1
|
Quiroz A, Belledonne G, Saavedra F, González J, Busso D. Vitamin E supplementation prevents obesogenic diet-induced developmental abnormalities in SR-B1 deficient embryos. Front Cell Dev Biol 2024; 12:1460697. [PMID: 39445334 PMCID: PMC11496146 DOI: 10.3389/fcell.2024.1460697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Genetic and environmental factors influence the risk of neural tube defects (NTD), congenital malformations characterized by abnormal brain and spine formation. Mouse embryos deficient in Scavenger Receptor Class B Type 1 (SR-B1), which is involved in the bidirectional transfer of lipids between lipoproteins and cells, exhibit a high prevalence of exencephaly, preventable by maternal vitamin E supplementation. SR-B1 knock-out (KO) embryos are severely deficient in vitamin E and show elevated reactive oxygen species levels during neurulation. Methods We fed SR-B1 heterozygous female mice a high-fat/high-sugar (HFHS) diet and evaluated the vitamin E and oxidative status in dams and embryos from heterozygous intercrosses. We also determined the incidence of NTD. Results and discussion HFHS-fed SR-B1 HET females exhibited altered glucose metabolism and excess circulating lipids, along with a higher incidence of embryos with developmental delay and NTD. Vitamin E supplementation partially mitigated HFHS-induced maternal metabolic abnormalities and completely prevented embryonic malformations, likely through indirect mechanisms involving the reduction of oxidative stress and improved lipid handling by the parietal yolk sac.
Collapse
Affiliation(s)
- Alonso Quiroz
- PhD Program in Medical Science, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gabriela Belledonne
- PhD Program in Medical Science, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fujiko Saavedra
- Ph.D. Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Javier González
- Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Dolores Busso
- Biomedical Research and Innovation Center, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago, Chile
| |
Collapse
|
2
|
Lu Y, Qin M, Qi X, Yang M, Zhai F, Zhang J, Yan Z, Yan L, Qiao J, Yuan P. Sex differences in human pre-gastrulation embryos. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2721-y. [PMID: 39327393 DOI: 10.1007/s11427-024-2721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
Human fetuses exhibit notable sex differences in growth rate and response to the intrauterine environment, yet their origins and underlying mechanisms remain uncertain. Here, we conduct a detailed investigation of sex differences in human pre-gastrulation embryos. The lower methylation and incomplete inactivation of the X chromosome in females, as well as the sex-specific cell-cell communication patterns, contribute to sex-differential transcription. Male trophectoderm is more inclined toward syncytiotrophoblast differentiation and exhibits a stronger hormone secretion capacity, while female trophectoderm tends to retain cytotrophoblast program with stronger mitochondrial function as well as higher vasculogenesis and immunotolerance signals. Male primitive endoderm initiates the anterior visceral endoderm transcriptional program earlier than females. The cell cycle activities of the epiblast and primitive endoderm are higher in males compared to females, while the situation is opposite in the trophectoderm. In conclusion, our study provides in-depth insights into the sex differences in human pre-gastrulation embryos and contributes to unraveling the origins of the sex differences in human fetal development.
Collapse
Affiliation(s)
- Yongjie Lu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Meng Qin
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xintong Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ming Yang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Fan Zhai
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jiaqi Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Zhiqiang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
| | - Liying Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Peng Yuan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
3
|
Stadtmauer DJ, Basanta Martínez S, Maziarz JD, Cole AG, Dagdas G, Smith GR, van Breukelen F, Pavličev M, Wagner GP. Cell type and cell signaling innovations underlying mammalian pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591945. [PMID: 38746137 PMCID: PMC11092578 DOI: 10.1101/2024.05.01.591945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
How fetal and maternal cell types have co-evolved to enable mammalian placentation poses a unique evolutionary puzzle. Here, we present a multi-species atlas integrating single-cell transcriptomes from six species bracketing therian mammal diversity. We find that invasive trophoblasts share a gene-expression signature across eutherians, and evidence that endocrine decidual cells evolved stepwise from an immunomodulatory cell type retained in Tenrec with affinity to human decidua of menstruation. We recover evolutionary patterns in ligand-receptor signaling: fetal and maternal cells show a pronounced tendency towards disambiguation, but a predicted arms race dynamic between them is limited. We reconstruct cell communication networks of extinct mammalian ancestors, finding strong integration of fetal trophoblast into maternal networks. Together, our results reveal a dynamic history of cell type and signaling evolution. Synopsis The fetal-maternal interface is one of the most intense loci of cell-cell signaling in the human body. Invasion of cells from the fetal placenta into the uterus, and the corresponding transformation of maternal tissues called decidualization, first evolved in the stem lineage of eutherian mammals( 1 , 2 ). Single-cell studies of the human fetal-maternal interface have provided new insight into the cell type diversity and cell-cell interactions governing this chimeric organ( 3-5 ). However, the fetal-maternal interface is also one of the most rapidly evolving, and hence most diverse, characters among mammals( 6 ), and an evolutionary analysis is missing. Here, we present and compare single-cell data from the fetal-maternal interface of species bracketing key events in mammal phylogeny: a marsupial (opossum, Monodelphis domestica ), the afrotherian Tenrec ecaudatus, and four Euarchontoglires - guinea pig and mouse (Rodentia) together with recent macaque and human data (primates) ( 4 , 5 , 7 ). We infer cell type homologies, identify a gene-expression signature of eutherian invasive trophoblast conserved over 99 million years, and discover a predecidual cell in the tenrec which suggests stepwise evolution of the decidual stromal cell. We reconstruct ancestral cell signaling networks, revealing the integration of fetal cell types into the interface. Finally, we test two long-standing theoretical predictions, the disambiguation hypothesis( 8 ) and escalation hypothesis( 9 ), at transcriptome-wide scale, finding divergence between fetal and maternal signaling repertoires but arms race dynamics restricted to a small subset of ligand-receptor pairs. In so doing, we trace the co-evolutionary history of cell types and their signaling across mammalian viviparity.
Collapse
|
4
|
Maggs X. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2024. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- X Maggs
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
5
|
Sommer A, Gomez Perdiguero E. Extraembryonic hematopoietic lineages-to macrophages and beyond. Exp Hematol 2024; 136:104285. [PMID: 39053841 DOI: 10.1016/j.exphem.2024.104285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The first blood and immune cells in vertebrates emerge in the extraembryonic yolk sac. Throughout the last century, it has become evident that this extraembryonic tissue gives rise to transient primitive and definitive hematopoiesis but not hematopoietic stem cells. More recently, studies have elucidated that yolk sac-derived blood and immune cells are present far longer than originally expected. These cells take over essential roles for the survival and proper organogenesis of the developing fetus up until birth. In this review, we discuss the most recent findings and views on extraembryonic hematopoiesis in mice and humans.
Collapse
Affiliation(s)
- Alina Sommer
- Macrophages and Endothelial Cells Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France; Sorbonne Université, Collège Doctoral, Paris, France
| | - Elisa Gomez Perdiguero
- Macrophages and Endothelial Cells Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France.
| |
Collapse
|
6
|
Miao X, Wu T, Pan H, Zhang Y, Liu J, Fan Y, Du L, Gong Y, Li L, Huang T, Ning Z. Integrative analysis of the ovarian metabolome and transcriptome of the Yaoshan chicken and its improved hybrids. Front Genet 2024; 15:1416283. [PMID: 39040995 PMCID: PMC11260793 DOI: 10.3389/fgene.2024.1416283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction: Laying performance is a key factor affecting production efficiency in poultry, but its molecular mechanism is still indistinct. In this study, Yaoshan chickens, a local breed in Guizhou, China, and merchant chickens (GYR) with higher egg yield after the three-line cross improvement hybridization of Yaoshan chickens were used as animal samples. Methods: To explore the regulatory mechanism of the diversities in laying performance, RNA-seq and ultra-performance liquid chromatographytandem mass spectrometry (UPLC-MS/MS) were used to describe the transcriptional and metabolic profiles of the ovaries of Yaoshan and GYR chickens. Results: At the transcriptional level, 288 differentially expressed genes were upregulated in Yaoshan chickens and 353 differentially expressed genes were upregulated in GYR chickens. In addition, GSEA showed that ECM-receptor interactions and the TGF-β signaling pathway were restrained, resulting in increased egg production in GYR chickens. Furthermore, the upregulation of thiamine and carnitine was identified by metabolomic analysis to facilitate the laying performance of hens. Finally, comprehensive analyses of the transcriptome and metabolome found that thiamine and carnitine were negatively correlated with ECM-receptor interactions and the TGF-β signaling pathway, which jointly regulate the laying performance of Yaoshan chickens and GYR chickens. Discussion: Taken together, our research delineates differences in the transcriptional and metabolic profiles of the ovaries of Yaoshan and GYR chickens during the peak egg production period and provides new hypotheses and clues for further research on poultry egg production performance and the improvement of economic benefits.
Collapse
Affiliation(s)
- Xiaomeng Miao
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tian Wu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongyuan Pan
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yalan Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jia Liu
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guiyang, China
| | - Ying Fan
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guiyang, China
| | - Lin Du
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guiyang, China
| | - Yu Gong
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guiyang, China
| | - Liang Li
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Tengda Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhonghua Ning
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Batorsky R, Ceasrine AM, Shook LL, Kislal S, Bordt EA, Devlin BA, Perlis RH, Slonim DK, Bilbo SD, Edlow AG. Hofbauer cells and fetal brain microglia share transcriptional profiles and responses to maternal diet-induced obesity. Cell Rep 2024; 43:114326. [PMID: 38848212 DOI: 10.1016/j.celrep.2024.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Maternal immune activation is associated with adverse offspring neurodevelopmental outcomes, many mediated by in utero microglial programming. As microglia remain inaccessible throughout development, identification of noninvasive biomarkers reflecting fetal brain microglial programming could permit screening and intervention. We used lineage tracing to demonstrate the shared ontogeny between fetal brain macrophages (microglia) and fetal placental macrophages (Hofbauer cells) in a mouse model of maternal diet-induced obesity, and single-cell RNA-seq to demonstrate shared transcriptional programs. Comparison with human datasets demonstrated conservation of placental resident macrophage signatures between mice and humans. Single-cell RNA-seq identified common alterations in fetal microglial and Hofbauer cell gene expression induced by maternal obesity, as well as sex differences in these alterations. We propose that Hofbauer cells, which are easily accessible at birth, provide insights into fetal brain microglial programs and may facilitate the early identification of offspring vulnerable to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rebecca Batorsky
- Data Intensive Studies Center, Tufts University, Medford, MA, USA
| | - Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Roy H Perlis
- Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University, Durham, NC, USA; Lurie Center for Autism, Massachusetts General Hospital, Boston, MA, USA
| | - Andrea G Edlow
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
8
|
Jimenez-Gonzalez A, Ansaloni F, Nebendahl C, Alavioon G, Murray D, Robak W, Sanges R, Müller F, Immler S. Paternal starvation affects metabolic gene expression during zebrafish offspring development and lifelong fitness. Mol Ecol 2024; 33:e17296. [PMID: 38361456 DOI: 10.1111/mec.17296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Dietary restriction in the form of fasting is a putative key to a healthier and longer life, but these benefits may come at a trade-off with reproductive fitness and may affect the following generation(s). The potential inter- and transgenerational effects of long-term fasting and starvation are particularly poorly understood in vertebrates when they originate from the paternal line. We utilised the externally fertilising zebrafish amenable to a split-egg clutch design to explore the male-specific effects of fasting/starvation on fertility and fitness of offspring independently of maternal contribution. Eighteen days of fasting resulted in reduced fertility in exposed males. While average offspring survival was not affected, we detected increased larval growth rate in F1 offspring from starved males and more malformed embryos at 24 h post-fertilisation in F2 offspring produced by F1 offspring from starved males. Comparing the transcriptomes of F1 embryos sired by starved and fed fathers revealed robust and reproducible increased expression of muscle composition genes but lower expression of lipid metabolism and lysosome genes in embryos from starved fathers. A large proportion of these genes showed enrichment in the yolk syncytial layer suggesting gene regulatory responses associated with metabolism of nutrients through paternal effects on extra-embryonic tissues which are loaded with maternal factors. We compared the embryo transcriptomes to published adult transcriptome datasets and found comparable repressive effects of starvation on metabolism-associated genes. These similarities suggest a physiologically relevant, directed and potentially adaptive response transmitted by the father, independently from the offspring's nutritional state, which was defined by the mother.
Collapse
Affiliation(s)
- Ada Jimenez-Gonzalez
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Federico Ansaloni
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | | | - Ghazal Alavioon
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - David Murray
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Centre for Environment, Fisheries, and Aquaculture Science, Lowestoft, UK
| | - Weronika Robak
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Remo Sanges
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Simone Immler
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
9
|
Hislop J, Song Q, Keshavarz F K, Alavi A, Schoenberger R, LeGraw R, Velazquez JJ, Mokhtari T, Taheri MN, Rytel M, Chuva de Sousa Lopes SM, Watkins S, Stolz D, Kiani S, Sozen B, Bar-Joseph Z, Ebrahimkhani MR. Modelling post-implantation human development to yolk sac blood emergence. Nature 2024; 626:367-376. [PMID: 38092041 PMCID: PMC10849971 DOI: 10.1038/s41586-023-06914-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Implantation of the human embryo begins a critical developmental stage that comprises profound events including axis formation, gastrulation and the emergence of haematopoietic system1,2. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons3-5. Stem cell models of human embryo have emerged to help unlock the mysteries of this stage6-16. Here we present a genetically inducible stem cell-derived embryoid model of early post-implantation human embryogenesis that captures the reciprocal codevelopment of embryonic tissue and the extra-embryonic endoderm and mesoderm niche with early haematopoiesis. This model is produced from induced pluripotent stem cells and shows unanticipated self-organizing cellular programmes similar to those that occur in embryogenesis, including the formation of amniotic cavity and bilaminar disc morphologies as well as the generation of an anterior hypoblast pole and posterior domain. The extra-embryonic layer in these embryoids lacks trophoblast and shows advanced multilineage yolk sac tissue-like morphogenesis that harbours a process similar to distinct waves of haematopoiesis, including the emergence of erythroid-, megakaryocyte-, myeloid- and lymphoid-like cells. This model presents an easy-to-use, high-throughput, reproducible and scalable platform to probe multifaceted aspects of human development and blood formation at the early post-implantation stage. It will provide a tractable human-based model for drug testing and disease modelling.
Collapse
Affiliation(s)
- Joshua Hislop
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qi Song
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kamyar Keshavarz F
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amir Alavi
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rayna Schoenberger
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy J Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tahere Mokhtari
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohammad Naser Taheri
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Rytel
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donna Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samira Kiani
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Rachman MP, Bamidele O, Dessie T, Smith J, Hanotte O, Gheyas AA. Genomic analysis of Nigerian indigenous chickens reveals their genetic diversity and adaptation to heat-stress. Sci Rep 2024; 14:2209. [PMID: 38278850 PMCID: PMC10817956 DOI: 10.1038/s41598-024-52569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Indigenous poultry breeds from Africa can survive in harsh tropical environments (such as long arid seasons, excessive rain and humidity, and extreme heat) and are resilient to disease challenges, but they are not productive compared to their commercial counterparts. Their adaptive characteristics are in response to natural selection or to artificial selection for production traits that have left selection signatures in the genome. Identifying these signatures of positive selection can provide insight into the genetic bases of tropical adaptations observed in indigenous poultry and thereby help to develop robust and high-performing breeds for extreme tropical climates. Here, we present the first large-scale whole-genome sequencing analysis of Nigerian indigenous chickens from different agro-climatic conditions, investigating their genetic diversity and adaptation to tropical hot climates (extreme arid and extreme humid conditions). The study shows a large extant genetic diversity but low level of population differentiation. Using different selection signature analyses, several candidate genes for adaptation were detected, especially in relation to thermotolerance and immune response (e.g., cytochrome P450 2B4-like, TSHR, HSF1, CDC37, SFTPB, HIF3A, SLC44A2, and ILF3 genes). These results have important implications for conserving valuable genetic resources and breeding improvement of chickens for thermotolerance.
Collapse
Affiliation(s)
- Mifta P Rachman
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK.
| | - Oladeji Bamidele
- African Chicken Genetic Gains (ACGG), Department of Animal Sciences, Obafemi Awolowo University, Ile Ife, 220282, Nigeria
| | - Tadelle Dessie
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Jacqueline Smith
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Olivier Hanotte
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia.
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Almas A Gheyas
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
11
|
Batorsky R, Ceasrine AM, Shook LL, Kislal S, Bordt EA, Devlin BA, Perlis RH, Slonim DK, Bilbo SD, Edlow AG. Hofbauer cells and fetal brain microglia share transcriptional profiles and responses to maternal diet-induced obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.571680. [PMID: 38187648 PMCID: PMC10769274 DOI: 10.1101/2023.12.16.571680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Maternal immune activation is associated with adverse offspring neurodevelopmental outcomes, many mediated by in utero microglial programming. As microglia remain inaccessible throughout development, identification of noninvasive biomarkers reflecting fetal brain microglial programming could permit screening and intervention. We used lineage tracing to demonstrate the shared ontogeny between fetal brain macrophages (microglia) and fetal placental macrophages (Hofbauer cells) in a mouse model of maternal diet-induced obesity, and single-cell RNA-seq to demonstrate shared transcriptional programs. Comparison with human datasets demonstrated conservation of placental resident macrophage signatures between mice and humans. Single-cell RNA-seq identified common alterations in fetal microglial and Hofbauer cell gene expression induced by maternal obesity, as well as sex differences in these alterations. We propose that Hofbauer cells, which are easily accessible at birth, provide novel insights into fetal brain microglial programs, and may facilitate the early identification of offspring vulnerable to neurodevelopmental disorders in the setting of maternal exposures.
Collapse
Affiliation(s)
| | - Alexis M. Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Lydia L. Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Evan A. Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin A. Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Roy H. Perlis
- Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Donna K. Slonim
- Department of Computer Science, Tufts University, Medford, MA
| | - Staci D. Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Lurie Center for Autism, Massachusetts General Hospital, Boston, MA
| | - Andrea G. Edlow
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
John RM, Higgs MJ, Isles AR. Imprinted genes and the manipulation of parenting in mammals. Nat Rev Genet 2023; 24:783-796. [PMID: 37714957 DOI: 10.1038/s41576-023-00644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/17/2023]
Abstract
Genomic imprinting refers to the parent-of-origin expression of genes, which originates from epigenetic events in the mammalian germ line. The evolution of imprinting may reflect a conflict over resource allocation early in life, with silencing of paternal genes in offspring soliciting increased maternal provision and silencing of maternal genes limiting demands on the mother. Parental caregiving has been identified as an area of potential conflict, with several imprinted genes serendipitously found to directly influence the quality of maternal care. Recent systems biology approaches, based on single-cell RNA sequencing data, support a more deliberate relationship, which is reinforced by the finding that imprinted genes expressed in the offspring influence the quality of maternal caregiving. These bidirectional, reiterative relationships between parents and their offspring are critical both for short-term survival and for lifelong wellbeing, with clear implications for human health.
Collapse
|
13
|
Zhu P, Zhang B, Sun R, Wang J, Liu Z, Liu X, Yan M, Cui Y, Sha J, Yuan Y. Derivation of new pluripotent stem cells from human extended pluripotent stem cells with formative features and trophectoderm potential. Cell Prolif 2023; 56:e13480. [PMID: 37052060 PMCID: PMC10623941 DOI: 10.1111/cpr.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Previous studies have demonstrated the existence of intermediate stem cells, which have been successfully obtained from human naive pluripotent stem cells (PSCs) and peri-implantation embryos. However, it is not known whether human extended pluripotent stem cells (hEPSCs) can be directly induced into intermediate stem cells. Moreover, the ability of extra-embryonic lineage differentiation in intermediate stem cells has not been verified. In this issue, we transformed hEPSCs into a kind of novel intermediate pluripotent stem cell resembling embryonic days 8-9 (E8-E9) epiblasts and proved its feature of formative epiblasts. We engineered hEPSCs from primed hPSCs under N2B27-LCDM (N2B27 plus Lif, CHIR, DiH and MiH) conditions. Then, we added Activin A, FGF and XAV939 to modulate signalling pathways related to early humans' embryogenesis. We performed RNA-seq and CUT&Tag analysis to compare with AF9-hPSCs from different pluripotency stages of hPSCs. Trophectoderm (TE), primordial germ cells-like cells (PGCLC) and endoderm, mesoderm, and neural ectoderm induction were conducted by specific small molecules and proteins. AF9-hPSCs transcription resembled that of E8-E9 peri-implantation epiblasts. Signalling pathway responsiveness and histone methylation further revealed their formative pluripotency. Additionally, AF9-hPSCs responded directly to primordial germ cells (PGCs) specification and three germ layer differentiation signals in vitro. Moreover, AF9-hPSCs could differentiate into the TE lineage. Therefore, AF9-hPSCs represented an E8-E9 formative pluripotency state between naïve and primed pluripotency, opening new avenues for studying human pluripotency development during embryogenesis.
Collapse
Affiliation(s)
- Pinmou Zhu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Bohang Zhang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Ruiqi Sun
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Jiachen Wang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Zhaode Liu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Xiaorui Liu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Min Yan
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yiqiang Cui
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Jiahao Sha
- State Key Laboratory of Reproductive MedicineWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical UniversityNanjingChina
| | - Yan Yuan
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
14
|
Kobayashi K, Iwasa K, Azuma-Suzuki R, Kawauchi T, Nabeshima YI. Feto-maternal cholesterol transport regulated by β-Klotho-FGF15 axis is essential for fetal growth. Life Sci Alliance 2023; 6:e202301916. [PMID: 37541847 PMCID: PMC10403640 DOI: 10.26508/lsa.202301916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
β-Klotho (β-KL) is indispensable to regulate lipid, glucose, and energy metabolism in adult animals. β-KL is highly expressed in the yolk sac, but its role in the developmental stages has not been established. We hypothesized that β-KL is required for metabolic regulation in the embryo and aimed to clarify the role of β-KL during development. Here, we show that β-KL regulates feto-maternal cholesterol transport through the yolk sac by mediating FGF 15 signaling, and also that impairment of the β-KL-FGF15 axis causes fetal growth restriction (FGR). Embryos of β- kl knockout (β-kl-/-) mice were morphologically normal but exhibited FGR before placental maturation. The body weight of β-kl-/- mice remained lower after birth. β-KL deletion reduced cholesterol supply from the maternal blood and led to lipid shortage in the embryos. These phenotypes were similar to those of embryos lacking FGF15, indicating that β-KL-FGF15 axis is essential for growth and lipid regulation in the embryonic stages. Our findings suggest that lipid abnormalities in early gestation provoke FGR, leading to reduced body size in later life.
Collapse
Affiliation(s)
- Kanako Kobayashi
- Department of Aging Science and Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Kazuko Iwasa
- Department of Aging Science and Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Rika Azuma-Suzuki
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Takeshi Kawauchi
- Department of Aging Science and Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Adaptive and Maladaptive Responses in Health and Disease, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yo-Ichi Nabeshima
- Department of Aging Science and Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
15
|
Keuls RA, Finnell RH, Parchem RJ. Maternal metabolism influences neural tube closure. Trends Endocrinol Metab 2023; 34:539-553. [PMID: 37468429 PMCID: PMC10529122 DOI: 10.1016/j.tem.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023]
Abstract
Changes in maternal nutrient availability due to diet or disease significantly increase the risk of neural tube defects (NTDs). Because the incidence of metabolic disease continues to rise, it is urgent that we better understand how altered maternal nutrient levels can influence embryonic neural tube development. Furthermore, primary neurulation occurs before placental function during a period of histiotrophic nutrient exchange. In this review we detail how maternal metabolites are transported by the yolk sac to the developing embryo. We discuss recent advances in understanding how altered maternal levels of essential nutrients disrupt development of the neuroepithelium, and identify points of intersection between metabolic pathways that are crucial for NTD prevention.
Collapse
Affiliation(s)
- Rachel A Keuls
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine. Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard H Finnell
- Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Precision Environmental Health, Department of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ronald J Parchem
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine. Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Goh I, Botting RA, Rose A, Webb S, Engelbert J, Gitton Y, Stephenson E, Londoño MQ, Mather M, Mende N, Imaz-Rosshandler I, Yang L, Horsfall D, Basurto-Lozada D, Chipampe NJ, Rook V, Lee JTH, Ton ML, Keitley D, Mazin P, Vijayabaskar M, Hannah R, Gambardella L, Green K, Ballereau S, Inoue M, Tuck E, Lorenzi V, Kwakwa K, Alsinet C, Olabi B, Miah M, Admane C, Popescu DM, Acres M, Dixon D, Ness T, Coulthard R, Lisgo S, Henderson DJ, Dann E, Suo C, Kinston SJ, Park JE, Polanski K, Marioni J, van Dongen S, Meyer KB, de Bruijn M, Palis J, Behjati S, Laurenti E, Wilson NK, Vento-Tormo R, Chédotal A, Bayraktar O, Roberts I, Jardine L, Göttgens B, Teichmann SA, Haniffa M. Yolk sac cell atlas reveals multiorgan functions during human early development. Science 2023; 381:eadd7564. [PMID: 37590359 PMCID: PMC7614978 DOI: 10.1126/science.add7564] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/03/2023] [Indexed: 08/19/2023]
Abstract
The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.
Collapse
Affiliation(s)
- Issac Goh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Rachel A. Botting
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Antony Rose
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Simone Webb
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Yorick Gitton
- Sorbonne Université, INSERM, CNRS, Institut de la Vision,
Paris, France
| | - Emily Stephenson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Michael Mather
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Nicole Mende
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Ivan Imaz-Rosshandler
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus,
CD2 0QH, UK
| | - Lu Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Dave Horsfall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Daniela Basurto-Lozada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Nana-Jane Chipampe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Victoria Rook
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Jimmy Tsz Hang Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Mai-Linh Ton
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Daniel Keitley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Department of Zoology, University of Cambridge, Cambridge UK
| | - Pavel Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - M.S. Vijayabaskar
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Rebecca Hannah
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Laure Gambardella
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Kile Green
- Translational and Clinical Research Institute, Newcastle University,
NE2 4HH, UK
| | - Stephane Ballereau
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Megumi Inoue
- Sorbonne Université, INSERM, CNRS, Institut de la Vision,
Paris, France
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Valentina Lorenzi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Kwasi Kwakwa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Clara Alsinet
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Centre Nacional d’Analisi Genomica-Centre de Regulacio
Genomica (CNAG-CRG), Barcelona Institute of Science and Technology (BIST),
Barcelona, Spain
| | - Bayanne Olabi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Mohi Miah
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Chloe Admane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Meghan Acres
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - David Dixon
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Thomas Ness
- NovoPath, Department of Pathology, Newcastle Hospitals NHS
Foundation Trust, Newcastle upon Tyne, UK
| | - Rowen Coulthard
- NovoPath, Department of Pathology, Newcastle Hospitals NHS
Foundation Trust, Newcastle upon Tyne, UK
| | - Steven Lisgo
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Chenqu Suo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Sarah J. Kinston
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Jong-eun Park
- Korea Advanced Institute of Science and Technology, Daejeon, South
Korea
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - John Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- EMBL-EBI, Wellcome Genome Campus, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge,
UK
| | - Stijn van Dongen
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Kerstin B. Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Marella de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of
Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS,
UK
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center,
Rochester, 14642, NY, USA
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge,
UK
| | - Elisa Laurenti
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Nicola K. Wilson
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision,
Paris, France
| | - Omer Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Irene Roberts
- Department of Paediatrics, University of Oxford, OX3 9DS, UK
| | - Laura Jardine
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department
of Physics, University of Cambridge, Cambridge, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research
Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP,
UK
| |
Collapse
|
17
|
Ornoy A, Miller RK. Yolk sac development, function and role in rodent pregnancy. Birth Defects Res 2023; 115:1243-1254. [PMID: 36949669 DOI: 10.1002/bdr2.2172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023]
Abstract
During the early phases of embryonic development, the yolk sac serves as an initial placenta in many animal species. While in some, this role subsides around the end of active organogenesis, it continues to have important functions in rodents, alongside the chorio-allantoic placenta. The yolk sac is the initial site of hematopoiesis in many animal species including primates. Cells of epiblastic origin form blood islands that are the forerunners of hematopoietic cells and of the primitive endothelial cells that form the vitelline circulation. The yolk sac is also a major route of embryonic and fetal nutrition apparently as long as it functions. In mammals and especially rodents, macro and micronutrients are absorbed by active pinocytosis into the visceral yolk sac, degraded and the degradation products (i.e., amino acids) are then transferred to the embryo. Interference with the yolk sac function may directly reflect on embryonic growth and development, inducing congenital malformations or in extreme damage, causing embryonic and fetal death. In rodents, many agents were found to damage the yolk sac (i.e., anti-yolk sac antibodies or toxic substances interfering with yolk sac pinocytosis) subsequently affecting the embryo/fetus. Often, the damage to the yolk sac is transient while embryonic damage persists. In humans, decreased yolk sac diameter was associated with diabetic pregnancies and increased diameter was associated with pregnancy loss. In addition, culture of rat yolk sacs in serum obtained from pregnant diabetic women or from women with autoimmune diseases induced severe damage to the visceral yolk sac epithelium and embryonic malformations. It can be concluded that as a result of the crucial role of the yolk sac in the well-being of the early embryo, any damage to its normal function may severely and irreversibly affect further development of the embryo/fetus.
Collapse
Affiliation(s)
- Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University and Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Richard K Miller
- School of Medicine and Dentistry, Departments of Obstetrics/Gynecology, of Pediatrics, of Pathology and of Environmental Medicine, University of Rochester, Rochester, New York, 14642, USA
| |
Collapse
|
18
|
Hislop J, Alavi A, Song Q, Schoenberger R, Kamyar KF, LeGraw R, Velazquez J, Mokhtari T, Taheri MN, Rytel M, de Sousa Lopes SMC, Watkins S, Stolz D, Kiani S, Sozen B, Bar-Joseph Z, Ebrahimkhani MR. Modelling Human Post-Implantation Development via Extra-Embryonic Niche Engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545118. [PMID: 37398391 PMCID: PMC10312773 DOI: 10.1101/2023.06.15.545118] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Implantation of the human embryo commences a critical developmental stage that comprises profound morphogenetic alteration of embryonic and extra-embryonic tissues, axis formation, and gastrulation events. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons. Additionally, human stem cell models of early post-implantation development with both embryonic and extra-embryonic tissue morphogenesis are lacking. Here, we present iDiscoid, produced from human induced pluripotent stem cells via an engineered a synthetic gene circuit. iDiscoids exhibit reciprocal co-development of human embryonic tissue and engineered extra-embryonic niche in a model of human post-implantation. They exhibit unanticipated self-organization and tissue boundary formation that recapitulates yolk sac-like tissue specification with extra-embryonic mesoderm and hematopoietic characteristics, the formation of bilaminar disc-like embryonic morphology, the development of an amniotic-like cavity, and acquisition of an anterior-like hypoblast pole and posterior-like axis. iDiscoids offer an easy-to-use, high-throughput, reproducible, and scalable platform to probe multifaceted aspects of human early post-implantation development. Thus, they have the potential to provide a tractable human model for drug testing, developmental toxicology, and disease modeling.
Collapse
Affiliation(s)
- Joshua Hislop
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amir Alavi
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Qi Song
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rayna Schoenberger
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Keshavarz F. Kamyar
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jeremy Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tahere Mokhtari
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mohammad Nasser Taheri
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Matthew Rytel
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg, 2333 ZC Leiden, the Netherlands
| | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donna Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samira Kiani
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mo R. Ebrahimkhani
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
19
|
Woods R, Lorusso J, Fletcher J, ElTaher H, McEwan F, Harris I, Kowash H, D'Souza SW, Harte M, Hager R, Glazier JD. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal 2023; 7:NS20220064. [PMID: 37332846 PMCID: PMC10273029 DOI: 10.1042/ns20220064] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.
Collapse
Affiliation(s)
- Rebecca M. Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jarred M. Lorusso
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jennifer Fletcher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Heidi ElTaher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
- Department of Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Francesca McEwan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Isabella Harris
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Hager M. Kowash
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Stephen W. D'Souza
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
20
|
Ton MLN, Keitley D, Theeuwes B, Guibentif C, Ahnfelt-Rønne J, Andreassen TK, Calero-Nieto FJ, Imaz-Rosshandler I, Pijuan-Sala B, Nichols J, Benito-Gutiérrez È, Marioni JC, Göttgens B. An atlas of rabbit development as a model for single-cell comparative genomics. Nat Cell Biol 2023; 25:1061-1072. [PMID: 37322291 DOI: 10.1038/s41556-023-01174-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Traditionally, the mouse has been the favoured vertebrate model for biomedical research, due to its experimental and genetic tractability. However, non-rodent embryological studies highlight that many aspects of early mouse development, such as its egg-cylinder gastrulation and method of implantation, diverge from other mammals, thus complicating inferences about human development. Like the human embryo, rabbits develop as a flat-bilaminar disc. Here we constructed a morphological and molecular atlas of rabbit development. We report transcriptional and chromatin accessibility profiles for over 180,000 single cells and high-resolution histology sections from embryos spanning gastrulation, implantation, amniogenesis and early organogenesis. Using a neighbourhood comparison pipeline, we compare the transcriptional landscape of rabbit and mouse at the scale of the entire organism. We characterize the gene regulatory programmes underlying trophoblast differentiation and identify signalling interactions involving the yolk sac mesothelium during haematopoiesis. We demonstrate how the combination of both rabbit and mouse atlases can be leveraged to extract new biological insights from sparse macaque and human data. The datasets and computational pipelines reported here set a framework for a broader cross-species approach to decipher early mammalian development, and are readily adaptable to deploy single-cell comparative genomics more broadly across biomedical research.
Collapse
Affiliation(s)
- Mai-Linh Nu Ton
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Daniel Keitley
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Bart Theeuwes
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Carolina Guibentif
- Inst. Biomedicine, Dept. Microbiology and Immunology, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Fernando J Calero-Nieto
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ivan Imaz-Rosshandler
- Department of Haematology, University of Cambridge, Cambridge, UK
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Blanca Pijuan-Sala
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Mayshar Y, Raz O, Cheng S, Ben-Yair R, Hadas R, Reines N, Mittnenzweig M, Ben-Kiki O, Lifshitz A, Tanay A, Stelzer Y. Time-aligned hourglass gastrulation models in rabbit and mouse. Cell 2023; 186:2610-2627.e18. [PMID: 37209682 DOI: 10.1016/j.cell.2023.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
The hourglass model describes the convergence of species within the same phylum to a similar body plan during development; however, the molecular mechanisms underlying this phenomenon in mammals remain poorly described. Here, we compare rabbit and mouse time-resolved differentiation trajectories to revisit this model at single-cell resolution. We modeled gastrulation dynamics using hundreds of embryos sampled between gestation days 6.0 and 8.5 and compared the species using a framework for time-resolved single-cell differentiation-flows analysis. We find convergence toward similar cell-state compositions at E7.5, supported by the quantitatively conserved expression of 76 transcription factors, despite divergence in surrounding trophoblast and hypoblast signaling. However, we observed noticeable changes in specification timing of some lineages and divergence of primordial germ cell programs, which in the rabbit do not activate mesoderm genes. Comparative analysis of temporal differentiation models provides a basis for studying the evolution of gastrulation dynamics across mammals.
Collapse
Affiliation(s)
- Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofir Raz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Raz Ben-Yair
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Hadas
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Netta Reines
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Markus Mittnenzweig
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Ben-Kiki
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Aviezer Lifshitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
22
|
Burton GJ, Jauniaux E. The human placenta: new perspectives on its formation and function during early pregnancy. Proc Biol Sci 2023; 290:20230191. [PMID: 37072047 PMCID: PMC10113033 DOI: 10.1098/rspb.2023.0191] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
The placenta has evolved to support the development of the embryo and fetus during the different intrauterine periods of life. By necessity, its development must precede that of the embryo. There is now evidence that during embryogenesis and organogenesis, the development of the human placenta is supported by histotrophic nutrition secreted from endometrial glands rather than maternal blood. These secretions provide a plentiful supply of glucose, lipids, glycoproteins and growth factors that stimulate rapid proliferation and differentiation of the villous trophoblast. Furthermore, evidence from endometrial gland organoids indicates that expression and secretion of these products are upregulated following sequential exposure to oestrogen, progesterone and trophoblastic and decidual hormones, in particular prolactin. Hence, a feed-forward signalling dialogue is proposed among the trophoblast, decidua and glands that enables the placenta to stimulate its own development, independent of that of the embryo. Many common complications of pregnancy represent a spectrum of disorders associated with deficient trophoblast proliferation. Increasing evidence suggests that this spectrum is mirrored by one of impaired decidualization, potentially compromising histotroph secretion through diminished prolactin secretion and reduced gland function. Optimizing endometrial wellbeing prior to conception may therefore help to prevent common pregnancy complications, such as miscarriage, growth restriction and pre-eclampsia.
Collapse
Affiliation(s)
- Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Eric Jauniaux
- EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, UK
| |
Collapse
|
23
|
Tamaoki N, Siebert S, Maeda T, Ha NH, Good ML, Huang Y, Vodnala SK, Haro-Mora JJ, Uchida N, Tisdale JF, Sweeney CL, Choi U, Brault J, Koontz S, Malech HL, Yamazaki Y, Isonaka R, Goldstein DS, Kimura M, Takebe T, Zou J, Stroncek DF, Robey PG, Kruhlak MJ, Restifo NP, Vizcardo R. Self-organized yolk sac-like organoids allow for scalable generation of multipotent hematopoietic progenitor cells from induced pluripotent stem cells. CELL REPORTS METHODS 2023; 3:100460. [PMID: 37159663 PMCID: PMC10163025 DOI: 10.1016/j.crmeth.2023.100460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/11/2022] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
Although the differentiation of human induced pluripotent stem cells (hiPSCs) into various types of blood cells has been well established, approaches for clinical-scale production of multipotent hematopoietic progenitor cells (HPCs) remain challenging. We found that hiPSCs cocultured with stromal cells as spheroids (hematopoietic spheroids [Hp-spheroids]) can grow in a stirred bioreactor and develop into yolk sac-like organoids without the addition of exogenous factors. Hp-spheroid-induced organoids recapitulated a yolk sac-characteristic cellular complement and structures as well as the functional ability to generate HPCs with lympho-myeloid potential. Moreover, sequential hemato-vascular ontogenesis could also be observed during organoid formation. We demonstrated that organoid-induced HPCs can be differentiated into erythroid cells, macrophages, and T lymphocytes with current maturation protocols. Notably, the Hp-spheroid system can be performed in an autologous and xeno-free manner, thereby improving the feasibility of bulk production of hiPSC-derived HPCs in clinical, therapeutic contexts.
Collapse
Affiliation(s)
- Naritaka Tamaoki
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Center of Cell-based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Takuya Maeda
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Center of Cell-based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ngoc-Han Ha
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Meghan L. Good
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Center of Cell-based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yin Huang
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Center of Cell-based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Suman K. Vodnala
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Center of Cell-based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Juan J. Haro-Mora
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Colin L. Sweeney
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Uimook Choi
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Julie Brault
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sherry Koontz
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Harry L. Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yasuhiro Yamazaki
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Risa Isonaka
- Autonomic Medicine Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - David S. Goldstein
- Autonomic Medicine Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Division of Stem Cell and Organoid Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - David F. Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Michael J. Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nicholas P. Restifo
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Center of Cell-based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Raul Vizcardo
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Center of Cell-based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Wiegand J, Avila-Barnard S, Nemarugommula C, Lyons D, Zhang S, Stapleton HM, Volz DC. Triphenyl phosphate-induced pericardial edema in zebrafish embryos is dependent on the ionic strength of exposure media. ENVIRONMENT INTERNATIONAL 2023; 172:107757. [PMID: 36680802 PMCID: PMC9974852 DOI: 10.1016/j.envint.2023.107757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Pericardial edema is commonly observed in zebrafish embryo-based chemical toxicity screens, and a mechanism underlying edema may be disruption of embryonic osmoregulation. Therefore, the objective of this study was to identify whether triphenyl phosphate (TPHP) - a widely used aryl phosphate ester-based flame retardant - induces pericardial edema via impacts on osmoregulation within embryonic zebrafish. In addition to an increase in TPHP-induced microridges in the embryonic yolk sac epithelium, an increase in ionic strength of exposure media exacerbated TPHP-induced pericardial edema when embryos were exposed from 24 to 72 h post-fertilization (hpf). However, there was no difference in embryonic sodium concentrations in situ within TPHP-exposed embryos relative to embryos exposed to vehicle (0.1% DMSO) from 24 to 72 hpf. Interestingly, increasing the osmolarity of exposure media with mannitol (an osmotic diuretic which mitigates TPHP-induced pericardial edema) and increasing the ionic strength of the exposure media (which exacerbates TPHP-induced pericardial edema) did not affect embryonic doses of TPHP, suggesting that TPHP uptake was not altered under these varying experimental conditions. Overall, our findings suggest that TPHP-induced pericardial edema within zebrafish embryos is dependent on the ionic strength of exposure media, underscoring the importance of further standardization of exposure media and embryo rearing protocols in zebrafish-based chemical toxicity screening assays.
Collapse
Affiliation(s)
- Jenna Wiegand
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Sarah Avila-Barnard
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Charvita Nemarugommula
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - David Lyons
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Sharon Zhang
- Division of Environmental Sciences and Policy, Duke University, Durham, NC 27708, United States
| | - Heather M Stapleton
- Division of Environmental Sciences and Policy, Duke University, Durham, NC 27708, United States
| | - David C Volz
- Division of Environmental Sciences and Policy, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
25
|
Covarrubias A, Aguilera-Olguín M, Carrasco-Wong I, Pardo F, Díaz-Astudillo P, Martín SS. Feto-placental Unit: From Development to Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:1-29. [PMID: 37466767 DOI: 10.1007/978-3-031-32554-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The placenta is an intriguing organ that allows us to survive intrauterine life. This essential organ connects both mother and fetus and plays a crucial role in maternal and fetal well-being. This chapter presents an overview of the morphological and functional aspects of human placental development. First, we describe early human placental development and the characterization of the cell types found in the human placenta. Second, the human placenta from the second trimester to the term of gestation is reviewed, focusing on the morphology and specific pathologies that affect the placenta. Finally, we focus on the placenta's primary functions, such as oxygen and nutrient transport, and their importance for placental development.
Collapse
Affiliation(s)
- Ambart Covarrubias
- Health Sciences Faculty, Universidad San Sebastián, Concepción, Chile
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Macarena Aguilera-Olguín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
- Cellular Signalling and Differentiation Laboratory (CSDL), Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Ivo Carrasco-Wong
- Cellular Signalling and Differentiation Laboratory (CSDL), School of Medical Technology, Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Fabián Pardo
- Metabolic Diseases Research Laboratory, Interdisciplinary Centre of Territorial Health Research (CIISTe), Biomedical Research Center (CIB), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe, Chile
| | - Pamela Díaz-Astudillo
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
| | - Sebastián San Martín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.
| |
Collapse
|
26
|
Translational Comparison of the Human and Mouse Yolk Sac Development and Function. Reprod Sci 2023; 30:41-53. [PMID: 35137348 DOI: 10.1007/s43032-022-00872-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/29/2022] [Indexed: 01/06/2023]
Abstract
The yolk sac (YS) is the oldest of the extraembryonic membranes in vertebrates. Considered a transitory structure in the human species, the importance of the YS for a successful pregnancy is often overlooked. Due to the general inaccessibility of healthy human YS tissue for research, the use of experimental animal models is of great value. In order to better understand whether the mouse could be used as a translational model for the study of the human YS under normal and pathological conditions, this review comprehensively describes key developmental aspects of the human and mouse YS, detailing their development and function. YS major similarities in both species comprise the following: (1) histological composition (both being composed of endoderm, mesoderm, and mesothelium layers); (2) endoderm endocytosis, synthesis, secretion, and transport capabilities; and (3) mesoderm onset of haematopoiesis and angiogenesis. Examples of main dissimilarities include (1) persistence across pregnancy (i.e. early pregnancy in humans vs term pregnancy in mice); (2) the existence of a secondary YS in humans; (3) the presence of proliferative primordial germ cells (PGCs) in the human versus their absence in mice; and (4) eversion of histological layers in the mouse. Although these differences should be considered when interpreting data from mouse-based studies, the overall morphofunctional similarities in the YS between these species indicate that the mouse can be potentially used as a translational model for the study of the human YS.
Collapse
|
27
|
Cindrova-Davies T, Sferruzzi-Perri AN. Human placental development and function. Semin Cell Dev Biol 2022; 131:66-77. [PMID: 35393235 DOI: 10.1016/j.semcdb.2022.03.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
The placenta is a transient fetal organ that plays a critical role in the health and wellbeing of both the fetus and its mother. Functionally, the placenta sustains the growth of the fetus as it facilitates delivery of oxygen and nutrients and removal of waste products. Not surprisingly, defective early placental development is the primary cause of common disorders of pregnancy, including recurrent miscarriage, fetal growth restriction, pre-eclampsia and stillbirth. Adverse pregnancy conditions will also affect the life-long health of the fetus via developmental programming[1]. Despite its critical importance in reproductive success and life-long health, our understanding of placental development is not extensive, largely due to ethical limitations to studying early or chronological placental development, lack of long-term in vitro models, or comparative animal models. In this review, we examine current knowledge of early human placental development, discuss the critical role of the maternal endometrium and of the fetal-maternal dialogue in pregnancy success, and we explore the latest models of trophoblast and endometrial stem cells. In addition, we discuss the role of oxygen in placental formation and function, how nutrient delivery is mediated during the periods of histotrophic nutrition (uptake of uterine secretions) and haemotrophic nutrition (exchange between the maternal and fetal circulations), and how placental endocrine function facilitates fetal growth and development.
Collapse
Affiliation(s)
- Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
28
|
Cui G, Feng S, Yan Y, Wang L, He X, Li X, Duan Y, Chen J, Tang K, Zheng P, Tam PPL, Si W, Jing N, Peng G. Spatial molecular anatomy of germ layers in the gastrulating cynomolgus monkey embryo. Cell Rep 2022; 40:111285. [PMID: 36044859 DOI: 10.1016/j.celrep.2022.111285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/31/2022] [Accepted: 08/05/2022] [Indexed: 12/18/2022] Open
Abstract
During mammalian embryogenesis, spatial regulation of gene expression and cell signaling are functionally coupled with lineage specification, patterning of tissue progenitors, and germ layer morphogenesis. While the mouse model has been instrumental for understanding mammalian development, comparatively little is known about human and non-human primate gastrulation due to the restriction of both technical and ethical issues. Here, we present a spatial and temporal survey of the molecular dynamics of cell types populating the non-human primate embryos during gastrulation. We reconstructed three-dimensional digital models from serial sections of cynomolgus monkey (Macaca fascicularis) gastrulating embryos at 1-day temporal resolution from E17 to E21. Spatial transcriptomics identifies gene expression profiles unique to the germ layers. Cross-species comparison reveals a developmental coordinate of germ layer segregation between mouse and primates, and species-specific transcription programs during gastrulation. These findings offer insights into evolutionarily conserved and divergent processes during mammalian gastrulation.
Collapse
Affiliation(s)
- Guizhong Cui
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou 510005, China
| | - Su Feng
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou 510005, China
| | - Yaping Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Li Wang
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiechao He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yanchao Duan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Naihe Jing
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou 510005, China; Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Guangdun Peng
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou 510005, China; Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
29
|
D’Souza SW, Glazier JD. Homocysteine Metabolism in Pregnancy and Developmental Impacts. Front Cell Dev Biol 2022; 10:802285. [PMID: 35846363 PMCID: PMC9280125 DOI: 10.3389/fcell.2022.802285] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Homocysteine is a metabolite generated by methionine cycle metabolism, comprising the demethylated derivative of methionine. Homocysteine can be metabolised by the transsulphuration pathway to cystathionine, which requires vitamin B6, or can undergo remethylation to methionine. Homocysteine remethylation to methionine is catalysed by methionine synthase activity which requires vitamin B12, regenerating methionine to allow synthesis of the universal methyl donor S-adenosylmethionine required for methylation and gene transcription regulation. The methyl-group donated for homocysteine remethylation comes from 5-methyltetrahydrofolate generated by the folate cycle, which allows tetrahydrofolate to be returned to the active folate pool for nucleotide biosynthesis. Therefore the integrated actions of the methionine and folate cycles, required to metabolise homocysteine, also perpetuate methylation and nucleotide synthesis, vitally important to support embryonic growth, proliferation and development. Dysregulated activities of these two interdependent metabolic cycles, arising from maternal suboptimal intake of nutrient co-factors such as folate and vitamin B12 or gene polymorphisms resulting in reduced enzymatic activity, leads to inefficient homocysteine metabolic conversion causing elevated concentrations, known as hyperhomocysteinemia. This condition is associated with multiple adverse pregnancy outcomes including neural tube defects (NTDs). Raised homocysteine is damaging to cellular function, binding to proteins thereby impairing their function, with perturbed homocysteine metabolism impacting negatively on embryonic development. This review discusses the "cross-talk" of maternal-fetal homocysteine interrelationships, describes the placental transport of homocysteine, homocysteine impacts on pregnancy outcomes, homocysteine and methylation effects linking to NTD risk and proposes a putative pathway for embryonic provision of folate and vitamin B12, homocysteine-modulating nutrients that ameliorate NTD risk.
Collapse
Affiliation(s)
- Stephen W. D’Souza
- Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary’s Hospital, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
30
|
Kalisch-Smith JI, Morris EC, Strevens MAA, Redpath AN, Klaourakis K, Szumska D, Outhwaite JE, Sun X, Vieira JM, Smart N, De Val S, Riley PR, Sparrow DB. Analysis of Placental Arteriovenous Formation Reveals New Insights Into Embryos With Congenital Heart Defects. Front Genet 2022; 12:806136. [PMID: 35126469 PMCID: PMC8809359 DOI: 10.3389/fgene.2021.806136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The placental vasculature provides the developing embryo with a circulation to deliver nutrients and dispose of waste products. However, in the mouse, the vascular components of the chorio-allantoic placenta have been largely unexplored due to a lack of well-validated molecular markers. This is required to study how these blood vessels form in development and how they are impacted by embryonic or maternal defects. Here, we employed marker analysis to characterize the arterial/arteriole and venous/venule endothelial cells (ECs) during normal mouse placental development. We reveal that placental ECs are potentially unique compared with their embryonic counterparts. We assessed embryonic markers of arterial ECs, venous ECs, and their capillary counterparts-arteriole and venule ECs. Major findings were that the arterial tree exclusively expressed Dll4, and venous vascular tree could be distinguished from the arterial tree by Endomucin (EMCN) expression levels. The relationship between the placenta and developing heart is particularly interesting. These two organs form at the same stages of embryogenesis and are well known to affect each other's growth trajectories. However, although there are many mouse models of heart defects, these are not routinely assessed for placental defects. Using these new placental vascular markers, we reveal that mouse embryos from one model of heart defects, caused by maternal iron deficiency, also have defects in the formation of the placental arterial, but not the venous, vascular tree. Defects to the embryonic cardiovascular system can therefore have a significant impact on blood flow delivery and expansion of the placental arterial tree.
Collapse
Affiliation(s)
- Jacinta I. Kalisch-Smith
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Emily C. Morris
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mary A. A. Strevens
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andia N. Redpath
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kostantinos Klaourakis
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Dorota Szumska
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Ludvig Institute for Cancer Research Ltd., University of Oxford, Oxford, United Kingdom
| | | | - Xin Sun
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Joaquim Miguel Vieira
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nicola Smart
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sarah De Val
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Ludvig Institute for Cancer Research Ltd., University of Oxford, Oxford, United Kingdom
| | - Paul R. Riley
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Duncan B. Sparrow
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Sharma R, Mei A, Mathew V, Kashpur O, Wallingford MC. Interaction of extraembryonic microglia and neonatal brain development. Exp Neurol 2022; 351:113986. [DOI: 10.1016/j.expneurol.2022.113986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 11/29/2022]
|
32
|
Meng Y, Qiu N, Guyonnet V, Mine Y. Omics as a Window To Unravel the Dynamic Changes of Egg Components during Chicken Embryonic Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12947-12955. [PMID: 34709815 DOI: 10.1021/acs.jafc.1c05883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chicken egg, as a completely aseptic and self-sufficient biological entity, contains all of the components required for embryonic development. As such, it constitutes not only an excellent model to study the mechanisms of early embryo nutrition and disease origin but can also be used to develop egg-based products with specific applications. Different omics disciplines, like transcriptomics, proteomics, and metabolomics, represent promising approaches to assess nutritional and functional molecules in eggs under development. However, these individual molecules do not act in isolation during the dynamic embryogenic process (e.g., migration, transportation, and absorption). Unless we integrate the information from all of these omics disciplines, there will remain an unbridged gap in the systematic and holistic assessment of the information from one omics level to the other. This integrative review of the dynamic molecular processes of the different chicken egg components involved in embryo development describes the critical interplay between the egg components and their implications in immunity, hematopoiesis, organ formation, and nutrient transport functions during the embryonic process.
Collapse
Affiliation(s)
- Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Vincent Guyonnet
- FFI Consulting, Limited, 2488 Lyn Road, Brockville, Ontario K6V 5T3, Canada
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
33
|
Dinicola S, Unfer V, Facchinetti F, Soulage CO, Greene ND, Bizzarri M, Laganà AS, Chan SY, Bevilacqua A, Pkhaladze L, Benvenga S, Stringaro A, Barbaro D, Appetecchia M, Aragona C, Bezerra Espinola MS, Cantelmi T, Cavalli P, Chiu TT, Copp AJ, D’Anna R, Dewailly D, Di Lorenzo C, Diamanti-Kandarakis E, Hernández Marín I, Hod M, Kamenov Z, Kandaraki E, Monastra G, Montanino Oliva M, Nestler JE, Nordio M, Ozay AC, Papalou O, Porcaro G, Prapas N, Roseff S, Vazquez-Levin M, Vucenik I, Wdowiak A. Inositols: From Established Knowledge to Novel Approaches. Int J Mol Sci 2021; 22:10575. [PMID: 34638926 PMCID: PMC8508595 DOI: 10.3390/ijms221910575] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) are natural compounds involved in many biological pathways. Since the discovery of their involvement in endocrine signal transduction, myo-Ins and D-chiro-Ins supplementation has contributed to clinical approaches in ameliorating many gynecological and endocrinological diseases. Currently both myo-Ins and D-chiro-Ins are well-tolerated, effective alternative candidates to the classical insulin sensitizers, and are useful treatments in preventing and treating metabolic and reproductive disorders such as polycystic ovary syndrome (PCOS), gestational diabetes mellitus (GDM), and male fertility disturbances, like sperm abnormalities. Moreover, besides metabolic activity, myo-Ins and D-chiro-Ins deeply influence steroidogenesis, regulating the pools of androgens and estrogens, likely in opposite ways. Given the complexity of inositol-related mechanisms of action, many of their beneficial effects are still under scrutiny. Therefore, continuing research aims to discover new emerging roles and mechanisms that can allow clinicians to tailor inositol therapy and to use it in other medical areas, hitherto unexplored. The present paper outlines the established evidence on inositols and updates on recent research, namely concerning D-chiro-Ins involvement into steroidogenesis. In particular, D-chiro-Ins mediates insulin-induced testosterone biosynthesis from ovarian thecal cells and directly affects synthesis of estrogens by modulating the expression of the aromatase enzyme. Ovaries, as well as other organs and tissues, are characterized by a specific ratio of myo-Ins to D-chiro-Ins, which ensures their healthy state and proper functionality. Altered inositol ratios may account for pathological conditions, causing an imbalance in sex hormones. Such situations usually occur in association with medical conditions, such as PCOS, or as a consequence of some pharmacological treatments. Based on the physiological role of inositols and the pathological implications of altered myo-Ins to D-chiro-Ins ratios, inositol therapy may be designed with two different aims: (1) restoring the inositol physiological ratio; (2) altering the ratio in a controlled way to achieve specific effects.
Collapse
Affiliation(s)
- Simona Dinicola
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | - Vittorio Unfer
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | - Fabio Facchinetti
- Obstetrics and Gynecology Unit, Mother-Infant and Adult Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Christophe O. Soulage
- CarMeN Lab, INSA-Lyon, INSERM U1060, INRA, University Claude Bernard Lyon 1, 69100 Villeurbanne, France;
| | - Nicholas D. Greene
- Newlife Birth Defects Research Centre and Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London WC1E 6BT, UK; (N.D.G.); (A.J.C.)
| | - Mariano Bizzarri
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, Hospital “Filippo Del Ponte”, University of Insubria, 21100 Varese, Italy;
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Arturo Bevilacqua
- Department of Dynamic, Clinical Psychology and Health Studies, Sapienza University, 00161 Rome, Italy;
| | - Lali Pkhaladze
- Zhordania and Khomasuridze Institute of Reproductology, Tbilisi 0112, Georgia;
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy;
| | - Daniele Barbaro
- U.O. Endocrinology in Livorno Hospital, USL Nordovest Toscana, 57100 Livorno, Italy;
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute, IRCCS, 00161 Rome, Italy;
| | - Cesare Aragona
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | | | - Tonino Cantelmi
- Institute for Interpersonal Cognitive Therapy, 00100 Rome, Italy;
| | - Pietro Cavalli
- Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | | | - Andrew J. Copp
- Newlife Birth Defects Research Centre and Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London WC1E 6BT, UK; (N.D.G.); (A.J.C.)
| | - Rosario D’Anna
- Department of Human Pathology, University of Messina, 98122 Messina, Italy;
| | - Didier Dewailly
- Faculty of Medicine, University of Lille, 59000 Lille, France;
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, 04100 Latina, Italy;
| | - Evanthia Diamanti-Kandarakis
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Marousi, 15123 Athens, Greece; (E.D.-K.); (E.K.); (O.P.)
| | - Imelda Hernández Marín
- Human Reproduction Department, Hospital Juárez de México, Universidad Nacional Autónoma de México (UNAM), Mexico City 07760, Mexico;
| | - Moshe Hod
- Department of Obstetrics and Gynecology Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| | - Zdravko Kamenov
- Department of Internal Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Eleni Kandaraki
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Marousi, 15123 Athens, Greece; (E.D.-K.); (E.K.); (O.P.)
| | - Giovanni Monastra
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | | | - John E. Nestler
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | | | - Ali C. Ozay
- Department of Obstetrics and Gynecology, Near East University Hospital, Nicosia 99138, Cyprus;
| | - Olga Papalou
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Marousi, 15123 Athens, Greece; (E.D.-K.); (E.K.); (O.P.)
| | | | - Nikos Prapas
- IAKENTRO, Infertility Treatment Center, 54250 Thessaloniki, Greece;
| | - Scott Roseff
- Reproductive Endocrinology and Infertility, South Florida Institute for Reproductive Medicine (IVFMD), Boca Raton, FL 33458, USA;
| | - Monica Vazquez-Levin
- Instituto de Biología y Medicina Experimental (IBYME, CONICET-FIBYME), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires 2490, Argentina;
| | - Ivana Vucenik
- Department of Medical & Research Technology and Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Artur Wdowiak
- Diagnostic Techniques Unit, Medical University of Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
34
|
Mackinlay KML, Weatherbee BAT, Souza Rosa V, Handford CE, Hudson G, Coorens T, Pereira LV, Behjati S, Vallier L, Shahbazi MN, Zernicka-Goetz M. An in vitro stem cell model of human epiblast and yolk sac interaction. eLife 2021; 10:e63930. [PMID: 34403333 PMCID: PMC8370770 DOI: 10.7554/elife.63930] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Human embryogenesis entails complex signalling interactions between embryonic and extra-embryonic cells. However, how extra-embryonic cells direct morphogenesis within the human embryo remains largely unknown due to a lack of relevant stem cell models. Here, we have established conditions to differentiate human pluripotent stem cells (hPSCs) into yolk sac-like cells (YSLCs) that resemble the post-implantation human hypoblast molecularly and functionally. YSLCs induce the expression of pluripotency and anterior ectoderm markers in human embryonic stem cells (hESCs) at the expense of mesoderm and endoderm markers. This activity is mediated by the release of BMP and WNT signalling pathway inhibitors, and, therefore, resembles the functioning of the anterior visceral endoderm signalling centre of the mouse embryo, which establishes the anterior-posterior axis. Our results implicate the yolk sac in epiblast cell fate specification in the human embryo and propose YSLCs as a tool for studying post-implantation human embryo development in vitro.
Collapse
Affiliation(s)
- Kirsty ML Mackinlay
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
| | - Bailey AT Weatherbee
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
| | - Viviane Souza Rosa
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São PauloSão PauloBrazil
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Charlotte E Handford
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
- Centre for Trophoblast Research, University of CambridgeCambridgeUnited Kingdom
| | - George Hudson
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
| | - Tim Coorens
- Wellcome Sanger InstituteCambridgeUnited Kingdom
| | - Lygia V Pereira
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São PauloSão PauloBrazil
| | - Sam Behjati
- Wellcome Sanger InstituteCambridgeUnited Kingdom
| | - Ludovic Vallier
- Wellcome – MRC Cambridge Stem Cell Institute, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Marta N Shahbazi
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
- Synthetic Mouse and Human Embryology Group, California Institute of Technology (Caltech), Division of Biology and Biological EngineeringPasadenaUnited States
| |
Collapse
|
35
|
Meng Y, Qiu N, Mine Y, Keast R. Comparative Lipidomics of Chick Yolk Sac during the Embryogenesis Provides Insight into Understanding the Development-Related Lipid Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7467-7477. [PMID: 34159787 DOI: 10.1021/acs.jafc.1c01728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Yolk sac (YS, include the yolk content) at different chick embryogenesis stages possesses varying lipid distributions, which are nutrition-influencing factors for the health of an early embryo and a later adult. YS lipids can substantially influence embryogenesis metabolism, but a comprehensive understanding of lipid's influence remains unknown. Herein, the effects of embryogenesis on lipid profiling of chick YS were investigated by UHPLC-MS/MS-based lipidomics. A total of 2231 lipid species across 57 subclasses were identified in the YS, and 1011 lipids were significantly different (P < 0.05) at the incubation days of 0, 7, 13, and 18. Specifically, phosphocholine and phosphatidylglycerol in late-stage embryogenesis potentially assist with prehatching gas exchange and infection resistance in the environment after lung respiration. In addition, the accumulated lysophosphatidylcholine at day 18 may induce apoptosis and disturb the membrane structure of YS to enable better absorption by the embryo abdomen. The decreased cardiolipin in late embryogenesis may be due to transportation to the embryo and integration into the mitochondrial membrane to accelerate energy metabolism for the rapidly developing embryo after day 13. Therefore, this study demonstrated the lipid profile alteration of the developing YS, providing theoretical guidance for researching the developmental origins of health and disease.
Collapse
Affiliation(s)
- Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Russell Keast
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
36
|
Zhou X, Xu Y, Ren S, Liu D, Yang N, Han Q, Kong S, Wang H, Deng W, Qi H, Lu J. Single-cell RNA-seq revealed diverse cell types in the mouse placenta at mid-gestation. Exp Cell Res 2021; 405:112715. [PMID: 34217714 DOI: 10.1016/j.yexcr.2021.112715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022]
Abstract
The mammalian placenta consists of a set of cells to ensure normal placental functions throughout gestation. Dysfunctional placentae are considered as the origin of a series of pregnancy complications. Therefore, it is urgent for detailed information about the molecular recipes of the cell types within the normal placenta. In the past years, gene expression analysis via single-cell RNA-seq (scRNA-seq) offers opportunities to identify new cell types in a variety of organs and tissues. In this study, scRNA-seq was used to explore the cell heterogeneity within the E10.5 mouse placenta and unravel their discrepancies in cell composition and communications. We identified sixteen cell clusters, including some cell clusters that originated from the maternal tissue. Moreover, we traced the developmental trajectories of trophoblasts and Hofbauer-like cells. Further analysis revealed cell connections between the endothelial cells and pericytes, syncytiotrophoblasts, as well as decidual cells. Besides, we highlighted several signaling pathways, such as the EGF, FGF, canonical, and non-canonical WNT signaling pathways, which mediated the potential crosstalk between different cell types within placenta. Our research provides an in-depth understanding of placental development, cellular composition, and communications at the maternal-fetal interface.
Collapse
Affiliation(s)
- Xiaobo Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yingchun Xu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shengnan Ren
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dong Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ningjie Yang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qian Han
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
37
|
Lepore E, Lauretta R, Bianchini M, Mormando M, Di Lorenzo C, Unfer V. Inositols Depletion and Resistance: Principal Mechanisms and Therapeutic Strategies. Int J Mol Sci 2021; 22:6796. [PMID: 34202683 PMCID: PMC8268915 DOI: 10.3390/ijms22136796] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Inositols are natural molecules involved in several biochemical and metabolic functions in different organs and tissues. The term "inositols" refers to five natural stereoisomers, among which myo-Inositol (myo-Ins) is the most abundant one. Several mechanisms contribute to regulate cellular and tissue homeostasis of myo-Ins levels, including its endogenous synthesis and catabolism, transmembrane transport, intestinal adsorption and renal excretion. Alterations in these mechanisms can lead to a reduction of inositols levels, exposing patient to several pathological conditions, such as Polycystic Ovary Syndrome (PCOS), hypothyroidism, hormonal and metabolic imbalances, like weight gain, hyperinsulinemia, dyslipidemia, and metabolic syndrome. Indeed, myo-Ins is involved in different physiological processes as a key player in signal pathways, including reproductive, hormonal, and metabolic modulation. Genetic mutations in genes codifying for proteins of myo-Ins synthesis and transport, competitive processes with structurally similar molecules, and the administration of specific drugs that cause a central depletion of myo-Ins as a therapeutic outcome, can lead to a reduction of inositols levels. A deeper knowledge of the main mechanisms involved in cellular inositols depletion may add new insights for developing tailored therapeutic approaches and shaping the dosages and the route of administration, with the aim to develop efficacious and safe approaches counteracting inositols depletion-induced pathological events.
Collapse
Affiliation(s)
- Elisa Lepore
- R&D Department, Lo.Li. Pharma, 00156 Rome, Italy;
| | - Rosa Lauretta
- Oncological Endocrinology Unit IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy; (R.L.); (M.B.); (M.M.)
| | - Marta Bianchini
- Oncological Endocrinology Unit IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy; (R.L.); (M.B.); (M.M.)
| | - Marilda Mormando
- Oncological Endocrinology Unit IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy; (R.L.); (M.B.); (M.M.)
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, La Sapienza University Polo Pontino, 04100 Latina, Italy;
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
- System Biology Group Lab, 00161 Rome, Italy
| |
Collapse
|
38
|
Adibi JJ, Layden AJ, Birru RL, Miragaia A, Xun X, Smith MC, Yin Q, Millenson ME, O’Connor TG, Barrett ES, Snyder NW, Peddada S, Mitchell RT. First trimester mechanisms of gestational sac placental and foetal teratogenicity: a framework for birth cohort studies. Hum Reprod Update 2021; 27:747-770. [PMID: 33675653 PMCID: PMC8222765 DOI: 10.1093/humupd/dmaa063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/18/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The function of the gestational sac (GS) and the placenta in the closely related processes of embryogenesis and teratogenicity in the first trimester has been minimally described. The prevailing assumption is that direct teratogenic effects are mediated by the critical extraembryonic organ, the placenta, which either blocks or transfers exposures to the foetus. Placental transfer is a dominant mechanism, but there are other paradigms by which the placenta can mediate teratogenic effects. Knowledge of these paradigms and first trimester human developmental biology can be useful to the epidemiologist in the conduct of biomarker-based studies of both maternal and child health. OBJECTIVE AND RATIONALE Our aim is to provide a causal framework for modelling the teratogenic effects of first trimester exposures on child health outcomes mediated by the GS and placenta using biomarker data collected in the first trimester. We initially present first trimester human developmental biology for the sake of informing and strengthening epidemiologic approaches. We then propose analytic approaches of modelling placental mechanisms by way of causal diagrams using classical non-embryolethal teratogens (diethylstilboestrol [DES], folic acid deficiency and cytomegalovirus [CMV]) as illustrative examples. We extend this framework to two chronic exposures of particular current interest, phthalates and maternal adiposity. SEARCH METHODS Information on teratogens was identified by a non-systematic, narrative review. For each teratogen, we included papers that answered the five following questions: (i) why were these exposures declared teratogens? (ii) is there a consensus on biologic mechanism? (iii) is there reported evidence of a placental mechanism? (iv) can we construct a theoretical model of a placental mechanism? and (v) can this knowledge inform future work on measurement and modelling of placental-foetal teratogenesis? We prioritized literature specific to human development, the organogenesis window in the first trimester and non-embryolethal mechanisms. OUTCOMES As a result of our review of the literature on five exposures considered harmful in the first trimester, we developed four analytic strategies to address first trimester placental mechanisms in birth cohort studies: placental transfer and direct effects on the foetus (DES and maternal adiposity), indirect effects through targeted placental molecular pathways (DES and phthalates), pre-placental effects through disruptions in embryonic and extraembryonic tissue layer differentiation (folic acid deficiency), and multi-step mechanisms that involve maternal, placental and foetal immune function and inflammation (DES and CMV). WIDER IMPLICATIONS The significance of this review is to offer a causal approach to classify the large number of potentially harmful exposures in pregnancy when the exposure occurs in the first trimester. Our review will facilitate future research by advancing knowledge of the first trimester mechanisms necessary for researchers to effectively associate environmental exposures with child health outcomes.
Collapse
Affiliation(s)
- Jennifer J Adibi
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander J Layden
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rahel L Birru
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandra Miragaia
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoshuang Xun
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan C Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Yin
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Thomas G O’Connor
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Nathaniel W Snyder
- Department of Microbiology and Immunology, Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shyamal Peddada
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, Queens Medical Research Institute, Edinburgh, UK
| |
Collapse
|
39
|
Prater M, Hamilton RS, Wa Yung H, Sharkey AM, Robson P, Abd Hamid NE, Jauniaux E, Charnock-Jones DS, Burton GJ, Cindrova-Davies T. RNA-Seq reveals changes in human placental metabolism, transport and endocrinology across the first-second trimester transition. Biol Open 2021; 10:268993. [PMID: 34100896 PMCID: PMC8214423 DOI: 10.1242/bio.058222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
The human placenta is exposed to major environmental changes towards the end of the first trimester associated with full onset of the maternal arterial placental circulation. Changes include a switch from histotrophic to hemotrophic nutrition, and a threefold rise in the intraplacental oxygen concentration. We evaluated their impact on trophoblast development and function using RNA-sequencing (RNA-Seq) and DNA-methylation analyses performed on the same chorionic villous samples at 7-8 (n=8) and 13-14 (n=6) weeks of gestation. Reads were adjusted for fetal sex. Most DEGs were associated with protein processing in the endoplasmic reticulum (ER), hormone secretion, transport, extracellular matrix, vasculogenesis, and reactive oxygen species metabolism. Transcripts higher in the first trimester were associated with synthesis and ER processing of peptide hormones, and glycolytic pathways. Transcripts encoding proteins mediating transport of oxygen, lipids, protein, glucose, and ions were significantly increased in the second trimester. The motifs of CBX3 and BCL6 were significantly overrepresented, indicating the involvement of these transcription factor networks in the regulation of trophoblast migration, proliferation and fusion. These findings are consistent with a high level of cell proliferation and hormone secretion by the early placenta to secure implantation in a physiological low-oxygen environment.
Collapse
Affiliation(s)
- Malwina Prater
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Russell S Hamilton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Hong Wa Yung
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Andrew M Sharkey
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Paul Robson
- The Jackson Laboratory, The JAX Center for Genetics of Fertility and Reproduction, 10 Discovery Drive, Farmington, CT 06032, USA.,Genome Institute of Singapore, Singapore 138672, Singapore
| | | | - Eric Jauniaux
- Department of Obstetrics and Gynaecology, EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, WC1E 6BT, UK
| | - D Stephen Charnock-Jones
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Cambridge, CB2 0SW, UK.,National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|
40
|
Chen L, Luo S, Dupre A, Vasoya RP, Parthasarathy A, Aita R, Malhotra R, Hur J, Toke NH, Chiles E, Yang M, Cao W, Flores J, Ellison CE, Gao N, Sahota A, Su X, Bonder EM, Verzi MP. The nuclear receptor HNF4 drives a brush border gene program conserved across murine intestine, kidney, and embryonic yolk sac. Nat Commun 2021; 12:2886. [PMID: 34001900 PMCID: PMC8129143 DOI: 10.1038/s41467-021-22761-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The brush border is comprised of microvilli surface protrusions on the apical surface of epithelia. This specialized structure greatly increases absorptive surface area and plays crucial roles in human health. However, transcriptional regulatory networks controlling brush border genes are not fully understood. Here, we identify that hepatocyte nuclear factor 4 (HNF4) transcription factor is a conserved and important regulator of brush border gene program in multiple organs, such as intestine, kidney and yolk sac. Compromised brush border gene signatures and impaired transport were observed in these tissues upon HNF4 loss. By ChIP-seq, we find HNF4 binds and activates brush border genes in the intestine and kidney. H3K4me3 HiChIP-seq identifies that HNF4 loss results in impaired chromatin looping between enhancers and promoters at gene loci of brush border genes, and instead enhanced chromatin looping at gene loci of stress fiber genes in the intestine. This study provides comprehensive transcriptional regulatory mechanisms and a functional demonstration of a critical role for HNF4 in brush border gene regulation across multiple murine epithelial tissues.
Collapse
Affiliation(s)
- Lei Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA.
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| | - Shirley Luo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Abigail Dupre
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Roshan P Vasoya
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Aditya Parthasarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Rohit Aita
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Raj Malhotra
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Joseph Hur
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Natalie H Toke
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Eric Chiles
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Min Yang
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Weihuan Cao
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Christopher E Ellison
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Amrik Sahota
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA.
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
41
|
Io S, Kabata M, Iemura Y, Semi K, Morone N, Minagawa A, Wang B, Okamoto I, Nakamura T, Kojima Y, Iwatani C, Tsuchiya H, Kaswandy B, Kondoh E, Kaneko S, Woltjen K, Saitou M, Yamamoto T, Mandai M, Takashima Y. Capturing human trophoblast development with naive pluripotent stem cells in vitro. Cell Stem Cell 2021; 28:1023-1039.e13. [PMID: 33831365 DOI: 10.1016/j.stem.2021.03.013] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/05/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
Trophoblasts are extraembryonic cells that are essential for maintaining pregnancy. Human trophoblasts arise from the morula as trophectoderm (TE), which, after implantation, differentiates into cytotrophoblasts (CTs), syncytiotrophoblasts (STs), and extravillous trophoblasts (EVTs), composing the placenta. Here we show that naïve, but not primed, human pluripotent stem cells (PSCs) recapitulate trophoblast development. Naive PSC-derived TE and CTs (nCTs) recreated human and monkey TE-to-CT transition. nCTs self-renewed as CT stem cells and had the characteristics of proliferating villous CTs and CTs in the cell column of the first trimester. Notably, although primed PSCs differentiated into trophoblast-like cells (BMP4, A83-01, and PD173074 [BAP]-treated primed PSCs [pBAPs]), pBAPs were distinct from nCTs and human placenta-derived CT stem cells, exhibiting properties consistent with the amnion. Our findings establish an authentic paradigm for human trophoblast development, demonstrating the invaluable properties of naive human PSCs. Our system provides a platform to study the molecular mechanisms underlying trophoblast development and related diseases.
Collapse
Affiliation(s)
- Shingo Io
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan; Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshiki Iemura
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Katsunori Semi
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Nobuhiro Morone
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Atsutaka Minagawa
- Department of Cell Growth and Differentiation, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Bo Wang
- Department of Cell Growth and Differentiation, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Ikuhiro Okamoto
- Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Tomonori Nakamura
- Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan; The HAKUBI Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
| | - Yoji Kojima
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan; Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Belinda Kaswandy
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Shin Kaneko
- Department of Cell Growth and Differentiation, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Mitinori Saitou
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan; Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan; AMED-CREST, AMED, Tokyo 100-0004, Japan; Medical Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Projects (AIP), Kyoto 606-8507, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
42
|
Wong EA, Uni Z. Centennial Review: The chicken yolk sac is a multifunctional organ. Poult Sci 2021; 100:100821. [PMID: 33518342 PMCID: PMC7936120 DOI: 10.1016/j.psj.2020.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 11/26/2022] Open
Abstract
The yolk sac (YS) consists of the yolk, which supplies nutrients, and the YS tissue, which surrounds the yolk and provides essential metabolic functions for the developing embryo. The YS tissue is derived from the midgut of the embryo and consists of a layer of endodermal epithelial cells (EEC) in contact with the yolk contents, a mesodermal layer that contains the vascular system and an outer ectodermal layer. The YS tissue is a multifunctional organ that provides essential functions such as host immunity, nutrient uptake, carbohydrate and lipid metabolism, and erythropoiesis. The YS tissue plays a role in immunity by the transport of maternal antibodies in the yolk to the embryonic circulation that feeds the developing embryo. In addition, the YS tissue expresses high mRNA levels of the host defense peptide, avian β-defensin 10 during mid embryogenesis. Owing to its origin, the YS EEC share some functional properties with intestinal epithelial cells such as expression of transporters for amino acids, peptides, monosaccharides, fatty acids, and minerals. The YS tissue stores glycogen and expresses enzymes for glycogen synthesis and breakdown and glucogenesis. This carbohydrate metabolism may play an important role in the hatching process. The mesodermal layer of the YS tissue is the site for erythropoiesis and provides erythrocytes before the maturation of the bone marrow. Other functions of the YS tissue involve synthesis of plasma proteins, lipid transport and cholesterol metabolism, and synthesis of thyroxine. Thus, the YS is an essential organ for the growth, development, and health of the developing embryo. This review will provide an overview of the studies that have investigated the functionalities of the YS tissue at the cellular and molecular levels with a focus on chickens.
Collapse
Affiliation(s)
- E A Wong
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061.
| | - Z Uni
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
43
|
Burton GJ, Jauniaux E. Placentation in the Human and Higher Primates. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 234:223-254. [PMID: 34694484 DOI: 10.1007/978-3-030-77360-1_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Placentation in humans is precocious and highly invasive compared to other mammals. Implantation is interstitial, with the conceptus becoming completely embedded within the endometrium towards the end of the second week post-fertilization. Villi initially form over the entire surface of the chorionic sac, stimulated by histotrophic secretions from the endometrial glands. The secondary yolk sac never makes contact with the chorion, and a choriovitelline placenta is never established. However, recent morphological and transcriptomic analyses suggest that the yolk sac plays an important role in the uptake of nutrients from the coelomic fluid. Measurements performed in vivo demonstrate that early development takes place in a physiological, low-oxygen environment that protects against teratogenic free radicals and maintains stem cells in a multipotent state. The maternal arterial circulation to the placenta is only fully established around 10-12 weeks of gestation. By then, villi have regressed over the superficial, abembryonic pole, leaving the definitive discoid placenta, which is of the villous, hemochorial type. Remodeling of the maternal spiral arteries is essential to ensure a high-volume but low-velocity inflow into the mature placenta. Extravillous trophoblast cells migrate from anchoring villi and surround the arteries. Their interactions with maternal immune cells release cytokines and proteases that are key to remodeling, and a successful pregnancy.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Eric Jauniaux
- Faculty of Population Health Sciences, EGA Institute for Women's Health, University College London, London, UK
| |
Collapse
|
44
|
Park CH, Jeoung YH, Uh KJ, Park KE, Bridge J, Powell A, Li J, Pence L, Zhang L, Liu T, Sun HX, Gu Y, Shen Y, Wu J, Izpisua Belmonte JC, Telugu BP. Extraembryonic Endoderm (XEN) Cells Capable of Contributing to Embryonic Chimeras Established from Pig Embryos. Stem Cell Reports 2020; 16:212-223. [PMID: 33338433 PMCID: PMC7897585 DOI: 10.1016/j.stemcr.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Most of our current knowledge regarding early lineage specification and embryo-derived stem cells comes from studies in rodent models. However, key gaps remain in our understanding of these developmental processes from nonrodent species. Here, we report the detailed characterization of pig extraembryonic endoderm (pXEN) cells, which can be reliably and reproducibly generated from primitive endoderm (PrE) of blastocyst. Highly expandable pXEN cells express canonical PrE markers and transcriptionally resemble rodent XENs. The pXEN cells contribute both to extraembryonic tissues including visceral yolk sac as well as embryonic gut when injected into host blastocysts, and generate live offspring when used as a nuclear donor in somatic cell nuclear transfer (SCNT). The pXEN cell lines provide a novel model for studying lineage segregation, as well as a source for genome editing in livestock. Primitive endoderm (PrE) is the predominant lineage emerging from pig blastocyst outgrowths pXEN cells exhibit key features of PrE-progenitors and resemble rodent XEN cells pXEN cells contribute to extraembryonic and embryonic (gut) endoderm in vivo pXEN cells can support full-term development via somatic cell nuclear transfer
Collapse
Affiliation(s)
- Chi-Hun Park
- Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, MD 20705, USA.
| | - Young-Hee Jeoung
- Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, MD 20705, USA
| | - Kyung-Jun Uh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ki-Eun Park
- Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, MD 20705, USA; RenOVAte Biosciences Inc, Reisterstown, MD 21136, USA
| | - Jessica Bridge
- Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, MD 20705, USA
| | - Anne Powell
- Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, MD 20705, USA; RenOVAte Biosciences Inc, Reisterstown, MD 21136, USA
| | - Jie Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen, 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Guangdong, China
| | - Laramie Pence
- Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, MD 20705, USA
| | - Luhui Zhang
- Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Tianbin Liu
- BGI-Shenzhen, Shenzhen, 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Guangdong, China
| | - Hai-Xi Sun
- BGI-Shenzhen, Shenzhen, 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Guangdong, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen, 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Guangdong, China
| | - Yue Shen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen, 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Guangdong, China; Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Shenzhen, 518120, China
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Bhanu P Telugu
- Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, MD 20705, USA; RenOVAte Biosciences Inc, Reisterstown, MD 21136, USA.
| |
Collapse
|
45
|
Review: Histotrophic nutrition and the placental-endometrial dialogue during human early pregnancy. Placenta 2020; 102:21-26. [DOI: 10.1016/j.placenta.2020.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 11/21/2022]
|
46
|
Martinelli LM, Reginatto MW, Fontes KN, Andrade CBV, Monteiro VRS, Gomes HR, Almeida FRCL, Bloise FF, Matthews SG, Ortiga-Carvalho TM, Bloise E. Breast cancer resistance protein (Bcrp/Abcg2) is selectively modulated by lipopolysaccharide (LPS) in the mouse yolk sac. Reprod Toxicol 2020; 98:82-91. [PMID: 32916274 PMCID: PMC7772890 DOI: 10.1016/j.reprotox.2020.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/06/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Bacterial infection alters placental ABC transporters expression. These transporters provide fetal protection against circulating xenobiotics and environmental toxins present in maternal blood. We hypothesized that lipopolysaccharide (LPS-bacterial mimic) alters the yolk sac morphology and expression of key ABC transporters in a gestational-age dependent manner. Yolk sac samples from C57BL/6 mice were obtained at gestational ages (GD) 15.5 and GD18.5, 4 or 24 h after LPS exposure (150ug/kg; n = 8/group). Samples underwent morphometrical, qPCR and immunohistochemistry analysis. The volumetric proportions of the histological components of the yolk sac did not change in response to LPS. LPS increased Abcg2 expression at GD15.5, after 4 h of treatment (p < 0.05). No changes in Abca1, Abcb1a/b, Abcg1, Glut1, Snat1, Il-1β, Ccl2 and Mif were observed. Il-6 and Cxcl1 were undetectable in the yolk sac throughout pregnancy. Abca1, breast cancer resistance protein (Bcrp, encoded by Abcg2) and P-glycoprotein (P-gp/ Abcb1a/b) were localized in the endodermal (uterine-facing) epithelium and to a lesser extent in the mesothelium (amnion-facing), whereas Abca1 was also localized to the endothelium of the yolk sac blood vessels. LPS increased the labeling area and intensity of Bcrp in the yolk sac's mesothelial cells at GD15.5 (4 h), whereas at GD18.5, the area of Bcrp labeling in the mesothelium (4 and 24 h) was decreased (p < 0.05). Bacterial infection has the potential to change yolk sac barrier function by affecting Bcrp and Abcg2 expression in a gestational-age dependent-manner. These changes may alter fetal exposure to xenobiotics and toxic substances present in the maternal circulation and in the uterine cavity.
Collapse
Affiliation(s)
- L M Martinelli
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - M W Reginatto
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - K N Fontes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - C B V Andrade
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - V R S Monteiro
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - H R Gomes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - F R C L Almeida
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - F F Bloise
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - S G Matthews
- Departments of Physiology,Obstetrics and Gynecology and Medicine, University of Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Ontario, Canada
| | - T M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - E Bloise
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| |
Collapse
|
47
|
The Yolk Sac of the Equine Placenta. Its Remnant and Potential Problems. J Equine Vet Sci 2020; 96:103322. [PMID: 33349412 DOI: 10.1016/j.jevs.2020.103322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022]
Abstract
This review details the current state of knowledge about the equine yolk sac and its remnant (YSR) in the pregnant mare, which, incidentally, is the only animal species known to exhibit large and/or ossified YSR. It also describes the clinical significance of the YSR and details a case of a strangulating YSR that caused fetal death and abortion.
Collapse
|
48
|
Quadro L, Giordano E, Costabile BK, Nargis T, Iqbal J, Kim Y, Wassef L, Hussain MM. Interplay between β-carotene and lipoprotein metabolism at the maternal-fetal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158591. [PMID: 31863969 PMCID: PMC7302977 DOI: 10.1016/j.bbalip.2019.158591] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 01/07/2023]
Abstract
Vitamin A is an essential nutrient, critical for proper embryonic development in mammals. Both embryonic vitamin A-deficiency or -excess lead to congenital malformations or lethality in mammals, including humans. This is due to the defective transcriptional action of retinoic acid, the active form of vitamin A, that regulates in a spatial- and temporal-dependent manner the expression of genes essential for organogenesis. Thus, an adequate supply of vitamin A from the maternal circulation is vital for normal mammalian fetal development. Provitamin A carotenoids circulate in the maternal bloodstream and are available to the embryo. Of all the dietary carotenoids, β-carotene is the main vitamin A precursor, contributing at least 30% of the vitamin A intake in the industrialized countries and often constituting the sole source of retinoids (vitamin A and its derivatives) in the developing world. In humans, up to 40% of the absorbed dietary β-carotene is incorporated in its intact form in chylomicrons for distribution to other organs within the body, including the developing tissues. Here, it can serve as a source of vitamin A upon conversion into apocarotenoids by its cleavage enzymes. Given that β-carotene is carried in the bloodstream by lipoproteins, and that the placenta acquires, assembles and secretes lipoproteins, it is becoming evident that the maternal-fetal transfer of β-carotene relies on lipoprotein metabolism. Here, we will explore the current knowledge about this important biological process, the cross-talk between carotenoid and lipid metabolism in the context of the maternal-fetal transfer of this provitamin A precursor, and the mechanisms whereby β-carotene is metabolized by the developing tissues. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Loredana Quadro
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA;,Corresponding author: Loredana Quadro, PhD; Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; Tel: +1 848 9325491; Fax: +1 732 9326776;
| | - Elena Giordano
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Brianna K. Costabile
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA;,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Titli Nargis
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, New York, USA
| | - Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA;,King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Eastern Region, Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia
| | - Younkyung Kim
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Lesley Wassef
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, New York, USA;,Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
49
|
Owaydhah WH, Ashton N, Verrey F, Glazier JD. Differential expression of system L amino acid transporter subtypes in rat placenta and yolk sac. Placenta 2020; 103:188-198. [PMID: 33160252 DOI: 10.1016/j.placenta.2020.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Amino acid transport across the placenta is crucial for fetal growth. In rodent models, the visceral yolk sac (referred to as yolk sac hereafter) is also likely to contribute to fetal amino acid provision. System L amino acid transporters mediate the transport of essential amino acids. System L activity is mediated by light chains LAT1 (Slc7a5) and LAT2 (Slc7a8) which form functional complexes by heterodimeric linkage to CD98 (Slc3a2). LAT4 (Slc43a2) is monomeric, possessing overlapping amino acid substrate specificity with LAT1 and LAT2. METHODS This study investigates the expression of these LAT subtypes in fetus-matched rat placenta and yolk sac. RESULTS Slc7a5, Slc7a8 and Slc43a2 transcripts were expressed in placenta and yolk sac with similar expression patterns between sexes. LAT1 expression was significantly higher in placenta than yolk sac. Conversely, LAT2 and LAT4 expression was significantly higher in yolk sac than placenta; CD98 expression was comparable. LAT1, LAT2, LAT4 and CD98 were distributed to rat placental labyrinth zone (LZ) and junctional zone (JZ). LAT1 and LAT4 demonstrated higher expression in LZ, whilst LAT2 was more intensely distributed to JZ. LAT1, LAT2, LAT4 and CD98 were expressed in yolk sac, with punctate LAT1 staining to endodermal cell cytoplasm, contrasting with the intense LAT2, LAT4 and CD98 endodermal cell basolateral distribution, accounting for greater LAT2 and LAT4 expression in yolk sac compared to placenta. CONCLUSION LAT1, LAT2 and LAT4 are expressed in rat placenta and yolk sac implicating a combined role for these LAT subtypes in supporting fetal growth and development.
Collapse
Affiliation(s)
- Wejdan H Owaydhah
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, St Mary's Hospital, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Nick Ashton
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| | - François Verrey
- Institute of Physiology, University of Zurich, Zurich, CH-8057, Switzerland
| | - Jocelyn D Glazier
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
50
|
D'Souza SW, Copp AJ, Greene NDE, Glazier JD. Maternal Inositol Status and Neural Tube Defects: A Role for the Human Yolk Sac in Embryonic Inositol Delivery? Adv Nutr 2020; 12:212-222. [PMID: 32892218 PMCID: PMC7849949 DOI: 10.1093/advances/nmaa100] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/10/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Supplementation with myo-inositol during the periconceptional period of pregnancy may ameliorate the recurrence risk of having a fetus affected by a neural tube defect (NTD; e.g., spina bifida). This could be of particular importance in providing a means for preventing NTDs that are unresponsive to folic acid. This review highlights the characteristics of inositol and describes the role of myo-inositol in the prevention of NTDs in rodent studies and the evidence for its efficacy in reducing NTD risk in human pregnancy. The possible reduction in NTD risk by maternal myo-inositol implies functional and developmentally important maternal-embryonic inositol interrelationships and also suggests that embryonic uptake of myo-inositol is crucial for embryonic development. The establishment of active myo-inositol cellular uptake mechanisms in the embryonic stages of human pregnancy, when the neural tube is closing, is likely to be an important determinant of normal development. We draw attention to the generation of materno-fetal inositol concentration gradients and relationships, and outline a transport pathway by which myo-inositol may be delivered to the early developing human embryo. These considerations provide novel insights into the mechanisms that may underpin inositol's ability to confer embryonic developmental benefit.
Collapse
Affiliation(s)
- Stephen W D'Souza
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | |
Collapse
|