1
|
Ma H. Multiplex Genome Editing of Human Pluripotent Stem Cells Using Cpf1. Bio Protoc 2024; 14:e5108. [PMID: 39600977 PMCID: PMC11588425 DOI: 10.21769/bioprotoc.5108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 11/29/2024] Open
Abstract
Targeted genome editing of human pluripotent stem cells (hPSCs) is critical for basic and translational research and can be achieved with site-specific endonucleases. Cpf1 (CRISPR from Prevotella and Francisella) is a programmable DNA endonuclease with AT-rich PAM sequences. In this protocol, we describe procedures for using a single vector system to deliver Cpf1 and CRISPR RNA (crRNA) for genome editing in hPSCs. This protocol enables indel formation and homologous recombination-mediated precise editing at multiple loci. With the delivery of Cpf1 and a single U6 promoter-driven guide RNA array composed of an AAVS1-targeting and a MAFB-targeting crRNA array, efficient multiplex genome editing at the AAVS1 (knockin) and MAFB (knockout) loci in hPSCs could be achieved in a single experiment. The edited hPSCs expressed pluripotency markers and could differentiate into neurons in vitro. This system also generated INS reporter hPSCs with a 6 kb cassette knockin at the INS locus. The INS reporter cells can differentiate into β-cells that express tdTomato and luciferase, permitting fluorescence-activated cell sorting of hPSC-β-cells. By targeted screening of potential off-target sequences that are most homologous to crRNA sequences, no off-target mutations were detected in any of the tested sequences. This work provides an efficient and flexible system for precise genome editing in mammalian cells including hPSCs with the benefits of less off-target effects. Key features • A single-vector system to deliver Cpf1 and crRNA enables the sorting of transfected cells • Efficient and simultaneous multi-modular genome editing exemplified by mutation of MAFB and knockin of AAVS1 loci in a single experiment • Edited PSCs showed minimal off-target effects and can be differentiated into multiple cell types.
Collapse
Affiliation(s)
- Haiting Ma
- Department of Cell and Developmental Biology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Arroyave F, Uscátegui Y, Lizcano F. From iPSCs to Pancreatic β Cells: Unveiling Molecular Pathways and Enhancements with Vitamin C and Retinoic Acid in Diabetes Research. Int J Mol Sci 2024; 25:9654. [PMID: 39273600 PMCID: PMC11395045 DOI: 10.3390/ijms25179654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetes mellitus, a chronic and non-transmissible disease, triggers a wide range of micro- and macrovascular complications. The differentiation of pancreatic β-like cells (PβLCs) from induced pluripotent stem cells (iPSCs) offers a promising avenue for regenerative medicine aimed at treating diabetes. Current differentiation protocols strive to emulate pancreatic embryonic development by utilizing cytokines and small molecules at specific doses to activate and inhibit distinct molecular signaling pathways, directing the differentiation of iPSCs into pancreatic β cells. Despite significant progress and improved protocols, the full spectrum of molecular signaling pathways governing pancreatic development and the physiological characteristics of the differentiated cells are not yet fully understood. Here, we report a specific combination of cofactors and small molecules that successfully differentiate iPSCs into PβLCs. Our protocol has shown to be effective, with the resulting cells exhibiting key functional properties of pancreatic β cells, including the expression of crucial molecular markers (pdx1, nkx6.1, ngn3) and the capability to secrete insulin in response to glucose. Furthermore, the addition of vitamin C and retinoic acid in the final stages of differentiation led to the overexpression of specific β cell genes.
Collapse
Affiliation(s)
- Felipe Arroyave
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chia 250008, Colombia
- Doctoral Program in Biociencias, Universidad de La Sabana, Chia 250008, Colombia
| | - Yomaira Uscátegui
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chia 250008, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chia 250008, Colombia
- Doctoral Program in Biociencias, Universidad de La Sabana, Chia 250008, Colombia
- School of Medicine, Universidad de La Sabana, Chia 250008, Colombia
| |
Collapse
|
3
|
Krzisch M, Yuan B, Chen W, Osaki T, Fu D, Garrett-Engele CM, Svoboda DS, Andrykovich KR, Gallagher MD, Sur M, Jaenisch R. The A53T Mutation in α-Synuclein Enhances Proinflammatory Activation in Human Microglia Upon Inflammatory Stimulus. Biol Psychiatry 2024:S0006-3223(24)01459-8. [PMID: 39029776 DOI: 10.1016/j.biopsych.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/08/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease, following Alzheimer's. It is characterized by the aggregation of α-synuclein into Lewy bodies and Lewy neurites in the brain. Microglia-driven neuroinflammation may contribute to neuronal death in PD; however, the exact role of microglia remains unclear and has been understudied. The A53T mutation in the gene coding for α-synuclein has been linked to early-onset PD, and exposure to A53T mutant human α-synuclein increases the potential for inflammation of murine microglia. To date, its effect has not been studied in human microglia. METHODS Here, we used 2-dimensional cultures of human pluripotent stem cell-derived microglia and transplantation of these cells into the mouse brain to assess the cell autonomous effects of the A53T mutation on human microglia. RESULTS We found that A53T mutant human microglia had an intrinsically increased propensity toward proinflammatory activation upon inflammatory stimulus. Additionally, transplanted A53T mutant microglia showed a strong decrease in catalase expression in noninflammatory conditions and increased oxidative stress. CONCLUSIONS Our results indicate that A53T mutant human microglia display cell autonomous phenotypes that may worsen neuronal damage in early-onset PD.
Collapse
Affiliation(s)
- Marine Krzisch
- School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom.
| | - Bingbing Yuan
- Bioinformatics and Research Computing Facility, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Wenyu Chen
- Wellesley College, Wellesley, Massachusetts
| | - Tatsuya Osaki
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Dongdong Fu
- Jaenisch laboratory, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | | | | | - Kristin R Andrykovich
- Jaenisch laboratory, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Michael D Gallagher
- Jaenisch laboratory, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Rudolf Jaenisch
- Jaenisch laboratory, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts.
| |
Collapse
|
4
|
Diaz-Salazar C, Krzisch M, Yoo J, Nano PR, Bhaduri A, Jaenisch R, Polleux F. Human-specific paralogs of SRGAP2 induce neotenic features of microglia structural and functional maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601266. [PMID: 38979266 PMCID: PMC11230448 DOI: 10.1101/2024.06.28.601266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Microglia play key roles in shaping synaptic connectivity during neural circuits development. Whether microglia display human-specific features of structural and functional maturation is currently unknown. We show that the ancestral gene SRGAP2A and its human-specific (HS) paralogs SRGAP2B/C are not only expressed in cortical neurons but are the only HS gene duplications expressed in human microglia. Here, using combination of xenotransplantation of human induced pluripotent stem cell (hiPSC)-derived microglia and mouse genetic models, we demonstrate that (1) HS SRGAP2B/C are necessary and sufficient to induce neotenic features of microglia structural and functional maturation in a cell-autonomous manner, and (2) induction of SRGAP2-dependent neotenic features of microglia maturation non-cell autonomously impacts synaptic development in cortical pyramidal neurons. Our results reveal that, during human brain evolution, human-specific genes SRGAP2B/C coordinated the emergence of neotenic features of synaptic development by acting as genetic modifiers of both neurons and microglia.
Collapse
Affiliation(s)
- Carlos Diaz-Salazar
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, USA
| | - Marine Krzisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Juyoun Yoo
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, USA
| | - Patricia R. Nano
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, USA
| |
Collapse
|
5
|
Abreu P, Garay BI, Nemkov T, Yamashita AMS, Perlingeiro RCR. Metabolic Changes during In Vivo Maturation of PSC-Derived Skeletal Myogenic Progenitors. Cells 2023; 13:76. [PMID: 38201280 PMCID: PMC10778145 DOI: 10.3390/cells13010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In vitro-generated pluripotent stem cell (PSC)-derived Pax3-induced (iPax3) myogenic progenitors display an embryonic transcriptional signature, but upon engraftment, the profile of re-isolated iPax3 donor-derived satellite cells changes toward similarity with postnatal satellite cells, suggesting that engrafted PSC-derived myogenic cells remodel their transcriptional signature upon interaction within the adult muscle environment. Here, we show that engrafted myogenic progenitors also remodel their metabolic state. Assessment of oxygen consumption revealed that exposure to the adult muscle environment promotes overt changes in mitochondrial bioenergetics, as shown by the substantial suppression of energy requirements in re-isolated iPax3 donor-derived satellite cells compared to their in vitro-generated progenitors. Mass spectrometry-based metabolomic profiling further confirmed the relationship of engrafted iPax3 donor-derived cells to adult satellite cells. The fact that in vitro-generated myogenic progenitors remodel their bioenergetic signature upon in vivo exposure to the adult muscle environment may have important implications for therapeutic applications.
Collapse
Affiliation(s)
- Phablo Abreu
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
| | - Bayardo I. Garay
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Aline M. S. Yamashita
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
| | - Rita C. R. Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Yi X, Xie Y, Gerber DA. Pancreas patch grafting to treat type 1 diabetes. Biochem Biophys Res Commun 2023; 686:149200. [PMID: 37926045 DOI: 10.1016/j.bbrc.2023.149200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Stem/progenitor cell therapy is a promising treatment option for patients with type 1 diabetes (T1D) a disease characterized by autoimmune destruction of pancreatic β cells. Actively injecting cells into an organ is one option for cell delivery, but in the pancreas, this contributes to acute inflammation and pancreatitis. We employed a patch grafting approach to transplant biliary tree stem cells/progenitor cells (BTSC) onto the surface of the pancreas in diabetic mice. The cells engraft and differentiate into β-like cells reversing hyperglycemia during a four-month period of observation. In addition, C-peptide and insulin gradually increase in blood circulation without detectable adverse effects during this period. Moreover, the patch graft transplant promoted the proliferation and differentiation of pancreatic β-like cells with co-expression of the β cell biomarker. CONCLUSION: BTSC transplantation can effectively attenuate T1D over a four-month period that is vital important for clinical applications.
Collapse
Affiliation(s)
- Xianwen Yi
- Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Youmei Xie
- Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - David A Gerber
- Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
7
|
Krzisch M, Yuan B, Chen W, Osaki T, Fu D, Garrett-Engele C, Svoboda D, Andrykovich K, Sur M, Jaenisch R. The A53T mutation in α-synuclein enhances pro-inflammatory activation in human microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555300. [PMID: 37693409 PMCID: PMC10491251 DOI: 10.1101/2023.08.29.555300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Parkinson's disease (PD) is characterized by the aggregation of α-synuclein into Lewy bodies and Lewy neurites in the brain. Microglia-driven neuroinflammation may contribute to neuronal death in PD, however the exact role of microglia remains unclear and has been understudied. The A53T mutation in the gene coding for α-synuclein has been linked to early-onset PD, and exposure to A53T-mutant human α-synuclein increases the potential for inflammation of murine microglia. To date, its effect has not been studied in human microglia. Here, we used 2-dimensional cultures of human iPSC-derived microglia and transplantation of these cells into the mouse brain to assess the effects of the A53T mutation on human microglia. We found that A53T-mutant human microglia had an intrinsically increased propensity towards pro-inflammatory activation upon inflammatory stimulus. Additionally, A53T mutant microglia showed a strong decrease in catalase expression in non-inflammatory conditions, and increased oxidative stress. Our results indicate that A53T mutant human microglia display cell-autonomous phenotypes that may worsen neuronal damage in early-onset PD.
Collapse
|
8
|
Kozlowski MT, Zook HN, Chigumba DN, Johnstone CP, Caldera LF, Shih HP, Tirrell DA, Ku HT. A matrigel-free method for culture of pancreatic endocrine-like cells in defined protein-based hydrogels. Front Bioeng Biotechnol 2023; 11:1144209. [PMID: 36970620 PMCID: PMC10033864 DOI: 10.3389/fbioe.2023.1144209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
The transplantation of pancreatic endocrine islet cells from cadaveric donors is a promising treatment for type 1 diabetes (T1D), which is a chronic autoimmune disease that affects approximately nine million people worldwide. However, the demand for donor islets outstrips supply. This problem could be solved by differentiating stem and progenitor cells to islet cells. However, many current culture methods used to coax stem and progenitor cells to differentiate into pancreatic endocrine islet cells require Matrigel, a matrix composed of many extracellular matrix (ECM) proteins secreted from a mouse sarcoma cell line. The undefined nature of Matrigel makes it difficult to determine which factors drive stem and progenitor cell differentiation and maturation. Additionally, it is difficult to control the mechanical properties of Matrigel without altering its chemical composition. To address these shortcomings of Matrigel, we engineered defined recombinant proteins roughly 41 kDa in size, which contain cell-binding ECM peptides derived from fibronectin (ELYAVTGRGDSPASSAPIA) or laminin alpha 3 (PPFLMLLKGSTR). The engineered proteins form hydrogels through association of terminal leucine zipper domains derived from rat cartilage oligomeric matrix protein. The zipper domains flank elastin-like polypeptides whose lower critical solution temperature (LCST) behavior enables protein purification through thermal cycling. Rheological measurements show that a 2% w/v gel of the engineered proteins display material behavior comparable to a Matrigel/methylcellulose-based culture system previously reported by our group to support the growth of pancreatic ductal progenitor cells. We tested whether our protein hydrogels in 3D culture could derive endocrine and endocrine progenitor cells from dissociated pancreatic cells of young (1-week-old) mice. We found that both protein hydrogels favored growth of endocrine and endocrine progenitor cells, in contrast to Matrigel-based culture. Because the protein hydrogels described here can be further tuned with respect to mechanical and chemical properties, they provide new tools for mechanistic study of endocrine cell differentiation and maturation.
Collapse
Affiliation(s)
- Mark T. Kozlowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Heather N. Zook
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, CA, United States
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, United States
| | - Desnor N. Chigumba
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Christopher P. Johnstone
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Luis F. Caldera
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hung-Ping Shih
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, CA, United States
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, United States
| | - David A. Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, CA, United States
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, United States
- *Correspondence: Hsun Teresa Ku,
| |
Collapse
|
9
|
Dang Le Q, Rodprasert W, Kuncorojakti S, Pavasant P, Osathanon T, Sawangmake C. In vitro generation of transplantable insulin-producing cells from canine adipose-derived mesenchymal stem cells. Sci Rep 2022; 12:9127. [PMID: 35650303 PMCID: PMC9160001 DOI: 10.1038/s41598-022-13114-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Canine mesenchymal stem cells (cMSCs) have potential applications for regenerative therapy, including the generation of insulin-producing cells (IPCs) for studying and treating diabetes. In this study, we established a useful protocol for generating IPCs from canine adipose mesenchymal stem cells (cAD-MSCs). Subsequently, in vitro preservation of pluronic F127-coated alginate (ALGPA)-encapsulated cAD-MSC-derived IPCs was performed to verify ready-to-use IPCs. IPCs were induced from cAD-MSCs with the modulated three-stepwise protocol. The first step of definitive endoderm (DE) induction showed that the cooperation of Chir99021 and Activin A created the effective production of Sox17-expressed DE cells. The second step for pancreatic endocrine (PE) progenitor induction from DE indicated that the treatment with taurine, retinoic acid, FGF2, EGF, TGFβ inhibitor, dorsomorphin, nicotinamide, and DAPT showed the significant upregulation of the pancreatic endocrine precursor markers Pdx1 and Ngn3. The last step of IPC production, the combination of taurine, nicotinamide, Glp-1, forskolin, PI3K inhibitor, and TGFβ inhibitor, yielded efficiently functional IPCs from PE precursors. Afterward, the maintenance of ALGPA-encapsulated cAD-MSC-derived IPCs with VSCBIC-1, a specialized medium, enhanced IPC properties. Conclusion, the modulated three-stepwise protocol generates the functional IPCs. Together, the encapsulation of cAD-MSC-derived IPCs and the cultivation with VSCBIC-1 enrich the maturation of generated IPCs.
Collapse
Affiliation(s)
- Quynh Dang Le
- International Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Suryo Kuncorojakti
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
10
|
Ma H, de Zwaan E, Guo YE, Cejas P, Thiru P, van de Bunt M, Jeppesen JF, Syamala S, Dall'Agnese A, Abraham BJ, Fu D, Garrett-Engele C, Lee TI, Long HW, Griffith LG, Young RA, Jaenisch R. The nuclear receptor THRB facilitates differentiation of human PSCs into more mature hepatocytes. Cell Stem Cell 2022; 29:795-809.e11. [PMID: 35452598 PMCID: PMC9466295 DOI: 10.1016/j.stem.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022]
Abstract
To understand the mechanisms regulating the in vitro maturation of hPSC-derived hepatocytes, we developed a 3D differentiation system and compared gene regulatory elements in human primary hepatocytes with those in hPSC-hepatocytes that were differentiated in 2D or 3D conditions by RNA-seq, ATAC-seq, and H3K27Ac ChIP-seq. Regulome comparisons showed a reduced enrichment of thyroid receptor THRB motifs in accessible chromatin and active enhancers without a reduced transcription of THRB. The addition of thyroid hormone T3 increased the binding of THRB to the CYP3A4 proximal enhancer, restored the super-enhancer status and gene expression of NFIC, and reduced the expression of AFP. The resultant hPSC-hepatocytes showed gene expression, epigenetic status, and super-enhancer landscape closer to primary hepatocytes and activated regulatory regions including non-coding SNPs associated with liver-related diseases. Transplanting the hPSC-hepatocytes resulted in the engraftment of human hepatocytes into the mouse liver without disrupting normal liver histology. This work implicates the environmental factor-nuclear receptor axis in regulating the maturation of hPSC-hepatocytes.
Collapse
Affiliation(s)
- Haiting Ma
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Esmée de Zwaan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Yang Eric Guo
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Prathapan Thiru
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Jacob F Jeppesen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Global Drug Discovery, Novo Nordisk, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sudeepa Syamala
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Dongdong Fu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
11
|
Gaudreau MC, Gudi RR, Li G, Johnson BM, Vasu C. Gastrin producing syngeneic mesenchymal stem cells protect non-obese diabetic mice from type 1 diabetes. Autoimmunity 2022; 55:95-108. [PMID: 34882054 PMCID: PMC9875811 DOI: 10.1080/08916934.2021.2012165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Progressive destruction of pancreatic islet β-cells by immune cells is a primary feature of type 1 diabetes (T1D) and therapies that can restore the functional β-cell mass are needed to alleviate disease progression. Here, we report the use of mesenchymal stromal/stem cells (MSCs) for the production and delivery of Gastrin, a peptide hormone that is produced by intestinal cells and foetal islets and can increase β-Cell mass, to promote protection from T1D. A single injection of syngeneic MSCs that were engineered to express Gastrin (Gastrin-MSCs) caused a significant delay in hyperglycaemia in non-obese diabetic (NOD) mice compared to engineered control-MSCs. Similar treatment of early-hyperglycaemic mice caused the restoration of euglycemia for a considerable duration, and these therapeutic effects were associated with the protection of, and/or higher frequencies of, insulin-producing islets and less severe insulitis. While the overall immune cell phenotype was not affected profoundly upon treatment using Gastrin-MSCs or upon in vitro culture, pancreatic lymph node cells from Gastrin-MSC treated mice, upon ex vivo challenge with self-antigen, showed a Th2 and Th17 bias, and diminished the diabetogenic property in NOD-Rag1 deficient mice suggesting a disease protective immune modulation under Gastrin-MSC treatment associated protection from hyperglycaemia. Overall, this study shows the potential of production and delivery of Gastrin in vivo, by MSCs, in protecting insulin-producing β-cells and ameliorating the disease progression in T1D.
Collapse
Affiliation(s)
- Marie-Claude Gaudreau
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Radhika R. Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Gongbo Li
- Department of Surgery, University of Illinois at Chicago, Chicago, IL-60612
| | - Benjamin M. Johnson
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425,Department of Surgery, University of Illinois at Chicago, Chicago, IL-60612,Address Correspondence: Chenthamarakshan Vasu, Medical University of South Carolina, Microbiology and Immunology, 173 Ashley Avenue, MSC 509, BSB214B, Charleston, SC-29425, Phone: 843-792-1032, Fax: 843-792-9588,
| |
Collapse
|
12
|
Zhang N, Zhao L, Liu D, Hu C, Wang Y, He T, Bi Y, He Y. Characterization of Urine-Derived Stem Cells from Patients with End-Stage Liver Diseases and Application to Induced Acute and Chronic Liver Injury of Nude Mice Model. Stem Cells Dev 2021; 30:1126-1138. [PMID: 34549601 DOI: 10.1089/scd.2021.0137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Urine-derived stem cells (USCs) are adult stem cells isolated from urine with strong proliferative ability and differentiation potentials. Cell transplantation of USCs could partly repair liver injury. It has been reported that the proliferative ability of bone mesenchymal stem cells in patients with chronic liver failure is significantly lower than in patients without liver disease. The aim of this study was therefore to evaluate the biological characteristics of USCs from end-stage liver disease patients (LD-USCs, USCs from patients with liver disease) compared with those from normal healthy individuals (N-USCs, USCs from normal individuals), with a view to determining whether autologous USCs can be applied to the treatment of liver disease. In this study USCs were isolated from urine samples of male patients with end-stage liver disease. Adherent USCs exhibit a spindle- or rice grain-like morphology, and express CD24, CD29, CD73, CD90, and CD146 surface markers, but not CD31, CD34, CD45, and CD105. We observed no differences in cell morphology or cell surface marker profile between LD-USCs and N-USCs. LD-USCs exhibited similar proliferative, colony-forming, apoptotic, and migratory abilities to N-USCs. Both USCs demonstrated similar capacities for osteogenic, adipogenic, and chondrogenic differentiation. When USCs were transplanted into CCl4 treatment-induced acute and chronic liver fibrosis mouse models, we observed a decrease in liver index, recovery of alanine aminotransferase and aspartate aminotransferase levels, alleviation of liver tissue injury, and dramatic improvement of liver tissue structure. USC transplantation can effectively recover liver function and improve liver tissue damage in acute or chronic liver injury mouse models. According to the results, we concluded that the biological characteristics of LD-USCs are not affected by basic liver disease. This study provides further evidence of the stem cell characteristics and liver repair function of LD-USCs, which may serve as a theoretical and experimental foundation for autologous USC transplantation technology in the treatment of liver failure and end-stage liver diseases.
Collapse
Affiliation(s)
- Nannan Zhang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhao
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Daijiang Liu
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing, China
| | - Chaoqun Hu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Wang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yun He
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
From Cells to Organs: The Present and Future of Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:135-149. [PMID: 34327664 DOI: 10.1007/5584_2021_657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Regenerative medicine promises a bright future where damaged body parts can be restored, rejuvenated, and replaced. The application of regenerative medicine is interdisciplinary and covers nearly all fields of medical sciences and molecular engineering. This review provides a road map on how regenerative medicine is applied on the levels of cell, tissue, and organ and summarizes the advantages and limitation of human pluripotent stem cells in disease modeling and regenerative application.
Collapse
|
14
|
Lopez-Mendez TB, Santos-Vizcaino E, Pedraz JL, Orive G, Hernandez RM. Cell microencapsulation technologies for sustained drug delivery: Latest advances in efficacy and biosafety. J Control Release 2021; 335:619-636. [PMID: 34116135 DOI: 10.1016/j.jconrel.2021.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
The development of cell microencapsulation systems began several decades ago. However, today few systems have been tested in clinical trials. For this reason, in the last years, researchers have directed efforts towards trying to solve some of the key aspects that still limit efficacy and biosafety, the two major criteria that must be satisfied to reach the clinical practice. Regarding the efficacy, which is closely related to biocompatibility, substantial improvements have been made, such as the purification or chemical modification of the alginates that normally form the microspheres. Each of the components that make up the microcapsules has been carefully selected to avoid toxicities that can damage the encapsulated cells or generate an immune response leading to pericapsular fibrosis. As for the biosafety, researchers have developed biological circuits capable of actively responding to the needs of the patients to precisely and accurately release the demanded drug dose. Furthermore, the structure of the devices has been subject of study to adequately protect the encapsulated cells and prevent their spread in the body. The objective of this review is to describe the latest advances made by scientist to improve the efficacy and biosafety of cell microencapsulation systems for sustained drug delivery, also highlighting those points that still need to be optimized.
Collapse
Affiliation(s)
- Tania B Lopez-Mendez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), BTI Biotechnology Institute, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
15
|
Pancreas transplant versus islet transplant versus insulin pump therapy: in which patients and when? Curr Opin Organ Transplant 2021; 26:176-183. [PMID: 33650999 DOI: 10.1097/mot.0000000000000857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The aim of the present review is to gather recent reports on the use of pancreas and islet transplantation and conventional insulin therapy for treating patients experiencing diabetes and its related complications. The present review directs attention to the current status, challenges and perspectives of these therapies and sheds light on potential future cellular therapies. RECENT FINDINGS The risks and benefits of diabetes treatment modalities continue to evolve, altering the risk versus benefit calculation for patients. As continuous subcutaneous insulin infusion and monitoring technologies demonstrate increasing effectiveness in achieving better diabetes control and reducing hypoglycemia frequency, so are pancreas and islet transplantation improving and becoming more effective and safer. Both beta-cell replacement therapies, however, are limited by a dependence on immunosuppression and a shortage of cadaver donors, restricting more widespread and safer deployment. Based on the effectiveness of clinical beta-cell replacement for lengthening lifespan and improving quality of life, scientists are aggressively investigating alternative cell sources, transplant platforms, and means of preventing immunological damage of transplanted cells to overcome these principle limitations. SUMMARY Essential goals of diabetes therapy are euglycemia, avoidance of hypoglycemia, and prevention or stabilization of end-organ damage. With these goals in mind, all therapeutic options should be considered.
Collapse
|
16
|
Nishimura T, Suchy FP, Bhadury J, Igarashi KJ, Charlesworth CT, Nakauchi H. Generation of Functional Organs Using a Cell-Competitive Niche in Intra- and Inter-species Rodent Chimeras. Cell Stem Cell 2021; 28:141-149.e3. [PMID: 33373620 PMCID: PMC8025673 DOI: 10.1016/j.stem.2020.11.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/12/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Interspecies organ generation via blastocyst complementation has succeeded in rodents, but not yet in evolutionally more distant species. Early developmental arrest hinders the formation of highly chimeric fetuses. We demonstrate that the deletion of insulin-like growth factor 1 receptor (Igf1r) in mouse embryos creates a permissive "cell-competitive niche" in several organs, significantly augmenting both mouse intraspecies and mouse/rat interspecies donor chimerism that continuously increases from embryonic day 11 onward, sometimes even taking over entire organs within intraspecies chimeras. Since Igf1r deletion allows the evasion of early developmental arrest, interspecies fetuses with high levels of organ chimerism can be generated via blastocyst complementation. This observation should facilitate donor cell contribution to host tissues, resulting in whole-organ generation via blastocyst complementation across wide evolutionary distances.
Collapse
Affiliation(s)
- Toshiya Nishimura
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fabian P Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joydeep Bhadury
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Dept of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 413 45, Gothenburg, Sweden
| | - Kyomi J Igarashi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carsten T Charlesworth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Balboa D, Iworima DG, Kieffer TJ. Human Pluripotent Stem Cells to Model Islet Defects in Diabetes. Front Endocrinol (Lausanne) 2021; 12:642152. [PMID: 33828531 PMCID: PMC8020750 DOI: 10.3389/fendo.2021.642152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately caused by insufficient insulin production from pancreatic beta cells. Different research models have been utilized to unravel the molecular mechanisms leading to the onset of diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells constitutes an approach to study genetic defects leading to impaired beta cell development and function. Here, we review the recent progress in generating and characterizing functional stem cell-derived beta cells. We summarize the diabetes disease modeling possibilities that stem cells offer and the challenges that lie ahead to further improve these models.
Collapse
Affiliation(s)
- Diego Balboa
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- *Correspondence: Diego Balboa,
| | - Diepiriye G. Iworima
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
iPSCs-laden GDF8-grafted aldehyde hyaluronic acid-polyacrylamide inverted colloidal crystal constructs with controlled release of CHIR99021 and retinoic acid to generate insulin-producing cells. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Ma H, Jeppesen JF, Jaenisch R. Human T Cells Expressing a CD19 CAR-T Receptor Provide Insights into Mechanisms of Human CD19-Positive β Cell Destruction. CELL REPORTS MEDICINE 2020; 1:100097. [PMID: 33205073 PMCID: PMC7659530 DOI: 10.1016/j.xcrm.2020.100097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/24/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
Autoimmune destruction of pancreatic β cells underlies type 1 diabetes (T1D). To understand T cell-mediated immune effects on human pancreatic β cells, we combine β cell-specific expression of a model antigen, CD19, and anti-CD19 chimeric antigen receptor T (CAR-T) cells. Coculturing CD19-expressing β-like cells and CD19 CAR-T cells results in T cell-mediated β-like cell death with release of activated T cell cytokines. Transcriptome analysis of β-like cells and human islets treated with conditioned medium of the immune reaction identifies upregulation of immune reaction genes and the pyroptosis mediator GSDMD as well as its activator CASP4. Caspase-4-mediated cleaved GSDMD is detected in β-like cells under inflammation and endoplasmic reticulum (ER) stress conditions. Among immune-regulatory genes, PDL1 is one of the most upregulated, and PDL1 overexpression partially protects human β-like cells transplanted into mice. This experimental platform identifies potential mechanisms of β cell destruction and may allow testing of therapeutic strategies. CD19-expressing β-like cells differentiated from human ES cells are functional Tractable in vitro and in vivo killing of CD19-expressing β-like cells by CAR-T cells Upregulation of pyroptosis factors GSDMD and CAPS4 during β-like cell inflammation PDL1-overexpressing in β-like cells partially protects against reactive T cells
Collapse
Affiliation(s)
- Haiting Ma
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jacob F Jeppesen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Global Drug Discovery, Novo Nordisk, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
20
|
Ho D, Quake SR, McCabe ERB, Chng WJ, Chow EK, Ding X, Gelb BD, Ginsburg GS, Hassenstab J, Ho CM, Mobley WC, Nolan GP, Rosen ST, Tan P, Yen Y, Zarrinpar A. Enabling Technologies for Personalized and Precision Medicine. Trends Biotechnol 2020; 38:497-518. [PMID: 31980301 PMCID: PMC7924935 DOI: 10.1016/j.tibtech.2019.12.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Individualizing patient treatment is a core objective of the medical field. Reaching this objective has been elusive owing to the complex set of factors contributing to both disease and health; many factors, from genes to proteins, remain unknown in their role in human physiology. Accurately diagnosing, monitoring, and treating disorders requires advances in biomarker discovery, the subsequent development of accurate signatures that correspond with dynamic disease states, as well as therapeutic interventions that can be continuously optimized and modulated for dose and drug selection. This work highlights key breakthroughs in the development of enabling technologies that further the goal of personalized and precision medicine, and remaining challenges that, when addressed, may forge unprecedented capabilities in realizing truly individualized patient care.
Collapse
Affiliation(s)
- Dean Ho
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore; The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Department of Biomedical Engineering, NUS Engineering, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, CA, USA; Department of Applied Physics, Stanford University, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Wee Joo Chng
- Department of Haematology and Oncology, National University Cancer Institute, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Edward K Chow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Xianting Ding
- Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Geoffrey S Ginsburg
- Center for Applied Genomics and Precision Medicine, Duke University, NC, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, MO, USA; Psychological & Brain Sciences, Washington University in St. Louis, MO, USA
| | - Chih-Ming Ho
- Department of Mechanical Engineering, University of California, Los Angeles, CA, USA
| | - William C Mobley
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Garry P Nolan
- Department of Microbiology & Immunology, Stanford University, CA, USA
| | - Steven T Rosen
- Comprehensive Cancer Center and Beckman Research Institute, City of Hope, CA, USA
| | - Patrick Tan
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Yun Yen
- College of Medical Technology, Center of Cancer Translational Research, Taipei Cancer Center of Taipei Medical University, Taipei, Taiwan
| | - Ali Zarrinpar
- Department of Surgery, Division of Transplantation & Hepatobiliary Surgery, University of Florida, FL, USA
| |
Collapse
|
21
|
Sharma A, Sances S, Workman MJ, Svendsen CN. Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell 2020; 26:309-329. [PMID: 32142662 PMCID: PMC7159985 DOI: 10.1016/j.stem.2020.02.011] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) provide a powerful platform for disease modeling and have unlocked new possibilities for understanding the mechanisms governing human biology, physiology, and genetics. However, hiPSC-derivatives have traditionally been utilized in two-dimensional monocultures, in contrast to the multi-systemic interactions that influence cells in the body. We will discuss recent advances in generating more complex hiPSC-based systems using three-dimensional organoids, tissue-engineering, microfluidic organ-chips, and humanized animal systems. While hiPSC differentiation still requires optimization, these next-generation multi-lineage technologies can augment the biomedical researcher's toolkit and enable more realistic models of human tissue function.
Collapse
Affiliation(s)
- Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Samuel Sances
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael J Workman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
22
|
Cohen MA, Zhang S, Sengupta S, Ma H, Bell GW, Horton B, Sharma B, George RE, Spranger S, Jaenisch R. Formation of Human Neuroblastoma in Mouse-Human Neural Crest Chimeras. Cell Stem Cell 2020; 26:579-592.e6. [PMID: 32142683 DOI: 10.1016/j.stem.2020.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 10/04/2019] [Accepted: 02/03/2020] [Indexed: 12/15/2022]
Abstract
Neuroblastoma (NB), derived from the neural crest (NC), is the most common pediatric extracranial solid tumor. Here, we establish a platform that allows the study of human NBs in mouse-human NC chimeras. Chimeric mice were produced by injecting human NC cells carrying NB relevant oncogenes in utero into gastrulating mouse embryos. The mice developed tumors composed of a heterogenous cell population that resembled that seen in primary NBs of patients but were significantly different from homogeneous tumors formed in xenotransplantation models. The human tumors emerged in immunocompetent hosts and were extensively infiltrated by mouse cytotoxic T cells, reflecting a vigorous host anti-tumor immune response. However, the tumors blunted the immune response by inducing infiltration of regulatory T cells and expression of immune-suppressive molecules similar to escape mechanisms seen in human cancer patients. Thus, this experimental platform allows the study of human tumor initiation, progression, manifestation, and tumor-immune-system interactions in an animal model system.
Collapse
Affiliation(s)
- Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Shupei Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Satyaki Sengupta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Haiting Ma
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brendan Horton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Bandana Sharma
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Rani E George
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
23
|
Liu Q, Chiu A, Wang LH, An D, Zhong M, Smink AM, de Haan BJ, de Vos P, Keane K, Vegge A, Chen EY, Song W, Liu WF, Flanders J, Rescan C, Grunnet LG, Wang X, Ma M. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation. Nat Commun 2019; 10:5262. [PMID: 31748525 PMCID: PMC6868136 DOI: 10.1038/s41467-019-13238-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023] Open
Abstract
Foreign body reaction (FBR) to implanted biomaterials and medical devices is common and can compromise the function of implants or cause complications. For example, in cell encapsulation, cellular overgrowth (CO) and fibrosis around the cellular constructs can reduce the mass transfer of oxygen, nutrients and metabolic wastes, undermining cell function and leading to transplant failure. Therefore, materials that mitigate FBR or CO will have broad applications in biomedicine. Here we report a group of zwitterionic, sulfobetaine (SB) and carboxybetaine (CB) modifications of alginates that reproducibly mitigate the CO of implanted alginate microcapsules in mice, dogs and pigs. Using the modified alginates (SB-alginates), we also demonstrate improved outcome of islet encapsulation in a chemically-induced diabetic mouse model. These zwitterion-modified alginates may contribute to the development of cell encapsulation therapies for type 1 diabetes and other hormone-deficient diseases.
Collapse
Affiliation(s)
- Qingsheng Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Alan Chiu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Duo An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Monica Zhong
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Bart J de Haan
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Kevin Keane
- Stem Cell Biology, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Andreas Vegge
- Diabetes Research, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Esther Y Chen
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Wendy F Liu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - James Flanders
- Department of Clinical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Claude Rescan
- Stem Cell Pharmacology, Novo Nordisk A/S, 2760, Måløv, Denmark
| | | | - Xi Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
24
|
Costamagna G, Andreoli L, Corti S, Faravelli I. iPSCs-Based Neural 3D Systems: A Multidimensional Approach for Disease Modeling and Drug Discovery. Cells 2019; 8:E1438. [PMID: 31739555 PMCID: PMC6912470 DOI: 10.3390/cells8111438] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/26/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs)-based two-dimensional (2D) protocols have offered invaluable insights into the pathophysiology of neurological diseases. However, these systems are unable to reproduce complex cytoarchitectural features, cell-cell and tissue-tissue interactions like their in vivo counterpart. Three-dimensional (3D)-based culture protocols, though in their infancy, have offered new insights into modeling human diseases. Human neural organoids try to recapitulate the cellular diversity of complex tissues and can be generated from iPSCs to model the pathophysiology of a wide spectrum of pathologies. The engraftment of iPSCs into mice models and the improvement of differentiation protocols towards 3D cultures has enabled the generation of more complex multicellular systems. Consequently, models of neuropsychiatric disorders, infectious diseases, brain cancer and cerebral hypoxic injury can now be investigated from new perspectives. In this review, we consider the advancements made in modeling neuropsychiatric and neurological diseases with iPSC-derived organoids and their potential use to develop new drugs.
Collapse
Affiliation(s)
| | | | | | - Irene Faravelli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (L.A.); (S.C.)
| |
Collapse
|
25
|
Babos KN, Galloway KE, Kisler K, Zitting M, Li Y, Shi Y, Quintino B, Chow RH, Zlokovic BV, Ichida JK. Mitigating Antagonism between Transcription and Proliferation Allows Near-Deterministic Cellular Reprogramming. Cell Stem Cell 2019; 25:486-500.e9. [PMID: 31523028 DOI: 10.1016/j.stem.2019.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/24/2019] [Accepted: 08/09/2019] [Indexed: 12/30/2022]
Abstract
Although cellular reprogramming enables the generation of new cell types for disease modeling and regenerative therapies, reprogramming remains a rare cellular event. By examining reprogramming of fibroblasts into motor neurons and multiple other somatic lineages, we find that epigenetic barriers to conversion can be overcome by endowing cells with the ability to mitigate an inherent antagonism between transcription and DNA replication. We show that transcription factor overexpression induces unusually high rates of transcription and that sustaining hypertranscription and transgene expression in hyperproliferative cells early in reprogramming is critical for successful lineage conversion. However, hypertranscription impedes DNA replication and cell proliferation, processes that facilitate reprogramming. We identify a chemical and genetic cocktail that dramatically increases the number of cells capable of simultaneous hypertranscription and hyperproliferation by activating topoisomerases. Further, we show that hypertranscribing, hyperproliferating cells reprogram at 100-fold higher, near-deterministic rates. Therefore, relaxing biophysical constraints overcomes molecular barriers to cellular reprogramming.
Collapse
Affiliation(s)
- Kimberley N Babos
- Eli and Edythe Broad CIRM Center, University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kate E Galloway
- Eli and Edythe Broad CIRM Center, University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - Kassandra Kisler
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madison Zitting
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yichen Li
- Eli and Edythe Broad CIRM Center, University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yingxiao Shi
- Eli and Edythe Broad CIRM Center, University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brooke Quintino
- Eli and Edythe Broad CIRM Center, University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert H Chow
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Justin K Ichida
- Eli and Edythe Broad CIRM Center, University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Bowers DT, Song W, Wang LH, Ma M. Engineering the vasculature for islet transplantation. Acta Biomater 2019; 95:131-151. [PMID: 31128322 PMCID: PMC6824722 DOI: 10.1016/j.actbio.2019.05.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
The microvasculature in the pancreatic islet is highly specialized for glucose sensing and insulin secretion. Although pancreatic islet transplantation is a potentially life-changing treatment for patients with insulin-dependent diabetes, a lack of blood perfusion reduces viability and function of newly transplanted tissues. Functional vasculature around an implant is not only necessary for the supply of oxygen and nutrients but also required for rapid insulin release kinetics and removal of metabolic waste. Inadequate vascularization is particularly a challenge in islet encapsulation. Selectively permeable membranes increase the barrier to diffusion and often elicit a foreign body reaction including a fibrotic capsule that is not well vascularized. Therefore, approaches that aid in the rapid formation of a mature and robust vasculature in close proximity to the transplanted cells are crucial for successful islet transplantation or other cellular therapies. In this paper, we review various strategies to engineer vasculature for islet transplantation. We consider properties of materials (both synthetic and naturally derived), prevascularization, local release of proangiogenic factors, and co-transplantation of vascular cells that have all been harnessed to increase vasculature. We then discuss the various other challenges in engineering mature, long-term functional and clinically viable vasculature as well as some emerging technologies developed to address them. The benefits of physiological glucose control for patients and the healthcare system demand vigorous pursuit of solutions to cell transplant challenges. STATEMENT OF SIGNIFICANCE: Insulin-dependent diabetes affects more than 1.25 million people in the United States alone. Pancreatic islets secrete insulin and other endocrine hormones that control glucose to normal levels. During preparation for transplantation, the specialized islet blood vessel supply is lost. Furthermore, in the case of cell encapsulation, cells are protected within a device, further limiting delivery of nutrients and absorption of hormones. To overcome these issues, this review considers methods to rapidly vascularize sites and implants through material properties, pre-vascularization, delivery of growth factors, or co-transplantation of vessel supporting cells. Other challenges and emerging technologies are also discussed. Proper vascular growth is a significant component of successful islet transplantation, a treatment that can provide life-changing benefits to patients.
Collapse
Affiliation(s)
- Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
27
|
Abstract
The derivation of induced pluripotent stem cells (iPSCs) over a decade ago sparked widespread enthusiasm for the development of new models of human disease, enhanced platforms for drug discovery and more widespread use of autologous cell-based therapy. Early studies using directed differentiation of iPSCs frequently uncovered cell-level phenotypes in monogenic diseases, but translation to tissue-level and organ-level diseases has required development of more complex, 3D, multicellular systems. Organoids and human-rodent chimaeras more accurately mirror the diverse cellular ecosystems of complex tissues and are being applied to iPSC disease models to recapitulate the pathobiology of a broad spectrum of human maladies, including infectious diseases, genetic disorders and cancer.
Collapse
|
28
|
Human Induced Pluripotent Stem Cells in the Curative Treatment of Diabetes and Potential Impediments Ahead. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1144:25-35. [PMID: 30569414 DOI: 10.1007/5584_2018_305] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The successful landmark discovery of mouse and human inducible pluripotential stem cells (iPSC's) by Takahashi and Yamanaka in 2006 and 2007 has triggered a revolution in the potential generation of self-compatible cells for regenerative medicine, and further opened up a new avenue for "disease in dish" drug screening of self-target cells (Neofytou et al. 2015). The introduction of four 'Yamanaka' transcription factors through viral or other transfection of mature cells can induce pluripotency and acquired plasticity. These factors include transduction with octamer-binding transcription factor-4 (Oct-4), nanog homeobox (Nanog), sex-determining region Y-box-2 (Sox-2) and MYC protooncogene (cMyc). Such cells become iPSC's (Takahashi and Yamanaka 2006). These reprogrammed cells exhibit increased telomerase activity and have a hypomethylated gene promotor region similar to embryonic stem cells (ESC's). These milestone discoveries have generated immense hope that diseases such as diabetes could be treated and effectively cured by transplantation of self-compatible, personalized autologous stem cell transplantation of β-cells that release physiological insulin under glycemic control (Maehr et al. 2009; Park et al. 2008) (Fig. 1). Diabetes is a profligate disease of disordered glucose metabolism resulting from an absolute or relative deficiency of insulin, the consequences of which lead to immense socio-economic societal burden. While there are many different types of diabetes, the two major types (type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are caused respectively by immune-mediated destruction (T1DM) or malfunctioning (T2DM) insulin-producing β-cells within the endocrine pancreas, the islets of Langerhans (Atkinson et al. 2011; Holman et al. 2015; You and Henneberg 2016). Almost 425 million people are affected by the global burden of diabetes, and this is predicted to increase by 48% (629 million) by 2045 (International Diabetes Federation Atlas 8th Ed 2018). Whole pancreas or islet cell transplantation offer an effective alternative to injected insulin, but both require lifelong potent immunosuppression to control both allo-and autoimmunity. Whole pancreas transplantation involves invasive complex surgery and is associated with greater morbidity and occasional mortality, while islet transplantation involves a minimally invasive intraportal hepatic infusion. Generally, whole pancreas transplantation provides greater metabolic reserve, but this may be matched by cumulative multiple islet infusions to achieve insulin independence. An additional challenge of islet transplantation is progressive loss of complete insulin independence over time, which may be multifactorial, the dominant factor however being ineffective control of autoimmunity. Both whole pancreas and islet transplantation are restricted to patients at risk of severe hypoglycemia that cannot be stabilized by alternate means, or in recipients that are already immunosuppressed in order to sustain a kidney or other solid organ transplant. The risks of chronic immunosuppression and the scarcity of human organ donors mean that both of these transplantation therapies cannot presently be extended to the broader diabetic population (Shapiro 2011; Shapiro et al. 2006). Recent progress in xenotransplantation of multiple knock-out 'humanized' pig islets could offer one potential solution, perhaps aided by clustered regularly interspaced short palindromic repeats/CRISPR associated-9 (CRISPR/Cas-9) gene editing approaches, but this remains to be proven in practice. Human stem cell derived new β-cell products could effectively address the global supply challenge for broad application across all forms of diabetes, but recurrent autoimmunity may still remain an insurmountable challenge. Considerable progress in the generation of human stem cell derived SC-β cells from ESC, iPS and other adult cell sources such as mesenchymal stem cells (MSCs) offer huge hope that a personalized, 'syngeneic' cell could be transplanted without risk of alloimmunity, thereby securing sufficient supply to meet future global demand (Cito et al. 2018).
Collapse
|
29
|
Petersen MB, Gonçalves CA, Kim YH, Grapin-Botton A. Recapitulating and Deciphering Human Pancreas Development From Human Pluripotent Stem Cells in a Dish. Curr Top Dev Biol 2018; 129:143-190. [DOI: 10.1016/bs.ctdb.2018.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|