1
|
Brüssow H. The Arrival of Highly Pathogenic Avian Influenza Viruses in North America, Ensuing Epizootics in Poultry and Dairy Farms and Difficulties in Scientific Naming. Microb Biotechnol 2024; 17:e70062. [PMID: 39641589 PMCID: PMC11622506 DOI: 10.1111/1751-7915.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
The highly pathogenic avian influenza virus (HPAIV) H5N1, first isolated in 1996 in China, spread rapidly across Eurasia and caused major epizootics in wild and domesticated birds, as well as spillover infections in humans characterised by high mortality. Avian influenza viruses are therefore candidate viruses for a human pandemic. Surprisingly, HPAIV was not isolated in North America until 2014. With the help of intensive biological sampling and viral genome sequencing, the intrusion of HPAIV into North America could be retraced to two separate events. First, migratory birds carried HPAIV from East Siberia via Beringia and dispersed the virus along the Pacific flyway. After reassortment with genes of local low pathogenic avian influenza viruses, HPAIV H5 caused 2015 a major epizootic on poultry farms in the US Mid-West. After costly containment, HPAIV dropped below the detection limit. In 2021, Eurasian HPAIV H5 viruses arrived a second time in North America, carried by migratory birds to Canada via the Atlantic flyway, using Iceland as a stop. The H5 virus then spread with water birds along the East Coast of the United States and dispersed across the United States. In contrast to the 2015 poultry outbreak, spillover infections into diverse species of mammals were now observed. The events culminated in the 2024 HPAIV H5 epizootic in dairy cows affecting 300 dairy herds in 14 US states. The cattle epizootic was spread mainly by milking machinery and animal transport. On affected farms infected cats developed fatal neurological diseases. Retail milk across the United States frequently contains viral RNA, but so far only a few milk farm workers have developed mild symptoms. The tracing of HPAIV with viral genome sequencing complicated the taxonomical naming of influenza viruses raising fundamental problems in how to mirror biological complexity in written plain language, rendering communication with the lay public difficult.
Collapse
Affiliation(s)
- Harald Brüssow
- Department of BiosystemsLaboratory of Gene Technology, KU LeuvenLeuvenBelgium
| |
Collapse
|
2
|
Stallknecht DE, Carter DL, Sullivan-Brügger L, Link P, Ferraro E, McCarty C, Davis B, Knutsen L, Graham J, Poulson RL. Highly Pathogenic H5N1 Influenza A Virus (IAV) in Blue-Winged Teal in the Mississippi Flyway Is Following the Historic Seasonal Pattern of Low-Pathogenicity IAV in Ducks. Pathogens 2024; 13:1017. [PMID: 39599570 PMCID: PMC11597780 DOI: 10.3390/pathogens13111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Highly pathogenic H5N1 (HP H5N1) influenza A virus (IAV) has been detected annually in North American ducks since its introduction during 2021, but it is unknown if this virus will follow the same seasonal and geographic patterns that have been observed with low-pathogenicity (LP) IAV in this reservoir. We monitored blue-winged teal in the Mississippi flyway prior to the detection of HP H5N1 and during two post-introduction migration cycles from spring 2022 to spring 2024, testing birds for infection and antibodies to IAV nucleoprotein (NP), hemagglutinin subtype H5, and neuraminidase subtype N1. Antigens representing clade 2.3.4.4b HP H5 and LP North American H5 were used for hemagglutination inhibition (HI) and virus neutralization (VN) tests for H5 antibodies. Virologic results were consistent with historic seasonal and geographic patterns reported for LP IAV with peak infections occurring in pre-migration staging areas in Minnesota during fall 2022. However, the high prevalence of the H5 subtype was exceptional compared to historic prevalence estimates at this same site and for the Mississippi flyway. HP H5N1 was detected on wintering areas in Louisiana and Texas during the fall of that same year and this was followed by an increase in estimated antibody prevalence to NP, H5, and N1 with no HP H5N1 detections during the wintering or spring migration periods of 2022/2023. HP H5N1 was not detected in Minnesota during fall 2023 but was detected from a single bird in Louisiana. However, a similar increase in antibody prevalence was observed during the winter and spring period of 2023 and 2024. Over the two migration cycles, there was a temporal shift in observed prevalence and relative titers against the H5 antigens with a higher proportion of ducks testing positive to the 2.3.4.4b H5 antigen and higher relative titer to that antigen compared to the representative LP North American H5 antigen. The seasonal and geographic patterns observed appear to be driven by population immunity during the migration cycle. Results support an initial high infection rate of HP H5N1 in blue-winged teal in the Mississippi flyway followed by a high prevalence of antibodies to NP, H5, and N1. Although prevalence was much reduced in the second migration cycle following introduction, it is not known if this pattern will persist in the longer term or affect historic patterns of subtype diversity in this reservoir.
Collapse
Affiliation(s)
- David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Deborah L. Carter
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Lyndon Sullivan-Brügger
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Paul Link
- Louisiana Department of Wildlife and Fisheries, 5476 Grand Chenier Hwy, Grand Chenier, LA 70643, USA
| | - Emily Ferraro
- School of Renewable Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Ciara McCarty
- Wetland Wildlife Populations and Research Group, Minnesota Department of Natural Resources, Bemidji, MN 56601, USA
| | - Bruce Davis
- Wetland Wildlife Populations and Research Group, Minnesota Department of Natural Resources, Bemidji, MN 56601, USA
| | - Lynda Knutsen
- Agassiz National Wildlife Refuge, U.S. Fish and Wildlife Service, Middle River, MN 56737, USA
| | - James Graham
- Agassiz National Wildlife Refuge, U.S. Fish and Wildlife Service, Middle River, MN 56737, USA
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Webby RJ, Uyeki TM. An Update on Highly Pathogenic Avian Influenza A(H5N1) Virus, Clade 2.3.4.4b. J Infect Dis 2024; 230:533-542. [PMID: 39283944 DOI: 10.1093/infdis/jiae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 09/25/2024] Open
Abstract
Since the resurgence of highly pathogenic avian influenza (HPAI) A(H5N1) virus, clade 2.3.4.4b, during 2021, these viruses have spread widely among birds worldwide, causing poultry outbreaks and infections of a wide range of terrestrial and marine mammal species. During 2024, HPAI A(H5N1) virus, clade 2.3.4.4b, was detected in dairy cattle for the first time and caused an ongoing multistate outbreak, with high levels of virus documented in raw cow milk. Human infections with clade 2.3.4.4b viruses from exposures to infected poultry or dairy cattle have resulted in a wide spectrum of illness severity, from conjunctivitis or mild respiratory illness to severe and fatal pneumonia in different countries. Vigilance, and stronger global virologic surveillance among birds, poultry, terrestrial and marine mammals, and humans, with virus characterization and rapid data sharing, is needed to inform the threat of clade 2.3.4.4b viruses, as they continue to evolve, to public health.
Collapse
Affiliation(s)
- Richard J Webby
- World Health Organization Collaborating Centre for Studies on the Ecology of Influenza in Animals and Birds, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
4
|
Meade PS, Bandawane P, Bushfield K, Hoxie I, Azcona KR, Burgos D, Choudhury S, Diaby A, Diallo M, Gaynor K, Huang A, Kante K, Khan SN, Kim W, Ajayi PK, Roubidoux E, Nelson S, McMahon R, Albrecht RA, Krammer F, Marizzi C. Detection of clade 2.3.4.4b highly pathogenic H5N1 influenza virus in New York City. J Virol 2024; 98:e0062624. [PMID: 38747601 PMCID: PMC11237497 DOI: 10.1128/jvi.00626-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/28/2024] Open
Abstract
Highly pathogenic avian influenza viruses of the H5N1 clade 2.3.4.4b were detected in North America in the winter of 2021/2022. These viruses have spread across the Americas, causing morbidity and mortality in both wild and domestic birds as well as some mammalian species, including cattle. Many surveillance programs for wildlife as well as commercial poultry operations have detected these viruses. In this study, we conducted surveillance of avian species in the urban environment in New York City. We detected highly pathogenic H5N1 viruses in six samples from four different bird species and performed whole-genome sequencing. Sequencing analysis showed the presence of multiple different genotypes. Our work highlights that the interface between animals and humans that may give rise to zoonotic infections or even pandemics is not limited to rural environments and commercial poultry operations but extends into the heart of our urban centers.IMPORTANCEWhile surveillance programs for avian influenza viruses are often focused on migratory routes and their associated stop-over locations or commercial poultry operations, many bird species-including migratory birds-frequent or live in urban green spaces and wetlands. This brings them into contact with a highly dense population of humans and pets, providing an extensive urban animal-human interface in which the general public may have little awareness of circulating infectious diseases. This study focuses on virus surveillance of this interface, combined with culturally responsive science education and community outreach.
Collapse
Affiliation(s)
- Philip S. Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pooja Bandawane
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kaitlyn Bushfield
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Karla R. Azcona
- New York City Virus Hunters Program, BioBus, New York, New York, USA
| | - Daneidy Burgos
- New York City Virus Hunters Program, BioBus, New York, New York, USA
| | - Sadia Choudhury
- New York City Virus Hunters Program, BioBus, New York, New York, USA
| | - Adama Diaby
- New York City Virus Hunters Program, BioBus, New York, New York, USA
| | - Mariama Diallo
- New York City Virus Hunters Program, BioBus, New York, New York, USA
| | - Kailani Gaynor
- New York City Virus Hunters Program, BioBus, New York, New York, USA
| | - Aaron Huang
- New York City Virus Hunters Program, BioBus, New York, New York, USA
| | - Kadiatou Kante
- New York City Virus Hunters Program, BioBus, New York, New York, USA
| | - Shehryar N. Khan
- New York City Virus Hunters Program, BioBus, New York, New York, USA
| | - William Kim
- New York City Virus Hunters Program, BioBus, New York, New York, USA
| | | | - Ericka Roubidoux
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sasha Nelson
- Animal Care Centers of New York, New York, New York, USA
| | | | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Christine Marizzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- New York City Virus Hunters Program, BioBus, New York, New York, USA
| |
Collapse
|
5
|
Ospina-Jimenez AF, Gomez AP, Osorio-Zambrano WF, Alvarez-Munoz S, Ramirez-Nieto GC. Sequence-based epitope mapping of high pathogenicity avian influenza H5 clade 2.3.4.4b in Latin America. Front Vet Sci 2024; 11:1347509. [PMID: 38746927 PMCID: PMC11091830 DOI: 10.3389/fvets.2024.1347509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 01/06/2025] Open
Abstract
High Pathogenicity Avian Influenza (HPAI) poses a significant threat to public and animal health. Clade 2.3.4.4b recently emerged from the Eastern hemisphere and disseminated globally, reaching the Latin American (LATAM) region in late 2022 for the first time. HPAI in LATAM has resulted in massive mortalities and culling of poultry and wild birds, causing infection in mammals and humans. Despite its meaningful impact in the region, only occasional evidence about the genetic and epitope characteristics of the introduced HPAI is reported. Hence, this study seeks to phylogenetically characterize the molecular features and the source of HPAI in LATAM by evaluating potential antigenic variations. For such a purpose, we analyzed 302 whole genome sequences. All Latin American viruses are descendants of the 2.3.4.4b clade of the European H5N1 subtype. According to genomic constellations deriving from European and American reassortments, the identification of three major subtypes and eight sub-genotypes was achievable. Based on the variation of antigenic motifs at the HA protein in LATAM, we detected three potential antigenic variants, indicating the HA-C group as the dominant variant. This study decidedly contributes to unraveling the origin of the 2.3.4.4b clade in LATAM, its geographic dissemination, and evolutionary dynamics within Latin American countries. These findings offer useful information for public health interventions and surveillance initiatives planned to prevent and manage the transmission of avian influenza viruses.
Collapse
Affiliation(s)
| | | | | | | | - Gloria C. Ramirez-Nieto
- Microbiology and Epidemiology Research Group, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
6
|
Meade PS, Bandawane P, Bushfield K, Hoxie I, Azcona KR, Burgos D, Choudhury S, Diaby A, Diallo M, Gaynor K, Huang A, Kante K, Khan SN, Kim W, Ajayi PK, Roubidoux E, Nelson S, McMahon R, Albrecht RA, Krammer F, Marizzi C. Detection of clade 2.3.4.4b highly pathogenic H5N1 influenza virus in New York City. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588061. [PMID: 38617218 PMCID: PMC11014507 DOI: 10.1101/2024.04.04.588061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Highly pathogenic avian influenza viruses of the H5N1 clade 2.3.4.4b arrived in North America in the winter of 2021/2022. These viruses have spread across the Americas causing morbidity and mortality in both wild and domestic birds as well as some mammalian species, including cattle. Many surveillance programs in wildlife as well as commercial poultry operations have detected these viruses. Here we conducted surveillance of avian species in the urban environment in New York City. We detected highly pathogenic H5N1 viruses in six samples from four different bird species and performed full genome sequencing. Sequence analysis showed the presence of multiple different genotypes. Our work highlights that the interface between animals and humans that may give rise to zoonotic infections or even pandemics is not limited to rural environments and commercial poultry operations but extends into the heart of our urban centers.
Collapse
Affiliation(s)
- Philip S. Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pooja Bandawane
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaitlyn Bushfield
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karla R. Azcona
- New York City Virus Hunters Program, BioBus, New York, NY, USA
| | - Daneidy Burgos
- New York City Virus Hunters Program, BioBus, New York, NY, USA
| | - Sadia Choudhury
- New York City Virus Hunters Program, BioBus, New York, NY, USA
| | - Adama Diaby
- New York City Virus Hunters Program, BioBus, New York, NY, USA
| | - Mariama Diallo
- New York City Virus Hunters Program, BioBus, New York, NY, USA
| | - Kailani Gaynor
- New York City Virus Hunters Program, BioBus, New York, NY, USA
| | - Aaron Huang
- New York City Virus Hunters Program, BioBus, New York, NY, USA
| | - Kadiatou Kante
- New York City Virus Hunters Program, BioBus, New York, NY, USA
| | | | - William Kim
- New York City Virus Hunters Program, BioBus, New York, NY, USA
| | | | - Ericka Roubidoux
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sasha Nelson
- Animal Care Centers of New York, New York, NY, USA
| | | | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Christine Marizzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- New York City Virus Hunters Program, BioBus, New York, NY, USA
| |
Collapse
|
7
|
Kuchinski KS, Coombe M, Mansour SC, Cortez GAP, Kalhor M, Himsworth CG, Prystajecky NA. Targeted genomic sequencing of avian influenza viruses in wetland sediment from wild bird habitats. Appl Environ Microbiol 2024; 90:e0084223. [PMID: 38259077 PMCID: PMC10880596 DOI: 10.1128/aem.00842-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
Diverse influenza A viruses (IAVs) circulate in wild birds, including highly pathogenic strains that infect poultry and humans. Consequently, surveillance of IAVs in wild birds is a cornerstone of agricultural biosecurity and pandemic preparedness. Surveillance is traditionally done by testing wild birds directly, but obtaining these specimens is labor intensive, detection rates can be low, and sampling is often biased toward certain avian species. As a result, local incursions of dangerous IAVs are rarely detected before outbreaks begin. Testing environmental specimens from wild bird habitats has been proposed as an alternative surveillance strategy. These specimens are thought to contain diverse IAVs deposited by a broad range of avian hosts, including species that are not typically sampled by surveillance programs. To enable this surveillance strategy, we developed a targeted genomic sequencing method for characterizing IAVs in these challenging environmental specimens. It combines custom hybridization probes, unique molecular index-based library construction, and purpose-built bioinformatic tools, allowing IAV genomic material to be enriched and analyzed with single-fragment resolution. We demonstrated our method on 90 sediment specimens from wetlands around Vancouver, Canada. We recovered 2,312 IAV genome fragments originating from all eight IAV genome segments. Eleven hemagglutinin subtypes and nine neuraminidase subtypes were detected, including H5, the current global surveillance priority. Our results demonstrate that targeted genomic sequencing of environmental specimens from wild bird habitats could become a valuable complement to avian influenza surveillance programs.IMPORTANCEIn this study, we developed genome sequencing tools for characterizing avian influenza viruses in sediment from wild bird habitats. These tools enable an environment-based approach to avian influenza surveillance. This could improve early detection of dangerous strains in local wild birds, allowing poultry producers to better protect their flocks and prevent human exposures to potential pandemic threats. Furthermore, we purposefully developed these methods to contend with viral genomic material that is diluted, fragmented, incomplete, and derived from multiple strains and hosts. These challenges are common to many environmental specimens, making these methods broadly applicable for genomic pathogen surveillance in diverse contexts.
Collapse
Affiliation(s)
- Kevin S Kuchinski
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Coombe
- Animal Health Centre, Ministry of Agriculture and Food, Abbotsford, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
| | - Sarah C Mansour
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabrielle Angelo P Cortez
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marzieh Kalhor
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chelsea G Himsworth
- Animal Health Centre, Ministry of Agriculture and Food, Abbotsford, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
| | - Natalie A Prystajecky
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Ramey AM, Scott LC, Ahlstrom CA, Buck EJ, Williams AR, Kim Torchetti M, Stallknecht DE, Poulson RL. Molecular detection and characterization of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses among hunter-harvested wild birds provides evidence for three independent introductions into Alaska. Virology 2024; 589:109938. [PMID: 37977084 DOI: 10.1016/j.virol.2023.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
We detected and characterized highly pathogenic avian influenza viruses among hunter-harvested wild waterfowl inhabiting western Alaska during September-October 2022 using a molecular sequencing pipeline applied to RNA extracts derived directly from original swab samples. Genomic characterization of 10 H5 clade 2.3.4.4b avian influenza viruses detected with high confidence provided evidence for three independent viral introductions into Alaska. Our results highlight the utility and some potential limits of applying molecular processing approaches directly to RNA extracts from original swab samples for viral research and monitoring.
Collapse
Affiliation(s)
- Andrew M Ramey
- U.S. Geological Survey Alaska Science Center, Anchorage, AK, USA.
| | - Laura C Scott
- U.S. Geological Survey Alaska Science Center, Anchorage, AK, USA
| | | | - Evan J Buck
- U.S. Geological Survey Alaska Science Center, Anchorage, AK, USA
| | - Alison R Williams
- U.S. Fish and Wildlife Service Izembek National Wildlife Refuge, Cold Bay, Alaska, USA
| | - Mia Kim Torchetti
- U.S. Department of Agriculture National Veterinary Services Laboratories, Ames, IA, USA
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Rebecca L Poulson
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Provencher JF, Wilcox AAE, Gibbs S, Howes LA, Mallory ML, Pybus M, Ramey AM, Reed ET, Sharp CM, Soos C, Stasiak I, Leafloor JO. BAITING AND BANDING: EXPERT OPINION ON HOW BAIT TRAPPING MAY INFLUENCE THE OCCURRENCE OF HIGHLY PATHOGENIC AVIAN INFLUENZA (HPAI) AMONG DABBLING DUCKS. J Wildl Dis 2023; 59:590-600. [PMID: 37578749 DOI: 10.7589/jwd-d-22-00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/09/2023] [Indexed: 08/15/2023]
Abstract
A Eurasian lineage highly pathogenic avian influenza virus (HPAIV) of the clade 2.3.4.4b (Goose/Guangdong lineage) was detected in migratory bird populations in North America in December 2021, and it, along with its reassortants, have since caused wild and domestic bird outbreaks across the continent. Relative to previous outbreaks, HPAIV cases among wild birds in 2022 exhibited wider geographic extent within North America and higher levels of mortality, suggesting the potential for population-level impacts. Given the possible conservation implications of HPAIV in wild birds, natural resource managers have sought guidance on actions that may mitigate negative effects of disease among North American bird populations, including modification of existing management practices. Banding of waterfowl is a critical tool for population management for several harvested species in North America, but some banding techniques, such as bait trapping, can lead to increased congregation of waterfowl, potentially altering HPAIV transmission. We used an expert opinion exercise to assess how bait trapping of dabbling ducks in Canada may influence HPAIV transmission and wild bird health. The expert group found that it is moderately likely that bait trapping of dabbling ducks in wetlands will significantly increase the transmission of HPAIV among individual ducks, but there is a low probability that this will result in significant population-level effects on North American dabbling ducks. Considering the lack of empirical work studying how capture and handling methods may change transmission of HPAIV among waterfowl, as well as the importance of bait trapping for waterfowl management in North America, future work should focus on filling knowledge gaps pertaining to the influence of baiting on HPAIV occurrence to better inform banding procedures and management decision making.
Collapse
Affiliation(s)
- Jennifer F Provencher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Dr., Ottawa, Ontario K1S 5B6, Canada
| | - Alana A E Wilcox
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Dr., Ottawa, Ontario K1S 5B6, Canada
| | - Samantha Gibbs
- Wildlife Health Office, U.S. Fish and Wildlife Service, Lower Suwannee National Wildlife Refuge, 16450 NW 31st Place, Chiefland, Florida 32626, USA
| | - Lesley-Anne Howes
- Canadian Wildlife Service, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Dr., Ottawa, Ontario K1S 5B6, Canada
| | - Mark L Mallory
- Acadia University, 33 Westwood Ave., Wolfville, Nova Scotia B4P 2R6, Canada
| | - Margo Pybus
- Alberta Fish and Wildlife, Government of Alberta, 6909-116 St., Edmonton, Alberta T6H 4P2, Canada
| | - Andrew M Ramey
- U.S. Geological Survey Alaska Science Center, 4210 University Dr., Anchorage, Alaska 99508, USA
| | - Eric T Reed
- Canadian Wildlife Service, Environment and Climate Change Canada, 5019 52nd St., PO Box 2310, Yellowknife, Northwest Territories X1A 2P7, Canada
| | - Chris M Sharp
- Canadian Wildlife Service, Environment and Climate Change Canada, Environmental Science and Technology Centre, 335 River Rd, Ottawa, Ontario K1V 1C7, Canada
| | - Catherine Soos
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Prairie and Northern Wildlife Research Centre, 115 Perimeter Rd, Saskatoon, Saskatchewan S7N 0X4, Canada
| | - Iga Stasiak
- Ministry of Environment, Government of Saskatchewan, 112 Research Dr., Saskatoon, Saskatchewan S7N 3R3, Canada
| | - Jim O Leafloor
- Canadian Wildlife Service, Environment and Climate Change Canada, Unit 510, 234 Donald St., Winnipeg, Manitoba R3C 1M8, Canada
| |
Collapse
|
10
|
Webster RG. Influenza: Searching for Pandemic Origins. Annu Rev Virol 2023; 10:1-23. [PMID: 37774126 DOI: 10.1146/annurev-virology-111821-125223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
From a farming family of 13 children in New Zealand, I graduated with a Master of Science degree in microbiology from the University of Otago (Dunedin, Otago, New Zealand). I established the first veterinary virology laboratory at Wallaceville Animal Research Station. I subsequently completed my PhD degree at Australian National University (Canberra, Australia) and a postdoctoral fellowship at the University of Michigan (Ann Arbor, Michigan). While in New South Wales, Australia, a walk on a beach littered with dead mutton birds (shearwaters) with Dr. Graeme Laver led to the surveillance of influenza in seabirds on the Great Barrier Reef Islands and my lifelong search for the origin of pandemic influenza viruses. Subsequent studies established that (a) aquatic birds are a natural reservoir of influenza A viruses, (b) these viruses replicate primarily in cells lining the intestinal tract, (c) reassortment in nature can lead to novel pandemic influenza viruses, and (d) live bird markets are one place where transmission of influenza virus from animals to humans occurs.
Collapse
Affiliation(s)
- Robert G Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| |
Collapse
|
11
|
Kandeil A, Patton C, Jones JC, Jeevan T, Harrington WN, Trifkovic S, Seiler JP, Fabrizio T, Woodard K, Turner JC, Crumpton JC, Miller L, Rubrum A, DeBeauchamp J, Russell CJ, Govorkova EA, Vogel P, Kim-Torchetti M, Berhane Y, Stallknecht D, Poulson R, Kercher L, Webby RJ. Rapid evolution of A(H5N1) influenza viruses after intercontinental spread to North America. Nat Commun 2023; 14:3082. [PMID: 37248261 PMCID: PMC10227026 DOI: 10.1038/s41467-023-38415-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Highly pathogenic avian influenza A(H5N1) viruses of clade 2.3.4.4b underwent an explosive geographic expansion in 2021 among wild birds and domestic poultry across Asia, Europe, and Africa. By the end of 2021, 2.3.4.4b viruses were detected in North America, signifying further intercontinental spread. Here we show that the western movement of clade 2.3.4.4b was quickly followed by reassortment with viruses circulating in wild birds in North America, resulting in the acquisition of different combinations of ribonucleoprotein genes. These reassortant A(H5N1) viruses are genotypically and phenotypically diverse, with many causing severe disease with dramatic neurologic involvement in mammals. The proclivity of the current A(H5N1) 2.3.4.4b virus lineage to reassort and target the central nervous system warrants concerted planning to combat the spread and evolution of the virus within the continent and to mitigate the impact of a potential influenza pandemic that could originate from similar A(H5N1) reassortants.
Collapse
Affiliation(s)
- Ahmed Kandeil
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Christopher Patton
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38105, USA
| | - Jeremy C Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Walter N Harrington
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sanja Trifkovic
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jon P Seiler
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Thomas Fabrizio
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Karlie Woodard
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jasmine C Turner
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeri-Carol Crumpton
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Lance Miller
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Adam Rubrum
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jennifer DeBeauchamp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Peter Vogel
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mia Kim-Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service (APHIS), US Department of Agriculture (USDA), Ames, IA, 50011, USA
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Winnipeg, MB, R3E 3M4, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - David Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA, 30602, USA
| | - Rebecca Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA, 30602, USA
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38105, USA.
| |
Collapse
|
12
|
Stallknecht DE, Fojtik A, Carter DL, Crum-Bradley JA, Perez DR, Poulson RL. Naturally Acquired Antibodies to Influenza A Virus in Fall-Migrating North American Mallards. Vet Sci 2022; 9:214. [PMID: 35622742 PMCID: PMC9148056 DOI: 10.3390/vetsci9050214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
Although waterfowl are the primary reservoir for multiple subtypes of influenza A virus (IAV), our understanding of population immunity in naturally infected waterfowl is poorly understood. Population immunity may be an important driver of seasonal subtype predominance in waterfowl populations and may affect the potential for establishment of introduced IAV such as the Eurasian-like A/Goose/Guangdong/1/1996 lineage in these populations. Here, we examine the prevalence of naturally acquired antibodies to nucleoprotein (NP), hemagglutinin (H3, H4, H5), and neuraminidase (N1, N2, N6, N8) in early migrating mallards (Anas platyrhynchos) sampled in Northwest Minnesota during staging and early fall migration in September 2014, 2015, 2017, and 2018. Serologic results were compared to historic and contemporary virus isolation results from these same study sites. The prevalence of antibodies to NP ranged from 60.8−76.1% in hatch-year (HY) birds and from 86.0−92.7% in after-hatch-year (AHY, >1-year-old) mallards indicating a high level of previous infection with IAV early in the fall migration season. Neutralizing antibodies were detected against H3, H4, and H5 in all years as were antibodies to N1, N2, N6, and N8. A high proportion of NP seropositive ducks tested positive for antibodies to multiple HA and NA subtypes, and this was more common in the AHY age class. Antibody prevalence to the HA and NA subtypes included in this study were consistent with the predominance of H4N6 in these populations during all years and reflected a broadening of the antibody response with age. Additional work is needed to document the longevity of these immune responses, if and how they correlate with protection against IAV transmission, infection, and disease, and if, as detected in this study, they adequately describe the true extent of exposure to IAV or specific HA or NA subtypes.
Collapse
Affiliation(s)
- David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, 589 D.W. Brooks Drive, Athens, GA 30602, USA; (D.E.S.); (A.F.); (D.L.C.); (J.A.C.-B.)
| | - Alinde Fojtik
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, 589 D.W. Brooks Drive, Athens, GA 30602, USA; (D.E.S.); (A.F.); (D.L.C.); (J.A.C.-B.)
| | - Deborah L. Carter
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, 589 D.W. Brooks Drive, Athens, GA 30602, USA; (D.E.S.); (A.F.); (D.L.C.); (J.A.C.-B.)
| | - Jo Anne Crum-Bradley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, 589 D.W. Brooks Drive, Athens, GA 30602, USA; (D.E.S.); (A.F.); (D.L.C.); (J.A.C.-B.)
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602, USA;
| | - Daniel R. Perez
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602, USA;
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, 589 D.W. Brooks Drive, Athens, GA 30602, USA; (D.E.S.); (A.F.); (D.L.C.); (J.A.C.-B.)
| |
Collapse
|
13
|
Ramey AM, Hill NJ, DeLiberto TJ, Gibbs SEJ, Camille Hopkins M, Lang AS, Poulson RL, Prosser DJ, Sleeman JM, Stallknecht DE, Wan X. Highly pathogenic avian influenza is an emerging disease threat to wild birds in North America. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrew M. Ramey
- U.S. Geological Survey Alaska Science Center 4210 University Drive Anchorage AK 99508 USA
| | - Nichola J. Hill
- Department of Infectious Disease & Global Health, Cummings School of Veterinary Medicine Tufts University 200 Westboro Road North Grafton MA 01536 USA
| | - Thomas J. DeLiberto
- National Wildlife Disease Program, Wildlife Services, Animal and Plant Health Inspection Service U.S. Department of Agriculture 4101 LaPorte Avenue Fort Collins CO 80521 USA
| | - Samantha E. J. Gibbs
- Wildlife Health Office Natural Resource Program Center, National Wildlife Refuge System, U.S. Fish and Wildlife Service 16450 NW 31st Place Chiefland FL 32626 USA
| | - M. Camille Hopkins
- U.S. Geological Survey Ecosystems Mission Area 12201 Sunrise Valley Drive, MS 300 (Room 4A100F) Reston VA 20192 USA
| | - Andrew S. Lang
- Department of Biology Memorial University of Newfoundland 232 Elizabeth Avenue St. John's Newfoundland A1B 3X9 Canada
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine University of Georgia 589 D.W. Brooks Drive Athens GA 30602 USA
| | - Diann J. Prosser
- U.S. Geological Survey Eastern Ecological Science Center at the Patuxent Research Refuge 12100 Beech Forest Road Laurel MD 20708 USA
| | - Jonathan M. Sleeman
- U.S. Geological Survey National Wildlife Health Center 6006 Schroeder Road Madison WI 53711 USA
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine University of Georgia 589 D.W. Brooks Drive Athens GA 30602 USA
| | - Xiu‐Feng Wan
- Center for Influenza and Emerging Infectious Diseases (CIEID), Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, Department of Electronic Engineering and Computer Science University of Missouri Columbia MO 65211 USA
| |
Collapse
|
14
|
Kim SH, Park YC, Song JM. Evaluation of the antigenic stability of influenza virus like particles after exposure to acidic or basic pH. Clin Exp Vaccine Res 2021; 10:252-258. [PMID: 34703808 PMCID: PMC8511596 DOI: 10.7774/cevr.2021.10.3.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose Virus-like particles (VLPs) are being developed as a promising vaccine platform and therapeutic delivery. Various strategies for effectively constructing VLPs have been studied, but relatively few studies have been done on various factors affecting storage. In this study, we investigated the antigenic changes of VLPs in an acidic or basic pH environment using influenza VLPs as an experimental model. Materials and Methods Influenza VLPs containing hemagglutination and M1 proteins were generated and their antigenicity and protective immunity in vitro and in vivo were evaluated after exposure to acidic (pH 4 and 5) or basic (pH 9 and 10) pH buffers. Results VLP exposed to basic pH showed similar levels of antigenicity to those stored in neutral pH, while antigenicity of VLP exposed to acidic pH was found to be significantly reduced compared to those expose neutral or basic pH. All groups of mice responded effectively to low concentrations of virus infections; however, VLP vaccine groups exposed to acid pH were found not to induce sufficient protective immune responses when a high concentration of influenza virus infection. Conclusion In order for VLP to be used as a more powerful vaccine platform, it should be developed in a strategic way to respond well to external changes such as acidic pH conditions.
Collapse
Affiliation(s)
- So Hwa Kim
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women's University, Seoul, Korea
| | - Young Chan Park
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women's University, Seoul, Korea
| | - Jae Min Song
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women's University, Seoul, Korea.,School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, Korea
| |
Collapse
|
15
|
Evseev D, Magor KE. Molecular Evolution of the Influenza A Virus Non-structural Protein 1 in Interspecies Transmission and Adaptation. Front Microbiol 2021; 12:693204. [PMID: 34671321 PMCID: PMC8521145 DOI: 10.3389/fmicb.2021.693204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/06/2021] [Indexed: 12/03/2022] Open
Abstract
The non-structural protein 1 (NS1) of influenza A viruses plays important roles in viral fitness and in the process of interspecies adaptation. It is one of the most polymorphic and mutation-tolerant proteins of the influenza A genome, but its evolutionary patterns in different host species and the selective pressures that underlie them are hard to define. In this review, we highlight some of the species-specific molecular signatures apparent in different NS1 proteins and discuss two functions of NS1 in the process of viral adaptation to new host species. First, we consider the ability of NS1 proteins to broadly suppress host protein expression through interaction with CPSF4. This NS1 function can be spontaneously lost and regained through mutation and must be balanced against the need for host co-factors to aid efficient viral replication. Evidence suggests that this function of NS1 may be selectively lost in the initial stages of viral adaptation to some new host species. Second, we explore the ability of NS1 proteins to inhibit antiviral interferon signaling, an essential function for viral replication without which the virus is severely attenuated in any host. Innate immune suppression by NS1 not only enables viral replication in tissues, but also dampens the adaptive immune response and immunological memory. NS1 proteins suppress interferon signaling and effector functions through a variety of protein-protein interactions that may differ from host to host but must achieve similar goals. The multifunctional influenza A virus NS1 protein is highly plastic, highly versatile, and demonstrates a diversity of context-dependent solutions to the problem of interspecies adaptation.
Collapse
Affiliation(s)
| | - Katharine E. Magor
- Department of Biological Sciences, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Postnikova Y, Treshchalina A, Boravleva E, Gambaryan A, Ishmukhametov A, Matrosovich M, Fouchier RAM, Sadykova G, Prilipov A, Lomakina N. Diversity and Reassortment Rate of Influenza A Viruses in Wild Ducks and Gulls. Viruses 2021; 13:v13061010. [PMID: 34072256 PMCID: PMC8230314 DOI: 10.3390/v13061010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 01/18/2023] Open
Abstract
Influenza A viruses (IAVs) evolve via point mutations and reassortment of viral gene segments. The patterns of reassortment in different host species differ considerably. We investigated the genetic diversity of IAVs in wild ducks and compared it with the viral diversity in gulls. The complete genomes of 38 IAVs of H1N1, H1N2, H3N1, H3N2, H3N6, H3N8, H4N6, H5N3, H6N2, H11N6, and H11N9 subtypes isolated from wild mallard ducks and gulls resting in a city pond in Moscow, Russia were sequenced. The analysis of phylogenetic trees showed that stable viral genotypes do not persist from year to year in ducks owing to frequent gene reassortment. For comparison, similar analyses were carried out using sequences of IAVs isolated in the same period from ducks and gulls in The Netherlands. Our results revealed a significant difference in diversity and rates of reassortment of IAVs in ducks and gulls.
Collapse
Affiliation(s)
- Yulia Postnikova
- Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia; (Y.P.); (A.T.); (E.B.); (A.I.)
| | - Anastasia Treshchalina
- Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia; (Y.P.); (A.T.); (E.B.); (A.I.)
| | - Elizaveta Boravleva
- Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia; (Y.P.); (A.T.); (E.B.); (A.I.)
| | - Alexandra Gambaryan
- Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia; (Y.P.); (A.T.); (E.B.); (A.I.)
- Correspondence: ; Tel.: +7-985-136-3586
| | - Aydar Ishmukhametov
- Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia; (Y.P.); (A.T.); (E.B.); (A.I.)
| | - Mikhail Matrosovich
- Institute of Virology, Philipps University, Hans-Meerwein-Str. 2, D-35043 Marburg, Germany;
| | - Ron A. M. Fouchier
- Department of Virology, Erasmus Medical Centre, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands;
| | - Galina Sadykova
- The Gamaleya National Center of Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (G.S.); (A.P.); (N.L.)
| | - Alexey Prilipov
- The Gamaleya National Center of Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (G.S.); (A.P.); (N.L.)
| | - Natalia Lomakina
- The Gamaleya National Center of Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (G.S.); (A.P.); (N.L.)
| |
Collapse
|
17
|
Jerry C, Stallknecht D, Leyson C, Berghaus R, Jordan B, Pantin-Jackwood M, Hitchener G, França M. Recombinant hemagglutinin glycoproteins provide insight into binding to host cells by H5 influenza viruses in wild and domestic birds. Virology 2020; 550:8-20. [PMID: 32861143 PMCID: PMC7554162 DOI: 10.1016/j.virol.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
Clade 2.3.4.4, H5 subtype highly pathogenic avian influenza viruses (HPAIVs) have caused devastating effects across wild and domestic bird populations. We investigated differences in the intensity and distribution of the hemagglutinin (HA) glycoprotein binding of a clade 2.3.4.4 H5 HPAIV compared to a H5 low pathogenic avian influenza virus (LPAIV). Recombinant HA from gene sequences from a HPAIV, A/Northern pintail/Washington/40964/2014(H5N2) and a LPAIV, A/mallard/MN/410/2000(H5N2) were generated and, via protein histochemistry, HA binding in respiratory, intestinal and cloacal bursal tissue was quantified as median area of binding (MAB). Poultry species, shorebirds, ducks and terrestrial birds were used. Differences in MAB were observed between the HPAIV and LPAIV H5 HAs. We demonstrate that clade 2.3.4.4 HPAIV H5 HA has a broader host cell binding across a variety of bird species compared to the LPAIV H5 HA. These findings support published results from experimental trials, and outcomes of natural disease outbreaks with these viruses.
Collapse
Affiliation(s)
- Carmen Jerry
- Poultry Diagnostic and Research Center, 953 College, Station Road, Athens, GA, 30605, USA; The Department of Pathology, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - David Stallknecht
- Southeastern Cooperative Wildlife Disease Study, 589 D.W Brooks Drive, Athens, GA, 30602, USA
| | - Christina Leyson
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Dept. of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA, 30605, USA
| | - Roy Berghaus
- Food Animal Health and Management Program, Veterinary Medical Center, 2200 College Station Road, Athens, GA, 30602, USA
| | - Brian Jordan
- Poultry Diagnostic and Research Center, 953 College, Station Road, Athens, GA, 30605, USA
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Dept. of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA, 30605, USA
| | - Gavin Hitchener
- Cornell University Duck Research Laboratory, 192 Old Country Road, Eastport, NY, 11941, USA
| | - Monique França
- Poultry Diagnostic and Research Center, 953 College, Station Road, Athens, GA, 30605, USA.
| |
Collapse
|
18
|
Ayala AJ, Yabsley MJ, Hernandez SM. A Review of Pathogen Transmission at the Backyard Chicken-Wild Bird Interface. Front Vet Sci 2020; 7:539925. [PMID: 33195512 PMCID: PMC7541960 DOI: 10.3389/fvets.2020.539925] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/13/2020] [Indexed: 01/31/2023] Open
Abstract
Habitat conversion and the expansion of domesticated, invasive species into native habitats are increasingly recognized as drivers of pathogen emergence at the agricultural-wildlife interface. Poultry agriculture is one of the largest subsets of this interface, and pathogen spillover events between backyard chickens and wild birds are becoming more commonly reported. Native wild bird species are under numerous anthropogenic pressures, but the risks of pathogen spillover from domestic chickens have been historically underappreciated as a threat to wild birds. Now that the backyard chicken industry is one of the fastest growing industries in the world, it is imperative that the principles of biosecurity, specifically bioexclusion and biocontainment, are legislated and implemented. We reviewed the literature on spillover events of pathogens historically associated with poultry into wild birds. We also reviewed the reasons for biosecurity failures in backyard flocks that lead to those spillover events and provide recommendations for current and future backyard flock owners.
Collapse
Affiliation(s)
- Andrea J. Ayala
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Michael J. Yabsley
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Athens, GA, United States
| | - Sonia M. Hernandez
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Athens, GA, United States
| |
Collapse
|
19
|
Shin JI, Park YC, Song JM. Influence of temperature on the antigenic changes of virus-like particles. Clin Exp Vaccine Res 2020; 9:126-132. [PMID: 32864369 PMCID: PMC7445320 DOI: 10.7774/cevr.2020.9.2.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose In this study, we investigated whether the antigenic changes of the virus-like particles (VLPs) are affected by the temperature during storage. Materials and Methods After exposing the recombinant influenza VLPs to various temperatures for a period, antigenic changes were examined through in vitro hemagglutination receptor binding assay and in vivo mouse experiments. Results Influenza VLPs were exposed at three different temperatures of low, middle, and high on a thermo-hygrostat. High temperature exposed influenza VLPs were showed significantly reduced HA activity and immunogenicity after mouse single immunization over time compared low and middle. When the VLPs exposed to the high temperature were inoculated once in the mice, it was found that the immunogenicity was significantly reduced compared to the VLPs exposed to the low temperature. However, these differences were almost neglected when mice were inoculated twice even with VLPs exposed to high temperatures. Conclusion This study suggests that similar protective effects can be expected by controlling the number of vaccination and storage conditions, although the antigenic change in the VLP vaccines occurred when exposed to high temperature.
Collapse
Affiliation(s)
- Jae-In Shin
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| | - Young Chan Park
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| | - Jae Min Song
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| |
Collapse
|
20
|
Nolting JM, Lauterbach SE, Bowman AS. Using Environmental Sampling Techniques to Conduct Influenza A Virus Surveillance in Poultry and Waterfowl at Ohio Agricultural Exhibitions. Avian Dis 2020; 64:96-98. [PMID: 32267131 DOI: 10.1637/0005-2086-64.1.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/04/2019] [Indexed: 11/05/2022]
Abstract
The outbreak of highly pathogenic H5Nx influenza A viruses (IAVs) in the United States during 2014-2015 caused devastating economic losses; therefore, several measures were established to control and eliminate highly pathogenic H5Nx from U.S. poultry flocks. One such measure was a temporary ban on poultry exhibitions during 2015, and this decision dramatically affected youth raising poultry as part of agricultural education programs. During the summer of 2016, surveillance of the environment was conducted at 20 Ohio agricultural fairs to estimate the prevalence of IAV in exhibition poultry to determine the baseline during nonoutbreak exhibition seasons. Of the 400 total samples collected, two were positive by real-time reverse transcription-PCR; however, virus isolation attempts with both embryonating chicken eggs and cell culture were unsuccessful. The detection of nucleic acid highlights the risk exhibition poultry could play in the transmission and spread of IAVs between humans, swine, wild birds, and domestic poultry during low or highly pathogenic IAV outbreaks. Additional surveillance at agricultural fairs and biosecurity education for youth exhibitors in this setting are warranted to reduce risk.
Collapse
Affiliation(s)
- Jacqueline M Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Sarah E Lauterbach
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210,
| |
Collapse
|
21
|
Liang WS, He YC, Wu HD, Li YT, Shih TH, Kao GS, Guo HY, Chao DY. Ecological factors associated with persistent circulation of multiple highly pathogenic avian influenza viruses among poultry farms in Taiwan during 2015-17. PLoS One 2020; 15:e0236581. [PMID: 32790744 PMCID: PMC7425926 DOI: 10.1371/journal.pone.0236581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/08/2020] [Indexed: 11/21/2022] Open
Abstract
Emergence and intercontinental spread of highly pathogenic avian influenza A (HPAI) H5Nx virus clade 2.3.4.4 has resulted in substantial economic losses to the poultry industry in Asia, Europe, and North America. The long-distance migratory birds have been suggested to play a major role in the global spread of avian influenza viruses during this wave of panzootic outbreaks since 2013. Poultry farm epidemics caused by multiple introduction of different HPAI novel subtypes of clade 2.3.4.4 viruses also occurred in Taiwan between 2015 and 2017. The mandatory and active surveillance detected H5N3 and H5N6 circulation in 2015 and 2017, respectively, while H5N2 and H5N8 were persistently identified in poultry farms since their first arrival in 2015. This study intended to assess the importance of various ecological factors contributed to the persistence of HPAI during three consecutive years. We used satellite technology to identify the location of waterfowl flocks. Four risk factors consistently showed strong association with the spatial clustering of H5N2 and H5N8 circulations during 2015 and 2017, including high poultry farm density (aOR:17.46, 95%CI: 5.91–74.86 and 8.23, 95% CI: 2.12–54.86 in 2015 and 2017, respectively), poultry heterogeneity index (aOR of 12.28, 95%CI: 5.02–31.14 and 2.79, 95%CI: 1.00–7.69, in 2015 and 2017, respectively), non-registered waterfowl flock density (aOR: 6.8, 95%CI: 3.41–14.46 and 9.17, 95%CI: 3.73–26.20, in 2015 and 2017, respectively) and higher percentage of cropping land coverage (aOR of 1.36, 95%CI: 1.10–1.69 and 1.04, 95%CI: 1.02–1.07, in 2015 and 2017, respectively). Our study highlights the application of remote sensing and clustering analysis for the identification and characterization of environmental factors in facilitating and contributing to the persistent circulation of certain subtypes of H5Nx in poultry farms in Taiwan.
Collapse
Affiliation(s)
- Wei-Shan Liang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Yu-Chen He
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Hong-Dar Wu
- Institute of statistics, National Chung Hsing University, Taichung, Taiwan
| | - Yao-Tsun Li
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Tai-Hwa Shih
- Bureau of Animal and Plant Health Inspection and Quarantine (BAPHIQ), Taipei, Taiwan
| | - Gour-Shenq Kao
- Bureau of Animal and Plant Health Inspection and Quarantine (BAPHIQ), Taipei, Taiwan
| | - Horng-Yuh Guo
- Division of Agricultural Chemistry, Taiwan Agriculture Research Institute (TARI), Council of Agriculture, Taichung, Taiwan
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Abstract
In 1918, a strain of influenza A virus caused a human pandemic resulting in the deaths of 50 million people. A century later, with the advent of sequencing technology and corresponding phylogenetic methods, we know much more about the origins, evolution and epidemiology of influenza epidemics. Here we review the history of avian influenza viruses through the lens of their genetic makeup: from their relationship to human pandemic viruses, starting with the 1918 H1N1 strain, through to the highly pathogenic epidemics in birds and zoonoses up to 2018. We describe the genesis of novel influenza A virus strains by reassortment and evolution in wild and domestic bird populations, as well as the role of wild bird migration in their long-range spread. The emergence of highly pathogenic avian influenza viruses, and the zoonotic incursions of avian H5 and H7 viruses into humans over the last couple of decades are also described. The threat of a new avian influenza virus causing a human pandemic is still present today, although control in domestic avian populations can minimize the risk to human health. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.
Collapse
Affiliation(s)
| | | | - Paul Digard
- The Roslin Institute, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
23
|
Yamaji R, Saad MD, Davis CT, Swayne DE, Wang D, Wong FYK, McCauley JW, Peiris JSM, Webby RJ, Fouchier RAM, Kawaoka Y, Zhang W. Pandemic potential of highly pathogenic avian influenza clade 2.3.4.4 A(H5) viruses. Rev Med Virol 2020; 30:e2099. [PMID: 32135031 PMCID: PMC9285678 DOI: 10.1002/rmv.2099] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/05/2023]
Abstract
The panzootic caused by A/goose/Guangdong/1/96‐lineage highly pathogenic avian influenza (HPAI) A(H5) viruses has occurred in multiple waves since 1996. From 2013 onwards, clade 2.3.4.4 viruses of subtypes A(H5N2), A(H5N6), and A(H5N8) emerged to cause panzootic waves of unprecedented magnitude among avian species accompanied by severe losses to the poultry industry around the world. Clade 2.3.4.4 A(H5) viruses have expanded in distinct geographical and evolutionary pathways likely via long distance migratory bird dispersal onto several continents and by poultry trade among neighboring countries. Coupled with regional circulation, the viruses have evolved further by reassorting with local viruses. As of February 2019, there have been 23 cases of humans infected with clade 2.3.4.4 H5N6 viruses, 16 (70%) of which had fatal outcomes. To date, no HPAI A(H5) virus has caused sustainable human‐to‐human transmission. However, due to the lack of population immunity in humans and ongoing evolution of the virus, there is a continuing risk that clade 2.3.4.4 A(H5) viruses could cause an influenza pandemic if the ability to transmit efficiently among humans was gained. Therefore, multisectoral collaborations among the animal, environmental, and public health sectors are essential to conduct risk assessments and develop countermeasures to prevent disease and to control spread. In this article, we describe an assessment of the likelihood of clade 2.3.4.4 A(H5) viruses gaining human‐to‐human transmissibility and impact on human health should such human‐to‐human transmission occur. This structured analysis assessed properties of the virus, attributes of the human population, and ecology and epidemiology of these viruses in animal hosts.
Collapse
Affiliation(s)
- Reina Yamaji
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| | - Magdi D Saad
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| | - Charles T Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E Swayne
- Department of Agriculture, OIE Collaborating Centre for Research on Emerging Avian Diseases, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China
| | - Frank Y K Wong
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
| | - John W McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, UK
| | - J S Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Wenqing Zhang
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| |
Collapse
|
24
|
Humphreys JM, Ramey AM, Douglas DC, Mullinax JM, Soos C, Link P, Walther P, Prosser DJ. Waterfowl occurrence and residence time as indicators of H5 and H7 avian influenza in North American Poultry. Sci Rep 2020; 10:2592. [PMID: 32054908 PMCID: PMC7018751 DOI: 10.1038/s41598-020-59077-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/15/2020] [Indexed: 01/25/2023] Open
Abstract
Avian influenza (AI) affects wild aquatic birds and poses hazards to human health, food security, and wildlife conservation globally. Accordingly, there is a recognized need for new methods and tools to help quantify the dynamic interaction between wild bird hosts and commercial poultry. Using satellite-marked waterfowl, we applied Bayesian joint hierarchical modeling to concurrently model species distributions, residency times, migration timing, and disease occurrence probability under an integrated animal movement and disease distribution modeling framework. Our results indicate that migratory waterfowl are positively related to AI occurrence over North America such that as waterfowl occurrence probability or residence time increase at a given location, so too does the chance of a commercial poultry AI outbreak. Analyses also suggest that AI occurrence probability is greatest during our observed waterfowl northward migration, and less during the southward migration. Methodologically, we found that when modeling disparate facets of disease systems at the wildlife-agriculture interface, it is essential that multiscale spatial patterns be addressed to avoid mistakenly inferring a disease process or disease-environment relationship from a pattern evaluated at the improper spatial scale. The study offers important insights into migratory waterfowl ecology and AI disease dynamics that aid in better preparing for future outbreaks.
Collapse
Affiliation(s)
- John M Humphreys
- Michigan State University, East Lansing, Michigan, USA.
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland, USA.
| | - Andrew M Ramey
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - David C Douglas
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | | | - Catherine Soos
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Saskatchewan, Canada
| | - Paul Link
- Louisiana Department of Wildlife and Fisheries, Baton Rouge, Louisiana, USA
| | - Patrick Walther
- U.S. Fish and Wildlife Service, Texas Chenier Plain Refuge Complex, Anahuac, Texas, USA
| | - Diann J Prosser
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland, USA
| |
Collapse
|
25
|
LIMITED DETECTION OF ANTIBODIES TO CLADE 2.3.4.4 A/GOOSE/GUANGDONG/1/1996 LINEAGE HIGHLY PATHOGENIC H5 AVIAN INFLUENZA VIRUS IN NORTH AMERICAN WATERFOWL. J Wildl Dis 2019. [PMID: 31556839 DOI: 10.7589/2019-01-003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During 2014, highly pathogenic (HP) influenza A viruses (IAVs) of the A/Goose/Guangdong/1/1996 lineage (GsGD-HP-H5), originating from Asia, were detected in domestic poultry and wild birds in Canada and the US. These clade 2.3.4.4 GsGD-HP-H5 viruses included reassortants possessing North American lineage gene segments; were detected in wild birds in the Pacific, Central, and Mississippi flyways; and caused the largest HP IAV outbreak in poultry in US history. To determine if an antibody response indicative of previous infection with clade 2.3.4.4 GsGD-HP-H5 IAV could be detected in North American wild waterfowl sampled before, during, and after the 2014-15 outbreak, sera from 2,793 geese and 3,715 ducks were tested by blocking enzyme-linked immunosorbent assay and hemagglutination inhibition (HI) tests using both clade 2.3.4.4 GsGD-HPH5 and North American lineage low pathogenic (LP) H5 IAV antigens. We detected an antibody response meeting a comparative titer-based criteria (HI titer observed with 2.3.4.4 GsGD-HP-H5 antigens exceeded the titer observed for LP H5 antigen by two or more dilutions) for previous infection with clade 2.3.4.4 GsGD-HP-H5 IAV in only five birds, one Blue-winged Teal (Spatula discors) sampled during the outbreak and three Mallards (Anas platyrhynchos) and one Canada Goose (Branta canadensis) sampled during the post-outbreak period. These serologic results are consistent with the spatiotemporal extent of the outbreak in wild birds in North America during 2014 and 2015 and limited exposure of waterfowl to GsGD-HP-H5 IAV, particularly in the central and eastern US.
Collapse
|
26
|
Zhao P, Sun L, Xiong J, Wang C, Chen L, Yang P, Yu H, Yan Q, Cheng Y, Jiang L, Chen Y, Zhao G, Jiang Q, Xiong C. Semiaquatic mammals might be intermediate hosts to spread avian influenza viruses from avian to human. Sci Rep 2019; 9:11641. [PMID: 31406229 PMCID: PMC6690891 DOI: 10.1038/s41598-019-48255-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022] Open
Abstract
Avian influenza A viruses (AIVs) can occasionally transmit to mammals and lead to the development of human pandemic. A species of mammal is considered as a mixing vessel in the process of host adaptation. So far, pigs are considered as a plausible intermediate host for the generation of human pandemic strains, and are labelled ‘mixing vessels’. In this study, through the analysis of two professional databases, the Influenza Virus Resource of NCBI and the Global Initiative on Sharing Avian Influenza Data (GISAID), we found that the species of mink (Neovison vison) can be infected by more subtypes of influenza A viruses with considerably higher α-diversity related indices. It suggested that the semiaquatic mammals (riverside mammals), rather than pigs, might be the intermediate host to spread AIVs and serve as a potential mixing vessel for the interspecies transmission among birds, mammals and human. In epidemic areas, minks, possibly some other semiaquatic mammals as well, could be an important sentinel species for influenza surveillance and early warning.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Lingsha Sun
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jiasheng Xiong
- College of Marine Science, Shandong University, Weihai, China
| | - Chuan Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Yang
- Huai'an Center for Disease Control and Prevention, Huai'an, China
| | - Hao Yu
- Hongze Center for Disease Control and Prevention, Hongze, China
| | - Qingli Yan
- Huai'an Center for Disease Control and Prevention, Huai'an, China
| | - Yan Cheng
- Hongze Center for Disease Control and Prevention, Hongze, China
| | - Lufang Jiang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Genming Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Qingwu Jiang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Chenglong Xiong
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China. .,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
27
|
Lee DH, Torchetti MK, Hicks J, Killian ML, Bahl J, Pantin-Jackwood M, Swayne DE. Transmission Dynamics of Highly Pathogenic Avian Influenza Virus A(H5Nx) Clade 2.3.4.4, North America, 2014-2015. Emerg Infect Dis 2019; 24:1840-1848. [PMID: 30226167 PMCID: PMC6154162 DOI: 10.3201/eid2410.171891] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eurasia highly pathogenic avian influenza virus (HPAIV) H5 clade 2.3.4.4 emerged in North America at the end of 2014 and caused outbreaks affecting >50 million poultry in the United States before eradication in June 2015. We investigated the underlying ecologic and epidemiologic processes associated with this viral spread by performing a comparative genomic study using 268 full-length genome sequences and data from outbreak investigations. Reassortant HPAIV H5N2 circulated in wild birds along the Pacific flyway before several spillover events transmitting the virus to poultry farms. Our analysis suggests that >3 separate introductions of HPAIV H5N2 into Midwest states occurred during March–June 2015; transmission to Midwest poultry farms from Pacific wild birds occurred ≈1.7–2.4 months before detection. Once established in poultry, the virus rapidly spread between turkey and chicken farms in neighboring states. Enhanced biosecurity is required to prevent the introduction and dissemination of HPAIV across the poultry industry.
Collapse
|
28
|
Khan JS, Provencher JF, Forbes MR, Mallory ML, Lebarbenchon C, McCoy KD. Parasites of seabirds: A survey of effects and ecological implications. ADVANCES IN MARINE BIOLOGY 2019; 82:1-50. [PMID: 31229148 PMCID: PMC7172769 DOI: 10.1016/bs.amb.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Parasites are ubiquitous in the environment, and can cause negative effects in their host species. Importantly, seabirds can be long-lived and cross multiple continents within a single annual cycle, thus their exposure to parasites may be greater than other taxa. With changing climatic conditions expected to influence parasite distribution and abundance, understanding current level of infection, transmission pathways and population-level impacts are integral aspects for predicting ecosystem changes, and how climate change will affect seabird species. In particular, a range of micro- and macro-parasites can affect seabird species, including ticks, mites, helminths, viruses and bacteria in gulls, terns, skimmers, skuas, auks and selected phalaropes (Charadriiformes), tropicbirds (Phaethontiformes), penguins (Sphenisciformes), tubenoses (Procellariiformes), cormorants, frigatebirds, boobies, gannets (Suliformes), and pelicans (Pelecaniformes) and marine seaducks and loons (Anseriformes and Gaviiformes). We found that the seabird orders of Charadriiformes and Procellariiformes were most represented in the parasite-seabird literature. While negative effects were reported in seabirds associated with all the parasite groups, most effects have been studied in adults with less information known about how parasites may affect chicks and fledglings. We found studies most often reported on negative effects in seabird hosts during the breeding season, although this is also the time when most seabird research occurs. Many studies report that external factors such as condition of the host, pollution, and environmental conditions can influence the effects of parasites, thus cumulative effects likely play a large role in how parasites influence seabirds at both the individual and population level. With an increased understanding of parasite-host dynamics it is clear that major environmental changes, often those associated with human activities, can directly or indirectly affect the distribution, abundance, or virulence of parasites and pathogens.
Collapse
Affiliation(s)
- Junaid S Khan
- Canadian Wildlife Service, Environment and Climate Change Canada, Gatineau, QC, Canada
| | - Jennifer F Provencher
- Canadian Wildlife Service, Environment and Climate Change Canada, Gatineau, QC, Canada.
| | - Mark R Forbes
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Mark L Mallory
- Department of Biology, Acadia University, Wolfville, NS, Canada
| | - Camille Lebarbenchon
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, Saint Denis, La Réunion, France
| | - Karen D McCoy
- MIVEGEC, UMR 5290 CNRS-IRD-University of Montpellier, Centre IRD, Montpellier, France
| |
Collapse
|
29
|
Hollander LP, Fojtik A, Kienzle-Dean C, Davis-Fields N, Poulson RL, Davis B, Mowry C, Stallknecht DE. Prevalence of Influenza A Viruses in Ducks Sampled in Northwestern Minnesota and Evidence for Predominance of H3N8 and H4N6 Subtypes in Mallards, 2007-2016. Avian Dis 2019; 63:126-130. [PMID: 31131568 PMCID: PMC11312346 DOI: 10.1637/11851-041918-reg.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/20/2018] [Indexed: 11/05/2022]
Abstract
Long-term comprehensive studies of avian influenza virus subtypes in ducks not only contribute to understanding variations and patterns of subtype diversity, but also can be important in defining seasonal and temporal risks associated with transmission of potentially highly pathogenic H5 and H7 subtypes to domestic poultry. We analyzed influenza A virus (IAV) surveillance data from dabbling ducks collected at an important migratory stopover site in northwestern Minnesota from 2007-2016 and identified prevalence and subtype diversity throughout this period. In total, 13,228 cloacal and oropharyngeal swabs from waterfowl were tested over the 10-year period; the majority of these waterfowl were mallards sampled from late August through late September (n = 9133). From these, 1768 IAVs were isolated (19.4% mean annual prevalence, ranging from 11.0% in 2007 to 32.8% in 2011), and both hemagglutinin (HA) and neuraminidase were identified for 1588. Although subtype diversity and prevalence varied by year, H3 and H4 HA subtypes predominated in all years, accounting for 65.7% of the observed HA subtype diversity. The mechanisms driving this consistent pattern of subtype diversity and predominance are not understood but may include factors at the host, population, and virus level.
Collapse
Affiliation(s)
- Laura P Hollander
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, School of Veterinary Medicine, University of Georgia, Athens, GA 30602, lholla27@gmailcom
| | - Alinde Fojtik
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, School of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Clara Kienzle-Dean
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, School of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Nick Davis-Fields
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, School of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Rebecca L Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, School of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Bruce Davis
- Minnesota Department of Natural Resources, Bemidji, MN 56601
| | - Craig Mowry
- United States Fish and Wildlife Service, Agassiz National Wildlife Refuge, Middle River, MN 56737
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, School of Veterinary Medicine, University of Georgia, Athens, GA 30602
| |
Collapse
|
30
|
Dhingra MS, Artois J, Dellicour S, Lemey P, Dauphin G, Von Dobschuetz S, Van Boeckel TP, Castellan DM, Morzaria S, Gilbert M. Geographical and Historical Patterns in the Emergences of Novel Highly Pathogenic Avian Influenza (HPAI) H5 and H7 Viruses in Poultry. Front Vet Sci 2018; 5:84. [PMID: 29922681 PMCID: PMC5996087 DOI: 10.3389/fvets.2018.00084] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/03/2018] [Indexed: 01/28/2023] Open
Abstract
Over the years, the emergence of novel H5 and H7 highly pathogenic avian influenza viruses (HPAI) has been taking place through two main mechanisms: first, the conversion of a low pathogenic into a highly pathogenic virus, and second, the reassortment between different genetic segments of low and highly pathogenic viruses already in circulation. We investigated and summarized the literature on emerging HPAI H5 and H7 viruses with the aim of building a spatio-temporal database of all these recorded conversions and reassortments events. We subsequently mapped the spatio-temporal distribution of known emergence events, as well as the species and production systems that they were associated with, the aim being to establish their main characteristics. From 1959 onwards, we identified a total of 39 independent H7 and H5 LPAI to HPAI conversion events. All but two of these events were reported in commercial poultry production systems, and a majority of these events took place in high-income countries. In contrast, a total of 127 reassortments have been reported from 1983 to 2015, which predominantly took place in countries with poultry production systems transitioning from backyard to intensive production systems. Those systems are characterized by several co-circulating viruses, multiple host species, regular contact points in live bird markets, limited biosecurity within value chains, and frequent vaccination campaigns that impose selection pressures for emergence of novel reassortants. We conclude that novel HPAI emergences by these two mechanisms occur in different ecological niches, with different viral, environmental and host associated factors, which has implications in early detection and management and mitigation of the risk of emergence of novel HPAI viruses.
Collapse
Affiliation(s)
- Madhur S Dhingra
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.,Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Jean Artois
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Simon Dellicour
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Gwenaelle Dauphin
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Thomas P Van Boeckel
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.,Center for Disease Dynamics, Economics and Policy, Washington, DC, United States
| | | | - Subhash Morzaria
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.,Fonds National de la Recherche Scientifique (FNRS), Brussels, Belgium
| |
Collapse
|
31
|
Gambaryan A, Gordeychuk I, Boravleva E, Lomakina N, Kropotkina E, Lunitsin A, Klenk HD, Matrosovich M. Immunization of Domestic Ducks with Live Nonpathogenic H5N3 Influenza Virus Prevents Shedding and Transmission of Highly Pathogenic H5N1 Virus to Chickens. Viruses 2018; 10:v10040164. [PMID: 29614716 PMCID: PMC5923458 DOI: 10.3390/v10040164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 12/21/2022] Open
Abstract
Wild ducks are known to be able to carry avian influenza viruses over long distances and infect domestic ducks, which in their turn infect domestic chickens. Therefore, prevention of virus transmission between ducks and chickens is important to control the spread of avian influenza. Here we used a low pathogenic wild aquatic bird virus A/duck/Moscow/4182/2010 (H5N3) for prevention of highly pathogenic avian influenza virus (HPAIV) transmission between ducks and chickens. We first confirmed that the ducks orally infected with H5N1 HPAIV A/chicken/Kurgan/3/2005 excreted the virus in feces. All chickens that were in contact with the infected ducks became sick, excreted the virus, and died. However, the ducks orally inoculated with 104 50% tissue culture infective doses of A/duck/Moscow/4182/2010 and challenged 14 to 90 days later with H5N1 HPAIV did not excrete the challenge virus. All contact chickens survived and did not excrete the virus. Our results suggest that low pathogenic virus of wild aquatic birds can be used for prevention of transmission of H5N1 viruses between ducks and chickens.
Collapse
Affiliation(s)
- Alexandra Gambaryan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences, premises 8, building 1, Village of Institute of Poliomyelitis, Settlement "Moskovskiy", 108819 Moscow, Russia.
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences, premises 8, building 1, Village of Institute of Poliomyelitis, Settlement "Moskovskiy", 108819 Moscow, Russia.
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991 Moscow, Russia.
| | - Elizaveta Boravleva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences, premises 8, building 1, Village of Institute of Poliomyelitis, Settlement "Moskovskiy", 108819 Moscow, Russia.
| | - Natalia Lomakina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences, premises 8, building 1, Village of Institute of Poliomyelitis, Settlement "Moskovskiy", 108819 Moscow, Russia.
| | - Ekaterina Kropotkina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences, premises 8, building 1, Village of Institute of Poliomyelitis, Settlement "Moskovskiy", 108819 Moscow, Russia.
| | - Andrey Lunitsin
- Federal Research Center for Virology and Microbiology, Bld. 1 Academic Baculov St., 601125 Settl. Volginsky, Vladimir Region, Russia.
| | - Hans-Dieter Klenk
- Institute of Virology, Philipps University, Hans-Meerwein-Str. 2, 35043 Marburg, Germany.
| | - Mikhail Matrosovich
- Institute of Virology, Philipps University, Hans-Meerwein-Str. 2, 35043 Marburg, Germany.
| |
Collapse
|
32
|
Ramey AM, DeLiberto TJ, Berhane Y, Swayne DE, Stallknecht DE. Lessons learned from research and surveillance directed at highly pathogenic influenza A viruses in wild birds inhabiting North America. Virology 2018; 518:55-63. [PMID: 29453059 DOI: 10.1016/j.virol.2018.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 11/19/2022]
Abstract
Following detections of highly pathogenic (HP) influenza A viruses (IAVs) in wild birds inhabiting East Asia after the turn of the millennium, the intensity of sampling of wild birds for IAVs increased throughout much of North America. The objectives for many research and surveillance efforts were directed towards detecting Eurasian origin HP IAVs and understanding the potential of such viruses to be maintained and dispersed by wild birds. In this review, we highlight five important lessons learned from research and surveillance directed at HP IAVs in wild birds inhabiting North America: (1) Wild birds may disperse IAVs between North America and adjacent regions via migration, (2) HP IAVs can be introduced to wild birds in North America, (3) HP IAVs may cross the wild bird-poultry interface in North America, (4) The probability of encountering and detecting a specific virus may be low, and (5) Population immunity of wild birds may influence HP IAV outbreaks in North America. We review empirical support derived from research and surveillance efforts for each lesson learned and, furthermore, identify implications for future surveillance efforts, biosecurity, and population health. We conclude our review by identifying five additional areas in which we think future mechanistic research relative to IAVs in wild birds in North America are likely to lead to other important lessons learned in the years ahead.
Collapse
Affiliation(s)
- Andrew M Ramey
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA.
| | - Thomas J DeLiberto
- National Wildlife Disease Program, Wildlife Services, Animal and Plant Health Inspection Service, US Department of Agriculture, Fort Collins, CO 80521, USA
| | - Yohannes Berhane
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Manitoba, Canada R3E 3M4; Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
33
|
Hill NJ, Hussein ITM, Davis KR, Ma EJ, Spivey TJ, Ramey AM, Puryear WB, Das SR, Halpin RA, Lin X, Fedorova NB, Suarez DL, Boyce WM, Runstadler JA. Reassortment of Influenza A Viruses in Wild Birds in Alaska before H5 Clade 2.3.4.4 Outbreaks. Emerg Infect Dis 2018; 23:654-657. [PMID: 28322698 PMCID: PMC5367406 DOI: 10.3201/eid2304.161668] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sampling of mallards in Alaska during September 2014-April 2015 identified low pathogenic avian influenza A virus (subtypes H5N2 and H1N1) that shared ancestry with highly pathogenic reassortant H5N2 and H5N1 viruses. Molecular dating indicated reassortment soon after interhemispheric movement of H5N8 clade 2.3.4.4, suggesting genetic exchange in Alaska or surrounds before outbreaks.
Collapse
|
34
|
Tsunekuni R, Yaguchi Y, Kashima Y, Yamashita K, Takemae N, Mine J, Tanikawa T, Uchida Y, Saito T. Spatial transmission of H5N6 highly pathogenic avian influenza viruses among wild birds in Ibaraki Prefecture, Japan, 2016-2017. Arch Virol 2018; 163:1195-1207. [PMID: 29392495 DOI: 10.1007/s00705-018-3752-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/10/2018] [Indexed: 11/25/2022]
Abstract
From 29 November 2016 to 24 January 2017, sixty-three cases of H5N6 highly pathogenic avian influenza virus (HPAIV) infections were detected in wild birds in Ibaraki Prefecture, Japan. Here, we analyzed the genetic, temporal, and geographic correlations of these 63 HPAIVs to elucidate their dissemination throughout the prefecture. Full-genome sequence analysis of the Ibaraki isolates showed that 7 segments (PB2, PB1, PA, HA, NP, NA, NS) were derived from G1.1.9 strains while the M segment was from G1.1 strains; both groups of strains circulated in south China. Pathological studies revealed severe systemic infection in dead swans (the majority of dead birds and the only species necropsied), thus indicating high susceptibility to H5N6 HPAIVs. Coalescent phylogenetic analysis using the 7 G1.1.9-derived segments enabled detailed analysis of the short-term evolution of these highly homologous HPAIVs. This analysis revealed that the H5N6 HPAIVs isolated from wild birds in Ibaraki Prefecture were divided into 7 groups. Spatial analysis demonstrated that most of the cases concentrated around Senba Lake originated from a single source, and progeny viruses were transmitted to other locations after the infection expanded in mute swans. In contrast, within just a 5-km radius of the area in which cases were concentrated, three different intrusions of H5N6 HPAIVs were evident. Multi-segment analysis of short-term evolution showed that not only was the invading virus spread throughout Ibaraki Prefecture but also that, despite the small size of this region, multiple invasions had occurred during winter 2016-2017.
Collapse
Affiliation(s)
- Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Yuji Yaguchi
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, 966-1 Nakagachityo, Mito, Ibaraki, 310-0002, Japan
| | - Yuki Kashima
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, 966-1 Nakagachityo, Mito, Ibaraki, 310-0002, Japan
| | - Kaoru Yamashita
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, 966-1 Nakagachityo, Mito, Ibaraki, 310-0002, Japan
| | - Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan.
| |
Collapse
|
35
|
Yoo SJ, Kwon T, Lyoo YS. Challenges of influenza A viruses in humans and animals and current animal vaccines as an effective control measure. Clin Exp Vaccine Res 2018; 7:1-15. [PMID: 29399575 PMCID: PMC5795040 DOI: 10.7774/cevr.2018.7.1.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 11/28/2022] Open
Abstract
Influenza A viruses (IAVs) are genetically diverse and variable pathogens that share various hosts including human, swine, and domestic poultry. Interspecies and intercontinental viral spreads make the ecology of IAV more complex. Beside endemic IAV infections, human has been exposed to pandemic and zoonotic threats from avian and swine influenza viruses. Animal health also has been threatened by high pathogenic avian influenza viruses (in domestic poultry) and reverse zoonosis (in swine). Considering its dynamic interplay between species, prevention and control against IAV should be conducted effectively in both humans and animal sectors. Vaccination is one of the most efficient tools against IAV. Numerous vaccines against animal IAVs have been developed by a variety of vaccine technologies and some of them are currently commercially available. We summarize several challenges in control of IAVs faced by human and animals and discuss IAV vaccines for animal use with those application in susceptible populations.
Collapse
Affiliation(s)
- Sung J. Yoo
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Taeyong Kwon
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Young S. Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
36
|
Grear DA, Hall JS, Dusek RJ, Ip HS. Inferring epidemiologic dynamics from viral evolution: 2014-2015 Eurasian/North American highly pathogenic avian influenza viruses exceed transmission threshold, R0 = 1, in wild birds and poultry in North America. Evol Appl 2017; 11:547-557. [PMID: 29636805 PMCID: PMC5891053 DOI: 10.1111/eva.12576] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low‐pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self‐sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time‐rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number (R0) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds (R0 > 1) and poultry (R0 ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.
Collapse
Affiliation(s)
- Daniel A Grear
- United States Geological Survey National Wildlife Health Center Madison WI USA
| | - Jeffrey S Hall
- United States Geological Survey National Wildlife Health Center Madison WI USA
| | - Robert J Dusek
- United States Geological Survey National Wildlife Health Center Madison WI USA
| | - Hon S Ip
- United States Geological Survey National Wildlife Health Center Madison WI USA
| |
Collapse
|
37
|
Abstract
Waterbirds are the main reservoir for low pathogenic avian influenza A viruses (LPAIV), from which occasional spillover to poultry occurs. When circulating among poultry, LPAIV may become highly pathogenic avian influenza A viruses (HPAIV). In recent years, the epidemiology of HPAIV viruses has changed drastically. HPAIV H5N1 are currently endemic among poultry in a number of countries. In addition, global spread of HPAIV H5Nx viruses has resulted in major outbreaks among wild birds and poultry worldwide. Using data collected during these outbreaks, the role of migratory birds as a vector became increasingly clear. Here we provide an overview of current data about various aspects of the changing role of wild birds in the epidemiology of avian influenza A viruses.
Collapse
|
38
|
More S, Bicout D, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Thulke HH, Velarde A, Willeberg P, Winckler C, Breed A, Brouwer A, Guillemain M, Harder T, Monne I, Roberts H, Baldinelli F, Barrucci F, Fabris C, Martino L, Mosbach-Schulz O, Verdonck F, Morgado J, Stegeman JA. Avian influenza. EFSA J 2017; 15:e04991. [PMID: 32625288 PMCID: PMC7009867 DOI: 10.2903/j.efsa.2017.4991] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become infected. Low pathogenic avian influenza virus (LPAIV) may reach similar maximum prevalence levels in wild bird populations to HPAIV but the risk of LPAIV infection of a poultry holding was estimated to be lower than that of HPAIV. Only few non-wild bird pathways were identified having a non-negligible risk of AI introduction. The transmission rate between animals within a flock is assessed to be higher for HPAIV than LPAIV. In very few cases, it could be proven that HPAI outbreaks were caused by intrinsic mutation of LPAIV to HPAIV but current knowledge does not allow a prediction as to if, and when this could occur. In gallinaceous poultry, passive surveillance through notification of suspicious clinical signs/mortality was identified as the most effective method for early detection of HPAI outbreaks. For effective surveillance in anseriform poultry, passive surveillance through notification of suspicious clinical signs/mortality needs to be accompanied by serological surveillance and/or a virological surveillance programme of birds found dead (bucket sampling). Serosurveillance is unfit for early warning of LPAI outbreaks at the individual holding level but could be effective in tracing clusters of LPAIV-infected holdings. In wild birds, passive surveillance is an appropriate method for HPAIV surveillance if the HPAIV infections are associated with mortality whereas active wild bird surveillance has a very low efficiency for detecting HPAIV. Experts estimated and emphasised the effect of implementing specific biosecurity measures on reducing the probability of AIV entering into a poultry holding. Human diligence is pivotal to select, implement and maintain specific, effective biosecurity measures.
Collapse
|
39
|
Surveillance for highly pathogenic influenza A viruses in California during 2014-2015 provides insights into viral evolutionary pathways and the spatiotemporal extent of viruses in the Pacific Americas Flyway. Emerg Microbes Infect 2017; 6:e80. [PMID: 28874792 PMCID: PMC5625317 DOI: 10.1038/emi.2017.66] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022]
Abstract
We used surveillance data collected in California before, concurrent with, and subsequent to an outbreak of highly pathogenic (HP) clade 2.3.4.4 influenza A viruses (IAVs) in 2014–2015 to (i) evaluate IAV prevalence in waterfowl, (ii) assess the evidence for spill-over infections in marine mammals and (iii) genetically characterize low-pathogenic (LP) and HP IAVs to refine inference on the spatiotemporal extent of HP genome constellations and to evaluate possible evolutionary pathways. We screened samples from 1496 waterfowl and 1142 marine mammals collected from April 2014 to August 2015 and detected IAV RNA in 159 samples collected from birds (n=157) and pinnipeds (n=2). HP IAV RNA was identified in three samples originating from American wigeon (Anas americana). Genetic sequence data were generated for a clade 2.3.4.4 HP IAV-positive diagnostic sample and 57 LP IAV isolates. Phylogenetic analyses revealed that the HP IAV was a reassortant H5N8 virus with gene segments closely related to LP IAVs detected in mallards (Anas platyrhynchos) sampled in California and other IAVs detected in wild birds sampled within the Pacific Americas Flyway. In addition, our analysis provided support for common ancestry between LP IAVs recovered from waterfowl sampled in California and gene segments of reassortant HP H5N1 IAVs detected in British Columbia, Canada and Washington, USA. Our investigation provides evidence that waterfowl are likely to have played a role in the evolution of reassortant HP IAVs in the Pacific Americas Flyway during 2014–2015, whereas we did not find support for spill-over infections in potential pinniped hosts.
Collapse
|
40
|
Wells SJ, Kromm MM, VanBeusekom ET, Sorley EJ, Sundaram ME, VanderWaal K, Bowers JWJ, Papinaho PA, Osterholm MT, Bender J. Epidemiologic Investigation of Highly Pathogenic H5N2 Avian Influenza Among Upper Midwest U.S. Turkey Farms, 2015. Avian Dis 2017; 61:198-204. [PMID: 28665726 DOI: 10.1637/11543-112816-reg.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In 2015, an outbreak of H5N2 highly pathogenic avian influenza (HPAI) occurred in the United States, severely impacting the turkey industry in the upper midwestern United States. Industry, government, and academic partners worked together to conduct a case-control investigation of the outbreak on turkey farms in the Upper Midwest. Case farms were confirmed to have HPAI-infected flocks, and control farms were farms with noninfected turkey flocks at a similar stage of production. Both case and control farms were affiliated with a large integrated turkey company. A questionnaire administered to farm managers and supervisors assessed farm biosecurity, litter handling, dead bird disposal, farm visitor and worker practices, and presence of wild birds on operations during the 2 wk prior to HPAI confirmation on case premises and the corresponding time frame for control premises. Sixty-three farms, including 37 case farms and 26 control farms were included in the analysis. We identified several factors significantly associated with the odds of H5N2 case farm status and that may have contributed to H5N2 transmission to and from operations. Factors associated with increased risk included close proximity to other turkey operations, soil disruption (e.g., tilling) in a nearby field within 14 days prior to the outbreak, and rendering of dead birds. Observation of wild mammals near turkey barns was associated with reduced risk. When analyses focused on farms identified with H5N2 infection before April 22 (Period 1), associations with H5N2-positive farm status included soil disruption in a nearby field within 14 days prior to the outbreak and a high level of visitor biosecurity. High level of worker biosecurity had a protective effect. During the study period after April 22 (Period 2), factors associated with HPAI-positive farm status included nonasphalt roads leading to the farm and use of a vehicle wash station or spray area. Presence of wild birds near dead bird disposal areas was associated with reduced risk. Study results indicated that the initial introduction and spread of H5N2 virus likely occurred by both environmental and between-farm pathways. Transmission dynamics appeared to change with progression of the outbreak. Despite enhanced biosecurity protocols, H5N2 transmission continued, highlighting the need to review geographic/topologic factors such as farm proximity and potential dust or air transmission associated with soil disruption. It is likely that biosecurity improvements will reduce the extent and speed of spread of future outbreaks, but our results suggest that environmental factors may also play a significant role in farms becoming infected with HPAI.
Collapse
Affiliation(s)
- S J Wells
- A Center for Animal Health and Food Safety, University of Minnesota, 1354 Eckles Avenue, St. Paul, MN 55108.,B Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, Falcon Heights, MN 55108
| | - M M Kromm
- C Jennie-O Turkey Store, Willmar, MN 56201
| | | | - E J Sorley
- D Center for Infectious Disease Research and Policy, 420 Delaware Street S.E., Minneapolis, MN 55414
| | - M E Sundaram
- D Center for Infectious Disease Research and Policy, 420 Delaware Street S.E., Minneapolis, MN 55414
| | - K VanderWaal
- B Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, Falcon Heights, MN 55108
| | | | | | - M T Osterholm
- D Center for Infectious Disease Research and Policy, 420 Delaware Street S.E., Minneapolis, MN 55414.,E Department of Environmental Health, University of Minnesota School of Public Health, 420 Delaware Street S.E., Minneapolis, MN 55414
| | - J Bender
- A Center for Animal Health and Food Safety, University of Minnesota, 1354 Eckles Avenue, St. Paul, MN 55108.,B Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, Falcon Heights, MN 55108
| |
Collapse
|
41
|
Hauck R, Crossley B, Rejmanek D, Zhou H, Gallardo RA. Persistence of Highly Pathogenic and Low Pathogenic Avian Influenza Viruses in Footbaths and Poultry Manure. Avian Dis 2017; 61:64-69. [PMID: 28301246 DOI: 10.1637/11495-091916-reg] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A questionnaire was designed in order to gather information about bedding material and footbath preparation and maintenance in different productive units across the state of California.This information was used to plan two experiments. In the first experiment, we tested the effectiveness of footbaths in inactivating highly pathogenic (HP) and low pathogenic (LP) avian influenza viruses (AIVs) on rubber boots. Surprisingly, quaternary ammonia- and quaternary ammonia + glutaraldehyde-based footbaths were not able to eliminate live HPAIV (H5N8) and LPAIV (H6N2) particles on boots, while a chlorine-based granulated disinfectant was able to destroy the virus at contact. These results demonstrated the potential of AIV, particularly the HPAIV isolate, to persist even if exposed to disinfecting footbaths, and suggest that footbaths, as a single tool, are not capable of preventing pathogen introduction into commercial flocks. In the second experiment, we investigated the persistence of HPAIV (H5N8) and LPAIV (H6N2) in bedding material and feces obtained from turkey, broiler, and egg-layer commercial productive units. Samples were collected at different times after spiking the bedding materials and feces. Results showed that HPAIV (H5N8) was more persistent than LPAIV (H6N2) in layer feces and bedding material obtained from commercial broilers and turkeys. Live HPAIV particles persisted 96 hr, the last time point measured, in layer feces and less than 60 hr in broiler and turkey bedding. In contrast, LPAIV persisted less than 24 hr after being spiked in all the different substrates. Further research in biosecurity practices such as footbath preparation and maintenance and better understanding of the mechanism of the increased persistence of AIV is warranted in order to identify effective litter treatments that destroy live virus in bedding material.
Collapse
Affiliation(s)
- R Hauck
- A Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VM3B, Davis, CA 95616
| | - B Crossley
- B University of California, California Animal Heath and Food Safety Laboratory System, West Health Science Drive, Davis, CA, 95616
| | - D Rejmanek
- B University of California, California Animal Heath and Food Safety Laboratory System, West Health Science Drive, Davis, CA, 95616
| | - H Zhou
- C Department of Animal Sciences, College of Agricultural and Environmental Sciences, University of California, 2247 Meyer Hall, One Shields Avenue, Davis, CA, 95616
| | - R A Gallardo
- A Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VM3B, Davis, CA 95616
| |
Collapse
|
42
|
Latorre-Margalef N, Brown JD, Fojtik A, Poulson RL, Carter D, Franca M, Stallknecht DE. Competition between influenza A virus subtypes through heterosubtypic immunity modulates re-infection and antibody dynamics in the mallard duck. PLoS Pathog 2017. [PMID: 28640898 PMCID: PMC5481145 DOI: 10.1371/journal.ppat.1006419] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our overall hypothesis is that host population immunity directed at multiple antigens will influence the prevalence, diversity and evolution of influenza A virus (IAV) in avian populations where the vast subtype diversity is maintained. To investigate how initial infection influences the outcome of later infections with homologous or heterologous IAV subtypes and how viruses interact through host immune responses, we carried out experimental infections in mallard ducks (Anas platyrhynchos). Mallards were pre-challenged with an H3N8 low-pathogenic IAV and were divided into six groups. At five weeks post H3N8 inoculation, each group was challenged with a different IAV subtype (H4N5, H10N7, H6N2, H12N5) or the same H3N8. Two additional pre-challenged groups were inoculated with the homologous H3N8 virus at weeks 11 and 15 after pre-challenge to evaluate the duration of protection. The results showed that mallards were still resistant to re-infection after 15 weeks. There was a significant reduction in shedding for all pre-challenged groups compared to controls and the outcome of the heterologous challenges varied according to hemagglutinin (HA) phylogenetic relatedness between the viruses used. There was a boost in the H3 antibody titer after re-infection with H4N5, which is consistent with original antigenic sin or antigenic seniority and suggest a putative strategy of virus evasion. These results imply competition between related subtypes that could regulate IAV subtype population dynamics in nature. Collectively, we provide new insights into within-host IAV complex interactions as drivers of IAV antigenic diversity that could allow the circulation of multiple subtypes in wild ducks.
Collapse
Affiliation(s)
- Neus Latorre-Margalef
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| | - Justin D. Brown
- Pennsylvania Game Commission, Pennsylvania State University, Animal Diagnostic Laboratory, University Park, Pennsylvania, United States of America
| | - Alinde Fojtik
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - Deborah Carter
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - Monique Franca
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
43
|
Sun X, Belser JA, Pulit-Penaloza JA, Creager HM, Guo Z, Jefferson SN, Liu F, York IA, Stevens J, Maines TR, Jernigan DB, Katz JM, Levine MZ, Tumpey TM. Stockpiled pre-pandemic H5N1 influenza virus vaccines with AS03 adjuvant provide cross-protection from H5N2 clade 2.3.4.4 virus challenge in ferrets. Virology 2017; 508:164-169. [PMID: 28554058 DOI: 10.1016/j.virol.2017.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 11/19/2022]
Abstract
Avian influenza viruses, notably H5 subtype viruses, pose a continuous threat to public health due to their pandemic potential. In recent years, influenza virus H5 subtype split vaccines with novel oil-in-water emulsion based adjuvants (e.g. AS03, MF59) have been shown to be safe, immunogenic, and able to induce broad immune responses in clinical trials, providing strong scientific support for vaccine stockpiling. However, whether such vaccines can provide protection from infection with emerging, antigenically distinct clades of H5 viruses has not been adequately addressed. Here, we selected two AS03-adjuvanted H5N1 vaccines from the US national pre-pandemic influenza vaccine stockpile and assessed whether the 2004-05 vaccines could provide protection against a 2014 highly pathogenic avian influenza (HPAI) H5N2 virus (A/northern pintail/Washington/40964/2014), a clade 2.3.4.4 virus responsible for mass culling of poultry in North America. Ferrets received two doses of adjuvanted vaccine containing 7.5µg of hemagglutinin (HA) from A/Vietnam/1203/2004 (clade 1) or A/Anhui/1/2005 (clade 2.3.4) virus either in a homologous or heterologous prime-boost vaccination regime. We found that both vaccination regimens elicited robust antibody responses against the 2004-05 vaccine viruses and could reduce virus-induced morbidity and viral replication in the lower respiratory tract upon heterologous challenge despite the low level of cross-reactive antibody titers to the challenge H5N2 virus. This study supports the value of existing stockpiled 2004-05 influenza H5N1 vaccines, combined with AS03-adjuvant for early use in the event of an emerging pandemic with H5N2-like clade 2.3.4.4 viruses.
Collapse
Affiliation(s)
- Xiangjie Sun
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Joanna A Pulit-Penaloza
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Hannah M Creager
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Emory University, Atlanta, GA 30322, United States
| | - Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Stacie N Jefferson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Daniel B Jernigan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jacqueline M Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| |
Collapse
|
44
|
Abente EJ, Kitikoon P, Lager KM, Gauger PC, Anderson TK, Vincent AL. A highly pathogenic avian-derived influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrates increased replication and transmission in pigs. J Gen Virol 2017; 98:18-30. [PMID: 28206909 DOI: 10.1099/jgv.0.000678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study investigated the pathogenicity and transmissibility of a reverse-genetics-derived highly pathogenic avian influenza (HPAI) H5N1 lineage influenza A virus that was isolated from a human, A/Iraq/755/06. We also examined surface gene reassortant viruses composed of the haemagglutinin and neuraminidase from A/Iraq/755/06 and the internal genes of a 2009 pandemic H1N1 virus, A/New York/18/2009 (2Iraq/06 : 6NY/09 H5N1), and haemagglutinin and neuraminidase from A/New York/18/2009 with the internal genes of A/Iraq/755/06 (2NY/09 : 6Iraq/06 H1N1). The parental A/Iraq/755/06 caused little to no lesions in swine, limited virus replication was observed in the upper respiratory and lower respiratory tracts and transmission was detected in 3/5 direct-contact pigs based on seroconversion, detection of viral RNA or virus isolation. In contrast, the 2Iraq/06 : 6NY/09 H5N1 reassortant caused mild lung lesions, demonstrated sustained virus replication in the upper and lower respiratory tracts and transmitted to all contacts (5/5). The 2NY/09 : 6Iraq/06 H1N1 reassortant also caused mild lung lesions, there was evidence of virus replication in the upper respiratory and lower respiratory tracts and transmission was detected in all contacts (5/5). These studies indicate that an HPAI-derived H5N1 reassortant with pandemic internal genes may be more successful in sustaining infection in swine and that HPAI-derived internal genes were marginally compatible with pandemic 2009 H1N1 surface genes. Comprehensive surveillance in swine is critical to identify a possible emerging HPAI reassortant in all regions with HPAI in wild birds and poultry and H1N1pdm09 in pigs or other susceptible hosts.
Collapse
Affiliation(s)
- Eugenio J Abente
- Virus and Prion Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Pravina Kitikoon
- Present address: Merck Animal Health, De Soto, Kansas, USA.,Virus and Prion Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Amy L Vincent
- Virus and Prion Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| |
Collapse
|
45
|
Surveillance for Highly Pathogenic Avian Influenza in Wild Turkeys ( Meleagris gallopavo ) of Minnesota, USA during 2015 Outbreaks in Domestic Poultry. J Wildl Dis 2017; 53:616-620. [PMID: 28323565 DOI: 10.7589/2016-09-205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An outbreak of a novel reassortant of highly pathogenic avian influenza A (H5N2) virus (HPAIV) decimated domestic turkeys ( Meleagris gallopavo ) from March through mid-June, 2015 in the state of Minnesota, US. In response, as part of broader surveillance efforts in wild birds, we designed a pilot effort to sample and test hunter-harvested Wild Turkeys ( Meleagris gallopavo ) for HPAIV in Minnesota counties with known infected poultry facilities. We also collected opportunistic samples from dead Wild Turkeys or live Wild Turkeys showing neurologic signs (morbidity and mortality samples) reported by the public or state agency personnel. Cloacal and tracheal samples were collected from each bird and screened for avian influenza virus (AIV) RNA by real-time reverse transcription PCR. From 15 April to 28 May 2015, we sampled 84 hunter-harvested male Wild Turkeys in 11 Minnesota counties. From 7 April 2015 through 11 April 2016, we sampled an additional 23 Wild Turkeys in 17 Minnesota counties. We did not detect type A influenza or HPAIV from any samples, and concluded, at the 95% confidence level, that apparent shedding prevalence in male Wild Turkeys in central Minnesota was between 0% and 2.9% over the sampling period. The susceptibility of wild turkeys to HPAIV is unclear, but regular harvest seasons make this wild gallinaceous bird readily available for future AIV testing.
Collapse
|
46
|
Diversity, evolution and population dynamics of avian influenza viruses circulating in the live poultry markets in China. Virology 2017; 505:33-41. [PMID: 28222327 DOI: 10.1016/j.virol.2017.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Live poultry markets (LPMs) are an important source of novel avian influenza viruses (AIV). During 2015-2016 we surveyed AIV diversity in ten LPMs in Hubei, Zhejiang and Jiangxi provinces, China. A high diversity and prevalence of AIVs (totaling 12 subtypes) was observed in LPMs in these provinces. Strikingly, however, the subtypes discovered during 2015-2016 were markedly different to those reported by us in these same localities one year previously, suggesting a dynamic shift in viral genetic diversity over the course of a single year. Phylogenetic analyses revealed frequent reassortment, including between high and low pathogenic AIV subtypes and among those that circulate in domestic and wild birds. Notably, the novel H5N6 reassortant virus, which contains a set of H9N2-like internal genes, was prevalent in all three regions surveyed. Overall, these data highlight the profound changes in genetic diversity and in patterns of reassortment in those AIVs that circulate in LPMs.
Collapse
|
47
|
Park YC, Song JM. Preparation and immunogenicity of influenza virus-like particles using nitrocellulose membrane filtration. Clin Exp Vaccine Res 2017; 6:61-66. [PMID: 28168175 PMCID: PMC5292359 DOI: 10.7774/cevr.2017.6.1.61] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 12/30/2016] [Accepted: 01/10/2017] [Indexed: 01/22/2023] Open
Abstract
Purpose Nitrocellulose membrane–based filtration system (NCFS) is widely used for protein concentration. In this study, we applied NCFS for production of virus-like particle (VLP) as a vaccine candidate and evaluated yield property and immunogenicity. Materials and Methods Influenza VLPs were generated by baculovirus-insect cell protein expression system. NCFS and sucrose gradient ultracentrifugation were used for purification of VLP. Immunogenicity of VLP was evaluated by animal experiment. Results Influenza VLPs expressing hemagglutinin (HA) and neuraminidase proteins derived from highly pathogenic influenza virus (H5N8) were effectively produced and purified by NCFS. HA activity of VLP which correlated with antigenicity was well conserved during multiple purification steps. This NCFS based purified VLPs induced influenza virus–specific antibody responses. Conclusion Our results indicate that the influenza VLP vaccine could be prepared by NCFS without loss of immunogenicity and elicit antigen-specific immune responses.
Collapse
Affiliation(s)
- Young Chan Park
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| | - Jae Min Song
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| |
Collapse
|
48
|
Hurst CJ. Of Ducks and Men: Ecology and Evolution of a Zoonotic Pathogen in a Wild Reservoir Host. MODELING THE TRANSMISSION AND PREVENTION OF INFECTIOUS DISEASE 2017. [PMCID: PMC7123570 DOI: 10.1007/978-3-319-60616-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A hallmark of disease is that most pathogens are able to infect more than one host species. However, for most pathogens, we still have a limited understanding of how this affects epidemiology, persistence and virulence of infections—including several zoonotic pathogens that reside in wild animal reservoirs and spillover into humans. In this chapter, we review the current knowledge of mallard (Anas platyrhynchos) as host for pathogens. This species is widely distributed, often occupying habitats close to humans and livestock, and is an important game bird species and the ancestor to domestic ducks—thereby being an excellent model species to highlight aspects of the wildlife, domestic animal interface and the relevance for human health. We discuss mallard as host for a range of pathogens but focus more in depth of it as a reservoir host for influenza A virus (IAV). Over the last decades, IAV research has surged, prompted in part to the genesis and spread of highly pathogenic virus variants that have been devastating to domestic poultry and caused a number of human spillover infections. The aim of this chapter is to synthesise and review the intricate interactions of virus, host and environmental factors governing IAV epidemiology and evolution.
Collapse
|
49
|
Hurt AC, Su YCF, Aban M, Peck H, Lau H, Baas C, Deng YM, Spirason N, Ellström P, Hernandez J, Olsen B, Barr IG, Vijaykrishna D, Gonzalez-Acuna D. Evidence for the Introduction, Reassortment, and Persistence of Diverse Influenza A Viruses in Antarctica. J Virol 2016; 90:9674-9682. [PMID: 27535050 PMCID: PMC5068520 DOI: 10.1128/jvi.01404-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/05/2016] [Indexed: 11/20/2022] Open
Abstract
Avian influenza virus (AIV) surveillance in Antarctica during 2013 revealed the prevalence of evolutionarily distinct influenza viruses of the H11N2 subtype in Adélie penguins. Here we present results from the continued surveillance of AIV on the Antarctic Peninsula during 2014 and 2015. In addition to the continued detection of H11 subtype viruses in a snowy sheathbill during 2014, we isolated a novel H5N5 subtype virus from a chinstrap penguin during 2015. Gene sequencing and phylogenetic analysis revealed that the H11 virus detected in 2014 had a >99.1% nucleotide similarity to the H11N2 viruses isolated in 2013, suggesting the continued prevalence of this virus in Antarctica over multiple years. However, phylogenetic analysis of the H5N5 virus showed that the genome segments were recently introduced to the continent, except for the NP gene, which was similar to that in the endemic H11N2 viruses. Our analysis indicates geographically diverse origins for the H5N5 virus genes, with the majority of its genome segments derived from North American lineage viruses but the neuraminidase gene derived from a Eurasian lineage virus. In summary, we show the persistence of AIV lineages in Antarctica over multiple years, the recent introduction of gene segments from diverse regions, and reassortment between different AIV lineages in Antarctica, which together significantly increase our understanding of AIV ecology in this fragile and pristine environment. IMPORTANCE Analysis of avian influenza viruses (AIVs) detected in Antarctica reveals both the relatively recent introduction of an H5N5 AIV, predominantly of North American-like origin, and the persistence of an evolutionarily divergent H11 AIV. These data demonstrate that the flow of viruses from North America may be more common than initially thought and that, once introduced, these AIVs have the potential to be maintained within Antarctica. The future introduction of AIVs from North America into the Antarctic Peninsula is of particular concern given that highly pathogenic H5Nx viruses have recently been circulating among wild birds in parts of Canada and the Unites States following the movement of these viruses from Eurasia via migratory birds. The introduction of a highly pathogenic influenza virus in penguin colonies within Antarctica might have devastating consequences.
Collapse
Affiliation(s)
- Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Parkville, Victoria, Australia University of Melbourne, Melbourne School of Population and Global Health, Parkville, Victoria, Australia
| | - Yvonne C F Su
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Malet Aban
- WHO Collaborating Centre for Reference and Research on Influenza, Parkville, Victoria, Australia
| | - Heidi Peck
- WHO Collaborating Centre for Reference and Research on Influenza, Parkville, Victoria, Australia
| | - Hilda Lau
- WHO Collaborating Centre for Reference and Research on Influenza, Parkville, Victoria, Australia
| | - Chantal Baas
- WHO Collaborating Centre for Reference and Research on Influenza, Parkville, Victoria, Australia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Parkville, Victoria, Australia
| | - Natalie Spirason
- WHO Collaborating Centre for Reference and Research on Influenza, Parkville, Victoria, Australia
| | - Patrik Ellström
- Zoonosis Science Center, IMBIM, Uppsala University, Uppsala, Sweden
| | - Jorge Hernandez
- Zoonosis Science Center, IMBIM, Uppsala University, Uppsala, Sweden Department of Microbiology, Kalmar County Hospital, Kalmar, Sweden
| | - Bjorn Olsen
- Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Parkville, Victoria, Australia
| | | | | |
Collapse
|
50
|
Weak support for disappearance and restricted emergence/persistence of highly pathogenic influenza A in North American waterfowl. Proc Natl Acad Sci U S A 2016; 113:E6551-E6552. [PMID: 27791026 DOI: 10.1073/pnas.1614530113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|