary human challenges of our time. Much emphasis is currently placed on the loss of biodiversity in the Anthropocene, yet these debates often portray biodiversity as a purely natural phenomenon without much consideration of its human dimensions and frequently lack long-term vistas. This paper offers a deep-time perspective on the key role of the evolving human niche in ecosystem functioning and biodiversity dynamics. We summarize research on past hunter-gatherer ecosystem contributions and argue that human-environment feedback systems with important biodiversity consequences are probably a recurrent feature of the Late Pleistocene, perhaps with even deeper roots. We update current understandings of the human niche in this light and suggest that the formation of palaeo-synanthropic niches in other animals proffers a powerful model system to investigate recursive interactions of foragers and ecosystems. Archaeology holds important knowledge here and shows that ecosystem contributions vary greatly in relation to different human lifeways, some of which are lost today. We therefore recommend paying more attention to the intricate relationship between biodiversity and cultural diversity, contending that promotion of the former depends on fostering the latter. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.
Collapse
Affiliation(s)
- Shumon T. Hussain
- MESH – Center for Multidisciplinary Environmental Studies in the Humanities & Institute of Prehistoric Archaeology, University of Cologne, Weyertal 59, 50937 Cologne, Germany
- Department of Archaeology and Heritage Studies, Aarhus University, Moesgård Allé 20, 8270 Højbjerg, Denmark
- BIOCHANGE – Center for Biodiversity Dynamics in a Changing World, Department of Biology, Aarhus University, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Chris Baumann
- Biogeology Research Group, Department of Geosciences, University of Tübingen, Hölderlinstrasse 12, 72074 Tübingen, Germany
- Department of Geosciences and Geography, University of Helsinki, PL 64 (Gustaf Hällströmin katu 2), 00014 Helsinki, Finland
| |
Collapse
|
12
|
Levis C, Flores BM, Campos-Silva JV, Peroni N, Staal A, Padgurschi MCG, Dorshow W, Moraes B, Schmidt M, Kuikuro TW, Kuikuro H, Wauja K, Kuikuro K, Kuikuro A, Fausto C, Franchetto B, Watling J, Lima H, Heckenberger M, Clement CR. Contributions of human cultures to biodiversity and ecosystem conservation. Nat Ecol Evol 2024; 8:866-879. [PMID: 38503867 DOI: 10.1038/s41559-024-02356-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
The expansion of globalized industrial societies is causing global warming, ecosystem degradation, and species and language extinctions worldwide. Mainstream conservation efforts still focus on nature protection strategies to revert this crisis, often overlooking the essential roles of Indigenous Peoples and Local Communities (IP&LC) in protecting biodiversity and ecosystems globally. Here we assess the scientific literature to identify relationships between biodiversity (including ecosystem diversity) and cultural diversity, and investigate how these connections may affect conservation outcomes in tropical lowland South America. Our assessment reveals a network of interactions and feedbacks between biodiversity and diverse IP&LC, suggesting interconnectedness and interdependencies from which multiple benefits to nature and societies emerge. We illustrate our findings with five case studies of successful conservation models, described as consolidated or promising 'social-ecological hope spots', that show how engagement with IP&LC of various cultures may be the best hope for biodiversity and ecosystem conservation, particularly when aligned with science and technology. In light of these five inspiring cases, we argue that conservation science and policies need to recognize that protecting and promoting both biological and cultural diversities can provide additional co-benefits and solutions to maintain ecosystems resilient in the face of global changes.
Collapse
Affiliation(s)
- Carolina Levis
- Programa de Pós-graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
- Affiliated scholar, Brazil LAB, Princeton University, Princeton, NJ, USA.
| | - Bernardo M Flores
- Programa de Pós-graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - João Vitor Campos-Silva
- Instituto Juruá, Manaus, Brazil
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Nivaldo Peroni
- Programa de Pós-graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Arie Staal
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Maíra C G Padgurschi
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
- Centro de Pesquisas Meteorológicas e Climáticas aplicadas à Agricultura, University of Campinas, Campinas, Brazil
| | - Wetherbee Dorshow
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
- Earth Analytic, Puente Institute, Santa Fe, NM, USA
| | - Bruno Moraes
- Earth Analytic, Puente Institute, Santa Fe, NM, USA
- Museu Paraense Emílio Goeldi, Belém, Brazil
| | - Morgan Schmidt
- Laboratório de Estudos Interdisciplinares em Arqueologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Department of Anthropology, University of Florida, Gainesville, FL, USA
- Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taku Wate Kuikuro
- Associação Indígena Kuikuro do Alto Xingu, Aldeia Ipatse, Território Indígena do Alto Xingu, Canarana and Gaúcha do Norte, Mato Grosso, Brazil
| | - Huke Kuikuro
- Associação Indígena Kuikuro do Alto Xingu, Aldeia Ipatse, Território Indígena do Alto Xingu, Canarana and Gaúcha do Norte, Mato Grosso, Brazil
| | - Kumessi Wauja
- Associação Indígena Kuikuro do Alto Xingu, Aldeia Ipatse, Território Indígena do Alto Xingu, Canarana and Gaúcha do Norte, Mato Grosso, Brazil
| | - Kalutata Kuikuro
- Associação Indígena Kuikuro do Alto Xingu, Aldeia Ipatse, Território Indígena do Alto Xingu, Canarana and Gaúcha do Norte, Mato Grosso, Brazil
| | - Afukaka Kuikuro
- Associação Indígena Kuikuro do Alto Xingu, Aldeia Ipatse, Território Indígena do Alto Xingu, Canarana and Gaúcha do Norte, Mato Grosso, Brazil
| | - Carlos Fausto
- Programa de Pós-Graduação em Antropologia Social, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Visiting Research Scholar, Princeton Institute for International and Regional Studies, Brazil LAB, Princeton University, Princeton, NJ, USA
| | - Bruna Franchetto
- Programa de Pós-Graduação em Antropologia Social, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jennifer Watling
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | | | | | - Charles R Clement
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| |
Collapse
|
13
|
Boivin N, Braje T, Rick T. New opportunities emerge as the Anthropocene epoch vote falls short. Nat Ecol Evol 2024; 8:844-845. [PMID: 38499873 DOI: 10.1038/s41559-024-02392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Nicole Boivin
- Max Planck Institute for Geoanthropology, Jena, Germany.
- School of Social Science, The University of Queensland, Brisbane, Queensland, Australia.
- Griffith Sciences, Griffith University, Nathan, Queensland, Australia.
| | - Todd Braje
- Museum of Natural and Cultural History, University of Oregon, Eugene, OR, USA
| | - Torben Rick
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
14
|
Liu X, Jones M. Needs for a conceptual bridge between biological domestication and early food globalization. Proc Natl Acad Sci U S A 2024; 121:e2219055121. [PMID: 38536744 PMCID: PMC11032431 DOI: 10.1073/pnas.2219055121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
The past 15 y has seen much development in documentation of domestication of plants and animals as gradual traditions spanning millennia. There has also been considerable momentum in understanding the dispersals of major domesticated taxa across continents spanning thousands of miles. The two processes are often considered within different theoretical strains. What is missing from our repertoire of explanations is a conceptual bridge between the protracted process over millennia and the multiregional, globally dispersed nature of domestication. The evidence reviewed in this paper bears upon how we conceptualize domestication as an episode or a process. By bringing together the topics of crop domestication and crop movement, those complex, protracted, and continuous outcomes come more clearly into view.
Collapse
Affiliation(s)
- Xinyi Liu
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO63130
| | - Martin Jones
- McDonald Institute for Archaeological Research, University of Cambridge, CambridgeCB2 3DZ, United Kingdom
| |
Collapse
|
15
|
Khan AM, Altaf M, Hussain T, Hamed MH, Safdar U, Ayub A, Memon ZN, Hafiz A, Ashraf S, Amjad MS, Majeed M, Hassan M, Bussmann RW, Abbasi AM, Al-Yafrsi M, Elansary HO, Mahmoud EA. Ethnopharmacological uses of fauna among the people of central Punjab, Pakistan. Front Vet Sci 2024; 11:1351693. [PMID: 38681848 PMCID: PMC11045910 DOI: 10.3389/fvets.2024.1351693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction The utilization of fauna and fauna-based byproducts in ethnomedicinal usages has been a longstanding human activity, practiced across various cultures worldwide. This study focuses on investigating the utilization of animal-based traditional medicine by the people of Pakistan, specifically in the Gujranwala area. Methods Data collection took place from January to September 2019 through interviews with local communities. Ethnomedicinal applications of animal products were analyzed using several indices, including Relative Frequency of Citation (RFC), Relative Popularity Level (RPL), Folk Use Value (FL), and Relative Occurrence Percentage (ROP). Results The study identified the use of different body parts of 54 species of animals in treating various diseases and health issues. These include but are not limited to skin infections, sexual problems, pain management (e.g., in the backbone and joints), eyesight issues, immunity enhancement, cold, weakness, burns, smallpox, wounds, poisoning, muscular pain, arthritis, diabetes, fever, epilepsy, allergies, asthma, herpes, ear pain, paralysis, cough, swelling, cancer, bronchitis, girls' maturity, and stomach-related problems. Certain species of fauna were noted by informers with high "frequency of citation" (FC), ranging from 1 to 77. For instance, the black cobra was the most frequently cited animal for eyesight issues (FC = 77), followed by the domestic rabbit for burn treatment (FC = 67), and the Indus Valley spiny-tailed ground lizard for sexual problems (FC = 66). Passer domesticus and Gallus gallus were noted to have the highest ROP value of 99. Discussion The findings of this study provide valuable preliminary insights for the conservation of fauna in the Gujranwala region of Punjab, Pakistan. Additionally, screening these animals for medicinally active compounds could potentially lead to the development of novel animal-based medications, contributing to both traditional medicine preservation and modern pharmaceutical advancements.
Collapse
Affiliation(s)
- Abdul Majid Khan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Altaf
- Institute of Forest Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tanveer Hussain
- Institute of Forest Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - M. Haroon Hamed
- Department of Zoology Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Umaira Safdar
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Amina Ayub
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zaibun-nisa Memon
- Department of Zoology, Shah Abdul Latif University, Khairpur, Sindh, Pakistan
| | - Adnan Hafiz
- Department of Zoology, University of Sialkot, Sialkot, Punjab, Pakistan
| | - Sana Ashraf
- Department of Zoology, University of Lahore, Sargodha, Pakistan
| | - Muhammad Shoaib Amjad
- Department of Botany, Women University of Azad Jammu and Kashmir Bagh, Bagh, Pakistan
| | - Muhammad Majeed
- Department of Botany, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Musheerul Hassan
- Department of Ethnobotany, Institute of Botany, Ilia State University, Tbilisi, Georgia
- Alpine Institute of Management and Technology, Dehradun, Uttarakhand, India
| | - Rainer W. Bussmann
- Department of Ethnobotany, Institute of Botany, Ilia State University, Tbilisi, Georgia
- Staatliches Museum Für Naturkunde, Karlsruhe, Germany
| | - Arshad Mahmood Abbasi
- Department of Environment Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mohamed Al-Yafrsi
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hosam O. Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Eman A. Mahmoud
- Department of Food Science, Faculty of Agriculture, Damietta University, Damietta, Egypt
| |
Collapse
|
16
|
Friant S. Human behaviors driving disease emergence. Evol Anthropol 2024; 33:e22015. [PMID: 38130075 DOI: 10.1002/evan.22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Interactions between humans, animals, and the environment facilitate zoonotic spillover-the transmission of pathogens from animals to humans. Narratives that cast modern humans as exogenous and disruptive forces that encroach upon "natural" disease systems limit our understanding of human drivers of disease. This review leverages theory from evolutionary anthropology that situates humans as functional components of disease ecologies, to argue that human adaptive strategies to resource acquisition shape predictable patterns of high-risk human-animal interactions, (2) humans construct ecological processes that facilitate spillover, and (3) contemporary patterns of epidemiological risk are emergent properties of interactions between human foraging ecology and niche construction. In turn, disease ecology serves as an important vehicle to link what some cast as opposing bodies of theory in human ecology. Disease control measures should consider human drivers of disease as rational, adaptive, and dynamic and capitalize on our capacity to influence ecological processes to mitigate risk.
Collapse
Affiliation(s)
- Sagan Friant
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
17
|
Tomlinson S, Lomolino MV, Anderson A, Austin JJ, Brown SC, Haythorne S, Perry GLW, Wilmshurst JM, Wood JR, Fordham DA. Reconstructing colonization dynamics to establish how human activities transformed island biodiversity. Sci Rep 2024; 14:5261. [PMID: 38438419 PMCID: PMC10912269 DOI: 10.1038/s41598-024-55180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Drivers and dynamics of initial human migrations across individual islands and archipelagos are poorly understood, hampering assessments of subsequent modification of island biodiversity. We developed and tested a new statistical-simulation approach for reconstructing the pattern and pace of human migration across islands at high spatiotemporal resolutions. Using Polynesian colonisation of New Zealand as an example, we show that process-explicit models, informed by archaeological records and spatiotemporal reconstructions of past climates and environments, can provide new and important insights into the patterns and mechanisms of arrival and establishment of people on islands. We find that colonisation of New Zealand required there to have been a single founding population of approximately 500 people, arriving between 1233 and 1257 AD, settling multiple areas, and expanding rapidly over both North and South Islands. These verified spatiotemporal reconstructions of colonisation dynamics provide new opportunities to explore more extensively the potential ecological impacts of human colonisation on New Zealand's native biota and ecosystems.
Collapse
Affiliation(s)
- Sean Tomlinson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Mark V Lomolino
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Atholl Anderson
- School of Culture, History and Language, Australian National University, Canberra, ACT, 0200, Australia
- Ngai Tahu Research Centre, University of Canterbury, Christchurch, 8140, New Zealand
| | - Jeremy J Austin
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Stuart C Brown
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Globe Institute, University of Copenhagen, Copenhagen, 1353, Denmark
| | - Sean Haythorne
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne, Parkville, VIC, 3010, Australia
| | - George L W Perry
- School of Environment, University of Auckland, Auckland, 1142, New Zealand
| | - Janet M Wilmshurst
- Ecosystems & Conservation, Manaaki Whenua Landcare Research, Lincoln, 7640, New Zealand
| | - Jamie R Wood
- The Environment Institute, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Damien A Fordham
- The Environment Institute, University of Adelaide, Adelaide, SA, 5005, Australia.
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen, 1353, Denmark.
- Center for Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, 1353, Denmark.
| |
Collapse
|
18
|
Salter JF, Brumfield RT, Faircloth BC. An island 'endemic' born out of hybridization between introduced lineages. Mol Ecol 2024; 33:e16990. [PMID: 37208829 DOI: 10.1111/mec.16990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Humans have profoundly impacted the distribution of plant and animal species over thousands of years. The most direct example of these effects is human-mediated movement of individuals, either through translocation of individuals within their range or through the introduction of species to new habitats. While human involvement may be suspected in species with obvious range disjunctions, it can be difficult to detect natural versus human-mediated dispersal events for populations at the edge of a species' range, and this uncertainty muddles how we understand the evolutionary history of populations and broad biogeographical patterns. Studies combining genetic data with archaeological, linguistic and historical evidence have confirmed prehistoric examples of human-mediated dispersal; however, it is unclear whether these methods can disentangle recent dispersal events, such as species translocated by European colonizers during the past 500 years. We use genomic DNA from historical museum specimens and historical records to evaluate three hypotheses regarding the timing and origin of Northern Bobwhites (Colinus virginianus) in Cuba, whose status as an endemic or introduced population has long been debated. We discovered that bobwhites from southern Mexico arrived in Cuba between the 12th and 16th centuries, followed by the subsequent introduction of bobwhites from the southeastern USA to Cuba between the 18th and 20th centuries. These dates suggest the introduction of bobwhites to Cuba was human-mediated and concomitant with Spanish colonial shipping routes between Veracruz, Mexico and Havana, Cuba during this period. Our results identify endemic Cuban bobwhites as a genetically distinct population born of hybridization between divergent, introduced lineages.
Collapse
Affiliation(s)
- Jessie F Salter
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Louisiana, Baton Rouge, USA
| | - Robb T Brumfield
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Louisiana, Baton Rouge, USA
| | - Brant C Faircloth
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Louisiana, Baton Rouge, USA
| |
Collapse
|
19
|
Amarillo-Suárez AR, Camacho-Erazo M, Herrera HW. Land use is a stronger determinant of ecological network complexity than the number of trophic levels. PLoS One 2024; 19:e0295377. [PMID: 38335167 PMCID: PMC10857743 DOI: 10.1371/journal.pone.0295377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/21/2023] [Indexed: 02/12/2024] Open
Abstract
Land modification causes biodiversity loss and ecosystem modification. Despite many studies on the impacts of this factor, there is little empirical evidence on how it affects the interaction networks of plants, herbivores and their natural enemies; likewise, there is little evidence on how those networks change due to differences in the complexity of the communities they comprise. We analyzed the effects of land use and number of trophic levels on the interaction networks of exotic legume species and their associated arthropods. We collected seedpods from five exotic legume species (one of them invasive) in four land use types (urbanization, roadside, L. leucocephala plantation, wooded pasture) on Santa Cruz Island in the Galapagos, and obtained all arthropods that emerged from the seeds. Then, we built and analyzed the interaction networks for each land use at two community scales, each with different numbers of trophic levels: (1) three levels: plant-seed beetle-parasitoid (PSP), and (2) more than three levels: plant-seed beetle-parasitoid-predator and other trophic guilds (PSPP). Land use was more relevant than number of trophic levels in the configuration of species interactions. The number of species and interactions was highest on roadsides at PSPP and lowest in plantations at PSP. We found a significant effect of land use on connectance and interaction evenness (IE), and no significant effect of number of trophic levels on connectance, diversity or IE. The simultaneous analysis of land use and number of trophic levels enabled the identification of more complex patterns of community structure. Comparison of the patterns we found among islands and between exotic and native legumes is recommended. Understanding the structure of the communities analyzed here, as well as the relative contribution of their determinants of change, would allow us to develop conservation plans according to the dynamics of these neo-ecosystems.
Collapse
Affiliation(s)
- Angela R. Amarillo-Suárez
- Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales, Pontificia Universidad Javeriana, Bogotá, Cundinamarca, Colombia
| | - Mariana Camacho-Erazo
- Escuela de Ingeniería en Recursos Renovables, Facultad de Recursos Naturales, Escuela Superior Politécnica del Chimborazo, Riobamba, Chimborazo, Ecuador
| | - Henri W. Herrera
- Escuela de Ingeniería en Recursos Renovables, Facultad de Recursos Naturales, Escuela Superior Politécnica del Chimborazo, Riobamba, Chimborazo, Ecuador
| |
Collapse
|
20
|
Hua F, Wang W, Nakagawa S, Liu S, Miao X, Yu L, Du Z, Abrahamczyk S, Arias-Sosa LA, Buda K, Budka M, Carrière SM, Chandler RB, Chiatante G, Chiawo DO, Cresswell W, Echeverri A, Goodale E, Huang G, Hulme MF, Hutto RL, Imboma TS, Jarrett C, Jiang Z, Kati VI, King DI, Kmecl P, Li N, Lövei GL, Macchi L, MacGregor-Fors I, Martin EA, Mira A, Morelli F, Ortega-Álvarez R, Quan RC, Salgueiro PA, Santos SM, Shahabuddin G, Socolar JB, Soh MCK, Sreekar R, Srinivasan U, Wilcove DS, Yamaura Y, Zhou L, Elsen PR. Ecological filtering shapes the impacts of agricultural deforestation on biodiversity. Nat Ecol Evol 2024; 8:251-266. [PMID: 38182682 DOI: 10.1038/s41559-023-02280-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/14/2023] [Indexed: 01/07/2024]
Abstract
The biodiversity impacts of agricultural deforestation vary widely across regions. Previous efforts to explain this variation have focused exclusively on the landscape features and management regimes of agricultural systems, neglecting the potentially critical role of ecological filtering in shaping deforestation tolerance of extant species assemblages at large geographical scales via selection for functional traits. Here we provide a large-scale test of this role using a global database of species abundance ratios between matched agricultural and native forest sites that comprises 71 avian assemblages reported in 44 primary studies, and a companion database of 10 functional traits for all 2,647 species involved. Using meta-analytic, phylogenetic and multivariate methods, we show that beyond agricultural features, filtering by the extent of natural environmental variability and the severity of historical anthropogenic deforestation shapes the varying deforestation impacts across species assemblages. For assemblages under greater environmental variability-proxied by drier and more seasonal climates under a greater disturbance regime-and longer deforestation histories, filtering has attenuated the negative impacts of current deforestation by selecting for functional traits linked to stronger deforestation tolerance. Our study provides a previously largely missing piece of knowledge in understanding and managing the biodiversity consequences of deforestation by agricultural deforestation.
Collapse
Affiliation(s)
- Fangyuan Hua
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| | - Weiyi Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Shuangqi Liu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xinran Miao
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Fenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Le Yu
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
- Ministry of Education Ecological Field Station for East Asia Migratory Birds, Tsinghua University, Beijing, China
- Tsinghua University (Department of Earth System Science)-Xi'an Institute of Surveying and Mapping Joint Research Center for Next-Generation Smart Mapping, Beijing, China
| | - Zhenrong Du
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
| | - Stefan Abrahamczyk
- Department of Botany, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Luis Alejandro Arias-Sosa
- Laboratorio de Ecología de Organismos (GEO-UPTC), Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Kinga Buda
- Department of Behavioural Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Michał Budka
- Department of Behavioural Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Stéphanie M Carrière
- Institut de Recherche pour le Développement, UMR SENS, IRD, CIRAD, Université Paul Valéry Montpellier 3, Université de Montpellier, Montpellier, France
| | - Richard B Chandler
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | | | - David O Chiawo
- Centre for Biodiversity Information Development, Strathmore University, Nairobi, Kenya
| | - Will Cresswell
- Centre of Biological Diversity, University of St Andrews, St Andrews, Scotland
| | - Alejandra Echeverri
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Eben Goodale
- Department of Health and Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Guohualing Huang
- School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | - Mark F Hulme
- Department of Life Sciences, Faculty of Science and Technology, University of the West Indies, St Augustine, Trinidad and Tobago
- British Trust for Ornithology, Norfolk, UK
| | - Richard L Hutto
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Titus S Imboma
- Ornithology Section, Zoology Department, National Museums of Kenya, Nairobi, Kenya
| | - Crinan Jarrett
- Department of Bird Migration, Swiss Ornithological Institute, Sempach, Switzerland
| | - Zhigang Jiang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Vassiliki I Kati
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - David I King
- Northern Research Station, USDA Forest Service, Amherst, MA, USA
| | - Primož Kmecl
- Group for Conservation Biology, DOPPS BirdLife Slovenia, Ljubljana, Slovenia
| | - Na Li
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, China
| | - Gábor L Lövei
- Institute of Applied Ecology, Fujian University of Agriculture and Forestry, Fuzhou, China
- HUN-REN-DE Anthropocene Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Leandro Macchi
- Instituto de Ecología Regional (IER), CONICET, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Ian MacGregor-Fors
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Emily A Martin
- Institute of Animal Ecology and Systematic Zoology, Justus Liebig University of Gießen, Giessen, Germany
| | - António Mira
- MED (Mediterranean Institute for Agriculture, Environment and Development), CHANGE (Global Change and Sustainability Institute) and UBC (Conservation Biology Lab), Department of Biology, School of Sciences and Technology, University of Évora, Évora, Portugal
| | - Federico Morelli
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Rubén Ortega-Álvarez
- Investigadoras e Investigadores por México del Consejo Nacional de Ciencia y Tecnología (CONACYT), Dirección Regional Occidente, Mexico City, Mexico
| | - Rui-Chang Quan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Pedro A Salgueiro
- MED (Mediterranean Institute for Agriculture, Environment and Development), CHANGE (Global Change and Sustainability Institute), Institute for Advanced Studies and Research and UBC (Conservation Biology Lab), University of Évora, Évora, Portugal
| | - Sara M Santos
- MED (Mediterranean Institute for Agriculture, Environment and Development), CHANGE (Global Change and Sustainability Institute), Institute for Advanced Studies and Research and UBC (Conservation Biology Lab), University of Évora, Évora, Portugal
| | | | | | | | - Rachakonda Sreekar
- Centre for Nature-based Climate Solutions, National University of Singapore, Singapore, Singapore
| | - Umesh Srinivasan
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - David S Wilcove
- School of Public and International Affairs and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Yuichi Yamaura
- Shikoku Research Center, Forestry and Forest Products Research Institute, Kochi, Japan
| | - Liping Zhou
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Paul R Elsen
- Global Conservation Program, Wildlife Conservation Society, Bronx, NY, USA
| |
Collapse
|
21
|
Rana SK, Dangwal B, Rawat GS, Price TD. Constructing a database of alien plants in the Himalaya to test patterns structuring diversity. Ecol Evol 2024; 14:e10884. [PMID: 38343575 PMCID: PMC10857928 DOI: 10.1002/ece3.10884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/16/2023] [Indexed: 10/28/2024] Open
Abstract
Differences in the number of alien plant species in different locations may reflect climatic and other controls that similarly affect native species and/or propagule pressure accompanied with delayed spread from the point of introduction. We set out to examine these alternatives for Himalayan plants, in a phylogenetic framework. We build a database of alien plant distributions for the Himalaya. Focusing on the well-documented regions of Jammu & Kashmir (west) and Bhutan (east) we compare alien and native species for (1) richness patterns, (2) degree of phylogenetic clustering, (3) the extent to which species-poor regions are subsets of species-rich regions and (4) continental and climatic affinities/source. We document 1470 alien species (at least 600 naturalised), which comprise ~14% of the vascular plants known from the Himalaya. Alien plant species with tropical affinities decline in richness with elevation and species at high elevations form a subset of those at lower elevations, supporting location of introduction as an important driver of alien plant richness patterns. Separately, elevations which are especially rich in native plant species are also rich in alien plant species, suggesting an important role for climate (high productivity) in determining both native and alien richness. We find no support for the proposition that variance in human disturbance or numbers of native species correlate with alien distributions. Results imply an ongoing expansion of alien species from low elevation sources, some of which are highly invasive.
Collapse
Affiliation(s)
- Suresh K. Rana
- G.B Pant National Institute of Himalayan EnvironmentAlmoraUttarakhandIndia
| | - Bhawana Dangwal
- G.B Pant National Institute of Himalayan EnvironmentAlmoraUttarakhandIndia
| | | | - Trevor D. Price
- Zoology 309A, Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
22
|
Bujnoch FM, Reil D, Drewes S, Rosenfeld UM, Ulrich RG, Jacob J, Imholt C. Small mammal community composition impacts bank vole (Clethrionomys glareolus) population dynamics and associated seroprevalence of Puumala orthohantavirus. Integr Zool 2024; 19:52-65. [PMID: 37899277 DOI: 10.1111/1749-4877.12782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Rodents are important reservoirs for zoonotic pathogens that cause diseases in humans. Biodiversity is hypothesized to be closely related to pathogen prevalence through multiple direct and indirect pathways. For example, the presence of non-host species can reduce contact rates of the main reservoir host and thus reduce the risk of transmission ("dilution effect"). In addition, an overlap in ecological niches between two species could lead to increased interspecific competition, potentially limiting host densities and reducing density-dependent pathogen transmission processes. In this study, we investigated the relative impact of population-level regulation of direct and indirect drivers of the prevalence of Puumala orthohantavirus (PUUV) in bank voles (Clethrionomys glareolus) during years with high abundance. We compiled data on small mammal community composition from four regions in Germany between 2010 and 2013. Structural equation modeling revealed a strong seasonality in PUUV control mechanisms in bank voles. The abundance of shrews tended to have a negative relationship with host abundance, and host abundance positively influenced PUUV seroprevalence, while at the same time increasing the abundance of competing non-hosts like the wood mouse (Apodemus sylvaticus) and the yellow-necked field mouse (Apodemus flavicollis) were associated with reduced PUUV seroprevalence in the host. These results indicate that for PUUV in bank voles, dilution is associated with increased interspecific competition. Anthropogenic pressures leading to the decline of Apodemus spp. in a specific habitat could lead to the amplification of mechanisms promoting PUUV transmission within the host populations.
Collapse
Affiliation(s)
- Felicitas Maria Bujnoch
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Münster, Germany
- University of Münster, Institute for Evolution and Biodiversity, Münster, Germany
| | - Daniela Reil
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Münster, Germany
| | - Stephan Drewes
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Ulrike M Rosenfeld
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Münster, Germany
| | - Christian Imholt
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Münster, Germany
| |
Collapse
|
23
|
Dorninger C, Menéndez LP, Caniglia G. Social-ecological niche construction for sustainability: understanding destructive processes and exploring regenerative potentials. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220431. [PMID: 37952625 PMCID: PMC10645119 DOI: 10.1098/rstb.2022.0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/12/2023] [Indexed: 11/14/2023] Open
Abstract
Through the exponential expansion of human activities, humanity has become the driving force of global environmental change. The consequent global sustainability crisis has been described as a result of a uniquely human form of adaptability and niche construction. In this paper, we introduce the concept of social-ecological niche construction focusing on biophysical interactions and outcomes. We use it to address destructive processes and to discuss potential regenerative ones as ways to overcome them. From a niche construction point of view, the increasing disconnections between human activities and environmental feedbacks appear as a success story in the history of human-nature coevolution because they enable humans to expand activities virtually without being limited by environmental constraints. However, it is still poorly understood how suppressed environmental feedbacks affect future generations and other species, or which lock-ins and self-destructive dynamics may unfold in the long-term. This is crucial as the observed escape from natural selection requires growing energy input and represents a temporal deferral rather than an actual liberation from material limitations. Relying on our proposal, we conclude that, instead of further taming nature, there is need to explore the potential of how to tame socio-metabolic growth and impact in niche construction processes. This article is part of the theme issue 'Evolution and sustainability: gathering the strands for an Anthropocene synthesis'.
Collapse
Affiliation(s)
- Christian Dorninger
- Konrad Lorenz Institute for Evolution and Cognition Research, Martinstraße 12, Klosterneuburg 3400, Austria
- Institute of Social Ecology, University of Natural Resources and Life Sciences, Schottenfeldgasse 29, Vienna 1070, Austria
| | - Lumila Paula Menéndez
- Department of Anthropology of the Americas, University of Bonn, Oxfordstraße 15, 53111 Bonn, Germany
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Guido Caniglia
- Konrad Lorenz Institute for Evolution and Cognition Research, Martinstraße 12, Klosterneuburg 3400, Austria
| |
Collapse
|
24
|
Ellis EC. The Anthropocene condition: evolving through social-ecological transformations. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220255. [PMID: 37952626 PMCID: PMC10645118 DOI: 10.1098/rstb.2022.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/13/2023] [Indexed: 11/14/2023] Open
Abstract
Anthropogenic planetary disruptions, from climate change to biodiversity loss, are unprecedented challenges for human societies. Some societies, social groups, cultural practices, technologies and institutions are already disintegrating or disappearing as a result. However, this coupling of socially produced environmental challenges with disruptive social changes-the Anthropocene condition-is not new. From food-producing hunter-gatherers, to farmers, to urban industrial food systems, the current planetary entanglement has its roots in millennia of evolving and accumulating sociocultural capabilities for shaping the cultured environments that our societies have always lived in (sociocultural niche construction). When these transformative capabilities to shape environments are coupled with sociocultural adaptations enabling societies to more effectively shape and live in transformed environments, the social-ecological scales and intensities of these transformations can accelerate through a positive feedback loop of 'runaway sociocultural niche construction'. Efforts to achieve a better future for both people and planet will depend on guiding this runaway evolutionary process towards better outcomes by redirecting Earth's most disruptive force of nature: the power of human aspirations. To guide this unprecedented planetary force, cultural narratives that appeal to human aspirations for a better future will be more effective than narratives of environmental crisis and overstepping natural boundaries. This article is part of the theme issue 'Evolution and sustainability: gathering the strands for an Anthropocene synthesis'.
Collapse
Affiliation(s)
- Erle C. Ellis
- Department of Geography & Environmental Systems, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
- Oxford Martin School, University of Oxford, 34 Broad St, Oxford OX1 3BD, UK
- Leverhulme Centre for Nature Recovery, Environmental Change Institute, School of Geography & Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
| |
Collapse
|
25
|
Currie TE, Borgerhoff Mulder M, Fogarty L, Schlüter M, Folke C, Haider LJ, Caniglia G, Tavoni A, Jansen REV, Jørgensen PS, Waring TM. Integrating evolutionary theory and social-ecological systems research to address the sustainability challenges of the Anthropocene. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220262. [PMID: 37952618 PMCID: PMC10645068 DOI: 10.1098/rstb.2022.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/19/2023] [Indexed: 11/14/2023] Open
Abstract
The rapid, human-induced changes in the Earth system during the Anthropocene present humanity with critical sustainability challenges. Social-ecological systems (SES) research provides multiple approaches for understanding the complex interactions between humans, social systems, and environments and how we might direct them towards healthier and more resilient futures. However, general theories of SES change have yet to be fully developed. Formal evolutionary theory has been applied as a dynamic theory of change of complex phenomena in biology and the social sciences, but rarely in SES research. In this paper, we explore the connections between both fields, hoping to foster collaboration. After sketching out the distinct intellectual traditions of SES research and evolutionary theory, we map some of their terminological and theoretical connections. We then provide examples of how evolutionary theory might be incorporated into SES research through the use of systems mapping to identify evolutionary processes in SES, the application of concepts from evolutionary developmental biology to understand the connections between systems changes and evolutionary changes, and how evolutionary thinking may help design interventions for beneficial change. Integrating evolutionary theory and SES research can lead to a better understanding of SES changes and positive interventions for a more sustainable Anthropocene. This article is part of the theme issue 'Evolution and sustainability: gathering the strands for an Anthropocene synthesis'.
Collapse
Affiliation(s)
- Thomas E. Currie
- Human Behaviour and Cultural Evolution Group, Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Monique Borgerhoff Mulder
- Department of Anthropology, University of California Davis, Davis, CA 95616, USA
- Santa Fe Institute, Santa Fe, NM 87506, USA
- Max-Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Laurel Fogarty
- Max-Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Maja Schlüter
- Stockholm Resilience Centre, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Carl Folke
- Beijer Institute of Ecological Economics, The Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden
| | - L. Jamila Haider
- Stockholm Resilience Centre, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Guido Caniglia
- Konrad Lorenz Institute for Evolution and Cognition Research, A-3400 Klosterneuburg, Austria
| | - Alessandro Tavoni
- Department of Economics, University of Bologna, 40126 Bologna, Italy
- Grantham Research Institute on Climate Change and the Environment, London School of Economics, London WC2A 2AE, UK
| | - Raf E. V. Jansen
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden
| | - Peter Søgaard Jørgensen
- Stockholm Resilience Centre, Stockholm University, SE-106 91 Stockholm, Sweden
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden
| | - Timothy M. Waring
- Mitchell Center for Sustainability Solutions and School of Economics, University of Maine, Orono, ME 04469-5710, USA
| |
Collapse
|
26
|
Spottiswoode CN, Wood BM. Culturally determined interspecies communication between humans and honeyguides. Science 2023; 382:1155-1158. [PMID: 38060656 DOI: 10.1126/science.adh4129] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Species interactions that vary across environments can create geographical mosaics of genetic coevolution. However, traits mediating species interactions are sometimes culturally inherited. Here we show that traditions of interspecies communication between people and wild birds vary in a culturally determined geographical mosaic. Honey hunters in different parts of Africa use different calls to communicate with greater honeyguides (Indicator indicator) that lead them to bees' nests. We show experimentally that honeyguides in Tanzania and Mozambique discriminate among honey hunters' calls, responding more readily to local than to foreign calls. This was not explained by variation in sound transmission and instead suggests that honeyguides learn local human signals. We discuss the forces stabilizing and diversifying interspecies communication traditions, and the potential for cultural coevolution between species.
Collapse
Affiliation(s)
- Claire N Spottiswoode
- Department of Zoology, University of Cambridge, Cambridge, UK
- FitzPatrick Institute of African Ornithology, Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Brian M Wood
- Department of Anthropology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
27
|
Rayfield KM, Mychajliw AM, Singleton RR, Sholts SB, Hofman CA. Uncovering the Holocene roots of contemporary disease-scapes: bringing archaeology into One Health. Proc Biol Sci 2023; 290:20230525. [PMID: 38052246 DOI: 10.1098/rspb.2023.0525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The accelerating pace of emerging zoonotic diseases in the twenty-first century has motivated cross-disciplinary collaboration on One Health approaches, combining microbiology, veterinary and environmental sciences, and epidemiology for outbreak prevention and mitigation. Such outbreaks are often caused by spillovers attributed to human activities that encroach on wildlife habitats and ecosystems, such as land use change, industrialized food production, urbanization and animal trade. While the origin of anthropogenic effects on animal ecology and biogeography can be traced to the Late Pleistocene, the archaeological record-a long-term archive of human-animal-environmental interactions-has largely been untapped in these One Health approaches, thus limiting our understanding of these dynamics over time. In this review, we examine how humans, as niche constructors, have facilitated new host species and 'disease-scapes' from the Late Pleistocene to the Anthropocene, by viewing zooarchaeological, bioarchaeological and palaeoecological data with a One Health perspective. We also highlight how new biomolecular tools and advances in the '-omics' can be holistically coupled with archaeological and palaeoecological reconstructions in the service of studying zoonotic disease emergence and re-emergence.
Collapse
Affiliation(s)
- Kristen M Rayfield
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Laboratories of Molecular Anthropology & Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK 73019-0390, USA
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Alexis M Mychajliw
- Laboratories of Molecular Anthropology & Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK 73019-0390, USA
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biology & Program in Environmental Studies, Middlebury College, Middlebury, VT 05753-6203, USA
| | - Robin R Singleton
- Laboratories of Molecular Anthropology & Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK 73019-0390, USA
| | - Sabrina B Sholts
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Courtney A Hofman
- Laboratories of Molecular Anthropology & Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK 73019-0390, USA
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
28
|
McTaggart AR, McLaughlin S, Slot JC, McKernan K, Appleyard C, Bartlett TL, Weinert M, Barlow C, Warne LN, Shuey LS, Drenth A, James TY. Domestication through clandestine cultivation constrained genetic diversity in magic mushrooms relative to naturalized populations. Curr Biol 2023; 33:5147-5159.e7. [PMID: 38052161 DOI: 10.1016/j.cub.2023.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
Fungi that are edible or fermentative were domesticated through selective cultivation of their desired traits. Domestication is often associated with inbreeding or selfing, which may fix traits other than those under selection, and causes an overall decrease in heterozygosity. A hallucinogenic mushroom, Psilocybe cubensis, was domesticated from its niche in livestock dung for production of psilocybin. It has caused accidental poisonings since the 1940s in Australia, which is a population hypothesized to be introduced from an unknown center of origin. We sequenced genomes of 38 isolates from Australia and compared them with 86 genomes of commercially available cultivars to determine (1) whether P. cubensis was introduced to Australia, and (2) how domestication has impacted commercial cultivars. Our analyses of genome-wide SNPs and single-copy orthologs showed that the Australian population is naturalized, having recovered its effective population size after a bottleneck when it was introduced, and it has maintained relatively high genetic diversity based on measures of nucleotide and allelic diversity. In contrast, domesticated cultivars generally have low effective population sizes and hallmarks of selfing and clonal propagation, including low genetic diversity, low heterozygosity, high linkage disequilibrium, and low allelic diversity of mating-compatibility genes. Analyses of kinship show that most cultivars are founded from related populations. Alleles in the psilocybin gene cluster are identical across most cultivars of P. cubensis with low diversity across coding sequence; however, unique allelic diversity in Australia and some cultivars may translate to differences in biosynthesis of psilocybin and its analogs.
Collapse
Affiliation(s)
- Alistair R McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, QLD 4102, Australia; Funky Fungus, Burpengary, QLD 4505, Australia.
| | | | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Kevin McKernan
- Research and Development, Medicinal Genomics, Beverly, MA 01915, USA
| | | | - Tia L Bartlett
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Matthew Weinert
- Entheogenesis Australis, PO Box 2046, Belgrave, 3160 VIC, Australia
| | - Caine Barlow
- Entheogenesis Australis, PO Box 2046, Belgrave, 3160 VIC, Australia
| | - Leon N Warne
- Little Green Pharma, West Perth, WA 6005, Australia
| | - Louise S Shuey
- Queensland Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - André Drenth
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
29
|
Kennedy S, Calaor J, Zurápiti Y, Hans J, Yoshimura M, Choo J, Andersen JC, Callaghan J, Roderick GK, Krehenwinkel H, Rogers H, Gillespie RG, Economo EP. Richness and resilience in the Pacific: DNA metabarcoding enables parallelized evaluation of biogeographic patterns. Mol Ecol 2023; 32:6710-6723. [PMID: 35729790 DOI: 10.1111/mec.16575] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
Islands make up a large proportion of Earth's biodiversity, yet are also some of the most sensitive systems to environmental perturbation. Biogeographic theory predicts that geologic age, area, and isolation typically drive islands' diversity patterns, and thus potentially impact non-native spread and community homogenization across island systems. One limitation in testing such predictions has been the difficulty of performing comprehensive inventories of island biotas and distinguishing native from introduced taxa. Here, we use DNA metabarcoding and statistical modelling as a high throughput method to survey community-wide arthropod richness, the proportion of native and non-native species, and the incursion of non-natives into primary habitats on three archipelagos in the Pacific - the Ryukyus, the Marianas and Hawaii - which vary in age, isolation and area. Diversity patterns largely match expectations based on island biogeography theory, with the oldest and most geographically connected archipelago, the Ryukyus, showing the highest taxonomic richness and lowest proportion of introduced species. Moreover, we find evidence that forest habitats are more resilient to incursions of non-natives in the Ryukyus than in the less taxonomically rich archipelagos. Surprisingly, we do not find evidence for biotic homogenization across these three archipelagos: the assemblage of non-native species on each island is highly distinct. Our study demonstrates the potential of DNA metabarcoding to facilitate rapid estimation of biogeographic patterns, the spread of non-native species, and the resilience of ecosystems.
Collapse
Affiliation(s)
- Susan Kennedy
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Biogeography, Trier University, Trier, Germany
| | - Jerilyn Calaor
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Yazmín Zurápiti
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Julian Hans
- Department of Biogeography, Trier University, Trier, Germany
| | - Masashi Yoshimura
- Environmental Research Support Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Juanita Choo
- Science and Technology Group, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jeremy C Andersen
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jackson Callaghan
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - George K Roderick
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | | | - Haldre Rogers
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Rosemary G Gillespie
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
30
|
Neves E, Vallet D, Cherkaoui SI, Amhaouch Z, Duperron C, Ménard N, Le Gouar P. Behavioral adjustments of endangered Barbary macaques (Macaca sylvanus) living at the edge of an agricultural landscape in Morocco. Am J Primatol 2023; 85:e23545. [PMID: 37605628 DOI: 10.1002/ajp.23545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Transition zones between natural and human-altered spaces are eroding in most terrestrial ecosystems. The persistence of animals in shared landscapes depends in part on their behavioral flexibility, which may involve being able to exploit human agricultural production. As a forest-dependent species, the Barbary macaque (Macaca sylvanus) is affected by the progressive conversion of forest-adjacent lands into crops. We explore how Barbary macaque behavior differs between groups living in a forest at the edge of agricultural zones (hereafter "disturbed groups") and groups inhabiting undisturbed forests (hereafter "natural groups"). We compare the diets, activity-budgets, home range sizes, daily path lengths, and sleeping site locations of the groups. We also quantify anthropogenic disturbances (i.e., rates of encounter with humans and dogs) and investigate relationships between such disturbances and the diets and activity budgets of macaques through multiple co-inertia analysis. Disturbed groups included high proportions of cultivated food items in their diet and encountered over 0.5/h anthropogenic disturbances. Activity-budgets differed between disturbed and natural groups and were mostly influenced by diets, not anthropogenic disturbances. Disturbed groups spent more time feeding and less time resting than natural ones. Patterns of space use differed markedly between groups, with disturbed groups displaying smaller home ranges, shorter daily path length, and much higher reutilization of sleeping sites than natural groups. This study highlights the dietary and behavioral flexibility of Barbary macaques living in human-altered environments. Their patterns of space use suggest a reduction in energy expenditure in the disturbed groups due to the inclusion of cultivated food items in their diet possibly leading to increased foraging efficiency. However, the high rates of anthropogenic encounters, including aggressive ones, are likely stressful and may potentially induce extra energy costs and lead to macaque injuries. This could result in demographic costs for crop-foraging groups, threatening the conservation of this endangered species.
Collapse
Affiliation(s)
- Elisa Neves
- UMR 6553, ECOBIO: Ecosystems, Biodiversity, Evolution, CNRS/University of Rennes 1, Biological Station of Paimpont, Paimpont, France
| | - Dominique Vallet
- UMR 6553, ECOBIO: Ecosystems, Biodiversity, Evolution, CNRS/University of Rennes 1, Biological Station of Paimpont, Paimpont, France
| | - Sidi Imad Cherkaoui
- AAP Morocco, Animal Advocacy and Protection, Almere, The Netherlands
- Ecole supérieure de Technologie de Kénitra, University of Ibn Tofail, Kénitra, Morocco
| | | | - Coline Duperron
- UMR 6553, ECOBIO: Ecosystems, Biodiversity, Evolution, CNRS/University of Rennes 1, Biological Station of Paimpont, Paimpont, France
| | - Nelly Ménard
- UMR 6553, ECOBIO: Ecosystems, Biodiversity, Evolution, CNRS/University of Rennes 1, Biological Station of Paimpont, Paimpont, France
| | - Pascaline Le Gouar
- UMR 6553, ECOBIO: Ecosystems, Biodiversity, Evolution, CNRS/University of Rennes 1, Biological Station of Paimpont, Paimpont, France
| |
Collapse
|
31
|
Wang X, Peng P, Bai M, Bai W, Zhang S, Feng Y, Wang J, Tang Y. Impacts of physiological characteristics and human activities on the species distribution models of orchids taking the Hengduan Mountains as a case. Ecol Evol 2023; 13:e10566. [PMID: 37791293 PMCID: PMC10542477 DOI: 10.1002/ece3.10566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
The biogeography research of orchids through species distribution models (SDMs), a vital tool in the biogeography field, is critical to understanding the fundamental geographic distribution patterns and identifying conservation priorities. The correspondence between species occurrence and environmental information is crucial to the model's performance. However, ecological preferences unique to different orchid species, such as their life forms, are often overlooked during the modeling process. This oversight can introduce bias and increase model uncertainty. Additionally, human activities, as an important potential predictor, have not been quantified in any orchid SDMs. Taking the Hengduan Mountains as an example, we preprocessed all orchid species' occurrences based on physiological characteristics. Choosing five spatial factors related to human activities to quantify the interference and enter into models as HI factor. Using different modeling methods (GLM, MaxEnt, and RF) and evaluation indices (AUC, TSS, and Kappa), diverse modeling strategies have been constructed in the study. A double-ranking method has been adopted to select the critical orchid distribution regions. The results showed that classification models based on physiological characteristics significantly improved the model's accuracy while adding the HI factor had the same effect but the absence of enough significance. Suitability maps indicated that highly heterogeneous mountainous areas were vital for the distribution of orchids in the Hengduan Mountains. Different distribution patterns and critical regions existed between various orchid life forms geographically - terrestrial orchids were dominant in the mountain, and mycoherterophical orchids were primarily located in the north, more influenced by vegetation and temperature. Critical regions of epiphytic orchids were in the south due to a greater dependence on precipitation and temperature. These studies are informative for understanding the orchids' geographic distribution patterns in the Hengduan Mountains, promoting conservation and providing references for similar research beyond orchids.
Collapse
Affiliation(s)
- Xue‐Man Wang
- College of Earth SciencesChengdu University of TechnologyChengduChina
| | - Pei‐Hao Peng
- College of Earth SciencesChengdu University of TechnologyChengduChina
| | - Mao‐Yang Bai
- College of Earth SciencesChengdu University of TechnologyChengduChina
| | - Wen‐Qian Bai
- College of Earth SciencesChengdu University of TechnologyChengduChina
| | - Shi‐Qi Zhang
- College of Earth SciencesChengdu University of TechnologyChengduChina
| | - Yu Feng
- College of Earth SciencesChengdu University of TechnologyChengduChina
| | - Juan Wang
- College of Tourism and Urban‐rural PlanningChengdu University of TechnologyChengduChina
| | - Ying Tang
- College of Tourism and Urban‐rural PlanningChengdu University of TechnologyChengduChina
| |
Collapse
|
32
|
Ens EJ, Rossetto M, Costello O. Recognising Indigenous plant-use histories for inclusive biocultural restoration. Trends Ecol Evol 2023; 38:896-898. [PMID: 37573174 DOI: 10.1016/j.tree.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 08/14/2023]
Abstract
Indigenous Peoples have manipulated environments and species for millennia. However, restoration science often overlooks ancient human plant dispersal, niche construction, and selection pressures that may have resulted in plant 'cultural traits'. Concerted efforts to acknowledge Indigenous plant-use histories in restoration could help to abate the coextinction of species and cultures.
Collapse
Affiliation(s)
- Emilie J Ens
- School of Natural Sciences, University Road, Macquarie University, NSW 2109, Australia.
| | - Maurizio Rossetto
- The Royal Botanic Garden Sydney, Mrs Macquarie's Road, Sydney, NSW 2000, Australia
| | | |
Collapse
|
33
|
Park DS, Xie Y, Ellison AM, Lyra GM, Davis CC. Complex climate-mediated effects of urbanization on plant reproductive phenology and frost risk. THE NEW PHYTOLOGIST 2023; 239:2153-2165. [PMID: 36942966 DOI: 10.1111/nph.18893] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Urbanization can affect the timing of plant reproduction (i.e. flowering and fruiting) and associated ecosystem processes. However, our knowledge of how plant phenology responds to urbanization and its associated environmental changes is limited. Herbaria represent an important, but underutilized source of data for investigating this question. We harnessed phenological data from herbarium specimens representing 200 plant species collected across 120 yr from the eastern US to investigate the spatiotemporal effects of urbanization on flowering and fruiting phenology and frost risk (i.e. time between the last frost date and flowering). Effects of urbanization on plant reproductive phenology varied significantly in direction and magnitude across species ranges. Increased urbanization led to earlier flowering in colder and wetter regions and delayed fruiting in regions with wetter spring conditions. Frost risk was elevated with increased urbanization in regions with colder and wetter spring conditions. Our study demonstrates that predictions of phenological change and its associated impacts must account for both climatic and human effects, which are context dependent and do not necessarily coincide. We must move beyond phenological models that only incorporate temperature variables and consider multiple environmental factors and their interactions when estimating plant phenology, especially at larger spatial and taxonomic scales.
Collapse
Affiliation(s)
- Daniel S Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47906, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47906, USA
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| | - Yingying Xie
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47906, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47906, USA
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41099, USA
| | - Aaron M Ellison
- Harvard University Herbaria, Harvard University, Cambridge, MA, 02135, USA
- Sound Solutions for Sustainable Science, Boston, MA, 02135, USA
| | - Goia M Lyra
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
- Programa de Pós Graduação em Biodiversidade e Evolução, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, 40170-115, Brazil
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
34
|
Qi Y, Xian X, Zhao H, Yang M, Zhang Y, Yu W, Liu W. World Spread of Tropical Soda Apple ( Solanum viarum) under Global Change: Historical Reconstruction, Niche Shift, and Potential Geographic Distribution. BIOLOGY 2023; 12:1179. [PMID: 37759579 PMCID: PMC10525411 DOI: 10.3390/biology12091179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Solanum viarum has become extensively invasive owing to international trade, climate change, and land-use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980-2010), and equilibrium (2010-present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5-8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum.
Collapse
Affiliation(s)
- Yuhan Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Ming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Yu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Wentao Yu
- Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Technology Centre of Fuzhou Customs, Fuzhou 350001, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| |
Collapse
|
35
|
Baumann C, Hussain ST, Roblíčková M, Riede F, Mannino MA, Bocherens H. Evidence for hunter-gatherer impacts on raven diet and ecology in the Gravettian of Southern Moravia. Nat Ecol Evol 2023; 7:1302-1314. [PMID: 37349568 DOI: 10.1038/s41559-023-02107-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
The earlier Gravettian of Southern Moravia-the Pavlovian-is notable for the many raven bones (Corvus corax) documented in its faunal assemblages. On the basis of the rich zooarchaeological and settlement data from the Pavlovian, previous work suggested that common ravens were attracted by human domestic activities and subsequently captured by Pavlovian people, presumably for feathers and perhaps food. Here, we report independent δ15N, δ13C and δ34S stable isotope data obtained from 12 adult ravens from the Pavlovian key sites of Předmostí I, Pavlov I and Dolní Věstonice I to test this idea. We show that Pavlovian ravens regularly fed on larger herbivores and especially mammoths, aligning in feeding preferences with contemporaneous Gravettian foragers. We argue that opportunistic-generalist ravens were encouraged by human settlement and carcass provisioning. Our data may thus provide surprisingly early evidence for incipient synanthropism among Palaeolithic ravens. We suggest that anthropogenic manipulation of carrion supply dynamics furnished unique contexts for the emergence of human-oriented animal behaviours, in turn promoting novel human foraging opportunities-dynamics which are therefore important for understanding early hunter-gatherer ecosystem impacts.
Collapse
Affiliation(s)
- Chris Baumann
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
- Biogeology Research Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Shumon T Hussain
- Department of Archaeology and Heritage Studies, Aarhus University, Aarhus, Denmark.
- BIOCHANGE - Center for Biodiversity Dynamics in a Changing World, Department of Biology, Aarhus University, Aarhus, Denmark.
- Center for Environmental Humanities (CEH), School of Culture and Society, Aarhus University, Aarhus, Denmark.
| | | | - Felix Riede
- Department of Archaeology and Heritage Studies, Aarhus University, Aarhus, Denmark
- BIOCHANGE - Center for Biodiversity Dynamics in a Changing World, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Marcello A Mannino
- Department of Archaeology and Heritage Studies, Aarhus University, Aarhus, Denmark
| | - Hervé Bocherens
- Biogeology Research Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Salomon AK, Okamoto DK, Wilson ḴBJ, Tommy Happynook H, Mack WA, Allan Davidson SH, Guujaaw G, L Humchitt WWH, Happynook TM, Cox WC, Gillette HF, Christiansen NS, Dragon D, Kobluk HM, Lee LC, Tinker MT, Silver JJ, Armitage D, McKechnie I, MacNeil A, Hillis D, Muhl EK, Gregr EJ, Commander CJC, Augustine A. Disrupting and diversifying the values, voices and governance principles that shape biodiversity science and management. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220196. [PMID: 37246378 DOI: 10.1098/rstb.2022.0196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/01/2023] [Indexed: 05/30/2023] Open
Abstract
With climate, biodiversity and inequity crises squarely upon us, never has there been a more pressing time to rethink how we conceptualize, understand and manage our relationship with Earth's biodiversity. Here, we describe governance principles of 17 Indigenous Nations from the Northwest Coast of North America used to understand and steward relationships among all components of nature, including humans. We then chart the colonial origins of biodiversity science and use the complex case of sea otter recovery to illuminate how ancestral governance principles can be mobilized to characterize, manage and restore biodiversity in more inclusive, integrative and equitable ways. To enhance environmental sustainability, resilience and social justice amid today's crises, we need to broaden who benefits from and participates in the sciences of biodiversity by expanding the values and methodologies that shape such initiatives. In practice, biodiversity conservation and natural resource management need to shift from centralized, siloed approaches to those that can accommodate plurality in values, objectives, governance systems, legal traditions and ways of knowing. In doing so, developing solutions to our planetary crises becomes a shared responsibility. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Anne K Salomon
- School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Daniel K Okamoto
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32303, USA
| | | | - Hiininaasim Tommy Happynook
- Department of Anthropology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia, Canada V8W 2Y2
| | | | | | - Gidansda Guujaaw
- Haida Nation, Skidegate, Haida Gwaii, British Columbia, Canada V0T 1S1
| | | | | | | | | | | | - Dianna Dragon
- Che:k:tles7et'h' Nation, Kyuquot, British Columbia, Canada VOP 1J0
| | - Hannah M Kobluk
- School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Lynn C Lee
- Gwaii Haanas National Park Reserve, National Marine Conservation Area Reserve, and Haida Heritage Site, 60 Second Beach Road, Skidegate, British Columbia, Canada V0T 1S1
| | - M Tim Tinker
- Nhydra Ecological Consulting, 11 Parklea Drive, Head of St Margarets Bay, Nova Scotia, Canada B3Z 2G6
| | - Jennifer J Silver
- Geography, Environment and Geomatics, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Derek Armitage
- School of Environment, Resources and Sustainability, University of Waterloo, 200 University Ave W, Waterloo, Ontario, Canada N2L 3G1
| | - Iain McKechnie
- Department of Anthropology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia, Canada V8W 2Y2
| | - Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Dylan Hillis
- Department of Anthropology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia, Canada V8W 2Y2
| | - Ella-Kari Muhl
- School of Environment, Resources and Sustainability, University of Waterloo, 200 University Ave W, Waterloo, Ontario, Canada N2L 3G1
| | - Edward J Gregr
- Institute for Resources Environment, and Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
- Scitech Environmental Consulting 2136 Napier St., Vancouver, British Columbia, Canada V5L 2N9
| | - Christian J C Commander
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32303, USA
| | - Arianna Augustine
- Stz'uminus Nation, 1041-B Trunk Rd, Duncan, British Columbia, Canada V9L 2S4
| |
Collapse
|
37
|
Hughes A, Auliya M, Altherr S, Scheffers B, Janssen J, Nijman V, Shepherd CR, D'Cruze N, Sy E, Edwards DP. Determining the sustainability of legal wildlife trade. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:117987. [PMID: 37178541 DOI: 10.1016/j.jenvman.2023.117987] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/19/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Exploitation of wildlife represents one of the greatest threats to species survival according to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Whilst detrimental impacts of illegal trade are well recognised, legal trade is often equated to being sustainable despite the lack of evidence or data in the majority of cases. We review the sustainability of wildlife trade, the adequacy of tools, safeguards, and frameworks to understand and regulate trade, and identify gaps in data that undermine our ability to truly understand the sustainability of trade. We provide 183 examples showing unsustainable trade in a broad range of taxonomic groups. In most cases, neither illegal nor legal trade are supported by rigorous evidence of sustainability, with the lack of data on export levels and population monitoring data precluding true assessments of species or population-level impacts. We propose a more precautionary approach to wildlife trade and monitoring that requires those who profit from trade to provide proof of sustainability. We then identify four core areas that must be strengthened to achieve this goal: (1) rigorous data collection and analyses of populations; (2) linking trade quotas to IUCN and international accords; (3) improved databases and compliance of trade; and (4) enhanced understanding of trade bans, market forces, and species substitutions. Enacting these core areas in regulatory frameworks, including CITES, is essential to the continued survival of many threatened species. There are no winners from unsustainable collection and trade: without sustainable management not only will species or populations become extinct, but communities dependent upon these species will lose livelihoods.
Collapse
Affiliation(s)
- Alice Hughes
- School of Biological Sciences, University of Hong Kong, China.
| | - Mark Auliya
- Department of Herpetology, Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | | | - Brett Scheffers
- Department of Wildlife Ecology and Conservation, University of Florida/IFAS, Gainesville, FL, USA
| | - Jordi Janssen
- Monitor Conservation Research Society, PO BOX 200, Big Lake Ranch, BC, V0L 1G0, Canada
| | - Vincent Nijman
- Oxford Wildlife Trade Research Group, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | - Chris R Shepherd
- Monitor Conservation Research Society, PO BOX 200, Big Lake Ranch, BC, V0L 1G0, Canada
| | - Neil D'Cruze
- The Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Tubney, UK; World Animal Protection, 222 Greys Inn Road, London, WC1X 8HB, UK
| | - Emerson Sy
- Philippine Center for Terrestrial & Aquatic Research, Manila, Philippines
| | - David P Edwards
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
38
|
Scerri EML, Will M. The revolution that still isn't: The origins of behavioral complexity in Homo sapiens. J Hum Evol 2023; 179:103358. [PMID: 37058868 DOI: 10.1016/j.jhevol.2023.103358] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
The behavioral origins of Homo sapiens can be traced back to the first material culture produced by our species in Africa, the Middle Stone Age (MSA). Beyond this broad consensus, the origins, patterns, and causes of behavioral complexity in modern humans remain debated. Here, we consider whether recent findings continue to support popular scenarios of: (1) a modern human 'package,' (2) a gradual and 'pan-African' emergence of behavioral complexity, and (3) a direct connection to changes in the human brain. Our geographically structured review shows that decades of scientific research have continuously failed to find a discrete threshold for a complete 'modernity package' and that the concept is theoretically obsolete. Instead of a continent-wide, gradual accumulation of complex material culture, the record exhibits a predominantly asynchronous presence and duration of many innovations across different regions of Africa. The emerging pattern of behavioral complexity from the MSA conforms to an intricate mosaic characterized by spatially discrete, temporally variable, and historically contingent trajectories. This archaeological record bears no direct relation to a simplistic shift in the human brain but rather reflects similar cognitive capacities that are variably manifested. The interaction of multiple causal factors constitutes the most parsimonious explanation driving the variable expression of complex behaviors, with demographic processes such as population structure, size, and connectivity playing a key role. While much emphasis has been given to innovation and variability in the MSA record, long periods of stasis and a lack of cumulative developments argue further against a strictly gradualistic nature in the record. Instead, we are confronted with humanity's deep, variegated roots in Africa, and a dynamic metapopulation that took many millennia to reach the critical mass capable of producing the ratchet effect commonly used to define contemporary human culture. Finally, we note a weakening link between 'modern' human biology and behavior from around 300 ka ago.
Collapse
Affiliation(s)
- Eleanor M L Scerri
- Pan-African Evolution Research Group, Max Planck Institute for Geoanthropology, Kahlaische Str. 10, 07749, Jena, Germany; Department of Classics and Archaeology, University of Malta, Msida, MSD 2080, Malta; Department of Prehistory, University of Cologne, 50931, Cologne, Germany.
| | - Manuel Will
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Schloss Hohentübingen, Burgsteige 11, 72070, Tübingen, Germany
| |
Collapse
|
39
|
Little JC, Kaaronen RO, Hukkinen JI, Xiao S, Sharpee T, Farid AM, Nilchiani R, Barton CM. Earth Systems to Anthropocene Systems: An Evolutionary, System-of-Systems, Convergence Paradigm for Interdependent Societal Challenges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5504-5520. [PMID: 37000909 DOI: 10.1021/acs.est.2c06203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Humans have made profound changes to the Earth. The resulting societal challenges of the Anthropocene (e.g., climate change and impacts, renewable energy, adaptive infrastructure, disasters, pandemics, food insecurity, and biodiversity loss) are complex and systemic, with causes, interactions, and consequences that cascade across a globally connected system of systems. In this Critical Review, we turn to our "origin story" for insight, briefly tracing the formation of the Universe and the Earth, the emergence of life, the evolution of multicellular organisms, mammals, primates, and humans, as well as the more recent societal transitions involving agriculture, urbanization, industrialization, and computerization. Focusing on the evolution of the Earth, genetic evolution, the evolution of the brain, and cultural evolution, which includes technological evolution, we identify a nested evolutionary sequence of geophysical, biophysical, sociocultural, and sociotechnical systems, emphasizing the causal mechanisms that first formed, and then transformed, Earth systems into Anthropocene systems. Describing how the Anthropocene systems coevolved, and briefly illustrating how the ensuing societal challenges became tightly integrated across multiple spatial, temporal, and organizational scales, we conclude by proposing an evolutionary, system-of-systems, convergence paradigm for the entire family of interdependent societal challenges of the Anthropocene.
Collapse
Affiliation(s)
- John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Roope O Kaaronen
- Sustainability Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Janne I Hukkinen
- Environmental Policy Research Group, Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki 00014, Finland
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tatyana Sharpee
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Amro M Farid
- School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Roshanak Nilchiani
- School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - C Michael Barton
- School of Human Evolution and Social Change, and School of Complex Adaptive Systems, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
40
|
Li Z, Khattak RH, Han X, Zhang N, Wu J, Liu Z, Teng L. Distribution update of water deer (Hydropotes inermis) and prediction of their potential distribution in Northeast China. Sci Rep 2023; 13:5610. [PMID: 37019922 PMCID: PMC10076520 DOI: 10.1038/s41598-023-32314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/25/2023] [Indexed: 04/07/2023] Open
Abstract
Human interventions have a great potential of spatially cornering and limiting species, therefore investigating the species distribution is one of the most crucial issues for managing wildlife populations and suggesting robust conservation strategies. Water deer (Hydropotes inermis) are widespread in China throughout history and are endemic to East Asia. However, they disappeared from Northeast China for years. We rediscovered the water deer in a previous study in Jilin Province, China. Then, we conducted further research in Northeast China to determine their distribution status, supplying fundamental data for the recovery and expansion of their population. An interview survey, line transect survey and infrared camera monitoring were carried out in some counties/cities in Northeast China from June to December 2021. The results showed that the water deer were distributed in Wuchang city of Heilongjiang Province, Changbai Korean Autonomous County, Baishan Municipal District, Ji'an city, Hunchun city, Huadian city, Antu County and Helong County of Jilin Province, Benxi Manchu Autonomous County, Huanren Manchu Autonomous County, Kuandian Manchu Autonomous County, Fengcheng city and Donggang city of Liaoning Province. The ensemble species distribution model constructed by sdm within the TSS of various models that were set as weight revealed that the potential distribution area of the water deer in the study area was 8764.66 km2 (28.77% of the study area). Combining recent studies concerning the distribution of water deer and the current study, we updated the distribution of wild water deer in Northeast China, which is vital for their conservation worldwide.
Collapse
Affiliation(s)
- Zongzhi Li
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China
| | - Romaan Hayat Khattak
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China
| | - Xingzhi Han
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China
| | - Nan Zhang
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China
| | - Jianping Wu
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China
| | - Zhensheng Liu
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China.
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, 150040, China.
| | - Liwei Teng
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China.
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, 150040, China.
| |
Collapse
|
41
|
Krug AS, B. M. Drummond E, Van Tassel DL, Warschefsky EJ. The next era of crop domestication starts now. Proc Natl Acad Sci U S A 2023; 120:e2205769120. [PMID: 36972445 PMCID: PMC10083606 DOI: 10.1073/pnas.2205769120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Current food systems are challenged by relying on a few input-intensive, staple crops. The prioritization of yield and the loss of diversity during the recent history of domestication has created contemporary crops and cropping systems that are ecologically unsustainable, vulnerable to climate change, nutrient poor, and socially inequitable. For decades, scientists have proposed diversity as a solution to address these challenges to global food security. Here, we outline the possibilities for a new era of crop domestication, focused on broadening the palette of crop diversity, that engages and benefits the three elements of domestication: crops, ecosystems, and humans. We explore how the suite of tools and technologies at hand can be applied to renew diversity in existing crops, improve underutilized crops, and domesticate new crops to bolster genetic, agroecosystem, and food system diversity. Implementing the new era of domestication requires that researchers, funders, and policymakers boldly invest in basic and translational research. Humans need more diverse food systems in the Anthropocene-the process of domestication can help build them.
Collapse
Affiliation(s)
| | - Emily B. M. Drummond
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | | | | |
Collapse
|
42
|
Yaworsky PM, Hussain ST, Riede F. Climate-driven habitat shifts of high-ranked prey species structure Late Upper Paleolithic hunting. Sci Rep 2023; 13:4238. [PMID: 36918697 PMCID: PMC10015039 DOI: 10.1038/s41598-023-31085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Changing climates in the past affected both human and faunal population distributions, thereby structuring human diets, demography, and cultural evolution. Yet, separating the effects of climate-driven and human-induced changes in prey species abundances remains challenging, particularly during the Late Upper Paleolithic, a period marked by rapid climate change and marked ecosystem transformation. To disentangle the effects of climate and hunter-gatherer populations on animal prey species during the period, we synthesize disparate paleoclimate records, zooarchaeological data, and archaeological data using ecological methods and theory to test to what extent climate and anthropogenic impacts drove broad changes in human subsistence observed in the Late Upper Paleolithic zooarchaeological records. We find that the observed changes in faunal assemblages during the European Late Upper Paleolithic are consistent with climate-driven animal habitat shifts impacting the natural abundances of high-ranked prey species on the landscape rather than human-induced resource depression. The study has important implications for understanding how past climate change impacted and structured the diet and demography of human populations and can serve as a baseline for considerations of resilience and adaptation in the present.
Collapse
Affiliation(s)
- Peter M Yaworsky
- Department of Archeology and Heritage Studies, School of Culture and Society, Aarhus University, Moesgård Allé 20, Building 4216, 8270, Højbjerg, Denmark.
- Center for Biodiversity Dynamics in a Changing World, Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000, Aarhus C, Denmark.
| | - Shumon T Hussain
- Department of Archeology and Heritage Studies, School of Culture and Society, Aarhus University, Moesgård Allé 20, Building 4216, 8270, Højbjerg, Denmark
- Center for Biodiversity Dynamics in a Changing World, Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000, Aarhus C, Denmark
| | - Felix Riede
- Department of Archeology and Heritage Studies, School of Culture and Society, Aarhus University, Moesgård Allé 20, Building 4216, 8270, Højbjerg, Denmark
- Center for Biodiversity Dynamics in a Changing World, Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000, Aarhus C, Denmark
| |
Collapse
|
43
|
Souther S, Colombo S, Lyndon NN. Integrating traditional ecological knowledge into US public land management: Knowledge gaps and research priorities. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.988126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Traditional Ecological Knowledge (TEK) is an understanding of natural systems acquired through long-term human interactions with particular landscapes. Traditional knowledge systems complement western scientific disciplines by providing a holistic assessment of ecosystem dynamics and extending the time horizon of ecological observations. Integration of TEK into land management is a key priority of numerous groups, including the United Nations and US public land management agencies; however, TEK principles have rarely been enshrined in national-level US policy or planning. We review over 20 years of TEK literature to describe key applications of TEK to ecological understanding, conservation, restoration and land management generally. By identifying knowledge gaps, we highlight research avenues to support the integration of TEK into US public land management, in order to enhance conservation approaches and participation of historically underrepresented groups, particularly American Indian Tribes, in the stewardship of ancestral lands critical to the practice of living cultural traditions.
Collapse
|
44
|
Rabett RJ, Morimoto R, Kahlert T, Stimpson CM, O’Donnell S, Mai Huong NT, Manh BV, Holmes R, Khánh PS, Van TT, Coward F. Prehistoric pathways to Anthropocene adaptation: Evidence from the Red River Delta, Vietnam. PLoS One 2023; 18:e0280126. [PMID: 36753481 PMCID: PMC9907861 DOI: 10.1371/journal.pone.0280126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/20/2022] [Indexed: 02/09/2023] Open
Abstract
Over the past twenty years, government advisory bodies have placed increasing emphasis on the need for adaptive measures in response to the effects of human-induced climate change. Integrated Assessment Models (IAMs), which incorporate macroeconomic and climate variables, feature prominently in advisory content, though they rarely draw on data from outside strictly constrained hypothetical systems. This has led to assertions that they are not well-suited to approximate complex systemic human-environment processes. Modular, interdisciplinary approaches have offered a way to address this shortcoming; however, beyond climate records, prehistoric data continue to be under-utilised in developing such models. In this paper we highlight the contribution that archaeology and palaeoecology can make to the development of the next generation IAMs that are expected to enhance provision for more local and pro-active adaptations to future climate change. We present data from one of Southeast Asia's most heavily developed river deltas: the Red River (Song Hong) Delta, in Vietnam and localised analysis from the Tràng An Landscape Complex World Heritage Site, on the delta's southern margin. Comparison is made between Shared Socio-economic Pathways (SSP) 5-8.5 and SSP2-4.5 emission projection models and the Mid-Holocene inundation of the Red River Basin. We highlight the value to taking a scientific long view of coastal evolution through an illustrative set of eight research foci where palaeo-data can bring new and localised empirical data to bear on future risk management planning. We proceed to demonstrate the applicability of palaeoenvironmental, zooarchaeological and historical evidence to management and the development of sustainable conservation strategies using Tràng An as a case study. In so doing, we further highlight the importance of knowledge exchange between scientific, corporate, non-governmental, local, and state stakeholders to achieve tangible results on the ground.
Collapse
Affiliation(s)
- Ryan J. Rabett
- Archaeology & Palaeoecology, School of Natural & Built Environment, Queen’s University Belfast, Belfast, United Kingdom
- Institute for Hellenic Culture & the Liberal Arts, The American College of Greece, Athens, Greece
- * E-mail:
| | - Risa Morimoto
- Department of Economics, School of Oriental and African Studies (SOAS), University of London, London, United Kingdom
| | - Thorsten Kahlert
- Centre for Geographic Information Science and Geomatics, School of Natural & Built Environment, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Shawn O’Donnell
- Department of Geography & Environmental Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | | | - Bui Van Manh
- Department of Tourism, Ninh Bình City, Ninh Bình Province, Vietnam
| | - Rachael Holmes
- School of Geography, Geology & the Environment, University of Leicester, Leicester, United Kingdom
| | - Phạm Sinh Khánh
- Tràng An Landscape Complex Management Board, Ninh Bình City, Ninh Bình Province, Vietnam
| | - Tran Tan Van
- Vietnam Institute of Geosciences & Mineral Resources, Ministry of Natural Resources & Environment, Hanoi, Vietnam
| | - Fiona Coward
- Department of Archaeology, Anthropology & Forensic Science, Faculty of Science & Technology Bournemouth University, Poole, Dorset, United Kingdom
| |
Collapse
|
45
|
Yang M, Zhao H, Xian X, Wang R, Yang N, Chen L, Liu WX. Assessing risk from invasive alien plants in China: Reconstructing invasion history and estimating distribution patterns of Lolium temulentum and Aegilops tauschii. FRONTIERS IN PLANT SCIENCE 2023; 14:1113567. [PMID: 36818845 PMCID: PMC9933513 DOI: 10.3389/fpls.2023.1113567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The establishment of invasive alien plants (IAPs) is primarily driven by climate warming and human activities, and their populations have a negative impact on agricultural economics, ecological systems, and human health. Lolium temulentum and Aegilops tauschii are critical IAPs in China because they reduce the quality of cereal grains and decrease wheat yields. Lolium temulentum is a winter-temperate weed that spreads easily and is poisonous to humans and animals. Aegilops tauschii is resistant to herbicides, has a high reproductive rate, and frequently grows in wheat. Both species have been listed in the Ministry of Agriculture and Rural Affairs of the People's Republic of China's management catalog since 2006. METHODS In the present study, the historical occurrence and invasion of each species were collected and reconstructed, which showed that the population outbreak of L. temulentum began in 2010, whereas that of A. tauschii began in 2000. Using the optimal MaxEnt model, the geographical distributions of L. temulentum and A. tauschii were predicted based on screened species occurrences and environmental variables under the current and three future scenarios in the 2030s and 2050s (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5). RESULTS The mean AUC values were 0.867 and 0.931 for L. temulentum and A. tauschii, respectively. Human influence index (HII), mean temperature of coldest quarter (bio11), and precipitation of coldest quarter (bio19) were the most significant variables for L. temulentum, whereas human influence index, temperature seasonality (standard deviation×100) (bio4), and annual mean temperature (bio1) were the critical environmental variables for A. tauschi. Suitable habitat areas in China for L. temulentum and A. tauschii currently covered total areas of 125 × 104 and 235 × 104 km2, respectively. Future suitable areas of L. temulentum reached the maximum under SSP2-4.5, from 2021 to 2060, whereas for A. tauschii they reached the maximum under SSP5-8.5, from 2021 to 2060. Furthermore, the overlap area under the current climate conditions for L. temulentum and A. tauschii was approximately 90 × 104 km2, mainly located in Hubei, Anhui, Jiangsu, Shandong, Henan, Shaanxi, Shanxi, and Hebei. The overlap areas decreased in the 2030s, increased in the 2050s, and reached a maximum under SSP1-2.6 (or SSP2-4.5) with an approximate area of 104 × 104 km2. The centroid of L. temulentum in Henan was transferred to the southwest, whereas for A. tauschii it transferred to higher latitudes in the northeast. DISCUSSION Our findings provide a practical reference for the early warning, control, and management of these two destructive IAP populations in China.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
- School of Life Sciences, Hebei University, Baoding, China
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Rui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Li Chen
- School of Life Sciences, Hebei University, Baoding, China
| | - Wan-xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
46
|
Guiaşu RC, Tindale CW. Logical fallacies persist in invasion biology and blaming the messengers will not improve accountability in this field: a response to Frank et al. BIOLOGY & PHILOSOPHY 2023; 38:3. [PMID: 36683876 PMCID: PMC9845828 DOI: 10.1007/s10539-023-09892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
We analyze the "Logical fallacies and reasonable debates in invasion biology: a response to Guiaşu and Tindale" article by Frank et al., and also discuss this work in the context of recent intense debates in invasion biology, and reactions by leading invasion biologists to critics of aspects of their field. While we acknowledge the attempt by Frank et al., at least in the second half of their paper, to take into account more diverse points of view about non-native species and their complex roles in ecosystems, we also find the accusations of misrepresenting invasion biology, for instance by "cherry-picking" and "constructing 'straw people'", directed at the Guiaşu and Tindale study to be unwarranted. Despite the sometimes harsh responses by leading invasion biologists to critics of their field, we believe that persistent and fundamental problems remain in invasion biology, and we discuss some of these problems in this article. Failing to recognize these problems, and simply dismissing or minimizing legitimate criticisms, will not advance the cause, or enhance the general appeal, of invasion biology and will prevent meaningful progress in understanding the multiple contributions non-native species can bring to various ecosystems worldwide. We recommend taking a more open-minded and pragmatic approach towards non-native species and the novel ecosystems they are an integral part of.
Collapse
Affiliation(s)
- Radu Cornel Guiaşu
- Biology Program, Glendon College, York University, 2275 Bayview Avenue, Toronto, ON M4N 3M6 Canada
| | - Christopher W. Tindale
- Department of Philosophy, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4 Canada
| |
Collapse
|
47
|
Wang S, Li Y, Zhou J, Jiang K, Chen J, Ye Z, Xue H, Bu W. The anthropogenic effect of land use on population genetics of Malcus inconspicuus. Evol Appl 2023; 16:98-110. [PMID: 36699121 PMCID: PMC9850013 DOI: 10.1111/eva.13512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Since the beginning of the Holocene era, human activities have seriously impacted animal habitats and vegetative environments. Species that are dependent on natural habitats or with narrow niches might be more severely affected by habitat changes. Malcus inconspicuus is distributed in subtropical China and highly dependent on the mountain environment. Our study investigated the role of the mountainous landscape in the historical evolution of M. inconspicuus and the impact of Holocene human activities on it. A phylogeographical approach was implemented with integrative datasets including double-digest restriction site-associated DNA (ddRAD), mitochondrial data, and distribution data. Three obvious clades and an east-west phylogeographical pattern were found in subtropical China. Mountainous landscape has "multifaceted" effects on the evolutionary history of M. inconspicuus, it has contributed to population differentiation, provided glacial refuges, and provided population expansion corridors during the postglacial period. The effective population size (Ne) of M. inconspicuus showed a sharp decline during the Holocene era, which revealed a significantly negative correlation with the development of cropland in a hilly area at the same time and space. It supported that the species which are highly dependent on natural habitats might undergo greater impact when the habitat was damaged by agricultural activities and we should pay more attention to them, especially in the land development of their distribution areas.
Collapse
Affiliation(s)
- Shujing Wang
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Yanfei Li
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Jiayue Zhou
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Kun Jiang
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Juhong Chen
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Zhen Ye
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Huaijun Xue
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Wenjun Bu
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
48
|
Araki Y, Sota T. Whole-genome resequencing reveals recent divergence of geographic populations of the dung beetle Phelotrupes auratus with color variation. Ecol Evol 2023; 13:e9765. [PMID: 36713480 PMCID: PMC9873872 DOI: 10.1002/ece3.9765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Knowledge of population divergence history is key to understanding organism diversification mechanisms. The geotrupid dung beetle Phelotrupes auratus, which inhabits montane forests and exhibits three color forms (red, green, and indigo), diverged into five local populations (west/red, south/green, south/indigo, south/red, and east/red) in the Kinki District of Honshu, Japan, based on the combined interpretation of genetic cluster and color-form data. Here, we estimated the demographic histories of these local populations using the newly assembled draft genome sequence of P. auratus and whole-genome resequencing data obtained from each local population. Using coalescent simulation analysis, we estimated P. auratus population divergences at ca. 3800, 2100, 600, and 200 years ago, with no substantial gene flow between diverged populations, implying the existence of persistent barriers to gene flow. Notably, the last two divergence events led to three local populations with different color forms. The initial divergence may have been affected by climatic cooling around that time, and the last three divergence events may have been associated with the increasing impact of human activities. Both climatic cooling and increasing human activity may have caused habitat fragmentation and a reduction in the numbers of large mammals supplying food (dung) for P. auratus, thereby promoting the decline, segregation, and divergence of local populations. Our research demonstrates that geographic population divergence in an insect with conspicuous differences in traits such as body color may have occurred rapidly under the influence of human activity.
Collapse
Affiliation(s)
- Yoshifumi Araki
- Department of Zoology, Graduate School of ScienceKyoto UniversityKyotoJapan
| | - Teiji Sota
- Department of Zoology, Graduate School of ScienceKyoto UniversityKyotoJapan
| |
Collapse
|
49
|
Sun B, Lu Y, Yang Y, Yu M, Yuan J, Yu R, Bullock JM, Stenseth NC, Li X, Cao Z, Lei H, Li J. Urbanization affects spatial variation and species similarity of bird diversity distribution. SCIENCE ADVANCES 2022; 8:eade3061. [PMID: 36490342 PMCID: PMC9733918 DOI: 10.1126/sciadv.ade3061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Although cities are human-dominated systems, they provide habitat for many other species. Because of the lack of long-term observation data, it is challenging to assess the impacts of rapid urbanization on biodiversity in Global South countries. Using multisource data, we provided the first analysis of the impacts of urbanization on bird distribution at the continental scale and found that the distributional hot spots of threatened birds overlapped greatly with urbanized areas, with only 3.90% of the threatened birds' preferred land cover type in urban built-up areas. Bird ranges are being reshaped differently because of their different adaptations to urbanization. While green infrastructure can improve local bird diversity, the homogeneous urban environment also leads to species compositions being more similar across regions. More attention should be paid to narrow-range species for the formulation of biodiversity conservation strategies, and conservation actions should be further coordinated among cities from a global perspective.
Collapse
Affiliation(s)
- Bin Sun
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yifu Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Mingzhao Yu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jingjing Yuan
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Ran Yu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
- School of Environmental and Natural Resources, Renmin University of China, Beijing 100872, China
| | - James M. Bullock
- UK Centre for Ecology and Hydrology, Wallingford, Oxon OX10 8BB, UK
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 03160 Oslo 3, Norway
| | - Xia Li
- East China Normal University, Shanghai 200241, China
| | - Zhiwei Cao
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Haojie Lei
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Jialong Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| |
Collapse
|
50
|
Bird eggs or wheat: Assessing the impact of an overabundant crow species in a landscape mosaic in the Negev desert of Israel. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|