1
|
Fahy WD, Gong Y, Wang S, Zhang Z, Li L, Peng H, Abbatt JPD. Hydroxyl radical oxidation of chemical contaminants on indoor surfaces and dust. Proc Natl Acad Sci U S A 2024; 121:e2414762121. [PMID: 39467123 DOI: 10.1073/pnas.2414762121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Humans are widely exposed to semivolatile organic contaminants in indoor environments. Many contaminants have long lifetimes following partitioning to the large surface reservoirs present indoors, which leads to long exposure times to gas-phase oxidants and multiphase chemistry. Studies have shown selective multiphase oxidation of organics on indoor surfaces, but the presence of hydroxyl radicals with nonselective reactivity and evidence of multiphase OH radical reactivity toward common indoor contaminants indicates that there may be additional unknown transformation chemistry indoors. We screened genuine indoor samples for 60 OH radical oxidation products of the common plasticizer and endocrine-disrupting contaminant bis(2-ethylhexyl) phthalate (DEHP) identified in laboratory experiments using nontargeted high-resolution mass spectrometry. At least 30 and 10 of these products are observed in indoor dust and DEHP films exposed to ambient indoor conditions, respectively, indicating that multiphase OH reactions occur indoors. Using the PROTEX model and a multimedia indoor chemical fate model, we demonstrate that these products have long indoor lifetimes and cause a higher potential for human exposure than DEHP. Some of these products are more active endocrine disruptors than DEHP itself, but most have unknown toxicities. Coexposure to all oxidation products will likely have an additive effect, leading to higher human health risks from indoor organic contaminants than previously thought. Due to the nonselective reactivity of OH radicals, it is likely that most indoor contaminants follow similar chemistry, and further study is needed to understand the prevalence and human health implications of such multiphase chemistry.
Collapse
Affiliation(s)
- William D Fahy
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shenghong Wang
- School of Public Health, University of Nevada, Reno, Reno, NV 89557
| | - Zhizhen Zhang
- School of Public Health, University of Nevada, Reno, Reno, NV 89557
| | - Li Li
- School of Public Health, University of Nevada, Reno, Reno, NV 89557
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | |
Collapse
|
2
|
Hu Z, Xie C, Chen S, Zhu Q, Chen W, Xu Q, Liu B, He Y, Xing L, Truhlar DG, Wang Z. Unraveling Chain Branching in Cool Flames. J Am Chem Soc 2024. [PMID: 39356136 DOI: 10.1021/jacs.4c06804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
In cool flames, autoxidation of organic compounds forms alkyl hydroperoxides and ketohydroperoxides, and this controls the critical rate of chain branching, but there have been large uncertainties in the decomposition rate constants. We synthesized a series of hydroperoxides and measured their decomposition rate constants in pyrolysis experiments by spray-vaporization jet-stirred-reactor synchrotron vacuum ultraviolet photoionization mass spectrometry. Structural variation of the hydroperoxides, including alkyl, cycloalkyl, aromatic, and heterocyclic functionalities, has only a slight effect on their decomposition rate constants. Calculated rate constants are in good agreement with the experiment. The rate constant of ketohydroperoxide decomposition was obtained by theoretical calculation of 3-hydroperoxy butanal and tested by the pyrolysis of synthesized 3-hydroperoxy-3-phenylpropionate. The rate constant of ketohydroperoxide decomposition is close to that of alkyl hydroperoxides. The new chain-branching rate constants improves the cool-flame kinetic model, which is essential for removing discrepancies in model predictions and for the design of high-efficiency and low-emission engines.
Collapse
Affiliation(s)
- Zhihong Hu
- National Synchrotron Radiation Laboratory, and State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Cheng Xie
- National Synchrotron Radiation Laboratory, and State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Shuyao Chen
- National Synchrotron Radiation Laboratory, and State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Qingbo Zhu
- National Synchrotron Radiation Laboratory, and State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Weiye Chen
- National Synchrotron Radiation Laboratory, and State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Qiang Xu
- National Synchrotron Radiation Laboratory, and State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Bingzhi Liu
- National Synchrotron Radiation Laboratory, and State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Yunrui He
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. China
| | - Lili Xing
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, and State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| |
Collapse
|
3
|
Curchod BFE, Orr-Ewing AJ. Perspective on Theoretical and Experimental Advances in Atmospheric Photochemistry. J Phys Chem A 2024; 128:6613-6635. [PMID: 39021090 PMCID: PMC11331530 DOI: 10.1021/acs.jpca.4c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Research that explores the chemistry of Earth's atmosphere is central to the current understanding of global challenges such as climate change, stratospheric ozone depletion, and poor air quality in urban areas. This research is a synergistic combination of three established domains: earth observation, for example, using satellites, and in situ field measurements; computer modeling of the atmosphere and its chemistry; and laboratory measurements of the properties and reactivity of gas-phase molecules and aerosol particles. The complexity of the interconnected chemical and photochemical reactions which determine the composition of the atmosphere challenges the capacity of laboratory studies to provide the spectroscopic, photochemical, and kinetic data required for computer models. Here, we consider whether predictions from computational chemistry using modern electronic structure theory and nonadiabatic dynamics simulations are becoming sufficiently accurate to supplement quantitative laboratory data for wavelength-dependent absorption cross-sections, photochemical quantum yields, and reaction rate coefficients. Drawing on presentations and discussions from the CECAM workshop on Theoretical and Experimental Advances in Atmospheric Photochemistry held in March 2024, we describe key concepts in the theory of photochemistry, survey the state-of-the-art in computational photochemistry methods, and compare their capabilities with modern experimental laboratory techniques. From such considerations, we offer a perspective on the scope of computational (photo)chemistry methods based on rigorous electronic structure theory to become a fourth core domain of research in atmospheric chemistry.
Collapse
|
4
|
Yao Y, Qiang Z, Zhang M, Lin J, Li C. Thermal oxidation mechanism of palmitic aicd. Food Res Int 2024; 186:114372. [PMID: 38729730 DOI: 10.1016/j.foodres.2024.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The oxidation and degradation of fats lead to a decrease in the nutritional value of food and pose safety concerns. Saturated fatty acids also hold a significant position in the field of lipid oxidation. In this study, the oxidation products of methyl palmitate were investigated by using gas chromatography mass spectrometry (GC-MS). Seven monohydroperoxides and 72 secondary oxidation products were detected. Combined with density functional theory (DFT) calculations, the formation mechanisms of oxidation products can be summarized into four stages. The initial stage involved the formation of monohydroperoxides and alkanes, followed by the subsequent stage involving methyl x-oxo(hydroxy)hexadecanoates. The third stage involved the formation of methyl ketones, carboxylic acids, and aldehydes, while the final stage involved lactones. Meanwhile, methyl ketones were the most abundant oxidation product, approximately 25 times more abundant than aldehydes; the calculated results agreed well with the experimental results. The establishment of a comprehensive thermal oxidation mechanism for palmitic acid provided a new foundation for future lipid oxidation analyses.
Collapse
Affiliation(s)
- Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiyuan Qiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meng Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jia Lin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changmo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Song Q, Liu B, Wu J, Zou W, Wang Y, Suo B, Lei Y. GUGA-based MRCI approach with core-valence separation approximation (CVS) for the calculation of the core-excited states of molecules. J Chem Phys 2024; 160:094114. [PMID: 38445728 DOI: 10.1063/5.0189443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
We develop and demonstrate how to use the Graphical Unitary Group Approach (GUGA)-based MRCISD with Core-Valence Separation (CVS) approximation to compute the core-excited states. First, perform a normal Self-Consistent-Field (SCF) or valence MCSCF calculation to optimize the molecular orbitals. Second, rotate the optimized target core orbitals and append to the active space, form an extended CVS active space, and perform a CVS-MCSCF calculation for core-excited states. Finally, construct the CVS-MRCISD expansion space and perform a CVS-MRCISD calculation to optimize the CI coefficients based on the variational method. The CVS approximation with GUGA-based methods can be implemented by flexible truncation of the Distinct Row Table. Eliminating the valence-excited configurations from the CVS-MRCISD expansion space can prevent variational collapse in the Davidson iteration diagonalization. The accuracy of the CVS-MRCISD scheme was investigated for excitation energies and compared with that of the CVS-MCSCF and CVS-CASPT2 methods using the same active space. The results show that CVS-MRCISD is capable of reproducing well-matched vertical core excitation energies that are consistent with experiments by combining large basis sets and a rational reference space. The calculation results also highlight the fact that the dynamic correlation between electrons makes an undeniable contribution in core-excited states.
Collapse
Affiliation(s)
- Qi Song
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Baoyuan Liu
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Junfeng Wu
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yubin Wang
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Bingbing Suo
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yibo Lei
- College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| |
Collapse
|
6
|
Fahy WD, Wania F, Abbatt JPD. When Does Multiphase Chemistry Influence Indoor Chemical Fate? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4257-4267. [PMID: 38380897 DOI: 10.1021/acs.est.3c08751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Human chemical exposure often occurs indoors, where large variability in contaminant concentrations and indoor chemical dynamics make assessments of these exposures challenging. A major source of uncertainty lies in the rates of chemical transformations which, due to high surface-to-volume ratios and rapid air change rates relative to rates of gas-phase reactions indoors, are largely gas-surface multiphase processes. It remains unclear how important such chemistry is in controlling indoor chemical lifetimes and, therefore, human exposure to both parent compounds and transformation products. We present a multimedia steady-state fugacity-based model to assess the importance of multiphase chemistry relative to cleaning and mass transfer losses, examine how the physicochemical properties of compounds and features of the indoor environment affect these processes, and investigate uncertainties pertaining to indoor multiphase chemistry and chemical lifetimes. We find that multiphase reactions can play an important role in chemical fate indoors for reactive compounds with low volatility, i.e., octanol-air equilibrium partitioning ratios (Koa) above 108, with the impact of this chemistry dependent on chemical identity, oxidant type and concentration, and other parameters. This work highlights the need for further research into indoor chemical dynamics and multiphase chemistry to constrain human exposure to chemicals in the built environment.
Collapse
Affiliation(s)
- William D Fahy
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
7
|
Svv DR, Al-Rashidi A, Sabarathinam C, Alsabti B, Al-Wazzan Y, Kumar US. Temporal and spatial shifts in the chemical composition of urban coastal rainwaters of Kuwait: The role of air mass trajectory and meteorological variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165649. [PMID: 37478926 DOI: 10.1016/j.scitotenv.2023.165649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
The rainwater chemistry encompasses the signatures of geogenic and anthropogenic processes along the regional air mass movement apart from the local sources. The predominance of dust events and anthropogenic emissions in arid regions facilitate new particle formation. Further, rain events of different seasons depict moisture sources from diverse regions reflecting variation in the regional geochemistry with respect to seasons. Hence, to characterize the geochemical composition of rainwater, the study has focused on an integrated approach by considering regional transport, meteorological components and possible local sources. A total of 74 rainwater samples were collected from 27 rain events in 2018, 2019, and 2022, representing urban coastal areas of Kuwait predominantly of Ca-SO4-HCO3 type. The average pH and electrical conductivity of the rainwater were 7.18 and 140 μS/cm, respectively. The sea salt fractions calculated relative to Kuwait seawater ranged from 25.6 to >100 %, with higher values attributed to anthropogenic sources. Sea salt fraction, ion ratios, principal component analysis and factor scores revealed the terrestrial and anthropogenic sources apart from marine contributions. In addition, new particle formation and aerosols contributed to the rainwater chemistry involving SOx, NOx, and photochemical reactions during higher relative humidity and lesser wind speed. The HYSPLIT reflected that the moisture sources were largely from western regions of the study area, and those of December and January events had long-distance travel across the Azores high originating from northeast America. The trajectories of the November events are observed to originate from the Caspian/Black Sea region in the northeastern part of Kuwait with a relatively shorter distance of travel. The rainfall samples had higher ionic concentrations, and saturated with aragonite and calcite minerals in a few locations specifically after the dust events, while the subsequent rain events were less polluted.
Collapse
Affiliation(s)
- Dhanu Radha Svv
- Water Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait.
| | - Amjad Al-Rashidi
- Water Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | | | - Bedour Alsabti
- Water Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Yousef Al-Wazzan
- Water Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Umayadoss Saravana Kumar
- Isotope Hydrology Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, IAEA, Vienna, Austria
| |
Collapse
|
8
|
Besel V, Todorović M, Kurtén T, Rinke P, Vehkamäki H. Atomic structures, conformers and thermodynamic properties of 32k atmospheric molecules. Sci Data 2023; 10:450. [PMID: 37438370 PMCID: PMC10338534 DOI: 10.1038/s41597-023-02366-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Low-volatile organic compounds (LVOCs) drive key atmospheric processes, such as new particle formation (NPF) and growth. Machine learning tools can accelerate studies of these phenomena, but extensive and versatile LVOC datasets relevant for the atmospheric research community are lacking. We present the GeckoQ dataset with atomic structures of 31,637 atmospherically relevant molecules resulting from the oxidation of α-pinene, toluene and decane. For each molecule, we performed comprehensive conformer sampling with the COSMOconf program and calculated thermodynamic properties with density functional theory (DFT) using the Conductor-like Screening Model (COSMO). Our dataset contains the geometries of the 7 Mio. conformers we found and their corresponding structural and thermodynamic properties, including saturation vapor pressures (pSat), chemical potentials and free energies. The pSat were compared to values calculated with the group contribution method SIMPOL. To validate the dataset, we explored the relationship between structural and thermodynamic properties, and then demonstrated a first machine-learning application with Gaussian process regression.
Collapse
Affiliation(s)
- Vitus Besel
- University of Helsinki, Institute for Atmospheric and Earth System Research, Helsinki, 00014, Finland.
| | - Milica Todorović
- University of Turku, Dept. Mechanical and Materials Engineering, Turku, FI-20014, Finland
| | - Theo Kurtén
- University of Helsinki, Institute for Atmospheric and Earth System Research, Helsinki, 00014, Finland
| | - Patrick Rinke
- Aalto University, Dept. of Applied Physics, P.O. Box 11100, FI-00076 Aalto, Espoo, Finland
| | - Hanna Vehkamäki
- University of Helsinki, Institute for Atmospheric and Earth System Research, Helsinki, 00014, Finland
| |
Collapse
|
9
|
Abstract
Combustion is a reactive oxidation process that releases energy bound in chemical compounds used as fuels─energy that is needed for power generation, transportation, heating, and industrial purposes. Because of greenhouse gas and local pollutant emissions associated with fossil fuels, combustion science and applications are challenged to abandon conventional pathways and to adapt toward the demand of future carbon neutrality. For the design of efficient, low-emission processes, understanding the details of the relevant chemical transformations is essential. Comprehensive knowledge gained from decades of fossil-fuel combustion research includes general principles for establishing and validating reaction mechanisms and process models, relying on both theory and experiments with a suite of analytic monitoring and sensing techniques. Such knowledge can be advantageously applied and extended to configure, analyze, and control new systems using different, nonfossil, potentially zero-carbon fuels. Understanding the impact of combustion and its links with chemistry needs some background. The introduction therefore combines information on exemplary cultural and technological achievements using combustion and on nature and effects of combustion emissions. Subsequently, the methodology of combustion chemistry research is described. A major part is devoted to fuels, followed by a discussion of selected combustion applications, illustrating the chemical information needed for the future.
Collapse
|
10
|
Zhang Z, Wang C, Zhao Y, Zhao Y, Li G, Xie H, Jiang L. Autoxidation Mechanism and Kinetics of Methacrolein in the Atmosphere. J Phys Chem A 2023; 127:2819-2829. [PMID: 36939326 DOI: 10.1021/acs.jpca.3c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Elucidating the autoxidation of volatile organic compounds (VOCs) is crucial to understanding the formation mechanism of secondary organic aerosols, but it has been proven to be challenging due to the complexity of reactions under atmospheric conditions. Here, we report a comprehensive theoretical study of atmospheric autoxidation in VOCs exemplified by the atmospherically important methacrolein (MACR), a major oxidation product of isoprene. The results indicate that the Cl-adducts and H-abstraction products of MACR readily react with O2 and undergo subsequent isomerizations via H-shift and cyclization, forming a large variety of lowly and highly oxygenated organic molecules. In particular, the first- and third-generation oxidation products derived from the Cl-adducts and the methyl-H-abstraction complexes are dominated in the atmospheric autoxidation, for which the fractional yields are remarkably affected by the NO concentration. The present findings have important implications for a systematical understanding of the oxidation processes of isoprene-derived compounds in the atmospheric environments.
Collapse
Affiliation(s)
- Zhaoyan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yingqi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ya Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
11
|
Liu B, Dong S, Debleza J, Chen W, Xu Q, Wang H, Bourgalais J, Herbinet O, Curran HJ, Battin-Leclerc F, Wang Z. Experimental and Updated Kinetic Modeling Study of Neopentane Low Temperature Oxidation. J Phys Chem A 2023; 127:2113-2122. [PMID: 36815799 DOI: 10.1021/acs.jpca.2c03795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Neopentane is an ideal fuel model to study low-temperature oxidation chemistry. The significant discrepancies between experimental data and simulations using the existing neopentane models indicate that an updated study of neopentane oxidation is needed. In this work, neopentane oxidation experiments are carried out using two jet-stirred reactors (JSRs) at 1 atm, at a residence time of 3 s, and at three different equivalence ratios of 0.5, 0.9, and 1.62. Two different analytical methods (synchrotron vacuum ultraviolet photoionization mass spectrometry and gas chromatography) were used to investigate the species distributions. Numerous oxidation intermediates were detected and quantified, including acetone, 3,3-dimethyloxetane, methacrolein, isobutene, 2-methylpropanal, isobutyric acid, and peroxides, which are valuable for validating the kinetic model describing neopentane oxidation. In the model development, the pressure dependencies of the rate constants for the reaction classes Q̇OOH + O2 and Q̇OOH decompositions are considered. This addition improves the prediction of the low-temperature oxidation reactivity of neopentane. Another focus of model development is to improve the prediction of carboxylic acids formed during the low-temperature oxidation of neopentane. The detection and identification of isobutyric acid indicates the existence of the Korcek mechanism during neopentane oxidation. Regarding the formation of acetic acid, the reaction channels are considered to be initiated from the reactions of ȮH radical addition to acetaldehyde/acetone. This updated kinetic model is validated extensively against the experimental data in this work and various experimental data available in the literature, including ignition delay times (IDTs) from both shock tubes (STs) and rapid compression machines (RCMs) and JSR speciation data at high temperatures.
Collapse
Affiliation(s)
- Bingzhi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, PR China
| | - Shijun Dong
- Combustion Chemistry Centre, School of Biological and Chemical Sciences, Ryan Institute, MaREI, University of Galway, Galway H91 TK33, Ireland.,School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Janney Debleza
- LRGP, Université de Lorraine and CNRS, F-54000 Nancy, France
| | - Weiye Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, PR China
| | - Qiang Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, PR China
| | - Hong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, PR China
| | | | | | - Henry J Curran
- Combustion Chemistry Centre, School of Biological and Chemical Sciences, Ryan Institute, MaREI, University of Galway, Galway H91 TK33, Ireland
| | | | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, PR China.,State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| |
Collapse
|
12
|
Hu Z, Di Q, Liu B, Li Y, He Y, Zhu Q, Xu Q, Dagaut P, Hansen N, Sarathy SM, Xing L, Truhlar DG, Wang Z. Elucidating the photodissociation fingerprint and quantifying the determination of organic hydroperoxides in gas-phase autoxidation. Proc Natl Acad Sci U S A 2023; 120:e2220131120. [PMID: 36848575 PMCID: PMC10013783 DOI: 10.1073/pnas.2220131120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/12/2023] [Indexed: 03/01/2023] Open
Abstract
Hydroperoxides are formed in the atmospheric oxidation of volatile organic compounds, in the combustion autoxidation of fuel, in the cold environment of the interstellar medium, and also in some catalytic reactions. They play crucial roles in the formation and aging of secondary organic aerosols and in fuel autoignition. However, the concentration of organic hydroperoxides is seldom measured, and typical estimates have large uncertainties. In this work, we developed a mild and environmental-friendly method for the synthesis of alkyl hydroperoxides (ROOH) with various structures, and we systematically measured the absolute photoionization cross-sections (PICSs) of the ROOHs using synchrotron vacuum ultraviolet-photoionization mass spectrometry (SVUV-PIMS). A chemical titration method was combined with an SVUV-PIMS measurement to obtain the PICS of 4-hydroperoxy-2-pentanone, a typical molecule for combustion and atmospheric autoxidation ketohydroperoxides (KHPs). We found that organic hydroperoxide cations are largely dissociated by loss of OOH. This fingerprint was used for the identification and accurate quantification of the organic peroxides, and it can therefore be used to improve models for autoxidation chemistry. The synthesis method and photoionization dataset for organic hydroperoxides are useful for studying the chemistry of hydroperoxides and the reaction kinetics of the hydroperoxy radicals and for developing and evaluating kinetic models for the atmospheric autoxidation and combustion autoxidation of the organic compounds.
Collapse
Affiliation(s)
- Zhihong Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Qimei Di
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Bingzhi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Yanbo Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Yunrui He
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan471003, China
| | - Qingbo Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Qiang Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Philippe Dagaut
- CNRS, Institut National des Sciences de l’Ingénierie et des Systèmes, Institut de Combustion, Aérothermique, Réactivité et Environnement, Orléans45071, cedex 2, France
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA94551
| | - S. Mani Sarathy
- King Abdullah University of Science and Technology, Clean Combustion Research Center, Thuwal23955-6900, Saudi Arabia
| | - Lili Xing
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan471003, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN55455-0431
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| |
Collapse
|
13
|
Hellmuth M, Chen B, Bariki C, Cai L, Cameron F, Wildenberg A, Huang C, Faller S, Ren Y, Beeckmann J, Leonhard K, Heufer KA, Hansen N, Pitsch H. A Comparative Study on the Combustion Chemistry of Two Bio-hybrid Fuels: 1,3-Dioxane and 1,3-Dioxolane. J Phys Chem A 2023; 127:286-299. [PMID: 36580040 DOI: 10.1021/acs.jpca.2c06576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bio-hybrid fuels are a promising solution to accomplish a carbon-neutral and low-emission future for the transportation sector. Two potential candidates are the heterocyclic acetals 1,3-dioxane (C4H8O2) and 1,3-dioxolane (C3H6O2), which can be produced from the combination of biobased feedstocks, carbon dioxide, and renewable electricity. In this work, comprehensive experimental and numerical investigations of 1,3-dioxane and 1,3-dioxolane were performed to support their application in internal combustion engines. Ignition delay times and laminar flame speeds were measured to reveal the combustion chemistry on the macroscale, while speciation measurements in a jet-stirred reactor and ethylene-based counterflow diffusion flames provided insights into combustion chemistry and pollutant formation on the microscale. Comparing the experimental and numerical data using either available or proposed kinetic models revealed that the combustion chemistry and pollutant formation differ substantially between 1,3-dioxane and 1,3-dioxolane, although their molecular structures are similar. For example, 1,3-dioxane showed higher reactivity in the low-temperature regime (500-800 K), while 1,3-dioxolane addition to ethylene increased polycyclic aromatic hydrocarbons and soot formation in high-temperature (>800 K) counterflow diffusion flames. Reaction pathway analyses were performed to examine and explain the differences between these two bio-hybrid fuels, which originate from the chemical bond dissociation energies in their molecular structures.
Collapse
Affiliation(s)
- Maximilian Hellmuth
- Institute for Combustion Technology, RWTH Aachen University, 52056Aachen, Germany
| | - Bingjie Chen
- Institute for Combustion Technology, RWTH Aachen University, 52056Aachen, Germany
| | - Chaimae Bariki
- Institute for Combustion Technology, RWTH Aachen University, 52056Aachen, Germany
| | - Liming Cai
- School for Automotive Studies, Tongji University, 201804Shanghai, China
| | - Florence Cameron
- Institute for Combustion Technology, RWTH Aachen University, 52056Aachen, Germany
| | - Alina Wildenberg
- Chair of High Pressure Gas Dynamics, Shock Wave Laboratory, RWTH Aachen University, 52056Aachen, Germany
| | - Can Huang
- Institute of Technical Thermodynamics, RWTH Aachen University, 52056Aachen, Germany
| | - Sebastian Faller
- Institute for Combustion Technology, RWTH Aachen University, 52056Aachen, Germany
| | - Yihua Ren
- Institute for Combustion Technology, RWTH Aachen University, 52056Aachen, Germany
| | - Joachim Beeckmann
- Institute for Combustion Technology, RWTH Aachen University, 52056Aachen, Germany
| | - Kai Leonhard
- Institute of Technical Thermodynamics, RWTH Aachen University, 52056Aachen, Germany
| | - Karl Alexander Heufer
- Chair of High Pressure Gas Dynamics, Shock Wave Laboratory, RWTH Aachen University, 52056Aachen, Germany
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, California94551, United States
| | - Heinz Pitsch
- Institute for Combustion Technology, RWTH Aachen University, 52056Aachen, Germany
| |
Collapse
|
14
|
Tian L, Huang DD, Li YJ, Yan C, Nie W, Wang Z, Wang Q, Qiao L, Zhou M, Zhu S, Liu Y, Guo Y, Qiao X, Zheng P, Jing S, Lou S, Wang H, Huang C. Enigma of Urban Gaseous Oxygenated Organic Molecules: Precursor Type, Role of NO x, and Degree of Oxygenation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:64-75. [PMID: 36516990 DOI: 10.1021/acs.est.2c05047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oxidation of volatile organic compounds (VOCs) forms oxygenated organic molecules (OOMs), which contribute to secondary pollution. Herein, we present measurement results of OOMs using chemical ionization mass spectrometry with nitrate as the reagent ion in Shanghai. Compared to those in forests and laboratory studies, OOMs detected at this urban site were of relatively lower degree of oxygenation. This was attributed to the high NOx concentrations (∼44 ppb), which overall showed a suppression on the propagation reactions. As another result, a large fraction of nitrogenous OOMs (75%) was observed, and this fraction further increased to 84% under a high NO/VOC ratio. By applying a novel framework on OOM categorization and supported by VOC measurements, 50 and 32% OOMs were attributed to aromatic and aliphatic precursors, respectively. Furthermore, aromatic OOMs are more oxygenated (effective oxygen number, nOeff = 4-6) than aliphatic ones (nOeff = 3-4), which can be partly explained by the difference in initiation mechanisms and points to possible discrimination in termination reactions. This study highlights the roles of NOx in OOM formation in urban areas, as well as the formation of nitrogenous products that might show discrimination between aromatic and aliphatic VOCs.
Collapse
Affiliation(s)
- Linhui Tian
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau, Taipa 999078, China
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Dan Dan Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yong Jie Li
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau, Taipa 999078, China
| | - Chao Yan
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Wei Nie
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology (HKUST), Hong Kong SAR 999077, China
| | - Qian Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Liping Qiao
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Min Zhou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuhui Zhu
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yuliang Liu
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Yishuo Guo
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohui Qiao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Penggang Zheng
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology (HKUST), Hong Kong SAR 999077, China
| | - Sheng'ao Jing
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
15
|
Dbouk Z, Belhadj N, Lailliau M, Benoit R, Dagaut P. Characterization of the Autoxidation of Terpenes at Elevated Temperature Using High-Resolution Mass Spectrometry: Formation of Ketohydroperoxides and Highly Oxidized Products from Limonene. J Phys Chem A 2022; 126:9087-9096. [PMID: 36416259 DOI: 10.1021/acs.jpca.2c06323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Low-temperature experiments on the oxidation of limonene-O2-N2 mixtures were conducted in a jet-stirred reactor (JSR) over a range of temperatures (520-800 K) under fuel-lean conditions (equivalence ratio φ = 0.5) with a short residence time (1.5 s) and a pressure of 1 bar. Collected samples of the reaction mixtures were analyzed by (i) online Fourier transform infrared spectroscopy (FTIR) and (ii) Orbitrap Q-Exactive high-resolution mass spectrometry after direct injection or chromatographic separation using reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) and soft ionization (with positive or negative heated electrospray ionization and atmospheric-pressure chemical ionization). H/D exchange using deuterated water (D2O) and a reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH) were performed to probe the presence of OH, OOH, and C═O groups in the oxidized products. A broad range of oxidation products ranging from water to highly oxygenated products containing five and more O atoms were detected (C7H10O4,5, C8H12O2,4, C8H14O2,4, C9H12O, C9H14O1,3-5, C10H12O2, C10H14O1-9, C10H16O2-5, and C10H18O6). Mass spectrometry analyses were only qualitative, and quantification was performed with FTIR. The results are discussed in terms of reaction routes involving the initial formation of peroxy radicals, H atom transfer, and O2 addition sequences producing a large set of chemical products, including ketohydroperoxides and more oxygenated products. Carbonyl compounds derived from the Waddington oxidation mechanism on exo- and endo-double bonds (C═C) were observed in addition to their products of further oxidation. Products of the Korcek mechanism (carboxylic acids and carbonyls) were also detected.
Collapse
Affiliation(s)
- Zahraa Dbouk
- CNRS-INSIS, Institut de Combustion, Aérothermique, Réactivité, Environnement, Avenue de la recherche scientifique, 4507Orléans, France.,Université d'Orléans, Avenue de Parc Floral, 45067Orléans, France
| | - Nesrine Belhadj
- CNRS-INSIS, Institut de Combustion, Aérothermique, Réactivité, Environnement, Avenue de la recherche scientifique, 4507Orléans, France.,Université d'Orléans, Avenue de Parc Floral, 45067Orléans, France
| | - Maxence Lailliau
- CNRS-INSIS, Institut de Combustion, Aérothermique, Réactivité, Environnement, Avenue de la recherche scientifique, 4507Orléans, France.,Université d'Orléans, Avenue de Parc Floral, 45067Orléans, France
| | - Roland Benoit
- CNRS-INSIS, Institut de Combustion, Aérothermique, Réactivité, Environnement, Avenue de la recherche scientifique, 4507Orléans, France
| | - Philippe Dagaut
- CNRS-INSIS, Institut de Combustion, Aérothermique, Réactivité, Environnement, Avenue de la recherche scientifique, 4507Orléans, France
| |
Collapse
|
16
|
Bourgalais J, Carstensen HH, Herbinet O, Garcia GA, Arnoux P, Tran LS, Vanhove G, Nahon L, Hochlaf M, Battin-Leclerc F. Product Identification in the Low-Temperature Oxidation of Cyclohexane Using a Jet-Stirred Reactor in Combination with SVUV-PEPICO Analysis and Theoretical Quantum Calculations. J Phys Chem A 2022; 126:5784-5799. [PMID: 35998573 DOI: 10.1021/acs.jpca.2c04490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclohexane oxidation chemistry was investigated using a near-atmospheric pressure jet-stirred reactor at T = 570 K and equivalence ratio ϕ = 0.8. Numerous intermediates including hydroperoxides and highly oxygenated molecules were detected using synchrotron vacuum ultraviolet photoelectron photoion coincidence spectroscopy. Supported by high-level quantum calculations, the analysis of photoelectron spectra allowed the firm identification of molecular species formed during the oxidation of cyclohexane. Besides, this work validates recently published gas chromatography and synchrotron vacuum ultraviolet photoionization mass spectrometry data. Unambiguous detection of characteristic hydroperoxides (e.g., γ-ketohydroperoxides) and their respective decomposition products provides support for the conventional O2 addition channels up to the third addition and their relative contribution to the cyclohexane oxidation. The results were also compared with the predictions of a recently proposed new detailed kinetic model of cyclohexane oxidation. Most of the predictions are in line with the current experimental findings, highlighting the robustness of the kinetic model. However, the analysis of the recorded slow photoelectron spectra indicating the possible presence of C5 species in the kinetic model provides hints that the substituted cyclopentyl radicals from cyclohexyl ring opening might play a minor role in cyclohexane oxidation. Potentially important missing reactions are also discussed.
Collapse
Affiliation(s)
| | - Hans-Heinrich Carstensen
- Thermochemical Processes Group (GPT), Department of Chemical and Environmental Engineering, Engineering and Architecture School, University of Zaragoza, C. Maria de Luna, 50018 Zaragoza, Spain.,Fundacion Agencia Aragonesa para la Investigacion y el Desarrollo (ARAID), Av. de Ranillas, 50018 Zagaroza, Spain
| | | | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | | | - Luc-Sy Tran
- Université Lille, CNRS, UMR 8522─PC2A─Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Guillaume Vanhove
- Université Lille, CNRS, UMR 8522─PC2A─Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes, F-77454 Champs-sur-Marne, France
| | | |
Collapse
|
17
|
Sha Q, Liu X, Yuan Z, Zheng J, Lou S, Wang H, Li X, Yu F. Upgrading Emission Standards Inadvertently Increased OH Reactivity from Light-Duty Diesel Truck Exhaust in China: Evidence from Direct LP-LIF Measurement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9968-9977. [PMID: 35770386 DOI: 10.1021/acs.est.2c02944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vehicular exhaust is an important source of reactive gases responsible for the formation of ozone and secondary organic aerosols (SOAs) in the atmosphere. Although significant efforts have been made to characterize the chemical compounds associated with vehicular exhaust, there is still a wealth of compounds that are unable to be detected, posing uncertainties in estimating their contribution to atmospheric reactivity. In this study, by improving laser-induced fluorescence techniques, we achieved the first-ever direct measurement of the total OH reactivity (TOR) from light-duty diesel truck (LDDT) exhaust with different emission standards. We found that the TOR from the LDDT exhaust was 80-130 times the TOR from the gasoline exhaust measured in Japan. Unexpectedly, we discovered increased TOR emissions along with upgrading emission standards, possibly as a collective result of high combustion temperature in the engine and the oxidation catalysts in the exhaust after-treatment that favor production of highly oxidized organics in the stricter emission standard. Most of these oxidized organics are unable to be speciated by routine measurements, resulting in the missing OH reactivity increasing rapidly from 1.91% for China III to 42.0% for China V LDDT. Upgrading the emission standard failed to reduce the TOR from LDDT exhaust, which may inadvertently promote the contribution of LDDT to the formation of ozone and SOA pollution in China.
Collapse
Affiliation(s)
- Qing'e Sha
- Institute of Environmental and Climate Research, Jinan University, Guangzhou 510632, China
| | - Xuehui Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zibing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Junyu Zheng
- Institute of Environmental and Climate Research, Jinan University, Guangzhou 510632, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Xin Li
- College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Fei Yu
- Institute of Environmental and Climate Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
18
|
Li M, Li J, Zhu Y, Chen J, Andreae MO, Pöschl U, Su H, Kulmala M, Chen C, Cheng Y, Zhao J. Highly oxygenated organic molecules with high unsaturation formed upon photochemical aging of soot. Chem 2022. [DOI: 10.1016/j.chempr.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Zhou Z, Yang J, Yuan W, Wang Z, Pan Y, Qi F. Probing combustion and catalysis intermediates by synchrotron vacuum ultraviolet photoionization molecular-beam mass spectrometry: recent progress and future opportunities. Phys Chem Chem Phys 2022; 24:21567-21577. [DOI: 10.1039/d2cp02899a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soft photoionization molecular-beam mass spectrometry (PI MBMS) with synchrotron vacuum ultraviolet light (SVUV) has has a significant development and broad applications in recent decades. Particularly, the tunability of SVUV enables...
Collapse
|
20
|
Shi Z, Jiang Y, Yu J, Chen S, Chen J, Tang Z, Zheng L. Develop the low-temperature oxidation mechanism of cyclopentane: an experimental and theoretical study. Chemistry 2021; 28:e202103546. [PMID: 34957615 DOI: 10.1002/chem.202103546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/09/2022]
Abstract
At present, the reactivity of cyclic alkanes is estimated by analogy comparison with non-cyclic hydrocarbons. Due to the difference in the structure of cycloalkanes and non-cycloalkanes, the thermodynamic data obtained by analogy is not applicable. In this study, a molecular beam sampling vacuum ultraviolet photoionization time-of-flight mass spectrometer (MB-VUV-PI-TOFMS) was applied to study the low-temperature oxidation of cyclopentane (CPT) at a total pressure range from 1-3 atm and low-temperature range between 500 K and 800 K. The low-temperature reaction products including cyclic olefins, cyclic ethers, highly oxygenated intermediates (e.g., ketohydroperoxide KHP, keto-dihydroperoxide KDHP, olefinic hydroperoxides OHP and ketone structure products) were observed. Further investigation of the oxidation of CPT, the electronic structure calculations at the UCCSD(T)-F12a/aug-cc-pVDZ//B3LYP/6-31+ G(d,p) level were carried out to explore the reactivity of O2 molecules adding sequentially to cyclopentyl radicals. Experimental and theoretical observations showed that the dominant product channel in the reaction of CPT radicals with O2 is HO2 elimination, yielding cyclopentene. The pathways of second and third O2 addition, the dissociation of hydroperoxide were further confirmed. The results of this study will develop the low-temperature oxidation mechanism of CPT, which can be used for future research on accurately simulating the combustion process of CPT.
Collapse
Affiliation(s)
- Zaifa Shi
- Xiamen University, College of Chemistry and Chemical Engineering, CHINA
| | - Yihuang Jiang
- Xiamen University, College of Chemistry and Chemical Engineering, CHINA
| | - Jingxiong Yu
- Xiamen University, College of Chemistry and Chemical Engineering, CHINA
| | - Shanjun Chen
- Yangtze University, School of physics and optoelectronic engineering, No. one,South Ring Road, 434100, Jingzhou, CHINA
| | - Jun Chen
- Chinese Academy of Sciences, Fujian institute of rearch on the structure of matter, CHINA
| | - Zichao Tang
- Xiamen University, College of Chemistry and Chemical Engineering, CHINA
| | - Lansun Zheng
- Xiamen University, College of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
21
|
Goldman MJ, Green WH, Kroll JH. Chemistry of Simple Organic Peroxy Radicals under Atmospheric through Combustion Conditions: Role of Temperature, Pressure, and NO x Level. J Phys Chem A 2021; 125:10303-10314. [PMID: 34843244 DOI: 10.1021/acs.jpca.1c07203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic peroxy radicals (RO2) are key intermediates in the oxidation of organic compounds in both combustion systems and the atmosphere. While many studies have focused on reactions of RO2 in specific applications, spanning a relatively limited range of reaction conditions, the generalized behavior of RO2 radicals across the full range of reaction conditions (temperatures, pressures, and NO levels) has, to our knowledge, never been explored. In this work, two simple model systems, n-propyl peroxy radical and γ-isobutanol peroxy radical, are used to evaluate RO2 fate using pressure-dependent kinetics. The fate of these radicals was modeled based on literature data over 250-1250 K, 0.01-100 bar, and 1 ppt to 100 ppm of NO, which spans the typical range of atmospheric and combustion conditions. Covering this entire range provides a broad overview of the reactivity of these species under both atmospheric and combustion conditions, as well as under conditions intermediate to the two. A particular focus is on the importance of reactions that were traditionally considered to occur in only one of the two sets of conditions: RO2 unimolecular isomerization reactions (long known to occur in combustion systems but only recently appreciated in atmospheric systems) and RO2 bimolecular reactions of RO2 with NO (thought to occur mainly in atmospheric systems and rarely considered in combustion chemistry).
Collapse
Affiliation(s)
- Mark Jacob Goldman
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jesse H Kroll
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Towards a Comprehensive Characterization of the Low-Temperature Autoxidation of Di-n-Butyl Ether. Molecules 2021; 26:molecules26237174. [PMID: 34885760 PMCID: PMC8658975 DOI: 10.3390/molecules26237174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
In the present study, we investigated the oxidation of 2500 ppm of di-n-butyl ether under fuel-rich conditions (φ = 2) at low temperatures (460-780 K), a residence time of 1 s, and 10 atm. The experiments were carried out in a fused silica jet-stirred reactor. Oxidation products were identified and quantified in gas samples by gas chromatography and Fourier transform infrared spectrometry. Samples were also trapped through bubbling in cool acetonitrile for high-pressure liquid chromatography (HPLC) analyses. 2,4-dinitro-phenylhydrazine was used to derivatize carbonyl products and distinguish them from other isomers. HPLC coupled to high resolution mass spectrometry (Orbitrap Q-Exactive®) allowed for the detection of oxygenated species never observed before, i.e., low-temperature oxidation products (C8H12O4,6, C8H16O3,5,7, and C8H18O2,5) and species that are more specific products of atmospheric oxidation, i.e., C16H34O4, C11H24O3, C11H22O3, and C10H22O3. Flow injection analyses indicated the presence of high molecular weight oxygenated products (m/z > 550). These results highlight the strong similitude in terms of classes of oxidation products of combustion and atmospheric oxidation, and through autoxidation processes. A kinetic modeling of the present experiments indicated some discrepancies with the present data.
Collapse
|
23
|
Lakshmanan S, Hase WL, Smith GP. Mechanism and kinetics for the reaction of methyl peroxy radical with O 2. Phys Chem Chem Phys 2021; 23:23508-23516. [PMID: 34553715 DOI: 10.1039/d1cp02427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum chemical calculations and dynamics simulations were performed to study the reaction between methyl peroxy radical (CH3O2) and O2. The reaction proceeds through three different pathways (1) H-atom abstraction, (2) O2 addition and (3) concerted H-atom shift and O2 addition reactions. The concerted H-atom shift and O2 addition pathway is the most favourable reaction both kinetically and thermodynamically. The major product channel formed from these reactions is H2CO + OH + O2. Trajectory calculations also confirm that H2CO + OH + O2 is the main product channel. An estimated rate constant expression for this reaction from master equation calculations is 4.20 × 1013 e-8676/T cm3 mole-1 s-1.
Collapse
Affiliation(s)
- Sandhiya Lakshmanan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA. .,CSIR - National Institute of Science Communication and Policy Research, New Delhi-110060, India
| | - William L Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| | | |
Collapse
|
24
|
Wu X, Huang C, Chai J, Zhang F. Formation of Substituted Alkyls as Precursors of Peroxy Radicals with a Rapid H-Shift in the Atmosphere. J Phys Chem Lett 2021; 12:8790-8797. [PMID: 34491756 DOI: 10.1021/acs.jpclett.1c02503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Long straight-chain alkyl peroxy (ROO) radicals substituted with C═C and oxo functional groups are expected to undergo a rapid hydrogen shift (H-shift), which is a critical step in the atmospheric autoxidation mechanism. The existence of a weak tertiary C-H bond plays a key role in the rapid H-shift. Here, the reaction kinetics between OH and two typical long straight-chain functionalized volatile organic compounds, 3-methyl-1-hexene (3-MH) and 2-methylpentanal (2-MP), was theoretically investigated to reveal the fate of the weak C-H bond. The results indicate that the most favored reaction pathways are direct consumption (H-abstraction of 2-MP) and indirect destruction (addition of OH to 3-MH) of the "weak" tertiary C-H bond. The yields of abstraction pathways producing precursors of ROO radicals that undergo rapid H-shifts are computed to be less than 10% for both 3-MH + OH and 2-MP + OH reactions.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Can Huang
- Chair of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Jiajue Chai
- Institute at Brown for Environment and Society, and Department of Earth, Environmental and Planetary Sciences, Brown University, 182 Hope Street, Providence, Rhode Island 02912, United States
| | - Feng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
25
|
Xing L, Lian L, Wang X, Cui J, Cheng Z. Hydrogen shift isomerizations in the kinetics of the first and second oxidation mechanism of diethyl ether combustion. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Abstract
The fates of organic hydroperoxides (ROOHs) in atmospheric condensed phases are key to understanding the oxidative and toxicological potentials of particulate matter. Recently, mass spectrometric detection of ROOHs as chloride anion adducts has revealed that liquid-phase α-hydroxyalkyl hydroperoxides, derived from hydration of carbonyl oxides (Criegee intermediates), decompose to geminal diols and H2O2 over a time frame that is sensitively dependent on the water content, pH, and temperature of the reaction solution. Based on these findings, it has been proposed that H+-catalyzed conversion of ROOHs to ROHs + H2O2 is a key process for the decomposition of ROOHs that bypasses radical formation. In this perspective, we discuss our current understanding of the aqueous-phase decomposition of atmospherically relevant ROOHs, including ROOHs derived from reaction between Criegee intermediates and alcohols or carboxylic acids, and of highly oxygenated molecules (HOMs). Implications and future challenges are also discussed.
Collapse
Affiliation(s)
- Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| |
Collapse
|
27
|
Wang Z, Ehn M, Rissanen MP, Garmash O, Quéléver L, Xing L, Monge-Palacios M, Rantala P, Donahue NM, Berndt T, Sarathy SM. Efficient alkane oxidation under combustion engine and atmospheric conditions. Commun Chem 2021; 4:18. [PMID: 36697513 PMCID: PMC9814728 DOI: 10.1038/s42004-020-00445-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/17/2020] [Indexed: 01/28/2023] Open
Abstract
Oxidation chemistry controls both combustion processes and the atmospheric transformation of volatile emissions. In combustion engines, radical species undergo isomerization reactions that allow fast addition of O2. This chain reaction, termed autoxidation, is enabled by high engine temperatures, but has recently been also identified as an important source for highly oxygenated species in the atmosphere, forming organic aerosol. Conventional knowledge suggests that atmospheric autoxidation requires suitable structural features, like double bonds or oxygen-containing moieties, in the precursors. With neither of these functionalities, alkanes, the primary fuel type in combustion engines and an important class of urban trace gases, are thought to have minor susceptibility to extensive autoxidation. Here, utilizing state-of-the-art mass spectrometry, measuring both radicals and oxidation products, we show that alkanes undergo autoxidation much more efficiently than previously thought, both under atmospheric and combustion conditions. Even at high concentrations of NOX, which typically rapidly terminates autoxidation in urban areas, the studied C6-C10 alkanes produce considerable amounts of highly oxygenated products that can contribute to urban organic aerosol. The results of this inter-disciplinary effort provide crucial information on oxidation processes in both combustion engines and the atmosphere, with direct implications for engine efficiency and urban air quality.
Collapse
Affiliation(s)
- Zhandong Wang
- grid.59053.3a0000000121679639National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 P. R. China ,grid.59053.3a0000000121679639State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 PR China ,grid.45672.320000 0001 1926 5090King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal, 23955-6900 Saudi Arabia
| | - Mikael Ehn
- grid.7737.40000 0004 0410 2071Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, 00014 Finland
| | - Matti P. Rissanen
- grid.7737.40000 0004 0410 2071Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, 00014 Finland ,grid.502801.e0000 0001 2314 6254Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland
| | - Olga Garmash
- grid.7737.40000 0004 0410 2071Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, 00014 Finland
| | - Lauriane Quéléver
- grid.7737.40000 0004 0410 2071Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, 00014 Finland
| | - Lili Xing
- grid.453074.10000 0000 9797 0900Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003 China
| | - Manuel Monge-Palacios
- grid.45672.320000 0001 1926 5090King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal, 23955-6900 Saudi Arabia
| | - Pekka Rantala
- grid.7737.40000 0004 0410 2071Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, 00014 Finland
| | - Neil M. Donahue
- grid.147455.60000 0001 2097 0344Center for Atmospheric Particle Studies, and Department of Chemistry, Department of Chemical Engineering, Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Torsten Berndt
- grid.424885.70000 0000 8720 1454Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Dept. (ACD), 04318 Leipzig, Germany
| | - S. Mani Sarathy
- grid.45672.320000 0001 1926 5090King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal, 23955-6900 Saudi Arabia
| |
Collapse
|
28
|
Yang B. Towards predictive combustion kinetic models: Progress in model analysis and informative experiments. PROCEEDINGS OF THE COMBUSTION INSTITUTE 2021; 38:199-222. [DOI: 10.1016/j.proci.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
29
|
Rousso AC, Jasper AW, Ju Y, Hansen N. Extreme Low-Temperature Combustion Chemistry: Ozone-Initiated Oxidation of Methyl Hexanoate. J Phys Chem A 2020; 124:9897-9914. [PMID: 33174431 DOI: 10.1021/acs.jpca.0c07584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accelerating chemical effect of ozone addition on the oxidation chemistry of methyl hexanoate [CH3(CH2)4C(═O)OCH3] was investigated over a temperature range from 460 to 940 K. Using an externally heated jet-stirred reactor at p = 700 Torr (residence time τ = 1.3 s, stoichiometry φ = 0.5, 80% argon dilution), we explored the relevant chemical pathways by employing molecular-beam mass spectrometry with electron and single-photon ionization to trace the temperature dependencies of key intermediates, including many hydroperoxides. In the absence of ozone, reactivity is observed in the so-called low-temperature chemistry (LTC) regime between 550 and 700 K, which is governed by hydroperoxides formed from sequential O2 addition and isomerization reactions. At temperatures above 700 K, we observed the negative temperature coefficient (NTC) regime, in which the reactivity decreases with increasing temperatures, until near 800 K, where the reactivity increases again. Upon addition of ozone (1000 ppm), the overall reactivity of the system is dramatically changed due to the time scale of ozone decomposition in comparison to fuel oxidation time scales of the mixtures at different temperatures. While the LTC regime seems to be only slightly affected by the addition of ozone with respect to the identity and quantity of the observed intermediates, we observed an increased reactivity in the intermediate NTC temperature range. Furthermore, we observed experimental evidence for an additional oxidation regime in the range near 500 K, herein referred to as the extreme low-temperature chemistry (ELTC) regime. Experimental evidence and theoretical rate constant calculations indicate that this ELTC regime is likely to be initiated by H abstraction from methyl hexanoate via O atoms, which originate from thermal O3 decomposition. The theoretical calculations show that the rate constants for methyl ester initiation via abstraction by O atoms increase dramatically with the size of the methyl ester, suggesting that ELTC is likely not important for the smaller methyl esters. Experimental evidence is provided indicating that, similar to the LTC regime, the chemistry in the ELTC regime is dominated by hydroperoxide chemistry. However, mass spectra recorded at various reactor temperatures and at different photon energies provide experimental evidence of some differences in chemical species between the ELTC and the LTC temperature ranges.
Collapse
Affiliation(s)
- Aric C Rousso
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yiguang Ju
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
30
|
Jin H, Yang J, Farooq A. Determination of absolute photoionization cross-sections of some aromatic hydrocarbons. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8899. [PMID: 32677075 DOI: 10.1002/rcm.8899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Aromatic hydrocarbons play an important role in the formation and growth of polycyclic aromatic hydrocarbon (PAH) and soot particles. Measurements of their absolute photoionization cross-sections (PICSs), that benefit the quantitative investigation of mass spectrometry, are still lacking, however. METHODS PICSs of some aromatic hydrocarbons were measured with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). Nitric oxide and benzene were chosen as standard references for PICS calibration, since their photoionization cross-sections are well documented in the literature. Binary liquid mixtures of the investigated molecules and their specific solvents were used in the measurements. RESULTS The investigated aromatics include naphthalene, phenanthrene, 1-methylnaphthalene, indene, 2-/3-/4-methylphenylacetylene, 2-methylindene, diphenylacetylene, 1-/2-ethynylnaphthalene and acenaphthylene. Photo-induced fragments from the molecules were also observed with increasing photon energy. CONCLUSIONS Based on our measurements and literature data, PICSs of most aromatic molecules have very similar values beyond their ionization energies. However, molecules that contain the phenylacetylene structure have PICSs higher than other aromatics.
Collapse
Affiliation(s)
- Hanfeng Jin
- Physical Sciences and Engineering Division, Clean Combustion Research Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jiuzhong Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Aamir Farooq
- Physical Sciences and Engineering Division, Clean Combustion Research Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
31
|
Kohse-Höinghaus K. Combustion in the future: The importance of chemistry. PROCEEDINGS OF THE COMBUSTION INSTITUTE. INTERNATIONAL SYMPOSIUM ON COMBUSTION 2020; 38:S1540-7489(20)30501-0. [PMID: 33013234 PMCID: PMC7518234 DOI: 10.1016/j.proci.2020.06.375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 05/18/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Combustion involves chemical reactions that are often highly exothermic. Combustion systems utilize the energy of chemical compounds released during this reactive process for transportation, to generate electric power, or to provide heat for various applications. Chemistry and combustion are interlinked in several ways. The outcome of a combustion process in terms of its energy and material balance, regarding the delivery of useful work as well as the generation of harmful emissions, depends sensitively on the molecular nature of the respective fuel. The design of efficient, low-emission combustion processes in compliance with air quality and climate goals suggests a closer inspection of the molecular properties and reactions of conventional, bio-derived, and synthetic fuels. Information about flammability, reaction intensity, and potentially hazardous combustion by-products is important also for safety considerations. Moreover, some of the compounds that serve as fuels can assume important roles in chemical energy storage and conversion. Combustion processes can furthermore be used to synthesize materials with attractive properties. A systematic understanding of the combustion behavior thus demands chemical knowledge. Desirable information includes properties of the thermodynamic states before and after the combustion reactions and relevant details about the dynamic processes that occur during the reactive transformations from the fuel and oxidizer to the products under the given boundary conditions. Combustion systems can be described, tailored, and improved by taking chemical knowledge into account. Combining theory, experiment, model development, simulation, and a systematic analysis of uncertainties enables qualitative or even quantitative predictions for many combustion situations of practical relevance. This article can highlight only a few of the numerous investigations on chemical processes for combustion and combustion-related science and applications, with a main focus on gas-phase reaction systems. It attempts to provide a snapshot of recent progress and a guide to exciting opportunities that drive such research beyond fossil combustion.
Collapse
Key Words
- 2M2B, 2-methyl-2-butene
- AFM, atomic force microscopy
- ALS, Advanced Light Source
- APCI, atmospheric pressure chemical ionization
- ARAS, atomic resonance absorption spectroscopy
- ATcT, Active Thermochemical Tables
- BC, black carbon
- BEV, battery electric vehicle
- BTL, biomass-to-liquid
- Biofuels
- CA, crank angle
- CCS, carbon capture and storage
- CEAS, cavity-enhanced absorption spectroscopy
- CFD, computational fluid dynamics
- CI, compression ignition
- CRDS, cavity ring-down spectroscopy
- CTL, coal-to-liquid
- Combustion
- Combustion chemistry
- Combustion diagnostics
- Combustion kinetics
- Combustion modeling
- Combustion synthesis
- DBE, di-n-butyl ether
- DCN, derived cetane number
- DEE, diethyl ether
- DFT, density functional theory
- DFWM, degenerate four-wave mixing
- DMC, dimethyl carbonate
- DME, dimethyl ether
- DMM, dimethoxy methane
- DRIFTS, diffuse reflectance infrared Fourier transform spectroscopy
- EGR, exhaust gas recirculation
- EI, electron ionization
- Emissions
- Energy
- Energy conversion
- FC, fuel cell
- FCEV, fuel cell electric vehicle
- FRET, fluorescence resonance energy transfer
- FT, Fischer-Tropsch
- FTIR, Fourier-transform infrared
- Fuels
- GC, gas chromatography
- GHG, greenhouse gas
- GTL, gas-to-liquid
- GW, global warming
- HAB, height above the burner
- HACA, hydrogen abstraction acetylene addition
- HCCI, homogeneous charge compression ignition
- HFO, heavy fuel oil
- HRTEM, high-resolution transmission electron microscopy
- IC, internal combustion
- ICEV, internal combustion engine vehicle
- IE, ionization energy
- IPCC, Intergovernmental Panel on Climate Change
- IR, infrared
- JSR, jet-stirred reactor
- KDE, kernel density estimation
- KHP, ketohydroperoxide
- LCA, lifecycle analysis
- LH2, liquid hydrogen
- LIF, laser-induced fluorescence
- LIGS, laser-induced grating spectroscopy
- LII, laser-induced incandescence
- LNG, liquefied natural gas
- LOHC, liquid organic hydrogen carrier
- LT, low-temperature
- LTC, low-temperature combustion
- MBMS, molecular-beam MS
- MDO, marine diesel oil
- MS, mass spectrometry
- MTO, methanol-to-olefins
- MVK, methyl vinyl ketone
- NOx, nitrogen oxides
- NTC, negative temperature coefficient
- OME, oxymethylene ether
- OTMS, Orbitrap MS
- PACT, predictive automated computational thermochemistry
- PAH, polycyclic aromatic hydrocarbon
- PDF, probability density function
- PEM, polymer electrolyte membrane
- PEPICO, photoelectron photoion coincidence
- PES, photoelectron spectrum/spectra
- PFR, plug-flow reactor
- PI, photoionization
- PIE, photoionization efficiency
- PIV, particle imaging velocimetry
- PLIF, planar laser-induced fluorescence
- PM, particulate matter
- PM10 PM2,5, sampled fractions with sizes up to ∼10 and ∼2,5 µm
- PRF, primary reference fuel
- QCL, quantum cascade laser
- RCCI, reactivity-controlled compression ignition
- RCM, rapid compression machine
- REMPI, resonance-enhanced multi-photon ionization
- RMG, reaction mechanism generator
- RON, research octane number
- Reaction mechanisms
- SI, spark ignition
- SIMS, secondary ion mass spectrometry
- SNG, synthetic natural gas
- SNR, signal-to-noise ratio
- SOA, secondary organic aerosol
- SOEC, solid-oxide electrolysis cell
- SOFC, solid-oxide fuel cell
- SOx, sulfur oxides
- STM, scanning tunneling microscopy
- SVO, straight vegetable oil
- Synthetic fuels
- TDLAS, tunable diode laser absorption spectroscopy
- TOF-MS, time-of-flight MS
- TPES, threshold photoelectron spectrum/spectra
- TPRF, toluene primary reference fuel
- TSI, threshold sooting index
- TiRe-LII, time-resolved LII
- UFP, ultrafine particle
- VOC, volatile organic compound
- VUV, vacuum ultraviolet
- WLTP, Worldwide Harmonized Light Vehicle Test Procedure
- XAS, X-ray absorption spectroscopy
- YSI, yield sooting index
Collapse
|
32
|
Oosterbaan KJ, White AF, Hait D, Head-Gordon M. Generalized single excitation configuration interaction: an investigation into the impact of the inclusion of non-orthogonality on the calculation of core-excited states. Phys Chem Chem Phys 2020; 22:8182-8192. [DOI: 10.1039/c9cp06592j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this paper, we investigate different non-orthogonal generalizations of the configuration interaction with single substitutions (CIS) method and their impact on the calculation of core-excited states.
Collapse
Affiliation(s)
| | - Alec F. White
- Division of Chemistry and Chemical Engineering
- California Institute of Technology
- Pasadena
- USA
| | - Diptarka Hait
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - Martin Head-Gordon
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
33
|
Tong H, Zhang Y, Filippi A, Wang T, Li C, Liu F, Leppla D, Kourtchev I, Wang K, Keskinen HM, Levula JT, Arangio AM, Shen F, Ditas F, Martin ST, Artaxo P, Godoi RHM, Yamamoto CI, de Souza RAF, Huang RJ, Berkemeier T, Wang Y, Su H, Cheng Y, Pope FD, Fu P, Yao M, Pöhlker C, Petäjä T, Kulmala M, Andreae MO, Shiraiwa M, Pöschl U, Hoffmann T, Kalberer M. Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12506-12518. [PMID: 31536707 DOI: 10.1021/acs.est.9b05149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Highly oxygenated molecules (HOMs) play an important role in the formation and evolution of secondary organic aerosols (SOA). However, the abundance of HOMs in different environments and their relation to the oxidative potential of fine particulate matter (PM) are largely unknown. Here, we investigated the relative HOM abundance and radical yield of laboratory-generated SOA and fine PM in ambient air ranging from remote forest areas to highly polluted megacities. By electron paramagnetic resonance and mass spectrometric investigations, we found that the relative abundance of HOMs, especially the dimeric and low-volatility types, in ambient fine PM was positively correlated with the formation of radicals in aqueous PM extracts. SOA from photooxidation of isoprene, ozonolysis of α- and β-pinene, and fine PM from tropical (central Amazon) and boreal (Hyytiälä, Finland) forests exhibited a higher HOM abundance and radical yield than SOA from photooxidation of naphthalene and fine PM from urban sites (Beijing, Guangzhou, Mainz, Shanghai, and Xi'an), confirming that HOMs are important constituents of biogenic SOA to generate radicals. Our study provides new insights into the chemical relationship of HOM abundance, composition, and sources with the yield of radicals by laboratory and ambient aerosols, enabling better quantification of the component-specific contribution of source- or site-specific fine PM to its climate and health effects.
Collapse
Affiliation(s)
- Haijie Tong
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Yun Zhang
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University , 55128 Mainz , Germany
| | - Alexander Filippi
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Ting Wang
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- State Key Laboratory of Multiphase Flow in Power Engineering , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Chenpei Li
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- State Key Laboratory of Multiphase Flow in Power Engineering , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Fobang Liu
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Denis Leppla
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University , 55128 Mainz , Germany
| | - Ivan Kourtchev
- Centre for Atmospheric Science, Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| | - Kai Wang
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University , 55128 Mainz , Germany
| | - Helmi-Marja Keskinen
- Institute for Atmospheric and Earth System Research/Physics Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Janne T Levula
- Institute for Atmospheric and Earth System Research/Physics Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Andrea M Arangio
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- École polytechnique fédérale de Lausanne , Lausanne 1015 , Switzerland
| | - Fangxia Shen
- School of Space and Environment , Beihang University , Beijing 100191 , China
| | - Florian Ditas
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | | | - Paulo Artaxo
- Physics Institute , University of São Paulo , São Paulo 05508-900 , Brazil
| | - Ricardo H M Godoi
- Environmental Engineering Department , Federal University of Paraná , Curitiba , Paraná 81531-980 , Brazil
| | - Carlos I Yamamoto
- Chemical Engineering Department , Federal University of Paraná , Curitiba , Paraná 81531-970 , Brazil
| | - Rodrigo A F de Souza
- School of Technology , Amazonas State University , Manaus , Amazonas 69065-020 , Brazil
| | - Ru-Jin Huang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology , Institute of Earth and Environment, Chinese Academy of Sciences , Xi'an , 710061 , China
| | - Thomas Berkemeier
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Yueshe Wang
- State Key Laboratory of Multiphase Flow in Power Engineering , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Hang Su
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Yafang Cheng
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Francis D Pope
- School of Geography, Earth and Environmental Sciences , University of Birmingham , Birmingham B15 2TT , United Kingdom
| | - Pingqing Fu
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Maosheng Yao
- College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Christopher Pöhlker
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Meinrat O Andreae
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- Scripps Institution of Oceanography , University of California San Diego , San Diego , California 92093 , United States
| | - Manabu Shiraiwa
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Ulrich Pöschl
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Thorsten Hoffmann
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University , 55128 Mainz , Germany
| | - Markus Kalberer
- Centre for Atmospheric Science, Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
- Department of Environmental Sciences , University of Basel , Klingelbergstrasse 27 , 4056 Basel , Switzerland
| |
Collapse
|
34
|
Johnston MV, Kerecman DE. Molecular Characterization of Atmospheric Organic Aerosol by Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:247-274. [PMID: 30901261 DOI: 10.1146/annurev-anchem-061516-045135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Atmospheric aerosol, particulate matter suspended in the air we breathe, exerts a strong impact on our health and the environment. Controlling the amount of particulate matter in air is difficult, as there are many ways particles can form by both natural and anthropogenic processes. We gain insight into the sources of particulate matter through chemical composition measurements. A substantial portion of atmospheric aerosol is organic, and this organic matter is exceedingly complex on a molecular scale, encompassing hundreds to thousands of individual compounds that distribute between the gas and particle phases. Because of this complexity, no single analytical technique is sufficient. However, mass spectrometry plays a crucial role owing to its combination of high sensitivity and molecular specificity. This review surveys the various ways mass spectrometry is used to characterize atmospheric organic aerosol at a molecular level, tracing these methods from inception to current practice, with emphasis on current and emerging areas of research. Both offline and online approaches are covered, and molecular measurements with them are discussed in the context of identifying sources and elucidating the underlying chemical mechanisms of particle formation. There is an ongoing need to improve existing techniques and develop new ones if we are to further advance our knowledge of how to mitigate the unwanted health and environmental impacts of particles.
Collapse
Affiliation(s)
- Murray V Johnston
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA;
| | - Devan E Kerecman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA;
| |
Collapse
|
35
|
Oosterbaan KJ, White AF, Head-Gordon M. Non-Orthogonal Configuration Interaction with Single Substitutions for Core-Excited States: An Extension to Doublet Radicals. J Chem Theory Comput 2019; 15:2966-2973. [DOI: 10.1021/acs.jctc.8b01259] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katherine J. Oosterbaan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alec F. White
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Abstract
Abstract
Current topics in combustion chemistry include aspects of a changing fuel spectrum with a focus on reducing emissions and increasing efficiency. This article is intended to provide an overview of selected recent work in combustion chemistry, especially addressing reaction pathways from fuel decomposition to emissions. The role of the molecular fuel structure will be emphasized for the formation of certain regulated and unregulated species from individual fuels and their mixtures, exemplarily including fuel compounds such as alkanes, alkenes, ethers, alcohols, ketones, esters, and furan derivatives. Depending on the combustion conditions, different temperature regimes are important and can lead to different reaction classes. Laboratory reactors and flames are prime sources and targets from which such detailed chemical information can be obtained and verified with a number of advanced diagnostic techniques, often supported by theoretical work and simulation with combustion models developed to transfer relevant details of chemical mechanisms into practical applications. Regarding the need for cleaner combustion processes, some related background and perspectives will be provided regarding the context for future chemistry research in combustion energy science.
Collapse
Affiliation(s)
- Katharina Kohse-Höinghaus
- Department of Chemistry , Bielefeld University , Universitätsstraße 25 , Bielefeld D-33615 , Germany , Phone: +49 5211062052
| |
Collapse
|
37
|
Praske E, Otkjær RV, Crounse JD, Hethcox JC, Stoltz BM, Kjaergaard HG, Wennberg PO. Intramolecular Hydrogen Shift Chemistry of Hydroperoxy-Substituted Peroxy Radicals. J Phys Chem A 2018; 123:590-600. [DOI: 10.1021/acs.jpca.8b09745] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eric Praske
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Rasmus V. Otkjær
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - John D. Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - J. Caleb Hethcox
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Brian M. Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Paul O. Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Division of Engineering and Applied Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
38
|
Xing L, Bao JL, Wang Z, Wang X, Truhlar DG. Relative Rates of Hydrogen Shift Isomerizations Depend Strongly on Multiple-Structure Anharmonicity. J Am Chem Soc 2018; 140:17556-17570. [DOI: 10.1021/jacs.8b09381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lili Xing
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Junwei Lucas Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minnesota 55455-0431, United States
| | - Zhandong Wang
- Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Xuetao Wang
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minnesota 55455-0431, United States
| |
Collapse
|
39
|
Rissanen MP. NO 2 Suppression of Autoxidation-Inhibition of Gas-Phase Highly Oxidized Dimer Product Formation. ACS EARTH & SPACE CHEMISTRY 2018; 2:1211-1219. [PMID: 30488044 PMCID: PMC6251564 DOI: 10.1021/acsearthspacechem.8b00123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
Atmospheric autoxidation of volatile organic compounds (VOC) leads to prompt formation of highly oxidized multifunctional compounds (HOM) that have been found crucial in forming ambient secondary organic aerosol (SOA). As a radical chain reaction mediated by oxidized peroxy (RO2) and alkoxy (RO) radical intermediates, the formation pathways can be intercepted by suitable reaction partners, preventing the production of the highest oxidized reaction products, and thus the formation of the most condensable material. Commonly, NO is expected to have a detrimental effect on RO2 chemistry, and thus on autoxidation, whereas the influence of NO2 is mostly neglected. Here it is shown by dedicated flow tube experiments, how high concentration of NO2 suppresses cyclohexene ozonolysis initiated autoxidation chain reaction. Importantly, the addition of NO2 ceases covalently bound dimer production, indicating their production involving acylperoxy radical (RC(O)OO•) intermediates. In related experiments NO was also shown to strongly suppress the highly oxidized product formation, but due to possibility for chain propagating reactions (as with RO2 and HO2 too), the suppression is not as absolute as with NO2. Furthermore, it is shown how NO x reactions with oxidized peroxy radicals lead into indistinguishable product compositions, complicating mass spectral assignments in any RO2 + NO x system. The present work was conducted with atmospheric pressure chemical ionization mass spectrometry (CIMS) as the detection method for the highly oxidized end-products and peroxy radical intermediates, under ambient conditions and at short few second reaction times. Specifically, the insight was gained by addition of a large amount of NO2 (and NO) to the oxidation system, upon which acylperoxy radicals reacted in RC(O)O2 + NO2 → RC(O)O2NO2 reaction to form peroxyacylnitrates, consequently shutting down the oxidation sequence.
Collapse
Affiliation(s)
- Matti P. Rissanen
- Institute for Atmospheric
and Earth System Research (INAR), University
of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Mohamed SY, Davis AC, Al Rashidi MJ, Sarathy SM. Computational Kinetics of Hydroperoxybutylperoxy Isomerizations and Decompositions: A Study of the Effect of Hydrogen Bonding. J Phys Chem A 2018; 122:6277-6291. [DOI: 10.1021/acs.jpca.8b04415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samah Y. Mohamed
- King Abdullah University of Science and Technology, Clean Combustion Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - Alexander C. Davis
- Franklin and Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | | | - S. Mani Sarathy
- King Abdullah University of Science and Technology, Clean Combustion Research Center, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
41
|
Kohse-Höinghaus K, Troe J, Grabow JU, Olzmann M, Friedrichs G, Hungenberg KD. Kinetics in the real world: linking molecules, processes, and systems. Phys Chem Chem Phys 2018; 20:10561-10568. [PMID: 29616689 DOI: 10.1039/c8cp90054j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unravelling elementary steps, reaction pathways, and kinetic mechanisms is key to understanding the behaviour of many real-world chemical systems that span from the troposphere or even interstellar media to engines and process reactors. Recent work in chemical kinetics provides detailed information on the reactive changes occurring in chemical systems, often on the atomic or molecular scale. The optimisation of practical processes, for instance in combustion, catalysis, battery technology, polymerisation, and nanoparticle production, can profit from a sound knowledge of the underlying fundamental chemical kinetics. Reaction mechanisms can combine information gained from theory and experiments to enable the predictive simulation and optimisation of the crucial process variables and influences on the system's behaviour that may be exploited for both monitoring and control. Chemical kinetics, as one of the pillars of Physical Chemistry, thus contributes importantly to understanding and describing natural environments and technical processes and is becoming increasingly relevant for interactions in and with the real world.
Collapse
|
42
|
Mohamed SY, Davis AC, Al Rashidi MJ, Sarathy SM. High-Pressure Limit Rate Rules for α-H Isomerization of Hydroperoxyalkylperoxy Radicals. J Phys Chem A 2018. [DOI: 10.1021/acs.jpca.7b11955] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Samah Y. Mohamed
- Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Alexander C. Davis
- Franklin and Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | | | - S. Mani Sarathy
- Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
43
|
Praske E, Otkjær RV, Crounse JD, Hethcox JC, Stoltz BM, Kjaergaard HG, Wennberg PO. Atmospheric autoxidation is increasingly important in urban and suburban North America. Proc Natl Acad Sci U S A 2018; 115:64-69. [PMID: 29255042 PMCID: PMC5776813 DOI: 10.1073/pnas.1715540115] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gas-phase autoxidation-regenerative peroxy radical formation following intramolecular hydrogen shifts-is known to be important in the combustion of organic materials. The relevance of this chemistry in the oxidation of organics in the atmosphere has received less attention due, in part, to the lack of kinetic data at relevant temperatures. Here, we combine computational and experimental approaches to investigate the rate of autoxidation for organic peroxy radicals (RO2) produced in the oxidation of a prototypical atmospheric pollutant, n-hexane. We find that the reaction rate depends critically on the molecular configuration of the RO2 radical undergoing hydrogen transfer (H-shift). RO2 H-shift rate coefficients via transition states involving six- and seven-membered rings (1,5 and 1,6 H-shifts, respectively) of α-OH hydrogens (HOC-H) formed in this system are of order 0.1 s-1 at 296 K, while the 1,4 H-shift is calculated to be orders of magnitude slower. Consistent with H-shift reactions over a substantial energetic barrier, we find that the rate coefficients of these reactions increase rapidly with temperature and exhibit a large, primary, kinetic isotope effect. The observed H-shift rate coefficients are sufficiently fast that, as a result of ongoing NO x emission reductions, autoxidation is now competing with bimolecular chemistry even in the most polluted North American cities, particularly during summer afternoons when NO levels are low and temperatures are elevated.
Collapse
Affiliation(s)
- Eric Praske
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Rasmus V Otkjær
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - John D Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - J Caleb Hethcox
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Brian M Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark;
| | - Paul O Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125;
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|