1
|
Chaimow D, Lorenz R, Weiskopf N. Closed-loop fMRI at the mesoscopic scale of columns and layers: Can we do it and why would we want to? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230085. [PMID: 39428874 PMCID: PMC11513163 DOI: 10.1098/rstb.2023.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 10/22/2024] Open
Abstract
Technological advances in fMRI including ultra-high magnetic fields (≥ 7 T) and acquisition methods that increase spatial specificity have paved the way for studies of the human cortex at the scale of layers and columns. This mesoscopic scale promises an improved mechanistic understanding of human cortical function so far only accessible to invasive animal neurophysiology. In recent years, an increasing number of studies have applied such methods to better understand the cortical function in perception and cognition. This future perspective article asks whether closed-loop fMRI studies could equally benefit from these methods to achieve layer and columnar specificity. We outline potential applications and discuss the conceptual and concrete challenges, including data acquisition and volitional control of mesoscopic brain activity. We anticipate an important role of fMRI with mesoscopic resolution for closed-loop fMRI and neurofeedback, yielding new insights into brain function and potentially clinical applications.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Denis Chaimow
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Romy Lorenz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Cognitive Neuroscience & Neurotechnology Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, LondonWC1N 3AR, UK
| |
Collapse
|
2
|
Mecklenbrauck F, Sepulcre J, Fehring J, Schubotz RI. Decoding Cortical Chronotopy - Comparing the Influence of Different Cortical Organizational Schemes. Neuroimage 2024:120914. [PMID: 39491762 DOI: 10.1016/j.neuroimage.2024.120914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
The brain's diverse intrinsic timescales enable us to perceive stimuli with varying temporal persistency. This study aimed to uncover the cortical organizational schemes underlying these variations, revealing the neural architecture for processing a wide range of sensory experiences. We collected resting-state fMRI, task-fMRI, and diffusion-weighted imaging data from 47 individuals. Based on this data, we extracted six organizational schemes: (1) the structural Rich Club (RC) architecture, shown to synchronize the connectome; (2) the structural Diverse Club architecture, as an alternative to the RC based on the network's module structure; (3) the functional uni-to-multimodal gradient, reflected in a wide range of structural and functional features; and (4) the spatial posterior/lateral-to-anterior/medial gradient, established for hierarchical levels of cognitive control. Also, we explored the effects of (5) structural graph theoretical measures of centrality and (6) cytoarchitectural differences. Using Bayesian model comparison, we contrasted the impact of these organizational schemes on (1) intrinsic resting-state timescales and (2) inter-subject correlation (ISC) from a task involving hierarchically nested digit sequences. As expected, resting-state timescales were slower in structural network hubs, hierarchically higher areas defined by the functional and spatial gradients, and thicker cortical regions. ISC analysis demonstrated hints for the engagement of higher cortical areas with more temporally persistent stimuli. Finally, the model comparison identified the uni-to-multimodal gradient as the best organizational scheme for explaining the chronotopy in both task and rest. Future research should explore the microarchitectural features that shape this gradient, elucidating how our brain adapts and evolves across different modes of processing.
Collapse
Affiliation(s)
- Falko Mecklenbrauck
- Department of Psychology, Biological Psychology, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany.
| | - Jorge Sepulcre
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, Yale University, New Haven, CT, USA,.
| | - Jana Fehring
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany; Institute for Biomagnetism and Biosignal Analysis, Münster, Germany.
| | - Ricarda I Schubotz
- Department of Psychology, Biological Psychology, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany.
| |
Collapse
|
3
|
Duan H, Shi R, Kang J, Banaschewski T, Bokde ALW, Büchel C, Desrivières S, Flor H, Grigis A, Garavan H, Gowland PA, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Papadopoulos Orfanos D, Poustka L, Hohmann S, Nathalie Holz N, Fröhner J, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Lin X, Feng J. Population clustering of structural brain aging and its association with brain development. eLife 2024; 13:RP94970. [PMID: 39422662 PMCID: PMC11488854 DOI: 10.7554/elife.94970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Structural brain aging has demonstrated strong inter-individual heterogeneity and mirroring patterns with brain development. However, due to the lack of large-scale longitudinal neuroimaging studies, most of the existing research focused on the cross-sectional changes of brain aging. In this investigation, we present a data-driven approach that incorporate both cross-sectional changes and longitudinal trajectories of structural brain aging and identified two brain aging patterns among 37,013 healthy participants from UK Biobank. Participants with accelerated brain aging also demonstrated accelerated biological aging, cognitive decline and increased genetic susceptibilities to major neuropsychiatric disorders. Further, by integrating longitudinal neuroimaging studies from a multi-center adolescent cohort, we validated the 'last in, first out' mirroring hypothesis and identified brain regions with manifested mirroring patterns between brain aging and brain development. Genomic analyses revealed risk loci and genes contributing to accelerated brain aging and delayed brain development, providing molecular basis for elucidating the biological mechanisms underlying brain aging and related disorders.
Collapse
Affiliation(s)
- Haojing Duan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
| | - Runye Shi
- School of Data Science, Fudan UniversityShanghaiChina
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Arun LW Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | | | - Sylvane Desrivières
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Department of Psychology, School of Social Sciences, University of MannheimMannheimGermany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-SaclayGif-sur-YvetteFrance
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of VermontBurlingtonUnited States
| | - Penny A Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of NottinghamNottinghamUnited Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and BerlinBerlinGermany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Developmental Trajectories and Psychiatry", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre BorelliGif-sur-YvetteFrance
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Developmental Trajectories and Psychiatry", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre BorelliGif-sur-YvetteFrance
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière HospitalParisFrance
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Developmental Trajectories and Psychiatry", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre BorelliGif-sur-YvetteFrance
- Psychiatry Department, EPS Barthélémy DurandEtampesFrance
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel UniversityKielGermany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical CentreGöttingenGermany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Nathalie Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Juliane Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität DresdenDresdenGermany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität DresdenDresdenGermany
| | - Nilakshi Vaidya
- Department of Psychiatry and Neurosciences, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College DublinDublinIreland
| | - Gunter Schumann
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan UniversityShanghaiChina
- Department of Psychiatry and Neurosciences, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Centre for Population Neuroscience and Stratified Medicine (PONS Centre), ISTBI, Fudan UniversityShanghaiChina
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité UniversitätsmedizinBerlinGermany
| | - Xiaolei Lin
- School of Data Science, Fudan UniversityShanghaiChina
- Huashan Institute of Medicine, Huashan Hospital affiliated to Fudan UniversityShanghaiChina
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- School of Data Science, Fudan UniversityShanghaiChina
- Centre for Population Neuroscience and Stratified Medicine (PONS Centre), ISTBI, Fudan UniversityShanghaiChina
- MOE Frontiers Center for Brain Science, Fudan UniversityShanghaiChina
- Zhangjiang Fudan International Innovation CenterShanghaiChina
- Department of Computer Science, University of WarwickWarwickUnited Kingdom
| |
Collapse
|
4
|
Libedinsky I, Helwegen K, Boonstra J, Guerrero Simón L, Gruber M, Repple J, Kircher T, Dannlowski U, van den Heuvel MP. Polyconnectomic scoring of functional connectivity patterns across eight neuropsychiatric and three neurodegenerative disorders. Biol Psychiatry 2024:S0006-3223(24)01665-2. [PMID: 39424166 DOI: 10.1016/j.biopsych.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Neuropsychiatric and neurodegenerative disorders involve diverse changes in brain functional connectivity. As an alternative to approaches searching for specific mosaic patterns of affected connections and networks, we used polyconnectomic scoring to quantify disorder-related whole-brain connectivity signatures into interpretable, personalized scores. METHODS The polyconnectomic score (PCS) measures the extent to which an individual's functional connectivity (FC) mirrors the whole-brain circuitry characteristics of a trait. We computed PCS for eight neuropsychiatric conditions (attention-deficit/hyperactivity disorder, anxiety-related disorders, autism spectrum disorder, obsessive-compulsive disorder, bipolar disorder, major depressive disorder, schizoaffective disorder, and schizophrenia) and three neurodegenerative conditions (Alzheimer's disease, frontotemporal dementia, and Parkinson's disease) across 22 datasets with resting-state functional MRI of 10,667 individuals (5,325 patients, 5,342 controls). We further examined PCS in 26,673 individuals from the population-based UK Biobank cohort. RESULTS PCS was consistently higher in out-of-sample patients across six of the eight neuropsychiatric and across all three investigated neurodegenerative disorders ([min, max]: AUC = [0.55, 0.73], pFDR = [1.8 x 10-16, 4.5 x 10-2]). Individuals with elevated PCS levels for neuropsychiatric conditions exhibited higher neuroticism (pFDR < 9.7 x 10-5), lower cognitive performance (pFDR < 5.3 x 10-5), and lower general wellbeing (pFDR < 9.7 x 10-4). CONCLUSIONS Our findings reveal generalizable whole-brain connectivity alterations in brain disorders. PCS effectively aggregates disorder-related signatures across the entire brain into an interpretable, subject-specific metric. A toolbox is provided for PCS computation.
Collapse
Affiliation(s)
- Ilan Libedinsky
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Koen Helwegen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jackson Boonstra
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Laura Guerrero Simón
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Luo J, Zhu J, Chen Y. Shedding Light on the Aftermath: Childhood Maltreatment's Role in Modifying the Association Between Recent Life Stress and Resting-State Network Connectivity. Behav Sci (Basel) 2024; 14:958. [PMID: 39457830 PMCID: PMC11505332 DOI: 10.3390/bs14100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Childhood maltreatment has been demonstrated to impact brain development. However, whether childhood maltreatment can influence the effects of recent stress on brain networks remains unclear. This study aimed to investigate whether childhood maltreatment moderates the longitudinal relationship between recent life stress and within- and between-network connectivity in key brain networks, including the anterior salience (ASN), central executive (CEN), default mode (DMN), and emotional regulation network (ERN). A cohort of 172 individuals from the Neuroscience in Psychiatry Network (NSPN) underwent MRI scans at two specific time points and undertook evaluations of childhood maltreatment and recent life stress. The results showed that childhood abuse moderated the association of recent life stress with the within-network connectivity of ASN and ERN but not DMN and CEN. Furthermore, recent life stress significantly interacted with childhood abuse to be associated with the between-network connectivity of ASN-DMN, ASN-CEN, ASN-ERN, DMN-ERN and CEN-ERN. Overall, among youth exposed to higher degrees of childhood abuse, greater recent life stress was longitudinally associated with increased network connectivity. Understanding these interactions can provide valuable insights for developing prevention strategies and interventions aimed at mitigating the lasting impact of childhood maltreatment on brain development and overall well-being.
Collapse
Affiliation(s)
- Jingjing Luo
- Center for Early Environment and Brain Development, School of Education, Guangzhou University, Guangzhou 510006, China
- Department of Psychology, Guangzhou University, Guangzhou 510006, China
| | - Jianjun Zhu
- Center for Early Environment and Brain Development, School of Education, Guangzhou University, Guangzhou 510006, China
- Department of Psychology, Guangzhou University, Guangzhou 510006, China
| | | | - Yuanyuan Chen
- Center for Early Environment and Brain Development, School of Education, Guangzhou University, Guangzhou 510006, China
- Department of Special Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
6
|
Thijssen S, Xerxa Y, Norbom LB, Cima M, Tiemeier H, Tamnes CK, Muetzel RL. Early childhood family threat and longitudinal amygdala-mPFC circuit development: Examining cortical thickness and gray matter-white matter contrast. Dev Cogn Neurosci 2024; 70:101462. [PMID: 39418759 PMCID: PMC11532282 DOI: 10.1016/j.dcn.2024.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Early threat-associated cortical thinning may be interpreted as accelerated cortical development. However, non-adaptive processes may show similar macrostructural changes. Examining cortical thickness (CT) together with grey/white-matter contrast (GWC), a proxy for intracortical myelination, may enhance the interpretation of CT findings. In this prospective study, we examined associations between early life family-related threat (harsh parenting, family conflict, and neighborhood safety) and CT and GWC development from late childhood to middle adolescence. MRI was acquired from 4200 children (2069 boys) from the Generation R study at ages 8, 10 and 14 years (in total 6114 scans), of whom 1697 children had >1 scans. Linear mixed effect models were used to examine family factor-by-age interactions on amygdala volume, caudal and rostral anterior cingulate (ACC) and medial orbitofrontal cortex (mOFC) CT and GWC. A neighborhood safety-by-age-interaction was found for rostral ACC GWC, suggesting less developmental change in children from unsafe neighborhoods. Moreover, after more stringent correction for motion, family conflict was associated with greater developmental change in CT but less developmental change in GWC. Results suggest that early threat may blunt ACC GWC development. Our results, therefore, do not provide evidence for accelerated threat-associated structural development of the amygdala-mPFC circuit between ages 8-14 years.
Collapse
Affiliation(s)
- Sandra Thijssen
- Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Yllza Xerxa
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Linn B Norbom
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Maaike Cima
- Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Christian K Tamnes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Jiang J, Zhao K, Li W, Zheng P, Jiang S, Ren Q, Duan Y, Yu H, Kang X, Li J, Hu K, Jiang T, Zhao M, Wang L, Yang S, Zhang H, Liu Y, Wang A, Liu Y, Xu J. Multiomics Reveals Biological Mechanisms Linking Macroscale Structural Covariance Network Dysfunction With Neuropsychiatric Symptoms Across the Alzheimer's Disease Continuum. Biol Psychiatry 2024:S0006-3223(24)01666-4. [PMID: 39419461 DOI: 10.1016/j.biopsych.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The highly heterogeneity of neuropsychiatric symptoms (NPSs) hinder further exploration of their role in neurobiological mechanisms and Alzheimer's disease (AD). We aimed to delineate NPS patterns based on brain macroscale connectomics to understand the biological mechanisms of NPSs on the AD continuum. METHODS We constructed Regional Radiomics Similarity Networks (R2SN) for 550 participants (AD with NPSs [AD-NPS, n=376], AD without NPSs [AD-nNPS, n=111], and normal controls [n=63]) from CIBL study. We identified R2SN connections associated with NPSs, and then cluster distinct subtypes of AD-NPS. An independent dataset (n=189) and internal validation were performed to assess the robustness of the NPS subtypes. Subsequent multiomics analysis were performed to assess the distinct clinical phenotype and biological mechanisms in each NPS subtype. RESULTS AD-NPS patients were clustered into severe (n=187), moderate (n=87), and mild NPS (n=102) subtypes, each exhibiting distinct brain network dysfunction patterns. A high level of consistency in clustering NPS was internally and externally validated. Severe and moderate NPSs showed significant cognitive impairment, increased plasma p-Tau181 levels, extensive decreased brain volume and cortical thickness, and accelerated cognitive decline. Gene set enrichment analysis (GSEA) revealed enrichment of differentially expressed genes in ion transport and synaptic transmission with variations for each NPS subtype. Genome-wide association studies (GWAS) analysis defined the specific gene loci for each subtype of AD-NPS (i.e, logical memory), aligning with clinical manifestations and progression patterns. CONCLUSIONS This study identified and validated three distinct NPS subtypes, underscoring the role of NPSs in neurobiological mechanisms and progression of the AD continuum.
Collapse
Affiliation(s)
- Jiwei Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| | - Wenyi Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Peiyang Zheng
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Shirui Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Qiwei Ren
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Yunyun Duan
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Huiying Yu
- School of Information Science and Engineering, Shandong Normal University, Jinan, 251100, China
| | - Xiaopeng Kang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100876, China
| | - Junjie Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ke Hu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100876, China
| | - Tianlin Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Min Zhao
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Linlin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Shiyi Yang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Huiying Zhang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Yaou Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Anxin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| | - Jun Xu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| |
Collapse
|
8
|
d'Oleire Uquillas F, Sefik E, Li B, Trotter MA, Steele KA, Seidlitz J, Gesue R, Latif M, Fasulo T, Zhang V, Kislin M, Verpeut JL, Cohen JD, Sepulcre J, Wang SSH, Gomez J. Multimodal evidence for cerebellar influence on cortical development in autism: structural growth amidst functional disruption. Mol Psychiatry 2024:10.1038/s41380-024-02769-1. [PMID: 39390225 DOI: 10.1038/s41380-024-02769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024]
Abstract
Despite perinatal damage to the cerebellum being one of the highest risk factors for later being diagnosed with autism spectrum disorder (ASD), it is not yet clear how the cerebellum might influence the development of cerebral cortex and whether this co-developmental process is distinct between neurotypical and ASD children. Leveraging a large structural brain MRI dataset of neurotypical children and those diagnosed with ASD, we examined whether structural variation in cerebellar tissue across individuals was correlated with neocortical variation during development, including the thalamus as a coupling factor. We found that the thalamus plays a distinct role in moderating cerebro-cerebellar structural coordination in ASD. Notably, structural coupling between cerebellum, thalamus, and neocortex was strongest in younger childhood and waned by early adolescence, mirroring a previously undescribed trajectory of behavioral development between ASD and neurotypical children. Complementary functional connectivity analyses likewise revealed atypical connectivity between cerebellum and neocortex in ASD. This relationship was particularly prominent in a model of cerebellar structure predicting functional connectivity, where ASD and neurotypical children showed divergent patterns. Interestingly, these functional-structural relationships became more prominent with age, while structural effects were most prominent earlier in childhood, and showed significant lateralization. This pattern may suggest a developmental sequence where early uncoordinated structural growth amongst regions is followed by increasingly atypical functional synchronization. These findings provide multimodal evidence in the living brain for a cerebellar diaschisis model of autism, where both increased cerebellar-cerebral structural coupling and altered functional connectivity in cerebro-cerebellar pathways contribute to the ontogeny of this neurodevelopmental disorder.
Collapse
Affiliation(s)
| | - Esra Sefik
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Bing Li
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Matthew A Trotter
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kara A Steele
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jakob Seidlitz
- Lifespan Brain Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rowen Gesue
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mariam Latif
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Tristano Fasulo
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Veronica Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mikhail Kislin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jessica L Verpeut
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Jonathan D Cohen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Samuel S-H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jesse Gomez
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
9
|
Qu J, Zhu R, Wu Y, Xu G, Wang D. Abnormal structural‒functional coupling patterning in progressive supranuclear palsy is associated with diverse gradients and histological features. Commun Biol 2024; 7:1195. [PMID: 39341965 PMCID: PMC11439051 DOI: 10.1038/s42003-024-06877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
The anatomy of the brain supports inherent processes, fostering mental abilities and eventually facilitating adaptive behavior. Recent studies have shown that progressive supranuclear palsy (PSP) is accompanied by alterations in functional and structural networks. However, how the structure and function of PSP coordinates change is not clear, and the relationships between structural‒functional coupling (SFC) and the gradient of hierarchical structure and cellular histology remain largely unknown. Here, we use neuroimaging data from two independent cohorts and a public histological dataset to investigate the relationships among the cellular histology, hierarchical structure, and SFC of PSP patients. We find that the SFC of the entire cortex in PSP is severely disrupted, with higher coupling in the visual network (VN). Moreover, coupling differences in PSP follow a macroscopic organizational principle from unimodal to transmodal gradients. Finally, we elucidate greater laminar differentiation in VN regions sensitive to SFC changes in PSP, which is related mainly to the higher cellular density and smaller size of the internal-granular layer. In conclusion, our findings provide an interpretable framework for understanding SFC changes in PSP and provide new insights into the consistency of structural and functional changes in PSP regarding hierarchical structure and cellular histology.
Collapse
Affiliation(s)
- Junyu Qu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Rui Zhu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Yongsheng Wu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Guihua Xu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China.
- Research Institute of Shandong University: Magnetic Field-free Medicine & Functional Imaging, Jinan, China.
- Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Jinan, China.
| |
Collapse
|
10
|
Hu S, Li C, Wang Y, Wei T, Wang X, Dong T, Yang Y, Ding Y, Qiu B, Yang W. Structural lesions and transcriptomic specializations shape gradient perturbations in Wilson disease. Brain Commun 2024; 6:fcae329. [PMID: 39372139 PMCID: PMC11450269 DOI: 10.1093/braincomms/fcae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/27/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
Functional dysregulations in multiple regions are caused by excessive copper deposition in the brain in Wilson disease (WD) patients. The genetic mechanism of WD is thought to involve the abnormal expression of ATP7B in the liver, whereas the biological and molecular processes involved in functional dysregulation within the brain remain unexplored. The objective of this study was to unravel the underpinnings of functional gradient perturbations underlying structural lesions and transcriptomic specializations in WD. In this study, we included 105 WD patients and 93 healthy controls who underwent structural and functional MRI assessments. We used the diffusion mapping embedding model to derive the functional connectome gradient and further employed gray matter volume to uncover structure-function decoupling for WD. Then, we used Neurosynth, clinical data, and whole-brain gene expression data to examine the meta-analytic cognitive function, clinical phenotypes, and transcriptomic specializations related to WD gradient alterations. Compared with controls, WD patients exhibited global topographic changes in the principal pramary-to-transmodal gradient. Meta-analytic terms and clinical characteristics were correlated with these gradient alterations in motor-related processing, higher-order cognition, neurological symptoms, and age. Spatial correlations revealed structure-function decoupling in multiple networks, especially in subcortical and visual networks. Within the cortex, the spatial association between gradient alterations and gene expression profiles has revealed transcriptomic specilizations in WD that display properties indicative of ion homeostasis, neural development, and motor control. Furthermore, for the first time, we characterized the role of the ATP7B gene in impacting subcortical function. The transcriptomic specializations of WD were also associated with other neurological and psychiatric disorders. Finally, we revealed that structural lesions and gradient perturbations may share similar transcriptomic specializations in WD. In conclusion, these findings bridged functional gradient perturbations to structural lesions and gene expression profiles in WD patients, possibly promoting our understanding of the neurobiological mechanisms underlying the emergence of complex neurological and psychiatric phenotypes.
Collapse
Affiliation(s)
- Sheng Hu
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230094, China
- School of Medical Information Engineering, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230012, China
| | - Chuanfu Li
- Medical Imaging Center, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Yanming Wang
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Taohua Wei
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Xiaoxiao Wang
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ting Dong
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Yulong Yang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Yufeng Ding
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230094, China
| | - Wenming Yang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| |
Collapse
|
11
|
Lotter LD, Saberi A, Hansen JY, Misic B, Paquola C, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Paillère ML, Artiges E, Papadopoulos Orfanos D, Paus T, Poustka L, Hohmann S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Nees F, Banaschewski T, Eickhoff SB, Dukart J. Regional patterns of human cortex development correlate with underlying neurobiology. Nat Commun 2024; 15:7987. [PMID: 39284858 PMCID: PMC11405413 DOI: 10.1038/s41467-024-52366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Human brain morphology undergoes complex changes over the lifespan. Despite recent progress in tracking brain development via normative models, current knowledge of underlying biological mechanisms is highly limited. We demonstrate that human cortical thickness development and aging trajectories unfold along patterns of molecular and cellular brain organization, traceable from population-level to individual developmental trajectories. During childhood and adolescence, cortex-wide spatial distributions of dopaminergic receptors, inhibitory neurons, glial cell populations, and brain-metabolic features explain up to 50% of the variance associated with a lifespan model of regional cortical thickness trajectories. In contrast, modeled cortical thickness change patterns during adulthood are best explained by cholinergic and glutamatergic neurotransmitter receptor and transporter distributions. These relationships are supported by developmental gene expression trajectories and translate to individual longitudinal data from over 8000 adolescents, explaining up to 59% of developmental change at cohort- and 18% at single-subject level. Integrating neurobiological brain atlases with normative modeling and population neuroimaging provides a biologically meaningful path to understand brain development and aging in living humans.
Collapse
Affiliation(s)
- Leon D Lotter
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
- Max Planck School of Cognition; Stephanstrasse 1A, Leipzig, Germany.
| | - Amin Saberi
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Casey Paquola
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham; University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB); Braunschweig and Berlin, Berlin, Germany
| | - Jean-Luc Martinot
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 "Trajectoires Développementales & Psychiatrie"; Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 "Trajectoires Développementales & Psychiatrie"; Centre Borelli, Gif-sur-Yvette, France
- AP-HP Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 "Trajectoires Développementales & Psychiatrie"; Centre Borelli, Gif-sur-Yvette, France
- Department of Psychiatry, EPS Barthélémy Durand, Etampes, France
| | | | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Frauke Nees
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim-Heidelberg-Ulm, Heidelberg, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
12
|
García-San-Martín N, Bethlehem RAI, Mihalik A, Seidlitz J, Sebenius I, Alemán-Morillo C, Dorfschmidt L, Shafiei G, Ortiz-García de la Foz V, Merritt K, David A, Morgan SE, Ruiz-Veguilla M, Ayesa-Arriola R, Vázquez-Bourgon J, Alexander-Bloch A, Misic B, Bullmore ET, Suckling J, Crespo-Facorro B, Romero-García R. Molecular and micro-architectural mapping of gray matter alterations in psychosis. Mol Psychiatry 2024:10.1038/s41380-024-02724-0. [PMID: 39266711 DOI: 10.1038/s41380-024-02724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024]
Abstract
The psychosis spectrum encompasses a heterogeneous range of clinical conditions associated with abnormal brain development. Detecting patterns of atypical neuroanatomical maturation across psychiatric disorders requires an interpretable metric standardized by age-, sex- and site-effect. The molecular and micro-architectural attributes that account for these deviations in brain structure from typical neurodevelopment are still unknown. Here, we aggregate structural magnetic resonance imaging data from 38,696 healthy controls (HC) and 1256 psychosis-related conditions, including first-degree relatives of schizophrenia (SCZ) and schizoaffective disorder (SAD) patients (n = 160), individuals who had psychotic experiences (n = 157), patients who experienced a first episode of psychosis (FEP, n = 352), and individuals with chronic SCZ or SAD (n = 587). Using a normative modeling approach, we generated centile scores for cortical gray matter (GM) phenotypes, identifying deviations in regional volumes below the expected trajectory for all conditions, with a greater impact on the clinically diagnosed ones, FEP and chronic. Additionally, we mapped 46 neurobiological features from healthy individuals (including neurotransmitters, cell types, layer thickness, microstructure, cortical expansion, and metabolism) to these abnormal centiles using a multivariate approach. Results revealed that neurobiological features were highly co-localized with centile deviations, where metabolism (e.g., cerebral metabolic rate of oxygen (CMRGlu) and cerebral blood flow (CBF)) and neurotransmitter concentrations (e.g., serotonin (5-HT) and acetylcholine (α4β2) receptors) showed the most consistent spatial overlap with abnormal GM trajectories. Taken together these findings shed light on the vulnerability factors that may underlie atypical brain maturation during different stages of psychosis.
Collapse
Affiliation(s)
| | | | - Agoston Mihalik
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Isaac Sebenius
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Lena Dorfschmidt
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Víctor Ortiz-García de la Foz
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
- Biomedical Research Center in Mental Health Network (CIBERSAM), Health Institute Carlos III, Madrid, Spain
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Anthony David
- Division of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Sarah E Morgan
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Miguel Ruiz-Veguilla
- Biomedical Research Center in Mental Health Network (CIBERSAM), Health Institute Carlos III, Madrid, Spain
- Mental Health Service, Virgen del Rocío University Hospital, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC, University of Seville, Seville, Spain
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
- Biomedical Research Center in Mental Health Network (CIBERSAM), Health Institute Carlos III, Madrid, Spain
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
- Biomedical Research Center in Mental Health Network (CIBERSAM), Health Institute Carlos III, Madrid, Spain
| | - Aaron Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Peterborough NHS Foundation Trust, Peterborough, UK
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
- Biomedical Research Center in Mental Health Network (CIBERSAM), Health Institute Carlos III, Madrid, Spain
- Mental Health Service, Virgen del Rocío University Hospital, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC, University of Seville, Seville, Spain
| | - Rafael Romero-García
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Biomedical Research Center in Mental Health Network (CIBERSAM), Health Institute Carlos III, Madrid, Spain.
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC, University of Seville, Seville, Spain.
| |
Collapse
|
13
|
Cheng TW, Mills KL, Pfeifer JH. Revisiting adolescence as a sensitive period for sociocultural processing. Neurosci Biobehav Rev 2024; 164:105820. [PMID: 39032845 PMCID: PMC11407824 DOI: 10.1016/j.neubiorev.2024.105820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Waves of research and public discourse have characterized adolescence as periods of developmental risk and opportunity. Underlying this discussion is the recognition that adolescence is a period of major biological and social transition when experience may have an outsized effect on development. This article updates and expands upon prior work suggesting that adolescence may be a sensitive period for sociocultural processing specifically. By integrating evidence from developmental psychology and neuroscience, we identify how trajectories of social and neurobiological development may relate to adolescents' ability to adapt to and learn from their social environments. However, we also highlight gaps in the literature, including challenges in attributing developmental change to adolescent experiences. We discuss the importance of better understanding variability in biology (e.g., pubertal development) and cultural environments, as well as distinguishing between sensitive periods and periods of heightened sensitivity. Finally, we look toward future directions and translational implications of this research.
Collapse
Affiliation(s)
- Theresa W Cheng
- Department of Psychology, University of Oregon, 1227 University of Oregon, Eugene, OR 97403-1227, USA; Department of Psychology, Harvard University, 33 Kirkland St., Cambridge, MA 02138, USA.
| | - Kathryn L Mills
- Department of Psychology, University of Oregon, 1227 University of Oregon, Eugene, OR 97403-1227, USA.
| | - Jennifer H Pfeifer
- Department of Psychology, University of Oregon, 1227 University of Oregon, Eugene, OR 97403-1227, USA.
| |
Collapse
|
14
|
Hoang N, Sardaripour N, Ramey GD, Schilling K, Liao E, Chen Y, Park JH, Bledsoe X, Landman BA, Gamazon ER, Benton ML, Capra JA, Rubinov M. Integration of estimated regional gene expression with neuroimaging and clinical phenotypes at biobank scale. PLoS Biol 2024; 22:e3002782. [PMID: 39269986 PMCID: PMC11424006 DOI: 10.1371/journal.pbio.3002782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/25/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
An understanding of human brain individuality requires the integration of data on brain organization across people and brain regions, molecular and systems scales, as well as healthy and clinical states. Here, we help advance this understanding by leveraging methods from computational genomics to integrate large-scale genomic, transcriptomic, neuroimaging, and electronic-health record data sets. We estimated genetically regulated gene expression (gr-expression) of 18,647 genes, across 10 cortical and subcortical regions of 45,549 people from the UK Biobank. First, we showed that patterns of estimated gr-expression reflect known genetic-ancestry relationships, regional identities, as well as inter-regional correlation structure of directly assayed gene expression. Second, we performed transcriptome-wide association studies (TWAS) to discover 1,065 associations between individual variation in gr-expression and gray-matter volumes across people and brain regions. We benchmarked these associations against results from genome-wide association studies (GWAS) of the same sample and found hundreds of novel associations relative to these GWAS. Third, we integrated our results with clinical associations of gr-expression from the Vanderbilt Biobank. This integration allowed us to link genes, via gr-expression, to neuroimaging and clinical phenotypes. Fourth, we identified associations of polygenic gr-expression with structural and functional MRI phenotypes in the Human Connectome Project (HCP), a small neuroimaging-genomic data set with high-quality functional imaging data. Finally, we showed that estimates of gr-expression and magnitudes of TWAS were generally replicable and that the p-values of TWAS were replicable in large samples. Collectively, our results provide a powerful new resource for integrating gr-expression with population genetics of brain organization and disease.
Collapse
Affiliation(s)
- Nhung Hoang
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Neda Sardaripour
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Grace D. Ramey
- Biological and Medical Informatics Division, University of California, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, United States of America
| | - Kurt Schilling
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Emily Liao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Yiting Chen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jee Hyun Park
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Xavier Bledsoe
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Bennett A. Landman
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric R. Gamazon
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mary Lauren Benton
- Department of Computer Science, Baylor University, Waco, Texas, United States of America
| | - John A. Capra
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California, United States of America
| | - Mikail Rubinov
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, Virginia, United States of America
| |
Collapse
|
15
|
Adams RA, Zor C, Mihalik A, Tsirlis K, Brudfors M, Chapman J, Ashburner J, Paulus MP, Mourão-Miranda J. Voxelwise Multivariate Analysis of Brain-Psychosocial Associations in Adolescents Reveals 6 Latent Dimensions of Cognition and Psychopathology. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:915-927. [PMID: 38588854 DOI: 10.1016/j.bpsc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Adolescence heralds the onset of considerable psychopathology, which may be conceptualized as an emergence of altered covariation between symptoms and brain measures. Multivariate methods can detect such modes of covariation or latent dimensions, but none specifically relating to psychopathology have yet been found using population-level structural brain data. Using voxelwise (instead of parcellated) brain data may strengthen latent dimensions' brain-psychosocial relationships, but this creates computational challenges. METHODS We obtained voxelwise gray matter density and psychosocial variables from the baseline (ages 9-10 years) Adolescent Brain Cognitive Development (ABCD) Study cohort (N = 11,288) and employed a state-of-the-art segmentation method, sparse partial least squares, and a rigorous machine learning framework to prevent overfitting. RESULTS We found 6 latent dimensions, 4 of which pertain specifically to mental health. The mental health dimensions were related to overeating, anorexia/internalizing, oppositional symptoms (all ps < .002) and attention-deficit/hyperactivity disorder symptoms (p = .03). Attention-deficit/hyperactivity disorder was related to increased and internalizing symptoms related to decreased gray matter density in dopaminergic and serotonergic midbrain areas, whereas oppositional symptoms were related to increased gray matter in a noradrenergic nucleus. Internalizing symptoms were related to increased and oppositional symptoms to reduced gray matter density in the insular, cingulate, and auditory cortices. Striatal regions featured strongly, with reduced caudate nucleus gray matter in attention-deficit/hyperactivity disorder and reduced putamen gray matter in oppositional/conduct problems. Voxelwise gray matter density generated stronger brain-psychosocial correlations than brain parcellations. CONCLUSIONS Voxelwise brain data strengthen latent dimensions of brain-psychosocial covariation, and sparse multivariate methods increase their psychopathological specificity. Internalizing and externalizing symptoms are associated with opposite gray matter changes in similar cortical and subcortical areas.
Collapse
Affiliation(s)
- Rick A Adams
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom.
| | - Cemre Zor
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Agoston Mihalik
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Konstantinos Tsirlis
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Mikael Brudfors
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - James Chapman
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | | | - Janaina Mourão-Miranda
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| |
Collapse
|
16
|
Kang X, Wang D, Lin J, Yao H, Zhao K, Song C, Chen P, Qu Y, Yang H, Zhang Z, Zhou B, Han T, Liao Z, Chen Y, Lu J, Yu C, Wang P, Zhang X, Li M, Zhang X, Jiang T, Zhou Y, Liu B, Han Y, Liu Y. Convergent Neuroimaging and Molecular Signatures in Mild Cognitive Impairment and Alzheimer's Disease: A Data-Driven Meta-Analysis with N = 3,118. Neurosci Bull 2024; 40:1274-1286. [PMID: 38824231 PMCID: PMC11365916 DOI: 10.1007/s12264-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/24/2023] [Indexed: 06/03/2024] Open
Abstract
The current study aimed to evaluate the susceptibility to regional brain atrophy and its biological mechanism in Alzheimer's disease (AD). We conducted data-driven meta-analyses to combine 3,118 structural magnetic resonance images from three datasets to obtain robust atrophy patterns. Then we introduced a set of radiogenomic analyses to investigate the biological basis of the atrophy patterns in AD. Our results showed that the hippocampus and amygdala exhibit the most severe atrophy, followed by the temporal, frontal, and occipital lobes in mild cognitive impairment (MCI) and AD. The extent of atrophy in MCI was less severe than that in AD. A series of biological processes related to the glutamate signaling pathway, cellular stress response, and synapse structure and function were investigated through gene set enrichment analysis. Our study contributes to understanding the manifestations of atrophy and a deeper understanding of the pathophysiological processes that contribute to atrophy, providing new insight for further clinical research on AD.
Collapse
Affiliation(s)
- Xiaopeng Kang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Ji'nan, 250063, China
| | - Jiaji Lin
- Department of Neurology, the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hongxiang Yao
- Department of Radiology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100191, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan, 250063, China
| | - Pindong Chen
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yida Qu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongwei Yang
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Zengqiang Zhang
- Branch of Chinese, PLA General Hospital, Sanya, 572013, China
| | - Bo Zhou
- Department of Neurology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, 300222, China
| | - Zhengluan Liao
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Yan Chen
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, 300222, China
| | - Xinqing Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xi Zhang
- Department of Neurology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tianzi Jiang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, 300222, China
| | - Bing Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- State Key Lab of Cognition Neuroscience & Learning, Beijing Normal University, Beijing, 100875, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China.
| | - Yong Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100191, China.
| |
Collapse
|
17
|
Li J, Jin S, Li Z, Zeng X, Yang Y, Luo Z, Xu X, Cui Z, Liu Y, Wang J. Morphological Brain Networks of White Matter: Mapping, Evaluation, Characterization, and Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400061. [PMID: 39005232 PMCID: PMC11425219 DOI: 10.1002/advs.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Although white matter (WM) accounts for nearly half of adult brain, its wiring diagram is largely unknown. Here, an approach is developed to construct WM networks by estimating interregional morphological similarity based on structural magnetic resonance imaging. It is found that morphological WM networks showed nontrivial topology, presented good-to-excellent test-retest reliability, accounted for phenotypic interindividual differences in cognition, and are under genetic control. Through integration with multimodal and multiscale data, it is further showed that morphological WM networks are able to predict the patterns of hamodynamic coherence, metabolic synchronization, gene co-expression, and chemoarchitectonic covariance, and associated with structural connectivity. Moreover, the prediction followed WM functional connectomic hierarchy for the hamodynamic coherence, is related to genes enriched in the forebrain neuron development and differentiation for the gene co-expression, and is associated with serotonergic system-related receptors and transporters for the chemoarchitectonic covariance. Finally, applying this approach to multiple sclerosis and neuromyelitis optica spectrum disorders, it is found that both diseases exhibited morphological dysconnectivity, which are correlated with clinical variables of patients and are able to diagnose and differentiate the diseases. Altogether, these findings indicate that morphological WM networks provide a reliable and biologically meaningful means to explore WM architecture in health and disease.
Collapse
Affiliation(s)
- Junle Li
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Suhui Jin
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Zhen Li
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Xiangli Zeng
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Yuping Yang
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Zhenzhen Luo
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Xiaoyu Xu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijing100875China
- Chinese Institute for Brain ResearchBeijing102206China
| | - Zaixu Cui
- Chinese Institute for Brain ResearchBeijing102206China
| | - Yaou Liu
- Department of RadiologyBeijing Tiantan HospitalBeijing100070China
| | - Jinhui Wang
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationGuangzhou510631China
- Center for Studies of Psychological ApplicationSouth China Normal UniversityGuangzhou510631China
- Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| |
Collapse
|
18
|
Ma X, Li J, Yang Y, Qiu X, Sheng J, Han N, Wu C, Xu G, Jiang G, Tian J, Weng X, Wang J. Enhanced cerebral blood flow similarity of the somatomotor network in chronic insomnia: Transcriptomic decoding, gut microbial signatures and phenotypic roles. Neuroimage 2024; 297:120762. [PMID: 39089603 DOI: 10.1016/j.neuroimage.2024.120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Chronic insomnia (CI) is a complex disease involving multiple factors including genetics, gut microbiota, and brain structure and function. However, there lacks a unified framework to elucidate how these factors interact in CI. By combining data of clinical assessment, sleep behavior recording, cognitive test, multimodal MRI (structural, functional, and perfusion), gene, and gut microbiota, this study demonstrated that enhanced cerebral blood flow (CBF) similarities of the somatomotor network (SMN) acted as a key mediator to link multiple factors in CI. Specifically, we first demonstrated that only CBF but not morphological or functional networks exhibited alterations in patients with CI, characterized by increases within the SMN and between the SMN and higher-order associative networks. Moreover, these findings were highly reproducible and the CBF similarity method was test-retest reliable. Further, we showed that transcriptional profiles explained 60.4 % variance of the pattern of the increased CBF similarities with the most correlated genes enriched in regulation of cellular and protein localization and material transport, and gut microbiota explained 69.7 % inter-individual variance in the increased CBF similarities with the most contributions from Negativicutes and Lactobacillales. Finally, we found that the increased CBF similarities were correlated with clinical variables, accounted for sleep behaviors and cognitive deficits, and contributed the most to the patient-control classification (accuracy = 84.4 %). Altogether, our findings have important implications for understanding the neuropathology of CI and may inform ways of developing new therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Xiaofen Ma
- Department of Nuclear Medicine, Jinan University Affiliated Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yuping Yang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xiaofan Qiu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jintao Sheng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Ningke Han
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Changwen Wu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Guang Xu
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guihua Jiang
- Department of Nuclear Medicine, Jinan University Affiliated Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junzhang Tian
- Department of Nuclear Medicine, Jinan University Affiliated Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
19
|
Paus T. Development and Maturation of the Human Brain, from Infancy to Adolescence. Curr Top Behav Neurosci 2024. [PMID: 39138744 DOI: 10.1007/7854_2024_514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
This chapter describes basic principles and key findings regarding the development and maturation of the human brain, the former referring to the pre-natal and early post-natal periods and the latter concerning childhood and adolescence. In both cases, we focus on brain structure as revealed in vivo with multi-modal magnetic resonance imaging (MRI). We begin with a few numbers about the human brain and its cellular composition and a brief overview of a number of MRI-based metrics used to characterize age-related variations in grey and white matter. We then proceed with synthesizing current knowledge about developmental and maturational changes in the cerebral cortex (its thickness, surface area, and intra-cortical myelination) and the underlying white matter (volume and structural properties). To facilitate biological interpretations of MRI-derived metrics, we introduce the concept of virtual histology. We conclude the chapter with a few notes about future directions in the study of factors shaping the human brain from conception onwards.
Collapse
Affiliation(s)
- Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire, University of Montréal, Montreal, QC, Canada.
| |
Collapse
|
20
|
Dorfschmidt L, Váša F, White SR, Romero-García R, Kitzbichler MG, Alexander-Bloch A, Cieslak M, Mehta K, Satterthwaite TD, Bethlehem RAI, Seidlitz J, Vértes PE, Bullmore ET. Human adolescent brain similarity development is different for paralimbic versus neocortical zones. Proc Natl Acad Sci U S A 2024; 121:e2314074121. [PMID: 39121162 PMCID: PMC11331068 DOI: 10.1073/pnas.2314074121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/03/2024] [Indexed: 08/11/2024] Open
Abstract
Adolescent development of human brain structural and functional networks is increasingly recognized as fundamental to emergence of typical and atypical adult cognitive and emotional proodal magnetic resonance imaging (MRI) data collected from N [Formula: see text] 300 healthy adolescents (51%; female; 14 to 26 y) each scanned repeatedly in an accelerated longitudinal design, to provide an analyzable dataset of 469 structural scans and 448 functional MRI scans. We estimated the morphometric similarity between each possible pair of 358 cortical areas on a feature vector comprising six macro- and microstructural MRI metrics, resulting in a morphometric similarity network (MSN) for each scan. Over the course of adolescence, we found that morphometric similarity increased in paralimbic cortical areas, e.g., insula and cingulate cortex, but generally decreased in neocortical areas, and these results were replicated in an independent developmental MRI cohort (N [Formula: see text] 304). Increasing hubness of paralimbic nodes in MSNs was associated with increased strength of coupling between their morphometric similarity and functional connectivity. Decreasing hubness of neocortical nodes in MSNs was associated with reduced strength of structure-function coupling and increasingly diverse functional connections in the corresponding fMRI networks. Neocortical areas became more structurally differentiated and more functionally integrative in a metabolically expensive process linked to cortical thinning and myelination, whereas paralimbic areas specialized for affective and interoceptive functions became less differentiated, as hypothetically predicted by a developmental transition from periallocortical to proisocortical organization of the cortex. Cytoarchitectonically distinct zones of the human cortex undergo distinct neurodevelopmental programs during typical adolescence.
Collapse
Affiliation(s)
- Lena Dorfschmidt
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA19139
| | - František Váša
- Department of Neuroimaging, King’s College London, LondonSE5 8AF, United Kingdom
| | - Simon R. White
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
| | - Rafael Romero-García
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
- Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocio/Consejo Superior de Investigaciones Científicas Universidad de Sevilla, Centro de Investigación Biomédica En Red Salud Mental, Instituto de Salud Carlos, Dpto. de Fisiología Médica y Biofísica, Sevilla41013, Spain
| | - Manfred G. Kitzbichler
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
- Department of Clinical Neurosciences and Cambridge University Hospitals National Health Service Trust, University of Cambridge, CambridgeCB2 2PY, United Kingdom
| | - Aaron Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA19139
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children’s Hospital of Philadelphia, Philadelphia, PA19139
| | - Matthew Cieslak
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA19139
- Penn Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Kahini Mehta
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA19139
- Penn Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Theodore D. Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA19139
- Penn Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | | | - Richard A. I. Bethlehem
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
- Department of Psychology, University of Cambridge, CambridgeCB2 3EB, United Kingdom
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA19139
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children’s Hospital of Philadelphia, Philadelphia, PA19139
| | - Petra E. Vértes
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
| | - Edward T. Bullmore
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
| |
Collapse
|
21
|
Stroh AL, Radziun D, Korczyk M, Crucianelli L, Ehrsson HH, Szwed M. Blind individuals' enhanced ability to sense their own heartbeat is related to the thickness of their occipital cortex. Cereb Cortex 2024; 34:bhae324. [PMID: 39152673 PMCID: PMC11329624 DOI: 10.1093/cercor/bhae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/19/2024] Open
Abstract
Blindness is associated with heightened sensory abilities, such as improved hearing and tactile acuity. Moreover, recent evidence suggests that blind individuals are better than sighted individuals at perceiving their own heartbeat, suggesting enhanced interoceptive accuracy. Structural changes in the occipital cortex have been hypothesized as the basis of these behavioral enhancements. Indeed, several studies have shown that congenitally blind individuals have increased cortical thickness within occipital areas compared to sighted individuals, but how these structural differences relate to behavioral enhancements is unclear. This study investigated the relationship between cardiac interoceptive accuracy and cortical thickness in 23 congenitally blind individuals and 23 matched sighted controls. Our results show a significant positive correlation between performance in a heartbeat counting task and cortical thickness only in the blind group, indicating a connection between structural changes in occipital areas and blind individuals' enhanced ability to perceive heartbeats.
Collapse
Affiliation(s)
- Anna-Lena Stroh
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| | - Dominika Radziun
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands
| | - Maksymilian Korczyk
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| | - Laura Crucianelli
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
- Department of Biological and Experimental Psychology, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| |
Collapse
|
22
|
Qu J, Qu Y, Zhu R, Wu Y, Xu G, Wang D. Transcriptional expression patterns of the cortical morphometric similarity network in progressive supranuclear palsy. CNS Neurosci Ther 2024; 30:e14901. [PMID: 39097922 PMCID: PMC11298202 DOI: 10.1111/cns.14901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND It has been demonstrated that progressive supranuclear palsy (PSP) correlates with structural abnormalities in several distinct regions of the brain. However, whether there are changes in the morphological similarity network (MSN) and the relationship between changes in brain structure and gene expression remain largely unknown. METHODS We used two independent cohorts (discovery dataset: PSP: 51, healthy controls (HC): 82; replication dataset: PSP: 53, HC: 55) for MSN analysis and comparing the longitudinal changes in the MSN of PSP. Then, we applied partial least squares regression to determine the relationships between changes in MSN and spatial transcriptional features and identified specific genes associated with MSN differences in PSP. We further investigated the biological processes enriched in PSP-associated genes and the cellular characteristics of these genes, and finally, we performed an exploratory analysis of the relationship between MSN changes and neurotransmitter receptors. RESULTS We found that the MSN in PSP patients was mainly decreased in the frontal and temporal cortex but increased in the occipital cortical region. This difference is replicable. In longitudinal studies, MSN differences are mainly manifested in the frontal and parietal regions. Furthermore, the expression pattern associated with MSN changes in PSP involves genes implicated in astrocytes and excitatory and inhibitory neurons and is functionally enriched in neuron-specific biological processes related to synaptic signaling. Finally, we found that the changes in MSN were mainly negatively correlated with the levels of serotonin, norepinephrine, and opioid receptors. CONCLUSIONS These results have enhanced our understanding of the microscale genetic and cellular mechanisms responsible for large-scale morphological abnormalities in PSP patients, suggesting potential targets for future therapeutic trials.
Collapse
Affiliation(s)
- Junyu Qu
- Department of RadiologyQilu Hospital of Shandong University, Qilu Medical Imaging Institute of Shandong UniversityJinanChina
| | - Yancai Qu
- Department of NeurosurgeryTraditional Chinese Medicine Hospital of Muping DistrictYantaiChina
| | - Rui Zhu
- Department of RadiologyQilu Hospital of Shandong University, Qilu Medical Imaging Institute of Shandong UniversityJinanChina
| | - Yongsheng Wu
- Department of RadiologyQilu Hospital of Shandong University, Qilu Medical Imaging Institute of Shandong UniversityJinanChina
| | - Guihua Xu
- Department of RadiologyQilu Hospital of Shandong University, Qilu Medical Imaging Institute of Shandong UniversityJinanChina
| | - Dawei Wang
- Department of RadiologyQilu Hospital of Shandong University, Qilu Medical Imaging Institute of Shandong UniversityJinanChina
- Magnetic Field‐free Medicine & Functional ImagingResearch Institute of Shandong UniversityJinanChina
- Magnetic Field‐free Medicine & Functional Imaging (MF)Shandong Key LaboratoryJinanChina
| |
Collapse
|
23
|
Genc S, Ball G, Chamberland M, Raven EP, Tax CM, Ward I, Yang JYM, Palombo M, Jones DK. MRI signatures of cortical microstructure in human development align with oligodendrocyte cell-type expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605934. [PMID: 39131383 PMCID: PMC11312524 DOI: 10.1101/2024.07.30.605934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Neuroanatomical changes to the cortex during adolescence have been well documented using MRI, revealing ongoing cortical thinning and volume loss with age. However, the underlying cellular mechanisms remain elusive with conventional neuroimaging. Recent advances in MRI hardware and new biophysical models of tissue informed by diffusion MRI data hold promise for identifying the cellular changes driving these morphological observations. This study used ultra-strong gradient MRI to obtain high-resolution, in vivo estimates of cortical neurite and soma microstructure in sample of typically developing children and adolescents. Cortical neurite signal fraction, attributed to neuronal and glial processes, increased with age (mean R2 fneurite=.53, p<3.3e-11, 11.91% increase over age), while apparent soma radius decreased (mean R2 Rsoma=.48, p<4.4e-10, 1% decrease over age) across domain-specific networks. To complement these findings, developmental patterns of cortical gene expression in two independent post-mortem databases were analysed. This revealed increased expression of genes expressed in oligodendrocytes, and excitatory neurons, alongside a relative decrease in expression of genes expressed in astrocyte, microglia and endothelial cell-types. Age-related genes were significantly enriched in cortical oligodendrocytes, oligodendrocyte progenitors and Layer 5-6 neurons (pFDR<.001) and prominently expressed in adolescence and young adulthood. The spatial and temporal alignment of oligodendrocyte cell-type gene expression with neurite and soma microstructural changes suggest that ongoing cortical myelination processes contribute to adolescent cortical development. These findings highlight the role of intra-cortical myelination in cortical maturation during adolescence and into adulthood.
Collapse
Affiliation(s)
- Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Gareth Ball
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, The Netherlands
| | - Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, USA
| | - Chantal Mw Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Isobel Ward
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Data and Analysis for Social Care and Health, Office for National Statistics, Newport, United Kingdom
| | - Joseph Yuan-Mou Yang
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
24
|
Hettwer MD, Dorfschmidt L, Puhlmann LMC, Jacob LM, Paquola C, Bethlehem RAI, Bullmore ET, Eickhoff SB, Valk SL. Longitudinal variation in resilient psychosocial functioning is associated with ongoing cortical myelination and functional reorganization during adolescence. Nat Commun 2024; 15:6283. [PMID: 39075054 PMCID: PMC11286871 DOI: 10.1038/s41467-024-50292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Adolescence is a period of dynamic brain remodeling and susceptibility to psychiatric risk factors, mediated by the protracted consolidation of association cortices. Here, we investigated whether longitudinal variation in adolescents' resilience to psychosocial stressors during this vulnerable period is associated with ongoing myeloarchitectural maturation and consolidation of functional networks. We used repeated myelin-sensitive Magnetic Transfer (MT) and resting-state functional neuroimaging (n = 141), and captured adversity exposure by adverse life events, dysfunctional family settings, and socio-economic status at two timepoints, one to two years apart. Development toward more resilient psychosocial functioning was associated with increasing myelination in the anterolateral prefrontal cortex, which showed stabilized functional connectivity. Studying depth-specific intracortical MT profiles and the cortex-wide synchronization of myeloarchitectural maturation, we further observed wide-spread myeloarchitectural reconfiguration of association cortices paralleled by attenuated functional reorganization with increasingly resilient outcomes. Together, resilient/susceptible psychosocial functioning showed considerable intra-individual change associated with multi-modal cortical refinement processes at the local and system-level.
Collapse
Affiliation(s)
- Meike D Hettwer
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Lena Dorfschmidt
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lara M C Puhlmann
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Linda M Jacob
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Casey Paquola
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
| | | | | | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Max Planck School of Cognition, Leipzig, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
25
|
Shen T, Vogel JW, Van Deerlin VM, Suh E, Dratch L, Phillips JS, Massimo L, Lee EB, Irwin DJ, McMillan CT. Disparate and shared transcriptomic signatures associated with cortical atrophy in genetic bvFTD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.25.24310894. [PMID: 39211858 PMCID: PMC11361203 DOI: 10.1101/2024.07.25.24310894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cortical atrophy in behavioral variant frontotemporal degeneration (bvFTD) exhibits spatial heterogeneity across genetic subgroups, potentially driven by distinct biological mechanisms. Using an integrative imaging-transcriptomics approach, we identified disparate and shared transcriptomic signatures associated with cortical thickness in C9orf72 , GRN or MAPT -related bvFTD. Genes associated with cortical thinning in GRN -bvFTD were implicated in neurotransmission, further supported by mapping synaptic density maps to cortical thickness maps. Previously identified genes linked to TDP-43 positive neurons were significantly overlapped with genes associated with C9orf72 -bvFTD and GRN -bvFTD, but not MAPT -bvFTD providing specificity for our associations. C9orf72 -bvFTD and GRN -bvFTD shared genes displaying consistent directionality of correlations with cortical thickness, while MAPT -bvFTD displayed more pronounced differences in transcriptomic signatures with opposing directionality. Overall, we identified disparate and shared genes tied to regional vulnerability with increased biological interpretation including overlap with synaptic density maps and pathologically-specific gene expression, illuminating intricate molecular underpinnings contributing to heterogeneities in bvFTD.
Collapse
|
26
|
Yu L, Peng W, Lin W, Luo Y, Hu D, Zhao G, Xu H, Dou Z, Zhang Q, Hong X, Yu S. Electroencephalography connectome changes in chronic insomnia disorder are correlated with neurochemical signatures. Sleep 2024; 47:zsae080. [PMID: 38520362 DOI: 10.1093/sleep/zsae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
STUDY OBJECTIVES This study aimed to investigate the alterations in resting-state electroencephalography (EEG) global brain connectivity (GBC) in patients with chronic insomnia disorder (CID) and to explore the correlation between macroscale connectomic variances and microscale neurotransmitter distributions. METHODS We acquired 64-channel EEG from 35 female CID patients and 34 healthy females. EEG signals were source-localized using individual brain anatomy and orthogonalized to mitigate volume conduction. Correlation coefficients between band-limited source-space power envelopes of the DK 68 atlas were computed and averaged across regions to determine specific GBC values. A support vector machine (SVM) classifier utilizing GBC features was employed to differentiate CID patients from controls. We further used Neurosynth and a 3D atlas of neurotransmitter receptors/transporters to assess the cognitive functions and neurotransmitter landscape associated with CID cortical abnormality maps, respectively. RESULTS CID patients exhibited elevated GBC within the medial prefrontal cortex and limbic cortex, particularly at the gamma carrier frequency, compared to controls (pFDR < .05). GBC patterns were found to effectively distinguish CID patients from controls with a precision of 90.8% in the SVM model. The cortical abnormality maps were significantly correlated with meta-analytic terms like "cognitive control" and "emotion regulation." Notably, GBC patterns were associated with neurotransmitter profiles (pspin < .05), with neurotransmitter systems such as norepinephrine, dopamine, and serotonin making significant contributions. CONCLUSIONS This work characterizes the EEG connectomic profile of CID, facilitating the cost-effective clinical translation of EEG-derived markers. Additionally, the linkage between GBC patterns and neurotransmitter distribution offers promising avenues for developing targeted treatment strategies for CID.
Collapse
Affiliation(s)
- Liyong Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Wenting Lin
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yucai Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daijie Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangli Zhao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Xu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zeyang Dou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Zhang
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiaojuan Hong
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Jørgensen KN, Nerland S, Slapø NB, Norbom LB, Mørch-Johnsen L, Wortinger LA, Barth C, Andreou D, Maximov II, Geier OM, Andreassen OA, Jönsson EG, Agartz I. Assessing regional intracortical myelination in schizophrenia spectrum and bipolar disorders using the optimized T1w/T2w-ratio. Psychol Med 2024; 54:2369-2379. [PMID: 38563302 DOI: 10.1017/s0033291724000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Dysmyelination could be part of the pathophysiology of schizophrenia spectrum (SCZ) and bipolar disorders (BPD), yet few studies have examined myelination of the cerebral cortex. The ratio of T1- and T2-weighted magnetic resonance images (MRI) correlates with intracortical myelin. We investigated the T1w/T2w-ratio and its age trajectories in patients and healthy controls (CTR) and explored associations with antipsychotic medication use and psychotic symptoms. METHODS Patients with SCZ (n = 64; mean age = 30.4 years, s.d. = 9.8), BPD (n = 91; mean age 31.0 years, s.d. = 10.2), and CTR (n = 155; mean age = 31.9 years, s.d. = 9.1) who participated in the TOP study (NORMENT, University of Oslo, Norway) were clinically assessed and scanned using a General Electric 3 T MRI system. T1w/T2w-ratio images were computed using an optimized pipeline with intensity normalization and field inhomogeneity correction. Vertex-wise regression models were used to compare groups and examine group × age interactions. In regions showing significant differences, we explored associations with antipsychotic medication use and psychotic symptoms. RESULTS No main effect of diagnosis was found. However, age slopes of the T1w/T2w-ratio differed significantly between SCZ and CTR, predominantly in frontal and temporal lobe regions: Lower T1w/T2w-ratio values with higher age were found in CTR, but not in SCZ. Follow-up analyses revealed a more positive age slope in patients who were using antipsychotics and patients using higher chlorpromazine-equivalent doses. CONCLUSIONS While we found no evidence of reduced intracortical myelin in SCZ or BPD relative to CTR, different regional age trajectories in SCZ may suggest a promyelinating effect of antipsychotic medication.
Collapse
Affiliation(s)
- Kjetil Nordbø Jørgensen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Stener Nerland
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Nora Berz Slapø
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn B Norbom
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - Lynn Mørch-Johnsen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry & Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | - Laura Anne Wortinger
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Claudia Barth
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dimitrios Andreou
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ivan I Maximov
- Department of Psychology, University of Oslo, Oslo, Norway
- The Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Oliver M Geier
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- The Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Erik G Jönsson
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ingrid Agartz
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
28
|
Wang Y, Yang J, Zhang H, Dong D, Yu D, Yuan K, Lei X. Altered morphometric similarity networks in insomnia disorder. Brain Struct Funct 2024; 229:1433-1445. [PMID: 38801538 DOI: 10.1007/s00429-024-02809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Previous studies on structural covariance network (SCN) suggested that patients with insomnia disorder (ID) show abnormal structural connectivity, primarily affecting the somatomotor network (SMN) and default mode network (DMN). However, evaluating a single structural index in SCN can only reveal direct covariance relationship between two brain regions, failing to uncover synergistic changes in multiple structural features. To cover this research gap, the present study utilized novel morphometric similarity networks (MSN) to examine the morphometric similarity between cortical areas in terms of multiple sMRI parameters measured at each area. With seven T1-weighted imaging morphometric features from the Desikan-Killiany atlas, individual MSN was constructed for patients with ID (N = 87) and healthy control groups (HCs, N = 84). Two-sample t-test revealed differences in MSN between patients with ID and HCs. Correlation analyses examined associations between MSNs and sleep quality, insomnia symptom severity, and depressive symptoms severity in patients with ID. The right paracentral lobule (PCL) exhibited decreased morphometric similarity in patients with ID compared to HCs, mainly manifested by its de-differentiation (meaning loss of distinctiveness) with the SMN, DMN, and ventral attention network (VAN), as well as its decoupling with the visual network (VN). Greater PCL-based de-differentiation correlated with less severe insomnia and fewer depressive symptoms in the patients group. Additionally, patients with less depressive symptoms showed greater PCL de-differentiation from the SMN. As an important pilot step in revealing the underlying morphometric similarity alterations in insomnia disorder, the present study identified the right PCL as a hub region that is de-differentiated with other high-order networks. Our study also revealed that MSN has an important potential to capture clinical significance related to insomnia disorder.
Collapse
Affiliation(s)
- Yulin Wang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China.
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China.
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
| | - Jingqi Yang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Haobo Zhang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Dahua Yu
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shanxi, 710126, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China.
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
29
|
Li J, Wang D, Xia J, Zhang C, Meng Y, Xu S, Chen H, Liao W. Divergent suicidal symptomatic activations converge on somato-cognitive action network in depression. Mol Psychiatry 2024; 29:1980-1989. [PMID: 38351174 PMCID: PMC11408245 DOI: 10.1038/s41380-024-02450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Individuals with depression have the highest lifetime prevalence of suicide attempts (SA) among mental illnesses. Numerous neuroimaging studies have developed biomarkers from task-related neural activation in depressive patients with SA, but the findings are inconsistent. Empowered by the contemporary interconnected view of depression as a neural system disorder, we sought to identify a specific brain circuit utilizing published heterogeneous neural activations. We systematically reviewed all published cognitive and emotional task-related functional MRI studies that investigated differences in the location of neural activations between depressive patients with and without SA. We subsequently mapped an underlying brain circuit functionally connecting to each experimental activation using a large normative connectome database (n = 1000). The identified SA-related functional network was compared to the network derived from the disease control group. Finally, we decoded this convergent functional connectivity network using microscale transcriptomic and chemo-architectures, and macroscale psychological processes. We enrolled 11 experimental tasks from eight studies, including depressive patients with SA (n = 147) and without SA (n = 196). The heterogeneous SA-related neural activations localized to the somato-cognitive action network (SCAN), exhibiting robustness to little perturbations and specificity for depression. Furthermore, the SA-related functional network was colocalized with brain-wide gene expression involved in inflammatory and immunity-related biological processes and aligned with the distribution of the GABA and noradrenaline neurotransmitter systems. The findings demonstrate that the SA-related functional network of depression is predominantly located at the SCAN, which is an essential implication for understanding depressive patients with SA.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| | - Dajing Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Jie Xia
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Chao Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Shuo Xu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| |
Collapse
|
30
|
Feng G, Wang Y, Huang W, Chen H, Cheng J, Shu N. Spatial and temporal pattern of structure-function coupling of human brain connectome with development. eLife 2024; 13:RP93325. [PMID: 38900563 PMCID: PMC11189631 DOI: 10.7554/elife.93325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7-21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC-FC coupling. Our findings revealed that SC-FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC-FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC-FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC-FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC-FC coupling in typical development.
Collapse
Affiliation(s)
- Guozheng Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Yiwen Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Haojie Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Jian Cheng
- School of Computer Science and Engineering, Beihang UniversityBeijingChina
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| |
Collapse
|
31
|
Joo SW, Jo YT, Choi W, Kim SM, Yoo SY, Joe S, Lee J. Topological abnormalities of the morphometric similarity network of the cerebral cortex in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:57. [PMID: 38886369 PMCID: PMC11183129 DOI: 10.1038/s41537-024-00477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
A morphometric similarity (MS) network can be constructed using multiple magnetic resonance imaging parameters of each cortical region. An MS network can be used to assess the similarity between cortical regions. Although MS networks can detect microstructural alterations and capture connections between histologically similar cortical areas, the influence of schizophrenia on the topological characteristics of MS networks remains unclear. We obtained T1- and diffusion-weighted images of 239 healthy controls and 190 individuals with schizophrenia to construct the MS network. Group comparisons of the mean MS of the cortical regions and subnetworks were performed. The strengths of the connections between the cortical regions and the global and nodal network indices were compared between the groups. Clinical associations with the network indices were tested using Spearman's rho. Compared with healthy controls, individuals with schizophrenia had significant group differences in the mean MS of several cortical regions and subnetworks. Individuals with schizophrenia had both superior and inferior strengths of connections between cortical regions compared with those of healthy controls. We observed regional abnormalities of the MS network in individuals with schizophrenia regarding lower centrality values of the pars opercularis, superior frontal, and superior temporal areas. Specific nodal network measures of the right pars opercularis and left superior temporal areas were associated with illness duration in individuals with schizophrenia. We identified regional abnormalities of the MS network in schizophrenia with the left superior temporal area possibly being a key region in topological organization and cortical connections.
Collapse
Affiliation(s)
- Sung Woo Joo
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Tak Jo
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Woohyeok Choi
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Min Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - So Young Yoo
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soohyun Joe
- Brain Laboratory, Department of Psychiatry, University of California San Diego, School of Medicine, San Diego, California, USA
| | - Jungsun Lee
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Ganglberger F, Kargl D, Töpfer M, Hernandez-Lallement J, Lawless N, Fernandez-Albert F, Haubensak W, Bühler K. BrainTACO: an explorable multi-scale multi-modal brain transcriptomic and connectivity data resource. Commun Biol 2024; 7:730. [PMID: 38877144 PMCID: PMC11178817 DOI: 10.1038/s42003-024-06355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/20/2024] [Indexed: 06/16/2024] Open
Abstract
Exploring the relationships between genes and brain circuitry can be accelerated by joint analysis of heterogeneous datasets from 3D imaging data, anatomical data, as well as brain networks at varying scales, resolutions, and modalities. Generating an integrated view, beyond the individual resources' original purpose, requires the fusion of these data to a common space, and a visualization that bridges the gap across scales. However, despite ever expanding datasets, few platforms for integration and exploration of this heterogeneous data exist. To this end, we present the BrainTACO (Brain Transcriptomic And Connectivity Data) resource, a selection of heterogeneous, and multi-scale neurobiological data spatially mapped onto a common, hierarchical reference space, combined via a holistic data integration scheme. To access BrainTACO, we extended BrainTrawler, a web-based visual analytics framework for spatial neurobiological data, with comparative visualizations of multiple resources. This enables gene expression dissection of brain networks with, to the best of our knowledge, an unprecedented coverage and allows for the identification of potential genetic drivers of connectivity in both mice and humans that may contribute to the discovery of dysconnectivity phenotypes. Hence, BrainTACO reduces the need for time-consuming manual data aggregation often required for computational analyses in script-based toolboxes, and supports neuroscientists by directly leveraging the data instead of preparing it.
Collapse
Affiliation(s)
- Florian Ganglberger
- Biomedical Image Informatics, VRVis Research Center, Vienna, Austria
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Dominic Kargl
- Department of Neuronal Cell Biology, Vienna Medical University, Vienna, Austria
| | - Markus Töpfer
- Biomedical Image Informatics, VRVis Research Center, Vienna, Austria
| | - Julien Hernandez-Lallement
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Nathan Lawless
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Francesc Fernandez-Albert
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Wulf Haubensak
- Department of Neuronal Cell Biology, Vienna Medical University, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Katja Bühler
- Biomedical Image Informatics, VRVis Research Center, Vienna, Austria.
| |
Collapse
|
33
|
Xiao H, Tang D, Zheng C, Yang Z, Zhao W, Guo S. Atypical dynamic network reconfiguration and genetic mechanisms in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110957. [PMID: 38365102 DOI: 10.1016/j.pnpbp.2024.110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Brain dynamics underlie complex forms of flexible cognition or the ability to shift between different mental modes. However, the precise dynamic reconfiguration based on multi-layer network analysis and the genetic mechanisms of major depressive disorder (MDD) remains unclear. METHODS Resting-state functional magnetic resonance imaging (fMRI) data were acquired from the REST-meta-MDD consortium, including 555 patients with MDD and 536 healthy controls (HC). A time-varying multi-layer network was constructed, and dynamic modular characteristics were used to investigate the network reconfiguration. Additionally, partial least squares regression analysis was performed using transcriptional data provided by the Allen Human Brain Atlas (AHBA) to identify genes associated with atypical dynamic network reconfiguration in MDD. RESULTS In comparison to HC, patients with MDD exhibited lower global and local recruitment coefficients. The local reduction was particularly evident in the salience and subcortical networks. Spatial transcriptome correlation analysis revealed an association between gene expression profiles and atypical dynamic network reconfiguration observed in MDD. Further functional enrichment analyses indicated that positively weighted reconfiguration-related genes were primarily associated with metabolic and biosynthetic pathways. Additionally, negatively enriched genes were predominantly related to programmed cell death-related terms. CONCLUSIONS Our findings offer robust evidence of the atypical dynamic reconfiguration in patients with MDD from a novel perspective. These results offer valuable insights for further exploration into the mechanisms underlying MDD.
Collapse
Affiliation(s)
- Hairong Xiao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China
| | - Dier Tang
- School of Mathematics, Jilin University, Changchun 130015, China
| | - Chuchu Zheng
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China
| | - Zeyu Yang
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China
| | - Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China.
| |
Collapse
|
34
|
Dear R, Wagstyl K, Seidlitz J, Markello RD, Arnatkevičiūtė A, Anderson KM, Bethlehem RAI, Raznahan A, Bullmore ET, Vértes PE. Cortical gene expression architecture links healthy neurodevelopment to the imaging, transcriptomics and genetics of autism and schizophrenia. Nat Neurosci 2024; 27:1075-1086. [PMID: 38649755 PMCID: PMC11156586 DOI: 10.1038/s41593-024-01624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Human brain organization involves the coordinated expression of thousands of genes. For example, the first principal component (C1) of cortical transcription identifies a hierarchy from sensorimotor to association regions. In this study, optimized processing of the Allen Human Brain Atlas revealed two new components of cortical gene expression architecture, C2 and C3, which are distinctively enriched for neuronal, metabolic and immune processes, specific cell types and cytoarchitectonics, and genetic variants associated with intelligence. Using additional datasets (PsychENCODE, Allen Cell Atlas and BrainSpan), we found that C1-C3 represent generalizable transcriptional programs that are coordinated within cells and differentially phased during fetal and postnatal development. Autism spectrum disorder and schizophrenia were specifically associated with C1/C2 and C3, respectively, across neuroimaging, differential expression and genome-wide association studies. Evidence converged especially in support of C3 as a normative transcriptional program for adolescent brain development, which can lead to atypical supragranular cortical connectivity in people at high genetic risk for schizophrenia.
Collapse
Affiliation(s)
- Richard Dear
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
| | | | - Jakob Seidlitz
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross D Markello
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Aurina Arnatkevičiūtė
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | | | | | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
| | | | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Liu J, Supekar K, El-Said D, de los Angeles C, Zhang Y, Chang H, Menon V. Neuroanatomical, transcriptomic, and molecular correlates of math ability and their prognostic value for predicting learning outcomes. SCIENCE ADVANCES 2024; 10:eadk7220. [PMID: 38820151 PMCID: PMC11141625 DOI: 10.1126/sciadv.adk7220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Foundational mathematical abilities, acquired in early childhood, are essential for success in our technology-driven society. Yet, the neurobiological mechanisms underlying individual differences in children's mathematical abilities and learning outcomes remain largely unexplored. Leveraging one of the largest multicohort datasets from children at a pivotal stage of knowledge acquisition, we first establish a replicable mathematical ability-related imaging phenotype (MAIP). We then show that brain gene expression profiles enriched for candidate math ability-related genes, neuronal signaling, synaptic transmission, and voltage-gated potassium channel activity contributed to the MAIP. Furthermore, the similarity between MAIP gene expression signatures and brain structure, acquired before intervention, predicted learning outcomes in two independent math tutoring cohorts. These findings advance our knowledge of the interplay between neuroanatomical, transcriptomic, and molecular mechanisms underlying mathematical ability and reveal predictive biomarkers of learning. Our findings have implications for the development of personalized education and interventions.
Collapse
Affiliation(s)
- Jin Liu
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dawlat El-Said
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carlo de los Angeles
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hyesang Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Morys F, Tremblay C, Rahayel S, Hansen JY, Dai A, Misic B, Dagher A. Neural correlates of obesity across the lifespan. Commun Biol 2024; 7:656. [PMID: 38806652 PMCID: PMC11133431 DOI: 10.1038/s42003-024-06361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Associations between brain and obesity are bidirectional: changes in brain structure and function underpin over-eating, while chronic adiposity leads to brain atrophy. Investigating brain-obesity interactions across the lifespan can help better understand these relationships. This study explores the interaction between obesity and cortical morphometry in children, young adults, adults, and older adults. We also investigate the genetic, neurochemical, and cognitive correlates of the brain-obesity associations. Our findings reveal a pattern of lower cortical thickness in fronto-temporal brain regions associated with obesity across all age cohorts and varying age-dependent patterns in the remaining brain regions. In adults and older adults, obesity correlates with neurochemical changes and expression of inflammatory and mitochondrial genes. In children and older adults, adiposity is associated with modifications in brain regions involved in emotional and attentional processes. Thus, obesity might originate from cognitive changes during early adolescence, leading to neurodegeneration in later life through mitochondrial and inflammatory mechanisms.
Collapse
Affiliation(s)
- Filip Morys
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada.
| | - Christina Tremblay
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada
| | - Shady Rahayel
- Department of Medicine and Medical Specialties, University of Montreal, Montreal, QC, Canada
- Center for Advanced Research in Sleep Medicine, Hopital du Sacre-Coeur de Montreal, Montreal, QC, Canada
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada
| | - Alyssa Dai
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada
| |
Collapse
|
37
|
Taubert M, Ziegler G, Lehmann N. Higher surface folding of the human premotor cortex is associated with better long-term learning capability. Commun Biol 2024; 7:635. [PMID: 38796622 PMCID: PMC11127997 DOI: 10.1038/s42003-024-06309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/08/2024] [Indexed: 05/28/2024] Open
Abstract
The capacity to learn enabled the human species to adapt to various challenging environmental conditions and pass important achievements on to the next generation. A growing body of research suggests links between neocortical folding properties and numerous aspects of human behavior, but their impact on enhanced human learning capacity remains unexplored. Here we leverage three training cohorts to demonstrate that higher levels of premotor cortical folding reliably predict individual long-term learning gains in a challenging new motor task, above and beyond initial performance differences. Individual folding-related predisposition to motor learning was found to be independent of cortical thickness and intracortical microstructure, but dependent on larger cortical surface area in premotor regions. We further show that learning-relevant features of cortical folding occurred in close spatial proximity to practice-induced structural brain plasticity. Our results suggest a link between neocortical surface folding and human behavioral adaptability.
Collapse
Affiliation(s)
- Marco Taubert
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Gabriel Ziegler
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Nico Lehmann
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| |
Collapse
|
38
|
Gao J, Qian M, Wang Z, Li Y, Luo N, Xie S, Shi W, Li P, Chen J, Chen Y, Wang H, Liu W, Li Z, Yang Y, Guo H, Wan P, Lv L, Lu L, Yan J, Song Y, Wang H, Zhang H, Wu H, Ning Y, Du Y, Cheng Y, Xu J, Xu X, Zhang D, Jiang T. Exploring Schizophrenia Classification Through Multimodal MRI and Deep Graph Neural Networks: Unveiling Brain Region-Specific Weight Discrepancies and Their Association With Cell-Type Specific Transcriptomic Features. Schizophr Bull 2024:sbae069. [PMID: 38754993 DOI: 10.1093/schbul/sbae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) is a prevalent mental disorder that imposes significant health burdens. Diagnostic accuracy remains challenging due to clinical subjectivity. To address this issue, we explore magnetic resonance imaging (MRI) as a tool to enhance SZ diagnosis and provide objective references and biomarkers. Using deep learning with graph convolution, we represent MRI data as graphs, aligning with brain structure, and improving feature extraction, and classification. Integration of multiple modalities is expected to enhance classification. STUDY DESIGN Our study enrolled 683 SZ patients and 606 healthy controls from 7 hospitals, collecting structural MRI and functional MRI data. Both data types were represented as graphs, processed by 2 graph attention networks, and fused for classification. Grad-CAM with graph convolution ensured interpretability, and partial least squares analyzed gene expression in brain regions. STUDY RESULTS Our method excelled in the classification task, achieving 83.32% accuracy, 83.41% sensitivity, and 83.20% specificity in 10-fold cross-validation, surpassing traditional methods. And our multimodal approach outperformed unimodal methods. Grad-CAM identified potential brain biomarkers consistent with gene analysis and prior research. CONCLUSIONS Our study demonstrates the effectiveness of deep learning with graph attention networks, surpassing previous SZ diagnostic methods. Multimodal MRI's superiority over unimodal MRI confirms our initial hypothesis. Identifying potential brain biomarkers alongside gene biomarkers holds promise for advancing objective SZ diagnosis and research in SZ.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Maomin Qian
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanling Li
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China
| | - Na Luo
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Weiyang Shi
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Peng Li
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenming Liu
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhigang Li
- Zhumadian Psychiatric Hospital, Zhumadian, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Hua Guo
- Zhumadian Psychiatric Hospital, Zhumadian, China
| | - Ping Wan
- Zhumadian Psychiatric Hospital, Zhumadian, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jun Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yuqing Song
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Tianzai Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou, China
| |
Collapse
|
39
|
Park Y, Lee MJ, Yoo S, Kim CY, Namgung JY, Park Y, Park H, Lee EC, Yoon YD, Paquola C, Bernhardt BC, Park BY. GAN-MAT: Generative adversarial network-based microstructural profile covariance analysis toolbox. Neuroimage 2024; 291:120595. [PMID: 38554782 DOI: 10.1016/j.neuroimage.2024.120595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Multimodal magnetic resonance imaging (MRI) provides complementary information for investigating brain structure and function; for example, an in vivo microstructure-sensitive proxy can be estimated using the ratio between T1- and T2-weighted structural MRI. However, acquiring multiple imaging modalities is challenging in patients with inattentive disorders. In this study, we proposed a comprehensive framework to provide multiple imaging features related to the brain microstructure using only T1-weighted MRI. Our toolbox consists of (i) synthesizing T2-weighted MRI from T1-weighted MRI using a conditional generative adversarial network; (ii) estimating microstructural features, including intracortical covariance and moment features of cortical layer-wise microstructural profiles; and (iii) generating a microstructural gradient, which is a low-dimensional representation of the intracortical microstructure profile. We trained and tested our toolbox using T1- and T2-weighted MRI scans of 1,104 healthy young adults obtained from the Human Connectome Project database. We found that the synthesized T2-weighted MRI was very similar to the actual image and that the synthesized data successfully reproduced the microstructural features. The toolbox was validated using an independent dataset containing healthy controls and patients with episodic migraine as well as the atypical developmental condition of autism spectrum disorder. Our toolbox may provide a new paradigm for analyzing multimodal structural MRI in the neuroscience community and is openly accessible at https://github.com/CAMIN-neuro/GAN-MAT.
Collapse
Affiliation(s)
- Yeongjun Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Mi Ji Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Chae Yeon Kim
- Department of Data Science, Inha University, Incheon, South Korea
| | | | - Yunseo Park
- Department of Data Science, Inha University, Incheon, South Korea
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | | | | | - Casey Paquola
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; Department of Statistics and Data Science, Inha University, Incheon, South Korea.
| |
Collapse
|
40
|
Dong D, Chen X, Li W, Gao X, Wang Y, Zhou F, Eickhoff SB, Chen H. Opposite changes in morphometric similarity of medial reward and lateral non-reward orbitofrontal cortex circuits in obesity. Neuroimage 2024; 290:120574. [PMID: 38467346 DOI: 10.1016/j.neuroimage.2024.120574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024] Open
Abstract
Obesity has a profound impact on metabolic health thereby adversely affecting brain structure and function. However, the majority of previous studies used a single structural index to investigate the link between brain structure and body mass index (BMI), which hinders our understanding of structural covariance between regions in obesity. This study aimed to examine the relationship between macroscale cortical organization and BMI using novel morphometric similarity networks (MSNs). The individual MSNs were first constructed from individual eight multimodal cortical morphometric features between brain regions. Then the relationship between BMI and MSNs within the discovery sample of 434 participants was assessed. The key findings were further validated in an independent sample of 192 participants. We observed that the lateral non-reward orbitofrontal cortex (lOFC) exhibited decoupling (i.e., reduction in integration) in obesity, which was mainly manifested by its decoupling with the cognitive systems (i.e., DMN and FPN) while the medial reward orbitofrontal cortex (mOFC) showed de-differentiation (i.e., decrease in distinctiveness) in obesity, which was mainly represented by its de-differentiation with the cognitive and attention systems (i.e., DMN and VAN). Additionally, the lOFC showed de-differentiation with the visual system in obesity, while the mOFC showed decoupling with the visual system and hyper-coupling with the sensory-motor system in obesity. As an important first step in revealing the role of underlying structural covariance in body mass variability, the present study presents a novel mechanism that underlies the reward-control interaction imbalance in obesity, thus can inform future weight-management approaches.
Collapse
Affiliation(s)
- Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Ximei Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Wei Li
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Xiao Gao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Yulin Wang
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China; Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Feng Zhou
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China; Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
41
|
Chen J, Chen X, Gong L, Zhang D, Liu Q. Behind the wheel: exploring gray matter variations in experienced drivers. PeerJ 2024; 12:e17228. [PMID: 38618564 PMCID: PMC11015830 DOI: 10.7717/peerj.17228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Background Driving is a complex skill involving various cognitive activities. Previous research has explored differences in the brain structures related to the navigational abilities of drivers compared to non-drivers. However, it remains unclear whether changes occur in the structures associated with low-level sensory and higher-order cognitive abilities in drivers. Methods Gray matter volume, assessed via voxel-based morphometry analysis of T1-weighted images, is considered a reliable indicator of structural changes in the brain. This study employs voxel-based morphological analysis to investigate structural differences between drivers (n = 22) and non-drivers (n = 20). Results The results indicate that, in comparison to non-drivers, drivers exhibit significantly reduced gray matter volume in the middle occipital gyrus, middle temporal gyrus, supramarginal gyrus, and cerebellum, suggesting a relationship with driving-related experience. Furthermore, the volume of the middle occipital gyrus, and middle temporal gyrus, is found to be marginally negative related to the years of driving experience, suggesting a potential impact of driving experience on gray matter volume. However, no significant correlations were observed between driving experiences and frontal gray matter volume. Conclusion These findings suggest that driving skills and experience have a pronounced impact on the cortical areas responsible for low-level sensory and motor processing. Meanwhile, the influence on cortical areas associated with higher-order cognitive function appears to be minimal.
Collapse
Affiliation(s)
- Jiangtao Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, Liaoning, China
| | - Xiaoyu Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, Liaoning, China
| | - Li Gong
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, Liaoning, China
| | - Di Zhang
- School of Psychology, Guizhou Normal University, Guiyang, Guizhou, China
| | - Qiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, Liaoning, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, China
| |
Collapse
|
42
|
Jiang L, Eickhoff SB, Genon S, Wang G, Yi C, He R, Huang X, Yao D, Dong D, Li F, Xu P. Multimodal Covariance Network Reflects Individual Cognitive Flexibility. Int J Neural Syst 2024; 34:2450018. [PMID: 38372035 DOI: 10.1142/s0129065724500187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Cognitive flexibility refers to the capacity to shift between patterns of mental function and relies on functional activity supported by anatomical structures. However, how the brain's structural-functional covarying is preconfigured in the resting state to facilitate cognitive flexibility under tasks remains unrevealed. Herein, we investigated the potential relationship between individual cognitive flexibility performance during the trail-making test (TMT) and structural-functional covariation of the large-scale multimodal covariance network (MCN) using magnetic resonance imaging (MRI) and electroencephalograph (EEG) datasets of 182 healthy participants. Results show that cognitive flexibility correlated significantly with the intra-subnetwork covariation of the visual network (VN) and somatomotor network (SMN) of MCN. Meanwhile, inter-subnetwork interactions across SMN and VN/default mode network/frontoparietal network (FPN), as well as across VN and ventral attention network (VAN)/dorsal attention network (DAN) were also found to be closely related to individual cognitive flexibility. After using resting-state MCN connectivity as representative features to train a multi-layer perceptron prediction model, we achieved a reliable prediction of individual cognitive flexibility performance. Collectively, this work offers new perspectives on the structural-functional coordination of cognitive flexibility and also provides neurobiological markers to predict individual cognitive flexibility.
Collapse
Affiliation(s)
- Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Genon
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Guangying Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Runyang He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Xunan Huang
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- School of Foreign Languages, University of Electronic Science and Technology of China, Sichuan, Chengdu 611731, P. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Debo Dong
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Faculty of Psychology, Southwest University, Chongqing 400715, P. R. China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, P. R. China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
- Radiation Oncology Key Laboratory of Sichuan Province, ChengDu 610041, P. R. China
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| |
Collapse
|
43
|
Zheng C, Xiao X, Zhao W, Yang Z, Guo S. Functional brain network controllability dysfunction in Alzheimer's disease and its relationship with cognition and gene expression profiling. J Neural Eng 2024; 21:026018. [PMID: 38502960 DOI: 10.1088/1741-2552/ad357e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Objective. In recent studies, network control theory has been applied to clarify transitions between brain states, emphasizing the significance of assessing the controllability of brain networks in facilitating transitions from one state to another. Despite these advancements, the potential alterations in functional network controllability associated with Alzheimer's disease (AD), along with the underlying genetic mechanisms responsible for these alterations, remain unclear.Approach. We conducted a comparative analysis of functional network controllability measures between patients with AD (n= 64) and matched normal controls (NCs,n= 64). We investigated the association between altered controllability measures and cognitive function in AD. Additionally, we conducted correlation analyses in conjunction with the Allen Human Brain Atlas to identify genes whose expression was correlated with changes in functional network controllability in AD, followed by a set of analyses on the functional features of the identified genes.Main results. In comparison to NCs, patients with AD exhibited a reduction in average controllability, predominantly within the default mode network (DMN) (63% of parcellations), and an increase in average controllability within the limbic (LIM) network (33% of parcellations). Conversely, AD patients displayed a decrease in modal controllability within the LIM network (27% of parcellations) and an increase in modal controllability within the DMN (80% of parcellations). In AD patients, a significant positive correlation was found between the average controllability of the salience network and the mini-mental state examination scores. The changes in controllability measures exhibited spatial correlation with transcriptome profiles. The significant genes identified exhibited enrichment in neurobiologically relevant pathways and demonstrated preferential expression in various tissues, cell types, and developmental periods.Significance. Our findings have the potential to offer new insights into the genetic mechanisms underlying alterations in the controllability of functional networks in AD. Additionally, these results offered perspectives for a deeper understanding of the pathogenesis and the development of therapeutic strategies for AD.
Collapse
Affiliation(s)
- Chuchu Zheng
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, People's Republic of China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, People's Republic of China
| | - Xiaoxia Xiao
- School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, People's Republic of China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, People's Republic of China
| | - Zeyu Yang
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, People's Republic of China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, People's Republic of China
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, People's Republic of China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, People's Republic of China
| |
Collapse
|
44
|
Feng G, Wang Y, Huang W, Chen H, Cheng J, Shu N. Spatial and temporal pattern of structure-function coupling of human brain connectome with development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557107. [PMID: 38559278 PMCID: PMC10979860 DOI: 10.1101/2023.09.11.557107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7 to 21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC-FC coupling. Our findings revealed that SC-FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC-FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC-FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC-FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC-FC coupling in typical development.
Collapse
Affiliation(s)
- Guozheng Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yiwen Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Haojie Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jian Cheng
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
45
|
Zheng H, Zhai T, Lin X, Dong G, Yang Y, Yuan TF. The resting-state brain activity signatures for addictive disorders. MED 2024; 5:201-223.e6. [PMID: 38359839 PMCID: PMC10939772 DOI: 10.1016/j.medj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Addiction is a chronic and relapsing brain disorder. Despite numerous neuroimaging and neurophysiological studies on individuals with substance use disorder (SUD) or behavioral addiction (BEA), currently a clear neural activity signature for the addicted brain is lacking. METHODS We first performed systemic coordinate-based meta-analysis and partial least-squares regression to identify shared or distinct brain regions across multiple addictive disorders, with abnormal resting-state activity in SUD and BEA based on 46 studies (55 contrasts), including regional homogeneity (ReHo) and low-frequency fluctuation amplitude (ALFF) or fractional ALFF. We then combined Neurosynth, postmortem gene expression, and receptor/transporter distribution data to uncover the potential molecular mechanisms underlying these neural activity signatures. FINDINGS The overall comparison between addiction cohorts and healthy subjects indicated significantly increased ReHo and ALFF in the right striatum (putamen) and bilateral supplementary motor area, as well as decreased ReHo and ALFF in the bilateral anterior cingulate cortex and ventral medial prefrontal cortex, in the addiction group. On the other hand, neural activity in cingulate cortex, ventral medial prefrontal cortex, and orbitofrontal cortex differed between SUD and BEA subjects. Using molecular analyses, the altered resting activity recapitulated the spatial distribution of dopaminergic, GABAergic, and acetylcholine system in SUD, while this also includes the serotonergic system in BEA. CONCLUSIONS These results indicate both common and distinctive neural substrates underlying SUD and BEA, which validates and supports targeted neuromodulation against addiction. FUNDING This work was supported by the National Natural Science Foundation of China and Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health.
Collapse
Affiliation(s)
- Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tianye Zhai
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Guangheng Dong
- Department of Psychology, Yunnan Normal University, Kunming 650092, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China; Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
46
|
Tremblay SA, Alasmar Z, Pirhadi A, Carbonell F, Iturria-Medina Y, Gauthier CJ, Steele CJ. MVComp toolbox: MultiVariate Comparisons of brain MRI features accounting for common information across metrics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582381. [PMID: 38463982 PMCID: PMC10925263 DOI: 10.1101/2024.02.27.582381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Multivariate approaches have recently gained in popularity to address the physiological unspecificity of neuroimaging metrics and to better characterize the complexity of biological processes underlying behavior. However, commonly used approaches are biased by the intrinsic associations between variables, or they are computationally expensive and may be more complicated to implement than standard univariate approaches. Here, we propose using the Mahalanobis distance (D2), an individual-level measure of deviation relative to a reference distribution that accounts for covariance between metrics. To facilitate its use, we introduce an open-source python-based tool for computing D2 relative to a reference group or within a single individual: the MultiVariate Comparison (MVComp) toolbox. The toolbox allows different levels of analysis (i.e., group- or subject-level), resolutions (e.g., voxel-wise, ROI-wise) and dimensions considered (e.g., combining MRI metrics or WM tracts). Several example cases are presented to showcase the wide range of possible applications of MVComp and to demonstrate the functionality of the toolbox. The D2 framework was applied to the assessment of white matter (WM) microstructure at 1) the group-level, where D2 can be computed between a subject and a reference group to yield an individualized measure of deviation. We observed that clustering applied to D2 in the corpus callosum yields parcellations that highly resemble known topography based on neuroanatomy, suggesting that D2 provides an integrative index that meaningfully reflects the underlying microstructure. 2) At the subject level, D2 was computed between voxels to obtain a measure of (dis)similarity. The loadings of each MRI metric (i.e., its relative contribution to D2) were then extracted in voxels of interest to showcase a useful option of the MVComp toolbox. These relative contributions can provide important insights into the physiological underpinnings of differences observed. Integrative multivariate models are crucial to expand our understanding of the complex brain-behavior relationships and the multiple factors underlying disease development and progression. Our toolbox facilitates the implementation of a useful multivariate method, making it more widely accessible.
Collapse
Affiliation(s)
- Stefanie A Tremblay
- Department of Physics, Concordia University, Montreal, Canada
- School of Health, Concordia University, Montreal, Canada
- EPIC Centre, Montreal Heart Institute, Montreal, Canada
| | - Zaki Alasmar
- School of Health, Concordia University, Montreal, Canada
- Department of Psychology, Concordia University, Montreal, Canada
| | - Amir Pirhadi
- Department of Electrical Engineering, Concordia University, Montreal, Canada
- ViTAA medical solutions, Montreal, Canada
| | | | - Yasser Iturria-Medina
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
- Ludmer Center for NeuroInformatics and Mental Health, Montreal, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, Canada
- School of Health, Concordia University, Montreal, Canada
- EPIC Centre, Montreal Heart Institute, Montreal, Canada
| | - Christopher J Steele
- School of Health, Concordia University, Montreal, Canada
- Department of Psychology, Concordia University, Montreal, Canada
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
47
|
Yu M, Risacher SL, Nho KT, Wen Q, Oblak AL, Unverzagt FW, Apostolova LG, Farlow MR, Brosch JR, Clark DG, Wang S, Deardorff R, Wu YC, Gao S, Sporns O, Saykin AJ. Spatial transcriptomic patterns underlying amyloid-β and tau pathology are associated with cognitive dysfunction in Alzheimer's disease. Cell Rep 2024; 43:113691. [PMID: 38244198 PMCID: PMC10926093 DOI: 10.1016/j.celrep.2024.113691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/29/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Amyloid-β (Aβ) and tau proteins accumulate within distinct neuronal systems in Alzheimer's disease (AD). Although it is not clear why certain brain regions are more vulnerable to Aβ and tau pathologies than others, gene expression may play a role. We study the association between brain-wide gene expression profiles and regional vulnerability to Aβ (gene-to-Aβ associations) and tau (gene-to-tau associations) pathologies by leveraging two large independent AD cohorts. We identify AD susceptibility genes and gene modules in a gene co-expression network with expression profiles specifically related to regional vulnerability to Aβ and tau pathologies in AD. In addition, we identify distinct biochemical pathways associated with the gene-to-Aβ and the gene-to-tau associations. These findings may explain the discordance between regional Aβ and tau pathologies. Finally, we propose an analytic framework, linking the identified gene-to-pathology associations to cognitive dysfunction in AD at the individual level, suggesting potential clinical implication of the gene-to-pathology associations.
Collapse
Affiliation(s)
- Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA.
| | - Shannon L Risacher
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik T Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA
| | - Qiuting Wen
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian L Oblak
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Frederick W Unverzagt
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin R Farlow
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jared R Brosch
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David G Clark
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sophia Wang
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachael Deardorff
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Olaf Sporns
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
48
|
Zheng C, Zhao W, Yang Z, Tang D, Feng M, Guo S. Resolving heterogeneity in Alzheimer's disease based on individualized structural covariance network. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110873. [PMID: 37827426 DOI: 10.1016/j.pnpbp.2023.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
The heterogeneity of Alzheimer's disease (AD) poses a challenge to precision medicine. We aimed to identify distinct subtypes of AD based on the individualized structural covariance network (IDSCN) analysis and to research the underlying neurobiology mechanisms. In this study, 187 patients with AD (age = 73.57 ± 6.00, 50% female) and 143 matched normal controls (age = 74.30 ± 7.80, 44% female) were recruited from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project database, and T1 images were acquired. We utilized the IDSCN analysis to generate individual-level altered structural covariance network and performed k-means clustering to subtype AD based on structural covariance network. Cognition, disease progression, morphological features, and gene expression profiles were further compared between subtypes, to characterize the heterogeneity in AD. Two distinct AD subtypes were identified in a reproducible manner, and we named the two subtypes as slow progression type (subtype 1, n = 104, age = 76.15 ± 6.44, 42% female) and rapid progression type (subtype 2, n = 83, age = 71.98 ± 8.72, 47% female), separately. Subtype 1 had better baseline visuospatial function than subtype 2 (p < 0.05), whereas subtype 2 had better baseline memory function than subtype 1 (p < 0.05). Subtype 2 showed worse progression in memory (p = 0.003), language (p = 0.003), visuospatial function (p = 0.020), and mental state (p = 0.038) than subtype 1. Subtype 1 often shared increased structural covariance network, mainly in the frontal lobe and temporal lobe regions, whereas subtype 2 often shared increased structural covariance network, mainly in occipital lobe regions and temporal lobe regions. Functional annotation further revealed that all differential structural covariance network between the two AD subtypes were mainly implicated in memory, learning, emotion, and cognition. Additionally, differences in gray matter volume (GMV) between AD subtypes were identified, and genes associated with GMV differences were found to be enriched in the terms potassium ion transport, synapse organization, and histone modification and the pathways viral infection, neurodegeneration-multiple diseases, and long-term depression. The two distinct AD subtypes were identified and characterized with neuroanatomy, cognitive trajectories, and gene expression profiles. These comprehensive results have implications for neurobiology mechanisms and precision medicine.
Collapse
Affiliation(s)
- Chuchu Zheng
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China
| | - Wei Zhao
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China
| | - Zeyu Yang
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China
| | - Dier Tang
- School of Mathematics, Jilin University, Changchun 130015, China
| | - Muyi Feng
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China
| | - Shuixia Guo
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China.
| |
Collapse
|
49
|
Lin S, Lv X, Lin X, Chen S, Li Y, Xu M, Qiu Y, Tang L. Modulation Effects of the CEP128 Gene on Radiotherapy-Related Brain Injury: A Longitudinal Structural Study Using Multi-Parametric Brain MR Images. J Magn Reson Imaging 2024; 59:648-658. [PMID: 37249021 DOI: 10.1002/jmri.28824] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The promoter variant rs17111237 in the CEP128 closely relates to radiotherapy (RT)-related brain necrosis in nasopharyngeal carcinoma (NPC) patients. PURPOSE To explore RT-related dynamic alterations in brain morphology and their potential genetic mechanism, and to explore the modulatory effects of CEP128 genetic variants on RT-related brain morphological alterations in NPC patients. STUDY TYPE Prospective, longitudinal. POPULATION One hundred one patients with histopathologic ally-proven NPC (age 41.64 ± 9.63, 46 male), analyzed at baseline (pre-RT), 3-months post-RT and 6 months post-RT, and 19 sex-, age- and education-matched healthy controls. FIELD STRENGTH/SEQUENCE 3D gradient echo brain volume (3D-BRAVO) and diffusion-weighted single-shot spin-echo echo-planar sequences at 3.0 T. ASSESSMENT rs17111237 in CEP128 was detected by Sanger sequencing. Structural and diffusion images were processed with FreeSurfer and FSL. Morphometric similarity network (MSN) was constructed with nine cortical indices derived from structural and diffusion images. STATISTICAL TESTS One-way ANOVA, chi-square test. Pearson's correlation analysis was conducted to measure the relationship between CEP128 gene-expression level in human brain and MSN alterations. Repeated analysis of variance performed to assess group differences in MSN and the modulatory effects of the CEP128 gene within patients. Significance level: P < 0.05, false-discovery rate correction. RESULTS RT-related significant widespread MSN alterations were observed in the cortices of NPC patients. Notably, regional MSN alterations had a weak but significant negative correlation with the cortical pattern of CEP128 gene expression (r = -0.152). Furthermore, rs17111237 in the CEP128 had significant modulatory effects on the observed MSN alterations in NPC patients, with the modulatory effects being most obvious at 3 months post-RT. CONCLUSIONS MSN has potential to serve as a sensitive biomarker to detect RT-related brain injury. Inter-brain regional and inter-patient variability of RT-related brain injuries may be attributed to the cortical expression of the CEP128 gene and the modulatory effects of the promoter variant rs17111237 in CEP128. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaofei Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yanqing Li
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Manxi Xu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Linquan Tang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
50
|
Liang X, Sun L, Liao X, Lei T, Xia M, Duan D, Zeng Z, Li Q, Xu Z, Men W, Wang Y, Tan S, Gao JH, Qin S, Tao S, Dong Q, Zhao T, He Y. Structural connectome architecture shapes the maturation of cortical morphology from childhood to adolescence. Nat Commun 2024; 15:784. [PMID: 38278807 PMCID: PMC10817914 DOI: 10.1038/s41467-024-44863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
Cortical thinning is an important hallmark of the maturation of brain morphology during childhood and adolescence. However, the connectome-based wiring mechanism that underlies cortical maturation remains unclear. Here, we show cortical thinning patterns primarily located in the lateral frontal and parietal heteromodal nodes during childhood and adolescence, which are structurally constrained by white matter network architecture and are particularly represented using a network-based diffusion model. Furthermore, connectome-based constraints are regionally heterogeneous, with the largest constraints residing in frontoparietal nodes, and are associated with gene expression signatures of microstructural neurodevelopmental events. These results are highly reproducible in another independent dataset. These findings advance our understanding of network-level mechanisms and the associated genetic basis that underlies the maturational process of cortical morphology during childhood and adolescence.
Collapse
Affiliation(s)
- Xinyuan Liang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Lianglong Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Tianyuan Lei
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Dingna Duan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zilong Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qiongling Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zhilei Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, 100096, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|